• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/sched/deadline.h>
61 #include <linux/psi.h>
62 #include <net/sock.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/cgroup.h>
66 #undef CREATE_TRACE_POINTS
67 
68 #include <trace/hooks/cgroup.h>
69 
70 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
71 					 MAX_CFTYPE_NAME + 2)
72 /* let's not notify more than 100 times per second */
73 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
74 
75 /*
76  * To avoid confusing the compiler (and generating warnings) with code
77  * that attempts to access what would be a 0-element array (i.e. sized
78  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
79  * constant expression can be added.
80  */
81 #define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
82 
83 /*
84  * cgroup_mutex is the master lock.  Any modification to cgroup or its
85  * hierarchy must be performed while holding it.
86  *
87  * css_set_lock protects task->cgroups pointer, the list of css_set
88  * objects, and the chain of tasks off each css_set.
89  *
90  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
91  * cgroup.h can use them for lockdep annotations.
92  */
93 DEFINE_MUTEX(cgroup_mutex);
94 DEFINE_SPINLOCK(css_set_lock);
95 
96 #if (defined CONFIG_PROVE_RCU || defined CONFIG_LOCKDEP)
97 EXPORT_SYMBOL_GPL(cgroup_mutex);
98 EXPORT_SYMBOL_GPL(css_set_lock);
99 #endif
100 
101 DEFINE_SPINLOCK(trace_cgroup_path_lock);
102 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
103 static bool cgroup_debug __read_mostly;
104 
105 /*
106  * Protects cgroup_idr and css_idr so that IDs can be released without
107  * grabbing cgroup_mutex.
108  */
109 static DEFINE_SPINLOCK(cgroup_idr_lock);
110 
111 /*
112  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
113  * against file removal/re-creation across css hiding.
114  */
115 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
116 
117 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
118 EXPORT_SYMBOL_GPL(cgroup_threadgroup_rwsem);
119 
120 #define cgroup_assert_mutex_or_rcu_locked()				\
121 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
122 			   !lockdep_is_held(&cgroup_mutex),		\
123 			   "cgroup_mutex or RCU read lock required");
124 
125 /*
126  * cgroup destruction makes heavy use of work items and there can be a lot
127  * of concurrent destructions.  Use a separate workqueue so that cgroup
128  * destruction work items don't end up filling up max_active of system_wq
129  * which may lead to deadlock.
130  *
131  * A cgroup destruction should enqueue work sequentially to:
132  * cgroup_offline_wq: use for css offline work
133  * cgroup_release_wq: use for css release work
134  * cgroup_free_wq: use for free work
135  *
136  * Rationale for using separate workqueues:
137  * The cgroup root free work may depend on completion of other css offline
138  * operations. If all tasks were enqueued to a single workqueue, this could
139  * create a deadlock scenario where:
140  * - Free work waits for other css offline work to complete.
141  * - But other css offline work is queued after free work in the same queue.
142  *
143  * Example deadlock scenario with single workqueue (cgroup_destroy_wq):
144  * 1. umount net_prio
145  * 2. net_prio root destruction enqueues work to cgroup_destroy_wq (CPUx)
146  * 3. perf_event CSS A offline enqueues work to same cgroup_destroy_wq (CPUx)
147  * 4. net_prio cgroup_destroy_root->cgroup_lock_and_drain_offline.
148  * 5. net_prio root destruction blocks waiting for perf_event CSS A offline,
149  *    which can never complete as it's behind in the same queue and
150  *    workqueue's max_active is 1.
151  */
152 static struct workqueue_struct *cgroup_offline_wq;
153 static struct workqueue_struct *cgroup_release_wq;
154 static struct workqueue_struct *cgroup_free_wq;
155 
156 /* generate an array of cgroup subsystem pointers */
157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
158 struct cgroup_subsys *cgroup_subsys[] = {
159 #include <linux/cgroup_subsys.h>
160 };
161 #undef SUBSYS
162 
163 /* array of cgroup subsystem names */
164 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
165 static const char *cgroup_subsys_name[] = {
166 #include <linux/cgroup_subsys.h>
167 };
168 #undef SUBSYS
169 
170 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
171 #define SUBSYS(_x)								\
172 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
173 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
174 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
175 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
176 #include <linux/cgroup_subsys.h>
177 #undef SUBSYS
178 
179 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
180 static struct static_key_true *cgroup_subsys_enabled_key[] = {
181 #include <linux/cgroup_subsys.h>
182 };
183 #undef SUBSYS
184 
185 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
186 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
187 #include <linux/cgroup_subsys.h>
188 };
189 #undef SUBSYS
190 
191 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
192 
193 /* the default hierarchy */
194 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
195 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
196 
197 /*
198  * The default hierarchy always exists but is hidden until mounted for the
199  * first time.  This is for backward compatibility.
200  */
201 static bool cgrp_dfl_visible;
202 
203 /* some controllers are not supported in the default hierarchy */
204 static u16 cgrp_dfl_inhibit_ss_mask;
205 
206 /* some controllers are implicitly enabled on the default hierarchy */
207 static u16 cgrp_dfl_implicit_ss_mask;
208 
209 /* some controllers can be threaded on the default hierarchy */
210 static u16 cgrp_dfl_threaded_ss_mask;
211 
212 /* The list of hierarchy roots */
213 LIST_HEAD(cgroup_roots);
214 static int cgroup_root_count;
215 
216 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
217 static DEFINE_IDR(cgroup_hierarchy_idr);
218 
219 /*
220  * Assign a monotonically increasing serial number to csses.  It guarantees
221  * cgroups with bigger numbers are newer than those with smaller numbers.
222  * Also, as csses are always appended to the parent's ->children list, it
223  * guarantees that sibling csses are always sorted in the ascending serial
224  * number order on the list.  Protected by cgroup_mutex.
225  */
226 static u64 css_serial_nr_next = 1;
227 
228 /*
229  * These bitmasks identify subsystems with specific features to avoid
230  * having to do iterative checks repeatedly.
231  */
232 static u16 have_fork_callback __read_mostly;
233 static u16 have_exit_callback __read_mostly;
234 static u16 have_release_callback __read_mostly;
235 static u16 have_canfork_callback __read_mostly;
236 
237 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS);
238 
239 /* cgroup namespace for init task */
240 struct cgroup_namespace init_cgroup_ns = {
241 	.ns.count	= REFCOUNT_INIT(2),
242 	.user_ns	= &init_user_ns,
243 	.ns.ops		= &cgroupns_operations,
244 	.ns.inum	= PROC_CGROUP_INIT_INO,
245 	.root_cset	= &init_css_set,
246 };
247 
248 static struct file_system_type cgroup2_fs_type;
249 static struct cftype cgroup_base_files[];
250 static struct cftype cgroup_psi_files[];
251 
252 /* cgroup optional features */
253 enum cgroup_opt_features {
254 #ifdef CONFIG_PSI
255 	OPT_FEATURE_PRESSURE,
256 #endif
257 	OPT_FEATURE_COUNT
258 };
259 
260 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
261 #ifdef CONFIG_PSI
262 	"pressure",
263 #endif
264 };
265 
266 static u16 cgroup_feature_disable_mask __read_mostly;
267 
268 static int cgroup_apply_control(struct cgroup *cgrp);
269 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
270 static void css_task_iter_skip(struct css_task_iter *it,
271 			       struct task_struct *task);
272 static int cgroup_destroy_locked(struct cgroup *cgrp);
273 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
274 					      struct cgroup_subsys *ss);
275 static void css_release(struct percpu_ref *ref);
276 static void kill_css(struct cgroup_subsys_state *css);
277 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
278 			      struct cgroup *cgrp, struct cftype cfts[],
279 			      bool is_add);
280 
281 #ifdef CONFIG_DEBUG_CGROUP_REF
282 #define CGROUP_REF_FN_ATTRS	noinline
283 #define CGROUP_REF_EXPORT(fn)	EXPORT_SYMBOL_GPL(fn);
284 #include <linux/cgroup_refcnt.h>
285 #endif
286 
287 /**
288  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
289  * @ssid: subsys ID of interest
290  *
291  * cgroup_subsys_enabled() can only be used with literal subsys names which
292  * is fine for individual subsystems but unsuitable for cgroup core.  This
293  * is slower static_key_enabled() based test indexed by @ssid.
294  */
cgroup_ssid_enabled(int ssid)295 bool cgroup_ssid_enabled(int ssid)
296 {
297 	if (!CGROUP_HAS_SUBSYS_CONFIG)
298 		return false;
299 
300 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
301 }
302 
303 /**
304  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
305  * @cgrp: the cgroup of interest
306  *
307  * The default hierarchy is the v2 interface of cgroup and this function
308  * can be used to test whether a cgroup is on the default hierarchy for
309  * cases where a subsystem should behave differently depending on the
310  * interface version.
311  *
312  * List of changed behaviors:
313  *
314  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
315  *   and "name" are disallowed.
316  *
317  * - When mounting an existing superblock, mount options should match.
318  *
319  * - rename(2) is disallowed.
320  *
321  * - "tasks" is removed.  Everything should be at process granularity.  Use
322  *   "cgroup.procs" instead.
323  *
324  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
325  *   recycled in-between reads.
326  *
327  * - "release_agent" and "notify_on_release" are removed.  Replacement
328  *   notification mechanism will be implemented.
329  *
330  * - "cgroup.clone_children" is removed.
331  *
332  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
333  *   and its descendants contain no task; otherwise, 1.  The file also
334  *   generates kernfs notification which can be monitored through poll and
335  *   [di]notify when the value of the file changes.
336  *
337  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
338  *   take masks of ancestors with non-empty cpus/mems, instead of being
339  *   moved to an ancestor.
340  *
341  * - cpuset: a task can be moved into an empty cpuset, and again it takes
342  *   masks of ancestors.
343  *
344  * - blkcg: blk-throttle becomes properly hierarchical.
345  */
cgroup_on_dfl(const struct cgroup * cgrp)346 bool cgroup_on_dfl(const struct cgroup *cgrp)
347 {
348 	return cgrp->root == &cgrp_dfl_root;
349 }
350 
351 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)352 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
353 			    gfp_t gfp_mask)
354 {
355 	int ret;
356 
357 	idr_preload(gfp_mask);
358 	spin_lock_bh(&cgroup_idr_lock);
359 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
360 	spin_unlock_bh(&cgroup_idr_lock);
361 	idr_preload_end();
362 	return ret;
363 }
364 
cgroup_idr_replace(struct idr * idr,void * ptr,int id)365 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
366 {
367 	void *ret;
368 
369 	spin_lock_bh(&cgroup_idr_lock);
370 	ret = idr_replace(idr, ptr, id);
371 	spin_unlock_bh(&cgroup_idr_lock);
372 	return ret;
373 }
374 
cgroup_idr_remove(struct idr * idr,int id)375 static void cgroup_idr_remove(struct idr *idr, int id)
376 {
377 	spin_lock_bh(&cgroup_idr_lock);
378 	idr_remove(idr, id);
379 	spin_unlock_bh(&cgroup_idr_lock);
380 }
381 
cgroup_has_tasks(struct cgroup * cgrp)382 static bool cgroup_has_tasks(struct cgroup *cgrp)
383 {
384 	return cgrp->nr_populated_csets;
385 }
386 
cgroup_is_threaded(struct cgroup * cgrp)387 static bool cgroup_is_threaded(struct cgroup *cgrp)
388 {
389 	return cgrp->dom_cgrp != cgrp;
390 }
391 
392 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)393 static bool cgroup_is_mixable(struct cgroup *cgrp)
394 {
395 	/*
396 	 * Root isn't under domain level resource control exempting it from
397 	 * the no-internal-process constraint, so it can serve as a thread
398 	 * root and a parent of resource domains at the same time.
399 	 */
400 	return !cgroup_parent(cgrp);
401 }
402 
403 /* can @cgrp become a thread root? Should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)404 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
405 {
406 	/* mixables don't care */
407 	if (cgroup_is_mixable(cgrp))
408 		return true;
409 
410 	/* domain roots can't be nested under threaded */
411 	if (cgroup_is_threaded(cgrp))
412 		return false;
413 
414 	/* can only have either domain or threaded children */
415 	if (cgrp->nr_populated_domain_children)
416 		return false;
417 
418 	/* and no domain controllers can be enabled */
419 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
420 		return false;
421 
422 	return true;
423 }
424 
425 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)426 static bool cgroup_is_thread_root(struct cgroup *cgrp)
427 {
428 	/* thread root should be a domain */
429 	if (cgroup_is_threaded(cgrp))
430 		return false;
431 
432 	/* a domain w/ threaded children is a thread root */
433 	if (cgrp->nr_threaded_children)
434 		return true;
435 
436 	/*
437 	 * A domain which has tasks and explicit threaded controllers
438 	 * enabled is a thread root.
439 	 */
440 	if (cgroup_has_tasks(cgrp) &&
441 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
442 		return true;
443 
444 	return false;
445 }
446 
447 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)448 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
449 {
450 	/* the cgroup itself can be a thread root */
451 	if (cgroup_is_threaded(cgrp))
452 		return false;
453 
454 	/* but the ancestors can't be unless mixable */
455 	while ((cgrp = cgroup_parent(cgrp))) {
456 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
457 			return false;
458 		if (cgroup_is_threaded(cgrp))
459 			return false;
460 	}
461 
462 	return true;
463 }
464 
465 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)466 static u16 cgroup_control(struct cgroup *cgrp)
467 {
468 	struct cgroup *parent = cgroup_parent(cgrp);
469 	u16 root_ss_mask = cgrp->root->subsys_mask;
470 
471 	if (parent) {
472 		u16 ss_mask = parent->subtree_control;
473 
474 		/* threaded cgroups can only have threaded controllers */
475 		if (cgroup_is_threaded(cgrp))
476 			ss_mask &= cgrp_dfl_threaded_ss_mask;
477 		return ss_mask;
478 	}
479 
480 	if (cgroup_on_dfl(cgrp))
481 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
482 				  cgrp_dfl_implicit_ss_mask);
483 	return root_ss_mask;
484 }
485 
486 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)487 static u16 cgroup_ss_mask(struct cgroup *cgrp)
488 {
489 	struct cgroup *parent = cgroup_parent(cgrp);
490 
491 	if (parent) {
492 		u16 ss_mask = parent->subtree_ss_mask;
493 
494 		/* threaded cgroups can only have threaded controllers */
495 		if (cgroup_is_threaded(cgrp))
496 			ss_mask &= cgrp_dfl_threaded_ss_mask;
497 		return ss_mask;
498 	}
499 
500 	return cgrp->root->subsys_mask;
501 }
502 
503 /**
504  * cgroup_css - obtain a cgroup's css for the specified subsystem
505  * @cgrp: the cgroup of interest
506  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
507  *
508  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
509  * function must be called either under cgroup_mutex or rcu_read_lock() and
510  * the caller is responsible for pinning the returned css if it wants to
511  * keep accessing it outside the said locks.  This function may return
512  * %NULL if @cgrp doesn't have @subsys_id enabled.
513  */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)514 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
515 					      struct cgroup_subsys *ss)
516 {
517 	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
518 		return rcu_dereference_check(cgrp->subsys[ss->id],
519 					lockdep_is_held(&cgroup_mutex));
520 	else
521 		return &cgrp->self;
522 }
523 
524 /**
525  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
526  * @cgrp: the cgroup of interest
527  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
528  *
529  * Similar to cgroup_css() but returns the effective css, which is defined
530  * as the matching css of the nearest ancestor including self which has @ss
531  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
532  * function is guaranteed to return non-NULL css.
533  */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)534 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
535 							struct cgroup_subsys *ss)
536 {
537 	lockdep_assert_held(&cgroup_mutex);
538 
539 	if (!ss)
540 		return &cgrp->self;
541 
542 	/*
543 	 * This function is used while updating css associations and thus
544 	 * can't test the csses directly.  Test ss_mask.
545 	 */
546 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
547 		cgrp = cgroup_parent(cgrp);
548 		if (!cgrp)
549 			return NULL;
550 	}
551 
552 	return cgroup_css(cgrp, ss);
553 }
554 
555 /**
556  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
557  * @cgrp: the cgroup of interest
558  * @ss: the subsystem of interest
559  *
560  * Find and get the effective css of @cgrp for @ss.  The effective css is
561  * defined as the matching css of the nearest ancestor including self which
562  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
563  * the root css is returned, so this function always returns a valid css.
564  *
565  * The returned css is not guaranteed to be online, and therefore it is the
566  * callers responsibility to try get a reference for it.
567  */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)568 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
569 					 struct cgroup_subsys *ss)
570 {
571 	struct cgroup_subsys_state *css;
572 
573 	if (!CGROUP_HAS_SUBSYS_CONFIG)
574 		return NULL;
575 
576 	do {
577 		css = cgroup_css(cgrp, ss);
578 
579 		if (css)
580 			return css;
581 		cgrp = cgroup_parent(cgrp);
582 	} while (cgrp);
583 
584 	return init_css_set.subsys[ss->id];
585 }
586 
587 /**
588  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
589  * @cgrp: the cgroup of interest
590  * @ss: the subsystem of interest
591  *
592  * Find and get the effective css of @cgrp for @ss.  The effective css is
593  * defined as the matching css of the nearest ancestor including self which
594  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
595  * the root css is returned, so this function always returns a valid css.
596  * The returned css must be put using css_put().
597  */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)598 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
599 					     struct cgroup_subsys *ss)
600 {
601 	struct cgroup_subsys_state *css;
602 
603 	if (!CGROUP_HAS_SUBSYS_CONFIG)
604 		return NULL;
605 
606 	rcu_read_lock();
607 
608 	do {
609 		css = cgroup_css(cgrp, ss);
610 
611 		if (css && css_tryget_online(css))
612 			goto out_unlock;
613 		cgrp = cgroup_parent(cgrp);
614 	} while (cgrp);
615 
616 	css = init_css_set.subsys[ss->id];
617 	css_get(css);
618 out_unlock:
619 	rcu_read_unlock();
620 	return css;
621 }
622 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
623 
cgroup_get_live(struct cgroup * cgrp)624 static void cgroup_get_live(struct cgroup *cgrp)
625 {
626 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
627 	cgroup_get(cgrp);
628 }
629 
630 /**
631  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
632  * is responsible for taking the css_set_lock.
633  * @cgrp: the cgroup in question
634  */
__cgroup_task_count(const struct cgroup * cgrp)635 int __cgroup_task_count(const struct cgroup *cgrp)
636 {
637 	int count = 0;
638 	struct cgrp_cset_link *link;
639 
640 	lockdep_assert_held(&css_set_lock);
641 
642 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
643 		count += link->cset->nr_tasks;
644 
645 	return count;
646 }
647 
648 /**
649  * cgroup_task_count - count the number of tasks in a cgroup.
650  * @cgrp: the cgroup in question
651  */
cgroup_task_count(const struct cgroup * cgrp)652 int cgroup_task_count(const struct cgroup *cgrp)
653 {
654 	int count;
655 
656 	spin_lock_irq(&css_set_lock);
657 	count = __cgroup_task_count(cgrp);
658 	spin_unlock_irq(&css_set_lock);
659 
660 	return count;
661 }
662 
of_css(struct kernfs_open_file * of)663 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
664 {
665 	struct cgroup *cgrp = of->kn->parent->priv;
666 	struct cftype *cft = of_cft(of);
667 
668 	/*
669 	 * This is open and unprotected implementation of cgroup_css().
670 	 * seq_css() is only called from a kernfs file operation which has
671 	 * an active reference on the file.  Because all the subsystem
672 	 * files are drained before a css is disassociated with a cgroup,
673 	 * the matching css from the cgroup's subsys table is guaranteed to
674 	 * be and stay valid until the enclosing operation is complete.
675 	 */
676 	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
677 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
678 	else
679 		return &cgrp->self;
680 }
681 EXPORT_SYMBOL_GPL(of_css);
682 
683 /**
684  * for_each_css - iterate all css's of a cgroup
685  * @css: the iteration cursor
686  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
687  * @cgrp: the target cgroup to iterate css's of
688  *
689  * Should be called under cgroup_mutex.
690  */
691 #define for_each_css(css, ssid, cgrp)					\
692 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
693 		if (!((css) = rcu_dereference_check(			\
694 				(cgrp)->subsys[(ssid)],			\
695 				lockdep_is_held(&cgroup_mutex)))) { }	\
696 		else
697 
698 /**
699  * do_each_subsys_mask - filter for_each_subsys with a bitmask
700  * @ss: the iteration cursor
701  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
702  * @ss_mask: the bitmask
703  *
704  * The block will only run for cases where the ssid-th bit (1 << ssid) of
705  * @ss_mask is set.
706  */
707 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
708 	unsigned long __ss_mask = (ss_mask);				\
709 	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
710 		(ssid) = 0;						\
711 		break;							\
712 	}								\
713 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
714 		(ss) = cgroup_subsys[ssid];				\
715 		{
716 
717 #define while_each_subsys_mask()					\
718 		}							\
719 	}								\
720 } while (false)
721 
722 /* iterate over child cgrps, lock should be held throughout iteration */
723 #define cgroup_for_each_live_child(child, cgrp)				\
724 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
725 		if (({ lockdep_assert_held(&cgroup_mutex);		\
726 		       cgroup_is_dead(child); }))			\
727 			;						\
728 		else
729 
730 /* walk live descendants in pre order */
731 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
732 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
733 		if (({ lockdep_assert_held(&cgroup_mutex);		\
734 		       (dsct) = (d_css)->cgroup;			\
735 		       cgroup_is_dead(dsct); }))			\
736 			;						\
737 		else
738 
739 /* walk live descendants in postorder */
740 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
741 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
742 		if (({ lockdep_assert_held(&cgroup_mutex);		\
743 		       (dsct) = (d_css)->cgroup;			\
744 		       cgroup_is_dead(dsct); }))			\
745 			;						\
746 		else
747 
748 /*
749  * The default css_set - used by init and its children prior to any
750  * hierarchies being mounted. It contains a pointer to the root state
751  * for each subsystem. Also used to anchor the list of css_sets. Not
752  * reference-counted, to improve performance when child cgroups
753  * haven't been created.
754  */
755 struct css_set init_css_set = {
756 	.refcount		= REFCOUNT_INIT(1),
757 	.dom_cset		= &init_css_set,
758 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
759 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
760 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
761 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
762 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
763 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
764 	.mg_src_preload_node	= LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
765 	.mg_dst_preload_node	= LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
766 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
767 
768 	/*
769 	 * The following field is re-initialized when this cset gets linked
770 	 * in cgroup_init().  However, let's initialize the field
771 	 * statically too so that the default cgroup can be accessed safely
772 	 * early during boot.
773 	 */
774 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
775 };
776 
777 static int css_set_count	= 1;	/* 1 for init_css_set */
778 
css_set_threaded(struct css_set * cset)779 static bool css_set_threaded(struct css_set *cset)
780 {
781 	return cset->dom_cset != cset;
782 }
783 
784 /**
785  * css_set_populated - does a css_set contain any tasks?
786  * @cset: target css_set
787  *
788  * css_set_populated() should be the same as !!cset->nr_tasks at steady
789  * state. However, css_set_populated() can be called while a task is being
790  * added to or removed from the linked list before the nr_tasks is
791  * properly updated. Hence, we can't just look at ->nr_tasks here.
792  */
css_set_populated(struct css_set * cset)793 static bool css_set_populated(struct css_set *cset)
794 {
795 	lockdep_assert_held(&css_set_lock);
796 
797 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
798 }
799 
800 /**
801  * cgroup_update_populated - update the populated count of a cgroup
802  * @cgrp: the target cgroup
803  * @populated: inc or dec populated count
804  *
805  * One of the css_sets associated with @cgrp is either getting its first
806  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
807  * count is propagated towards root so that a given cgroup's
808  * nr_populated_children is zero iff none of its descendants contain any
809  * tasks.
810  *
811  * @cgrp's interface file "cgroup.populated" is zero if both
812  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
813  * 1 otherwise.  When the sum changes from or to zero, userland is notified
814  * that the content of the interface file has changed.  This can be used to
815  * detect when @cgrp and its descendants become populated or empty.
816  */
cgroup_update_populated(struct cgroup * cgrp,bool populated)817 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
818 {
819 	struct cgroup *child = NULL;
820 	int adj = populated ? 1 : -1;
821 
822 	lockdep_assert_held(&css_set_lock);
823 
824 	do {
825 		bool was_populated = cgroup_is_populated(cgrp);
826 
827 		if (!child) {
828 			cgrp->nr_populated_csets += adj;
829 		} else {
830 			if (cgroup_is_threaded(child))
831 				cgrp->nr_populated_threaded_children += adj;
832 			else
833 				cgrp->nr_populated_domain_children += adj;
834 		}
835 
836 		if (was_populated == cgroup_is_populated(cgrp))
837 			break;
838 
839 		cgroup1_check_for_release(cgrp);
840 		TRACE_CGROUP_PATH(notify_populated, cgrp,
841 				  cgroup_is_populated(cgrp));
842 		cgroup_file_notify(&cgrp->events_file);
843 
844 		child = cgrp;
845 		cgrp = cgroup_parent(cgrp);
846 	} while (cgrp);
847 }
848 
849 /**
850  * css_set_update_populated - update populated state of a css_set
851  * @cset: target css_set
852  * @populated: whether @cset is populated or depopulated
853  *
854  * @cset is either getting the first task or losing the last.  Update the
855  * populated counters of all associated cgroups accordingly.
856  */
css_set_update_populated(struct css_set * cset,bool populated)857 static void css_set_update_populated(struct css_set *cset, bool populated)
858 {
859 	struct cgrp_cset_link *link;
860 
861 	lockdep_assert_held(&css_set_lock);
862 
863 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
864 		cgroup_update_populated(link->cgrp, populated);
865 }
866 
867 /*
868  * @task is leaving, advance task iterators which are pointing to it so
869  * that they can resume at the next position.  Advancing an iterator might
870  * remove it from the list, use safe walk.  See css_task_iter_skip() for
871  * details.
872  */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)873 static void css_set_skip_task_iters(struct css_set *cset,
874 				    struct task_struct *task)
875 {
876 	struct css_task_iter *it, *pos;
877 
878 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
879 		css_task_iter_skip(it, task);
880 }
881 
882 /**
883  * css_set_move_task - move a task from one css_set to another
884  * @task: task being moved
885  * @from_cset: css_set @task currently belongs to (may be NULL)
886  * @to_cset: new css_set @task is being moved to (may be NULL)
887  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
888  *
889  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
890  * css_set, @from_cset can be NULL.  If @task is being disassociated
891  * instead of moved, @to_cset can be NULL.
892  *
893  * This function automatically handles populated counter updates and
894  * css_task_iter adjustments but the caller is responsible for managing
895  * @from_cset and @to_cset's reference counts.
896  */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)897 static void css_set_move_task(struct task_struct *task,
898 			      struct css_set *from_cset, struct css_set *to_cset,
899 			      bool use_mg_tasks)
900 {
901 	lockdep_assert_held(&css_set_lock);
902 
903 	if (to_cset && !css_set_populated(to_cset))
904 		css_set_update_populated(to_cset, true);
905 
906 	if (from_cset) {
907 		WARN_ON_ONCE(list_empty(&task->cg_list));
908 
909 		css_set_skip_task_iters(from_cset, task);
910 		list_del_init(&task->cg_list);
911 		if (!css_set_populated(from_cset))
912 			css_set_update_populated(from_cset, false);
913 	} else {
914 		WARN_ON_ONCE(!list_empty(&task->cg_list));
915 	}
916 
917 	if (to_cset) {
918 		/*
919 		 * We are synchronized through cgroup_threadgroup_rwsem
920 		 * against PF_EXITING setting such that we can't race
921 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
922 		 */
923 		WARN_ON_ONCE(task->flags & PF_EXITING);
924 
925 		cgroup_move_task(task, to_cset);
926 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
927 							     &to_cset->tasks);
928 	}
929 }
930 
931 /*
932  * hash table for cgroup groups. This improves the performance to find
933  * an existing css_set. This hash doesn't (currently) take into
934  * account cgroups in empty hierarchies.
935  */
936 #define CSS_SET_HASH_BITS	7
937 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
938 
css_set_hash(struct cgroup_subsys_state ** css)939 static unsigned long css_set_hash(struct cgroup_subsys_state **css)
940 {
941 	unsigned long key = 0UL;
942 	struct cgroup_subsys *ss;
943 	int i;
944 
945 	for_each_subsys(ss, i)
946 		key += (unsigned long)css[i];
947 	key = (key >> 16) ^ key;
948 
949 	return key;
950 }
951 
put_css_set_locked(struct css_set * cset)952 void put_css_set_locked(struct css_set *cset)
953 {
954 	struct cgrp_cset_link *link, *tmp_link;
955 	struct cgroup_subsys *ss;
956 	int ssid;
957 
958 	lockdep_assert_held(&css_set_lock);
959 
960 	if (!refcount_dec_and_test(&cset->refcount))
961 		return;
962 
963 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
964 
965 	/* This css_set is dead. Unlink it and release cgroup and css refs */
966 	for_each_subsys(ss, ssid) {
967 		list_del(&cset->e_cset_node[ssid]);
968 		css_put(cset->subsys[ssid]);
969 	}
970 	hash_del(&cset->hlist);
971 	css_set_count--;
972 
973 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
974 		list_del(&link->cset_link);
975 		list_del(&link->cgrp_link);
976 		if (cgroup_parent(link->cgrp))
977 			cgroup_put(link->cgrp);
978 		kfree(link);
979 	}
980 
981 	if (css_set_threaded(cset)) {
982 		list_del(&cset->threaded_csets_node);
983 		put_css_set_locked(cset->dom_cset);
984 	}
985 
986 	kfree_rcu(cset, rcu_head);
987 }
988 
989 /**
990  * compare_css_sets - helper function for find_existing_css_set().
991  * @cset: candidate css_set being tested
992  * @old_cset: existing css_set for a task
993  * @new_cgrp: cgroup that's being entered by the task
994  * @template: desired set of css pointers in css_set (pre-calculated)
995  *
996  * Returns true if "cset" matches "old_cset" except for the hierarchy
997  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
998  */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])999 static bool compare_css_sets(struct css_set *cset,
1000 			     struct css_set *old_cset,
1001 			     struct cgroup *new_cgrp,
1002 			     struct cgroup_subsys_state *template[])
1003 {
1004 	struct cgroup *new_dfl_cgrp;
1005 	struct list_head *l1, *l2;
1006 
1007 	/*
1008 	 * On the default hierarchy, there can be csets which are
1009 	 * associated with the same set of cgroups but different csses.
1010 	 * Let's first ensure that csses match.
1011 	 */
1012 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1013 		return false;
1014 
1015 
1016 	/* @cset's domain should match the default cgroup's */
1017 	if (cgroup_on_dfl(new_cgrp))
1018 		new_dfl_cgrp = new_cgrp;
1019 	else
1020 		new_dfl_cgrp = old_cset->dfl_cgrp;
1021 
1022 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1023 		return false;
1024 
1025 	/*
1026 	 * Compare cgroup pointers in order to distinguish between
1027 	 * different cgroups in hierarchies.  As different cgroups may
1028 	 * share the same effective css, this comparison is always
1029 	 * necessary.
1030 	 */
1031 	l1 = &cset->cgrp_links;
1032 	l2 = &old_cset->cgrp_links;
1033 	while (1) {
1034 		struct cgrp_cset_link *link1, *link2;
1035 		struct cgroup *cgrp1, *cgrp2;
1036 
1037 		l1 = l1->next;
1038 		l2 = l2->next;
1039 		/* See if we reached the end - both lists are equal length. */
1040 		if (l1 == &cset->cgrp_links) {
1041 			BUG_ON(l2 != &old_cset->cgrp_links);
1042 			break;
1043 		} else {
1044 			BUG_ON(l2 == &old_cset->cgrp_links);
1045 		}
1046 		/* Locate the cgroups associated with these links. */
1047 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1048 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1049 		cgrp1 = link1->cgrp;
1050 		cgrp2 = link2->cgrp;
1051 		/* Hierarchies should be linked in the same order. */
1052 		BUG_ON(cgrp1->root != cgrp2->root);
1053 
1054 		/*
1055 		 * If this hierarchy is the hierarchy of the cgroup
1056 		 * that's changing, then we need to check that this
1057 		 * css_set points to the new cgroup; if it's any other
1058 		 * hierarchy, then this css_set should point to the
1059 		 * same cgroup as the old css_set.
1060 		 */
1061 		if (cgrp1->root == new_cgrp->root) {
1062 			if (cgrp1 != new_cgrp)
1063 				return false;
1064 		} else {
1065 			if (cgrp1 != cgrp2)
1066 				return false;
1067 		}
1068 	}
1069 	return true;
1070 }
1071 
1072 /**
1073  * find_existing_css_set - init css array and find the matching css_set
1074  * @old_cset: the css_set that we're using before the cgroup transition
1075  * @cgrp: the cgroup that we're moving into
1076  * @template: out param for the new set of csses, should be clear on entry
1077  */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state ** template)1078 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1079 					struct cgroup *cgrp,
1080 					struct cgroup_subsys_state **template)
1081 {
1082 	struct cgroup_root *root = cgrp->root;
1083 	struct cgroup_subsys *ss;
1084 	struct css_set *cset;
1085 	unsigned long key;
1086 	int i;
1087 
1088 	/*
1089 	 * Build the set of subsystem state objects that we want to see in the
1090 	 * new css_set. While subsystems can change globally, the entries here
1091 	 * won't change, so no need for locking.
1092 	 */
1093 	for_each_subsys(ss, i) {
1094 		if (root->subsys_mask & (1UL << i)) {
1095 			/*
1096 			 * @ss is in this hierarchy, so we want the
1097 			 * effective css from @cgrp.
1098 			 */
1099 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1100 		} else {
1101 			/*
1102 			 * @ss is not in this hierarchy, so we don't want
1103 			 * to change the css.
1104 			 */
1105 			template[i] = old_cset->subsys[i];
1106 		}
1107 	}
1108 
1109 	key = css_set_hash(template);
1110 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1111 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1112 			continue;
1113 
1114 		/* This css_set matches what we need */
1115 		return cset;
1116 	}
1117 
1118 	/* No existing cgroup group matched */
1119 	return NULL;
1120 }
1121 
free_cgrp_cset_links(struct list_head * links_to_free)1122 static void free_cgrp_cset_links(struct list_head *links_to_free)
1123 {
1124 	struct cgrp_cset_link *link, *tmp_link;
1125 
1126 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1127 		list_del(&link->cset_link);
1128 		kfree(link);
1129 	}
1130 }
1131 
1132 /**
1133  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1134  * @count: the number of links to allocate
1135  * @tmp_links: list_head the allocated links are put on
1136  *
1137  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1138  * through ->cset_link.  Returns 0 on success or -errno.
1139  */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1140 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1141 {
1142 	struct cgrp_cset_link *link;
1143 	int i;
1144 
1145 	INIT_LIST_HEAD(tmp_links);
1146 
1147 	for (i = 0; i < count; i++) {
1148 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1149 		if (!link) {
1150 			free_cgrp_cset_links(tmp_links);
1151 			return -ENOMEM;
1152 		}
1153 		list_add(&link->cset_link, tmp_links);
1154 	}
1155 	return 0;
1156 }
1157 
1158 /**
1159  * link_css_set - a helper function to link a css_set to a cgroup
1160  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1161  * @cset: the css_set to be linked
1162  * @cgrp: the destination cgroup
1163  */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1164 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1165 			 struct cgroup *cgrp)
1166 {
1167 	struct cgrp_cset_link *link;
1168 
1169 	BUG_ON(list_empty(tmp_links));
1170 
1171 	if (cgroup_on_dfl(cgrp))
1172 		cset->dfl_cgrp = cgrp;
1173 
1174 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1175 	link->cset = cset;
1176 	link->cgrp = cgrp;
1177 
1178 	/*
1179 	 * Always add links to the tail of the lists so that the lists are
1180 	 * in chronological order.
1181 	 */
1182 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1183 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1184 
1185 	if (cgroup_parent(cgrp))
1186 		cgroup_get_live(cgrp);
1187 }
1188 
1189 /**
1190  * find_css_set - return a new css_set with one cgroup updated
1191  * @old_cset: the baseline css_set
1192  * @cgrp: the cgroup to be updated
1193  *
1194  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1195  * substituted into the appropriate hierarchy.
1196  */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1197 static struct css_set *find_css_set(struct css_set *old_cset,
1198 				    struct cgroup *cgrp)
1199 {
1200 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1201 	struct css_set *cset;
1202 	struct list_head tmp_links;
1203 	struct cgrp_cset_link *link;
1204 	struct cgroup_subsys *ss;
1205 	unsigned long key;
1206 	int ssid;
1207 
1208 	lockdep_assert_held(&cgroup_mutex);
1209 
1210 	/* First see if we already have a cgroup group that matches
1211 	 * the desired set */
1212 	spin_lock_irq(&css_set_lock);
1213 	cset = find_existing_css_set(old_cset, cgrp, template);
1214 	if (cset)
1215 		get_css_set(cset);
1216 	spin_unlock_irq(&css_set_lock);
1217 
1218 	if (cset)
1219 		return cset;
1220 
1221 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1222 	if (!cset)
1223 		return NULL;
1224 
1225 	/* Allocate all the cgrp_cset_link objects that we'll need */
1226 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1227 		kfree(cset);
1228 		return NULL;
1229 	}
1230 
1231 	refcount_set(&cset->refcount, 1);
1232 	cset->dom_cset = cset;
1233 	INIT_LIST_HEAD(&cset->tasks);
1234 	INIT_LIST_HEAD(&cset->mg_tasks);
1235 	INIT_LIST_HEAD(&cset->dying_tasks);
1236 	INIT_LIST_HEAD(&cset->task_iters);
1237 	INIT_LIST_HEAD(&cset->threaded_csets);
1238 	INIT_HLIST_NODE(&cset->hlist);
1239 	INIT_LIST_HEAD(&cset->cgrp_links);
1240 	INIT_LIST_HEAD(&cset->mg_src_preload_node);
1241 	INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1242 	INIT_LIST_HEAD(&cset->mg_node);
1243 
1244 	/* Copy the set of subsystem state objects generated in
1245 	 * find_existing_css_set() */
1246 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1247 
1248 	spin_lock_irq(&css_set_lock);
1249 	/* Add reference counts and links from the new css_set. */
1250 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1251 		struct cgroup *c = link->cgrp;
1252 
1253 		if (c->root == cgrp->root)
1254 			c = cgrp;
1255 		link_css_set(&tmp_links, cset, c);
1256 	}
1257 
1258 	BUG_ON(!list_empty(&tmp_links));
1259 
1260 	css_set_count++;
1261 
1262 	/* Add @cset to the hash table */
1263 	key = css_set_hash(cset->subsys);
1264 	hash_add(css_set_table, &cset->hlist, key);
1265 
1266 	for_each_subsys(ss, ssid) {
1267 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1268 
1269 		list_add_tail(&cset->e_cset_node[ssid],
1270 			      &css->cgroup->e_csets[ssid]);
1271 		css_get(css);
1272 	}
1273 
1274 	spin_unlock_irq(&css_set_lock);
1275 
1276 	/*
1277 	 * If @cset should be threaded, look up the matching dom_cset and
1278 	 * link them up.  We first fully initialize @cset then look for the
1279 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1280 	 * to stay empty until we return.
1281 	 */
1282 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1283 		struct css_set *dcset;
1284 
1285 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1286 		if (!dcset) {
1287 			put_css_set(cset);
1288 			return NULL;
1289 		}
1290 
1291 		spin_lock_irq(&css_set_lock);
1292 		cset->dom_cset = dcset;
1293 		list_add_tail(&cset->threaded_csets_node,
1294 			      &dcset->threaded_csets);
1295 		spin_unlock_irq(&css_set_lock);
1296 	}
1297 
1298 	return cset;
1299 }
1300 
cgroup_root_from_kf(struct kernfs_root * kf_root)1301 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1302 {
1303 	struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1304 
1305 	return root_cgrp->root;
1306 }
1307 
cgroup_favor_dynmods(struct cgroup_root * root,bool favor)1308 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1309 {
1310 	bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1311 
1312 	/* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1313 	if (favor && !favoring) {
1314 		rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1315 		root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1316 	} else if (!favor && favoring) {
1317 		rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1318 		root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1319 	}
1320 }
1321 
cgroup_init_root_id(struct cgroup_root * root)1322 static int cgroup_init_root_id(struct cgroup_root *root)
1323 {
1324 	int id;
1325 
1326 	lockdep_assert_held(&cgroup_mutex);
1327 
1328 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1329 	if (id < 0)
1330 		return id;
1331 
1332 	root->hierarchy_id = id;
1333 	return 0;
1334 }
1335 
cgroup_exit_root_id(struct cgroup_root * root)1336 static void cgroup_exit_root_id(struct cgroup_root *root)
1337 {
1338 	lockdep_assert_held(&cgroup_mutex);
1339 
1340 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1341 }
1342 
cgroup_free_root(struct cgroup_root * root)1343 void cgroup_free_root(struct cgroup_root *root)
1344 {
1345 	kfree_rcu(root, rcu);
1346 }
1347 
cgroup_destroy_root(struct cgroup_root * root)1348 static void cgroup_destroy_root(struct cgroup_root *root)
1349 {
1350 	struct cgroup *cgrp = &root->cgrp;
1351 	struct cgrp_cset_link *link, *tmp_link;
1352 
1353 	trace_cgroup_destroy_root(root);
1354 
1355 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1356 
1357 	BUG_ON(atomic_read(&root->nr_cgrps));
1358 	BUG_ON(!list_empty(&cgrp->self.children));
1359 
1360 	/* Rebind all subsystems back to the default hierarchy */
1361 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1362 
1363 	/*
1364 	 * Release all the links from cset_links to this hierarchy's
1365 	 * root cgroup
1366 	 */
1367 	spin_lock_irq(&css_set_lock);
1368 
1369 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1370 		list_del(&link->cset_link);
1371 		list_del(&link->cgrp_link);
1372 		kfree(link);
1373 	}
1374 
1375 	spin_unlock_irq(&css_set_lock);
1376 
1377 	WARN_ON_ONCE(list_empty(&root->root_list));
1378 	list_del_rcu(&root->root_list);
1379 	cgroup_root_count--;
1380 
1381 	if (!have_favordynmods)
1382 		cgroup_favor_dynmods(root, false);
1383 
1384 	cgroup_exit_root_id(root);
1385 
1386 	cgroup_unlock();
1387 
1388 	cgroup_rstat_exit(cgrp);
1389 	kernfs_destroy_root(root->kf_root);
1390 	cgroup_free_root(root);
1391 }
1392 
1393 /*
1394  * Returned cgroup is without refcount but it's valid as long as cset pins it.
1395  */
__cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1396 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1397 					    struct cgroup_root *root)
1398 {
1399 	struct cgroup *res_cgroup = NULL;
1400 
1401 	if (cset == &init_css_set) {
1402 		res_cgroup = &root->cgrp;
1403 	} else if (root == &cgrp_dfl_root) {
1404 		res_cgroup = cset->dfl_cgrp;
1405 	} else {
1406 		struct cgrp_cset_link *link;
1407 		lockdep_assert_held(&css_set_lock);
1408 
1409 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1410 			struct cgroup *c = link->cgrp;
1411 
1412 			if (c->root == root) {
1413 				res_cgroup = c;
1414 				break;
1415 			}
1416 		}
1417 	}
1418 
1419 	/*
1420 	 * If cgroup_mutex is not held, the cgrp_cset_link will be freed
1421 	 * before we remove the cgroup root from the root_list. Consequently,
1422 	 * when accessing a cgroup root, the cset_link may have already been
1423 	 * freed, resulting in a NULL res_cgroup. However, by holding the
1424 	 * cgroup_mutex, we ensure that res_cgroup can't be NULL.
1425 	 * If we don't hold cgroup_mutex in the caller, we must do the NULL
1426 	 * check.
1427 	 */
1428 	return res_cgroup;
1429 }
1430 
1431 /*
1432  * look up cgroup associated with current task's cgroup namespace on the
1433  * specified hierarchy
1434  */
1435 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1436 current_cgns_cgroup_from_root(struct cgroup_root *root)
1437 {
1438 	struct cgroup *res = NULL;
1439 	struct css_set *cset;
1440 
1441 	lockdep_assert_held(&css_set_lock);
1442 
1443 	rcu_read_lock();
1444 
1445 	cset = current->nsproxy->cgroup_ns->root_cset;
1446 	res = __cset_cgroup_from_root(cset, root);
1447 
1448 	rcu_read_unlock();
1449 
1450 	/*
1451 	 * The namespace_sem is held by current, so the root cgroup can't
1452 	 * be umounted. Therefore, we can ensure that the res is non-NULL.
1453 	 */
1454 	WARN_ON_ONCE(!res);
1455 	return res;
1456 }
1457 
1458 /*
1459  * Look up cgroup associated with current task's cgroup namespace on the default
1460  * hierarchy.
1461  *
1462  * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1463  * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1464  *   pointers.
1465  * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1466  * - As a bonus returned cgrp is pinned with the current because it cannot
1467  *   switch cgroup_ns asynchronously.
1468  */
current_cgns_cgroup_dfl(void)1469 static struct cgroup *current_cgns_cgroup_dfl(void)
1470 {
1471 	struct css_set *cset;
1472 
1473 	if (current->nsproxy) {
1474 		cset = current->nsproxy->cgroup_ns->root_cset;
1475 		return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1476 	} else {
1477 		/*
1478 		 * NOTE: This function may be called from bpf_cgroup_from_id()
1479 		 * on a task which has already passed exit_task_namespaces() and
1480 		 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all
1481 		 * cgroups visible for lookups.
1482 		 */
1483 		return &cgrp_dfl_root.cgrp;
1484 	}
1485 }
1486 
1487 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1488 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1489 					    struct cgroup_root *root)
1490 {
1491 	lockdep_assert_held(&css_set_lock);
1492 
1493 	return __cset_cgroup_from_root(cset, root);
1494 }
1495 
1496 /*
1497  * Return the cgroup for "task" from the given hierarchy. Must be
1498  * called with css_set_lock held to prevent task's groups from being modified.
1499  * Must be called with either cgroup_mutex or rcu read lock to prevent the
1500  * cgroup root from being destroyed.
1501  */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1502 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1503 				     struct cgroup_root *root)
1504 {
1505 	/*
1506 	 * No need to lock the task - since we hold css_set_lock the
1507 	 * task can't change groups.
1508 	 */
1509 	return cset_cgroup_from_root(task_css_set(task), root);
1510 }
1511 
1512 /*
1513  * A task must hold cgroup_mutex to modify cgroups.
1514  *
1515  * Any task can increment and decrement the count field without lock.
1516  * So in general, code holding cgroup_mutex can't rely on the count
1517  * field not changing.  However, if the count goes to zero, then only
1518  * cgroup_attach_task() can increment it again.  Because a count of zero
1519  * means that no tasks are currently attached, therefore there is no
1520  * way a task attached to that cgroup can fork (the other way to
1521  * increment the count).  So code holding cgroup_mutex can safely
1522  * assume that if the count is zero, it will stay zero. Similarly, if
1523  * a task holds cgroup_mutex on a cgroup with zero count, it
1524  * knows that the cgroup won't be removed, as cgroup_rmdir()
1525  * needs that mutex.
1526  *
1527  * A cgroup can only be deleted if both its 'count' of using tasks
1528  * is zero, and its list of 'children' cgroups is empty.  Since all
1529  * tasks in the system use _some_ cgroup, and since there is always at
1530  * least one task in the system (init, pid == 1), therefore, root cgroup
1531  * always has either children cgroups and/or using tasks.  So we don't
1532  * need a special hack to ensure that root cgroup cannot be deleted.
1533  *
1534  * P.S.  One more locking exception.  RCU is used to guard the
1535  * update of a tasks cgroup pointer by cgroup_attach_task()
1536  */
1537 
1538 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1539 
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1540 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1541 			      char *buf)
1542 {
1543 	struct cgroup_subsys *ss = cft->ss;
1544 
1545 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1546 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1547 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1548 
1549 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1550 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1551 			 cft->name);
1552 	} else {
1553 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1554 	}
1555 	return buf;
1556 }
1557 
1558 /**
1559  * cgroup_file_mode - deduce file mode of a control file
1560  * @cft: the control file in question
1561  *
1562  * S_IRUGO for read, S_IWUSR for write.
1563  */
cgroup_file_mode(const struct cftype * cft)1564 static umode_t cgroup_file_mode(const struct cftype *cft)
1565 {
1566 	umode_t mode = 0;
1567 
1568 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1569 		mode |= S_IRUGO;
1570 
1571 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1572 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1573 			mode |= S_IWUGO;
1574 		else
1575 			mode |= S_IWUSR;
1576 	}
1577 
1578 	return mode;
1579 }
1580 
1581 /**
1582  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1583  * @subtree_control: the new subtree_control mask to consider
1584  * @this_ss_mask: available subsystems
1585  *
1586  * On the default hierarchy, a subsystem may request other subsystems to be
1587  * enabled together through its ->depends_on mask.  In such cases, more
1588  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1589  *
1590  * This function calculates which subsystems need to be enabled if
1591  * @subtree_control is to be applied while restricted to @this_ss_mask.
1592  */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1593 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1594 {
1595 	u16 cur_ss_mask = subtree_control;
1596 	struct cgroup_subsys *ss;
1597 	int ssid;
1598 
1599 	lockdep_assert_held(&cgroup_mutex);
1600 
1601 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1602 
1603 	while (true) {
1604 		u16 new_ss_mask = cur_ss_mask;
1605 
1606 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1607 			new_ss_mask |= ss->depends_on;
1608 		} while_each_subsys_mask();
1609 
1610 		/*
1611 		 * Mask out subsystems which aren't available.  This can
1612 		 * happen only if some depended-upon subsystems were bound
1613 		 * to non-default hierarchies.
1614 		 */
1615 		new_ss_mask &= this_ss_mask;
1616 
1617 		if (new_ss_mask == cur_ss_mask)
1618 			break;
1619 		cur_ss_mask = new_ss_mask;
1620 	}
1621 
1622 	return cur_ss_mask;
1623 }
1624 
1625 /**
1626  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1627  * @kn: the kernfs_node being serviced
1628  *
1629  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1630  * the method finishes if locking succeeded.  Note that once this function
1631  * returns the cgroup returned by cgroup_kn_lock_live() may become
1632  * inaccessible any time.  If the caller intends to continue to access the
1633  * cgroup, it should pin it before invoking this function.
1634  */
cgroup_kn_unlock(struct kernfs_node * kn)1635 void cgroup_kn_unlock(struct kernfs_node *kn)
1636 {
1637 	struct cgroup *cgrp;
1638 
1639 	if (kernfs_type(kn) == KERNFS_DIR)
1640 		cgrp = kn->priv;
1641 	else
1642 		cgrp = kn->parent->priv;
1643 
1644 	cgroup_unlock();
1645 
1646 	kernfs_unbreak_active_protection(kn);
1647 	cgroup_put(cgrp);
1648 }
1649 
1650 /**
1651  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1652  * @kn: the kernfs_node being serviced
1653  * @drain_offline: perform offline draining on the cgroup
1654  *
1655  * This helper is to be used by a cgroup kernfs method currently servicing
1656  * @kn.  It breaks the active protection, performs cgroup locking and
1657  * verifies that the associated cgroup is alive.  Returns the cgroup if
1658  * alive; otherwise, %NULL.  A successful return should be undone by a
1659  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1660  * cgroup is drained of offlining csses before return.
1661  *
1662  * Any cgroup kernfs method implementation which requires locking the
1663  * associated cgroup should use this helper.  It avoids nesting cgroup
1664  * locking under kernfs active protection and allows all kernfs operations
1665  * including self-removal.
1666  */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1667 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1668 {
1669 	struct cgroup *cgrp;
1670 
1671 	if (kernfs_type(kn) == KERNFS_DIR)
1672 		cgrp = kn->priv;
1673 	else
1674 		cgrp = kn->parent->priv;
1675 
1676 	/*
1677 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1678 	 * active_ref.  cgroup liveliness check alone provides enough
1679 	 * protection against removal.  Ensure @cgrp stays accessible and
1680 	 * break the active_ref protection.
1681 	 */
1682 	if (!cgroup_tryget(cgrp))
1683 		return NULL;
1684 	kernfs_break_active_protection(kn);
1685 
1686 	if (drain_offline)
1687 		cgroup_lock_and_drain_offline(cgrp);
1688 	else
1689 		cgroup_lock();
1690 
1691 	if (!cgroup_is_dead(cgrp))
1692 		return cgrp;
1693 
1694 	cgroup_kn_unlock(kn);
1695 	return NULL;
1696 }
1697 
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1698 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1699 {
1700 	char name[CGROUP_FILE_NAME_MAX];
1701 
1702 	lockdep_assert_held(&cgroup_mutex);
1703 
1704 	if (cft->file_offset) {
1705 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1706 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1707 
1708 		spin_lock_irq(&cgroup_file_kn_lock);
1709 		cfile->kn = NULL;
1710 		spin_unlock_irq(&cgroup_file_kn_lock);
1711 
1712 		del_timer_sync(&cfile->notify_timer);
1713 	}
1714 
1715 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1716 }
1717 
1718 /**
1719  * css_clear_dir - remove subsys files in a cgroup directory
1720  * @css: target css
1721  */
css_clear_dir(struct cgroup_subsys_state * css)1722 static void css_clear_dir(struct cgroup_subsys_state *css)
1723 {
1724 	struct cgroup *cgrp = css->cgroup;
1725 	struct cftype *cfts;
1726 
1727 	if (!(css->flags & CSS_VISIBLE))
1728 		return;
1729 
1730 	css->flags &= ~CSS_VISIBLE;
1731 
1732 	if (!css->ss) {
1733 		if (cgroup_on_dfl(cgrp)) {
1734 			cgroup_addrm_files(css, cgrp,
1735 					   cgroup_base_files, false);
1736 			if (cgroup_psi_enabled())
1737 				cgroup_addrm_files(css, cgrp,
1738 						   cgroup_psi_files, false);
1739 		} else {
1740 			cgroup_addrm_files(css, cgrp,
1741 					   cgroup1_base_files, false);
1742 		}
1743 	} else {
1744 		list_for_each_entry(cfts, &css->ss->cfts, node)
1745 			cgroup_addrm_files(css, cgrp, cfts, false);
1746 	}
1747 }
1748 
1749 /**
1750  * css_populate_dir - create subsys files in a cgroup directory
1751  * @css: target css
1752  *
1753  * On failure, no file is added.
1754  */
css_populate_dir(struct cgroup_subsys_state * css)1755 static int css_populate_dir(struct cgroup_subsys_state *css)
1756 {
1757 	struct cgroup *cgrp = css->cgroup;
1758 	struct cftype *cfts, *failed_cfts;
1759 	int ret;
1760 
1761 	if (css->flags & CSS_VISIBLE)
1762 		return 0;
1763 
1764 	if (!css->ss) {
1765 		if (cgroup_on_dfl(cgrp)) {
1766 			ret = cgroup_addrm_files(css, cgrp,
1767 						 cgroup_base_files, true);
1768 			if (ret < 0)
1769 				return ret;
1770 
1771 			if (cgroup_psi_enabled()) {
1772 				ret = cgroup_addrm_files(css, cgrp,
1773 							 cgroup_psi_files, true);
1774 				if (ret < 0) {
1775 					cgroup_addrm_files(css, cgrp,
1776 							   cgroup_base_files, false);
1777 					return ret;
1778 				}
1779 			}
1780 		} else {
1781 			ret = cgroup_addrm_files(css, cgrp,
1782 						 cgroup1_base_files, true);
1783 			if (ret < 0)
1784 				return ret;
1785 		}
1786 	} else {
1787 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1788 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1789 			if (ret < 0) {
1790 				failed_cfts = cfts;
1791 				goto err;
1792 			}
1793 		}
1794 	}
1795 
1796 	css->flags |= CSS_VISIBLE;
1797 
1798 	return 0;
1799 err:
1800 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1801 		if (cfts == failed_cfts)
1802 			break;
1803 		cgroup_addrm_files(css, cgrp, cfts, false);
1804 	}
1805 	return ret;
1806 }
1807 
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1808 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1809 {
1810 	struct cgroup *dcgrp = &dst_root->cgrp;
1811 	struct cgroup_subsys *ss;
1812 	int ssid, ret;
1813 	u16 dfl_disable_ss_mask = 0;
1814 
1815 	lockdep_assert_held(&cgroup_mutex);
1816 
1817 	do_each_subsys_mask(ss, ssid, ss_mask) {
1818 		/*
1819 		 * If @ss has non-root csses attached to it, can't move.
1820 		 * If @ss is an implicit controller, it is exempt from this
1821 		 * rule and can be stolen.
1822 		 */
1823 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1824 		    !ss->implicit_on_dfl)
1825 			return -EBUSY;
1826 
1827 		/* can't move between two non-dummy roots either */
1828 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1829 			return -EBUSY;
1830 
1831 		/*
1832 		 * Collect ssid's that need to be disabled from default
1833 		 * hierarchy.
1834 		 */
1835 		if (ss->root == &cgrp_dfl_root)
1836 			dfl_disable_ss_mask |= 1 << ssid;
1837 
1838 	} while_each_subsys_mask();
1839 
1840 	if (dfl_disable_ss_mask) {
1841 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1842 
1843 		/*
1844 		 * Controllers from default hierarchy that need to be rebound
1845 		 * are all disabled together in one go.
1846 		 */
1847 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1848 		WARN_ON(cgroup_apply_control(scgrp));
1849 		cgroup_finalize_control(scgrp, 0);
1850 	}
1851 
1852 	do_each_subsys_mask(ss, ssid, ss_mask) {
1853 		struct cgroup_root *src_root = ss->root;
1854 		struct cgroup *scgrp = &src_root->cgrp;
1855 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1856 		struct css_set *cset, *cset_pos;
1857 		struct css_task_iter *it;
1858 
1859 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1860 
1861 		if (src_root != &cgrp_dfl_root) {
1862 			/* disable from the source */
1863 			src_root->subsys_mask &= ~(1 << ssid);
1864 			WARN_ON(cgroup_apply_control(scgrp));
1865 			cgroup_finalize_control(scgrp, 0);
1866 		}
1867 
1868 		/* rebind */
1869 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1870 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1871 		ss->root = dst_root;
1872 
1873 		spin_lock_irq(&css_set_lock);
1874 		css->cgroup = dcgrp;
1875 		WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1876 		list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1877 					 e_cset_node[ss->id]) {
1878 			list_move_tail(&cset->e_cset_node[ss->id],
1879 				       &dcgrp->e_csets[ss->id]);
1880 			/*
1881 			 * all css_sets of scgrp together in same order to dcgrp,
1882 			 * patch in-flight iterators to preserve correct iteration.
1883 			 * since the iterator is always advanced right away and
1884 			 * finished when it->cset_pos meets it->cset_head, so only
1885 			 * update it->cset_head is enough here.
1886 			 */
1887 			list_for_each_entry(it, &cset->task_iters, iters_node)
1888 				if (it->cset_head == &scgrp->e_csets[ss->id])
1889 					it->cset_head = &dcgrp->e_csets[ss->id];
1890 		}
1891 		spin_unlock_irq(&css_set_lock);
1892 
1893 		if (ss->css_rstat_flush) {
1894 			list_del_rcu(&css->rstat_css_node);
1895 			synchronize_rcu();
1896 			list_add_rcu(&css->rstat_css_node,
1897 				     &dcgrp->rstat_css_list);
1898 		}
1899 
1900 		/* default hierarchy doesn't enable controllers by default */
1901 		dst_root->subsys_mask |= 1 << ssid;
1902 		if (dst_root == &cgrp_dfl_root) {
1903 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1904 		} else {
1905 			dcgrp->subtree_control |= 1 << ssid;
1906 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1907 		}
1908 
1909 		ret = cgroup_apply_control(dcgrp);
1910 		if (ret)
1911 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1912 				ss->name, ret);
1913 
1914 		if (ss->bind)
1915 			ss->bind(css);
1916 	} while_each_subsys_mask();
1917 
1918 	kernfs_activate(dcgrp->kn);
1919 	return 0;
1920 }
1921 
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1922 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1923 		     struct kernfs_root *kf_root)
1924 {
1925 	int len = 0;
1926 	char *buf = NULL;
1927 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1928 	struct cgroup *ns_cgroup;
1929 
1930 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1931 	if (!buf)
1932 		return -ENOMEM;
1933 
1934 	spin_lock_irq(&css_set_lock);
1935 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1936 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1937 	spin_unlock_irq(&css_set_lock);
1938 
1939 	if (len == -E2BIG)
1940 		len = -ERANGE;
1941 	else if (len > 0) {
1942 		seq_escape(sf, buf, " \t\n\\");
1943 		len = 0;
1944 	}
1945 	kfree(buf);
1946 	return len;
1947 }
1948 
1949 enum cgroup2_param {
1950 	Opt_nsdelegate,
1951 	Opt_favordynmods,
1952 	Opt_memory_localevents,
1953 	Opt_memory_recursiveprot,
1954 	Opt_memory_hugetlb_accounting,
1955 	Opt_pids_localevents,
1956 	nr__cgroup2_params
1957 };
1958 
1959 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1960 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1961 	fsparam_flag("favordynmods",		Opt_favordynmods),
1962 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1963 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1964 	fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting),
1965 	fsparam_flag("pids_localevents",	Opt_pids_localevents),
1966 	{}
1967 };
1968 
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1969 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1970 {
1971 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1972 	struct fs_parse_result result;
1973 	int opt;
1974 
1975 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1976 	if (opt < 0)
1977 		return opt;
1978 
1979 	switch (opt) {
1980 	case Opt_nsdelegate:
1981 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1982 		return 0;
1983 	case Opt_favordynmods:
1984 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1985 		return 0;
1986 	case Opt_memory_localevents:
1987 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1988 		return 0;
1989 	case Opt_memory_recursiveprot:
1990 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1991 		return 0;
1992 	case Opt_memory_hugetlb_accounting:
1993 		ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1994 		return 0;
1995 	case Opt_pids_localevents:
1996 		ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
1997 		return 0;
1998 	}
1999 	return -EINVAL;
2000 }
2001 
of_peak(struct kernfs_open_file * of)2002 struct cgroup_of_peak *of_peak(struct kernfs_open_file *of)
2003 {
2004 	struct cgroup_file_ctx *ctx = of->priv;
2005 
2006 	return &ctx->peak;
2007 }
2008 
apply_cgroup_root_flags(unsigned int root_flags)2009 static void apply_cgroup_root_flags(unsigned int root_flags)
2010 {
2011 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
2012 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
2013 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
2014 		else
2015 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
2016 
2017 		cgroup_favor_dynmods(&cgrp_dfl_root,
2018 				     root_flags & CGRP_ROOT_FAVOR_DYNMODS);
2019 
2020 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2021 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2022 		else
2023 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2024 
2025 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2026 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2027 		else
2028 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2029 
2030 		if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2031 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2032 		else
2033 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2034 
2035 		if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2036 			cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
2037 		else
2038 			cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS;
2039 	}
2040 }
2041 
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)2042 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
2043 {
2044 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
2045 		seq_puts(seq, ",nsdelegate");
2046 	if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
2047 		seq_puts(seq, ",favordynmods");
2048 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2049 		seq_puts(seq, ",memory_localevents");
2050 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2051 		seq_puts(seq, ",memory_recursiveprot");
2052 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2053 		seq_puts(seq, ",memory_hugetlb_accounting");
2054 	if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2055 		seq_puts(seq, ",pids_localevents");
2056 	return 0;
2057 }
2058 
cgroup_reconfigure(struct fs_context * fc)2059 static int cgroup_reconfigure(struct fs_context *fc)
2060 {
2061 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2062 
2063 	apply_cgroup_root_flags(ctx->flags);
2064 	return 0;
2065 }
2066 
init_cgroup_housekeeping(struct cgroup * cgrp)2067 static void init_cgroup_housekeeping(struct cgroup *cgrp)
2068 {
2069 	struct cgroup_subsys *ss;
2070 	int ssid;
2071 
2072 	INIT_LIST_HEAD(&cgrp->self.sibling);
2073 	INIT_LIST_HEAD(&cgrp->self.children);
2074 	INIT_LIST_HEAD(&cgrp->cset_links);
2075 	INIT_LIST_HEAD(&cgrp->pidlists);
2076 	mutex_init(&cgrp->pidlist_mutex);
2077 	cgrp->self.cgroup = cgrp;
2078 	cgrp->self.flags |= CSS_ONLINE;
2079 	cgrp->dom_cgrp = cgrp;
2080 	cgrp->max_descendants = INT_MAX;
2081 	cgrp->max_depth = INT_MAX;
2082 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
2083 	prev_cputime_init(&cgrp->prev_cputime);
2084 
2085 	for_each_subsys(ss, ssid)
2086 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2087 
2088 	init_waitqueue_head(&cgrp->offline_waitq);
2089 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2090 }
2091 
init_cgroup_root(struct cgroup_fs_context * ctx)2092 void init_cgroup_root(struct cgroup_fs_context *ctx)
2093 {
2094 	struct cgroup_root *root = ctx->root;
2095 	struct cgroup *cgrp = &root->cgrp;
2096 
2097 	INIT_LIST_HEAD_RCU(&root->root_list);
2098 	atomic_set(&root->nr_cgrps, 1);
2099 	cgrp->root = root;
2100 	init_cgroup_housekeeping(cgrp);
2101 
2102 	/* DYNMODS must be modified through cgroup_favor_dynmods() */
2103 	root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2104 	if (ctx->release_agent)
2105 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2106 	if (ctx->name)
2107 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2108 	if (ctx->cpuset_clone_children)
2109 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2110 }
2111 
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)2112 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2113 {
2114 	LIST_HEAD(tmp_links);
2115 	struct cgroup *root_cgrp = &root->cgrp;
2116 	struct kernfs_syscall_ops *kf_sops;
2117 	struct css_set *cset;
2118 	int i, ret;
2119 
2120 	lockdep_assert_held(&cgroup_mutex);
2121 
2122 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2123 			      0, GFP_KERNEL);
2124 	if (ret)
2125 		goto out;
2126 
2127 	/*
2128 	 * We're accessing css_set_count without locking css_set_lock here,
2129 	 * but that's OK - it can only be increased by someone holding
2130 	 * cgroup_lock, and that's us.  Later rebinding may disable
2131 	 * controllers on the default hierarchy and thus create new csets,
2132 	 * which can't be more than the existing ones.  Allocate 2x.
2133 	 */
2134 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2135 	if (ret)
2136 		goto cancel_ref;
2137 
2138 	ret = cgroup_init_root_id(root);
2139 	if (ret)
2140 		goto cancel_ref;
2141 
2142 	kf_sops = root == &cgrp_dfl_root ?
2143 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2144 
2145 	root->kf_root = kernfs_create_root(kf_sops,
2146 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2147 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
2148 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
2149 					   root_cgrp);
2150 	if (IS_ERR(root->kf_root)) {
2151 		ret = PTR_ERR(root->kf_root);
2152 		goto exit_root_id;
2153 	}
2154 	root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2155 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2156 	root_cgrp->ancestors[0] = root_cgrp;
2157 
2158 	ret = css_populate_dir(&root_cgrp->self);
2159 	if (ret)
2160 		goto destroy_root;
2161 
2162 	ret = cgroup_rstat_init(root_cgrp);
2163 	if (ret)
2164 		goto destroy_root;
2165 
2166 	ret = rebind_subsystems(root, ss_mask);
2167 	if (ret)
2168 		goto exit_stats;
2169 
2170 	if (root == &cgrp_dfl_root) {
2171 		ret = cgroup_bpf_inherit(root_cgrp);
2172 		WARN_ON_ONCE(ret);
2173 	}
2174 
2175 	trace_cgroup_setup_root(root);
2176 
2177 	/*
2178 	 * There must be no failure case after here, since rebinding takes
2179 	 * care of subsystems' refcounts, which are explicitly dropped in
2180 	 * the failure exit path.
2181 	 */
2182 	list_add_rcu(&root->root_list, &cgroup_roots);
2183 	cgroup_root_count++;
2184 
2185 	/*
2186 	 * Link the root cgroup in this hierarchy into all the css_set
2187 	 * objects.
2188 	 */
2189 	spin_lock_irq(&css_set_lock);
2190 	hash_for_each(css_set_table, i, cset, hlist) {
2191 		link_css_set(&tmp_links, cset, root_cgrp);
2192 		if (css_set_populated(cset))
2193 			cgroup_update_populated(root_cgrp, true);
2194 	}
2195 	spin_unlock_irq(&css_set_lock);
2196 
2197 	BUG_ON(!list_empty(&root_cgrp->self.children));
2198 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2199 
2200 	ret = 0;
2201 	goto out;
2202 
2203 exit_stats:
2204 	cgroup_rstat_exit(root_cgrp);
2205 destroy_root:
2206 	kernfs_destroy_root(root->kf_root);
2207 	root->kf_root = NULL;
2208 exit_root_id:
2209 	cgroup_exit_root_id(root);
2210 cancel_ref:
2211 	percpu_ref_exit(&root_cgrp->self.refcnt);
2212 out:
2213 	free_cgrp_cset_links(&tmp_links);
2214 	return ret;
2215 }
2216 
cgroup_do_get_tree(struct fs_context * fc)2217 int cgroup_do_get_tree(struct fs_context *fc)
2218 {
2219 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2220 	int ret;
2221 
2222 	ctx->kfc.root = ctx->root->kf_root;
2223 	if (fc->fs_type == &cgroup2_fs_type)
2224 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2225 	else
2226 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2227 	ret = kernfs_get_tree(fc);
2228 
2229 	/*
2230 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2231 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2232 	 */
2233 	if (!ret && ctx->ns != &init_cgroup_ns) {
2234 		struct dentry *nsdentry;
2235 		struct super_block *sb = fc->root->d_sb;
2236 		struct cgroup *cgrp;
2237 
2238 		cgroup_lock();
2239 		spin_lock_irq(&css_set_lock);
2240 
2241 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2242 
2243 		spin_unlock_irq(&css_set_lock);
2244 		cgroup_unlock();
2245 
2246 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2247 		dput(fc->root);
2248 		if (IS_ERR(nsdentry)) {
2249 			deactivate_locked_super(sb);
2250 			ret = PTR_ERR(nsdentry);
2251 			nsdentry = NULL;
2252 		}
2253 		fc->root = nsdentry;
2254 	}
2255 
2256 	if (!ctx->kfc.new_sb_created)
2257 		cgroup_put(&ctx->root->cgrp);
2258 
2259 	return ret;
2260 }
2261 
2262 /*
2263  * Destroy a cgroup filesystem context.
2264  */
cgroup_fs_context_free(struct fs_context * fc)2265 static void cgroup_fs_context_free(struct fs_context *fc)
2266 {
2267 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2268 
2269 	kfree(ctx->name);
2270 	kfree(ctx->release_agent);
2271 	put_cgroup_ns(ctx->ns);
2272 	kernfs_free_fs_context(fc);
2273 	kfree(ctx);
2274 }
2275 
cgroup_get_tree(struct fs_context * fc)2276 static int cgroup_get_tree(struct fs_context *fc)
2277 {
2278 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2279 	int ret;
2280 
2281 	WRITE_ONCE(cgrp_dfl_visible, true);
2282 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2283 	ctx->root = &cgrp_dfl_root;
2284 
2285 	ret = cgroup_do_get_tree(fc);
2286 	if (!ret)
2287 		apply_cgroup_root_flags(ctx->flags);
2288 	return ret;
2289 }
2290 
2291 static const struct fs_context_operations cgroup_fs_context_ops = {
2292 	.free		= cgroup_fs_context_free,
2293 	.parse_param	= cgroup2_parse_param,
2294 	.get_tree	= cgroup_get_tree,
2295 	.reconfigure	= cgroup_reconfigure,
2296 };
2297 
2298 static const struct fs_context_operations cgroup1_fs_context_ops = {
2299 	.free		= cgroup_fs_context_free,
2300 	.parse_param	= cgroup1_parse_param,
2301 	.get_tree	= cgroup1_get_tree,
2302 	.reconfigure	= cgroup1_reconfigure,
2303 };
2304 
2305 /*
2306  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2307  * we select the namespace we're going to use.
2308  */
cgroup_init_fs_context(struct fs_context * fc)2309 static int cgroup_init_fs_context(struct fs_context *fc)
2310 {
2311 	struct cgroup_fs_context *ctx;
2312 
2313 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2314 	if (!ctx)
2315 		return -ENOMEM;
2316 
2317 	ctx->ns = current->nsproxy->cgroup_ns;
2318 	get_cgroup_ns(ctx->ns);
2319 	fc->fs_private = &ctx->kfc;
2320 	if (fc->fs_type == &cgroup2_fs_type)
2321 		fc->ops = &cgroup_fs_context_ops;
2322 	else
2323 		fc->ops = &cgroup1_fs_context_ops;
2324 	put_user_ns(fc->user_ns);
2325 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2326 	fc->global = true;
2327 
2328 	if (have_favordynmods)
2329 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2330 
2331 	return 0;
2332 }
2333 
cgroup_kill_sb(struct super_block * sb)2334 static void cgroup_kill_sb(struct super_block *sb)
2335 {
2336 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2337 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2338 
2339 	/*
2340 	 * If @root doesn't have any children, start killing it.
2341 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2342 	 *
2343 	 * And don't kill the default root.
2344 	 */
2345 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2346 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2347 		percpu_ref_kill(&root->cgrp.self.refcnt);
2348 	cgroup_put(&root->cgrp);
2349 	kernfs_kill_sb(sb);
2350 }
2351 
2352 struct file_system_type cgroup_fs_type = {
2353 	.name			= "cgroup",
2354 	.init_fs_context	= cgroup_init_fs_context,
2355 	.parameters		= cgroup1_fs_parameters,
2356 	.kill_sb		= cgroup_kill_sb,
2357 	.fs_flags		= FS_USERNS_MOUNT,
2358 };
2359 
2360 static struct file_system_type cgroup2_fs_type = {
2361 	.name			= "cgroup2",
2362 	.init_fs_context	= cgroup_init_fs_context,
2363 	.parameters		= cgroup2_fs_parameters,
2364 	.kill_sb		= cgroup_kill_sb,
2365 	.fs_flags		= FS_USERNS_MOUNT,
2366 };
2367 
2368 #ifdef CONFIG_CPUSETS_V1
2369 enum cpuset_param {
2370 	Opt_cpuset_v2_mode,
2371 };
2372 
2373 static const struct fs_parameter_spec cpuset_fs_parameters[] = {
2374 	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
2375 	{}
2376 };
2377 
cpuset_parse_param(struct fs_context * fc,struct fs_parameter * param)2378 static int cpuset_parse_param(struct fs_context *fc, struct fs_parameter *param)
2379 {
2380 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2381 	struct fs_parse_result result;
2382 	int opt;
2383 
2384 	opt = fs_parse(fc, cpuset_fs_parameters, param, &result);
2385 	if (opt < 0)
2386 		return opt;
2387 
2388 	switch (opt) {
2389 	case Opt_cpuset_v2_mode:
2390 		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
2391 		return 0;
2392 	}
2393 	return -EINVAL;
2394 }
2395 
2396 static const struct fs_context_operations cpuset_fs_context_ops = {
2397 	.get_tree	= cgroup1_get_tree,
2398 	.free		= cgroup_fs_context_free,
2399 	.parse_param	= cpuset_parse_param,
2400 };
2401 
2402 /*
2403  * This is ugly, but preserves the userspace API for existing cpuset
2404  * users. If someone tries to mount the "cpuset" filesystem, we
2405  * silently switch it to mount "cgroup" instead
2406  */
cpuset_init_fs_context(struct fs_context * fc)2407 static int cpuset_init_fs_context(struct fs_context *fc)
2408 {
2409 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2410 	struct cgroup_fs_context *ctx;
2411 	int err;
2412 
2413 	err = cgroup_init_fs_context(fc);
2414 	if (err) {
2415 		kfree(agent);
2416 		return err;
2417 	}
2418 
2419 	fc->ops = &cpuset_fs_context_ops;
2420 
2421 	ctx = cgroup_fc2context(fc);
2422 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2423 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2424 	ctx->release_agent = agent;
2425 
2426 	get_filesystem(&cgroup_fs_type);
2427 	put_filesystem(fc->fs_type);
2428 	fc->fs_type = &cgroup_fs_type;
2429 
2430 	return 0;
2431 }
2432 
2433 static struct file_system_type cpuset_fs_type = {
2434 	.name			= "cpuset",
2435 	.init_fs_context	= cpuset_init_fs_context,
2436 	.parameters		= cpuset_fs_parameters,
2437 	.fs_flags		= FS_USERNS_MOUNT,
2438 };
2439 #endif
2440 
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2441 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2442 			  struct cgroup_namespace *ns)
2443 {
2444 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2445 
2446 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2447 }
2448 
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2449 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2450 		   struct cgroup_namespace *ns)
2451 {
2452 	int ret;
2453 
2454 	cgroup_lock();
2455 	spin_lock_irq(&css_set_lock);
2456 
2457 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2458 
2459 	spin_unlock_irq(&css_set_lock);
2460 	cgroup_unlock();
2461 
2462 	return ret;
2463 }
2464 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2465 
2466 /**
2467  * cgroup_attach_lock - Lock for ->attach()
2468  * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2469  *
2470  * cgroup migration sometimes needs to stabilize threadgroups against forks and
2471  * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2472  * implementations (e.g. cpuset), also need to disable CPU hotplug.
2473  * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2474  * lead to deadlocks.
2475  *
2476  * Bringing up a CPU may involve creating and destroying tasks which requires
2477  * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2478  * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2479  * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2480  * waiting for an on-going CPU hotplug operation which in turn is waiting for
2481  * the threadgroup_rwsem to be released to create new tasks. For more details:
2482  *
2483  *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2484  *
2485  * Resolve the situation by always acquiring cpus_read_lock() before optionally
2486  * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2487  * CPU hotplug is disabled on entry.
2488  */
cgroup_attach_lock(bool lock_threadgroup)2489 void cgroup_attach_lock(bool lock_threadgroup)
2490 {
2491 	cpus_read_lock();
2492 	if (lock_threadgroup)
2493 		percpu_down_write(&cgroup_threadgroup_rwsem);
2494 }
2495 
2496 /**
2497  * cgroup_attach_unlock - Undo cgroup_attach_lock()
2498  * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2499  */
cgroup_attach_unlock(bool lock_threadgroup)2500 void cgroup_attach_unlock(bool lock_threadgroup)
2501 {
2502 	if (lock_threadgroup)
2503 		percpu_up_write(&cgroup_threadgroup_rwsem);
2504 	cpus_read_unlock();
2505 }
2506 
2507 /**
2508  * cgroup_migrate_add_task - add a migration target task to a migration context
2509  * @task: target task
2510  * @mgctx: target migration context
2511  *
2512  * Add @task, which is a migration target, to @mgctx->tset.  This function
2513  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2514  * should have been added as a migration source and @task->cg_list will be
2515  * moved from the css_set's tasks list to mg_tasks one.
2516  */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2517 static void cgroup_migrate_add_task(struct task_struct *task,
2518 				    struct cgroup_mgctx *mgctx)
2519 {
2520 	struct css_set *cset;
2521 
2522 	lockdep_assert_held(&css_set_lock);
2523 
2524 	/* @task either already exited or can't exit until the end */
2525 	if (task->flags & PF_EXITING)
2526 		return;
2527 
2528 	/* cgroup_threadgroup_rwsem protects racing against forks */
2529 	WARN_ON_ONCE(list_empty(&task->cg_list));
2530 
2531 	cset = task_css_set(task);
2532 	if (!cset->mg_src_cgrp)
2533 		return;
2534 
2535 	mgctx->tset.nr_tasks++;
2536 
2537 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2538 	if (list_empty(&cset->mg_node))
2539 		list_add_tail(&cset->mg_node,
2540 			      &mgctx->tset.src_csets);
2541 	if (list_empty(&cset->mg_dst_cset->mg_node))
2542 		list_add_tail(&cset->mg_dst_cset->mg_node,
2543 			      &mgctx->tset.dst_csets);
2544 }
2545 
2546 /**
2547  * cgroup_taskset_first - reset taskset and return the first task
2548  * @tset: taskset of interest
2549  * @dst_cssp: output variable for the destination css
2550  *
2551  * @tset iteration is initialized and the first task is returned.
2552  */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2553 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2554 					 struct cgroup_subsys_state **dst_cssp)
2555 {
2556 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2557 	tset->cur_task = NULL;
2558 
2559 	return cgroup_taskset_next(tset, dst_cssp);
2560 }
2561 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
2562 
2563 /**
2564  * cgroup_taskset_next - iterate to the next task in taskset
2565  * @tset: taskset of interest
2566  * @dst_cssp: output variable for the destination css
2567  *
2568  * Return the next task in @tset.  Iteration must have been initialized
2569  * with cgroup_taskset_first().
2570  */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2571 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2572 					struct cgroup_subsys_state **dst_cssp)
2573 {
2574 	struct css_set *cset = tset->cur_cset;
2575 	struct task_struct *task = tset->cur_task;
2576 
2577 	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2578 		if (!task)
2579 			task = list_first_entry(&cset->mg_tasks,
2580 						struct task_struct, cg_list);
2581 		else
2582 			task = list_next_entry(task, cg_list);
2583 
2584 		if (&task->cg_list != &cset->mg_tasks) {
2585 			tset->cur_cset = cset;
2586 			tset->cur_task = task;
2587 
2588 			/*
2589 			 * This function may be called both before and
2590 			 * after cgroup_migrate_execute().  The two cases
2591 			 * can be distinguished by looking at whether @cset
2592 			 * has its ->mg_dst_cset set.
2593 			 */
2594 			if (cset->mg_dst_cset)
2595 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2596 			else
2597 				*dst_cssp = cset->subsys[tset->ssid];
2598 
2599 			return task;
2600 		}
2601 
2602 		cset = list_next_entry(cset, mg_node);
2603 		task = NULL;
2604 	}
2605 
2606 	return NULL;
2607 }
2608 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
2609 
2610 /**
2611  * cgroup_migrate_execute - migrate a taskset
2612  * @mgctx: migration context
2613  *
2614  * Migrate tasks in @mgctx as setup by migration preparation functions.
2615  * This function fails iff one of the ->can_attach callbacks fails and
2616  * guarantees that either all or none of the tasks in @mgctx are migrated.
2617  * @mgctx is consumed regardless of success.
2618  */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2619 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2620 {
2621 	struct cgroup_taskset *tset = &mgctx->tset;
2622 	struct cgroup_subsys *ss;
2623 	struct task_struct *task, *tmp_task;
2624 	struct css_set *cset, *tmp_cset;
2625 	int ssid, failed_ssid, ret;
2626 
2627 	/* check that we can legitimately attach to the cgroup */
2628 	if (tset->nr_tasks) {
2629 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2630 			if (ss->can_attach) {
2631 				tset->ssid = ssid;
2632 				ret = ss->can_attach(tset);
2633 				if (ret) {
2634 					failed_ssid = ssid;
2635 					goto out_cancel_attach;
2636 				}
2637 			}
2638 		} while_each_subsys_mask();
2639 	}
2640 
2641 	/*
2642 	 * Now that we're guaranteed success, proceed to move all tasks to
2643 	 * the new cgroup.  There are no failure cases after here, so this
2644 	 * is the commit point.
2645 	 */
2646 	spin_lock_irq(&css_set_lock);
2647 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2648 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2649 			struct css_set *from_cset = task_css_set(task);
2650 			struct css_set *to_cset = cset->mg_dst_cset;
2651 
2652 			get_css_set(to_cset);
2653 			to_cset->nr_tasks++;
2654 			css_set_move_task(task, from_cset, to_cset, true);
2655 			from_cset->nr_tasks--;
2656 			/*
2657 			 * If the source or destination cgroup is frozen,
2658 			 * the task might require to change its state.
2659 			 */
2660 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2661 						    to_cset->dfl_cgrp);
2662 			put_css_set_locked(from_cset);
2663 
2664 		}
2665 	}
2666 	spin_unlock_irq(&css_set_lock);
2667 
2668 	/*
2669 	 * Migration is committed, all target tasks are now on dst_csets.
2670 	 * Nothing is sensitive to fork() after this point.  Notify
2671 	 * controllers that migration is complete.
2672 	 */
2673 	tset->csets = &tset->dst_csets;
2674 
2675 	if (tset->nr_tasks) {
2676 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2677 			if (ss->attach) {
2678 				tset->ssid = ssid;
2679 				trace_android_vh_cgroup_attach(ss, tset);
2680 				ss->attach(tset);
2681 			}
2682 		} while_each_subsys_mask();
2683 	}
2684 
2685 	ret = 0;
2686 	goto out_release_tset;
2687 
2688 out_cancel_attach:
2689 	if (tset->nr_tasks) {
2690 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2691 			if (ssid == failed_ssid)
2692 				break;
2693 			if (ss->cancel_attach) {
2694 				tset->ssid = ssid;
2695 				ss->cancel_attach(tset);
2696 			}
2697 		} while_each_subsys_mask();
2698 	}
2699 out_release_tset:
2700 	spin_lock_irq(&css_set_lock);
2701 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2702 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2703 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2704 		list_del_init(&cset->mg_node);
2705 	}
2706 	spin_unlock_irq(&css_set_lock);
2707 
2708 	/*
2709 	 * Re-initialize the cgroup_taskset structure in case it is reused
2710 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2711 	 * iteration.
2712 	 */
2713 	tset->nr_tasks = 0;
2714 	tset->csets    = &tset->src_csets;
2715 	return ret;
2716 }
2717 
2718 /**
2719  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2720  * @dst_cgrp: destination cgroup to test
2721  *
2722  * On the default hierarchy, except for the mixable, (possible) thread root
2723  * and threaded cgroups, subtree_control must be zero for migration
2724  * destination cgroups with tasks so that child cgroups don't compete
2725  * against tasks.
2726  */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2727 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2728 {
2729 	/* v1 doesn't have any restriction */
2730 	if (!cgroup_on_dfl(dst_cgrp))
2731 		return 0;
2732 
2733 	/* verify @dst_cgrp can host resources */
2734 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2735 		return -EOPNOTSUPP;
2736 
2737 	/*
2738 	 * If @dst_cgrp is already or can become a thread root or is
2739 	 * threaded, it doesn't matter.
2740 	 */
2741 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2742 		return 0;
2743 
2744 	/* apply no-internal-process constraint */
2745 	if (dst_cgrp->subtree_control)
2746 		return -EBUSY;
2747 
2748 	return 0;
2749 }
2750 
2751 /**
2752  * cgroup_migrate_finish - cleanup after attach
2753  * @mgctx: migration context
2754  *
2755  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2756  * those functions for details.
2757  */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2758 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2759 {
2760 	struct css_set *cset, *tmp_cset;
2761 
2762 	lockdep_assert_held(&cgroup_mutex);
2763 
2764 	spin_lock_irq(&css_set_lock);
2765 
2766 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2767 				 mg_src_preload_node) {
2768 		cset->mg_src_cgrp = NULL;
2769 		cset->mg_dst_cgrp = NULL;
2770 		cset->mg_dst_cset = NULL;
2771 		list_del_init(&cset->mg_src_preload_node);
2772 		put_css_set_locked(cset);
2773 	}
2774 
2775 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2776 				 mg_dst_preload_node) {
2777 		cset->mg_src_cgrp = NULL;
2778 		cset->mg_dst_cgrp = NULL;
2779 		cset->mg_dst_cset = NULL;
2780 		list_del_init(&cset->mg_dst_preload_node);
2781 		put_css_set_locked(cset);
2782 	}
2783 
2784 	spin_unlock_irq(&css_set_lock);
2785 }
2786 
2787 /**
2788  * cgroup_migrate_add_src - add a migration source css_set
2789  * @src_cset: the source css_set to add
2790  * @dst_cgrp: the destination cgroup
2791  * @mgctx: migration context
2792  *
2793  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2794  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2795  * up by cgroup_migrate_finish().
2796  *
2797  * This function may be called without holding cgroup_threadgroup_rwsem
2798  * even if the target is a process.  Threads may be created and destroyed
2799  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2800  * into play and the preloaded css_sets are guaranteed to cover all
2801  * migrations.
2802  */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2803 void cgroup_migrate_add_src(struct css_set *src_cset,
2804 			    struct cgroup *dst_cgrp,
2805 			    struct cgroup_mgctx *mgctx)
2806 {
2807 	struct cgroup *src_cgrp;
2808 
2809 	lockdep_assert_held(&cgroup_mutex);
2810 	lockdep_assert_held(&css_set_lock);
2811 
2812 	/*
2813 	 * If ->dead, @src_set is associated with one or more dead cgroups
2814 	 * and doesn't contain any migratable tasks.  Ignore it early so
2815 	 * that the rest of migration path doesn't get confused by it.
2816 	 */
2817 	if (src_cset->dead)
2818 		return;
2819 
2820 	if (!list_empty(&src_cset->mg_src_preload_node))
2821 		return;
2822 
2823 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2824 
2825 	WARN_ON(src_cset->mg_src_cgrp);
2826 	WARN_ON(src_cset->mg_dst_cgrp);
2827 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2828 	WARN_ON(!list_empty(&src_cset->mg_node));
2829 
2830 	src_cset->mg_src_cgrp = src_cgrp;
2831 	src_cset->mg_dst_cgrp = dst_cgrp;
2832 	get_css_set(src_cset);
2833 	list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2834 }
2835 
2836 /**
2837  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2838  * @mgctx: migration context
2839  *
2840  * Tasks are about to be moved and all the source css_sets have been
2841  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2842  * pins all destination css_sets, links each to its source, and append them
2843  * to @mgctx->preloaded_dst_csets.
2844  *
2845  * This function must be called after cgroup_migrate_add_src() has been
2846  * called on each migration source css_set.  After migration is performed
2847  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2848  * @mgctx.
2849  */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2850 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2851 {
2852 	struct css_set *src_cset, *tmp_cset;
2853 
2854 	lockdep_assert_held(&cgroup_mutex);
2855 
2856 	/* look up the dst cset for each src cset and link it to src */
2857 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2858 				 mg_src_preload_node) {
2859 		struct css_set *dst_cset;
2860 		struct cgroup_subsys *ss;
2861 		int ssid;
2862 
2863 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2864 		if (!dst_cset)
2865 			return -ENOMEM;
2866 
2867 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2868 
2869 		/*
2870 		 * If src cset equals dst, it's noop.  Drop the src.
2871 		 * cgroup_migrate() will skip the cset too.  Note that we
2872 		 * can't handle src == dst as some nodes are used by both.
2873 		 */
2874 		if (src_cset == dst_cset) {
2875 			src_cset->mg_src_cgrp = NULL;
2876 			src_cset->mg_dst_cgrp = NULL;
2877 			list_del_init(&src_cset->mg_src_preload_node);
2878 			put_css_set(src_cset);
2879 			put_css_set(dst_cset);
2880 			continue;
2881 		}
2882 
2883 		src_cset->mg_dst_cset = dst_cset;
2884 
2885 		if (list_empty(&dst_cset->mg_dst_preload_node))
2886 			list_add_tail(&dst_cset->mg_dst_preload_node,
2887 				      &mgctx->preloaded_dst_csets);
2888 		else
2889 			put_css_set(dst_cset);
2890 
2891 		for_each_subsys(ss, ssid)
2892 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2893 				mgctx->ss_mask |= 1 << ssid;
2894 	}
2895 
2896 	return 0;
2897 }
2898 
2899 /**
2900  * cgroup_migrate - migrate a process or task to a cgroup
2901  * @leader: the leader of the process or the task to migrate
2902  * @threadgroup: whether @leader points to the whole process or a single task
2903  * @mgctx: migration context
2904  *
2905  * Migrate a process or task denoted by @leader.  If migrating a process,
2906  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2907  * responsible for invoking cgroup_migrate_add_src() and
2908  * cgroup_migrate_prepare_dst() on the targets before invoking this
2909  * function and following up with cgroup_migrate_finish().
2910  *
2911  * As long as a controller's ->can_attach() doesn't fail, this function is
2912  * guaranteed to succeed.  This means that, excluding ->can_attach()
2913  * failure, when migrating multiple targets, the success or failure can be
2914  * decided for all targets by invoking group_migrate_prepare_dst() before
2915  * actually starting migrating.
2916  */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2917 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2918 		   struct cgroup_mgctx *mgctx)
2919 {
2920 	struct task_struct *task;
2921 
2922 	/*
2923 	 * The following thread iteration should be inside an RCU critical
2924 	 * section to prevent tasks from being freed while taking the snapshot.
2925 	 * spin_lock_irq() implies RCU critical section here.
2926 	 */
2927 	spin_lock_irq(&css_set_lock);
2928 	task = leader;
2929 	do {
2930 		cgroup_migrate_add_task(task, mgctx);
2931 		if (!threadgroup)
2932 			break;
2933 	} while_each_thread(leader, task);
2934 	spin_unlock_irq(&css_set_lock);
2935 
2936 	return cgroup_migrate_execute(mgctx);
2937 }
2938 
2939 /**
2940  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2941  * @dst_cgrp: the cgroup to attach to
2942  * @leader: the task or the leader of the threadgroup to be attached
2943  * @threadgroup: attach the whole threadgroup?
2944  *
2945  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2946  */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2947 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2948 		       bool threadgroup)
2949 {
2950 	DEFINE_CGROUP_MGCTX(mgctx);
2951 	struct task_struct *task;
2952 	int ret = 0;
2953 
2954 	/* look up all src csets */
2955 	spin_lock_irq(&css_set_lock);
2956 	rcu_read_lock();
2957 	task = leader;
2958 	do {
2959 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2960 		if (!threadgroup)
2961 			break;
2962 	} while_each_thread(leader, task);
2963 	rcu_read_unlock();
2964 	spin_unlock_irq(&css_set_lock);
2965 
2966 	/* prepare dst csets and commit */
2967 	ret = cgroup_migrate_prepare_dst(&mgctx);
2968 	if (!ret)
2969 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2970 
2971 	cgroup_migrate_finish(&mgctx);
2972 
2973 	if (!ret)
2974 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2975 
2976 	return ret;
2977 }
2978 
cgroup_procs_write_start(char * buf,bool threadgroup,bool * threadgroup_locked,struct cgroup * dst_cgrp)2979 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2980 					     bool *threadgroup_locked,
2981 					     struct cgroup *dst_cgrp)
2982 {
2983 	struct task_struct *tsk;
2984 	pid_t pid;
2985 	bool force_migration = false;
2986 
2987 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2988 		return ERR_PTR(-EINVAL);
2989 
2990 	/*
2991 	 * If we migrate a single thread, we don't care about threadgroup
2992 	 * stability. If the thread is `current`, it won't exit(2) under our
2993 	 * hands or change PID through exec(2). We exclude
2994 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2995 	 * callers by cgroup_mutex.
2996 	 * Therefore, we can skip the global lock.
2997 	 */
2998 	lockdep_assert_held(&cgroup_mutex);
2999 	*threadgroup_locked = pid || threadgroup;
3000 	cgroup_attach_lock(*threadgroup_locked);
3001 
3002 	rcu_read_lock();
3003 	if (pid) {
3004 		tsk = find_task_by_vpid(pid);
3005 		if (!tsk) {
3006 			tsk = ERR_PTR(-ESRCH);
3007 			goto out_unlock_threadgroup;
3008 		}
3009 	} else {
3010 		tsk = current;
3011 	}
3012 
3013 	if (threadgroup)
3014 		tsk = tsk->group_leader;
3015 
3016 	if (tsk->flags & PF_KTHREAD)
3017 		trace_android_rvh_cgroup_force_kthread_migration(tsk, dst_cgrp, &force_migration);
3018 
3019 	/*
3020 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
3021 	 * If userland migrates such a kthread to a non-root cgroup, it can
3022 	 * become trapped in a cpuset, or RT kthread may be born in a
3023 	 * cgroup with no rt_runtime allocated.  Just say no.
3024 	 */
3025 	if (!force_migration && (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY))) {
3026 		tsk = ERR_PTR(-EINVAL);
3027 		goto out_unlock_threadgroup;
3028 	}
3029 
3030 	get_task_struct(tsk);
3031 	goto out_unlock_rcu;
3032 
3033 out_unlock_threadgroup:
3034 	cgroup_attach_unlock(*threadgroup_locked);
3035 	*threadgroup_locked = false;
3036 out_unlock_rcu:
3037 	rcu_read_unlock();
3038 	return tsk;
3039 }
3040 
cgroup_procs_write_finish(struct task_struct * task,bool threadgroup_locked)3041 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
3042 {
3043 	struct cgroup_subsys *ss;
3044 	int ssid;
3045 
3046 	/* release reference from cgroup_procs_write_start() */
3047 	put_task_struct(task);
3048 
3049 	cgroup_attach_unlock(threadgroup_locked);
3050 
3051 	for_each_subsys(ss, ssid)
3052 		if (ss->post_attach)
3053 			ss->post_attach();
3054 }
3055 
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)3056 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
3057 {
3058 	struct cgroup_subsys *ss;
3059 	bool printed = false;
3060 	int ssid;
3061 
3062 	do_each_subsys_mask(ss, ssid, ss_mask) {
3063 		if (printed)
3064 			seq_putc(seq, ' ');
3065 		seq_puts(seq, ss->name);
3066 		printed = true;
3067 	} while_each_subsys_mask();
3068 	if (printed)
3069 		seq_putc(seq, '\n');
3070 }
3071 
3072 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)3073 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3074 {
3075 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3076 
3077 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3078 	return 0;
3079 }
3080 
3081 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)3082 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3083 {
3084 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3085 
3086 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
3087 	return 0;
3088 }
3089 
3090 /**
3091  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3092  * @cgrp: root of the subtree to update csses for
3093  *
3094  * @cgrp's control masks have changed and its subtree's css associations
3095  * need to be updated accordingly.  This function looks up all css_sets
3096  * which are attached to the subtree, creates the matching updated css_sets
3097  * and migrates the tasks to the new ones.
3098  */
cgroup_update_dfl_csses(struct cgroup * cgrp)3099 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3100 {
3101 	DEFINE_CGROUP_MGCTX(mgctx);
3102 	struct cgroup_subsys_state *d_css;
3103 	struct cgroup *dsct;
3104 	struct css_set *src_cset;
3105 	bool has_tasks;
3106 	int ret;
3107 
3108 	lockdep_assert_held(&cgroup_mutex);
3109 
3110 	/* look up all csses currently attached to @cgrp's subtree */
3111 	spin_lock_irq(&css_set_lock);
3112 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3113 		struct cgrp_cset_link *link;
3114 
3115 		/*
3116 		 * As cgroup_update_dfl_csses() is only called by
3117 		 * cgroup_apply_control(). The csses associated with the
3118 		 * given cgrp will not be affected by changes made to
3119 		 * its subtree_control file. We can skip them.
3120 		 */
3121 		if (dsct == cgrp)
3122 			continue;
3123 
3124 		list_for_each_entry(link, &dsct->cset_links, cset_link)
3125 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3126 	}
3127 	spin_unlock_irq(&css_set_lock);
3128 
3129 	/*
3130 	 * We need to write-lock threadgroup_rwsem while migrating tasks.
3131 	 * However, if there are no source csets for @cgrp, changing its
3132 	 * controllers isn't gonna produce any task migrations and the
3133 	 * write-locking can be skipped safely.
3134 	 */
3135 	has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3136 	cgroup_attach_lock(has_tasks);
3137 
3138 	/* NULL dst indicates self on default hierarchy */
3139 	ret = cgroup_migrate_prepare_dst(&mgctx);
3140 	if (ret)
3141 		goto out_finish;
3142 
3143 	spin_lock_irq(&css_set_lock);
3144 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3145 			    mg_src_preload_node) {
3146 		struct task_struct *task, *ntask;
3147 
3148 		/* all tasks in src_csets need to be migrated */
3149 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3150 			cgroup_migrate_add_task(task, &mgctx);
3151 	}
3152 	spin_unlock_irq(&css_set_lock);
3153 
3154 	ret = cgroup_migrate_execute(&mgctx);
3155 out_finish:
3156 	cgroup_migrate_finish(&mgctx);
3157 	cgroup_attach_unlock(has_tasks);
3158 	return ret;
3159 }
3160 
3161 /**
3162  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3163  * @cgrp: root of the target subtree
3164  *
3165  * Because css offlining is asynchronous, userland may try to re-enable a
3166  * controller while the previous css is still around.  This function grabs
3167  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3168  */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)3169 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3170 	__acquires(&cgroup_mutex)
3171 {
3172 	struct cgroup *dsct;
3173 	struct cgroup_subsys_state *d_css;
3174 	struct cgroup_subsys *ss;
3175 	int ssid;
3176 
3177 restart:
3178 	cgroup_lock();
3179 
3180 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3181 		for_each_subsys(ss, ssid) {
3182 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3183 			DEFINE_WAIT(wait);
3184 
3185 			if (!css || !percpu_ref_is_dying(&css->refcnt))
3186 				continue;
3187 
3188 			cgroup_get_live(dsct);
3189 			prepare_to_wait(&dsct->offline_waitq, &wait,
3190 					TASK_UNINTERRUPTIBLE);
3191 
3192 			cgroup_unlock();
3193 			schedule();
3194 			finish_wait(&dsct->offline_waitq, &wait);
3195 
3196 			cgroup_put(dsct);
3197 			goto restart;
3198 		}
3199 	}
3200 }
3201 
3202 /**
3203  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3204  * @cgrp: root of the target subtree
3205  *
3206  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3207  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3208  * itself.
3209  */
cgroup_save_control(struct cgroup * cgrp)3210 static void cgroup_save_control(struct cgroup *cgrp)
3211 {
3212 	struct cgroup *dsct;
3213 	struct cgroup_subsys_state *d_css;
3214 
3215 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3216 		dsct->old_subtree_control = dsct->subtree_control;
3217 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3218 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3219 	}
3220 }
3221 
3222 /**
3223  * cgroup_propagate_control - refresh control masks of a subtree
3224  * @cgrp: root of the target subtree
3225  *
3226  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3227  * ->subtree_control and propagate controller availability through the
3228  * subtree so that descendants don't have unavailable controllers enabled.
3229  */
cgroup_propagate_control(struct cgroup * cgrp)3230 static void cgroup_propagate_control(struct cgroup *cgrp)
3231 {
3232 	struct cgroup *dsct;
3233 	struct cgroup_subsys_state *d_css;
3234 
3235 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3236 		dsct->subtree_control &= cgroup_control(dsct);
3237 		dsct->subtree_ss_mask =
3238 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3239 						    cgroup_ss_mask(dsct));
3240 	}
3241 }
3242 
3243 /**
3244  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3245  * @cgrp: root of the target subtree
3246  *
3247  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3248  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3249  * itself.
3250  */
cgroup_restore_control(struct cgroup * cgrp)3251 static void cgroup_restore_control(struct cgroup *cgrp)
3252 {
3253 	struct cgroup *dsct;
3254 	struct cgroup_subsys_state *d_css;
3255 
3256 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3257 		dsct->subtree_control = dsct->old_subtree_control;
3258 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3259 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3260 	}
3261 }
3262 
css_visible(struct cgroup_subsys_state * css)3263 static bool css_visible(struct cgroup_subsys_state *css)
3264 {
3265 	struct cgroup_subsys *ss = css->ss;
3266 	struct cgroup *cgrp = css->cgroup;
3267 
3268 	if (cgroup_control(cgrp) & (1 << ss->id))
3269 		return true;
3270 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3271 		return false;
3272 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3273 }
3274 
3275 /**
3276  * cgroup_apply_control_enable - enable or show csses according to control
3277  * @cgrp: root of the target subtree
3278  *
3279  * Walk @cgrp's subtree and create new csses or make the existing ones
3280  * visible.  A css is created invisible if it's being implicitly enabled
3281  * through dependency.  An invisible css is made visible when the userland
3282  * explicitly enables it.
3283  *
3284  * Returns 0 on success, -errno on failure.  On failure, csses which have
3285  * been processed already aren't cleaned up.  The caller is responsible for
3286  * cleaning up with cgroup_apply_control_disable().
3287  */
cgroup_apply_control_enable(struct cgroup * cgrp)3288 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3289 {
3290 	struct cgroup *dsct;
3291 	struct cgroup_subsys_state *d_css;
3292 	struct cgroup_subsys *ss;
3293 	int ssid, ret;
3294 
3295 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3296 		for_each_subsys(ss, ssid) {
3297 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3298 
3299 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3300 				continue;
3301 
3302 			if (!css) {
3303 				css = css_create(dsct, ss);
3304 				if (IS_ERR(css))
3305 					return PTR_ERR(css);
3306 			}
3307 
3308 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3309 
3310 			if (css_visible(css)) {
3311 				ret = css_populate_dir(css);
3312 				if (ret)
3313 					return ret;
3314 			}
3315 		}
3316 	}
3317 
3318 	return 0;
3319 }
3320 
3321 /**
3322  * cgroup_apply_control_disable - kill or hide csses according to control
3323  * @cgrp: root of the target subtree
3324  *
3325  * Walk @cgrp's subtree and kill and hide csses so that they match
3326  * cgroup_ss_mask() and cgroup_visible_mask().
3327  *
3328  * A css is hidden when the userland requests it to be disabled while other
3329  * subsystems are still depending on it.  The css must not actively control
3330  * resources and be in the vanilla state if it's made visible again later.
3331  * Controllers which may be depended upon should provide ->css_reset() for
3332  * this purpose.
3333  */
cgroup_apply_control_disable(struct cgroup * cgrp)3334 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3335 {
3336 	struct cgroup *dsct;
3337 	struct cgroup_subsys_state *d_css;
3338 	struct cgroup_subsys *ss;
3339 	int ssid;
3340 
3341 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3342 		for_each_subsys(ss, ssid) {
3343 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3344 
3345 			if (!css)
3346 				continue;
3347 
3348 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3349 
3350 			if (css->parent &&
3351 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3352 				kill_css(css);
3353 			} else if (!css_visible(css)) {
3354 				css_clear_dir(css);
3355 				if (ss->css_reset)
3356 					ss->css_reset(css);
3357 			}
3358 		}
3359 	}
3360 }
3361 
3362 /**
3363  * cgroup_apply_control - apply control mask updates to the subtree
3364  * @cgrp: root of the target subtree
3365  *
3366  * subsystems can be enabled and disabled in a subtree using the following
3367  * steps.
3368  *
3369  * 1. Call cgroup_save_control() to stash the current state.
3370  * 2. Update ->subtree_control masks in the subtree as desired.
3371  * 3. Call cgroup_apply_control() to apply the changes.
3372  * 4. Optionally perform other related operations.
3373  * 5. Call cgroup_finalize_control() to finish up.
3374  *
3375  * This function implements step 3 and propagates the mask changes
3376  * throughout @cgrp's subtree, updates csses accordingly and perform
3377  * process migrations.
3378  */
cgroup_apply_control(struct cgroup * cgrp)3379 static int cgroup_apply_control(struct cgroup *cgrp)
3380 {
3381 	int ret;
3382 
3383 	cgroup_propagate_control(cgrp);
3384 
3385 	ret = cgroup_apply_control_enable(cgrp);
3386 	if (ret)
3387 		return ret;
3388 
3389 	/*
3390 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3391 	 * making the following cgroup_update_dfl_csses() properly update
3392 	 * css associations of all tasks in the subtree.
3393 	 */
3394 	return cgroup_update_dfl_csses(cgrp);
3395 }
3396 
3397 /**
3398  * cgroup_finalize_control - finalize control mask update
3399  * @cgrp: root of the target subtree
3400  * @ret: the result of the update
3401  *
3402  * Finalize control mask update.  See cgroup_apply_control() for more info.
3403  */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3404 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3405 {
3406 	if (ret) {
3407 		cgroup_restore_control(cgrp);
3408 		cgroup_propagate_control(cgrp);
3409 	}
3410 
3411 	cgroup_apply_control_disable(cgrp);
3412 }
3413 
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3414 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3415 {
3416 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3417 
3418 	/* if nothing is getting enabled, nothing to worry about */
3419 	if (!enable)
3420 		return 0;
3421 
3422 	/* can @cgrp host any resources? */
3423 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3424 		return -EOPNOTSUPP;
3425 
3426 	/* mixables don't care */
3427 	if (cgroup_is_mixable(cgrp))
3428 		return 0;
3429 
3430 	if (domain_enable) {
3431 		/* can't enable domain controllers inside a thread subtree */
3432 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3433 			return -EOPNOTSUPP;
3434 	} else {
3435 		/*
3436 		 * Threaded controllers can handle internal competitions
3437 		 * and are always allowed inside a (prospective) thread
3438 		 * subtree.
3439 		 */
3440 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3441 			return 0;
3442 	}
3443 
3444 	/*
3445 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3446 	 * child cgroups competing against tasks.
3447 	 */
3448 	if (cgroup_has_tasks(cgrp))
3449 		return -EBUSY;
3450 
3451 	return 0;
3452 }
3453 
3454 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3455 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3456 					    char *buf, size_t nbytes,
3457 					    loff_t off)
3458 {
3459 	u16 enable = 0, disable = 0;
3460 	struct cgroup *cgrp, *child;
3461 	struct cgroup_subsys *ss;
3462 	char *tok;
3463 	int ssid, ret;
3464 
3465 	/*
3466 	 * Parse input - space separated list of subsystem names prefixed
3467 	 * with either + or -.
3468 	 */
3469 	buf = strstrip(buf);
3470 	while ((tok = strsep(&buf, " "))) {
3471 		if (tok[0] == '\0')
3472 			continue;
3473 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3474 			if (!cgroup_ssid_enabled(ssid) ||
3475 			    strcmp(tok + 1, ss->name))
3476 				continue;
3477 
3478 			if (*tok == '+') {
3479 				enable |= 1 << ssid;
3480 				disable &= ~(1 << ssid);
3481 			} else if (*tok == '-') {
3482 				disable |= 1 << ssid;
3483 				enable &= ~(1 << ssid);
3484 			} else {
3485 				return -EINVAL;
3486 			}
3487 			break;
3488 		} while_each_subsys_mask();
3489 		if (ssid == CGROUP_SUBSYS_COUNT)
3490 			return -EINVAL;
3491 	}
3492 
3493 	cgrp = cgroup_kn_lock_live(of->kn, true);
3494 	if (!cgrp)
3495 		return -ENODEV;
3496 
3497 	for_each_subsys(ss, ssid) {
3498 		if (enable & (1 << ssid)) {
3499 			if (cgrp->subtree_control & (1 << ssid)) {
3500 				enable &= ~(1 << ssid);
3501 				continue;
3502 			}
3503 
3504 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3505 				ret = -ENOENT;
3506 				goto out_unlock;
3507 			}
3508 		} else if (disable & (1 << ssid)) {
3509 			if (!(cgrp->subtree_control & (1 << ssid))) {
3510 				disable &= ~(1 << ssid);
3511 				continue;
3512 			}
3513 
3514 			/* a child has it enabled? */
3515 			cgroup_for_each_live_child(child, cgrp) {
3516 				if (child->subtree_control & (1 << ssid)) {
3517 					ret = -EBUSY;
3518 					goto out_unlock;
3519 				}
3520 			}
3521 		}
3522 	}
3523 
3524 	if (!enable && !disable) {
3525 		ret = 0;
3526 		goto out_unlock;
3527 	}
3528 
3529 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3530 	if (ret)
3531 		goto out_unlock;
3532 
3533 	/* save and update control masks and prepare csses */
3534 	cgroup_save_control(cgrp);
3535 
3536 	cgrp->subtree_control |= enable;
3537 	cgrp->subtree_control &= ~disable;
3538 
3539 	ret = cgroup_apply_control(cgrp);
3540 	cgroup_finalize_control(cgrp, ret);
3541 	if (ret)
3542 		goto out_unlock;
3543 
3544 	kernfs_activate(cgrp->kn);
3545 out_unlock:
3546 	cgroup_kn_unlock(of->kn);
3547 	return ret ?: nbytes;
3548 }
3549 
3550 /**
3551  * cgroup_enable_threaded - make @cgrp threaded
3552  * @cgrp: the target cgroup
3553  *
3554  * Called when "threaded" is written to the cgroup.type interface file and
3555  * tries to make @cgrp threaded and join the parent's resource domain.
3556  * This function is never called on the root cgroup as cgroup.type doesn't
3557  * exist on it.
3558  */
cgroup_enable_threaded(struct cgroup * cgrp)3559 static int cgroup_enable_threaded(struct cgroup *cgrp)
3560 {
3561 	struct cgroup *parent = cgroup_parent(cgrp);
3562 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3563 	struct cgroup *dsct;
3564 	struct cgroup_subsys_state *d_css;
3565 	int ret;
3566 
3567 	lockdep_assert_held(&cgroup_mutex);
3568 
3569 	/* noop if already threaded */
3570 	if (cgroup_is_threaded(cgrp))
3571 		return 0;
3572 
3573 	/*
3574 	 * If @cgroup is populated or has domain controllers enabled, it
3575 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3576 	 * test can catch the same conditions, that's only when @parent is
3577 	 * not mixable, so let's check it explicitly.
3578 	 */
3579 	if (cgroup_is_populated(cgrp) ||
3580 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3581 		return -EOPNOTSUPP;
3582 
3583 	/* we're joining the parent's domain, ensure its validity */
3584 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3585 	    !cgroup_can_be_thread_root(dom_cgrp))
3586 		return -EOPNOTSUPP;
3587 
3588 	/*
3589 	 * The following shouldn't cause actual migrations and should
3590 	 * always succeed.
3591 	 */
3592 	cgroup_save_control(cgrp);
3593 
3594 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3595 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3596 			dsct->dom_cgrp = dom_cgrp;
3597 
3598 	ret = cgroup_apply_control(cgrp);
3599 	if (!ret)
3600 		parent->nr_threaded_children++;
3601 
3602 	cgroup_finalize_control(cgrp, ret);
3603 	return ret;
3604 }
3605 
cgroup_type_show(struct seq_file * seq,void * v)3606 static int cgroup_type_show(struct seq_file *seq, void *v)
3607 {
3608 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3609 
3610 	if (cgroup_is_threaded(cgrp))
3611 		seq_puts(seq, "threaded\n");
3612 	else if (!cgroup_is_valid_domain(cgrp))
3613 		seq_puts(seq, "domain invalid\n");
3614 	else if (cgroup_is_thread_root(cgrp))
3615 		seq_puts(seq, "domain threaded\n");
3616 	else
3617 		seq_puts(seq, "domain\n");
3618 
3619 	return 0;
3620 }
3621 
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3622 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3623 				 size_t nbytes, loff_t off)
3624 {
3625 	struct cgroup *cgrp;
3626 	int ret;
3627 
3628 	/* only switching to threaded mode is supported */
3629 	if (strcmp(strstrip(buf), "threaded"))
3630 		return -EINVAL;
3631 
3632 	/* drain dying csses before we re-apply (threaded) subtree control */
3633 	cgrp = cgroup_kn_lock_live(of->kn, true);
3634 	if (!cgrp)
3635 		return -ENOENT;
3636 
3637 	/* threaded can only be enabled */
3638 	ret = cgroup_enable_threaded(cgrp);
3639 
3640 	cgroup_kn_unlock(of->kn);
3641 	return ret ?: nbytes;
3642 }
3643 
cgroup_max_descendants_show(struct seq_file * seq,void * v)3644 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3645 {
3646 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3647 	int descendants = READ_ONCE(cgrp->max_descendants);
3648 
3649 	if (descendants == INT_MAX)
3650 		seq_puts(seq, "max\n");
3651 	else
3652 		seq_printf(seq, "%d\n", descendants);
3653 
3654 	return 0;
3655 }
3656 
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3657 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3658 					   char *buf, size_t nbytes, loff_t off)
3659 {
3660 	struct cgroup *cgrp;
3661 	int descendants;
3662 	ssize_t ret;
3663 
3664 	buf = strstrip(buf);
3665 	if (!strcmp(buf, "max")) {
3666 		descendants = INT_MAX;
3667 	} else {
3668 		ret = kstrtoint(buf, 0, &descendants);
3669 		if (ret)
3670 			return ret;
3671 	}
3672 
3673 	if (descendants < 0)
3674 		return -ERANGE;
3675 
3676 	cgrp = cgroup_kn_lock_live(of->kn, false);
3677 	if (!cgrp)
3678 		return -ENOENT;
3679 
3680 	cgrp->max_descendants = descendants;
3681 
3682 	cgroup_kn_unlock(of->kn);
3683 
3684 	return nbytes;
3685 }
3686 
cgroup_max_depth_show(struct seq_file * seq,void * v)3687 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3688 {
3689 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3690 	int depth = READ_ONCE(cgrp->max_depth);
3691 
3692 	if (depth == INT_MAX)
3693 		seq_puts(seq, "max\n");
3694 	else
3695 		seq_printf(seq, "%d\n", depth);
3696 
3697 	return 0;
3698 }
3699 
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3700 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3701 				      char *buf, size_t nbytes, loff_t off)
3702 {
3703 	struct cgroup *cgrp;
3704 	ssize_t ret;
3705 	int depth;
3706 
3707 	buf = strstrip(buf);
3708 	if (!strcmp(buf, "max")) {
3709 		depth = INT_MAX;
3710 	} else {
3711 		ret = kstrtoint(buf, 0, &depth);
3712 		if (ret)
3713 			return ret;
3714 	}
3715 
3716 	if (depth < 0)
3717 		return -ERANGE;
3718 
3719 	cgrp = cgroup_kn_lock_live(of->kn, false);
3720 	if (!cgrp)
3721 		return -ENOENT;
3722 
3723 	cgrp->max_depth = depth;
3724 
3725 	cgroup_kn_unlock(of->kn);
3726 
3727 	return nbytes;
3728 }
3729 
cgroup_events_show(struct seq_file * seq,void * v)3730 static int cgroup_events_show(struct seq_file *seq, void *v)
3731 {
3732 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3733 
3734 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3735 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3736 
3737 	return 0;
3738 }
3739 
cgroup_stat_show(struct seq_file * seq,void * v)3740 static int cgroup_stat_show(struct seq_file *seq, void *v)
3741 {
3742 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3743 	struct cgroup_subsys_state *css;
3744 	int dying_cnt[CGROUP_SUBSYS_COUNT];
3745 	int ssid;
3746 
3747 	seq_printf(seq, "nr_descendants %d\n",
3748 		   cgroup->nr_descendants);
3749 
3750 	/*
3751 	 * Show the number of live and dying csses associated with each of
3752 	 * non-inhibited cgroup subsystems that is bound to cgroup v2.
3753 	 *
3754 	 * Without proper lock protection, racing is possible. So the
3755 	 * numbers may not be consistent when that happens.
3756 	 */
3757 	rcu_read_lock();
3758 	for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3759 		dying_cnt[ssid] = -1;
3760 		if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) ||
3761 		    (cgroup_subsys[ssid]->root !=  &cgrp_dfl_root))
3762 			continue;
3763 		css = rcu_dereference_raw(cgroup->subsys[ssid]);
3764 		dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid];
3765 		seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name,
3766 			   css ? (css->nr_descendants + 1) : 0);
3767 	}
3768 
3769 	seq_printf(seq, "nr_dying_descendants %d\n",
3770 		   cgroup->nr_dying_descendants);
3771 	for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3772 		if (dying_cnt[ssid] >= 0)
3773 			seq_printf(seq, "nr_dying_subsys_%s %d\n",
3774 				   cgroup_subsys[ssid]->name, dying_cnt[ssid]);
3775 	}
3776 	rcu_read_unlock();
3777 	return 0;
3778 }
3779 
cgroup_core_local_stat_show(struct seq_file * seq,void * v)3780 static int cgroup_core_local_stat_show(struct seq_file *seq, void *v)
3781 {
3782 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3783 	unsigned int sequence;
3784 	u64 freeze_time;
3785 
3786 	do {
3787 		sequence = read_seqcount_begin(&cgrp->kmi_ext_info->freezer.freeze_seq);
3788 		freeze_time = cgrp->kmi_ext_info->freezer.frozen_nsec;
3789 		/* Add in current freezer interval if the cgroup is freezing. */
3790 		if (test_bit(CGRP_FREEZE, &cgrp->flags))
3791 			freeze_time += (ktime_get_ns() -
3792 					cgrp->kmi_ext_info->freezer.freeze_start_nsec);
3793 	} while (read_seqcount_retry(&cgrp->kmi_ext_info->freezer.freeze_seq, sequence));
3794 
3795 	do_div(freeze_time, NSEC_PER_USEC);
3796 	seq_printf(seq, "frozen_usec %llu\n", freeze_time);
3797 
3798 	return 0;
3799 }
3800 
3801 #ifdef CONFIG_CGROUP_SCHED
3802 /**
3803  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
3804  * @cgrp: the cgroup of interest
3805  * @ss: the subsystem of interest
3806  *
3807  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
3808  * or is offline, %NULL is returned.
3809  */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)3810 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
3811 						     struct cgroup_subsys *ss)
3812 {
3813 	struct cgroup_subsys_state *css;
3814 
3815 	rcu_read_lock();
3816 	css = cgroup_css(cgrp, ss);
3817 	if (css && !css_tryget_online(css))
3818 		css = NULL;
3819 	rcu_read_unlock();
3820 
3821 	return css;
3822 }
3823 
cgroup_extra_stat_show(struct seq_file * seq,int ssid)3824 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid)
3825 {
3826 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3827 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3828 	struct cgroup_subsys_state *css;
3829 	int ret;
3830 
3831 	if (!ss->css_extra_stat_show)
3832 		return 0;
3833 
3834 	css = cgroup_tryget_css(cgrp, ss);
3835 	if (!css)
3836 		return 0;
3837 
3838 	ret = ss->css_extra_stat_show(seq, css);
3839 	css_put(css);
3840 	return ret;
3841 }
3842 
cgroup_local_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3843 static int cgroup_local_stat_show(struct seq_file *seq,
3844 				  struct cgroup *cgrp, int ssid)
3845 {
3846 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3847 	struct cgroup_subsys_state *css;
3848 	int ret;
3849 
3850 	if (!ss->css_local_stat_show)
3851 		return 0;
3852 
3853 	css = cgroup_tryget_css(cgrp, ss);
3854 	if (!css)
3855 		return 0;
3856 
3857 	ret = ss->css_local_stat_show(seq, css);
3858 	css_put(css);
3859 	return ret;
3860 }
3861 #endif
3862 
cpu_stat_show(struct seq_file * seq,void * v)3863 static int cpu_stat_show(struct seq_file *seq, void *v)
3864 {
3865 	int ret = 0;
3866 
3867 	cgroup_base_stat_cputime_show(seq);
3868 #ifdef CONFIG_CGROUP_SCHED
3869 	ret = cgroup_extra_stat_show(seq, cpu_cgrp_id);
3870 #endif
3871 	return ret;
3872 }
3873 
cpu_local_stat_show(struct seq_file * seq,void * v)3874 static int cpu_local_stat_show(struct seq_file *seq, void *v)
3875 {
3876 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3877 	int ret = 0;
3878 
3879 #ifdef CONFIG_CGROUP_SCHED
3880 	ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id);
3881 #endif
3882 	return ret;
3883 }
3884 
3885 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3886 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3887 {
3888 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3889 	struct psi_group *psi = cgroup_psi(cgrp);
3890 
3891 	return psi_show(seq, psi, PSI_IO);
3892 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3893 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3894 {
3895 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3896 	struct psi_group *psi = cgroup_psi(cgrp);
3897 
3898 	return psi_show(seq, psi, PSI_MEM);
3899 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3900 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3901 {
3902 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3903 	struct psi_group *psi = cgroup_psi(cgrp);
3904 
3905 	return psi_show(seq, psi, PSI_CPU);
3906 }
3907 
pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3908 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3909 			      size_t nbytes, enum psi_res res)
3910 {
3911 	struct cgroup_file_ctx *ctx = of->priv;
3912 	struct psi_trigger *new;
3913 	struct cgroup *cgrp;
3914 	struct psi_group *psi;
3915 
3916 	cgrp = cgroup_kn_lock_live(of->kn, false);
3917 	if (!cgrp)
3918 		return -ENODEV;
3919 
3920 	cgroup_get(cgrp);
3921 	cgroup_kn_unlock(of->kn);
3922 
3923 	/* Allow only one trigger per file descriptor */
3924 	if (ctx->psi.trigger) {
3925 		cgroup_put(cgrp);
3926 		return -EBUSY;
3927 	}
3928 
3929 	psi = cgroup_psi(cgrp);
3930 	new = psi_trigger_create(psi, buf, res, of->file, of);
3931 	if (IS_ERR(new)) {
3932 		cgroup_put(cgrp);
3933 		return PTR_ERR(new);
3934 	}
3935 
3936 	smp_store_release(&ctx->psi.trigger, new);
3937 	cgroup_put(cgrp);
3938 
3939 	return nbytes;
3940 }
3941 
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3942 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3943 					  char *buf, size_t nbytes,
3944 					  loff_t off)
3945 {
3946 	return pressure_write(of, buf, nbytes, PSI_IO);
3947 }
3948 
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3949 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3950 					  char *buf, size_t nbytes,
3951 					  loff_t off)
3952 {
3953 	return pressure_write(of, buf, nbytes, PSI_MEM);
3954 }
3955 
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3956 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3957 					  char *buf, size_t nbytes,
3958 					  loff_t off)
3959 {
3960 	return pressure_write(of, buf, nbytes, PSI_CPU);
3961 }
3962 
3963 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
cgroup_irq_pressure_show(struct seq_file * seq,void * v)3964 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
3965 {
3966 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3967 	struct psi_group *psi = cgroup_psi(cgrp);
3968 
3969 	return psi_show(seq, psi, PSI_IRQ);
3970 }
3971 
cgroup_irq_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3972 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
3973 					 char *buf, size_t nbytes,
3974 					 loff_t off)
3975 {
3976 	return pressure_write(of, buf, nbytes, PSI_IRQ);
3977 }
3978 #endif
3979 
cgroup_pressure_show(struct seq_file * seq,void * v)3980 static int cgroup_pressure_show(struct seq_file *seq, void *v)
3981 {
3982 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3983 	struct psi_group *psi = cgroup_psi(cgrp);
3984 
3985 	seq_printf(seq, "%d\n", psi->enabled);
3986 
3987 	return 0;
3988 }
3989 
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3990 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
3991 				     char *buf, size_t nbytes,
3992 				     loff_t off)
3993 {
3994 	ssize_t ret;
3995 	int enable;
3996 	struct cgroup *cgrp;
3997 	struct psi_group *psi;
3998 
3999 	ret = kstrtoint(strstrip(buf), 0, &enable);
4000 	if (ret)
4001 		return ret;
4002 
4003 	if (enable < 0 || enable > 1)
4004 		return -ERANGE;
4005 
4006 	cgrp = cgroup_kn_lock_live(of->kn, false);
4007 	if (!cgrp)
4008 		return -ENOENT;
4009 
4010 	psi = cgroup_psi(cgrp);
4011 	if (psi->enabled != enable) {
4012 		int i;
4013 
4014 		/* show or hide {cpu,memory,io,irq}.pressure files */
4015 		for (i = 0; i < NR_PSI_RESOURCES; i++)
4016 			cgroup_file_show(&cgrp->psi_files[i], enable);
4017 
4018 		psi->enabled = enable;
4019 		if (enable)
4020 			psi_cgroup_restart(psi);
4021 	}
4022 
4023 	cgroup_kn_unlock(of->kn);
4024 
4025 	return nbytes;
4026 }
4027 
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)4028 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
4029 					  poll_table *pt)
4030 {
4031 	struct cgroup_file_ctx *ctx = of->priv;
4032 
4033 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
4034 }
4035 
cgroup_pressure_release(struct kernfs_open_file * of)4036 static void cgroup_pressure_release(struct kernfs_open_file *of)
4037 {
4038 	struct cgroup_file_ctx *ctx = of->priv;
4039 
4040 	psi_trigger_destroy(ctx->psi.trigger);
4041 }
4042 
cgroup_psi_enabled(void)4043 bool cgroup_psi_enabled(void)
4044 {
4045 	if (static_branch_likely(&psi_disabled))
4046 		return false;
4047 
4048 	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
4049 }
4050 
4051 #else /* CONFIG_PSI */
cgroup_psi_enabled(void)4052 bool cgroup_psi_enabled(void)
4053 {
4054 	return false;
4055 }
4056 
4057 #endif /* CONFIG_PSI */
4058 
cgroup_freeze_show(struct seq_file * seq,void * v)4059 static int cgroup_freeze_show(struct seq_file *seq, void *v)
4060 {
4061 	struct cgroup *cgrp = seq_css(seq)->cgroup;
4062 
4063 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
4064 
4065 	return 0;
4066 }
4067 
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4068 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
4069 				   char *buf, size_t nbytes, loff_t off)
4070 {
4071 	struct cgroup *cgrp;
4072 	ssize_t ret;
4073 	int freeze;
4074 
4075 	ret = kstrtoint(strstrip(buf), 0, &freeze);
4076 	if (ret)
4077 		return ret;
4078 
4079 	if (freeze < 0 || freeze > 1)
4080 		return -ERANGE;
4081 
4082 	cgrp = cgroup_kn_lock_live(of->kn, false);
4083 	if (!cgrp)
4084 		return -ENOENT;
4085 
4086 	cgroup_freeze(cgrp, freeze);
4087 
4088 	cgroup_kn_unlock(of->kn);
4089 
4090 	return nbytes;
4091 }
4092 
__cgroup_kill(struct cgroup * cgrp)4093 static void __cgroup_kill(struct cgroup *cgrp)
4094 {
4095 	struct css_task_iter it;
4096 	struct task_struct *task;
4097 
4098 	lockdep_assert_held(&cgroup_mutex);
4099 
4100 	spin_lock_irq(&css_set_lock);
4101 	cgrp->kill_seq++;
4102 	spin_unlock_irq(&css_set_lock);
4103 
4104 	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
4105 	while ((task = css_task_iter_next(&it))) {
4106 		/* Ignore kernel threads here. */
4107 		if (task->flags & PF_KTHREAD)
4108 			continue;
4109 
4110 		/* Skip tasks that are already dying. */
4111 		if (__fatal_signal_pending(task))
4112 			continue;
4113 
4114 		send_sig(SIGKILL, task, 0);
4115 	}
4116 	css_task_iter_end(&it);
4117 }
4118 
cgroup_kill(struct cgroup * cgrp)4119 static void cgroup_kill(struct cgroup *cgrp)
4120 {
4121 	struct cgroup_subsys_state *css;
4122 	struct cgroup *dsct;
4123 
4124 	lockdep_assert_held(&cgroup_mutex);
4125 
4126 	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
4127 		__cgroup_kill(dsct);
4128 }
4129 
cgroup_kill_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4130 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
4131 				 size_t nbytes, loff_t off)
4132 {
4133 	ssize_t ret = 0;
4134 	int kill;
4135 	struct cgroup *cgrp;
4136 
4137 	ret = kstrtoint(strstrip(buf), 0, &kill);
4138 	if (ret)
4139 		return ret;
4140 
4141 	if (kill != 1)
4142 		return -ERANGE;
4143 
4144 	cgrp = cgroup_kn_lock_live(of->kn, false);
4145 	if (!cgrp)
4146 		return -ENOENT;
4147 
4148 	/*
4149 	 * Killing is a process directed operation, i.e. the whole thread-group
4150 	 * is taken down so act like we do for cgroup.procs and only make this
4151 	 * writable in non-threaded cgroups.
4152 	 */
4153 	if (cgroup_is_threaded(cgrp))
4154 		ret = -EOPNOTSUPP;
4155 	else
4156 		cgroup_kill(cgrp);
4157 
4158 	cgroup_kn_unlock(of->kn);
4159 
4160 	return ret ?: nbytes;
4161 }
4162 
cgroup_file_open(struct kernfs_open_file * of)4163 static int cgroup_file_open(struct kernfs_open_file *of)
4164 {
4165 	struct cftype *cft = of_cft(of);
4166 	struct cgroup_file_ctx *ctx;
4167 	int ret;
4168 
4169 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
4170 	if (!ctx)
4171 		return -ENOMEM;
4172 
4173 	ctx->ns = current->nsproxy->cgroup_ns;
4174 	get_cgroup_ns(ctx->ns);
4175 	of->priv = ctx;
4176 
4177 	if (!cft->open)
4178 		return 0;
4179 
4180 	ret = cft->open(of);
4181 	if (ret) {
4182 		put_cgroup_ns(ctx->ns);
4183 		kfree(ctx);
4184 	}
4185 	return ret;
4186 }
4187 
cgroup_file_release(struct kernfs_open_file * of)4188 static void cgroup_file_release(struct kernfs_open_file *of)
4189 {
4190 	struct cftype *cft = of_cft(of);
4191 	struct cgroup_file_ctx *ctx = of->priv;
4192 
4193 	if (cft->release)
4194 		cft->release(of);
4195 	put_cgroup_ns(ctx->ns);
4196 	kfree(ctx);
4197 }
4198 
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4199 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4200 				 size_t nbytes, loff_t off)
4201 {
4202 	struct cgroup_file_ctx *ctx = of->priv;
4203 	struct cgroup *cgrp = of->kn->parent->priv;
4204 	struct cftype *cft = of_cft(of);
4205 	struct cgroup_subsys_state *css;
4206 	int ret;
4207 
4208 	if (!nbytes)
4209 		return 0;
4210 
4211 	/*
4212 	 * If namespaces are delegation boundaries, disallow writes to
4213 	 * files in an non-init namespace root from inside the namespace
4214 	 * except for the files explicitly marked delegatable -
4215 	 * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control.
4216 	 */
4217 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4218 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4219 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4220 		return -EPERM;
4221 
4222 	if (cft->write)
4223 		return cft->write(of, buf, nbytes, off);
4224 
4225 	/*
4226 	 * kernfs guarantees that a file isn't deleted with operations in
4227 	 * flight, which means that the matching css is and stays alive and
4228 	 * doesn't need to be pinned.  The RCU locking is not necessary
4229 	 * either.  It's just for the convenience of using cgroup_css().
4230 	 */
4231 	rcu_read_lock();
4232 	css = cgroup_css(cgrp, cft->ss);
4233 	rcu_read_unlock();
4234 
4235 	if (cft->write_u64) {
4236 		unsigned long long v;
4237 		ret = kstrtoull(buf, 0, &v);
4238 		if (!ret)
4239 			ret = cft->write_u64(css, cft, v);
4240 	} else if (cft->write_s64) {
4241 		long long v;
4242 		ret = kstrtoll(buf, 0, &v);
4243 		if (!ret)
4244 			ret = cft->write_s64(css, cft, v);
4245 	} else {
4246 		ret = -EINVAL;
4247 	}
4248 
4249 	return ret ?: nbytes;
4250 }
4251 
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)4252 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4253 {
4254 	struct cftype *cft = of_cft(of);
4255 
4256 	if (cft->poll)
4257 		return cft->poll(of, pt);
4258 
4259 	return kernfs_generic_poll(of, pt);
4260 }
4261 
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)4262 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4263 {
4264 	return seq_cft(seq)->seq_start(seq, ppos);
4265 }
4266 
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)4267 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4268 {
4269 	return seq_cft(seq)->seq_next(seq, v, ppos);
4270 }
4271 
cgroup_seqfile_stop(struct seq_file * seq,void * v)4272 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4273 {
4274 	if (seq_cft(seq)->seq_stop)
4275 		seq_cft(seq)->seq_stop(seq, v);
4276 }
4277 
cgroup_seqfile_show(struct seq_file * m,void * arg)4278 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4279 {
4280 	struct cftype *cft = seq_cft(m);
4281 	struct cgroup_subsys_state *css = seq_css(m);
4282 
4283 	if (cft->seq_show)
4284 		return cft->seq_show(m, arg);
4285 
4286 	if (cft->read_u64)
4287 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4288 	else if (cft->read_s64)
4289 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4290 	else
4291 		return -EINVAL;
4292 	return 0;
4293 }
4294 
4295 static struct kernfs_ops cgroup_kf_single_ops = {
4296 	.atomic_write_len	= PAGE_SIZE,
4297 	.open			= cgroup_file_open,
4298 	.release		= cgroup_file_release,
4299 	.write			= cgroup_file_write,
4300 	.poll			= cgroup_file_poll,
4301 	.seq_show		= cgroup_seqfile_show,
4302 };
4303 
4304 static struct kernfs_ops cgroup_kf_ops = {
4305 	.atomic_write_len	= PAGE_SIZE,
4306 	.open			= cgroup_file_open,
4307 	.release		= cgroup_file_release,
4308 	.write			= cgroup_file_write,
4309 	.poll			= cgroup_file_poll,
4310 	.seq_start		= cgroup_seqfile_start,
4311 	.seq_next		= cgroup_seqfile_next,
4312 	.seq_stop		= cgroup_seqfile_stop,
4313 	.seq_show		= cgroup_seqfile_show,
4314 };
4315 
cgroup_file_notify_timer(struct timer_list * timer)4316 static void cgroup_file_notify_timer(struct timer_list *timer)
4317 {
4318 	cgroup_file_notify(container_of(timer, struct cgroup_file,
4319 					notify_timer));
4320 }
4321 
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)4322 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4323 			   struct cftype *cft)
4324 {
4325 	char name[CGROUP_FILE_NAME_MAX];
4326 	struct kernfs_node *kn;
4327 	struct lock_class_key *key = NULL;
4328 
4329 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4330 	key = &cft->lockdep_key;
4331 #endif
4332 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4333 				  cgroup_file_mode(cft),
4334 				  current_fsuid(), current_fsgid(),
4335 				  0, cft->kf_ops, cft,
4336 				  NULL, key);
4337 	if (IS_ERR(kn))
4338 		return PTR_ERR(kn);
4339 
4340 	if (cft->file_offset) {
4341 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
4342 
4343 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4344 
4345 		spin_lock_irq(&cgroup_file_kn_lock);
4346 		cfile->kn = kn;
4347 		spin_unlock_irq(&cgroup_file_kn_lock);
4348 	}
4349 
4350 	return 0;
4351 }
4352 
4353 /**
4354  * cgroup_addrm_files - add or remove files to a cgroup directory
4355  * @css: the target css
4356  * @cgrp: the target cgroup (usually css->cgroup)
4357  * @cfts: array of cftypes to be added
4358  * @is_add: whether to add or remove
4359  *
4360  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4361  * For removals, this function never fails.
4362  */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)4363 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4364 			      struct cgroup *cgrp, struct cftype cfts[],
4365 			      bool is_add)
4366 {
4367 	struct cftype *cft, *cft_end = NULL;
4368 	int ret = 0;
4369 
4370 	lockdep_assert_held(&cgroup_mutex);
4371 
4372 restart:
4373 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4374 		/* does cft->flags tell us to skip this file on @cgrp? */
4375 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4376 			continue;
4377 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4378 			continue;
4379 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4380 			continue;
4381 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4382 			continue;
4383 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4384 			continue;
4385 		if (is_add) {
4386 			ret = cgroup_add_file(css, cgrp, cft);
4387 			if (ret) {
4388 				pr_warn("%s: failed to add %s, err=%d\n",
4389 					__func__, cft->name, ret);
4390 				cft_end = cft;
4391 				is_add = false;
4392 				goto restart;
4393 			}
4394 		} else {
4395 			cgroup_rm_file(cgrp, cft);
4396 		}
4397 	}
4398 	return ret;
4399 }
4400 
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4401 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4402 {
4403 	struct cgroup_subsys *ss = cfts[0].ss;
4404 	struct cgroup *root = &ss->root->cgrp;
4405 	struct cgroup_subsys_state *css;
4406 	int ret = 0;
4407 
4408 	lockdep_assert_held(&cgroup_mutex);
4409 
4410 	/* add/rm files for all cgroups created before */
4411 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4412 		struct cgroup *cgrp = css->cgroup;
4413 
4414 		if (!(css->flags & CSS_VISIBLE))
4415 			continue;
4416 
4417 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4418 		if (ret)
4419 			break;
4420 	}
4421 
4422 	if (is_add && !ret)
4423 		kernfs_activate(root->kn);
4424 	return ret;
4425 }
4426 
cgroup_exit_cftypes(struct cftype * cfts)4427 static void cgroup_exit_cftypes(struct cftype *cfts)
4428 {
4429 	struct cftype *cft;
4430 
4431 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4432 		/* free copy for custom atomic_write_len, see init_cftypes() */
4433 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4434 			kfree(cft->kf_ops);
4435 		cft->kf_ops = NULL;
4436 		cft->ss = NULL;
4437 
4438 		/* revert flags set by cgroup core while adding @cfts */
4439 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4440 				__CFTYPE_ADDED);
4441 	}
4442 }
4443 
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4444 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4445 {
4446 	struct cftype *cft;
4447 	int ret = 0;
4448 
4449 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4450 		struct kernfs_ops *kf_ops;
4451 
4452 		WARN_ON(cft->ss || cft->kf_ops);
4453 
4454 		if (cft->flags & __CFTYPE_ADDED) {
4455 			ret = -EBUSY;
4456 			break;
4457 		}
4458 
4459 		if (cft->seq_start)
4460 			kf_ops = &cgroup_kf_ops;
4461 		else
4462 			kf_ops = &cgroup_kf_single_ops;
4463 
4464 		/*
4465 		 * Ugh... if @cft wants a custom max_write_len, we need to
4466 		 * make a copy of kf_ops to set its atomic_write_len.
4467 		 */
4468 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4469 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4470 			if (!kf_ops) {
4471 				ret = -ENOMEM;
4472 				break;
4473 			}
4474 			kf_ops->atomic_write_len = cft->max_write_len;
4475 		}
4476 
4477 		cft->kf_ops = kf_ops;
4478 		cft->ss = ss;
4479 		cft->flags |= __CFTYPE_ADDED;
4480 	}
4481 
4482 	if (ret)
4483 		cgroup_exit_cftypes(cfts);
4484 	return ret;
4485 }
4486 
cgroup_rm_cftypes_locked(struct cftype * cfts)4487 static void cgroup_rm_cftypes_locked(struct cftype *cfts)
4488 {
4489 	lockdep_assert_held(&cgroup_mutex);
4490 
4491 	list_del(&cfts->node);
4492 	cgroup_apply_cftypes(cfts, false);
4493 	cgroup_exit_cftypes(cfts);
4494 }
4495 
4496 /**
4497  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4498  * @cfts: zero-length name terminated array of cftypes
4499  *
4500  * Unregister @cfts.  Files described by @cfts are removed from all
4501  * existing cgroups and all future cgroups won't have them either.  This
4502  * function can be called anytime whether @cfts' subsys is attached or not.
4503  *
4504  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4505  * registered.
4506  */
cgroup_rm_cftypes(struct cftype * cfts)4507 int cgroup_rm_cftypes(struct cftype *cfts)
4508 {
4509 	if (!cfts || cfts[0].name[0] == '\0')
4510 		return 0;
4511 
4512 	if (!(cfts[0].flags & __CFTYPE_ADDED))
4513 		return -ENOENT;
4514 
4515 	cgroup_lock();
4516 	cgroup_rm_cftypes_locked(cfts);
4517 	cgroup_unlock();
4518 	return 0;
4519 }
4520 EXPORT_SYMBOL_GPL(cgroup_rm_cftypes);
4521 
4522 /**
4523  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4524  * @ss: target cgroup subsystem
4525  * @cfts: zero-length name terminated array of cftypes
4526  *
4527  * Register @cfts to @ss.  Files described by @cfts are created for all
4528  * existing cgroups to which @ss is attached and all future cgroups will
4529  * have them too.  This function can be called anytime whether @ss is
4530  * attached or not.
4531  *
4532  * Returns 0 on successful registration, -errno on failure.  Note that this
4533  * function currently returns 0 as long as @cfts registration is successful
4534  * even if some file creation attempts on existing cgroups fail.
4535  */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4536 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4537 {
4538 	int ret;
4539 
4540 	if (!cgroup_ssid_enabled(ss->id))
4541 		return 0;
4542 
4543 	if (!cfts || cfts[0].name[0] == '\0')
4544 		return 0;
4545 
4546 	ret = cgroup_init_cftypes(ss, cfts);
4547 	if (ret)
4548 		return ret;
4549 
4550 	cgroup_lock();
4551 
4552 	list_add_tail(&cfts->node, &ss->cfts);
4553 	ret = cgroup_apply_cftypes(cfts, true);
4554 	if (ret)
4555 		cgroup_rm_cftypes_locked(cfts);
4556 
4557 	cgroup_unlock();
4558 	return ret;
4559 }
4560 
4561 /**
4562  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4563  * @ss: target cgroup subsystem
4564  * @cfts: zero-length name terminated array of cftypes
4565  *
4566  * Similar to cgroup_add_cftypes() but the added files are only used for
4567  * the default hierarchy.
4568  */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4569 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4570 {
4571 	struct cftype *cft;
4572 
4573 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4574 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4575 	return cgroup_add_cftypes(ss, cfts);
4576 }
4577 EXPORT_SYMBOL_GPL(cgroup_add_dfl_cftypes);
4578 
4579 /**
4580  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4581  * @ss: target cgroup subsystem
4582  * @cfts: zero-length name terminated array of cftypes
4583  *
4584  * Similar to cgroup_add_cftypes() but the added files are only used for
4585  * the legacy hierarchies.
4586  */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4587 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4588 {
4589 	struct cftype *cft;
4590 
4591 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4592 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4593 	return cgroup_add_cftypes(ss, cfts);
4594 }
4595 EXPORT_SYMBOL_GPL(cgroup_add_legacy_cftypes);
4596 
4597 /**
4598  * cgroup_file_notify - generate a file modified event for a cgroup_file
4599  * @cfile: target cgroup_file
4600  *
4601  * @cfile must have been obtained by setting cftype->file_offset.
4602  */
cgroup_file_notify(struct cgroup_file * cfile)4603 void cgroup_file_notify(struct cgroup_file *cfile)
4604 {
4605 	unsigned long flags;
4606 
4607 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4608 	if (cfile->kn) {
4609 		unsigned long last = cfile->notified_at;
4610 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4611 
4612 		if (time_in_range(jiffies, last, next)) {
4613 			timer_reduce(&cfile->notify_timer, next);
4614 		} else {
4615 			kernfs_notify(cfile->kn);
4616 			cfile->notified_at = jiffies;
4617 		}
4618 	}
4619 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4620 }
4621 
4622 /**
4623  * cgroup_file_show - show or hide a hidden cgroup file
4624  * @cfile: target cgroup_file obtained by setting cftype->file_offset
4625  * @show: whether to show or hide
4626  */
cgroup_file_show(struct cgroup_file * cfile,bool show)4627 void cgroup_file_show(struct cgroup_file *cfile, bool show)
4628 {
4629 	struct kernfs_node *kn;
4630 
4631 	spin_lock_irq(&cgroup_file_kn_lock);
4632 	kn = cfile->kn;
4633 	kernfs_get(kn);
4634 	spin_unlock_irq(&cgroup_file_kn_lock);
4635 
4636 	if (kn)
4637 		kernfs_show(kn, show);
4638 
4639 	kernfs_put(kn);
4640 }
4641 
4642 /**
4643  * css_next_child - find the next child of a given css
4644  * @pos: the current position (%NULL to initiate traversal)
4645  * @parent: css whose children to walk
4646  *
4647  * This function returns the next child of @parent and should be called
4648  * under either cgroup_mutex or RCU read lock.  The only requirement is
4649  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4650  * be returned regardless of their states.
4651  *
4652  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4653  * css which finished ->css_online() is guaranteed to be visible in the
4654  * future iterations and will stay visible until the last reference is put.
4655  * A css which hasn't finished ->css_online() or already finished
4656  * ->css_offline() may show up during traversal.  It's each subsystem's
4657  * responsibility to synchronize against on/offlining.
4658  */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4659 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4660 					   struct cgroup_subsys_state *parent)
4661 {
4662 	struct cgroup_subsys_state *next;
4663 
4664 	cgroup_assert_mutex_or_rcu_locked();
4665 
4666 	/*
4667 	 * @pos could already have been unlinked from the sibling list.
4668 	 * Once a cgroup is removed, its ->sibling.next is no longer
4669 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4670 	 * @pos is taken off list, at which time its next pointer is valid,
4671 	 * and, as releases are serialized, the one pointed to by the next
4672 	 * pointer is guaranteed to not have started release yet.  This
4673 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4674 	 * critical section, the one pointed to by its next pointer is
4675 	 * guaranteed to not have finished its RCU grace period even if we
4676 	 * have dropped rcu_read_lock() in-between iterations.
4677 	 *
4678 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4679 	 * dereferenced; however, as each css is given a monotonically
4680 	 * increasing unique serial number and always appended to the
4681 	 * sibling list, the next one can be found by walking the parent's
4682 	 * children until the first css with higher serial number than
4683 	 * @pos's.  While this path can be slower, it happens iff iteration
4684 	 * races against release and the race window is very small.
4685 	 */
4686 	if (!pos) {
4687 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4688 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4689 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4690 	} else {
4691 		list_for_each_entry_rcu(next, &parent->children, sibling,
4692 					lockdep_is_held(&cgroup_mutex))
4693 			if (next->serial_nr > pos->serial_nr)
4694 				break;
4695 	}
4696 
4697 	/*
4698 	 * @next, if not pointing to the head, can be dereferenced and is
4699 	 * the next sibling.
4700 	 */
4701 	if (&next->sibling != &parent->children)
4702 		return next;
4703 	return NULL;
4704 }
4705 EXPORT_SYMBOL_GPL(css_next_child);
4706 
4707 /**
4708  * css_next_descendant_pre - find the next descendant for pre-order walk
4709  * @pos: the current position (%NULL to initiate traversal)
4710  * @root: css whose descendants to walk
4711  *
4712  * To be used by css_for_each_descendant_pre().  Find the next descendant
4713  * to visit for pre-order traversal of @root's descendants.  @root is
4714  * included in the iteration and the first node to be visited.
4715  *
4716  * While this function requires cgroup_mutex or RCU read locking, it
4717  * doesn't require the whole traversal to be contained in a single critical
4718  * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4719  * This function will return the correct next descendant as long as both @pos
4720  * and @root are accessible and @pos is a descendant of @root.
4721  *
4722  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4723  * css which finished ->css_online() is guaranteed to be visible in the
4724  * future iterations and will stay visible until the last reference is put.
4725  * A css which hasn't finished ->css_online() or already finished
4726  * ->css_offline() may show up during traversal.  It's each subsystem's
4727  * responsibility to synchronize against on/offlining.
4728  */
4729 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4730 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4731 			struct cgroup_subsys_state *root)
4732 {
4733 	struct cgroup_subsys_state *next;
4734 
4735 	cgroup_assert_mutex_or_rcu_locked();
4736 
4737 	/* if first iteration, visit @root */
4738 	if (!pos)
4739 		return root;
4740 
4741 	/* visit the first child if exists */
4742 	next = css_next_child(NULL, pos);
4743 	if (next)
4744 		return next;
4745 
4746 	/* no child, visit my or the closest ancestor's next sibling */
4747 	while (pos != root) {
4748 		next = css_next_child(pos, pos->parent);
4749 		if (next)
4750 			return next;
4751 		pos = pos->parent;
4752 	}
4753 
4754 	return NULL;
4755 }
4756 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4757 
4758 /**
4759  * css_rightmost_descendant - return the rightmost descendant of a css
4760  * @pos: css of interest
4761  *
4762  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4763  * is returned.  This can be used during pre-order traversal to skip
4764  * subtree of @pos.
4765  *
4766  * While this function requires cgroup_mutex or RCU read locking, it
4767  * doesn't require the whole traversal to be contained in a single critical
4768  * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4769  * This function will return the correct rightmost descendant as long as @pos
4770  * is accessible.
4771  */
4772 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4773 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4774 {
4775 	struct cgroup_subsys_state *last, *tmp;
4776 
4777 	cgroup_assert_mutex_or_rcu_locked();
4778 
4779 	do {
4780 		last = pos;
4781 		/* ->prev isn't RCU safe, walk ->next till the end */
4782 		pos = NULL;
4783 		css_for_each_child(tmp, last)
4784 			pos = tmp;
4785 	} while (pos);
4786 
4787 	return last;
4788 }
4789 
4790 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4791 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4792 {
4793 	struct cgroup_subsys_state *last;
4794 
4795 	do {
4796 		last = pos;
4797 		pos = css_next_child(NULL, pos);
4798 	} while (pos);
4799 
4800 	return last;
4801 }
4802 
4803 /**
4804  * css_next_descendant_post - find the next descendant for post-order walk
4805  * @pos: the current position (%NULL to initiate traversal)
4806  * @root: css whose descendants to walk
4807  *
4808  * To be used by css_for_each_descendant_post().  Find the next descendant
4809  * to visit for post-order traversal of @root's descendants.  @root is
4810  * included in the iteration and the last node to be visited.
4811  *
4812  * While this function requires cgroup_mutex or RCU read locking, it
4813  * doesn't require the whole traversal to be contained in a single critical
4814  * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4815  * This function will return the correct next descendant as long as both @pos
4816  * and @cgroup are accessible and @pos is a descendant of @cgroup.
4817  *
4818  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4819  * css which finished ->css_online() is guaranteed to be visible in the
4820  * future iterations and will stay visible until the last reference is put.
4821  * A css which hasn't finished ->css_online() or already finished
4822  * ->css_offline() may show up during traversal.  It's each subsystem's
4823  * responsibility to synchronize against on/offlining.
4824  */
4825 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4826 css_next_descendant_post(struct cgroup_subsys_state *pos,
4827 			 struct cgroup_subsys_state *root)
4828 {
4829 	struct cgroup_subsys_state *next;
4830 
4831 	cgroup_assert_mutex_or_rcu_locked();
4832 
4833 	/* if first iteration, visit leftmost descendant which may be @root */
4834 	if (!pos)
4835 		return css_leftmost_descendant(root);
4836 
4837 	/* if we visited @root, we're done */
4838 	if (pos == root)
4839 		return NULL;
4840 
4841 	/* if there's an unvisited sibling, visit its leftmost descendant */
4842 	next = css_next_child(pos, pos->parent);
4843 	if (next)
4844 		return css_leftmost_descendant(next);
4845 
4846 	/* no sibling left, visit parent */
4847 	return pos->parent;
4848 }
4849 
4850 /**
4851  * css_has_online_children - does a css have online children
4852  * @css: the target css
4853  *
4854  * Returns %true if @css has any online children; otherwise, %false.  This
4855  * function can be called from any context but the caller is responsible
4856  * for synchronizing against on/offlining as necessary.
4857  */
css_has_online_children(struct cgroup_subsys_state * css)4858 bool css_has_online_children(struct cgroup_subsys_state *css)
4859 {
4860 	struct cgroup_subsys_state *child;
4861 	bool ret = false;
4862 
4863 	rcu_read_lock();
4864 	css_for_each_child(child, css) {
4865 		if (child->flags & CSS_ONLINE) {
4866 			ret = true;
4867 			break;
4868 		}
4869 	}
4870 	rcu_read_unlock();
4871 	return ret;
4872 }
4873 
css_task_iter_next_css_set(struct css_task_iter * it)4874 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4875 {
4876 	struct list_head *l;
4877 	struct cgrp_cset_link *link;
4878 	struct css_set *cset;
4879 
4880 	lockdep_assert_held(&css_set_lock);
4881 
4882 	/* find the next threaded cset */
4883 	if (it->tcset_pos) {
4884 		l = it->tcset_pos->next;
4885 
4886 		if (l != it->tcset_head) {
4887 			it->tcset_pos = l;
4888 			return container_of(l, struct css_set,
4889 					    threaded_csets_node);
4890 		}
4891 
4892 		it->tcset_pos = NULL;
4893 	}
4894 
4895 	/* find the next cset */
4896 	l = it->cset_pos;
4897 	l = l->next;
4898 	if (l == it->cset_head) {
4899 		it->cset_pos = NULL;
4900 		return NULL;
4901 	}
4902 
4903 	if (it->ss) {
4904 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4905 	} else {
4906 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4907 		cset = link->cset;
4908 	}
4909 
4910 	it->cset_pos = l;
4911 
4912 	/* initialize threaded css_set walking */
4913 	if (it->flags & CSS_TASK_ITER_THREADED) {
4914 		if (it->cur_dcset)
4915 			put_css_set_locked(it->cur_dcset);
4916 		it->cur_dcset = cset;
4917 		get_css_set(cset);
4918 
4919 		it->tcset_head = &cset->threaded_csets;
4920 		it->tcset_pos = &cset->threaded_csets;
4921 	}
4922 
4923 	return cset;
4924 }
4925 
4926 /**
4927  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4928  * @it: the iterator to advance
4929  *
4930  * Advance @it to the next css_set to walk.
4931  */
css_task_iter_advance_css_set(struct css_task_iter * it)4932 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4933 {
4934 	struct css_set *cset;
4935 
4936 	lockdep_assert_held(&css_set_lock);
4937 
4938 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4939 	while ((cset = css_task_iter_next_css_set(it))) {
4940 		if (!list_empty(&cset->tasks)) {
4941 			it->cur_tasks_head = &cset->tasks;
4942 			break;
4943 		} else if (!list_empty(&cset->mg_tasks)) {
4944 			it->cur_tasks_head = &cset->mg_tasks;
4945 			break;
4946 		} else if (!list_empty(&cset->dying_tasks)) {
4947 			it->cur_tasks_head = &cset->dying_tasks;
4948 			break;
4949 		}
4950 	}
4951 	if (!cset) {
4952 		it->task_pos = NULL;
4953 		return;
4954 	}
4955 	it->task_pos = it->cur_tasks_head->next;
4956 
4957 	/*
4958 	 * We don't keep css_sets locked across iteration steps and thus
4959 	 * need to take steps to ensure that iteration can be resumed after
4960 	 * the lock is re-acquired.  Iteration is performed at two levels -
4961 	 * css_sets and tasks in them.
4962 	 *
4963 	 * Once created, a css_set never leaves its cgroup lists, so a
4964 	 * pinned css_set is guaranteed to stay put and we can resume
4965 	 * iteration afterwards.
4966 	 *
4967 	 * Tasks may leave @cset across iteration steps.  This is resolved
4968 	 * by registering each iterator with the css_set currently being
4969 	 * walked and making css_set_move_task() advance iterators whose
4970 	 * next task is leaving.
4971 	 */
4972 	if (it->cur_cset) {
4973 		list_del(&it->iters_node);
4974 		put_css_set_locked(it->cur_cset);
4975 	}
4976 	get_css_set(cset);
4977 	it->cur_cset = cset;
4978 	list_add(&it->iters_node, &cset->task_iters);
4979 }
4980 
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4981 static void css_task_iter_skip(struct css_task_iter *it,
4982 			       struct task_struct *task)
4983 {
4984 	lockdep_assert_held(&css_set_lock);
4985 
4986 	if (it->task_pos == &task->cg_list) {
4987 		it->task_pos = it->task_pos->next;
4988 		it->flags |= CSS_TASK_ITER_SKIPPED;
4989 	}
4990 }
4991 
css_task_iter_advance(struct css_task_iter * it)4992 static void css_task_iter_advance(struct css_task_iter *it)
4993 {
4994 	struct task_struct *task;
4995 
4996 	lockdep_assert_held(&css_set_lock);
4997 repeat:
4998 	if (it->task_pos) {
4999 		/*
5000 		 * Advance iterator to find next entry. We go through cset
5001 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
5002 		 * the next cset.
5003 		 */
5004 		if (it->flags & CSS_TASK_ITER_SKIPPED)
5005 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
5006 		else
5007 			it->task_pos = it->task_pos->next;
5008 
5009 		if (it->task_pos == &it->cur_cset->tasks) {
5010 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
5011 			it->task_pos = it->cur_tasks_head->next;
5012 		}
5013 		if (it->task_pos == &it->cur_cset->mg_tasks) {
5014 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
5015 			it->task_pos = it->cur_tasks_head->next;
5016 		}
5017 		if (it->task_pos == &it->cur_cset->dying_tasks)
5018 			css_task_iter_advance_css_set(it);
5019 	} else {
5020 		/* called from start, proceed to the first cset */
5021 		css_task_iter_advance_css_set(it);
5022 	}
5023 
5024 	if (!it->task_pos)
5025 		return;
5026 
5027 	task = list_entry(it->task_pos, struct task_struct, cg_list);
5028 
5029 	if (it->flags & CSS_TASK_ITER_PROCS) {
5030 		/* if PROCS, skip over tasks which aren't group leaders */
5031 		if (!thread_group_leader(task))
5032 			goto repeat;
5033 
5034 		/* and dying leaders w/o live member threads */
5035 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
5036 		    !atomic_read(&task->signal->live))
5037 			goto repeat;
5038 	} else {
5039 		/* skip all dying ones */
5040 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
5041 			goto repeat;
5042 	}
5043 }
5044 
5045 /**
5046  * css_task_iter_start - initiate task iteration
5047  * @css: the css to walk tasks of
5048  * @flags: CSS_TASK_ITER_* flags
5049  * @it: the task iterator to use
5050  *
5051  * Initiate iteration through the tasks of @css.  The caller can call
5052  * css_task_iter_next() to walk through the tasks until the function
5053  * returns NULL.  On completion of iteration, css_task_iter_end() must be
5054  * called.
5055  */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)5056 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
5057 			 struct css_task_iter *it)
5058 {
5059 	unsigned long irqflags;
5060 
5061 	memset(it, 0, sizeof(*it));
5062 
5063 	spin_lock_irqsave(&css_set_lock, irqflags);
5064 
5065 	it->ss = css->ss;
5066 	it->flags = flags;
5067 
5068 	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
5069 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
5070 	else
5071 		it->cset_pos = &css->cgroup->cset_links;
5072 
5073 	it->cset_head = it->cset_pos;
5074 
5075 	css_task_iter_advance(it);
5076 
5077 	spin_unlock_irqrestore(&css_set_lock, irqflags);
5078 }
5079 EXPORT_SYMBOL_GPL(css_task_iter_start);
5080 
5081 /**
5082  * css_task_iter_next - return the next task for the iterator
5083  * @it: the task iterator being iterated
5084  *
5085  * The "next" function for task iteration.  @it should have been
5086  * initialized via css_task_iter_start().  Returns NULL when the iteration
5087  * reaches the end.
5088  */
css_task_iter_next(struct css_task_iter * it)5089 struct task_struct *css_task_iter_next(struct css_task_iter *it)
5090 {
5091 	unsigned long irqflags;
5092 
5093 	if (it->cur_task) {
5094 		put_task_struct(it->cur_task);
5095 		it->cur_task = NULL;
5096 	}
5097 
5098 	spin_lock_irqsave(&css_set_lock, irqflags);
5099 
5100 	/* @it may be half-advanced by skips, finish advancing */
5101 	if (it->flags & CSS_TASK_ITER_SKIPPED)
5102 		css_task_iter_advance(it);
5103 
5104 	if (it->task_pos) {
5105 		it->cur_task = list_entry(it->task_pos, struct task_struct,
5106 					  cg_list);
5107 		get_task_struct(it->cur_task);
5108 		css_task_iter_advance(it);
5109 	}
5110 
5111 	spin_unlock_irqrestore(&css_set_lock, irqflags);
5112 
5113 	return it->cur_task;
5114 }
5115 EXPORT_SYMBOL_GPL(css_task_iter_next);
5116 
5117 /**
5118  * css_task_iter_end - finish task iteration
5119  * @it: the task iterator to finish
5120  *
5121  * Finish task iteration started by css_task_iter_start().
5122  */
css_task_iter_end(struct css_task_iter * it)5123 void css_task_iter_end(struct css_task_iter *it)
5124 {
5125 	unsigned long irqflags;
5126 
5127 	if (it->cur_cset) {
5128 		spin_lock_irqsave(&css_set_lock, irqflags);
5129 		list_del(&it->iters_node);
5130 		put_css_set_locked(it->cur_cset);
5131 		spin_unlock_irqrestore(&css_set_lock, irqflags);
5132 	}
5133 
5134 	if (it->cur_dcset)
5135 		put_css_set(it->cur_dcset);
5136 
5137 	if (it->cur_task)
5138 		put_task_struct(it->cur_task);
5139 }
5140 EXPORT_SYMBOL_GPL(css_task_iter_end);
5141 
cgroup_procs_release(struct kernfs_open_file * of)5142 static void cgroup_procs_release(struct kernfs_open_file *of)
5143 {
5144 	struct cgroup_file_ctx *ctx = of->priv;
5145 
5146 	if (ctx->procs.started)
5147 		css_task_iter_end(&ctx->procs.iter);
5148 }
5149 
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)5150 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
5151 {
5152 	struct kernfs_open_file *of = s->private;
5153 	struct cgroup_file_ctx *ctx = of->priv;
5154 
5155 	if (pos)
5156 		(*pos)++;
5157 
5158 	return css_task_iter_next(&ctx->procs.iter);
5159 }
5160 
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)5161 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5162 				  unsigned int iter_flags)
5163 {
5164 	struct kernfs_open_file *of = s->private;
5165 	struct cgroup *cgrp = seq_css(s)->cgroup;
5166 	struct cgroup_file_ctx *ctx = of->priv;
5167 	struct css_task_iter *it = &ctx->procs.iter;
5168 
5169 	/*
5170 	 * When a seq_file is seeked, it's always traversed sequentially
5171 	 * from position 0, so we can simply keep iterating on !0 *pos.
5172 	 */
5173 	if (!ctx->procs.started) {
5174 		if (WARN_ON_ONCE((*pos)))
5175 			return ERR_PTR(-EINVAL);
5176 		css_task_iter_start(&cgrp->self, iter_flags, it);
5177 		ctx->procs.started = true;
5178 	} else if (!(*pos)) {
5179 		css_task_iter_end(it);
5180 		css_task_iter_start(&cgrp->self, iter_flags, it);
5181 	} else
5182 		return it->cur_task;
5183 
5184 	return cgroup_procs_next(s, NULL, NULL);
5185 }
5186 
cgroup_procs_start(struct seq_file * s,loff_t * pos)5187 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5188 {
5189 	struct cgroup *cgrp = seq_css(s)->cgroup;
5190 
5191 	/*
5192 	 * All processes of a threaded subtree belong to the domain cgroup
5193 	 * of the subtree.  Only threads can be distributed across the
5194 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
5195 	 * They're always empty anyway.
5196 	 */
5197 	if (cgroup_is_threaded(cgrp))
5198 		return ERR_PTR(-EOPNOTSUPP);
5199 
5200 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5201 					    CSS_TASK_ITER_THREADED);
5202 }
5203 
cgroup_procs_show(struct seq_file * s,void * v)5204 static int cgroup_procs_show(struct seq_file *s, void *v)
5205 {
5206 	seq_printf(s, "%d\n", task_pid_vnr(v));
5207 	return 0;
5208 }
5209 
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)5210 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5211 {
5212 	int ret;
5213 	struct inode *inode;
5214 
5215 	lockdep_assert_held(&cgroup_mutex);
5216 
5217 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5218 	if (!inode)
5219 		return -ENOMEM;
5220 
5221 	ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
5222 	iput(inode);
5223 	return ret;
5224 }
5225 
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)5226 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5227 					 struct cgroup *dst_cgrp,
5228 					 struct super_block *sb,
5229 					 struct cgroup_namespace *ns)
5230 {
5231 	struct cgroup *com_cgrp = src_cgrp;
5232 	int ret;
5233 
5234 	lockdep_assert_held(&cgroup_mutex);
5235 
5236 	/* find the common ancestor */
5237 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5238 		com_cgrp = cgroup_parent(com_cgrp);
5239 
5240 	/* %current should be authorized to migrate to the common ancestor */
5241 	ret = cgroup_may_write(com_cgrp, sb);
5242 	if (ret)
5243 		return ret;
5244 
5245 	/*
5246 	 * If namespaces are delegation boundaries, %current must be able
5247 	 * to see both source and destination cgroups from its namespace.
5248 	 */
5249 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5250 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5251 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5252 		return -ENOENT;
5253 
5254 	return 0;
5255 }
5256 
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)5257 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5258 				     struct cgroup *dst_cgrp,
5259 				     struct super_block *sb, bool threadgroup,
5260 				     struct cgroup_namespace *ns)
5261 {
5262 	int ret = 0;
5263 
5264 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5265 	if (ret)
5266 		return ret;
5267 
5268 	ret = cgroup_migrate_vet_dst(dst_cgrp);
5269 	if (ret)
5270 		return ret;
5271 
5272 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5273 		ret = -EOPNOTSUPP;
5274 
5275 	return ret;
5276 }
5277 
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)5278 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5279 				    bool threadgroup)
5280 {
5281 	struct cgroup_file_ctx *ctx = of->priv;
5282 	struct cgroup *src_cgrp, *dst_cgrp;
5283 	struct task_struct *task;
5284 	const struct cred *saved_cred;
5285 	ssize_t ret;
5286 	bool threadgroup_locked;
5287 
5288 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5289 	if (!dst_cgrp)
5290 		return -ENODEV;
5291 
5292 	task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked, dst_cgrp);
5293 	ret = PTR_ERR_OR_ZERO(task);
5294 	if (ret)
5295 		goto out_unlock;
5296 
5297 	/* find the source cgroup */
5298 	spin_lock_irq(&css_set_lock);
5299 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5300 	spin_unlock_irq(&css_set_lock);
5301 
5302 	/*
5303 	 * Process and thread migrations follow same delegation rule. Check
5304 	 * permissions using the credentials from file open to protect against
5305 	 * inherited fd attacks.
5306 	 */
5307 	saved_cred = override_creds(of->file->f_cred);
5308 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5309 					of->file->f_path.dentry->d_sb,
5310 					threadgroup, ctx->ns);
5311 	revert_creds(saved_cred);
5312 	if (ret)
5313 		goto out_finish;
5314 
5315 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5316 
5317 out_finish:
5318 	cgroup_procs_write_finish(task, threadgroup_locked);
5319 out_unlock:
5320 	cgroup_kn_unlock(of->kn);
5321 
5322 	return ret;
5323 }
5324 
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5325 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5326 				  char *buf, size_t nbytes, loff_t off)
5327 {
5328 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
5329 }
5330 
cgroup_threads_start(struct seq_file * s,loff_t * pos)5331 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5332 {
5333 	return __cgroup_procs_start(s, pos, 0);
5334 }
5335 
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5336 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5337 				    char *buf, size_t nbytes, loff_t off)
5338 {
5339 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
5340 }
5341 
5342 /* cgroup core interface files for the default hierarchy */
5343 static struct cftype cgroup_base_files[] = {
5344 	{
5345 		.name = "cgroup.type",
5346 		.flags = CFTYPE_NOT_ON_ROOT,
5347 		.seq_show = cgroup_type_show,
5348 		.write = cgroup_type_write,
5349 	},
5350 	{
5351 		.name = "cgroup.procs",
5352 		.flags = CFTYPE_NS_DELEGATABLE,
5353 		.file_offset = offsetof(struct cgroup, procs_file),
5354 		.release = cgroup_procs_release,
5355 		.seq_start = cgroup_procs_start,
5356 		.seq_next = cgroup_procs_next,
5357 		.seq_show = cgroup_procs_show,
5358 		.write = cgroup_procs_write,
5359 	},
5360 	{
5361 		.name = "cgroup.threads",
5362 		.flags = CFTYPE_NS_DELEGATABLE,
5363 		.release = cgroup_procs_release,
5364 		.seq_start = cgroup_threads_start,
5365 		.seq_next = cgroup_procs_next,
5366 		.seq_show = cgroup_procs_show,
5367 		.write = cgroup_threads_write,
5368 	},
5369 	{
5370 		.name = "cgroup.controllers",
5371 		.seq_show = cgroup_controllers_show,
5372 	},
5373 	{
5374 		.name = "cgroup.subtree_control",
5375 		.flags = CFTYPE_NS_DELEGATABLE,
5376 		.seq_show = cgroup_subtree_control_show,
5377 		.write = cgroup_subtree_control_write,
5378 	},
5379 	{
5380 		.name = "cgroup.events",
5381 		.flags = CFTYPE_NOT_ON_ROOT,
5382 		.file_offset = offsetof(struct cgroup, events_file),
5383 		.seq_show = cgroup_events_show,
5384 	},
5385 	{
5386 		.name = "cgroup.max.descendants",
5387 		.seq_show = cgroup_max_descendants_show,
5388 		.write = cgroup_max_descendants_write,
5389 	},
5390 	{
5391 		.name = "cgroup.max.depth",
5392 		.seq_show = cgroup_max_depth_show,
5393 		.write = cgroup_max_depth_write,
5394 	},
5395 	{
5396 		.name = "cgroup.stat",
5397 		.seq_show = cgroup_stat_show,
5398 	},
5399 	{
5400 		.name = "cgroup.stat.local",
5401 		.flags = CFTYPE_NOT_ON_ROOT,
5402 		.seq_show = cgroup_core_local_stat_show,
5403 	},
5404 	{
5405 		.name = "cgroup.freeze",
5406 		.flags = CFTYPE_NOT_ON_ROOT,
5407 		.seq_show = cgroup_freeze_show,
5408 		.write = cgroup_freeze_write,
5409 	},
5410 	{
5411 		.name = "cgroup.kill",
5412 		.flags = CFTYPE_NOT_ON_ROOT,
5413 		.write = cgroup_kill_write,
5414 	},
5415 	{
5416 		.name = "cpu.stat",
5417 		.seq_show = cpu_stat_show,
5418 	},
5419 	{
5420 		.name = "cpu.stat.local",
5421 		.seq_show = cpu_local_stat_show,
5422 	},
5423 	{ }	/* terminate */
5424 };
5425 
5426 static struct cftype cgroup_psi_files[] = {
5427 #ifdef CONFIG_PSI
5428 	{
5429 		.name = "io.pressure",
5430 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5431 		.seq_show = cgroup_io_pressure_show,
5432 		.write = cgroup_io_pressure_write,
5433 		.poll = cgroup_pressure_poll,
5434 		.release = cgroup_pressure_release,
5435 	},
5436 	{
5437 		.name = "memory.pressure",
5438 		.file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5439 		.seq_show = cgroup_memory_pressure_show,
5440 		.write = cgroup_memory_pressure_write,
5441 		.poll = cgroup_pressure_poll,
5442 		.release = cgroup_pressure_release,
5443 	},
5444 	{
5445 		.name = "cpu.pressure",
5446 		.file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5447 		.seq_show = cgroup_cpu_pressure_show,
5448 		.write = cgroup_cpu_pressure_write,
5449 		.poll = cgroup_pressure_poll,
5450 		.release = cgroup_pressure_release,
5451 	},
5452 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
5453 	{
5454 		.name = "irq.pressure",
5455 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5456 		.seq_show = cgroup_irq_pressure_show,
5457 		.write = cgroup_irq_pressure_write,
5458 		.poll = cgroup_pressure_poll,
5459 		.release = cgroup_pressure_release,
5460 	},
5461 #endif
5462 	{
5463 		.name = "cgroup.pressure",
5464 		.seq_show = cgroup_pressure_show,
5465 		.write = cgroup_pressure_write,
5466 	},
5467 #endif /* CONFIG_PSI */
5468 	{ }	/* terminate */
5469 };
5470 
5471 /*
5472  * css destruction is four-stage process.
5473  *
5474  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5475  *    Implemented in kill_css().
5476  *
5477  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5478  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5479  *    offlined by invoking offline_css().  After offlining, the base ref is
5480  *    put.  Implemented in css_killed_work_fn().
5481  *
5482  * 3. When the percpu_ref reaches zero, the only possible remaining
5483  *    accessors are inside RCU read sections.  css_release() schedules the
5484  *    RCU callback.
5485  *
5486  * 4. After the grace period, the css can be freed.  Implemented in
5487  *    css_free_rwork_fn().
5488  *
5489  * It is actually hairier because both step 2 and 4 require process context
5490  * and thus involve punting to css->destroy_work adding two additional
5491  * steps to the already complex sequence.
5492  */
css_free_rwork_fn(struct work_struct * work)5493 static void css_free_rwork_fn(struct work_struct *work)
5494 {
5495 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5496 				struct cgroup_subsys_state, destroy_rwork);
5497 	struct cgroup_subsys *ss = css->ss;
5498 	struct cgroup *cgrp = css->cgroup;
5499 
5500 	percpu_ref_exit(&css->refcnt);
5501 
5502 	if (ss) {
5503 		/* css free path */
5504 		struct cgroup_subsys_state *parent = css->parent;
5505 		int id = css->id;
5506 
5507 		ss->css_free(css);
5508 		cgroup_idr_remove(&ss->css_idr, id);
5509 		cgroup_put(cgrp);
5510 
5511 		if (parent)
5512 			css_put(parent);
5513 	} else {
5514 		/* cgroup free path */
5515 		atomic_dec(&cgrp->root->nr_cgrps);
5516 		if (!cgroup_on_dfl(cgrp))
5517 			cgroup1_pidlist_destroy_all(cgrp);
5518 		cancel_work_sync(&cgrp->release_agent_work);
5519 		bpf_cgrp_storage_free(cgrp);
5520 
5521 		if (cgroup_parent(cgrp)) {
5522 			/*
5523 			 * We get a ref to the parent, and put the ref when
5524 			 * this cgroup is being freed, so it's guaranteed
5525 			 * that the parent won't be destroyed before its
5526 			 * children.
5527 			 */
5528 			cgroup_put(cgroup_parent(cgrp));
5529 			kernfs_put(cgrp->kn);
5530 			psi_cgroup_free(cgrp);
5531 			cgroup_rstat_exit(cgrp);
5532 			kfree(cgrp);
5533 		} else {
5534 			/*
5535 			 * This is root cgroup's refcnt reaching zero,
5536 			 * which indicates that the root should be
5537 			 * released.
5538 			 */
5539 			cgroup_destroy_root(cgrp->root);
5540 		}
5541 	}
5542 }
5543 
css_release_work_fn(struct work_struct * work)5544 static void css_release_work_fn(struct work_struct *work)
5545 {
5546 	struct cgroup_subsys_state *css =
5547 		container_of(work, struct cgroup_subsys_state, destroy_work);
5548 	struct cgroup_subsys *ss = css->ss;
5549 	struct cgroup *cgrp = css->cgroup;
5550 
5551 	cgroup_lock();
5552 
5553 	css->flags |= CSS_RELEASED;
5554 	list_del_rcu(&css->sibling);
5555 
5556 	if (ss) {
5557 		struct cgroup *parent_cgrp;
5558 
5559 		/* css release path */
5560 		if (!list_empty(&css->rstat_css_node)) {
5561 			cgroup_rstat_flush(cgrp);
5562 			list_del_rcu(&css->rstat_css_node);
5563 		}
5564 
5565 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5566 		if (ss->css_released)
5567 			ss->css_released(css);
5568 
5569 		cgrp->nr_dying_subsys[ss->id]--;
5570 		/*
5571 		 * When a css is released and ready to be freed, its
5572 		 * nr_descendants must be zero. However, the corresponding
5573 		 * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem
5574 		 * is activated and deactivated multiple times with one or
5575 		 * more of its previous activation leaving behind dying csses.
5576 		 */
5577 		WARN_ON_ONCE(css->nr_descendants);
5578 		parent_cgrp = cgroup_parent(cgrp);
5579 		while (parent_cgrp) {
5580 			parent_cgrp->nr_dying_subsys[ss->id]--;
5581 			parent_cgrp = cgroup_parent(parent_cgrp);
5582 		}
5583 	} else {
5584 		struct cgroup *tcgrp;
5585 
5586 		/* cgroup release path */
5587 		TRACE_CGROUP_PATH(release, cgrp);
5588 
5589 		cgroup_rstat_flush(cgrp);
5590 
5591 		spin_lock_irq(&css_set_lock);
5592 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5593 		     tcgrp = cgroup_parent(tcgrp))
5594 			tcgrp->nr_dying_descendants--;
5595 		spin_unlock_irq(&css_set_lock);
5596 
5597 		/*
5598 		 * There are two control paths which try to determine
5599 		 * cgroup from dentry without going through kernfs -
5600 		 * cgroupstats_build() and css_tryget_online_from_dir().
5601 		 * Those are supported by RCU protecting clearing of
5602 		 * cgrp->kn->priv backpointer.
5603 		 */
5604 		if (cgrp->kn)
5605 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5606 					 NULL);
5607 	}
5608 
5609 	cgroup_unlock();
5610 
5611 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5612 	queue_rcu_work(cgroup_free_wq, &css->destroy_rwork);
5613 }
5614 
css_release(struct percpu_ref * ref)5615 static void css_release(struct percpu_ref *ref)
5616 {
5617 	struct cgroup_subsys_state *css =
5618 		container_of(ref, struct cgroup_subsys_state, refcnt);
5619 
5620 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5621 	queue_work(cgroup_release_wq, &css->destroy_work);
5622 }
5623 
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5624 static void init_and_link_css(struct cgroup_subsys_state *css,
5625 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5626 {
5627 	lockdep_assert_held(&cgroup_mutex);
5628 
5629 	cgroup_get_live(cgrp);
5630 
5631 	memset(css, 0, sizeof(*css));
5632 	css->cgroup = cgrp;
5633 	css->ss = ss;
5634 	css->id = -1;
5635 	INIT_LIST_HEAD(&css->sibling);
5636 	INIT_LIST_HEAD(&css->children);
5637 	INIT_LIST_HEAD(&css->rstat_css_node);
5638 	css->serial_nr = css_serial_nr_next++;
5639 	atomic_set(&css->online_cnt, 0);
5640 
5641 	if (cgroup_parent(cgrp)) {
5642 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5643 		css_get(css->parent);
5644 	}
5645 
5646 	if (ss->css_rstat_flush)
5647 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5648 
5649 	BUG_ON(cgroup_css(cgrp, ss));
5650 }
5651 
5652 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5653 static int online_css(struct cgroup_subsys_state *css)
5654 {
5655 	struct cgroup_subsys *ss = css->ss;
5656 	int ret = 0;
5657 
5658 	lockdep_assert_held(&cgroup_mutex);
5659 
5660 	if (ss->css_online)
5661 		ret = ss->css_online(css);
5662 	if (!ret) {
5663 		css->flags |= CSS_ONLINE;
5664 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5665 
5666 		atomic_inc(&css->online_cnt);
5667 		if (css->parent) {
5668 			atomic_inc(&css->parent->online_cnt);
5669 			while ((css = css->parent))
5670 				css->nr_descendants++;
5671 		}
5672 	}
5673 	return ret;
5674 }
5675 
5676 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5677 static void offline_css(struct cgroup_subsys_state *css)
5678 {
5679 	struct cgroup_subsys *ss = css->ss;
5680 
5681 	lockdep_assert_held(&cgroup_mutex);
5682 
5683 	if (!(css->flags & CSS_ONLINE))
5684 		return;
5685 
5686 	if (ss->css_offline)
5687 		ss->css_offline(css);
5688 
5689 	css->flags &= ~CSS_ONLINE;
5690 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5691 
5692 	wake_up_all(&css->cgroup->offline_waitq);
5693 
5694 	css->cgroup->nr_dying_subsys[ss->id]++;
5695 	/*
5696 	 * Parent css and cgroup cannot be freed until after the freeing
5697 	 * of child css, see css_free_rwork_fn().
5698 	 */
5699 	while ((css = css->parent)) {
5700 		css->nr_descendants--;
5701 		css->cgroup->nr_dying_subsys[ss->id]++;
5702 	}
5703 }
5704 
5705 /**
5706  * css_create - create a cgroup_subsys_state
5707  * @cgrp: the cgroup new css will be associated with
5708  * @ss: the subsys of new css
5709  *
5710  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5711  * css is online and installed in @cgrp.  This function doesn't create the
5712  * interface files.  Returns 0 on success, -errno on failure.
5713  */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5714 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5715 					      struct cgroup_subsys *ss)
5716 {
5717 	struct cgroup *parent = cgroup_parent(cgrp);
5718 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5719 	struct cgroup_subsys_state *css;
5720 	int err;
5721 
5722 	lockdep_assert_held(&cgroup_mutex);
5723 
5724 	css = ss->css_alloc(parent_css);
5725 	if (!css)
5726 		css = ERR_PTR(-ENOMEM);
5727 	if (IS_ERR(css))
5728 		return css;
5729 
5730 	init_and_link_css(css, ss, cgrp);
5731 
5732 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5733 	if (err)
5734 		goto err_free_css;
5735 
5736 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5737 	if (err < 0)
5738 		goto err_free_css;
5739 	css->id = err;
5740 
5741 	/* @css is ready to be brought online now, make it visible */
5742 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5743 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5744 
5745 	err = online_css(css);
5746 	if (err)
5747 		goto err_list_del;
5748 
5749 	return css;
5750 
5751 err_list_del:
5752 	list_del_rcu(&css->sibling);
5753 err_free_css:
5754 	list_del_rcu(&css->rstat_css_node);
5755 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5756 	queue_rcu_work(cgroup_free_wq, &css->destroy_rwork);
5757 	return ERR_PTR(err);
5758 }
5759 
5760 /*
5761  * The returned cgroup is fully initialized including its control mask, but
5762  * it doesn't have the control mask applied.
5763  */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5764 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5765 				    umode_t mode)
5766 {
5767 	struct cgroup_root *root = parent->root;
5768 	struct cgroup *cgrp, *tcgrp;
5769 	struct kernfs_node *kn;
5770 	int level = parent->level + 1;
5771 	int ret;
5772 
5773 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5774 	cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5775 	if (!cgrp)
5776 		return ERR_PTR(-ENOMEM);
5777 
5778 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5779 	if (ret)
5780 		goto out_free_cgrp;
5781 
5782 	ret = cgroup_rstat_init(cgrp);
5783 	if (ret)
5784 		goto out_cancel_ref;
5785 
5786 	/* create the directory */
5787 	kn = kernfs_create_dir_ns(parent->kn, name, mode,
5788 				  current_fsuid(), current_fsgid(),
5789 				  cgrp, NULL);
5790 	if (IS_ERR(kn)) {
5791 		ret = PTR_ERR(kn);
5792 		goto out_stat_exit;
5793 	}
5794 	cgrp->kn = kn;
5795 
5796 	init_cgroup_housekeeping(cgrp);
5797 
5798 	cgrp->self.parent = &parent->self;
5799 	cgrp->root = root;
5800 	cgrp->level = level;
5801 
5802 	ret = psi_cgroup_alloc(cgrp);
5803 	if (ret)
5804 		goto out_kernfs_remove;
5805 
5806 	if (cgrp->root == &cgrp_dfl_root) {
5807 		ret = cgroup_bpf_inherit(cgrp);
5808 		if (ret)
5809 			goto out_psi_free;
5810 	}
5811 
5812 	cgrp->kmi_ext_info = kzalloc(sizeof(*cgrp->kmi_ext_info), GFP_KERNEL);
5813 	if (!cgrp->kmi_ext_info)
5814 		goto out_psi_free;
5815 
5816 	/*
5817 	 * New cgroup inherits effective freeze counter, and
5818 	 * if the parent has to be frozen, the child has too.
5819 	 */
5820 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5821 	seqcount_init(&cgrp->kmi_ext_info->freezer.freeze_seq);
5822 	if (cgrp->freezer.e_freeze) {
5823 		/*
5824 		 * Set the CGRP_FREEZE flag, so when a process will be
5825 		 * attached to the child cgroup, it will become frozen.
5826 		 * At this point the new cgroup is unpopulated, so we can
5827 		 * consider it frozen immediately.
5828 		 */
5829 		set_bit(CGRP_FREEZE, &cgrp->flags);
5830 		cgrp->kmi_ext_info->freezer.freeze_start_nsec = ktime_get_ns();
5831 		set_bit(CGRP_FROZEN, &cgrp->flags);
5832 	}
5833 
5834 	spin_lock_irq(&css_set_lock);
5835 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5836 		cgrp->ancestors[tcgrp->level] = tcgrp;
5837 
5838 		if (tcgrp != cgrp) {
5839 			tcgrp->nr_descendants++;
5840 
5841 			/*
5842 			 * If the new cgroup is frozen, all ancestor cgroups
5843 			 * get a new frozen descendant, but their state can't
5844 			 * change because of this.
5845 			 */
5846 			if (cgrp->freezer.e_freeze)
5847 				tcgrp->freezer.nr_frozen_descendants++;
5848 		}
5849 	}
5850 	spin_unlock_irq(&css_set_lock);
5851 
5852 	if (notify_on_release(parent))
5853 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5854 
5855 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5856 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5857 
5858 	cgrp->self.serial_nr = css_serial_nr_next++;
5859 
5860 	/* allocation complete, commit to creation */
5861 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5862 	atomic_inc(&root->nr_cgrps);
5863 	cgroup_get_live(parent);
5864 
5865 	/*
5866 	 * On the default hierarchy, a child doesn't automatically inherit
5867 	 * subtree_control from the parent.  Each is configured manually.
5868 	 */
5869 	if (!cgroup_on_dfl(cgrp))
5870 		cgrp->subtree_control = cgroup_control(cgrp);
5871 
5872 	cgroup_propagate_control(cgrp);
5873 
5874 	return cgrp;
5875 
5876 out_psi_free:
5877 	psi_cgroup_free(cgrp);
5878 out_kernfs_remove:
5879 	kernfs_remove(cgrp->kn);
5880 out_stat_exit:
5881 	cgroup_rstat_exit(cgrp);
5882 out_cancel_ref:
5883 	percpu_ref_exit(&cgrp->self.refcnt);
5884 out_free_cgrp:
5885 	kfree(cgrp);
5886 	return ERR_PTR(ret);
5887 }
5888 
cgroup_check_hierarchy_limits(struct cgroup * parent)5889 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5890 {
5891 	struct cgroup *cgroup;
5892 	int ret = false;
5893 	int level = 0;
5894 
5895 	lockdep_assert_held(&cgroup_mutex);
5896 
5897 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5898 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5899 			goto fail;
5900 
5901 		if (level >= cgroup->max_depth)
5902 			goto fail;
5903 
5904 		level++;
5905 	}
5906 
5907 	ret = true;
5908 fail:
5909 	return ret;
5910 }
5911 
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5912 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5913 {
5914 	struct cgroup *parent, *cgrp;
5915 	int ret;
5916 
5917 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5918 	if (strchr(name, '\n'))
5919 		return -EINVAL;
5920 
5921 	parent = cgroup_kn_lock_live(parent_kn, false);
5922 	if (!parent)
5923 		return -ENODEV;
5924 
5925 	if (!cgroup_check_hierarchy_limits(parent)) {
5926 		ret = -EAGAIN;
5927 		goto out_unlock;
5928 	}
5929 
5930 	cgrp = cgroup_create(parent, name, mode);
5931 	if (IS_ERR(cgrp)) {
5932 		ret = PTR_ERR(cgrp);
5933 		goto out_unlock;
5934 	}
5935 
5936 	/*
5937 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5938 	 * that @cgrp->kn is always accessible.
5939 	 */
5940 	kernfs_get(cgrp->kn);
5941 
5942 	ret = css_populate_dir(&cgrp->self);
5943 	if (ret)
5944 		goto out_destroy;
5945 
5946 	ret = cgroup_apply_control_enable(cgrp);
5947 	if (ret)
5948 		goto out_destroy;
5949 
5950 	TRACE_CGROUP_PATH(mkdir, cgrp);
5951 
5952 	/* let's create and online css's */
5953 	kernfs_activate(cgrp->kn);
5954 
5955 	ret = 0;
5956 	goto out_unlock;
5957 
5958 out_destroy:
5959 	cgroup_destroy_locked(cgrp);
5960 out_unlock:
5961 	cgroup_kn_unlock(parent_kn);
5962 	return ret;
5963 }
5964 
5965 /*
5966  * This is called when the refcnt of a css is confirmed to be killed.
5967  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5968  * initiate destruction and put the css ref from kill_css().
5969  */
css_killed_work_fn(struct work_struct * work)5970 static void css_killed_work_fn(struct work_struct *work)
5971 {
5972 	struct cgroup_subsys_state *css =
5973 		container_of(work, struct cgroup_subsys_state, destroy_work);
5974 
5975 	cgroup_lock();
5976 
5977 	do {
5978 		offline_css(css);
5979 		css_put(css);
5980 		/* @css can't go away while we're holding cgroup_mutex */
5981 		css = css->parent;
5982 	} while (css && atomic_dec_and_test(&css->online_cnt));
5983 
5984 	cgroup_unlock();
5985 }
5986 
5987 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5988 static void css_killed_ref_fn(struct percpu_ref *ref)
5989 {
5990 	struct cgroup_subsys_state *css =
5991 		container_of(ref, struct cgroup_subsys_state, refcnt);
5992 
5993 	if (atomic_dec_and_test(&css->online_cnt)) {
5994 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5995 		queue_work(cgroup_offline_wq, &css->destroy_work);
5996 	}
5997 }
5998 
5999 /**
6000  * kill_css - destroy a css
6001  * @css: css to destroy
6002  *
6003  * This function initiates destruction of @css by removing cgroup interface
6004  * files and putting its base reference.  ->css_offline() will be invoked
6005  * asynchronously once css_tryget_online() is guaranteed to fail and when
6006  * the reference count reaches zero, @css will be released.
6007  */
kill_css(struct cgroup_subsys_state * css)6008 static void kill_css(struct cgroup_subsys_state *css)
6009 {
6010 	lockdep_assert_held(&cgroup_mutex);
6011 
6012 	if (css->flags & CSS_DYING)
6013 		return;
6014 
6015 	css->flags |= CSS_DYING;
6016 
6017 	/*
6018 	 * This must happen before css is disassociated with its cgroup.
6019 	 * See seq_css() for details.
6020 	 */
6021 	css_clear_dir(css);
6022 
6023 	/*
6024 	 * Killing would put the base ref, but we need to keep it alive
6025 	 * until after ->css_offline().
6026 	 */
6027 	css_get(css);
6028 
6029 	/*
6030 	 * cgroup core guarantees that, by the time ->css_offline() is
6031 	 * invoked, no new css reference will be given out via
6032 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
6033 	 * proceed to offlining css's because percpu_ref_kill() doesn't
6034 	 * guarantee that the ref is seen as killed on all CPUs on return.
6035 	 *
6036 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
6037 	 * css is confirmed to be seen as killed on all CPUs.
6038 	 */
6039 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
6040 }
6041 
6042 /**
6043  * cgroup_destroy_locked - the first stage of cgroup destruction
6044  * @cgrp: cgroup to be destroyed
6045  *
6046  * css's make use of percpu refcnts whose killing latency shouldn't be
6047  * exposed to userland and are RCU protected.  Also, cgroup core needs to
6048  * guarantee that css_tryget_online() won't succeed by the time
6049  * ->css_offline() is invoked.  To satisfy all the requirements,
6050  * destruction is implemented in the following two steps.
6051  *
6052  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
6053  *     userland visible parts and start killing the percpu refcnts of
6054  *     css's.  Set up so that the next stage will be kicked off once all
6055  *     the percpu refcnts are confirmed to be killed.
6056  *
6057  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
6058  *     rest of destruction.  Once all cgroup references are gone, the
6059  *     cgroup is RCU-freed.
6060  *
6061  * This function implements s1.  After this step, @cgrp is gone as far as
6062  * the userland is concerned and a new cgroup with the same name may be
6063  * created.  As cgroup doesn't care about the names internally, this
6064  * doesn't cause any problem.
6065  */
cgroup_destroy_locked(struct cgroup * cgrp)6066 static int cgroup_destroy_locked(struct cgroup *cgrp)
6067 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
6068 {
6069 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
6070 	struct cgroup_subsys_state *css;
6071 	struct cgrp_cset_link *link;
6072 	int ssid;
6073 
6074 	lockdep_assert_held(&cgroup_mutex);
6075 
6076 	/*
6077 	 * Only migration can raise populated from zero and we're already
6078 	 * holding cgroup_mutex.
6079 	 */
6080 	if (cgroup_is_populated(cgrp))
6081 		return -EBUSY;
6082 
6083 	/*
6084 	 * Make sure there's no live children.  We can't test emptiness of
6085 	 * ->self.children as dead children linger on it while being
6086 	 * drained; otherwise, "rmdir parent/child parent" may fail.
6087 	 */
6088 	if (css_has_online_children(&cgrp->self))
6089 		return -EBUSY;
6090 
6091 	/*
6092 	 * Mark @cgrp and the associated csets dead.  The former prevents
6093 	 * further task migration and child creation by disabling
6094 	 * cgroup_kn_lock_live().  The latter makes the csets ignored by
6095 	 * the migration path.
6096 	 */
6097 	cgrp->self.flags &= ~CSS_ONLINE;
6098 
6099 	spin_lock_irq(&css_set_lock);
6100 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
6101 		link->cset->dead = true;
6102 	kfree(cgrp->kmi_ext_info);
6103 	spin_unlock_irq(&css_set_lock);
6104 
6105 	/* initiate massacre of all css's */
6106 	for_each_css(css, ssid, cgrp)
6107 		kill_css(css);
6108 
6109 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
6110 	css_clear_dir(&cgrp->self);
6111 	kernfs_remove(cgrp->kn);
6112 
6113 	if (cgroup_is_threaded(cgrp))
6114 		parent->nr_threaded_children--;
6115 
6116 	spin_lock_irq(&css_set_lock);
6117 	for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
6118 		tcgrp->nr_descendants--;
6119 		tcgrp->nr_dying_descendants++;
6120 		/*
6121 		 * If the dying cgroup is frozen, decrease frozen descendants
6122 		 * counters of ancestor cgroups.
6123 		 */
6124 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
6125 			tcgrp->freezer.nr_frozen_descendants--;
6126 	}
6127 	spin_unlock_irq(&css_set_lock);
6128 
6129 	cgroup1_check_for_release(parent);
6130 
6131 	if (cgrp->root == &cgrp_dfl_root)
6132 		cgroup_bpf_offline(cgrp);
6133 
6134 	/* put the base reference */
6135 	percpu_ref_kill(&cgrp->self.refcnt);
6136 
6137 	return 0;
6138 };
6139 
cgroup_rmdir(struct kernfs_node * kn)6140 int cgroup_rmdir(struct kernfs_node *kn)
6141 {
6142 	struct cgroup *cgrp;
6143 	int ret = 0;
6144 
6145 	cgrp = cgroup_kn_lock_live(kn, false);
6146 	if (!cgrp)
6147 		return 0;
6148 
6149 	ret = cgroup_destroy_locked(cgrp);
6150 	if (!ret)
6151 		TRACE_CGROUP_PATH(rmdir, cgrp);
6152 
6153 	cgroup_kn_unlock(kn);
6154 	return ret;
6155 }
6156 
6157 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
6158 	.show_options		= cgroup_show_options,
6159 	.mkdir			= cgroup_mkdir,
6160 	.rmdir			= cgroup_rmdir,
6161 	.show_path		= cgroup_show_path,
6162 };
6163 
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)6164 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
6165 {
6166 	struct cgroup_subsys_state *css;
6167 
6168 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
6169 
6170 	cgroup_lock();
6171 
6172 	idr_init(&ss->css_idr);
6173 	INIT_LIST_HEAD(&ss->cfts);
6174 
6175 	/* Create the root cgroup state for this subsystem */
6176 	ss->root = &cgrp_dfl_root;
6177 	css = ss->css_alloc(NULL);
6178 	/* We don't handle early failures gracefully */
6179 	BUG_ON(IS_ERR(css));
6180 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
6181 
6182 	/*
6183 	 * Root csses are never destroyed and we can't initialize
6184 	 * percpu_ref during early init.  Disable refcnting.
6185 	 */
6186 	css->flags |= CSS_NO_REF;
6187 
6188 	if (early) {
6189 		/* allocation can't be done safely during early init */
6190 		css->id = 1;
6191 	} else {
6192 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
6193 		BUG_ON(css->id < 0);
6194 	}
6195 
6196 	/* Update the init_css_set to contain a subsys
6197 	 * pointer to this state - since the subsystem is
6198 	 * newly registered, all tasks and hence the
6199 	 * init_css_set is in the subsystem's root cgroup. */
6200 	init_css_set.subsys[ss->id] = css;
6201 
6202 	have_fork_callback |= (bool)ss->fork << ss->id;
6203 	have_exit_callback |= (bool)ss->exit << ss->id;
6204 	have_release_callback |= (bool)ss->release << ss->id;
6205 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
6206 
6207 	/* At system boot, before all subsystems have been
6208 	 * registered, no tasks have been forked, so we don't
6209 	 * need to invoke fork callbacks here. */
6210 	BUG_ON(!list_empty(&init_task.tasks));
6211 
6212 	BUG_ON(online_css(css));
6213 
6214 	cgroup_unlock();
6215 }
6216 
6217 /**
6218  * cgroup_init_early - cgroup initialization at system boot
6219  *
6220  * Initialize cgroups at system boot, and initialize any
6221  * subsystems that request early init.
6222  */
cgroup_init_early(void)6223 int __init cgroup_init_early(void)
6224 {
6225 	static struct cgroup_fs_context __initdata ctx;
6226 	struct cgroup_subsys *ss;
6227 	int i;
6228 
6229 	ctx.root = &cgrp_dfl_root;
6230 	init_cgroup_root(&ctx);
6231 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6232 
6233 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6234 
6235 	for_each_subsys(ss, i) {
6236 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6237 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6238 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6239 		     ss->id, ss->name);
6240 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6241 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6242 
6243 		ss->id = i;
6244 		ss->name = cgroup_subsys_name[i];
6245 		if (!ss->legacy_name)
6246 			ss->legacy_name = cgroup_subsys_name[i];
6247 
6248 		if (ss->early_init)
6249 			cgroup_init_subsys(ss, true);
6250 	}
6251 	return 0;
6252 }
6253 
6254 /**
6255  * cgroup_init - cgroup initialization
6256  *
6257  * Register cgroup filesystem and /proc file, and initialize
6258  * any subsystems that didn't request early init.
6259  */
cgroup_init(void)6260 int __init cgroup_init(void)
6261 {
6262 	struct cgroup_subsys *ss;
6263 	int ssid;
6264 
6265 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6266 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6267 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6268 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6269 
6270 	cgroup_rstat_boot();
6271 
6272 	get_user_ns(init_cgroup_ns.user_ns);
6273 
6274 	cgroup_lock();
6275 
6276 	/*
6277 	 * Add init_css_set to the hash table so that dfl_root can link to
6278 	 * it during init.
6279 	 */
6280 	hash_add(css_set_table, &init_css_set.hlist,
6281 		 css_set_hash(init_css_set.subsys));
6282 
6283 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6284 
6285 	cgroup_unlock();
6286 
6287 	for_each_subsys(ss, ssid) {
6288 		if (ss->early_init) {
6289 			struct cgroup_subsys_state *css =
6290 				init_css_set.subsys[ss->id];
6291 
6292 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6293 						   GFP_KERNEL);
6294 			BUG_ON(css->id < 0);
6295 		} else {
6296 			cgroup_init_subsys(ss, false);
6297 		}
6298 
6299 		list_add_tail(&init_css_set.e_cset_node[ssid],
6300 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
6301 
6302 		/*
6303 		 * Setting dfl_root subsys_mask needs to consider the
6304 		 * disabled flag and cftype registration needs kmalloc,
6305 		 * both of which aren't available during early_init.
6306 		 */
6307 		if (!cgroup_ssid_enabled(ssid))
6308 			continue;
6309 
6310 		if (cgroup1_ssid_disabled(ssid))
6311 			pr_info("Disabling %s control group subsystem in v1 mounts\n",
6312 				ss->legacy_name);
6313 
6314 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6315 
6316 		/* implicit controllers must be threaded too */
6317 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6318 
6319 		if (ss->implicit_on_dfl)
6320 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6321 		else if (!ss->dfl_cftypes)
6322 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6323 
6324 		if (ss->threaded)
6325 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6326 
6327 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
6328 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6329 		} else {
6330 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6331 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6332 		}
6333 
6334 		if (ss->bind)
6335 			ss->bind(init_css_set.subsys[ssid]);
6336 
6337 		cgroup_lock();
6338 		css_populate_dir(init_css_set.subsys[ssid]);
6339 		cgroup_unlock();
6340 	}
6341 
6342 	/* init_css_set.subsys[] has been updated, re-hash */
6343 	hash_del(&init_css_set.hlist);
6344 	hash_add(css_set_table, &init_css_set.hlist,
6345 		 css_set_hash(init_css_set.subsys));
6346 
6347 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6348 	WARN_ON(register_filesystem(&cgroup_fs_type));
6349 	WARN_ON(register_filesystem(&cgroup2_fs_type));
6350 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6351 #ifdef CONFIG_CPUSETS_V1
6352 	WARN_ON(register_filesystem(&cpuset_fs_type));
6353 #endif
6354 
6355 	return 0;
6356 }
6357 
cgroup_wq_init(void)6358 static int __init cgroup_wq_init(void)
6359 {
6360 	/*
6361 	 * There isn't much point in executing destruction path in
6362 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
6363 	 * Use 1 for @max_active.
6364 	 *
6365 	 * We would prefer to do this in cgroup_init() above, but that
6366 	 * is called before init_workqueues(): so leave this until after.
6367 	 */
6368 	cgroup_offline_wq = alloc_workqueue("cgroup_offline", 0, 1);
6369 	BUG_ON(!cgroup_offline_wq);
6370 
6371 	cgroup_release_wq = alloc_workqueue("cgroup_release", 0, 1);
6372 	BUG_ON(!cgroup_release_wq);
6373 
6374 	cgroup_free_wq = alloc_workqueue("cgroup_free", 0, 1);
6375 	BUG_ON(!cgroup_free_wq);
6376 	return 0;
6377 }
6378 core_initcall(cgroup_wq_init);
6379 
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)6380 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6381 {
6382 	struct kernfs_node *kn;
6383 
6384 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6385 	if (!kn)
6386 		return;
6387 	kernfs_path(kn, buf, buflen);
6388 	kernfs_put(kn);
6389 }
6390 
6391 /*
6392  * cgroup_get_from_id : get the cgroup associated with cgroup id
6393  * @id: cgroup id
6394  * On success return the cgrp or ERR_PTR on failure
6395  * Only cgroups within current task's cgroup NS are valid.
6396  */
cgroup_get_from_id(u64 id)6397 struct cgroup *cgroup_get_from_id(u64 id)
6398 {
6399 	struct kernfs_node *kn;
6400 	struct cgroup *cgrp, *root_cgrp;
6401 
6402 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6403 	if (!kn)
6404 		return ERR_PTR(-ENOENT);
6405 
6406 	if (kernfs_type(kn) != KERNFS_DIR) {
6407 		kernfs_put(kn);
6408 		return ERR_PTR(-ENOENT);
6409 	}
6410 
6411 	rcu_read_lock();
6412 
6413 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6414 	if (cgrp && !cgroup_tryget(cgrp))
6415 		cgrp = NULL;
6416 
6417 	rcu_read_unlock();
6418 	kernfs_put(kn);
6419 
6420 	if (!cgrp)
6421 		return ERR_PTR(-ENOENT);
6422 
6423 	root_cgrp = current_cgns_cgroup_dfl();
6424 	if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6425 		cgroup_put(cgrp);
6426 		return ERR_PTR(-ENOENT);
6427 	}
6428 
6429 	return cgrp;
6430 }
6431 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6432 
6433 /*
6434  * proc_cgroup_show()
6435  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6436  *  - Used for /proc/<pid>/cgroup.
6437  */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)6438 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6439 		     struct pid *pid, struct task_struct *tsk)
6440 {
6441 	char *buf;
6442 	int retval;
6443 	struct cgroup_root *root;
6444 
6445 	retval = -ENOMEM;
6446 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
6447 	if (!buf)
6448 		goto out;
6449 
6450 	rcu_read_lock();
6451 	spin_lock_irq(&css_set_lock);
6452 
6453 	for_each_root(root) {
6454 		struct cgroup_subsys *ss;
6455 		struct cgroup *cgrp;
6456 		int ssid, count = 0;
6457 
6458 		if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6459 			continue;
6460 
6461 		cgrp = task_cgroup_from_root(tsk, root);
6462 		/* The root has already been unmounted. */
6463 		if (!cgrp)
6464 			continue;
6465 
6466 		seq_printf(m, "%d:", root->hierarchy_id);
6467 		if (root != &cgrp_dfl_root)
6468 			for_each_subsys(ss, ssid)
6469 				if (root->subsys_mask & (1 << ssid))
6470 					seq_printf(m, "%s%s", count++ ? "," : "",
6471 						   ss->legacy_name);
6472 		if (strlen(root->name))
6473 			seq_printf(m, "%sname=%s", count ? "," : "",
6474 				   root->name);
6475 		seq_putc(m, ':');
6476 		/*
6477 		 * On traditional hierarchies, all zombie tasks show up as
6478 		 * belonging to the root cgroup.  On the default hierarchy,
6479 		 * while a zombie doesn't show up in "cgroup.procs" and
6480 		 * thus can't be migrated, its /proc/PID/cgroup keeps
6481 		 * reporting the cgroup it belonged to before exiting.  If
6482 		 * the cgroup is removed before the zombie is reaped,
6483 		 * " (deleted)" is appended to the cgroup path.
6484 		 */
6485 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6486 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6487 						current->nsproxy->cgroup_ns);
6488 			if (retval == -E2BIG)
6489 				retval = -ENAMETOOLONG;
6490 			if (retval < 0)
6491 				goto out_unlock;
6492 
6493 			seq_puts(m, buf);
6494 		} else {
6495 			seq_puts(m, "/");
6496 		}
6497 
6498 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6499 			seq_puts(m, " (deleted)\n");
6500 		else
6501 			seq_putc(m, '\n');
6502 	}
6503 
6504 	retval = 0;
6505 out_unlock:
6506 	spin_unlock_irq(&css_set_lock);
6507 	rcu_read_unlock();
6508 	kfree(buf);
6509 out:
6510 	return retval;
6511 }
6512 
6513 /**
6514  * cgroup_fork - initialize cgroup related fields during copy_process()
6515  * @child: pointer to task_struct of forking parent process.
6516  *
6517  * A task is associated with the init_css_set until cgroup_post_fork()
6518  * attaches it to the target css_set.
6519  */
cgroup_fork(struct task_struct * child)6520 void cgroup_fork(struct task_struct *child)
6521 {
6522 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6523 	INIT_LIST_HEAD(&child->cg_list);
6524 }
6525 
6526 /**
6527  * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6528  * @f: file corresponding to cgroup_dir
6529  *
6530  * Find the cgroup from a file pointer associated with a cgroup directory.
6531  * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6532  * cgroup cannot be found.
6533  */
cgroup_v1v2_get_from_file(struct file * f)6534 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6535 {
6536 	struct cgroup_subsys_state *css;
6537 
6538 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6539 	if (IS_ERR(css))
6540 		return ERR_CAST(css);
6541 
6542 	return css->cgroup;
6543 }
6544 
6545 /**
6546  * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6547  * cgroup2.
6548  * @f: file corresponding to cgroup2_dir
6549  */
cgroup_get_from_file(struct file * f)6550 static struct cgroup *cgroup_get_from_file(struct file *f)
6551 {
6552 	struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6553 
6554 	if (IS_ERR(cgrp))
6555 		return ERR_CAST(cgrp);
6556 
6557 	if (!cgroup_on_dfl(cgrp)) {
6558 		cgroup_put(cgrp);
6559 		return ERR_PTR(-EBADF);
6560 	}
6561 
6562 	return cgrp;
6563 }
6564 
6565 /**
6566  * cgroup_css_set_fork - find or create a css_set for a child process
6567  * @kargs: the arguments passed to create the child process
6568  *
6569  * This functions finds or creates a new css_set which the child
6570  * process will be attached to in cgroup_post_fork(). By default,
6571  * the child process will be given the same css_set as its parent.
6572  *
6573  * If CLONE_INTO_CGROUP is specified this function will try to find an
6574  * existing css_set which includes the requested cgroup and if not create
6575  * a new css_set that the child will be attached to later. If this function
6576  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6577  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6578  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6579  * to the target cgroup.
6580  */
cgroup_css_set_fork(struct kernel_clone_args * kargs)6581 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6582 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6583 {
6584 	int ret;
6585 	struct cgroup *dst_cgrp = NULL;
6586 	struct css_set *cset;
6587 	struct super_block *sb;
6588 	struct file *f;
6589 
6590 	if (kargs->flags & CLONE_INTO_CGROUP)
6591 		cgroup_lock();
6592 
6593 	cgroup_threadgroup_change_begin(current);
6594 
6595 	spin_lock_irq(&css_set_lock);
6596 	cset = task_css_set(current);
6597 	get_css_set(cset);
6598 	if (kargs->cgrp)
6599 		kargs->kill_seq = kargs->cgrp->kill_seq;
6600 	else
6601 		kargs->kill_seq = cset->dfl_cgrp->kill_seq;
6602 	spin_unlock_irq(&css_set_lock);
6603 
6604 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6605 		kargs->cset = cset;
6606 		return 0;
6607 	}
6608 
6609 	f = fget_raw(kargs->cgroup);
6610 	if (!f) {
6611 		ret = -EBADF;
6612 		goto err;
6613 	}
6614 	sb = f->f_path.dentry->d_sb;
6615 
6616 	dst_cgrp = cgroup_get_from_file(f);
6617 	if (IS_ERR(dst_cgrp)) {
6618 		ret = PTR_ERR(dst_cgrp);
6619 		dst_cgrp = NULL;
6620 		goto err;
6621 	}
6622 
6623 	if (cgroup_is_dead(dst_cgrp)) {
6624 		ret = -ENODEV;
6625 		goto err;
6626 	}
6627 
6628 	/*
6629 	 * Verify that we the target cgroup is writable for us. This is
6630 	 * usually done by the vfs layer but since we're not going through
6631 	 * the vfs layer here we need to do it "manually".
6632 	 */
6633 	ret = cgroup_may_write(dst_cgrp, sb);
6634 	if (ret)
6635 		goto err;
6636 
6637 	/*
6638 	 * Spawning a task directly into a cgroup works by passing a file
6639 	 * descriptor to the target cgroup directory. This can even be an O_PATH
6640 	 * file descriptor. But it can never be a cgroup.procs file descriptor.
6641 	 * This was done on purpose so spawning into a cgroup could be
6642 	 * conceptualized as an atomic
6643 	 *
6644 	 *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6645 	 *   write(fd, <child-pid>, ...);
6646 	 *
6647 	 * sequence, i.e. it's a shorthand for the caller opening and writing
6648 	 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6649 	 * to always use the caller's credentials.
6650 	 */
6651 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6652 					!(kargs->flags & CLONE_THREAD),
6653 					current->nsproxy->cgroup_ns);
6654 	if (ret)
6655 		goto err;
6656 
6657 	kargs->cset = find_css_set(cset, dst_cgrp);
6658 	if (!kargs->cset) {
6659 		ret = -ENOMEM;
6660 		goto err;
6661 	}
6662 
6663 	put_css_set(cset);
6664 	fput(f);
6665 	kargs->cgrp = dst_cgrp;
6666 	return ret;
6667 
6668 err:
6669 	cgroup_threadgroup_change_end(current);
6670 	cgroup_unlock();
6671 	if (f)
6672 		fput(f);
6673 	if (dst_cgrp)
6674 		cgroup_put(dst_cgrp);
6675 	put_css_set(cset);
6676 	if (kargs->cset)
6677 		put_css_set(kargs->cset);
6678 	return ret;
6679 }
6680 
6681 /**
6682  * cgroup_css_set_put_fork - drop references we took during fork
6683  * @kargs: the arguments passed to create the child process
6684  *
6685  * Drop references to the prepared css_set and target cgroup if
6686  * CLONE_INTO_CGROUP was requested.
6687  */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6688 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6689 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6690 {
6691 	struct cgroup *cgrp = kargs->cgrp;
6692 	struct css_set *cset = kargs->cset;
6693 
6694 	cgroup_threadgroup_change_end(current);
6695 
6696 	if (cset) {
6697 		put_css_set(cset);
6698 		kargs->cset = NULL;
6699 	}
6700 
6701 	if (kargs->flags & CLONE_INTO_CGROUP) {
6702 		cgroup_unlock();
6703 		if (cgrp) {
6704 			cgroup_put(cgrp);
6705 			kargs->cgrp = NULL;
6706 		}
6707 	}
6708 }
6709 
6710 /**
6711  * cgroup_can_fork - called on a new task before the process is exposed
6712  * @child: the child process
6713  * @kargs: the arguments passed to create the child process
6714  *
6715  * This prepares a new css_set for the child process which the child will
6716  * be attached to in cgroup_post_fork().
6717  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6718  * callback returns an error, the fork aborts with that error code. This
6719  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6720  */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6721 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6722 {
6723 	struct cgroup_subsys *ss;
6724 	int i, j, ret;
6725 
6726 	ret = cgroup_css_set_fork(kargs);
6727 	if (ret)
6728 		return ret;
6729 
6730 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6731 		ret = ss->can_fork(child, kargs->cset);
6732 		if (ret)
6733 			goto out_revert;
6734 	} while_each_subsys_mask();
6735 
6736 	return 0;
6737 
6738 out_revert:
6739 	for_each_subsys(ss, j) {
6740 		if (j >= i)
6741 			break;
6742 		if (ss->cancel_fork)
6743 			ss->cancel_fork(child, kargs->cset);
6744 	}
6745 
6746 	cgroup_css_set_put_fork(kargs);
6747 
6748 	return ret;
6749 }
6750 
6751 /**
6752  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6753  * @child: the child process
6754  * @kargs: the arguments passed to create the child process
6755  *
6756  * This calls the cancel_fork() callbacks if a fork failed *after*
6757  * cgroup_can_fork() succeeded and cleans up references we took to
6758  * prepare a new css_set for the child process in cgroup_can_fork().
6759  */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6760 void cgroup_cancel_fork(struct task_struct *child,
6761 			struct kernel_clone_args *kargs)
6762 {
6763 	struct cgroup_subsys *ss;
6764 	int i;
6765 
6766 	for_each_subsys(ss, i)
6767 		if (ss->cancel_fork)
6768 			ss->cancel_fork(child, kargs->cset);
6769 
6770 	cgroup_css_set_put_fork(kargs);
6771 }
6772 
6773 /**
6774  * cgroup_post_fork - finalize cgroup setup for the child process
6775  * @child: the child process
6776  * @kargs: the arguments passed to create the child process
6777  *
6778  * Attach the child process to its css_set calling the subsystem fork()
6779  * callbacks.
6780  */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6781 void cgroup_post_fork(struct task_struct *child,
6782 		      struct kernel_clone_args *kargs)
6783 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6784 {
6785 	unsigned int cgrp_kill_seq = 0;
6786 	unsigned long cgrp_flags = 0;
6787 	bool kill = false;
6788 	struct cgroup_subsys *ss;
6789 	struct css_set *cset;
6790 	int i;
6791 
6792 	cset = kargs->cset;
6793 	kargs->cset = NULL;
6794 
6795 	spin_lock_irq(&css_set_lock);
6796 
6797 	/* init tasks are special, only link regular threads */
6798 	if (likely(child->pid)) {
6799 		if (kargs->cgrp) {
6800 			cgrp_flags = kargs->cgrp->flags;
6801 			cgrp_kill_seq = kargs->cgrp->kill_seq;
6802 		} else {
6803 			cgrp_flags = cset->dfl_cgrp->flags;
6804 			cgrp_kill_seq = cset->dfl_cgrp->kill_seq;
6805 		}
6806 
6807 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6808 		cset->nr_tasks++;
6809 		css_set_move_task(child, NULL, cset, false);
6810 	} else {
6811 		put_css_set(cset);
6812 		cset = NULL;
6813 	}
6814 
6815 	if (!(child->flags & PF_KTHREAD)) {
6816 		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6817 			/*
6818 			 * If the cgroup has to be frozen, the new task has
6819 			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6820 			 * get the task into the frozen state.
6821 			 */
6822 			spin_lock(&child->sighand->siglock);
6823 			WARN_ON_ONCE(child->frozen);
6824 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6825 			spin_unlock(&child->sighand->siglock);
6826 
6827 			/*
6828 			 * Calling cgroup_update_frozen() isn't required here,
6829 			 * because it will be called anyway a bit later from
6830 			 * do_freezer_trap(). So we avoid cgroup's transient
6831 			 * switch from the frozen state and back.
6832 			 */
6833 		}
6834 
6835 		/*
6836 		 * If the cgroup is to be killed notice it now and take the
6837 		 * child down right after we finished preparing it for
6838 		 * userspace.
6839 		 */
6840 		kill = kargs->kill_seq != cgrp_kill_seq;
6841 	}
6842 
6843 	spin_unlock_irq(&css_set_lock);
6844 
6845 	/*
6846 	 * Call ss->fork().  This must happen after @child is linked on
6847 	 * css_set; otherwise, @child might change state between ->fork()
6848 	 * and addition to css_set.
6849 	 */
6850 	do_each_subsys_mask(ss, i, have_fork_callback) {
6851 		ss->fork(child);
6852 	} while_each_subsys_mask();
6853 
6854 	/* Make the new cset the root_cset of the new cgroup namespace. */
6855 	if (kargs->flags & CLONE_NEWCGROUP) {
6856 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6857 
6858 		get_css_set(cset);
6859 		child->nsproxy->cgroup_ns->root_cset = cset;
6860 		put_css_set(rcset);
6861 	}
6862 
6863 	/* Cgroup has to be killed so take down child immediately. */
6864 	if (unlikely(kill))
6865 		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6866 
6867 	cgroup_css_set_put_fork(kargs);
6868 }
6869 
6870 /**
6871  * cgroup_exit - detach cgroup from exiting task
6872  * @tsk: pointer to task_struct of exiting process
6873  *
6874  * Description: Detach cgroup from @tsk.
6875  *
6876  */
cgroup_exit(struct task_struct * tsk)6877 void cgroup_exit(struct task_struct *tsk)
6878 {
6879 	struct cgroup_subsys *ss;
6880 	struct css_set *cset;
6881 	int i;
6882 
6883 	spin_lock_irq(&css_set_lock);
6884 
6885 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6886 	cset = task_css_set(tsk);
6887 	css_set_move_task(tsk, cset, NULL, false);
6888 	cset->nr_tasks--;
6889 	/* matches the signal->live check in css_task_iter_advance() */
6890 	if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live))
6891 		list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6892 
6893 	if (dl_task(tsk))
6894 		dec_dl_tasks_cs(tsk);
6895 
6896 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6897 	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6898 		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6899 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6900 
6901 	spin_unlock_irq(&css_set_lock);
6902 
6903 	/* see cgroup_post_fork() for details */
6904 	do_each_subsys_mask(ss, i, have_exit_callback) {
6905 		ss->exit(tsk);
6906 	} while_each_subsys_mask();
6907 }
6908 
cgroup_release(struct task_struct * task)6909 void cgroup_release(struct task_struct *task)
6910 {
6911 	struct cgroup_subsys *ss;
6912 	int ssid;
6913 
6914 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6915 		ss->release(task);
6916 	} while_each_subsys_mask();
6917 
6918 	if (!list_empty(&task->cg_list)) {
6919 		spin_lock_irq(&css_set_lock);
6920 		css_set_skip_task_iters(task_css_set(task), task);
6921 		list_del_init(&task->cg_list);
6922 		spin_unlock_irq(&css_set_lock);
6923 	}
6924 }
6925 
cgroup_free(struct task_struct * task)6926 void cgroup_free(struct task_struct *task)
6927 {
6928 	struct css_set *cset = task_css_set(task);
6929 	put_css_set(cset);
6930 }
6931 
cgroup_disable(char * str)6932 static int __init cgroup_disable(char *str)
6933 {
6934 	struct cgroup_subsys *ss;
6935 	char *token;
6936 	int i;
6937 
6938 	while ((token = strsep(&str, ",")) != NULL) {
6939 		if (!*token)
6940 			continue;
6941 
6942 		for_each_subsys(ss, i) {
6943 			if (strcmp(token, ss->name) &&
6944 			    strcmp(token, ss->legacy_name))
6945 				continue;
6946 
6947 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6948 			pr_info("Disabling %s control group subsystem\n",
6949 				ss->name);
6950 		}
6951 
6952 		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6953 			if (strcmp(token, cgroup_opt_feature_names[i]))
6954 				continue;
6955 			cgroup_feature_disable_mask |= 1 << i;
6956 			pr_info("Disabling %s control group feature\n",
6957 				cgroup_opt_feature_names[i]);
6958 			break;
6959 		}
6960 	}
6961 	return 1;
6962 }
6963 __setup("cgroup_disable=", cgroup_disable);
6964 
enable_debug_cgroup(void)6965 void __init __weak enable_debug_cgroup(void) { }
6966 
enable_cgroup_debug(char * str)6967 static int __init enable_cgroup_debug(char *str)
6968 {
6969 	cgroup_debug = true;
6970 	enable_debug_cgroup();
6971 	return 1;
6972 }
6973 __setup("cgroup_debug", enable_cgroup_debug);
6974 
cgroup_favordynmods_setup(char * str)6975 static int __init cgroup_favordynmods_setup(char *str)
6976 {
6977 	return (kstrtobool(str, &have_favordynmods) == 0);
6978 }
6979 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup);
6980 
6981 /**
6982  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6983  * @dentry: directory dentry of interest
6984  * @ss: subsystem of interest
6985  *
6986  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6987  * to get the corresponding css and return it.  If such css doesn't exist
6988  * or can't be pinned, an ERR_PTR value is returned.
6989  */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6990 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6991 						       struct cgroup_subsys *ss)
6992 {
6993 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6994 	struct file_system_type *s_type = dentry->d_sb->s_type;
6995 	struct cgroup_subsys_state *css = NULL;
6996 	struct cgroup *cgrp;
6997 
6998 	/* is @dentry a cgroup dir? */
6999 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
7000 	    !kn || kernfs_type(kn) != KERNFS_DIR)
7001 		return ERR_PTR(-EBADF);
7002 
7003 	rcu_read_lock();
7004 
7005 	/*
7006 	 * This path doesn't originate from kernfs and @kn could already
7007 	 * have been or be removed at any point.  @kn->priv is RCU
7008 	 * protected for this access.  See css_release_work_fn() for details.
7009 	 */
7010 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
7011 	if (cgrp)
7012 		css = cgroup_css(cgrp, ss);
7013 
7014 	if (!css || !css_tryget_online(css))
7015 		css = ERR_PTR(-ENOENT);
7016 
7017 	rcu_read_unlock();
7018 	return css;
7019 }
7020 
7021 /**
7022  * css_from_id - lookup css by id
7023  * @id: the cgroup id
7024  * @ss: cgroup subsys to be looked into
7025  *
7026  * Returns the css if there's valid one with @id, otherwise returns NULL.
7027  * Should be called under rcu_read_lock().
7028  */
css_from_id(int id,struct cgroup_subsys * ss)7029 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
7030 {
7031 	WARN_ON_ONCE(!rcu_read_lock_held());
7032 	return idr_find(&ss->css_idr, id);
7033 }
7034 
7035 /**
7036  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
7037  * @path: path on the default hierarchy
7038  *
7039  * Find the cgroup at @path on the default hierarchy, increment its
7040  * reference count and return it.  Returns pointer to the found cgroup on
7041  * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
7042  * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
7043  */
cgroup_get_from_path(const char * path)7044 struct cgroup *cgroup_get_from_path(const char *path)
7045 {
7046 	struct kernfs_node *kn;
7047 	struct cgroup *cgrp = ERR_PTR(-ENOENT);
7048 	struct cgroup *root_cgrp;
7049 
7050 	root_cgrp = current_cgns_cgroup_dfl();
7051 	kn = kernfs_walk_and_get(root_cgrp->kn, path);
7052 	if (!kn)
7053 		goto out;
7054 
7055 	if (kernfs_type(kn) != KERNFS_DIR) {
7056 		cgrp = ERR_PTR(-ENOTDIR);
7057 		goto out_kernfs;
7058 	}
7059 
7060 	rcu_read_lock();
7061 
7062 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
7063 	if (!cgrp || !cgroup_tryget(cgrp))
7064 		cgrp = ERR_PTR(-ENOENT);
7065 
7066 	rcu_read_unlock();
7067 
7068 out_kernfs:
7069 	kernfs_put(kn);
7070 out:
7071 	return cgrp;
7072 }
7073 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
7074 
7075 /**
7076  * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
7077  * @fd: fd obtained by open(cgroup_dir)
7078  *
7079  * Find the cgroup from a fd which should be obtained
7080  * by opening a cgroup directory.  Returns a pointer to the
7081  * cgroup on success. ERR_PTR is returned if the cgroup
7082  * cannot be found.
7083  */
cgroup_v1v2_get_from_fd(int fd)7084 struct cgroup *cgroup_v1v2_get_from_fd(int fd)
7085 {
7086 	struct cgroup *cgrp;
7087 	struct fd f = fdget_raw(fd);
7088 	if (!fd_file(f))
7089 		return ERR_PTR(-EBADF);
7090 
7091 	cgrp = cgroup_v1v2_get_from_file(fd_file(f));
7092 	fdput(f);
7093 	return cgrp;
7094 }
7095 
7096 /**
7097  * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
7098  * cgroup2.
7099  * @fd: fd obtained by open(cgroup2_dir)
7100  */
cgroup_get_from_fd(int fd)7101 struct cgroup *cgroup_get_from_fd(int fd)
7102 {
7103 	struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
7104 
7105 	if (IS_ERR(cgrp))
7106 		return ERR_CAST(cgrp);
7107 
7108 	if (!cgroup_on_dfl(cgrp)) {
7109 		cgroup_put(cgrp);
7110 		return ERR_PTR(-EBADF);
7111 	}
7112 	return cgrp;
7113 }
7114 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
7115 
power_of_ten(int power)7116 static u64 power_of_ten(int power)
7117 {
7118 	u64 v = 1;
7119 	while (power--)
7120 		v *= 10;
7121 	return v;
7122 }
7123 
7124 /**
7125  * cgroup_parse_float - parse a floating number
7126  * @input: input string
7127  * @dec_shift: number of decimal digits to shift
7128  * @v: output
7129  *
7130  * Parse a decimal floating point number in @input and store the result in
7131  * @v with decimal point right shifted @dec_shift times.  For example, if
7132  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
7133  * Returns 0 on success, -errno otherwise.
7134  *
7135  * There's nothing cgroup specific about this function except that it's
7136  * currently the only user.
7137  */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)7138 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
7139 {
7140 	s64 whole, frac = 0;
7141 	int fstart = 0, fend = 0, flen;
7142 
7143 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
7144 		return -EINVAL;
7145 	if (frac < 0)
7146 		return -EINVAL;
7147 
7148 	flen = fend > fstart ? fend - fstart : 0;
7149 	if (flen < dec_shift)
7150 		frac *= power_of_ten(dec_shift - flen);
7151 	else
7152 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
7153 
7154 	*v = whole * power_of_ten(dec_shift) + frac;
7155 	return 0;
7156 }
7157 
7158 /*
7159  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
7160  * definition in cgroup-defs.h.
7161  */
7162 #ifdef CONFIG_SOCK_CGROUP_DATA
7163 
cgroup_sk_alloc(struct sock_cgroup_data * skcd)7164 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
7165 {
7166 	struct cgroup *cgroup;
7167 
7168 	rcu_read_lock();
7169 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
7170 	if (in_interrupt()) {
7171 		cgroup = &cgrp_dfl_root.cgrp;
7172 		cgroup_get(cgroup);
7173 		goto out;
7174 	}
7175 
7176 	while (true) {
7177 		struct css_set *cset;
7178 
7179 		cset = task_css_set(current);
7180 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
7181 			cgroup = cset->dfl_cgrp;
7182 			break;
7183 		}
7184 		cpu_relax();
7185 	}
7186 out:
7187 	skcd->cgroup = cgroup;
7188 	cgroup_bpf_get(cgroup);
7189 	rcu_read_unlock();
7190 }
7191 
cgroup_sk_clone(struct sock_cgroup_data * skcd)7192 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
7193 {
7194 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7195 
7196 	/*
7197 	 * We might be cloning a socket which is left in an empty
7198 	 * cgroup and the cgroup might have already been rmdir'd.
7199 	 * Don't use cgroup_get_live().
7200 	 */
7201 	cgroup_get(cgrp);
7202 	cgroup_bpf_get(cgrp);
7203 }
7204 
cgroup_sk_free(struct sock_cgroup_data * skcd)7205 void cgroup_sk_free(struct sock_cgroup_data *skcd)
7206 {
7207 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7208 
7209 	cgroup_bpf_put(cgrp);
7210 	cgroup_put(cgrp);
7211 }
7212 
7213 #endif	/* CONFIG_SOCK_CGROUP_DATA */
7214 
7215 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)7216 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
7217 				      ssize_t size, const char *prefix)
7218 {
7219 	struct cftype *cft;
7220 	ssize_t ret = 0;
7221 
7222 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
7223 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
7224 			continue;
7225 
7226 		if (prefix)
7227 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
7228 
7229 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
7230 
7231 		if (WARN_ON(ret >= size))
7232 			break;
7233 	}
7234 
7235 	return ret;
7236 }
7237 
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7238 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7239 			      char *buf)
7240 {
7241 	struct cgroup_subsys *ss;
7242 	int ssid;
7243 	ssize_t ret = 0;
7244 
7245 	ret = show_delegatable_files(cgroup_base_files, buf + ret,
7246 				     PAGE_SIZE - ret, NULL);
7247 	if (cgroup_psi_enabled())
7248 		ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7249 					      PAGE_SIZE - ret, NULL);
7250 
7251 	for_each_subsys(ss, ssid)
7252 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7253 					      PAGE_SIZE - ret,
7254 					      cgroup_subsys_name[ssid]);
7255 
7256 	return ret;
7257 }
7258 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7259 
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7260 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7261 			     char *buf)
7262 {
7263 	return snprintf(buf, PAGE_SIZE,
7264 			"nsdelegate\n"
7265 			"favordynmods\n"
7266 			"memory_localevents\n"
7267 			"memory_recursiveprot\n"
7268 			"memory_hugetlb_accounting\n"
7269 			"pids_localevents\n");
7270 }
7271 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7272 
7273 static struct attribute *cgroup_sysfs_attrs[] = {
7274 	&cgroup_delegate_attr.attr,
7275 	&cgroup_features_attr.attr,
7276 	NULL,
7277 };
7278 
7279 static const struct attribute_group cgroup_sysfs_attr_group = {
7280 	.attrs = cgroup_sysfs_attrs,
7281 	.name = "cgroup",
7282 };
7283 
cgroup_sysfs_init(void)7284 static int __init cgroup_sysfs_init(void)
7285 {
7286 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7287 }
7288 subsys_initcall(cgroup_sysfs_init);
7289 
7290 #endif /* CONFIG_SYSFS */
7291