1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2024 Intel Corporation
9 */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include <kunit/visibility.h>
24 #include "core.h"
25 #include "nl80211.h"
26 #include "wext-compat.h"
27 #include "rdev-ops.h"
28
29 /**
30 * DOC: BSS tree/list structure
31 *
32 * At the top level, the BSS list is kept in both a list in each
33 * registered device (@bss_list) as well as an RB-tree for faster
34 * lookup. In the RB-tree, entries can be looked up using their
35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36 * for other BSSes.
37 *
38 * Due to the possibility of hidden SSIDs, there's a second level
39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40 * The hidden_list connects all BSSes belonging to a single AP
41 * that has a hidden SSID, and connects beacon and probe response
42 * entries. For a probe response entry for a hidden SSID, the
43 * hidden_beacon_bss pointer points to the BSS struct holding the
44 * beacon's information.
45 *
46 * Reference counting is done for all these references except for
47 * the hidden_list, so that a beacon BSS struct that is otherwise
48 * not referenced has one reference for being on the bss_list and
49 * one for each probe response entry that points to it using the
50 * hidden_beacon_bss pointer. When a BSS struct that has such a
51 * pointer is get/put, the refcount update is also propagated to
52 * the referenced struct, this ensure that it cannot get removed
53 * while somebody is using the probe response version.
54 *
55 * Note that the hidden_beacon_bss pointer never changes, due to
56 * the reference counting. Therefore, no locking is needed for
57 * it.
58 *
59 * Also note that the hidden_beacon_bss pointer is only relevant
60 * if the driver uses something other than the IEs, e.g. private
61 * data stored in the BSS struct, since the beacon IEs are
62 * also linked into the probe response struct.
63 */
64
65 /*
66 * Limit the number of BSS entries stored in mac80211. Each one is
67 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68 * If somebody wants to really attack this though, they'd likely
69 * use small beacons, and only one type of frame, limiting each of
70 * the entries to a much smaller size (in order to generate more
71 * entries in total, so overhead is bigger.)
72 */
73 static int bss_entries_limit = 1000;
74 module_param(bss_entries_limit, int, 0644);
75 MODULE_PARM_DESC(bss_entries_limit,
76 "limit to number of scan BSS entries (per wiphy, default 1000)");
77
78 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
79
bss_free(struct cfg80211_internal_bss * bss)80 static void bss_free(struct cfg80211_internal_bss *bss)
81 {
82 struct cfg80211_bss_ies *ies;
83
84 if (WARN_ON(atomic_read(&bss->hold)))
85 return;
86
87 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
88 if (ies && !bss->pub.hidden_beacon_bss)
89 kfree_rcu(ies, rcu_head);
90 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
91 if (ies)
92 kfree_rcu(ies, rcu_head);
93
94 /*
95 * This happens when the module is removed, it doesn't
96 * really matter any more save for completeness
97 */
98 if (!list_empty(&bss->hidden_list))
99 list_del(&bss->hidden_list);
100
101 kfree(bss);
102 }
103
bss_ref_get(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)104 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
105 struct cfg80211_internal_bss *bss)
106 {
107 lockdep_assert_held(&rdev->bss_lock);
108
109 bss->refcount++;
110
111 if (bss->pub.hidden_beacon_bss)
112 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
113
114 if (bss->pub.transmitted_bss)
115 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
116 }
117
bss_ref_put(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)118 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
119 struct cfg80211_internal_bss *bss)
120 {
121 lockdep_assert_held(&rdev->bss_lock);
122
123 if (bss->pub.hidden_beacon_bss) {
124 struct cfg80211_internal_bss *hbss;
125
126 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
127 hbss->refcount--;
128 if (hbss->refcount == 0)
129 bss_free(hbss);
130 }
131
132 if (bss->pub.transmitted_bss) {
133 struct cfg80211_internal_bss *tbss;
134
135 tbss = bss_from_pub(bss->pub.transmitted_bss);
136 tbss->refcount--;
137 if (tbss->refcount == 0)
138 bss_free(tbss);
139 }
140
141 bss->refcount--;
142 if (bss->refcount == 0)
143 bss_free(bss);
144 }
145
__cfg80211_unlink_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)146 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147 struct cfg80211_internal_bss *bss)
148 {
149 lockdep_assert_held(&rdev->bss_lock);
150
151 if (!list_empty(&bss->hidden_list)) {
152 /*
153 * don't remove the beacon entry if it has
154 * probe responses associated with it
155 */
156 if (!bss->pub.hidden_beacon_bss)
157 return false;
158 /*
159 * if it's a probe response entry break its
160 * link to the other entries in the group
161 */
162 list_del_init(&bss->hidden_list);
163 }
164
165 list_del_init(&bss->list);
166 list_del_init(&bss->pub.nontrans_list);
167 rb_erase(&bss->rbn, &rdev->bss_tree);
168 rdev->bss_entries--;
169 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170 "rdev bss entries[%d]/list[empty:%d] corruption\n",
171 rdev->bss_entries, list_empty(&rdev->bss_list));
172 bss_ref_put(rdev, bss);
173 return true;
174 }
175
cfg80211_is_element_inherited(const struct element * elem,const struct element * non_inherit_elem)176 bool cfg80211_is_element_inherited(const struct element *elem,
177 const struct element *non_inherit_elem)
178 {
179 u8 id_len, ext_id_len, i, loop_len, id;
180 const u8 *list;
181
182 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183 return false;
184
185 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
186 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
187 return false;
188
189 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
190 return true;
191
192 /*
193 * non inheritance element format is:
194 * ext ID (56) | IDs list len | list | extension IDs list len | list
195 * Both lists are optional. Both lengths are mandatory.
196 * This means valid length is:
197 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
198 */
199 id_len = non_inherit_elem->data[1];
200 if (non_inherit_elem->datalen < 3 + id_len)
201 return true;
202
203 ext_id_len = non_inherit_elem->data[2 + id_len];
204 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
205 return true;
206
207 if (elem->id == WLAN_EID_EXTENSION) {
208 if (!ext_id_len)
209 return true;
210 loop_len = ext_id_len;
211 list = &non_inherit_elem->data[3 + id_len];
212 id = elem->data[0];
213 } else {
214 if (!id_len)
215 return true;
216 loop_len = id_len;
217 list = &non_inherit_elem->data[2];
218 id = elem->id;
219 }
220
221 for (i = 0; i < loop_len; i++) {
222 if (list[i] == id)
223 return false;
224 }
225
226 return true;
227 }
228 EXPORT_SYMBOL(cfg80211_is_element_inherited);
229
cfg80211_copy_elem_with_frags(const struct element * elem,const u8 * ie,size_t ie_len,u8 ** pos,u8 * buf,size_t buf_len)230 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
231 const u8 *ie, size_t ie_len,
232 u8 **pos, u8 *buf, size_t buf_len)
233 {
234 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
235 elem->data + elem->datalen > ie + ie_len))
236 return 0;
237
238 if (elem->datalen + 2 > buf + buf_len - *pos)
239 return 0;
240
241 memcpy(*pos, elem, elem->datalen + 2);
242 *pos += elem->datalen + 2;
243
244 /* Finish if it is not fragmented */
245 if (elem->datalen != 255)
246 return *pos - buf;
247
248 ie_len = ie + ie_len - elem->data - elem->datalen;
249 ie = (const u8 *)elem->data + elem->datalen;
250
251 for_each_element(elem, ie, ie_len) {
252 if (elem->id != WLAN_EID_FRAGMENT)
253 break;
254
255 if (elem->datalen + 2 > buf + buf_len - *pos)
256 return 0;
257
258 memcpy(*pos, elem, elem->datalen + 2);
259 *pos += elem->datalen + 2;
260
261 if (elem->datalen != 255)
262 break;
263 }
264
265 return *pos - buf;
266 }
267
268 VISIBLE_IF_CFG80211_KUNIT size_t
cfg80211_gen_new_ie(const u8 * ie,size_t ielen,const u8 * subie,size_t subie_len,u8 * new_ie,size_t new_ie_len)269 cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
270 const u8 *subie, size_t subie_len,
271 u8 *new_ie, size_t new_ie_len)
272 {
273 const struct element *non_inherit_elem, *parent, *sub;
274 u8 *pos = new_ie;
275 u8 id, ext_id;
276 unsigned int match_len;
277
278 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
279 subie, subie_len);
280
281 /* We copy the elements one by one from the parent to the generated
282 * elements.
283 * If they are not inherited (included in subie or in the non
284 * inheritance element), then we copy all occurrences the first time
285 * we see this element type.
286 */
287 for_each_element(parent, ie, ielen) {
288 if (parent->id == WLAN_EID_FRAGMENT)
289 continue;
290
291 if (parent->id == WLAN_EID_EXTENSION) {
292 if (parent->datalen < 1)
293 continue;
294
295 id = WLAN_EID_EXTENSION;
296 ext_id = parent->data[0];
297 match_len = 1;
298 } else {
299 id = parent->id;
300 match_len = 0;
301 }
302
303 /* Find first occurrence in subie */
304 sub = cfg80211_find_elem_match(id, subie, subie_len,
305 &ext_id, match_len, 0);
306
307 /* Copy from parent if not in subie and inherited */
308 if (!sub &&
309 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
310 if (!cfg80211_copy_elem_with_frags(parent,
311 ie, ielen,
312 &pos, new_ie,
313 new_ie_len))
314 return 0;
315
316 continue;
317 }
318
319 /* Already copied if an earlier element had the same type */
320 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
321 &ext_id, match_len, 0))
322 continue;
323
324 /* Not inheriting, copy all similar elements from subie */
325 while (sub) {
326 if (!cfg80211_copy_elem_with_frags(sub,
327 subie, subie_len,
328 &pos, new_ie,
329 new_ie_len))
330 return 0;
331
332 sub = cfg80211_find_elem_match(id,
333 sub->data + sub->datalen,
334 subie_len + subie -
335 (sub->data +
336 sub->datalen),
337 &ext_id, match_len, 0);
338 }
339 }
340
341 /* The above misses elements that are included in subie but not in the
342 * parent, so do a pass over subie and append those.
343 * Skip the non-tx BSSID caps and non-inheritance element.
344 */
345 for_each_element(sub, subie, subie_len) {
346 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
347 continue;
348
349 if (sub->id == WLAN_EID_FRAGMENT)
350 continue;
351
352 if (sub->id == WLAN_EID_EXTENSION) {
353 if (sub->datalen < 1)
354 continue;
355
356 id = WLAN_EID_EXTENSION;
357 ext_id = sub->data[0];
358 match_len = 1;
359
360 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
361 continue;
362 } else {
363 id = sub->id;
364 match_len = 0;
365 }
366
367 /* Processed if one was included in the parent */
368 if (cfg80211_find_elem_match(id, ie, ielen,
369 &ext_id, match_len, 0))
370 continue;
371
372 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
373 &pos, new_ie, new_ie_len))
374 return 0;
375 }
376
377 return pos - new_ie;
378 }
379 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
380
is_bss(struct cfg80211_bss * a,const u8 * bssid,const u8 * ssid,size_t ssid_len)381 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
382 const u8 *ssid, size_t ssid_len)
383 {
384 const struct cfg80211_bss_ies *ies;
385 const struct element *ssid_elem;
386
387 if (bssid && !ether_addr_equal(a->bssid, bssid))
388 return false;
389
390 if (!ssid)
391 return true;
392
393 ies = rcu_access_pointer(a->ies);
394 if (!ies)
395 return false;
396 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
397 if (!ssid_elem)
398 return false;
399 if (ssid_elem->datalen != ssid_len)
400 return false;
401 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
402 }
403
404 static int
cfg80211_add_nontrans_list(struct cfg80211_bss * trans_bss,struct cfg80211_bss * nontrans_bss)405 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
406 struct cfg80211_bss *nontrans_bss)
407 {
408 const struct element *ssid_elem;
409 struct cfg80211_bss *bss = NULL;
410
411 rcu_read_lock();
412 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
413 if (!ssid_elem) {
414 rcu_read_unlock();
415 return -EINVAL;
416 }
417
418 /* check if nontrans_bss is in the list */
419 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
420 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
421 ssid_elem->datalen)) {
422 rcu_read_unlock();
423 return 0;
424 }
425 }
426
427 rcu_read_unlock();
428
429 /*
430 * This is a bit weird - it's not on the list, but already on another
431 * one! The only way that could happen is if there's some BSSID/SSID
432 * shared by multiple APs in their multi-BSSID profiles, potentially
433 * with hidden SSID mixed in ... ignore it.
434 */
435 if (!list_empty(&nontrans_bss->nontrans_list))
436 return -EINVAL;
437
438 /* add to the list */
439 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
440 return 0;
441 }
442
__cfg80211_bss_expire(struct cfg80211_registered_device * rdev,unsigned long expire_time)443 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
444 unsigned long expire_time)
445 {
446 struct cfg80211_internal_bss *bss, *tmp;
447 bool expired = false;
448
449 lockdep_assert_held(&rdev->bss_lock);
450
451 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
452 if (atomic_read(&bss->hold))
453 continue;
454 if (!time_after(expire_time, bss->ts))
455 continue;
456
457 if (__cfg80211_unlink_bss(rdev, bss))
458 expired = true;
459 }
460
461 if (expired)
462 rdev->bss_generation++;
463 }
464
cfg80211_bss_expire_oldest(struct cfg80211_registered_device * rdev)465 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
466 {
467 struct cfg80211_internal_bss *bss, *oldest = NULL;
468 bool ret;
469
470 lockdep_assert_held(&rdev->bss_lock);
471
472 list_for_each_entry(bss, &rdev->bss_list, list) {
473 if (atomic_read(&bss->hold))
474 continue;
475
476 if (!list_empty(&bss->hidden_list) &&
477 !bss->pub.hidden_beacon_bss)
478 continue;
479
480 if (oldest && time_before(oldest->ts, bss->ts))
481 continue;
482 oldest = bss;
483 }
484
485 if (WARN_ON(!oldest))
486 return false;
487
488 /*
489 * The callers make sure to increase rdev->bss_generation if anything
490 * gets removed (and a new entry added), so there's no need to also do
491 * it here.
492 */
493
494 ret = __cfg80211_unlink_bss(rdev, oldest);
495 WARN_ON(!ret);
496 return ret;
497 }
498
cfg80211_parse_bss_param(u8 data,struct cfg80211_colocated_ap * coloc_ap)499 static u8 cfg80211_parse_bss_param(u8 data,
500 struct cfg80211_colocated_ap *coloc_ap)
501 {
502 coloc_ap->oct_recommended =
503 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
504 coloc_ap->same_ssid =
505 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
506 coloc_ap->multi_bss =
507 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
508 coloc_ap->transmitted_bssid =
509 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
510 coloc_ap->unsolicited_probe =
511 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
512 coloc_ap->colocated_ess =
513 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
514
515 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
516 }
517
cfg80211_calc_short_ssid(const struct cfg80211_bss_ies * ies,const struct element ** elem,u32 * s_ssid)518 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
519 const struct element **elem, u32 *s_ssid)
520 {
521
522 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
523 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
524 return -EINVAL;
525
526 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
527 return 0;
528 }
529
530 VISIBLE_IF_CFG80211_KUNIT void
cfg80211_free_coloc_ap_list(struct list_head * coloc_ap_list)531 cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
532 {
533 struct cfg80211_colocated_ap *ap, *tmp_ap;
534
535 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
536 list_del(&ap->list);
537 kfree(ap);
538 }
539 }
540 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
541
cfg80211_parse_ap_info(struct cfg80211_colocated_ap * entry,const u8 * pos,u8 length,const struct element * ssid_elem,u32 s_ssid_tmp)542 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
543 const u8 *pos, u8 length,
544 const struct element *ssid_elem,
545 u32 s_ssid_tmp)
546 {
547 u8 bss_params;
548
549 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
550
551 /* The length is already verified by the caller to contain bss_params */
552 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
553 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
554
555 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
556 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
557 entry->short_ssid_valid = true;
558
559 bss_params = tbtt_info->bss_params;
560
561 /* Ignore disabled links */
562 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
563 if (le16_get_bits(tbtt_info->mld_params.params,
564 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
565 return -EINVAL;
566 }
567
568 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
569 psd_20))
570 entry->psd_20 = tbtt_info->psd_20;
571 } else {
572 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
573
574 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
575
576 bss_params = tbtt_info->bss_params;
577
578 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
579 psd_20))
580 entry->psd_20 = tbtt_info->psd_20;
581 }
582
583 /* ignore entries with invalid BSSID */
584 if (!is_valid_ether_addr(entry->bssid))
585 return -EINVAL;
586
587 /* skip non colocated APs */
588 if (!cfg80211_parse_bss_param(bss_params, entry))
589 return -EINVAL;
590
591 /* no information about the short ssid. Consider the entry valid
592 * for now. It would later be dropped in case there are explicit
593 * SSIDs that need to be matched
594 */
595 if (!entry->same_ssid && !entry->short_ssid_valid)
596 return 0;
597
598 if (entry->same_ssid) {
599 entry->short_ssid = s_ssid_tmp;
600 entry->short_ssid_valid = true;
601
602 /*
603 * This is safe because we validate datalen in
604 * cfg80211_parse_colocated_ap(), before calling this
605 * function.
606 */
607 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
608 entry->ssid_len = ssid_elem->datalen;
609 }
610
611 return 0;
612 }
613
cfg80211_iter_rnr(const u8 * elems,size_t elems_len,enum cfg80211_rnr_iter_ret (* iter)(void * data,u8 type,const struct ieee80211_neighbor_ap_info * info,const u8 * tbtt_info,u8 tbtt_info_len),void * iter_data)614 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
615 enum cfg80211_rnr_iter_ret
616 (*iter)(void *data, u8 type,
617 const struct ieee80211_neighbor_ap_info *info,
618 const u8 *tbtt_info, u8 tbtt_info_len),
619 void *iter_data)
620 {
621 const struct element *rnr;
622 const u8 *pos, *end;
623
624 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
625 elems, elems_len) {
626 const struct ieee80211_neighbor_ap_info *info;
627
628 pos = rnr->data;
629 end = rnr->data + rnr->datalen;
630
631 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
632 while (sizeof(*info) <= end - pos) {
633 u8 length, i, count;
634 u8 type;
635
636 info = (void *)pos;
637 count = u8_get_bits(info->tbtt_info_hdr,
638 IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
639 1;
640 length = info->tbtt_info_len;
641
642 pos += sizeof(*info);
643
644 if (count * length > end - pos)
645 return false;
646
647 type = u8_get_bits(info->tbtt_info_hdr,
648 IEEE80211_AP_INFO_TBTT_HDR_TYPE);
649
650 for (i = 0; i < count; i++) {
651 switch (iter(iter_data, type, info,
652 pos, length)) {
653 case RNR_ITER_CONTINUE:
654 break;
655 case RNR_ITER_BREAK:
656 return true;
657 case RNR_ITER_ERROR:
658 return false;
659 }
660
661 pos += length;
662 }
663 }
664
665 if (pos != end)
666 return false;
667 }
668
669 return true;
670 }
671 EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
672
673 struct colocated_ap_data {
674 const struct element *ssid_elem;
675 struct list_head ap_list;
676 u32 s_ssid_tmp;
677 int n_coloc;
678 };
679
680 static enum cfg80211_rnr_iter_ret
cfg80211_parse_colocated_ap_iter(void * _data,u8 type,const struct ieee80211_neighbor_ap_info * info,const u8 * tbtt_info,u8 tbtt_info_len)681 cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
682 const struct ieee80211_neighbor_ap_info *info,
683 const u8 *tbtt_info, u8 tbtt_info_len)
684 {
685 struct colocated_ap_data *data = _data;
686 struct cfg80211_colocated_ap *entry;
687 enum nl80211_band band;
688
689 if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
690 return RNR_ITER_CONTINUE;
691
692 if (!ieee80211_operating_class_to_band(info->op_class, &band))
693 return RNR_ITER_CONTINUE;
694
695 /* TBTT info must include bss param + BSSID + (short SSID or
696 * same_ssid bit to be set). Ignore other options, and move to
697 * the next AP info
698 */
699 if (band != NL80211_BAND_6GHZ ||
700 !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
701 bss_params) ||
702 tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
703 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
704 bss_params)))
705 return RNR_ITER_CONTINUE;
706
707 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC);
708 if (!entry)
709 return RNR_ITER_ERROR;
710
711 entry->center_freq =
712 ieee80211_channel_to_frequency(info->channel, band);
713
714 if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len,
715 data->ssid_elem, data->s_ssid_tmp)) {
716 data->n_coloc++;
717 list_add_tail(&entry->list, &data->ap_list);
718 } else {
719 kfree(entry);
720 }
721
722 return RNR_ITER_CONTINUE;
723 }
724
725 VISIBLE_IF_CFG80211_KUNIT int
cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies * ies,struct list_head * list)726 cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
727 struct list_head *list)
728 {
729 struct colocated_ap_data data = {};
730 int ret;
731
732 INIT_LIST_HEAD(&data.ap_list);
733
734 ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp);
735 if (ret)
736 return 0;
737
738 if (!cfg80211_iter_rnr(ies->data, ies->len,
739 cfg80211_parse_colocated_ap_iter, &data)) {
740 cfg80211_free_coloc_ap_list(&data.ap_list);
741 return 0;
742 }
743
744 list_splice_tail(&data.ap_list, list);
745 return data.n_coloc;
746 }
747 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
748
cfg80211_scan_req_add_chan(struct cfg80211_scan_request * request,struct ieee80211_channel * chan,bool add_to_6ghz)749 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
750 struct ieee80211_channel *chan,
751 bool add_to_6ghz)
752 {
753 int i;
754 u32 n_channels = request->n_channels;
755 struct cfg80211_scan_6ghz_params *params =
756 &request->scan_6ghz_params[request->n_6ghz_params];
757
758 for (i = 0; i < n_channels; i++) {
759 if (request->channels[i] == chan) {
760 if (add_to_6ghz)
761 params->channel_idx = i;
762 return;
763 }
764 }
765
766 request->n_channels++;
767 request->channels[n_channels] = chan;
768 if (add_to_6ghz)
769 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
770 n_channels;
771 }
772
cfg80211_find_ssid_match(struct cfg80211_colocated_ap * ap,struct cfg80211_scan_request * request)773 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
774 struct cfg80211_scan_request *request)
775 {
776 int i;
777 u32 s_ssid;
778
779 for (i = 0; i < request->n_ssids; i++) {
780 /* wildcard ssid in the scan request */
781 if (!request->ssids[i].ssid_len) {
782 if (ap->multi_bss && !ap->transmitted_bssid)
783 continue;
784
785 return true;
786 }
787
788 if (ap->ssid_len &&
789 ap->ssid_len == request->ssids[i].ssid_len) {
790 if (!memcmp(request->ssids[i].ssid, ap->ssid,
791 ap->ssid_len))
792 return true;
793 } else if (ap->short_ssid_valid) {
794 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
795 request->ssids[i].ssid_len);
796
797 if (ap->short_ssid == s_ssid)
798 return true;
799 }
800 }
801
802 return false;
803 }
804
cfg80211_scan_6ghz(struct cfg80211_registered_device * rdev)805 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
806 {
807 u8 i;
808 struct cfg80211_colocated_ap *ap;
809 int n_channels, count = 0, err;
810 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
811 LIST_HEAD(coloc_ap_list);
812 bool need_scan_psc = true;
813 const struct ieee80211_sband_iftype_data *iftd;
814 size_t size, offs_ssids, offs_6ghz_params, offs_ies;
815
816 rdev_req->scan_6ghz = true;
817
818 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
819 return -EOPNOTSUPP;
820
821 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
822 rdev_req->wdev->iftype);
823 if (!iftd || !iftd->he_cap.has_he)
824 return -EOPNOTSUPP;
825
826 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
827
828 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
829 struct cfg80211_internal_bss *intbss;
830
831 spin_lock_bh(&rdev->bss_lock);
832 list_for_each_entry(intbss, &rdev->bss_list, list) {
833 struct cfg80211_bss *res = &intbss->pub;
834 const struct cfg80211_bss_ies *ies;
835 const struct element *ssid_elem;
836 struct cfg80211_colocated_ap *entry;
837 u32 s_ssid_tmp;
838 int ret;
839
840 ies = rcu_access_pointer(res->ies);
841 count += cfg80211_parse_colocated_ap(ies,
842 &coloc_ap_list);
843
844 /* In case the scan request specified a specific BSSID
845 * and the BSS is found and operating on 6GHz band then
846 * add this AP to the collocated APs list.
847 * This is relevant for ML probe requests when the lower
848 * band APs have not been discovered.
849 */
850 if (is_broadcast_ether_addr(rdev_req->bssid) ||
851 !ether_addr_equal(rdev_req->bssid, res->bssid) ||
852 res->channel->band != NL80211_BAND_6GHZ)
853 continue;
854
855 ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
856 &s_ssid_tmp);
857 if (ret)
858 continue;
859
860 entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
861 if (!entry)
862 continue;
863
864 memcpy(entry->bssid, res->bssid, ETH_ALEN);
865 entry->short_ssid = s_ssid_tmp;
866 memcpy(entry->ssid, ssid_elem->data,
867 ssid_elem->datalen);
868 entry->ssid_len = ssid_elem->datalen;
869 entry->short_ssid_valid = true;
870 entry->center_freq = res->channel->center_freq;
871
872 list_add_tail(&entry->list, &coloc_ap_list);
873 count++;
874 }
875 spin_unlock_bh(&rdev->bss_lock);
876 }
877
878 size = struct_size(request, channels, n_channels);
879 offs_ssids = size;
880 size += sizeof(*request->ssids) * rdev_req->n_ssids;
881 offs_6ghz_params = size;
882 size += sizeof(*request->scan_6ghz_params) * count;
883 offs_ies = size;
884 size += rdev_req->ie_len;
885
886 request = kzalloc(size, GFP_KERNEL);
887 if (!request) {
888 cfg80211_free_coloc_ap_list(&coloc_ap_list);
889 return -ENOMEM;
890 }
891
892 *request = *rdev_req;
893 request->n_channels = 0;
894 request->n_6ghz_params = 0;
895 if (rdev_req->n_ssids) {
896 /*
897 * Add the ssids from the parent scan request to the new
898 * scan request, so the driver would be able to use them
899 * in its probe requests to discover hidden APs on PSC
900 * channels.
901 */
902 request->ssids = (void *)request + offs_ssids;
903 memcpy(request->ssids, rdev_req->ssids,
904 sizeof(*request->ssids) * request->n_ssids);
905 }
906 request->scan_6ghz_params = (void *)request + offs_6ghz_params;
907
908 if (rdev_req->ie_len) {
909 void *ie = (void *)request + offs_ies;
910
911 memcpy(ie, rdev_req->ie, rdev_req->ie_len);
912 request->ie = ie;
913 }
914
915 /*
916 * PSC channels should not be scanned in case of direct scan with 1 SSID
917 * and at least one of the reported co-located APs with same SSID
918 * indicating that all APs in the same ESS are co-located
919 */
920 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
921 list_for_each_entry(ap, &coloc_ap_list, list) {
922 if (ap->colocated_ess &&
923 cfg80211_find_ssid_match(ap, request)) {
924 need_scan_psc = false;
925 break;
926 }
927 }
928 }
929
930 /*
931 * add to the scan request the channels that need to be scanned
932 * regardless of the collocated APs (PSC channels or all channels
933 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
934 */
935 for (i = 0; i < rdev_req->n_channels; i++) {
936 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
937 ((need_scan_psc &&
938 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
939 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
940 cfg80211_scan_req_add_chan(request,
941 rdev_req->channels[i],
942 false);
943 }
944 }
945
946 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
947 goto skip;
948
949 list_for_each_entry(ap, &coloc_ap_list, list) {
950 bool found = false;
951 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
952 &request->scan_6ghz_params[request->n_6ghz_params];
953 struct ieee80211_channel *chan =
954 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
955
956 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED ||
957 !cfg80211_wdev_channel_allowed(rdev_req->wdev, chan))
958 continue;
959
960 for (i = 0; i < rdev_req->n_channels; i++) {
961 if (rdev_req->channels[i] == chan)
962 found = true;
963 }
964
965 if (!found)
966 continue;
967
968 if (request->n_ssids > 0 &&
969 !cfg80211_find_ssid_match(ap, request))
970 continue;
971
972 if (!is_broadcast_ether_addr(request->bssid) &&
973 !ether_addr_equal(request->bssid, ap->bssid))
974 continue;
975
976 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
977 continue;
978
979 cfg80211_scan_req_add_chan(request, chan, true);
980 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
981 scan_6ghz_params->short_ssid = ap->short_ssid;
982 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
983 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
984 scan_6ghz_params->psd_20 = ap->psd_20;
985
986 /*
987 * If a PSC channel is added to the scan and 'need_scan_psc' is
988 * set to false, then all the APs that the scan logic is
989 * interested with on the channel are collocated and thus there
990 * is no need to perform the initial PSC channel listen.
991 */
992 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
993 scan_6ghz_params->psc_no_listen = true;
994
995 request->n_6ghz_params++;
996 }
997
998 skip:
999 cfg80211_free_coloc_ap_list(&coloc_ap_list);
1000
1001 if (request->n_channels) {
1002 struct cfg80211_scan_request *old = rdev->int_scan_req;
1003
1004 rdev->int_scan_req = request;
1005
1006 /*
1007 * If this scan follows a previous scan, save the scan start
1008 * info from the first part of the scan
1009 */
1010 if (old)
1011 rdev->int_scan_req->info = old->info;
1012
1013 err = rdev_scan(rdev, request);
1014 if (err) {
1015 rdev->int_scan_req = old;
1016 kfree(request);
1017 } else {
1018 kfree(old);
1019 }
1020
1021 return err;
1022 }
1023
1024 kfree(request);
1025 return -EINVAL;
1026 }
1027
cfg80211_scan(struct cfg80211_registered_device * rdev)1028 int cfg80211_scan(struct cfg80211_registered_device *rdev)
1029 {
1030 struct cfg80211_scan_request *request;
1031 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1032 u32 n_channels = 0, idx, i;
1033
1034 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1035 return rdev_scan(rdev, rdev_req);
1036
1037 for (i = 0; i < rdev_req->n_channels; i++) {
1038 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1039 n_channels++;
1040 }
1041
1042 if (!n_channels)
1043 return cfg80211_scan_6ghz(rdev);
1044
1045 request = kzalloc(struct_size(request, channels, n_channels),
1046 GFP_KERNEL);
1047 if (!request)
1048 return -ENOMEM;
1049
1050 *request = *rdev_req;
1051 request->n_channels = n_channels;
1052
1053 for (i = idx = 0; i < rdev_req->n_channels; i++) {
1054 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1055 request->channels[idx++] = rdev_req->channels[i];
1056 }
1057
1058 rdev_req->scan_6ghz = false;
1059 rdev->int_scan_req = request;
1060 return rdev_scan(rdev, request);
1061 }
1062
___cfg80211_scan_done(struct cfg80211_registered_device * rdev,bool send_message)1063 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1064 bool send_message)
1065 {
1066 struct cfg80211_scan_request *request, *rdev_req;
1067 struct wireless_dev *wdev;
1068 struct sk_buff *msg;
1069 #ifdef CONFIG_CFG80211_WEXT
1070 union iwreq_data wrqu;
1071 #endif
1072
1073 lockdep_assert_held(&rdev->wiphy.mtx);
1074
1075 if (rdev->scan_msg) {
1076 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1077 rdev->scan_msg = NULL;
1078 return;
1079 }
1080
1081 rdev_req = rdev->scan_req;
1082 if (!rdev_req)
1083 return;
1084
1085 wdev = rdev_req->wdev;
1086 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1087
1088 if (wdev_running(wdev) &&
1089 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1090 !rdev_req->scan_6ghz && !request->info.aborted &&
1091 !cfg80211_scan_6ghz(rdev))
1092 return;
1093
1094 /*
1095 * This must be before sending the other events!
1096 * Otherwise, wpa_supplicant gets completely confused with
1097 * wext events.
1098 */
1099 if (wdev->netdev)
1100 cfg80211_sme_scan_done(wdev->netdev);
1101
1102 if (!request->info.aborted &&
1103 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1104 /* flush entries from previous scans */
1105 spin_lock_bh(&rdev->bss_lock);
1106 __cfg80211_bss_expire(rdev, request->scan_start);
1107 spin_unlock_bh(&rdev->bss_lock);
1108 }
1109
1110 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1111
1112 #ifdef CONFIG_CFG80211_WEXT
1113 if (wdev->netdev && !request->info.aborted) {
1114 memset(&wrqu, 0, sizeof(wrqu));
1115
1116 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1117 }
1118 #endif
1119
1120 dev_put(wdev->netdev);
1121
1122 kfree(rdev->int_scan_req);
1123 rdev->int_scan_req = NULL;
1124
1125 kfree(rdev->scan_req);
1126 rdev->scan_req = NULL;
1127
1128 if (!send_message)
1129 rdev->scan_msg = msg;
1130 else
1131 nl80211_send_scan_msg(rdev, msg);
1132 }
1133
__cfg80211_scan_done(struct wiphy * wiphy,struct wiphy_work * wk)1134 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1135 {
1136 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1137 }
1138
cfg80211_scan_done(struct cfg80211_scan_request * request,struct cfg80211_scan_info * info)1139 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1140 struct cfg80211_scan_info *info)
1141 {
1142 struct cfg80211_scan_info old_info = request->info;
1143
1144 trace_cfg80211_scan_done(request, info);
1145 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1146 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1147
1148 request->info = *info;
1149
1150 /*
1151 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1152 * be of the first part. In such a case old_info.scan_start_tsf should
1153 * be non zero.
1154 */
1155 if (request->scan_6ghz && old_info.scan_start_tsf) {
1156 request->info.scan_start_tsf = old_info.scan_start_tsf;
1157 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1158 sizeof(request->info.tsf_bssid));
1159 }
1160
1161 request->notified = true;
1162 wiphy_work_queue(request->wiphy,
1163 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1164 }
1165 EXPORT_SYMBOL(cfg80211_scan_done);
1166
cfg80211_add_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1167 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1168 struct cfg80211_sched_scan_request *req)
1169 {
1170 lockdep_assert_held(&rdev->wiphy.mtx);
1171
1172 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1173 }
1174
cfg80211_del_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1175 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1176 struct cfg80211_sched_scan_request *req)
1177 {
1178 lockdep_assert_held(&rdev->wiphy.mtx);
1179
1180 list_del_rcu(&req->list);
1181 kfree_rcu(req, rcu_head);
1182 }
1183
1184 static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device * rdev,u64 reqid)1185 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1186 {
1187 struct cfg80211_sched_scan_request *pos;
1188
1189 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1190 lockdep_is_held(&rdev->wiphy.mtx)) {
1191 if (pos->reqid == reqid)
1192 return pos;
1193 }
1194 return NULL;
1195 }
1196
1197 /*
1198 * Determines if a scheduled scan request can be handled. When a legacy
1199 * scheduled scan is running no other scheduled scan is allowed regardless
1200 * whether the request is for legacy or multi-support scan. When a multi-support
1201 * scheduled scan is running a request for legacy scan is not allowed. In this
1202 * case a request for multi-support scan can be handled if resources are
1203 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1204 */
cfg80211_sched_scan_req_possible(struct cfg80211_registered_device * rdev,bool want_multi)1205 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1206 bool want_multi)
1207 {
1208 struct cfg80211_sched_scan_request *pos;
1209 int i = 0;
1210
1211 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1212 /* request id zero means legacy in progress */
1213 if (!i && !pos->reqid)
1214 return -EINPROGRESS;
1215 i++;
1216 }
1217
1218 if (i) {
1219 /* no legacy allowed when multi request(s) are active */
1220 if (!want_multi)
1221 return -EINPROGRESS;
1222
1223 /* resource limit reached */
1224 if (i == rdev->wiphy.max_sched_scan_reqs)
1225 return -ENOSPC;
1226 }
1227 return 0;
1228 }
1229
cfg80211_sched_scan_results_wk(struct work_struct * work)1230 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1231 {
1232 struct cfg80211_registered_device *rdev;
1233 struct cfg80211_sched_scan_request *req, *tmp;
1234
1235 rdev = container_of(work, struct cfg80211_registered_device,
1236 sched_scan_res_wk);
1237
1238 wiphy_lock(&rdev->wiphy);
1239 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1240 if (req->report_results) {
1241 req->report_results = false;
1242 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1243 /* flush entries from previous scans */
1244 spin_lock_bh(&rdev->bss_lock);
1245 __cfg80211_bss_expire(rdev, req->scan_start);
1246 spin_unlock_bh(&rdev->bss_lock);
1247 req->scan_start = jiffies;
1248 }
1249 nl80211_send_sched_scan(req,
1250 NL80211_CMD_SCHED_SCAN_RESULTS);
1251 }
1252 }
1253 wiphy_unlock(&rdev->wiphy);
1254 }
1255
cfg80211_sched_scan_results(struct wiphy * wiphy,u64 reqid)1256 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1257 {
1258 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1259 struct cfg80211_sched_scan_request *request;
1260
1261 trace_cfg80211_sched_scan_results(wiphy, reqid);
1262 /* ignore if we're not scanning */
1263
1264 rcu_read_lock();
1265 request = cfg80211_find_sched_scan_req(rdev, reqid);
1266 if (request) {
1267 request->report_results = true;
1268 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1269 }
1270 rcu_read_unlock();
1271 }
1272 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1273
cfg80211_sched_scan_stopped_locked(struct wiphy * wiphy,u64 reqid)1274 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1275 {
1276 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1277
1278 lockdep_assert_held(&wiphy->mtx);
1279
1280 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1281
1282 __cfg80211_stop_sched_scan(rdev, reqid, true);
1283 }
1284 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1285
cfg80211_sched_scan_stopped(struct wiphy * wiphy,u64 reqid)1286 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1287 {
1288 wiphy_lock(wiphy);
1289 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1290 wiphy_unlock(wiphy);
1291 }
1292 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1293
cfg80211_stop_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req,bool driver_initiated)1294 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1295 struct cfg80211_sched_scan_request *req,
1296 bool driver_initiated)
1297 {
1298 lockdep_assert_held(&rdev->wiphy.mtx);
1299
1300 if (!driver_initiated) {
1301 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1302 if (err)
1303 return err;
1304 }
1305
1306 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1307
1308 cfg80211_del_sched_scan_req(rdev, req);
1309
1310 return 0;
1311 }
1312
__cfg80211_stop_sched_scan(struct cfg80211_registered_device * rdev,u64 reqid,bool driver_initiated)1313 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1314 u64 reqid, bool driver_initiated)
1315 {
1316 struct cfg80211_sched_scan_request *sched_scan_req;
1317
1318 lockdep_assert_held(&rdev->wiphy.mtx);
1319
1320 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1321 if (!sched_scan_req)
1322 return -ENOENT;
1323
1324 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1325 driver_initiated);
1326 }
1327
cfg80211_bss_age(struct cfg80211_registered_device * rdev,unsigned long age_secs)1328 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1329 unsigned long age_secs)
1330 {
1331 struct cfg80211_internal_bss *bss;
1332 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1333
1334 spin_lock_bh(&rdev->bss_lock);
1335 list_for_each_entry(bss, &rdev->bss_list, list)
1336 bss->ts -= age_jiffies;
1337 spin_unlock_bh(&rdev->bss_lock);
1338 }
1339
cfg80211_bss_expire(struct cfg80211_registered_device * rdev)1340 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1341 {
1342 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1343 }
1344
cfg80211_bss_flush(struct wiphy * wiphy)1345 void cfg80211_bss_flush(struct wiphy *wiphy)
1346 {
1347 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1348
1349 spin_lock_bh(&rdev->bss_lock);
1350 __cfg80211_bss_expire(rdev, jiffies);
1351 spin_unlock_bh(&rdev->bss_lock);
1352 }
1353 EXPORT_SYMBOL(cfg80211_bss_flush);
1354
1355 const struct element *
cfg80211_find_elem_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)1356 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1357 const u8 *match, unsigned int match_len,
1358 unsigned int match_offset)
1359 {
1360 const struct element *elem;
1361
1362 for_each_element_id(elem, eid, ies, len) {
1363 if (elem->datalen >= match_offset + match_len &&
1364 !memcmp(elem->data + match_offset, match, match_len))
1365 return elem;
1366 }
1367
1368 return NULL;
1369 }
1370 EXPORT_SYMBOL(cfg80211_find_elem_match);
1371
cfg80211_find_vendor_elem(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)1372 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1373 const u8 *ies,
1374 unsigned int len)
1375 {
1376 const struct element *elem;
1377 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1378 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1379
1380 if (WARN_ON(oui_type > 0xff))
1381 return NULL;
1382
1383 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1384 match, match_len, 0);
1385
1386 if (!elem || elem->datalen < 4)
1387 return NULL;
1388
1389 return elem;
1390 }
1391 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1392
1393 /**
1394 * enum bss_compare_mode - BSS compare mode
1395 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1396 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1397 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1398 */
1399 enum bss_compare_mode {
1400 BSS_CMP_REGULAR,
1401 BSS_CMP_HIDE_ZLEN,
1402 BSS_CMP_HIDE_NUL,
1403 };
1404
cmp_bss(struct cfg80211_bss * a,struct cfg80211_bss * b,enum bss_compare_mode mode)1405 static int cmp_bss(struct cfg80211_bss *a,
1406 struct cfg80211_bss *b,
1407 enum bss_compare_mode mode)
1408 {
1409 const struct cfg80211_bss_ies *a_ies, *b_ies;
1410 const u8 *ie1 = NULL;
1411 const u8 *ie2 = NULL;
1412 int i, r;
1413
1414 if (a->channel != b->channel)
1415 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1416 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1417
1418 a_ies = rcu_access_pointer(a->ies);
1419 if (!a_ies)
1420 return -1;
1421 b_ies = rcu_access_pointer(b->ies);
1422 if (!b_ies)
1423 return 1;
1424
1425 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1426 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1427 a_ies->data, a_ies->len);
1428 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1429 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1430 b_ies->data, b_ies->len);
1431 if (ie1 && ie2) {
1432 int mesh_id_cmp;
1433
1434 if (ie1[1] == ie2[1])
1435 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1436 else
1437 mesh_id_cmp = ie2[1] - ie1[1];
1438
1439 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1440 a_ies->data, a_ies->len);
1441 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1442 b_ies->data, b_ies->len);
1443 if (ie1 && ie2) {
1444 if (mesh_id_cmp)
1445 return mesh_id_cmp;
1446 if (ie1[1] != ie2[1])
1447 return ie2[1] - ie1[1];
1448 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1449 }
1450 }
1451
1452 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1453 if (r)
1454 return r;
1455
1456 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1457 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1458
1459 if (!ie1 && !ie2)
1460 return 0;
1461
1462 /*
1463 * Note that with "hide_ssid", the function returns a match if
1464 * the already-present BSS ("b") is a hidden SSID beacon for
1465 * the new BSS ("a").
1466 */
1467
1468 /* sort missing IE before (left of) present IE */
1469 if (!ie1)
1470 return -1;
1471 if (!ie2)
1472 return 1;
1473
1474 switch (mode) {
1475 case BSS_CMP_HIDE_ZLEN:
1476 /*
1477 * In ZLEN mode we assume the BSS entry we're
1478 * looking for has a zero-length SSID. So if
1479 * the one we're looking at right now has that,
1480 * return 0. Otherwise, return the difference
1481 * in length, but since we're looking for the
1482 * 0-length it's really equivalent to returning
1483 * the length of the one we're looking at.
1484 *
1485 * No content comparison is needed as we assume
1486 * the content length is zero.
1487 */
1488 return ie2[1];
1489 case BSS_CMP_REGULAR:
1490 default:
1491 /* sort by length first, then by contents */
1492 if (ie1[1] != ie2[1])
1493 return ie2[1] - ie1[1];
1494 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1495 case BSS_CMP_HIDE_NUL:
1496 if (ie1[1] != ie2[1])
1497 return ie2[1] - ie1[1];
1498 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1499 for (i = 0; i < ie2[1]; i++)
1500 if (ie2[i + 2])
1501 return -1;
1502 return 0;
1503 }
1504 }
1505
cfg80211_bss_type_match(u16 capability,enum nl80211_band band,enum ieee80211_bss_type bss_type)1506 static bool cfg80211_bss_type_match(u16 capability,
1507 enum nl80211_band band,
1508 enum ieee80211_bss_type bss_type)
1509 {
1510 bool ret = true;
1511 u16 mask, val;
1512
1513 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1514 return ret;
1515
1516 if (band == NL80211_BAND_60GHZ) {
1517 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1518 switch (bss_type) {
1519 case IEEE80211_BSS_TYPE_ESS:
1520 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1521 break;
1522 case IEEE80211_BSS_TYPE_PBSS:
1523 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1524 break;
1525 case IEEE80211_BSS_TYPE_IBSS:
1526 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1527 break;
1528 default:
1529 return false;
1530 }
1531 } else {
1532 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1533 switch (bss_type) {
1534 case IEEE80211_BSS_TYPE_ESS:
1535 val = WLAN_CAPABILITY_ESS;
1536 break;
1537 case IEEE80211_BSS_TYPE_IBSS:
1538 val = WLAN_CAPABILITY_IBSS;
1539 break;
1540 case IEEE80211_BSS_TYPE_MBSS:
1541 val = 0;
1542 break;
1543 default:
1544 return false;
1545 }
1546 }
1547
1548 ret = ((capability & mask) == val);
1549 return ret;
1550 }
1551
1552 /* Returned bss is reference counted and must be cleaned up appropriately. */
__cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy,u32 use_for)1553 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1554 struct ieee80211_channel *channel,
1555 const u8 *bssid,
1556 const u8 *ssid, size_t ssid_len,
1557 enum ieee80211_bss_type bss_type,
1558 enum ieee80211_privacy privacy,
1559 u32 use_for)
1560 {
1561 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1562 struct cfg80211_internal_bss *bss, *res = NULL;
1563 unsigned long now = jiffies;
1564 int bss_privacy;
1565
1566 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1567 privacy);
1568
1569 spin_lock_bh(&rdev->bss_lock);
1570
1571 list_for_each_entry(bss, &rdev->bss_list, list) {
1572 if (!cfg80211_bss_type_match(bss->pub.capability,
1573 bss->pub.channel->band, bss_type))
1574 continue;
1575
1576 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1577 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1578 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1579 continue;
1580 if (channel && bss->pub.channel != channel)
1581 continue;
1582 if (!is_valid_ether_addr(bss->pub.bssid))
1583 continue;
1584 if ((bss->pub.use_for & use_for) != use_for)
1585 continue;
1586 /* Don't get expired BSS structs */
1587 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1588 !atomic_read(&bss->hold))
1589 continue;
1590 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1591 res = bss;
1592 bss_ref_get(rdev, res);
1593 break;
1594 }
1595 }
1596
1597 spin_unlock_bh(&rdev->bss_lock);
1598 if (!res)
1599 return NULL;
1600 trace_cfg80211_return_bss(&res->pub);
1601 return &res->pub;
1602 }
1603 EXPORT_SYMBOL(__cfg80211_get_bss);
1604
rb_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1605 static bool rb_insert_bss(struct cfg80211_registered_device *rdev,
1606 struct cfg80211_internal_bss *bss)
1607 {
1608 struct rb_node **p = &rdev->bss_tree.rb_node;
1609 struct rb_node *parent = NULL;
1610 struct cfg80211_internal_bss *tbss;
1611 int cmp;
1612
1613 while (*p) {
1614 parent = *p;
1615 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1616
1617 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1618
1619 if (WARN_ON(!cmp)) {
1620 /* will sort of leak this BSS */
1621 return false;
1622 }
1623
1624 if (cmp < 0)
1625 p = &(*p)->rb_left;
1626 else
1627 p = &(*p)->rb_right;
1628 }
1629
1630 rb_link_node(&bss->rbn, parent, p);
1631 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1632 return true;
1633 }
1634
1635 static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * res,enum bss_compare_mode mode)1636 rb_find_bss(struct cfg80211_registered_device *rdev,
1637 struct cfg80211_internal_bss *res,
1638 enum bss_compare_mode mode)
1639 {
1640 struct rb_node *n = rdev->bss_tree.rb_node;
1641 struct cfg80211_internal_bss *bss;
1642 int r;
1643
1644 while (n) {
1645 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1646 r = cmp_bss(&res->pub, &bss->pub, mode);
1647
1648 if (r == 0)
1649 return bss;
1650 else if (r < 0)
1651 n = n->rb_left;
1652 else
1653 n = n->rb_right;
1654 }
1655
1656 return NULL;
1657 }
1658
cfg80211_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1659 static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev,
1660 struct cfg80211_internal_bss *bss)
1661 {
1662 lockdep_assert_held(&rdev->bss_lock);
1663
1664 if (!rb_insert_bss(rdev, bss))
1665 return;
1666 list_add_tail(&bss->list, &rdev->bss_list);
1667 rdev->bss_entries++;
1668 }
1669
cfg80211_rehash_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1670 static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev,
1671 struct cfg80211_internal_bss *bss)
1672 {
1673 lockdep_assert_held(&rdev->bss_lock);
1674
1675 rb_erase(&bss->rbn, &rdev->bss_tree);
1676 if (!rb_insert_bss(rdev, bss)) {
1677 list_del(&bss->list);
1678 if (!list_empty(&bss->hidden_list))
1679 list_del_init(&bss->hidden_list);
1680 if (!list_empty(&bss->pub.nontrans_list))
1681 list_del_init(&bss->pub.nontrans_list);
1682 rdev->bss_entries--;
1683 }
1684 rdev->bss_generation++;
1685 }
1686
cfg80211_combine_bsses(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * new)1687 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1688 struct cfg80211_internal_bss *new)
1689 {
1690 const struct cfg80211_bss_ies *ies;
1691 struct cfg80211_internal_bss *bss;
1692 const u8 *ie;
1693 int i, ssidlen;
1694 u8 fold = 0;
1695 u32 n_entries = 0;
1696
1697 ies = rcu_access_pointer(new->pub.beacon_ies);
1698 if (WARN_ON(!ies))
1699 return false;
1700
1701 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1702 if (!ie) {
1703 /* nothing to do */
1704 return true;
1705 }
1706
1707 ssidlen = ie[1];
1708 for (i = 0; i < ssidlen; i++)
1709 fold |= ie[2 + i];
1710
1711 if (fold) {
1712 /* not a hidden SSID */
1713 return true;
1714 }
1715
1716 /* This is the bad part ... */
1717
1718 list_for_each_entry(bss, &rdev->bss_list, list) {
1719 /*
1720 * we're iterating all the entries anyway, so take the
1721 * opportunity to validate the list length accounting
1722 */
1723 n_entries++;
1724
1725 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1726 continue;
1727 if (bss->pub.channel != new->pub.channel)
1728 continue;
1729 if (rcu_access_pointer(bss->pub.beacon_ies))
1730 continue;
1731 ies = rcu_access_pointer(bss->pub.ies);
1732 if (!ies)
1733 continue;
1734 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1735 if (!ie)
1736 continue;
1737 if (ssidlen && ie[1] != ssidlen)
1738 continue;
1739 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1740 continue;
1741 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1742 list_del(&bss->hidden_list);
1743 /* combine them */
1744 list_add(&bss->hidden_list, &new->hidden_list);
1745 bss->pub.hidden_beacon_bss = &new->pub;
1746 new->refcount += bss->refcount;
1747 rcu_assign_pointer(bss->pub.beacon_ies,
1748 new->pub.beacon_ies);
1749 }
1750
1751 WARN_ONCE(n_entries != rdev->bss_entries,
1752 "rdev bss entries[%d]/list[len:%d] corruption\n",
1753 rdev->bss_entries, n_entries);
1754
1755 return true;
1756 }
1757
cfg80211_update_hidden_bsses(struct cfg80211_internal_bss * known,const struct cfg80211_bss_ies * new_ies,const struct cfg80211_bss_ies * old_ies)1758 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1759 const struct cfg80211_bss_ies *new_ies,
1760 const struct cfg80211_bss_ies *old_ies)
1761 {
1762 struct cfg80211_internal_bss *bss;
1763
1764 /* Assign beacon IEs to all sub entries */
1765 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1766 const struct cfg80211_bss_ies *ies;
1767
1768 ies = rcu_access_pointer(bss->pub.beacon_ies);
1769 WARN_ON(ies != old_ies);
1770
1771 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1772 }
1773 }
1774
cfg80211_check_stuck_ecsa(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,const struct cfg80211_bss_ies * old)1775 static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1776 struct cfg80211_internal_bss *known,
1777 const struct cfg80211_bss_ies *old)
1778 {
1779 const struct ieee80211_ext_chansw_ie *ecsa;
1780 const struct element *elem_new, *elem_old;
1781 const struct cfg80211_bss_ies *new, *bcn;
1782
1783 if (known->pub.proberesp_ecsa_stuck)
1784 return;
1785
1786 new = rcu_dereference_protected(known->pub.proberesp_ies,
1787 lockdep_is_held(&rdev->bss_lock));
1788 if (WARN_ON(!new))
1789 return;
1790
1791 if (new->tsf - old->tsf < USEC_PER_SEC)
1792 return;
1793
1794 elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1795 old->data, old->len);
1796 if (!elem_old)
1797 return;
1798
1799 elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1800 new->data, new->len);
1801 if (!elem_new)
1802 return;
1803
1804 bcn = rcu_dereference_protected(known->pub.beacon_ies,
1805 lockdep_is_held(&rdev->bss_lock));
1806 if (bcn &&
1807 cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1808 bcn->data, bcn->len))
1809 return;
1810
1811 if (elem_new->datalen != elem_old->datalen)
1812 return;
1813 if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1814 return;
1815 if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1816 return;
1817
1818 ecsa = (void *)elem_new->data;
1819
1820 if (!ecsa->mode)
1821 return;
1822
1823 if (ecsa->new_ch_num !=
1824 ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1825 return;
1826
1827 known->pub.proberesp_ecsa_stuck = 1;
1828 }
1829
1830 static bool
cfg80211_update_known_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,struct cfg80211_internal_bss * new,bool signal_valid)1831 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1832 struct cfg80211_internal_bss *known,
1833 struct cfg80211_internal_bss *new,
1834 bool signal_valid)
1835 {
1836 lockdep_assert_held(&rdev->bss_lock);
1837
1838 /* Update IEs */
1839 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1840 const struct cfg80211_bss_ies *old;
1841
1842 old = rcu_access_pointer(known->pub.proberesp_ies);
1843
1844 rcu_assign_pointer(known->pub.proberesp_ies,
1845 new->pub.proberesp_ies);
1846 /* Override possible earlier Beacon frame IEs */
1847 rcu_assign_pointer(known->pub.ies,
1848 new->pub.proberesp_ies);
1849 if (old) {
1850 cfg80211_check_stuck_ecsa(rdev, known, old);
1851 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1852 }
1853 }
1854
1855 if (rcu_access_pointer(new->pub.beacon_ies)) {
1856 const struct cfg80211_bss_ies *old;
1857
1858 if (known->pub.hidden_beacon_bss &&
1859 !list_empty(&known->hidden_list)) {
1860 const struct cfg80211_bss_ies *f;
1861
1862 /* The known BSS struct is one of the probe
1863 * response members of a group, but we're
1864 * receiving a beacon (beacon_ies in the new
1865 * bss is used). This can only mean that the
1866 * AP changed its beacon from not having an
1867 * SSID to showing it, which is confusing so
1868 * drop this information.
1869 */
1870
1871 f = rcu_access_pointer(new->pub.beacon_ies);
1872 if (!new->pub.hidden_beacon_bss)
1873 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1874 return false;
1875 }
1876
1877 old = rcu_access_pointer(known->pub.beacon_ies);
1878
1879 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1880
1881 /* Override IEs if they were from a beacon before */
1882 if (old == rcu_access_pointer(known->pub.ies))
1883 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1884
1885 cfg80211_update_hidden_bsses(known,
1886 rcu_access_pointer(new->pub.beacon_ies),
1887 old);
1888
1889 if (old)
1890 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1891 }
1892
1893 known->pub.beacon_interval = new->pub.beacon_interval;
1894
1895 /* don't update the signal if beacon was heard on
1896 * adjacent channel.
1897 */
1898 if (signal_valid)
1899 known->pub.signal = new->pub.signal;
1900 known->pub.capability = new->pub.capability;
1901 known->ts = new->ts;
1902 known->ts_boottime = new->ts_boottime;
1903 known->parent_tsf = new->parent_tsf;
1904 known->pub.chains = new->pub.chains;
1905 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1906 IEEE80211_MAX_CHAINS);
1907 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1908 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1909 known->pub.bssid_index = new->pub.bssid_index;
1910 known->pub.use_for &= new->pub.use_for;
1911 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1912 known->bss_source = new->bss_source;
1913
1914 return true;
1915 }
1916
1917 /* Returned bss is reference counted and must be cleaned up appropriately. */
1918 static struct cfg80211_internal_bss *
__cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)1919 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1920 struct cfg80211_internal_bss *tmp,
1921 bool signal_valid, unsigned long ts)
1922 {
1923 struct cfg80211_internal_bss *found = NULL;
1924 struct cfg80211_bss_ies *ies;
1925
1926 if (WARN_ON(!tmp->pub.channel))
1927 goto free_ies;
1928
1929 tmp->ts = ts;
1930
1931 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1932 goto free_ies;
1933
1934 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1935
1936 if (found) {
1937 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1938 return NULL;
1939 } else {
1940 struct cfg80211_internal_bss *new;
1941 struct cfg80211_internal_bss *hidden;
1942
1943 /*
1944 * create a copy -- the "res" variable that is passed in
1945 * is allocated on the stack since it's not needed in the
1946 * more common case of an update
1947 */
1948 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1949 GFP_ATOMIC);
1950 if (!new)
1951 goto free_ies;
1952 memcpy(new, tmp, sizeof(*new));
1953 new->refcount = 1;
1954 INIT_LIST_HEAD(&new->hidden_list);
1955 INIT_LIST_HEAD(&new->pub.nontrans_list);
1956 /* we'll set this later if it was non-NULL */
1957 new->pub.transmitted_bss = NULL;
1958
1959 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1960 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1961 if (!hidden)
1962 hidden = rb_find_bss(rdev, tmp,
1963 BSS_CMP_HIDE_NUL);
1964 if (hidden) {
1965 new->pub.hidden_beacon_bss = &hidden->pub;
1966 list_add(&new->hidden_list,
1967 &hidden->hidden_list);
1968 hidden->refcount++;
1969
1970 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1971 rcu_assign_pointer(new->pub.beacon_ies,
1972 hidden->pub.beacon_ies);
1973 if (ies)
1974 kfree_rcu(ies, rcu_head);
1975 }
1976 } else {
1977 /*
1978 * Ok so we found a beacon, and don't have an entry. If
1979 * it's a beacon with hidden SSID, we might be in for an
1980 * expensive search for any probe responses that should
1981 * be grouped with this beacon for updates ...
1982 */
1983 if (!cfg80211_combine_bsses(rdev, new)) {
1984 bss_ref_put(rdev, new);
1985 return NULL;
1986 }
1987 }
1988
1989 if (rdev->bss_entries >= bss_entries_limit &&
1990 !cfg80211_bss_expire_oldest(rdev)) {
1991 bss_ref_put(rdev, new);
1992 return NULL;
1993 }
1994
1995 /* This must be before the call to bss_ref_get */
1996 if (tmp->pub.transmitted_bss) {
1997 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1998 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1999 }
2000
2001 cfg80211_insert_bss(rdev, new);
2002 found = new;
2003 }
2004
2005 rdev->bss_generation++;
2006 bss_ref_get(rdev, found);
2007
2008 return found;
2009
2010 free_ies:
2011 ies = (void *)rcu_access_pointer(tmp->pub.beacon_ies);
2012 if (ies)
2013 kfree_rcu(ies, rcu_head);
2014 ies = (void *)rcu_access_pointer(tmp->pub.proberesp_ies);
2015 if (ies)
2016 kfree_rcu(ies, rcu_head);
2017
2018 return NULL;
2019 }
2020
2021 struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)2022 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
2023 struct cfg80211_internal_bss *tmp,
2024 bool signal_valid, unsigned long ts)
2025 {
2026 struct cfg80211_internal_bss *res;
2027
2028 spin_lock_bh(&rdev->bss_lock);
2029 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
2030 spin_unlock_bh(&rdev->bss_lock);
2031
2032 return res;
2033 }
2034
cfg80211_get_ies_channel_number(const u8 * ie,size_t ielen,enum nl80211_band band)2035 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
2036 enum nl80211_band band)
2037 {
2038 const struct element *tmp;
2039
2040 if (band == NL80211_BAND_6GHZ) {
2041 struct ieee80211_he_operation *he_oper;
2042
2043 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2044 ielen);
2045 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2046 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2047 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2048
2049 he_oper = (void *)&tmp->data[1];
2050
2051 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2052 if (!he_6ghz_oper)
2053 return -1;
2054
2055 return he_6ghz_oper->primary;
2056 }
2057 } else if (band == NL80211_BAND_S1GHZ) {
2058 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2059 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2060 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2061
2062 return s1gop->oper_ch;
2063 }
2064 } else {
2065 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2066 if (tmp && tmp->datalen == 1)
2067 return tmp->data[0];
2068
2069 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2070 if (tmp &&
2071 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2072 struct ieee80211_ht_operation *htop = (void *)tmp->data;
2073
2074 return htop->primary_chan;
2075 }
2076 }
2077
2078 return -1;
2079 }
2080 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2081
2082 /*
2083 * Update RX channel information based on the available frame payload
2084 * information. This is mainly for the 2.4 GHz band where frames can be received
2085 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2086 * element to indicate the current (transmitting) channel, but this might also
2087 * be needed on other bands if RX frequency does not match with the actual
2088 * operating channel of a BSS, or if the AP reports a different primary channel.
2089 */
2090 static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy * wiphy,const u8 * ie,size_t ielen,struct ieee80211_channel * channel)2091 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2092 struct ieee80211_channel *channel)
2093 {
2094 u32 freq;
2095 int channel_number;
2096 struct ieee80211_channel *alt_channel;
2097
2098 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2099 channel->band);
2100
2101 if (channel_number < 0) {
2102 /* No channel information in frame payload */
2103 return channel;
2104 }
2105
2106 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2107
2108 /*
2109 * Frame info (beacon/prob res) is the same as received channel,
2110 * no need for further processing.
2111 */
2112 if (freq == ieee80211_channel_to_khz(channel))
2113 return channel;
2114
2115 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2116 if (!alt_channel) {
2117 if (channel->band == NL80211_BAND_2GHZ ||
2118 channel->band == NL80211_BAND_6GHZ) {
2119 /*
2120 * Better not allow unexpected channels when that could
2121 * be going beyond the 1-11 range (e.g., discovering
2122 * BSS on channel 12 when radio is configured for
2123 * channel 11) or beyond the 6 GHz channel range.
2124 */
2125 return NULL;
2126 }
2127
2128 /* No match for the payload channel number - ignore it */
2129 return channel;
2130 }
2131
2132 /*
2133 * Use the channel determined through the payload channel number
2134 * instead of the RX channel reported by the driver.
2135 */
2136 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2137 return NULL;
2138 return alt_channel;
2139 }
2140
2141 struct cfg80211_inform_single_bss_data {
2142 struct cfg80211_inform_bss *drv_data;
2143 enum cfg80211_bss_frame_type ftype;
2144 struct ieee80211_channel *channel;
2145 u8 bssid[ETH_ALEN];
2146 u64 tsf;
2147 u16 capability;
2148 u16 beacon_interval;
2149 const u8 *ie;
2150 size_t ielen;
2151
2152 enum bss_source_type bss_source;
2153 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2154 struct cfg80211_bss *source_bss;
2155 u8 max_bssid_indicator;
2156 u8 bssid_index;
2157
2158 u8 use_for;
2159 u64 cannot_use_reasons;
2160 };
2161
2162 enum ieee80211_ap_reg_power
cfg80211_get_6ghz_power_type(const u8 * elems,size_t elems_len)2163 cfg80211_get_6ghz_power_type(const u8 *elems, size_t elems_len)
2164 {
2165 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2166 struct ieee80211_he_operation *he_oper;
2167 const struct element *tmp;
2168
2169 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION,
2170 elems, elems_len);
2171 if (!tmp || tmp->datalen < sizeof(*he_oper) + 1 ||
2172 tmp->datalen < ieee80211_he_oper_size(tmp->data + 1))
2173 return IEEE80211_REG_UNSET_AP;
2174
2175 he_oper = (void *)&tmp->data[1];
2176 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2177
2178 if (!he_6ghz_oper)
2179 return IEEE80211_REG_UNSET_AP;
2180
2181 switch (u8_get_bits(he_6ghz_oper->control,
2182 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2183 case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2184 case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP:
2185 return IEEE80211_REG_LPI_AP;
2186 case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2187 case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP:
2188 return IEEE80211_REG_SP_AP;
2189 case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2190 return IEEE80211_REG_VLP_AP;
2191 default:
2192 return IEEE80211_REG_UNSET_AP;
2193 }
2194 }
2195
cfg80211_6ghz_power_type_valid(const u8 * elems,size_t elems_len,const u32 flags)2196 static bool cfg80211_6ghz_power_type_valid(const u8 *elems, size_t elems_len,
2197 const u32 flags)
2198 {
2199 switch (cfg80211_get_6ghz_power_type(elems, elems_len)) {
2200 case IEEE80211_REG_LPI_AP:
2201 return true;
2202 case IEEE80211_REG_SP_AP:
2203 return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
2204 case IEEE80211_REG_VLP_AP:
2205 return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
2206 default:
2207 return false;
2208 }
2209 }
2210
2211 /* Returned bss is reference counted and must be cleaned up appropriately. */
2212 static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * data,gfp_t gfp)2213 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2214 struct cfg80211_inform_single_bss_data *data,
2215 gfp_t gfp)
2216 {
2217 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2218 struct cfg80211_inform_bss *drv_data = data->drv_data;
2219 struct cfg80211_bss_ies *ies;
2220 struct ieee80211_channel *channel;
2221 struct cfg80211_internal_bss tmp = {}, *res;
2222 int bss_type;
2223 bool signal_valid;
2224 unsigned long ts;
2225
2226 if (WARN_ON(!wiphy))
2227 return NULL;
2228
2229 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2230 (drv_data->signal < 0 || drv_data->signal > 100)))
2231 return NULL;
2232
2233 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2234 return NULL;
2235
2236 channel = data->channel;
2237 if (!channel)
2238 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2239 drv_data->chan);
2240 if (!channel)
2241 return NULL;
2242
2243 if (channel->band == NL80211_BAND_6GHZ &&
2244 !cfg80211_6ghz_power_type_valid(data->ie, data->ielen,
2245 channel->flags)) {
2246 data->use_for = 0;
2247 data->cannot_use_reasons =
2248 NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
2249 }
2250
2251 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2252 tmp.pub.channel = channel;
2253 if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2254 tmp.pub.signal = drv_data->signal;
2255 else
2256 tmp.pub.signal = 0;
2257 tmp.pub.beacon_interval = data->beacon_interval;
2258 tmp.pub.capability = data->capability;
2259 tmp.ts_boottime = drv_data->boottime_ns;
2260 tmp.parent_tsf = drv_data->parent_tsf;
2261 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2262 tmp.pub.chains = drv_data->chains;
2263 memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
2264 IEEE80211_MAX_CHAINS);
2265 tmp.pub.use_for = data->use_for;
2266 tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2267 tmp.bss_source = data->bss_source;
2268
2269 switch (data->bss_source) {
2270 case BSS_SOURCE_MBSSID:
2271 tmp.pub.transmitted_bss = data->source_bss;
2272 fallthrough;
2273 case BSS_SOURCE_STA_PROFILE:
2274 ts = bss_from_pub(data->source_bss)->ts;
2275 tmp.pub.bssid_index = data->bssid_index;
2276 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2277 break;
2278 case BSS_SOURCE_DIRECT:
2279 ts = jiffies;
2280
2281 if (channel->band == NL80211_BAND_60GHZ) {
2282 bss_type = data->capability &
2283 WLAN_CAPABILITY_DMG_TYPE_MASK;
2284 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2285 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2286 regulatory_hint_found_beacon(wiphy, channel,
2287 gfp);
2288 } else {
2289 if (data->capability & WLAN_CAPABILITY_ESS)
2290 regulatory_hint_found_beacon(wiphy, channel,
2291 gfp);
2292 }
2293 break;
2294 }
2295
2296 /*
2297 * If we do not know here whether the IEs are from a Beacon or Probe
2298 * Response frame, we need to pick one of the options and only use it
2299 * with the driver that does not provide the full Beacon/Probe Response
2300 * frame. Use Beacon frame pointer to avoid indicating that this should
2301 * override the IEs pointer should we have received an earlier
2302 * indication of Probe Response data.
2303 */
2304 ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2305 if (!ies)
2306 return NULL;
2307 ies->len = data->ielen;
2308 ies->tsf = data->tsf;
2309 ies->from_beacon = false;
2310 memcpy(ies->data, data->ie, data->ielen);
2311
2312 switch (data->ftype) {
2313 case CFG80211_BSS_FTYPE_BEACON:
2314 case CFG80211_BSS_FTYPE_S1G_BEACON:
2315 ies->from_beacon = true;
2316 fallthrough;
2317 case CFG80211_BSS_FTYPE_UNKNOWN:
2318 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2319 break;
2320 case CFG80211_BSS_FTYPE_PRESP:
2321 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2322 break;
2323 }
2324 rcu_assign_pointer(tmp.pub.ies, ies);
2325
2326 signal_valid = drv_data->chan == channel;
2327 spin_lock_bh(&rdev->bss_lock);
2328 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2329 if (!res)
2330 goto drop;
2331
2332 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2333
2334 if (data->bss_source == BSS_SOURCE_MBSSID) {
2335 /* this is a nontransmitting bss, we need to add it to
2336 * transmitting bss' list if it is not there
2337 */
2338 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2339 if (__cfg80211_unlink_bss(rdev, res)) {
2340 rdev->bss_generation++;
2341 res = NULL;
2342 }
2343 }
2344
2345 if (!res)
2346 goto drop;
2347 }
2348 spin_unlock_bh(&rdev->bss_lock);
2349
2350 trace_cfg80211_return_bss(&res->pub);
2351 /* __cfg80211_bss_update gives us a referenced result */
2352 return &res->pub;
2353
2354 drop:
2355 spin_unlock_bh(&rdev->bss_lock);
2356 return NULL;
2357 }
2358
2359 static const struct element
cfg80211_get_profile_continuation(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem)2360 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2361 const struct element *mbssid_elem,
2362 const struct element *sub_elem)
2363 {
2364 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2365 const struct element *next_mbssid;
2366 const struct element *next_sub;
2367
2368 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2369 mbssid_end,
2370 ielen - (mbssid_end - ie));
2371
2372 /*
2373 * If it is not the last subelement in current MBSSID IE or there isn't
2374 * a next MBSSID IE - profile is complete.
2375 */
2376 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2377 !next_mbssid)
2378 return NULL;
2379
2380 /* For any length error, just return NULL */
2381
2382 if (next_mbssid->datalen < 4)
2383 return NULL;
2384
2385 next_sub = (void *)&next_mbssid->data[1];
2386
2387 if (next_mbssid->data + next_mbssid->datalen <
2388 next_sub->data + next_sub->datalen)
2389 return NULL;
2390
2391 if (next_sub->id != 0 || next_sub->datalen < 2)
2392 return NULL;
2393
2394 /*
2395 * Check if the first element in the next sub element is a start
2396 * of a new profile
2397 */
2398 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2399 NULL : next_mbssid;
2400 }
2401
cfg80211_merge_profile(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem,u8 * merged_ie,size_t max_copy_len)2402 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2403 const struct element *mbssid_elem,
2404 const struct element *sub_elem,
2405 u8 *merged_ie, size_t max_copy_len)
2406 {
2407 size_t copied_len = sub_elem->datalen;
2408 const struct element *next_mbssid;
2409
2410 if (sub_elem->datalen > max_copy_len)
2411 return 0;
2412
2413 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2414
2415 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2416 mbssid_elem,
2417 sub_elem))) {
2418 const struct element *next_sub = (void *)&next_mbssid->data[1];
2419
2420 if (copied_len + next_sub->datalen > max_copy_len)
2421 break;
2422 memcpy(merged_ie + copied_len, next_sub->data,
2423 next_sub->datalen);
2424 copied_len += next_sub->datalen;
2425 }
2426
2427 return copied_len;
2428 }
2429 EXPORT_SYMBOL(cfg80211_merge_profile);
2430
2431 static void
cfg80211_parse_mbssid_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,gfp_t gfp)2432 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2433 struct cfg80211_inform_single_bss_data *tx_data,
2434 struct cfg80211_bss *source_bss,
2435 gfp_t gfp)
2436 {
2437 struct cfg80211_inform_single_bss_data data = {
2438 .drv_data = tx_data->drv_data,
2439 .ftype = tx_data->ftype,
2440 .tsf = tx_data->tsf,
2441 .beacon_interval = tx_data->beacon_interval,
2442 .source_bss = source_bss,
2443 .bss_source = BSS_SOURCE_MBSSID,
2444 .use_for = tx_data->use_for,
2445 .cannot_use_reasons = tx_data->cannot_use_reasons,
2446 };
2447 const u8 *mbssid_index_ie;
2448 const struct element *elem, *sub;
2449 u8 *new_ie, *profile;
2450 u64 seen_indices = 0;
2451 struct cfg80211_bss *bss;
2452
2453 if (!source_bss)
2454 return;
2455 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2456 tx_data->ie, tx_data->ielen))
2457 return;
2458 if (!wiphy->support_mbssid)
2459 return;
2460 if (wiphy->support_only_he_mbssid &&
2461 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2462 tx_data->ie, tx_data->ielen))
2463 return;
2464
2465 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2466 if (!new_ie)
2467 return;
2468
2469 profile = kmalloc(tx_data->ielen, gfp);
2470 if (!profile)
2471 goto out;
2472
2473 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2474 tx_data->ie, tx_data->ielen) {
2475 if (elem->datalen < 4)
2476 continue;
2477 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2478 continue;
2479 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2480 u8 profile_len;
2481
2482 if (sub->id != 0 || sub->datalen < 4) {
2483 /* not a valid BSS profile */
2484 continue;
2485 }
2486
2487 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2488 sub->data[1] != 2) {
2489 /* The first element within the Nontransmitted
2490 * BSSID Profile is not the Nontransmitted
2491 * BSSID Capability element.
2492 */
2493 continue;
2494 }
2495
2496 memset(profile, 0, tx_data->ielen);
2497 profile_len = cfg80211_merge_profile(tx_data->ie,
2498 tx_data->ielen,
2499 elem,
2500 sub,
2501 profile,
2502 tx_data->ielen);
2503
2504 /* found a Nontransmitted BSSID Profile */
2505 mbssid_index_ie = cfg80211_find_ie
2506 (WLAN_EID_MULTI_BSSID_IDX,
2507 profile, profile_len);
2508 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2509 mbssid_index_ie[2] == 0 ||
2510 mbssid_index_ie[2] > 46 ||
2511 mbssid_index_ie[2] >= (1 << elem->data[0])) {
2512 /* No valid Multiple BSSID-Index element */
2513 continue;
2514 }
2515
2516 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2517 /* We don't support legacy split of a profile */
2518 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2519 mbssid_index_ie[2]);
2520
2521 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2522
2523 data.bssid_index = mbssid_index_ie[2];
2524 data.max_bssid_indicator = elem->data[0];
2525
2526 cfg80211_gen_new_bssid(tx_data->bssid,
2527 data.max_bssid_indicator,
2528 data.bssid_index,
2529 data.bssid);
2530
2531 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2532 data.ie = new_ie;
2533 data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2534 tx_data->ielen,
2535 profile,
2536 profile_len,
2537 new_ie,
2538 IEEE80211_MAX_DATA_LEN);
2539 if (!data.ielen)
2540 continue;
2541
2542 data.capability = get_unaligned_le16(profile + 2);
2543 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2544 if (!bss)
2545 break;
2546 cfg80211_put_bss(wiphy, bss);
2547 }
2548 }
2549
2550 out:
2551 kfree(new_ie);
2552 kfree(profile);
2553 }
2554
cfg80211_defragment_element(const struct element * elem,const u8 * ies,size_t ieslen,u8 * data,size_t data_len,u8 frag_id)2555 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2556 size_t ieslen, u8 *data, size_t data_len,
2557 u8 frag_id)
2558 {
2559 const struct element *next;
2560 ssize_t copied;
2561 u8 elem_datalen;
2562
2563 if (!elem)
2564 return -EINVAL;
2565
2566 /* elem might be invalid after the memmove */
2567 next = (void *)(elem->data + elem->datalen);
2568 elem_datalen = elem->datalen;
2569
2570 if (elem->id == WLAN_EID_EXTENSION) {
2571 copied = elem->datalen - 1;
2572
2573 if (data) {
2574 if (copied > data_len)
2575 return -ENOSPC;
2576
2577 memmove(data, elem->data + 1, copied);
2578 }
2579 } else {
2580 copied = elem->datalen;
2581
2582 if (data) {
2583 if (copied > data_len)
2584 return -ENOSPC;
2585
2586 memmove(data, elem->data, copied);
2587 }
2588 }
2589
2590 /* Fragmented elements must have 255 bytes */
2591 if (elem_datalen < 255)
2592 return copied;
2593
2594 for (elem = next;
2595 elem->data < ies + ieslen &&
2596 elem->data + elem->datalen <= ies + ieslen;
2597 elem = next) {
2598 /* elem might be invalid after the memmove */
2599 next = (void *)(elem->data + elem->datalen);
2600
2601 if (elem->id != frag_id)
2602 break;
2603
2604 elem_datalen = elem->datalen;
2605
2606 if (data) {
2607 if (copied + elem_datalen > data_len)
2608 return -ENOSPC;
2609
2610 memmove(data + copied, elem->data, elem_datalen);
2611 }
2612
2613 copied += elem_datalen;
2614
2615 /* Only the last fragment may be short */
2616 if (elem_datalen != 255)
2617 break;
2618 }
2619
2620 return copied;
2621 }
2622 EXPORT_SYMBOL(cfg80211_defragment_element);
2623
2624 struct cfg80211_mle {
2625 struct ieee80211_multi_link_elem *mle;
2626 struct ieee80211_mle_per_sta_profile
2627 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2628 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2629
2630 u8 data[];
2631 };
2632
2633 static struct cfg80211_mle *
cfg80211_defrag_mle(const struct element * mle,const u8 * ie,size_t ielen,gfp_t gfp)2634 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2635 gfp_t gfp)
2636 {
2637 const struct element *elem;
2638 struct cfg80211_mle *res;
2639 size_t buf_len;
2640 ssize_t mle_len;
2641 u8 common_size, idx;
2642
2643 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2644 return NULL;
2645
2646 /* Required length for first defragmentation */
2647 buf_len = mle->datalen - 1;
2648 for_each_element(elem, mle->data + mle->datalen,
2649 ie + ielen - mle->data - mle->datalen) {
2650 if (elem->id != WLAN_EID_FRAGMENT)
2651 break;
2652
2653 buf_len += elem->datalen;
2654 }
2655
2656 res = kzalloc(struct_size(res, data, buf_len), gfp);
2657 if (!res)
2658 return NULL;
2659
2660 mle_len = cfg80211_defragment_element(mle, ie, ielen,
2661 res->data, buf_len,
2662 WLAN_EID_FRAGMENT);
2663 if (mle_len < 0)
2664 goto error;
2665
2666 res->mle = (void *)res->data;
2667
2668 /* Find the sub-element area in the buffer */
2669 common_size = ieee80211_mle_common_size((u8 *)res->mle);
2670 ie = res->data + common_size;
2671 ielen = mle_len - common_size;
2672
2673 idx = 0;
2674 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2675 ie, ielen) {
2676 res->sta_prof[idx] = (void *)elem->data;
2677 res->sta_prof_len[idx] = elem->datalen;
2678
2679 idx++;
2680 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2681 break;
2682 }
2683 if (!for_each_element_completed(elem, ie, ielen))
2684 goto error;
2685
2686 /* Defragment sta_info in-place */
2687 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2688 idx++) {
2689 if (res->sta_prof_len[idx] < 255)
2690 continue;
2691
2692 elem = (void *)res->sta_prof[idx] - 2;
2693
2694 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2695 res->sta_prof[idx + 1])
2696 buf_len = (u8 *)res->sta_prof[idx + 1] -
2697 (u8 *)res->sta_prof[idx];
2698 else
2699 buf_len = ielen + ie - (u8 *)elem;
2700
2701 res->sta_prof_len[idx] =
2702 cfg80211_defragment_element(elem,
2703 (u8 *)elem, buf_len,
2704 (u8 *)res->sta_prof[idx],
2705 buf_len,
2706 IEEE80211_MLE_SUBELEM_FRAGMENT);
2707 if (res->sta_prof_len[idx] < 0)
2708 goto error;
2709 }
2710
2711 return res;
2712
2713 error:
2714 kfree(res);
2715 return NULL;
2716 }
2717
2718 struct tbtt_info_iter_data {
2719 const struct ieee80211_neighbor_ap_info *ap_info;
2720 u8 param_ch_count;
2721 u32 use_for;
2722 u8 mld_id, link_id;
2723 bool non_tx;
2724 };
2725
2726 static enum cfg80211_rnr_iter_ret
cfg802121_mld_ap_rnr_iter(void * _data,u8 type,const struct ieee80211_neighbor_ap_info * info,const u8 * tbtt_info,u8 tbtt_info_len)2727 cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
2728 const struct ieee80211_neighbor_ap_info *info,
2729 const u8 *tbtt_info, u8 tbtt_info_len)
2730 {
2731 const struct ieee80211_rnr_mld_params *mld_params;
2732 struct tbtt_info_iter_data *data = _data;
2733 u8 link_id;
2734 bool non_tx = false;
2735
2736 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2737 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
2738 mld_params)) {
2739 const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 =
2740 (void *)tbtt_info;
2741
2742 non_tx = (tbtt_info_ge_11->bss_params &
2743 (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID |
2744 IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) ==
2745 IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2746 mld_params = &tbtt_info_ge_11->mld_params;
2747 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2748 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
2749 mld_params = (void *)tbtt_info;
2750 else
2751 return RNR_ITER_CONTINUE;
2752
2753 link_id = le16_get_bits(mld_params->params,
2754 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2755
2756 if (data->mld_id != mld_params->mld_id)
2757 return RNR_ITER_CONTINUE;
2758
2759 if (data->link_id != link_id)
2760 return RNR_ITER_CONTINUE;
2761
2762 data->ap_info = info;
2763 data->param_ch_count =
2764 le16_get_bits(mld_params->params,
2765 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2766 data->non_tx = non_tx;
2767
2768 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
2769 data->use_for = NL80211_BSS_USE_FOR_ALL;
2770 else
2771 data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2772 return RNR_ITER_BREAK;
2773 }
2774
2775 static u8
cfg80211_rnr_info_for_mld_ap(const u8 * ie,size_t ielen,u8 mld_id,u8 link_id,const struct ieee80211_neighbor_ap_info ** ap_info,u8 * param_ch_count,bool * non_tx)2776 cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2777 const struct ieee80211_neighbor_ap_info **ap_info,
2778 u8 *param_ch_count, bool *non_tx)
2779 {
2780 struct tbtt_info_iter_data data = {
2781 .mld_id = mld_id,
2782 .link_id = link_id,
2783 };
2784
2785 cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
2786
2787 *ap_info = data.ap_info;
2788 *param_ch_count = data.param_ch_count;
2789 *non_tx = data.non_tx;
2790
2791 return data.use_for;
2792 }
2793
2794 static struct element *
cfg80211_gen_reporter_rnr(struct cfg80211_bss * source_bss,bool is_mbssid,bool same_mld,u8 link_id,u8 bss_change_count,gfp_t gfp)2795 cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2796 bool same_mld, u8 link_id, u8 bss_change_count,
2797 gfp_t gfp)
2798 {
2799 const struct cfg80211_bss_ies *ies;
2800 struct ieee80211_neighbor_ap_info ap_info;
2801 struct ieee80211_tbtt_info_ge_11 tbtt_info;
2802 u32 short_ssid;
2803 const struct element *elem;
2804 struct element *res;
2805
2806 /*
2807 * We only generate the RNR to permit ML lookups. For that we do not
2808 * need an entry for the corresponding transmitting BSS, lets just skip
2809 * it even though it would be easy to add.
2810 */
2811 if (!same_mld)
2812 return NULL;
2813
2814 /* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2815 rcu_read_lock();
2816 ies = rcu_dereference(source_bss->ies);
2817
2818 ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2819 ap_info.tbtt_info_hdr =
2820 u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2821 IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2822 u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2823
2824 ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
2825
2826 /* operating class */
2827 elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2828 ies->data, ies->len);
2829 if (elem && elem->datalen >= 1) {
2830 ap_info.op_class = elem->data[0];
2831 } else {
2832 struct cfg80211_chan_def chandef;
2833
2834 /* The AP is not providing us with anything to work with. So
2835 * make up a somewhat reasonable operating class, but don't
2836 * bother with it too much as no one will ever use the
2837 * information.
2838 */
2839 cfg80211_chandef_create(&chandef, source_bss->channel,
2840 NL80211_CHAN_NO_HT);
2841
2842 if (!ieee80211_chandef_to_operating_class(&chandef,
2843 &ap_info.op_class))
2844 goto out_unlock;
2845 }
2846
2847 /* Just set TBTT offset and PSD 20 to invalid/unknown */
2848 tbtt_info.tbtt_offset = 255;
2849 tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2850
2851 memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2852 if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
2853 goto out_unlock;
2854
2855 rcu_read_unlock();
2856
2857 tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2858
2859 tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2860
2861 if (is_mbssid) {
2862 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2863 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2864 }
2865
2866 tbtt_info.mld_params.mld_id = 0;
2867 tbtt_info.mld_params.params =
2868 le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2869 le16_encode_bits(bss_change_count,
2870 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2871
2872 res = kzalloc(struct_size(res, data,
2873 sizeof(ap_info) + ap_info.tbtt_info_len),
2874 gfp);
2875 if (!res)
2876 return NULL;
2877
2878 /* Copy the data */
2879 res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2880 res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2881 memcpy(res->data, &ap_info, sizeof(ap_info));
2882 memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2883
2884 return res;
2885
2886 out_unlock:
2887 rcu_read_unlock();
2888 return NULL;
2889 }
2890
2891 static void
cfg80211_parse_ml_elem_sta_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,const struct element * elem,gfp_t gfp)2892 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2893 struct cfg80211_inform_single_bss_data *tx_data,
2894 struct cfg80211_bss *source_bss,
2895 const struct element *elem,
2896 gfp_t gfp)
2897 {
2898 struct cfg80211_inform_single_bss_data data = {
2899 .drv_data = tx_data->drv_data,
2900 .ftype = tx_data->ftype,
2901 .source_bss = source_bss,
2902 .bss_source = BSS_SOURCE_STA_PROFILE,
2903 };
2904 struct element *reporter_rnr = NULL;
2905 struct ieee80211_multi_link_elem *ml_elem;
2906 struct cfg80211_mle *mle;
2907 const struct element *ssid_elem;
2908 const u8 *ssid = NULL;
2909 size_t ssid_len = 0;
2910 u16 control;
2911 u8 ml_common_len;
2912 u8 *new_ie = NULL;
2913 struct cfg80211_bss *bss;
2914 u8 mld_id, reporter_link_id, bss_change_count;
2915 u16 seen_links = 0;
2916 u8 i;
2917
2918 if (!ieee80211_mle_type_ok(elem->data + 1,
2919 IEEE80211_ML_CONTROL_TYPE_BASIC,
2920 elem->datalen - 1))
2921 return;
2922
2923 ml_elem = (void *)(elem->data + 1);
2924 control = le16_to_cpu(ml_elem->control);
2925 ml_common_len = ml_elem->variable[0];
2926
2927 /* Must be present when transmitted by an AP (in a probe response) */
2928 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2929 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2930 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2931 return;
2932
2933 reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1);
2934 bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1);
2935
2936 /*
2937 * The MLD ID of the reporting AP is always zero. It is set if the AP
2938 * is part of an MBSSID set and will be non-zero for ML Elements
2939 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2940 * Draft P802.11be_D3.2, 35.3.4.2)
2941 */
2942 mld_id = ieee80211_mle_get_mld_id(elem->data + 1);
2943
2944 /* Fully defrag the ML element for sta information/profile iteration */
2945 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2946 if (!mle)
2947 return;
2948
2949 /* No point in doing anything if there is no per-STA profile */
2950 if (!mle->sta_prof[0])
2951 goto out;
2952
2953 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2954 if (!new_ie)
2955 goto out;
2956
2957 reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
2958 u16_get_bits(control,
2959 IEEE80211_MLC_BASIC_PRES_MLD_ID),
2960 mld_id == 0, reporter_link_id,
2961 bss_change_count,
2962 gfp);
2963
2964 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, tx_data->ie,
2965 tx_data->ielen);
2966 if (ssid_elem) {
2967 ssid = ssid_elem->data;
2968 ssid_len = ssid_elem->datalen;
2969 }
2970
2971 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2972 const struct ieee80211_neighbor_ap_info *ap_info;
2973 enum nl80211_band band;
2974 u32 freq;
2975 const u8 *profile;
2976 ssize_t profile_len;
2977 u8 param_ch_count;
2978 u8 link_id, use_for;
2979 bool non_tx;
2980
2981 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2982 mle->sta_prof_len[i]))
2983 continue;
2984
2985 control = le16_to_cpu(mle->sta_prof[i]->control);
2986
2987 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2988 continue;
2989
2990 link_id = u16_get_bits(control,
2991 IEEE80211_MLE_STA_CONTROL_LINK_ID);
2992 if (seen_links & BIT(link_id))
2993 break;
2994 seen_links |= BIT(link_id);
2995
2996 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2997 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2998 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2999 continue;
3000
3001 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
3002 data.beacon_interval =
3003 get_unaligned_le16(mle->sta_prof[i]->variable + 6);
3004 data.tsf = tx_data->tsf +
3005 get_unaligned_le64(mle->sta_prof[i]->variable + 8);
3006
3007 /* sta_info_len counts itself */
3008 profile = mle->sta_prof[i]->variable +
3009 mle->sta_prof[i]->sta_info_len - 1;
3010 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
3011 profile;
3012
3013 if (profile_len < 2)
3014 continue;
3015
3016 data.capability = get_unaligned_le16(profile);
3017 profile += 2;
3018 profile_len -= 2;
3019
3020 /* Find in RNR to look up channel information */
3021 use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
3022 tx_data->ielen,
3023 mld_id, link_id,
3024 &ap_info,
3025 ¶m_ch_count,
3026 &non_tx);
3027 if (!use_for)
3028 continue;
3029
3030 /*
3031 * As of 802.11be_D5.0, the specification does not give us any
3032 * way of discovering both the MaxBSSID and the Multiple-BSSID
3033 * Index. It does seem like the Multiple-BSSID Index element
3034 * may be provided, but section 9.4.2.45 explicitly forbids
3035 * including a Multiple-BSSID Element (in this case without any
3036 * subelements).
3037 * Without both pieces of information we cannot calculate the
3038 * reference BSSID, so simply ignore the BSS.
3039 */
3040 if (non_tx)
3041 continue;
3042
3043 /* We could sanity check the BSSID is included */
3044
3045 if (!ieee80211_operating_class_to_band(ap_info->op_class,
3046 &band))
3047 continue;
3048
3049 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
3050 data.channel = ieee80211_get_channel_khz(wiphy, freq);
3051
3052 /* Skip if RNR element specifies an unsupported channel */
3053 if (!data.channel)
3054 continue;
3055
3056 /* Skip if BSS entry generated from MBSSID or DIRECT source
3057 * frame data available already.
3058 */
3059 bss = cfg80211_get_bss(wiphy, data.channel, data.bssid, ssid,
3060 ssid_len, IEEE80211_BSS_TYPE_ANY,
3061 IEEE80211_PRIVACY_ANY);
3062 if (bss) {
3063 struct cfg80211_internal_bss *ibss = bss_from_pub(bss);
3064
3065 if (data.capability == bss->capability &&
3066 ibss->bss_source != BSS_SOURCE_STA_PROFILE) {
3067 cfg80211_put_bss(wiphy, bss);
3068 continue;
3069 }
3070 cfg80211_put_bss(wiphy, bss);
3071 }
3072
3073 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
3074 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
3075 use_for = 0;
3076 data.cannot_use_reasons =
3077 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
3078 }
3079 data.use_for = use_for;
3080
3081 /* Generate new elements */
3082 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
3083 data.ie = new_ie;
3084 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
3085 profile, profile_len,
3086 new_ie,
3087 IEEE80211_MAX_DATA_LEN);
3088 if (!data.ielen)
3089 continue;
3090
3091 /* The generated elements do not contain:
3092 * - Basic ML element
3093 * - A TBTT entry in the RNR for the transmitting AP
3094 *
3095 * This information is needed both internally and in userspace
3096 * as such, we should append it here.
3097 */
3098 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
3099 IEEE80211_MAX_DATA_LEN)
3100 continue;
3101
3102 /* Copy the Basic Multi-Link element including the common
3103 * information, and then fix up the link ID and BSS param
3104 * change count.
3105 * Note that the ML element length has been verified and we
3106 * also checked that it contains the link ID.
3107 */
3108 new_ie[data.ielen++] = WLAN_EID_EXTENSION;
3109 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
3110 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
3111 memcpy(new_ie + data.ielen, ml_elem,
3112 sizeof(*ml_elem) + ml_common_len);
3113
3114 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
3115 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
3116 param_ch_count;
3117
3118 data.ielen += sizeof(*ml_elem) + ml_common_len;
3119
3120 if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
3121 if (data.ielen + sizeof(struct element) +
3122 reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
3123 continue;
3124
3125 memcpy(new_ie + data.ielen, reporter_rnr,
3126 sizeof(struct element) + reporter_rnr->datalen);
3127 data.ielen += sizeof(struct element) +
3128 reporter_rnr->datalen;
3129 }
3130
3131 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
3132 if (!bss)
3133 break;
3134 cfg80211_put_bss(wiphy, bss);
3135 }
3136
3137 out:
3138 kfree(reporter_rnr);
3139 kfree(new_ie);
3140 kfree(mle);
3141 }
3142
cfg80211_parse_ml_sta_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,gfp_t gfp)3143 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
3144 struct cfg80211_inform_single_bss_data *tx_data,
3145 struct cfg80211_bss *source_bss,
3146 gfp_t gfp)
3147 {
3148 const struct element *elem;
3149
3150 if (!source_bss)
3151 return;
3152
3153 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
3154 return;
3155
3156 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
3157 tx_data->ie, tx_data->ielen)
3158 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
3159 elem, gfp);
3160 }
3161
3162 struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,gfp_t gfp)3163 cfg80211_inform_bss_data(struct wiphy *wiphy,
3164 struct cfg80211_inform_bss *data,
3165 enum cfg80211_bss_frame_type ftype,
3166 const u8 *bssid, u64 tsf, u16 capability,
3167 u16 beacon_interval, const u8 *ie, size_t ielen,
3168 gfp_t gfp)
3169 {
3170 struct cfg80211_inform_single_bss_data inform_data = {
3171 .drv_data = data,
3172 .ftype = ftype,
3173 .tsf = tsf,
3174 .capability = capability,
3175 .beacon_interval = beacon_interval,
3176 .ie = ie,
3177 .ielen = ielen,
3178 .use_for = data->restrict_use ?
3179 data->use_for :
3180 NL80211_BSS_USE_FOR_ALL,
3181 .cannot_use_reasons = data->cannot_use_reasons,
3182 };
3183 struct cfg80211_bss *res;
3184
3185 memcpy(inform_data.bssid, bssid, ETH_ALEN);
3186
3187 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
3188 if (!res)
3189 return NULL;
3190
3191 /* don't do any further MBSSID/ML handling for S1G */
3192 if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
3193 return res;
3194
3195 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3196
3197 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3198
3199 return res;
3200 }
3201 EXPORT_SYMBOL(cfg80211_inform_bss_data);
3202
3203 struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)3204 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3205 struct cfg80211_inform_bss *data,
3206 struct ieee80211_mgmt *mgmt, size_t len,
3207 gfp_t gfp)
3208 {
3209 size_t min_hdr_len;
3210 struct ieee80211_ext *ext = NULL;
3211 enum cfg80211_bss_frame_type ftype;
3212 u16 beacon_interval;
3213 const u8 *bssid;
3214 u16 capability;
3215 const u8 *ie;
3216 size_t ielen;
3217 u64 tsf;
3218 size_t s1g_optional_len;
3219
3220 if (WARN_ON(!mgmt))
3221 return NULL;
3222
3223 if (WARN_ON(!wiphy))
3224 return NULL;
3225
3226 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3227 offsetof(struct ieee80211_mgmt, u.beacon.variable));
3228
3229 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3230
3231 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
3232 ext = (void *) mgmt;
3233 s1g_optional_len =
3234 ieee80211_s1g_optional_len(ext->frame_control);
3235 min_hdr_len =
3236 offsetof(struct ieee80211_ext, u.s1g_beacon.variable) +
3237 s1g_optional_len;
3238 } else {
3239 /* same for beacons */
3240 min_hdr_len = offsetof(struct ieee80211_mgmt,
3241 u.probe_resp.variable);
3242 }
3243
3244 if (WARN_ON(len < min_hdr_len))
3245 return NULL;
3246
3247 ielen = len - min_hdr_len;
3248 ie = mgmt->u.probe_resp.variable;
3249 if (ext) {
3250 const struct ieee80211_s1g_bcn_compat_ie *compat;
3251 const struct element *elem;
3252
3253 ie = ext->u.s1g_beacon.variable + s1g_optional_len;
3254 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen);
3255 if (!elem)
3256 return NULL;
3257 if (elem->datalen < sizeof(*compat))
3258 return NULL;
3259 compat = (void *)elem->data;
3260 bssid = ext->u.s1g_beacon.sa;
3261 capability = le16_to_cpu(compat->compat_info);
3262 beacon_interval = le16_to_cpu(compat->beacon_int);
3263 } else {
3264 bssid = mgmt->bssid;
3265 beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3266 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3267 }
3268
3269 tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3270
3271 if (ieee80211_is_probe_resp(mgmt->frame_control))
3272 ftype = CFG80211_BSS_FTYPE_PRESP;
3273 else if (ext)
3274 ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
3275 else
3276 ftype = CFG80211_BSS_FTYPE_BEACON;
3277
3278 return cfg80211_inform_bss_data(wiphy, data, ftype,
3279 bssid, tsf, capability,
3280 beacon_interval, ie, ielen,
3281 gfp);
3282 }
3283 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3284
cfg80211_ref_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)3285 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3286 {
3287 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3288
3289 if (!pub)
3290 return;
3291
3292 spin_lock_bh(&rdev->bss_lock);
3293 bss_ref_get(rdev, bss_from_pub(pub));
3294 spin_unlock_bh(&rdev->bss_lock);
3295 }
3296 EXPORT_SYMBOL(cfg80211_ref_bss);
3297
cfg80211_put_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)3298 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3299 {
3300 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3301
3302 if (!pub)
3303 return;
3304
3305 spin_lock_bh(&rdev->bss_lock);
3306 bss_ref_put(rdev, bss_from_pub(pub));
3307 spin_unlock_bh(&rdev->bss_lock);
3308 }
3309 EXPORT_SYMBOL(cfg80211_put_bss);
3310
cfg80211_unlink_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)3311 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3312 {
3313 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3314 struct cfg80211_internal_bss *bss, *tmp1;
3315 struct cfg80211_bss *nontrans_bss, *tmp;
3316
3317 if (WARN_ON(!pub))
3318 return;
3319
3320 bss = bss_from_pub(pub);
3321
3322 spin_lock_bh(&rdev->bss_lock);
3323 if (list_empty(&bss->list))
3324 goto out;
3325
3326 list_for_each_entry_safe(nontrans_bss, tmp,
3327 &pub->nontrans_list,
3328 nontrans_list) {
3329 tmp1 = bss_from_pub(nontrans_bss);
3330 if (__cfg80211_unlink_bss(rdev, tmp1))
3331 rdev->bss_generation++;
3332 }
3333
3334 if (__cfg80211_unlink_bss(rdev, bss))
3335 rdev->bss_generation++;
3336 out:
3337 spin_unlock_bh(&rdev->bss_lock);
3338 }
3339 EXPORT_SYMBOL(cfg80211_unlink_bss);
3340
cfg80211_bss_iter(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,void (* iter)(struct wiphy * wiphy,struct cfg80211_bss * bss,void * data),void * iter_data)3341 void cfg80211_bss_iter(struct wiphy *wiphy,
3342 struct cfg80211_chan_def *chandef,
3343 void (*iter)(struct wiphy *wiphy,
3344 struct cfg80211_bss *bss,
3345 void *data),
3346 void *iter_data)
3347 {
3348 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3349 struct cfg80211_internal_bss *bss;
3350
3351 spin_lock_bh(&rdev->bss_lock);
3352
3353 list_for_each_entry(bss, &rdev->bss_list, list) {
3354 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3355 false))
3356 iter(wiphy, &bss->pub, iter_data);
3357 }
3358
3359 spin_unlock_bh(&rdev->bss_lock);
3360 }
3361 EXPORT_SYMBOL(cfg80211_bss_iter);
3362
cfg80211_update_assoc_bss_entry(struct wireless_dev * wdev,unsigned int link_id,struct ieee80211_channel * chan)3363 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3364 unsigned int link_id,
3365 struct ieee80211_channel *chan)
3366 {
3367 struct wiphy *wiphy = wdev->wiphy;
3368 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3369 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3370 struct cfg80211_internal_bss *new = NULL;
3371 struct cfg80211_internal_bss *bss;
3372 struct cfg80211_bss *nontrans_bss;
3373 struct cfg80211_bss *tmp;
3374
3375 spin_lock_bh(&rdev->bss_lock);
3376
3377 /*
3378 * Some APs use CSA also for bandwidth changes, i.e., without actually
3379 * changing the control channel, so no need to update in such a case.
3380 */
3381 if (cbss->pub.channel == chan)
3382 goto done;
3383
3384 /* use transmitting bss */
3385 if (cbss->pub.transmitted_bss)
3386 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3387
3388 cbss->pub.channel = chan;
3389
3390 list_for_each_entry(bss, &rdev->bss_list, list) {
3391 if (!cfg80211_bss_type_match(bss->pub.capability,
3392 bss->pub.channel->band,
3393 wdev->conn_bss_type))
3394 continue;
3395
3396 if (bss == cbss)
3397 continue;
3398
3399 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3400 new = bss;
3401 break;
3402 }
3403 }
3404
3405 if (new) {
3406 /* to save time, update IEs for transmitting bss only */
3407 cfg80211_update_known_bss(rdev, cbss, new, false);
3408 new->pub.proberesp_ies = NULL;
3409 new->pub.beacon_ies = NULL;
3410
3411 list_for_each_entry_safe(nontrans_bss, tmp,
3412 &new->pub.nontrans_list,
3413 nontrans_list) {
3414 bss = bss_from_pub(nontrans_bss);
3415 if (__cfg80211_unlink_bss(rdev, bss))
3416 rdev->bss_generation++;
3417 }
3418
3419 WARN_ON(atomic_read(&new->hold));
3420 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3421 rdev->bss_generation++;
3422 }
3423 cfg80211_rehash_bss(rdev, cbss);
3424
3425 list_for_each_entry_safe(nontrans_bss, tmp,
3426 &cbss->pub.nontrans_list,
3427 nontrans_list) {
3428 bss = bss_from_pub(nontrans_bss);
3429 bss->pub.channel = chan;
3430 cfg80211_rehash_bss(rdev, bss);
3431 }
3432
3433 done:
3434 spin_unlock_bh(&rdev->bss_lock);
3435 }
3436
3437 #ifdef CONFIG_CFG80211_WEXT
3438 static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net * net,int ifindex)3439 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3440 {
3441 struct cfg80211_registered_device *rdev;
3442 struct net_device *dev;
3443
3444 ASSERT_RTNL();
3445
3446 dev = dev_get_by_index(net, ifindex);
3447 if (!dev)
3448 return ERR_PTR(-ENODEV);
3449 if (dev->ieee80211_ptr)
3450 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3451 else
3452 rdev = ERR_PTR(-ENODEV);
3453 dev_put(dev);
3454 return rdev;
3455 }
3456
cfg80211_wext_siwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)3457 int cfg80211_wext_siwscan(struct net_device *dev,
3458 struct iw_request_info *info,
3459 union iwreq_data *wrqu, char *extra)
3460 {
3461 struct cfg80211_registered_device *rdev;
3462 struct wiphy *wiphy;
3463 struct iw_scan_req *wreq = NULL;
3464 struct cfg80211_scan_request *creq;
3465 int i, err, n_channels = 0;
3466 enum nl80211_band band;
3467
3468 if (!netif_running(dev))
3469 return -ENETDOWN;
3470
3471 if (wrqu->data.length == sizeof(struct iw_scan_req))
3472 wreq = (struct iw_scan_req *)extra;
3473
3474 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3475
3476 if (IS_ERR(rdev))
3477 return PTR_ERR(rdev);
3478
3479 if (rdev->scan_req || rdev->scan_msg)
3480 return -EBUSY;
3481
3482 wiphy = &rdev->wiphy;
3483
3484 /* Determine number of channels, needed to allocate creq */
3485 if (wreq && wreq->num_channels) {
3486 /* Passed from userspace so should be checked */
3487 if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES))
3488 return -EINVAL;
3489 n_channels = wreq->num_channels;
3490 } else {
3491 n_channels = ieee80211_get_num_supported_channels(wiphy);
3492 }
3493
3494 creq = kzalloc(struct_size(creq, channels, n_channels) +
3495 sizeof(struct cfg80211_ssid),
3496 GFP_ATOMIC);
3497 if (!creq)
3498 return -ENOMEM;
3499
3500 creq->wiphy = wiphy;
3501 creq->wdev = dev->ieee80211_ptr;
3502 /* SSIDs come after channels */
3503 creq->ssids = (void *)creq + struct_size(creq, channels, n_channels);
3504 creq->n_channels = n_channels;
3505 creq->n_ssids = 1;
3506 creq->scan_start = jiffies;
3507
3508 /* translate "Scan on frequencies" request */
3509 i = 0;
3510 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3511 int j;
3512
3513 if (!wiphy->bands[band])
3514 continue;
3515
3516 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3517 struct ieee80211_channel *chan;
3518
3519 /* ignore disabled channels */
3520 chan = &wiphy->bands[band]->channels[j];
3521 if (chan->flags & IEEE80211_CHAN_DISABLED ||
3522 !cfg80211_wdev_channel_allowed(creq->wdev, chan))
3523 continue;
3524
3525 /* If we have a wireless request structure and the
3526 * wireless request specifies frequencies, then search
3527 * for the matching hardware channel.
3528 */
3529 if (wreq && wreq->num_channels) {
3530 int k;
3531 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3532 for (k = 0; k < wreq->num_channels; k++) {
3533 struct iw_freq *freq =
3534 &wreq->channel_list[k];
3535 int wext_freq =
3536 cfg80211_wext_freq(freq);
3537
3538 if (wext_freq == wiphy_freq)
3539 goto wext_freq_found;
3540 }
3541 goto wext_freq_not_found;
3542 }
3543
3544 wext_freq_found:
3545 creq->channels[i] = &wiphy->bands[band]->channels[j];
3546 i++;
3547 wext_freq_not_found: ;
3548 }
3549 }
3550 /* No channels found? */
3551 if (!i) {
3552 err = -EINVAL;
3553 goto out;
3554 }
3555
3556 /* Set real number of channels specified in creq->channels[] */
3557 creq->n_channels = i;
3558
3559 /* translate "Scan for SSID" request */
3560 if (wreq) {
3561 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3562 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3563 err = -EINVAL;
3564 goto out;
3565 }
3566 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3567 creq->ssids[0].ssid_len = wreq->essid_len;
3568 }
3569 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) {
3570 creq->ssids = NULL;
3571 creq->n_ssids = 0;
3572 }
3573 }
3574
3575 for (i = 0; i < NUM_NL80211_BANDS; i++)
3576 if (wiphy->bands[i])
3577 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3578
3579 eth_broadcast_addr(creq->bssid);
3580
3581 wiphy_lock(&rdev->wiphy);
3582
3583 rdev->scan_req = creq;
3584 err = rdev_scan(rdev, creq);
3585 if (err) {
3586 rdev->scan_req = NULL;
3587 /* creq will be freed below */
3588 } else {
3589 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3590 /* creq now owned by driver */
3591 creq = NULL;
3592 dev_hold(dev);
3593 }
3594 wiphy_unlock(&rdev->wiphy);
3595 out:
3596 kfree(creq);
3597 return err;
3598 }
3599 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3600
ieee80211_scan_add_ies(struct iw_request_info * info,const struct cfg80211_bss_ies * ies,char * current_ev,char * end_buf)3601 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3602 const struct cfg80211_bss_ies *ies,
3603 char *current_ev, char *end_buf)
3604 {
3605 const u8 *pos, *end, *next;
3606 struct iw_event iwe;
3607
3608 if (!ies)
3609 return current_ev;
3610
3611 /*
3612 * If needed, fragment the IEs buffer (at IE boundaries) into short
3613 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3614 */
3615 pos = ies->data;
3616 end = pos + ies->len;
3617
3618 while (end - pos > IW_GENERIC_IE_MAX) {
3619 next = pos + 2 + pos[1];
3620 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3621 next = next + 2 + next[1];
3622
3623 memset(&iwe, 0, sizeof(iwe));
3624 iwe.cmd = IWEVGENIE;
3625 iwe.u.data.length = next - pos;
3626 current_ev = iwe_stream_add_point_check(info, current_ev,
3627 end_buf, &iwe,
3628 (void *)pos);
3629 if (IS_ERR(current_ev))
3630 return current_ev;
3631 pos = next;
3632 }
3633
3634 if (end > pos) {
3635 memset(&iwe, 0, sizeof(iwe));
3636 iwe.cmd = IWEVGENIE;
3637 iwe.u.data.length = end - pos;
3638 current_ev = iwe_stream_add_point_check(info, current_ev,
3639 end_buf, &iwe,
3640 (void *)pos);
3641 if (IS_ERR(current_ev))
3642 return current_ev;
3643 }
3644
3645 return current_ev;
3646 }
3647
3648 static char *
ieee80211_bss(struct wiphy * wiphy,struct iw_request_info * info,struct cfg80211_internal_bss * bss,char * current_ev,char * end_buf)3649 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3650 struct cfg80211_internal_bss *bss, char *current_ev,
3651 char *end_buf)
3652 {
3653 const struct cfg80211_bss_ies *ies;
3654 struct iw_event iwe;
3655 const u8 *ie;
3656 u8 buf[50];
3657 u8 *cfg, *p, *tmp;
3658 int rem, i, sig;
3659 bool ismesh = false;
3660
3661 memset(&iwe, 0, sizeof(iwe));
3662 iwe.cmd = SIOCGIWAP;
3663 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3664 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3665 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3666 IW_EV_ADDR_LEN);
3667 if (IS_ERR(current_ev))
3668 return current_ev;
3669
3670 memset(&iwe, 0, sizeof(iwe));
3671 iwe.cmd = SIOCGIWFREQ;
3672 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3673 iwe.u.freq.e = 0;
3674 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3675 IW_EV_FREQ_LEN);
3676 if (IS_ERR(current_ev))
3677 return current_ev;
3678
3679 memset(&iwe, 0, sizeof(iwe));
3680 iwe.cmd = SIOCGIWFREQ;
3681 iwe.u.freq.m = bss->pub.channel->center_freq;
3682 iwe.u.freq.e = 6;
3683 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3684 IW_EV_FREQ_LEN);
3685 if (IS_ERR(current_ev))
3686 return current_ev;
3687
3688 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3689 memset(&iwe, 0, sizeof(iwe));
3690 iwe.cmd = IWEVQUAL;
3691 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3692 IW_QUAL_NOISE_INVALID |
3693 IW_QUAL_QUAL_UPDATED;
3694 switch (wiphy->signal_type) {
3695 case CFG80211_SIGNAL_TYPE_MBM:
3696 sig = bss->pub.signal / 100;
3697 iwe.u.qual.level = sig;
3698 iwe.u.qual.updated |= IW_QUAL_DBM;
3699 if (sig < -110) /* rather bad */
3700 sig = -110;
3701 else if (sig > -40) /* perfect */
3702 sig = -40;
3703 /* will give a range of 0 .. 70 */
3704 iwe.u.qual.qual = sig + 110;
3705 break;
3706 case CFG80211_SIGNAL_TYPE_UNSPEC:
3707 iwe.u.qual.level = bss->pub.signal;
3708 /* will give range 0 .. 100 */
3709 iwe.u.qual.qual = bss->pub.signal;
3710 break;
3711 default:
3712 /* not reached */
3713 break;
3714 }
3715 current_ev = iwe_stream_add_event_check(info, current_ev,
3716 end_buf, &iwe,
3717 IW_EV_QUAL_LEN);
3718 if (IS_ERR(current_ev))
3719 return current_ev;
3720 }
3721
3722 memset(&iwe, 0, sizeof(iwe));
3723 iwe.cmd = SIOCGIWENCODE;
3724 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3725 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3726 else
3727 iwe.u.data.flags = IW_ENCODE_DISABLED;
3728 iwe.u.data.length = 0;
3729 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3730 &iwe, "");
3731 if (IS_ERR(current_ev))
3732 return current_ev;
3733
3734 rcu_read_lock();
3735 ies = rcu_dereference(bss->pub.ies);
3736 rem = ies->len;
3737 ie = ies->data;
3738
3739 while (rem >= 2) {
3740 /* invalid data */
3741 if (ie[1] > rem - 2)
3742 break;
3743
3744 switch (ie[0]) {
3745 case WLAN_EID_SSID:
3746 memset(&iwe, 0, sizeof(iwe));
3747 iwe.cmd = SIOCGIWESSID;
3748 iwe.u.data.length = ie[1];
3749 iwe.u.data.flags = 1;
3750 current_ev = iwe_stream_add_point_check(info,
3751 current_ev,
3752 end_buf, &iwe,
3753 (u8 *)ie + 2);
3754 if (IS_ERR(current_ev))
3755 goto unlock;
3756 break;
3757 case WLAN_EID_MESH_ID:
3758 memset(&iwe, 0, sizeof(iwe));
3759 iwe.cmd = SIOCGIWESSID;
3760 iwe.u.data.length = ie[1];
3761 iwe.u.data.flags = 1;
3762 current_ev = iwe_stream_add_point_check(info,
3763 current_ev,
3764 end_buf, &iwe,
3765 (u8 *)ie + 2);
3766 if (IS_ERR(current_ev))
3767 goto unlock;
3768 break;
3769 case WLAN_EID_MESH_CONFIG:
3770 ismesh = true;
3771 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3772 break;
3773 cfg = (u8 *)ie + 2;
3774 memset(&iwe, 0, sizeof(iwe));
3775 iwe.cmd = IWEVCUSTOM;
3776 iwe.u.data.length = sprintf(buf,
3777 "Mesh Network Path Selection Protocol ID: 0x%02X",
3778 cfg[0]);
3779 current_ev = iwe_stream_add_point_check(info,
3780 current_ev,
3781 end_buf,
3782 &iwe, buf);
3783 if (IS_ERR(current_ev))
3784 goto unlock;
3785 iwe.u.data.length = sprintf(buf,
3786 "Path Selection Metric ID: 0x%02X",
3787 cfg[1]);
3788 current_ev = iwe_stream_add_point_check(info,
3789 current_ev,
3790 end_buf,
3791 &iwe, buf);
3792 if (IS_ERR(current_ev))
3793 goto unlock;
3794 iwe.u.data.length = sprintf(buf,
3795 "Congestion Control Mode ID: 0x%02X",
3796 cfg[2]);
3797 current_ev = iwe_stream_add_point_check(info,
3798 current_ev,
3799 end_buf,
3800 &iwe, buf);
3801 if (IS_ERR(current_ev))
3802 goto unlock;
3803 iwe.u.data.length = sprintf(buf,
3804 "Synchronization ID: 0x%02X",
3805 cfg[3]);
3806 current_ev = iwe_stream_add_point_check(info,
3807 current_ev,
3808 end_buf,
3809 &iwe, buf);
3810 if (IS_ERR(current_ev))
3811 goto unlock;
3812 iwe.u.data.length = sprintf(buf,
3813 "Authentication ID: 0x%02X",
3814 cfg[4]);
3815 current_ev = iwe_stream_add_point_check(info,
3816 current_ev,
3817 end_buf,
3818 &iwe, buf);
3819 if (IS_ERR(current_ev))
3820 goto unlock;
3821 iwe.u.data.length = sprintf(buf,
3822 "Formation Info: 0x%02X",
3823 cfg[5]);
3824 current_ev = iwe_stream_add_point_check(info,
3825 current_ev,
3826 end_buf,
3827 &iwe, buf);
3828 if (IS_ERR(current_ev))
3829 goto unlock;
3830 iwe.u.data.length = sprintf(buf,
3831 "Capabilities: 0x%02X",
3832 cfg[6]);
3833 current_ev = iwe_stream_add_point_check(info,
3834 current_ev,
3835 end_buf,
3836 &iwe, buf);
3837 if (IS_ERR(current_ev))
3838 goto unlock;
3839 break;
3840 case WLAN_EID_SUPP_RATES:
3841 case WLAN_EID_EXT_SUPP_RATES:
3842 /* display all supported rates in readable format */
3843 p = current_ev + iwe_stream_lcp_len(info);
3844
3845 memset(&iwe, 0, sizeof(iwe));
3846 iwe.cmd = SIOCGIWRATE;
3847 /* Those two flags are ignored... */
3848 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3849
3850 for (i = 0; i < ie[1]; i++) {
3851 iwe.u.bitrate.value =
3852 ((ie[i + 2] & 0x7f) * 500000);
3853 tmp = p;
3854 p = iwe_stream_add_value(info, current_ev, p,
3855 end_buf, &iwe,
3856 IW_EV_PARAM_LEN);
3857 if (p == tmp) {
3858 current_ev = ERR_PTR(-E2BIG);
3859 goto unlock;
3860 }
3861 }
3862 current_ev = p;
3863 break;
3864 }
3865 rem -= ie[1] + 2;
3866 ie += ie[1] + 2;
3867 }
3868
3869 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3870 ismesh) {
3871 memset(&iwe, 0, sizeof(iwe));
3872 iwe.cmd = SIOCGIWMODE;
3873 if (ismesh)
3874 iwe.u.mode = IW_MODE_MESH;
3875 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3876 iwe.u.mode = IW_MODE_MASTER;
3877 else
3878 iwe.u.mode = IW_MODE_ADHOC;
3879 current_ev = iwe_stream_add_event_check(info, current_ev,
3880 end_buf, &iwe,
3881 IW_EV_UINT_LEN);
3882 if (IS_ERR(current_ev))
3883 goto unlock;
3884 }
3885
3886 memset(&iwe, 0, sizeof(iwe));
3887 iwe.cmd = IWEVCUSTOM;
3888 iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3889 (unsigned long long)(ies->tsf));
3890 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3891 &iwe, buf);
3892 if (IS_ERR(current_ev))
3893 goto unlock;
3894 memset(&iwe, 0, sizeof(iwe));
3895 iwe.cmd = IWEVCUSTOM;
3896 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3897 elapsed_jiffies_msecs(bss->ts));
3898 current_ev = iwe_stream_add_point_check(info, current_ev,
3899 end_buf, &iwe, buf);
3900 if (IS_ERR(current_ev))
3901 goto unlock;
3902
3903 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3904
3905 unlock:
3906 rcu_read_unlock();
3907 return current_ev;
3908 }
3909
3910
ieee80211_scan_results(struct cfg80211_registered_device * rdev,struct iw_request_info * info,char * buf,size_t len)3911 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3912 struct iw_request_info *info,
3913 char *buf, size_t len)
3914 {
3915 char *current_ev = buf;
3916 char *end_buf = buf + len;
3917 struct cfg80211_internal_bss *bss;
3918 int err = 0;
3919
3920 spin_lock_bh(&rdev->bss_lock);
3921 cfg80211_bss_expire(rdev);
3922
3923 list_for_each_entry(bss, &rdev->bss_list, list) {
3924 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3925 err = -E2BIG;
3926 break;
3927 }
3928 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3929 current_ev, end_buf);
3930 if (IS_ERR(current_ev)) {
3931 err = PTR_ERR(current_ev);
3932 break;
3933 }
3934 }
3935 spin_unlock_bh(&rdev->bss_lock);
3936
3937 if (err)
3938 return err;
3939 return current_ev - buf;
3940 }
3941
3942
cfg80211_wext_giwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)3943 int cfg80211_wext_giwscan(struct net_device *dev,
3944 struct iw_request_info *info,
3945 union iwreq_data *wrqu, char *extra)
3946 {
3947 struct iw_point *data = &wrqu->data;
3948 struct cfg80211_registered_device *rdev;
3949 int res;
3950
3951 if (!netif_running(dev))
3952 return -ENETDOWN;
3953
3954 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3955
3956 if (IS_ERR(rdev))
3957 return PTR_ERR(rdev);
3958
3959 if (rdev->scan_req || rdev->scan_msg)
3960 return -EAGAIN;
3961
3962 res = ieee80211_scan_results(rdev, info, extra, data->length);
3963 data->length = 0;
3964 if (res >= 0) {
3965 data->length = res;
3966 res = 0;
3967 }
3968
3969 return res;
3970 }
3971 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3972 #endif
3973