• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2024 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include <kunit/visibility.h>
24 #include "core.h"
25 #include "nl80211.h"
26 #include "wext-compat.h"
27 #include "rdev-ops.h"
28 
29 /**
30  * DOC: BSS tree/list structure
31  *
32  * At the top level, the BSS list is kept in both a list in each
33  * registered device (@bss_list) as well as an RB-tree for faster
34  * lookup. In the RB-tree, entries can be looked up using their
35  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36  * for other BSSes.
37  *
38  * Due to the possibility of hidden SSIDs, there's a second level
39  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40  * The hidden_list connects all BSSes belonging to a single AP
41  * that has a hidden SSID, and connects beacon and probe response
42  * entries. For a probe response entry for a hidden SSID, the
43  * hidden_beacon_bss pointer points to the BSS struct holding the
44  * beacon's information.
45  *
46  * Reference counting is done for all these references except for
47  * the hidden_list, so that a beacon BSS struct that is otherwise
48  * not referenced has one reference for being on the bss_list and
49  * one for each probe response entry that points to it using the
50  * hidden_beacon_bss pointer. When a BSS struct that has such a
51  * pointer is get/put, the refcount update is also propagated to
52  * the referenced struct, this ensure that it cannot get removed
53  * while somebody is using the probe response version.
54  *
55  * Note that the hidden_beacon_bss pointer never changes, due to
56  * the reference counting. Therefore, no locking is needed for
57  * it.
58  *
59  * Also note that the hidden_beacon_bss pointer is only relevant
60  * if the driver uses something other than the IEs, e.g. private
61  * data stored in the BSS struct, since the beacon IEs are
62  * also linked into the probe response struct.
63  */
64 
65 /*
66  * Limit the number of BSS entries stored in mac80211. Each one is
67  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68  * If somebody wants to really attack this though, they'd likely
69  * use small beacons, and only one type of frame, limiting each of
70  * the entries to a much smaller size (in order to generate more
71  * entries in total, so overhead is bigger.)
72  */
73 static int bss_entries_limit = 1000;
74 module_param(bss_entries_limit, int, 0644);
75 MODULE_PARM_DESC(bss_entries_limit,
76                  "limit to number of scan BSS entries (per wiphy, default 1000)");
77 
78 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
79 
bss_free(struct cfg80211_internal_bss * bss)80 static void bss_free(struct cfg80211_internal_bss *bss)
81 {
82 	struct cfg80211_bss_ies *ies;
83 
84 	if (WARN_ON(atomic_read(&bss->hold)))
85 		return;
86 
87 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
88 	if (ies && !bss->pub.hidden_beacon_bss)
89 		kfree_rcu(ies, rcu_head);
90 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
91 	if (ies)
92 		kfree_rcu(ies, rcu_head);
93 
94 	/*
95 	 * This happens when the module is removed, it doesn't
96 	 * really matter any more save for completeness
97 	 */
98 	if (!list_empty(&bss->hidden_list))
99 		list_del(&bss->hidden_list);
100 
101 	kfree(bss);
102 }
103 
bss_ref_get(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)104 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
105 			       struct cfg80211_internal_bss *bss)
106 {
107 	lockdep_assert_held(&rdev->bss_lock);
108 
109 	bss->refcount++;
110 
111 	if (bss->pub.hidden_beacon_bss)
112 		bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
113 
114 	if (bss->pub.transmitted_bss)
115 		bss_from_pub(bss->pub.transmitted_bss)->refcount++;
116 }
117 
bss_ref_put(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)118 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
119 			       struct cfg80211_internal_bss *bss)
120 {
121 	lockdep_assert_held(&rdev->bss_lock);
122 
123 	if (bss->pub.hidden_beacon_bss) {
124 		struct cfg80211_internal_bss *hbss;
125 
126 		hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
127 		hbss->refcount--;
128 		if (hbss->refcount == 0)
129 			bss_free(hbss);
130 	}
131 
132 	if (bss->pub.transmitted_bss) {
133 		struct cfg80211_internal_bss *tbss;
134 
135 		tbss = bss_from_pub(bss->pub.transmitted_bss);
136 		tbss->refcount--;
137 		if (tbss->refcount == 0)
138 			bss_free(tbss);
139 	}
140 
141 	bss->refcount--;
142 	if (bss->refcount == 0)
143 		bss_free(bss);
144 }
145 
__cfg80211_unlink_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)146 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147 				  struct cfg80211_internal_bss *bss)
148 {
149 	lockdep_assert_held(&rdev->bss_lock);
150 
151 	if (!list_empty(&bss->hidden_list)) {
152 		/*
153 		 * don't remove the beacon entry if it has
154 		 * probe responses associated with it
155 		 */
156 		if (!bss->pub.hidden_beacon_bss)
157 			return false;
158 		/*
159 		 * if it's a probe response entry break its
160 		 * link to the other entries in the group
161 		 */
162 		list_del_init(&bss->hidden_list);
163 	}
164 
165 	list_del_init(&bss->list);
166 	list_del_init(&bss->pub.nontrans_list);
167 	rb_erase(&bss->rbn, &rdev->bss_tree);
168 	rdev->bss_entries--;
169 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
171 		  rdev->bss_entries, list_empty(&rdev->bss_list));
172 	bss_ref_put(rdev, bss);
173 	return true;
174 }
175 
cfg80211_is_element_inherited(const struct element * elem,const struct element * non_inherit_elem)176 bool cfg80211_is_element_inherited(const struct element *elem,
177 				   const struct element *non_inherit_elem)
178 {
179 	u8 id_len, ext_id_len, i, loop_len, id;
180 	const u8 *list;
181 
182 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183 		return false;
184 
185 	if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
186 	    elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
187 		return false;
188 
189 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
190 		return true;
191 
192 	/*
193 	 * non inheritance element format is:
194 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
195 	 * Both lists are optional. Both lengths are mandatory.
196 	 * This means valid length is:
197 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
198 	 */
199 	id_len = non_inherit_elem->data[1];
200 	if (non_inherit_elem->datalen < 3 + id_len)
201 		return true;
202 
203 	ext_id_len = non_inherit_elem->data[2 + id_len];
204 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
205 		return true;
206 
207 	if (elem->id == WLAN_EID_EXTENSION) {
208 		if (!ext_id_len)
209 			return true;
210 		loop_len = ext_id_len;
211 		list = &non_inherit_elem->data[3 + id_len];
212 		id = elem->data[0];
213 	} else {
214 		if (!id_len)
215 			return true;
216 		loop_len = id_len;
217 		list = &non_inherit_elem->data[2];
218 		id = elem->id;
219 	}
220 
221 	for (i = 0; i < loop_len; i++) {
222 		if (list[i] == id)
223 			return false;
224 	}
225 
226 	return true;
227 }
228 EXPORT_SYMBOL(cfg80211_is_element_inherited);
229 
cfg80211_copy_elem_with_frags(const struct element * elem,const u8 * ie,size_t ie_len,u8 ** pos,u8 * buf,size_t buf_len)230 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
231 					    const u8 *ie, size_t ie_len,
232 					    u8 **pos, u8 *buf, size_t buf_len)
233 {
234 	if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
235 		    elem->data + elem->datalen > ie + ie_len))
236 		return 0;
237 
238 	if (elem->datalen + 2 > buf + buf_len - *pos)
239 		return 0;
240 
241 	memcpy(*pos, elem, elem->datalen + 2);
242 	*pos += elem->datalen + 2;
243 
244 	/* Finish if it is not fragmented  */
245 	if (elem->datalen != 255)
246 		return *pos - buf;
247 
248 	ie_len = ie + ie_len - elem->data - elem->datalen;
249 	ie = (const u8 *)elem->data + elem->datalen;
250 
251 	for_each_element(elem, ie, ie_len) {
252 		if (elem->id != WLAN_EID_FRAGMENT)
253 			break;
254 
255 		if (elem->datalen + 2 > buf + buf_len - *pos)
256 			return 0;
257 
258 		memcpy(*pos, elem, elem->datalen + 2);
259 		*pos += elem->datalen + 2;
260 
261 		if (elem->datalen != 255)
262 			break;
263 	}
264 
265 	return *pos - buf;
266 }
267 
268 VISIBLE_IF_CFG80211_KUNIT size_t
cfg80211_gen_new_ie(const u8 * ie,size_t ielen,const u8 * subie,size_t subie_len,u8 * new_ie,size_t new_ie_len)269 cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
270 		    const u8 *subie, size_t subie_len,
271 		    u8 *new_ie, size_t new_ie_len)
272 {
273 	const struct element *non_inherit_elem, *parent, *sub;
274 	u8 *pos = new_ie;
275 	u8 id, ext_id;
276 	unsigned int match_len;
277 
278 	non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
279 						  subie, subie_len);
280 
281 	/* We copy the elements one by one from the parent to the generated
282 	 * elements.
283 	 * If they are not inherited (included in subie or in the non
284 	 * inheritance element), then we copy all occurrences the first time
285 	 * we see this element type.
286 	 */
287 	for_each_element(parent, ie, ielen) {
288 		if (parent->id == WLAN_EID_FRAGMENT)
289 			continue;
290 
291 		if (parent->id == WLAN_EID_EXTENSION) {
292 			if (parent->datalen < 1)
293 				continue;
294 
295 			id = WLAN_EID_EXTENSION;
296 			ext_id = parent->data[0];
297 			match_len = 1;
298 		} else {
299 			id = parent->id;
300 			match_len = 0;
301 		}
302 
303 		/* Find first occurrence in subie */
304 		sub = cfg80211_find_elem_match(id, subie, subie_len,
305 					       &ext_id, match_len, 0);
306 
307 		/* Copy from parent if not in subie and inherited */
308 		if (!sub &&
309 		    cfg80211_is_element_inherited(parent, non_inherit_elem)) {
310 			if (!cfg80211_copy_elem_with_frags(parent,
311 							   ie, ielen,
312 							   &pos, new_ie,
313 							   new_ie_len))
314 				return 0;
315 
316 			continue;
317 		}
318 
319 		/* Already copied if an earlier element had the same type */
320 		if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
321 					     &ext_id, match_len, 0))
322 			continue;
323 
324 		/* Not inheriting, copy all similar elements from subie */
325 		while (sub) {
326 			if (!cfg80211_copy_elem_with_frags(sub,
327 							   subie, subie_len,
328 							   &pos, new_ie,
329 							   new_ie_len))
330 				return 0;
331 
332 			sub = cfg80211_find_elem_match(id,
333 						       sub->data + sub->datalen,
334 						       subie_len + subie -
335 						       (sub->data +
336 							sub->datalen),
337 						       &ext_id, match_len, 0);
338 		}
339 	}
340 
341 	/* The above misses elements that are included in subie but not in the
342 	 * parent, so do a pass over subie and append those.
343 	 * Skip the non-tx BSSID caps and non-inheritance element.
344 	 */
345 	for_each_element(sub, subie, subie_len) {
346 		if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
347 			continue;
348 
349 		if (sub->id == WLAN_EID_FRAGMENT)
350 			continue;
351 
352 		if (sub->id == WLAN_EID_EXTENSION) {
353 			if (sub->datalen < 1)
354 				continue;
355 
356 			id = WLAN_EID_EXTENSION;
357 			ext_id = sub->data[0];
358 			match_len = 1;
359 
360 			if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
361 				continue;
362 		} else {
363 			id = sub->id;
364 			match_len = 0;
365 		}
366 
367 		/* Processed if one was included in the parent */
368 		if (cfg80211_find_elem_match(id, ie, ielen,
369 					     &ext_id, match_len, 0))
370 			continue;
371 
372 		if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
373 						   &pos, new_ie, new_ie_len))
374 			return 0;
375 	}
376 
377 	return pos - new_ie;
378 }
379 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
380 
is_bss(struct cfg80211_bss * a,const u8 * bssid,const u8 * ssid,size_t ssid_len)381 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
382 		   const u8 *ssid, size_t ssid_len)
383 {
384 	const struct cfg80211_bss_ies *ies;
385 	const struct element *ssid_elem;
386 
387 	if (bssid && !ether_addr_equal(a->bssid, bssid))
388 		return false;
389 
390 	if (!ssid)
391 		return true;
392 
393 	ies = rcu_access_pointer(a->ies);
394 	if (!ies)
395 		return false;
396 	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
397 	if (!ssid_elem)
398 		return false;
399 	if (ssid_elem->datalen != ssid_len)
400 		return false;
401 	return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
402 }
403 
404 static int
cfg80211_add_nontrans_list(struct cfg80211_bss * trans_bss,struct cfg80211_bss * nontrans_bss)405 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
406 			   struct cfg80211_bss *nontrans_bss)
407 {
408 	const struct element *ssid_elem;
409 	struct cfg80211_bss *bss = NULL;
410 
411 	rcu_read_lock();
412 	ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
413 	if (!ssid_elem) {
414 		rcu_read_unlock();
415 		return -EINVAL;
416 	}
417 
418 	/* check if nontrans_bss is in the list */
419 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
420 		if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
421 			   ssid_elem->datalen)) {
422 			rcu_read_unlock();
423 			return 0;
424 		}
425 	}
426 
427 	rcu_read_unlock();
428 
429 	/*
430 	 * This is a bit weird - it's not on the list, but already on another
431 	 * one! The only way that could happen is if there's some BSSID/SSID
432 	 * shared by multiple APs in their multi-BSSID profiles, potentially
433 	 * with hidden SSID mixed in ... ignore it.
434 	 */
435 	if (!list_empty(&nontrans_bss->nontrans_list))
436 		return -EINVAL;
437 
438 	/* add to the list */
439 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
440 	return 0;
441 }
442 
__cfg80211_bss_expire(struct cfg80211_registered_device * rdev,unsigned long expire_time)443 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
444 				  unsigned long expire_time)
445 {
446 	struct cfg80211_internal_bss *bss, *tmp;
447 	bool expired = false;
448 
449 	lockdep_assert_held(&rdev->bss_lock);
450 
451 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
452 		if (atomic_read(&bss->hold))
453 			continue;
454 		if (!time_after(expire_time, bss->ts))
455 			continue;
456 
457 		if (__cfg80211_unlink_bss(rdev, bss))
458 			expired = true;
459 	}
460 
461 	if (expired)
462 		rdev->bss_generation++;
463 }
464 
cfg80211_bss_expire_oldest(struct cfg80211_registered_device * rdev)465 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
466 {
467 	struct cfg80211_internal_bss *bss, *oldest = NULL;
468 	bool ret;
469 
470 	lockdep_assert_held(&rdev->bss_lock);
471 
472 	list_for_each_entry(bss, &rdev->bss_list, list) {
473 		if (atomic_read(&bss->hold))
474 			continue;
475 
476 		if (!list_empty(&bss->hidden_list) &&
477 		    !bss->pub.hidden_beacon_bss)
478 			continue;
479 
480 		if (oldest && time_before(oldest->ts, bss->ts))
481 			continue;
482 		oldest = bss;
483 	}
484 
485 	if (WARN_ON(!oldest))
486 		return false;
487 
488 	/*
489 	 * The callers make sure to increase rdev->bss_generation if anything
490 	 * gets removed (and a new entry added), so there's no need to also do
491 	 * it here.
492 	 */
493 
494 	ret = __cfg80211_unlink_bss(rdev, oldest);
495 	WARN_ON(!ret);
496 	return ret;
497 }
498 
cfg80211_parse_bss_param(u8 data,struct cfg80211_colocated_ap * coloc_ap)499 static u8 cfg80211_parse_bss_param(u8 data,
500 				   struct cfg80211_colocated_ap *coloc_ap)
501 {
502 	coloc_ap->oct_recommended =
503 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
504 	coloc_ap->same_ssid =
505 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
506 	coloc_ap->multi_bss =
507 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
508 	coloc_ap->transmitted_bssid =
509 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
510 	coloc_ap->unsolicited_probe =
511 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
512 	coloc_ap->colocated_ess =
513 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
514 
515 	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
516 }
517 
cfg80211_calc_short_ssid(const struct cfg80211_bss_ies * ies,const struct element ** elem,u32 * s_ssid)518 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
519 				    const struct element **elem, u32 *s_ssid)
520 {
521 
522 	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
523 	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
524 		return -EINVAL;
525 
526 	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
527 	return 0;
528 }
529 
530 VISIBLE_IF_CFG80211_KUNIT void
cfg80211_free_coloc_ap_list(struct list_head * coloc_ap_list)531 cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
532 {
533 	struct cfg80211_colocated_ap *ap, *tmp_ap;
534 
535 	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
536 		list_del(&ap->list);
537 		kfree(ap);
538 	}
539 }
540 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
541 
cfg80211_parse_ap_info(struct cfg80211_colocated_ap * entry,const u8 * pos,u8 length,const struct element * ssid_elem,u32 s_ssid_tmp)542 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
543 				  const u8 *pos, u8 length,
544 				  const struct element *ssid_elem,
545 				  u32 s_ssid_tmp)
546 {
547 	u8 bss_params;
548 
549 	entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
550 
551 	/* The length is already verified by the caller to contain bss_params */
552 	if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
553 		struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
554 
555 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
556 		entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
557 		entry->short_ssid_valid = true;
558 
559 		bss_params = tbtt_info->bss_params;
560 
561 		/* Ignore disabled links */
562 		if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
563 			if (le16_get_bits(tbtt_info->mld_params.params,
564 					  IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
565 				return -EINVAL;
566 		}
567 
568 		if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
569 					  psd_20))
570 			entry->psd_20 = tbtt_info->psd_20;
571 	} else {
572 		struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
573 
574 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
575 
576 		bss_params = tbtt_info->bss_params;
577 
578 		if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
579 					  psd_20))
580 			entry->psd_20 = tbtt_info->psd_20;
581 	}
582 
583 	/* ignore entries with invalid BSSID */
584 	if (!is_valid_ether_addr(entry->bssid))
585 		return -EINVAL;
586 
587 	/* skip non colocated APs */
588 	if (!cfg80211_parse_bss_param(bss_params, entry))
589 		return -EINVAL;
590 
591 	/* no information about the short ssid. Consider the entry valid
592 	 * for now. It would later be dropped in case there are explicit
593 	 * SSIDs that need to be matched
594 	 */
595 	if (!entry->same_ssid && !entry->short_ssid_valid)
596 		return 0;
597 
598 	if (entry->same_ssid) {
599 		entry->short_ssid = s_ssid_tmp;
600 		entry->short_ssid_valid = true;
601 
602 		/*
603 		 * This is safe because we validate datalen in
604 		 * cfg80211_parse_colocated_ap(), before calling this
605 		 * function.
606 		 */
607 		memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
608 		entry->ssid_len = ssid_elem->datalen;
609 	}
610 
611 	return 0;
612 }
613 
cfg80211_iter_rnr(const u8 * elems,size_t elems_len,enum cfg80211_rnr_iter_ret (* iter)(void * data,u8 type,const struct ieee80211_neighbor_ap_info * info,const u8 * tbtt_info,u8 tbtt_info_len),void * iter_data)614 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
615 		       enum cfg80211_rnr_iter_ret
616 		       (*iter)(void *data, u8 type,
617 			       const struct ieee80211_neighbor_ap_info *info,
618 			       const u8 *tbtt_info, u8 tbtt_info_len),
619 		       void *iter_data)
620 {
621 	const struct element *rnr;
622 	const u8 *pos, *end;
623 
624 	for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
625 			    elems, elems_len) {
626 		const struct ieee80211_neighbor_ap_info *info;
627 
628 		pos = rnr->data;
629 		end = rnr->data + rnr->datalen;
630 
631 		/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
632 		while (sizeof(*info) <= end - pos) {
633 			u8 length, i, count;
634 			u8 type;
635 
636 			info = (void *)pos;
637 			count = u8_get_bits(info->tbtt_info_hdr,
638 					    IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
639 				1;
640 			length = info->tbtt_info_len;
641 
642 			pos += sizeof(*info);
643 
644 			if (count * length > end - pos)
645 				return false;
646 
647 			type = u8_get_bits(info->tbtt_info_hdr,
648 					   IEEE80211_AP_INFO_TBTT_HDR_TYPE);
649 
650 			for (i = 0; i < count; i++) {
651 				switch (iter(iter_data, type, info,
652 					     pos, length)) {
653 				case RNR_ITER_CONTINUE:
654 					break;
655 				case RNR_ITER_BREAK:
656 					return true;
657 				case RNR_ITER_ERROR:
658 					return false;
659 				}
660 
661 				pos += length;
662 			}
663 		}
664 
665 		if (pos != end)
666 			return false;
667 	}
668 
669 	return true;
670 }
671 EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
672 
673 struct colocated_ap_data {
674 	const struct element *ssid_elem;
675 	struct list_head ap_list;
676 	u32 s_ssid_tmp;
677 	int n_coloc;
678 };
679 
680 static enum cfg80211_rnr_iter_ret
cfg80211_parse_colocated_ap_iter(void * _data,u8 type,const struct ieee80211_neighbor_ap_info * info,const u8 * tbtt_info,u8 tbtt_info_len)681 cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
682 				 const struct ieee80211_neighbor_ap_info *info,
683 				 const u8 *tbtt_info, u8 tbtt_info_len)
684 {
685 	struct colocated_ap_data *data = _data;
686 	struct cfg80211_colocated_ap *entry;
687 	enum nl80211_band band;
688 
689 	if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
690 		return RNR_ITER_CONTINUE;
691 
692 	if (!ieee80211_operating_class_to_band(info->op_class, &band))
693 		return RNR_ITER_CONTINUE;
694 
695 	/* TBTT info must include bss param + BSSID + (short SSID or
696 	 * same_ssid bit to be set). Ignore other options, and move to
697 	 * the next AP info
698 	 */
699 	if (band != NL80211_BAND_6GHZ ||
700 	    !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
701 					   bss_params) ||
702 	      tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
703 	      tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
704 					   bss_params)))
705 		return RNR_ITER_CONTINUE;
706 
707 	entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC);
708 	if (!entry)
709 		return RNR_ITER_ERROR;
710 
711 	entry->center_freq =
712 		ieee80211_channel_to_frequency(info->channel, band);
713 
714 	if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len,
715 				    data->ssid_elem, data->s_ssid_tmp)) {
716 		data->n_coloc++;
717 		list_add_tail(&entry->list, &data->ap_list);
718 	} else {
719 		kfree(entry);
720 	}
721 
722 	return RNR_ITER_CONTINUE;
723 }
724 
725 VISIBLE_IF_CFG80211_KUNIT int
cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies * ies,struct list_head * list)726 cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
727 			    struct list_head *list)
728 {
729 	struct colocated_ap_data data = {};
730 	int ret;
731 
732 	INIT_LIST_HEAD(&data.ap_list);
733 
734 	ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp);
735 	if (ret)
736 		return 0;
737 
738 	if (!cfg80211_iter_rnr(ies->data, ies->len,
739 			       cfg80211_parse_colocated_ap_iter, &data)) {
740 		cfg80211_free_coloc_ap_list(&data.ap_list);
741 		return 0;
742 	}
743 
744 	list_splice_tail(&data.ap_list, list);
745 	return data.n_coloc;
746 }
747 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
748 
cfg80211_scan_req_add_chan(struct cfg80211_scan_request * request,struct ieee80211_channel * chan,bool add_to_6ghz)749 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
750 					struct ieee80211_channel *chan,
751 					bool add_to_6ghz)
752 {
753 	int i;
754 	u32 n_channels = request->n_channels;
755 	struct cfg80211_scan_6ghz_params *params =
756 		&request->scan_6ghz_params[request->n_6ghz_params];
757 
758 	for (i = 0; i < n_channels; i++) {
759 		if (request->channels[i] == chan) {
760 			if (add_to_6ghz)
761 				params->channel_idx = i;
762 			return;
763 		}
764 	}
765 
766 	request->n_channels++;
767 	request->channels[n_channels] = chan;
768 	if (add_to_6ghz)
769 		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
770 			n_channels;
771 }
772 
cfg80211_find_ssid_match(struct cfg80211_colocated_ap * ap,struct cfg80211_scan_request * request)773 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
774 				     struct cfg80211_scan_request *request)
775 {
776 	int i;
777 	u32 s_ssid;
778 
779 	for (i = 0; i < request->n_ssids; i++) {
780 		/* wildcard ssid in the scan request */
781 		if (!request->ssids[i].ssid_len) {
782 			if (ap->multi_bss && !ap->transmitted_bssid)
783 				continue;
784 
785 			return true;
786 		}
787 
788 		if (ap->ssid_len &&
789 		    ap->ssid_len == request->ssids[i].ssid_len) {
790 			if (!memcmp(request->ssids[i].ssid, ap->ssid,
791 				    ap->ssid_len))
792 				return true;
793 		} else if (ap->short_ssid_valid) {
794 			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
795 					   request->ssids[i].ssid_len);
796 
797 			if (ap->short_ssid == s_ssid)
798 				return true;
799 		}
800 	}
801 
802 	return false;
803 }
804 
cfg80211_scan_6ghz(struct cfg80211_registered_device * rdev)805 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
806 {
807 	u8 i;
808 	struct cfg80211_colocated_ap *ap;
809 	int n_channels, count = 0, err;
810 	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
811 	LIST_HEAD(coloc_ap_list);
812 	bool need_scan_psc = true;
813 	const struct ieee80211_sband_iftype_data *iftd;
814 	size_t size, offs_ssids, offs_6ghz_params, offs_ies;
815 
816 	rdev_req->scan_6ghz = true;
817 
818 	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
819 		return -EOPNOTSUPP;
820 
821 	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
822 					       rdev_req->wdev->iftype);
823 	if (!iftd || !iftd->he_cap.has_he)
824 		return -EOPNOTSUPP;
825 
826 	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
827 
828 	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
829 		struct cfg80211_internal_bss *intbss;
830 
831 		spin_lock_bh(&rdev->bss_lock);
832 		list_for_each_entry(intbss, &rdev->bss_list, list) {
833 			struct cfg80211_bss *res = &intbss->pub;
834 			const struct cfg80211_bss_ies *ies;
835 			const struct element *ssid_elem;
836 			struct cfg80211_colocated_ap *entry;
837 			u32 s_ssid_tmp;
838 			int ret;
839 
840 			ies = rcu_access_pointer(res->ies);
841 			count += cfg80211_parse_colocated_ap(ies,
842 							     &coloc_ap_list);
843 
844 			/* In case the scan request specified a specific BSSID
845 			 * and the BSS is found and operating on 6GHz band then
846 			 * add this AP to the collocated APs list.
847 			 * This is relevant for ML probe requests when the lower
848 			 * band APs have not been discovered.
849 			 */
850 			if (is_broadcast_ether_addr(rdev_req->bssid) ||
851 			    !ether_addr_equal(rdev_req->bssid, res->bssid) ||
852 			    res->channel->band != NL80211_BAND_6GHZ)
853 				continue;
854 
855 			ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
856 						       &s_ssid_tmp);
857 			if (ret)
858 				continue;
859 
860 			entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
861 			if (!entry)
862 				continue;
863 
864 			memcpy(entry->bssid, res->bssid, ETH_ALEN);
865 			entry->short_ssid = s_ssid_tmp;
866 			memcpy(entry->ssid, ssid_elem->data,
867 			       ssid_elem->datalen);
868 			entry->ssid_len = ssid_elem->datalen;
869 			entry->short_ssid_valid = true;
870 			entry->center_freq = res->channel->center_freq;
871 
872 			list_add_tail(&entry->list, &coloc_ap_list);
873 			count++;
874 		}
875 		spin_unlock_bh(&rdev->bss_lock);
876 	}
877 
878 	size = struct_size(request, channels, n_channels);
879 	offs_ssids = size;
880 	size += sizeof(*request->ssids) * rdev_req->n_ssids;
881 	offs_6ghz_params = size;
882 	size += sizeof(*request->scan_6ghz_params) * count;
883 	offs_ies = size;
884 	size += rdev_req->ie_len;
885 
886 	request = kzalloc(size, GFP_KERNEL);
887 	if (!request) {
888 		cfg80211_free_coloc_ap_list(&coloc_ap_list);
889 		return -ENOMEM;
890 	}
891 
892 	*request = *rdev_req;
893 	request->n_channels = 0;
894 	request->n_6ghz_params = 0;
895 	if (rdev_req->n_ssids) {
896 		/*
897 		 * Add the ssids from the parent scan request to the new
898 		 * scan request, so the driver would be able to use them
899 		 * in its probe requests to discover hidden APs on PSC
900 		 * channels.
901 		 */
902 		request->ssids = (void *)request + offs_ssids;
903 		memcpy(request->ssids, rdev_req->ssids,
904 		       sizeof(*request->ssids) * request->n_ssids);
905 	}
906 	request->scan_6ghz_params = (void *)request + offs_6ghz_params;
907 
908 	if (rdev_req->ie_len) {
909 		void *ie = (void *)request + offs_ies;
910 
911 		memcpy(ie, rdev_req->ie, rdev_req->ie_len);
912 		request->ie = ie;
913 	}
914 
915 	/*
916 	 * PSC channels should not be scanned in case of direct scan with 1 SSID
917 	 * and at least one of the reported co-located APs with same SSID
918 	 * indicating that all APs in the same ESS are co-located
919 	 */
920 	if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
921 		list_for_each_entry(ap, &coloc_ap_list, list) {
922 			if (ap->colocated_ess &&
923 			    cfg80211_find_ssid_match(ap, request)) {
924 				need_scan_psc = false;
925 				break;
926 			}
927 		}
928 	}
929 
930 	/*
931 	 * add to the scan request the channels that need to be scanned
932 	 * regardless of the collocated APs (PSC channels or all channels
933 	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
934 	 */
935 	for (i = 0; i < rdev_req->n_channels; i++) {
936 		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
937 		    ((need_scan_psc &&
938 		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
939 		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
940 			cfg80211_scan_req_add_chan(request,
941 						   rdev_req->channels[i],
942 						   false);
943 		}
944 	}
945 
946 	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
947 		goto skip;
948 
949 	list_for_each_entry(ap, &coloc_ap_list, list) {
950 		bool found = false;
951 		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
952 			&request->scan_6ghz_params[request->n_6ghz_params];
953 		struct ieee80211_channel *chan =
954 			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
955 
956 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED ||
957 		    !cfg80211_wdev_channel_allowed(rdev_req->wdev, chan))
958 			continue;
959 
960 		for (i = 0; i < rdev_req->n_channels; i++) {
961 			if (rdev_req->channels[i] == chan)
962 				found = true;
963 		}
964 
965 		if (!found)
966 			continue;
967 
968 		if (request->n_ssids > 0 &&
969 		    !cfg80211_find_ssid_match(ap, request))
970 			continue;
971 
972 		if (!is_broadcast_ether_addr(request->bssid) &&
973 		    !ether_addr_equal(request->bssid, ap->bssid))
974 			continue;
975 
976 		if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
977 			continue;
978 
979 		cfg80211_scan_req_add_chan(request, chan, true);
980 		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
981 		scan_6ghz_params->short_ssid = ap->short_ssid;
982 		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
983 		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
984 		scan_6ghz_params->psd_20 = ap->psd_20;
985 
986 		/*
987 		 * If a PSC channel is added to the scan and 'need_scan_psc' is
988 		 * set to false, then all the APs that the scan logic is
989 		 * interested with on the channel are collocated and thus there
990 		 * is no need to perform the initial PSC channel listen.
991 		 */
992 		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
993 			scan_6ghz_params->psc_no_listen = true;
994 
995 		request->n_6ghz_params++;
996 	}
997 
998 skip:
999 	cfg80211_free_coloc_ap_list(&coloc_ap_list);
1000 
1001 	if (request->n_channels) {
1002 		struct cfg80211_scan_request *old = rdev->int_scan_req;
1003 
1004 		rdev->int_scan_req = request;
1005 
1006 		/*
1007 		 * If this scan follows a previous scan, save the scan start
1008 		 * info from the first part of the scan
1009 		 */
1010 		if (old)
1011 			rdev->int_scan_req->info = old->info;
1012 
1013 		err = rdev_scan(rdev, request);
1014 		if (err) {
1015 			rdev->int_scan_req = old;
1016 			kfree(request);
1017 		} else {
1018 			kfree(old);
1019 		}
1020 
1021 		return err;
1022 	}
1023 
1024 	kfree(request);
1025 	return -EINVAL;
1026 }
1027 
cfg80211_scan(struct cfg80211_registered_device * rdev)1028 int cfg80211_scan(struct cfg80211_registered_device *rdev)
1029 {
1030 	struct cfg80211_scan_request *request;
1031 	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1032 	u32 n_channels = 0, idx, i;
1033 
1034 	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1035 		return rdev_scan(rdev, rdev_req);
1036 
1037 	for (i = 0; i < rdev_req->n_channels; i++) {
1038 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1039 			n_channels++;
1040 	}
1041 
1042 	if (!n_channels)
1043 		return cfg80211_scan_6ghz(rdev);
1044 
1045 	request = kzalloc(struct_size(request, channels, n_channels),
1046 			  GFP_KERNEL);
1047 	if (!request)
1048 		return -ENOMEM;
1049 
1050 	*request = *rdev_req;
1051 	request->n_channels = n_channels;
1052 
1053 	for (i = idx = 0; i < rdev_req->n_channels; i++) {
1054 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1055 			request->channels[idx++] = rdev_req->channels[i];
1056 	}
1057 
1058 	rdev_req->scan_6ghz = false;
1059 	rdev->int_scan_req = request;
1060 	return rdev_scan(rdev, request);
1061 }
1062 
___cfg80211_scan_done(struct cfg80211_registered_device * rdev,bool send_message)1063 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1064 			   bool send_message)
1065 {
1066 	struct cfg80211_scan_request *request, *rdev_req;
1067 	struct wireless_dev *wdev;
1068 	struct sk_buff *msg;
1069 #ifdef CONFIG_CFG80211_WEXT
1070 	union iwreq_data wrqu;
1071 #endif
1072 
1073 	lockdep_assert_held(&rdev->wiphy.mtx);
1074 
1075 	if (rdev->scan_msg) {
1076 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
1077 		rdev->scan_msg = NULL;
1078 		return;
1079 	}
1080 
1081 	rdev_req = rdev->scan_req;
1082 	if (!rdev_req)
1083 		return;
1084 
1085 	wdev = rdev_req->wdev;
1086 	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1087 
1088 	if (wdev_running(wdev) &&
1089 	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1090 	    !rdev_req->scan_6ghz && !request->info.aborted &&
1091 	    !cfg80211_scan_6ghz(rdev))
1092 		return;
1093 
1094 	/*
1095 	 * This must be before sending the other events!
1096 	 * Otherwise, wpa_supplicant gets completely confused with
1097 	 * wext events.
1098 	 */
1099 	if (wdev->netdev)
1100 		cfg80211_sme_scan_done(wdev->netdev);
1101 
1102 	if (!request->info.aborted &&
1103 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
1104 		/* flush entries from previous scans */
1105 		spin_lock_bh(&rdev->bss_lock);
1106 		__cfg80211_bss_expire(rdev, request->scan_start);
1107 		spin_unlock_bh(&rdev->bss_lock);
1108 	}
1109 
1110 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1111 
1112 #ifdef CONFIG_CFG80211_WEXT
1113 	if (wdev->netdev && !request->info.aborted) {
1114 		memset(&wrqu, 0, sizeof(wrqu));
1115 
1116 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1117 	}
1118 #endif
1119 
1120 	dev_put(wdev->netdev);
1121 
1122 	kfree(rdev->int_scan_req);
1123 	rdev->int_scan_req = NULL;
1124 
1125 	kfree(rdev->scan_req);
1126 	rdev->scan_req = NULL;
1127 
1128 	if (!send_message)
1129 		rdev->scan_msg = msg;
1130 	else
1131 		nl80211_send_scan_msg(rdev, msg);
1132 }
1133 
__cfg80211_scan_done(struct wiphy * wiphy,struct wiphy_work * wk)1134 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1135 {
1136 	___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1137 }
1138 
cfg80211_scan_done(struct cfg80211_scan_request * request,struct cfg80211_scan_info * info)1139 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1140 			struct cfg80211_scan_info *info)
1141 {
1142 	struct cfg80211_scan_info old_info = request->info;
1143 
1144 	trace_cfg80211_scan_done(request, info);
1145 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1146 		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1147 
1148 	request->info = *info;
1149 
1150 	/*
1151 	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1152 	 * be of the first part. In such a case old_info.scan_start_tsf should
1153 	 * be non zero.
1154 	 */
1155 	if (request->scan_6ghz && old_info.scan_start_tsf) {
1156 		request->info.scan_start_tsf = old_info.scan_start_tsf;
1157 		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1158 		       sizeof(request->info.tsf_bssid));
1159 	}
1160 
1161 	request->notified = true;
1162 	wiphy_work_queue(request->wiphy,
1163 			 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1164 }
1165 EXPORT_SYMBOL(cfg80211_scan_done);
1166 
cfg80211_add_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1167 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1168 				 struct cfg80211_sched_scan_request *req)
1169 {
1170 	lockdep_assert_held(&rdev->wiphy.mtx);
1171 
1172 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1173 }
1174 
cfg80211_del_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1175 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1176 					struct cfg80211_sched_scan_request *req)
1177 {
1178 	lockdep_assert_held(&rdev->wiphy.mtx);
1179 
1180 	list_del_rcu(&req->list);
1181 	kfree_rcu(req, rcu_head);
1182 }
1183 
1184 static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device * rdev,u64 reqid)1185 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1186 {
1187 	struct cfg80211_sched_scan_request *pos;
1188 
1189 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1190 				lockdep_is_held(&rdev->wiphy.mtx)) {
1191 		if (pos->reqid == reqid)
1192 			return pos;
1193 	}
1194 	return NULL;
1195 }
1196 
1197 /*
1198  * Determines if a scheduled scan request can be handled. When a legacy
1199  * scheduled scan is running no other scheduled scan is allowed regardless
1200  * whether the request is for legacy or multi-support scan. When a multi-support
1201  * scheduled scan is running a request for legacy scan is not allowed. In this
1202  * case a request for multi-support scan can be handled if resources are
1203  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1204  */
cfg80211_sched_scan_req_possible(struct cfg80211_registered_device * rdev,bool want_multi)1205 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1206 				     bool want_multi)
1207 {
1208 	struct cfg80211_sched_scan_request *pos;
1209 	int i = 0;
1210 
1211 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1212 		/* request id zero means legacy in progress */
1213 		if (!i && !pos->reqid)
1214 			return -EINPROGRESS;
1215 		i++;
1216 	}
1217 
1218 	if (i) {
1219 		/* no legacy allowed when multi request(s) are active */
1220 		if (!want_multi)
1221 			return -EINPROGRESS;
1222 
1223 		/* resource limit reached */
1224 		if (i == rdev->wiphy.max_sched_scan_reqs)
1225 			return -ENOSPC;
1226 	}
1227 	return 0;
1228 }
1229 
cfg80211_sched_scan_results_wk(struct work_struct * work)1230 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1231 {
1232 	struct cfg80211_registered_device *rdev;
1233 	struct cfg80211_sched_scan_request *req, *tmp;
1234 
1235 	rdev = container_of(work, struct cfg80211_registered_device,
1236 			   sched_scan_res_wk);
1237 
1238 	wiphy_lock(&rdev->wiphy);
1239 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1240 		if (req->report_results) {
1241 			req->report_results = false;
1242 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1243 				/* flush entries from previous scans */
1244 				spin_lock_bh(&rdev->bss_lock);
1245 				__cfg80211_bss_expire(rdev, req->scan_start);
1246 				spin_unlock_bh(&rdev->bss_lock);
1247 				req->scan_start = jiffies;
1248 			}
1249 			nl80211_send_sched_scan(req,
1250 						NL80211_CMD_SCHED_SCAN_RESULTS);
1251 		}
1252 	}
1253 	wiphy_unlock(&rdev->wiphy);
1254 }
1255 
cfg80211_sched_scan_results(struct wiphy * wiphy,u64 reqid)1256 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1257 {
1258 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1259 	struct cfg80211_sched_scan_request *request;
1260 
1261 	trace_cfg80211_sched_scan_results(wiphy, reqid);
1262 	/* ignore if we're not scanning */
1263 
1264 	rcu_read_lock();
1265 	request = cfg80211_find_sched_scan_req(rdev, reqid);
1266 	if (request) {
1267 		request->report_results = true;
1268 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1269 	}
1270 	rcu_read_unlock();
1271 }
1272 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1273 
cfg80211_sched_scan_stopped_locked(struct wiphy * wiphy,u64 reqid)1274 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1275 {
1276 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1277 
1278 	lockdep_assert_held(&wiphy->mtx);
1279 
1280 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1281 
1282 	__cfg80211_stop_sched_scan(rdev, reqid, true);
1283 }
1284 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1285 
cfg80211_sched_scan_stopped(struct wiphy * wiphy,u64 reqid)1286 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1287 {
1288 	wiphy_lock(wiphy);
1289 	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1290 	wiphy_unlock(wiphy);
1291 }
1292 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1293 
cfg80211_stop_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req,bool driver_initiated)1294 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1295 				 struct cfg80211_sched_scan_request *req,
1296 				 bool driver_initiated)
1297 {
1298 	lockdep_assert_held(&rdev->wiphy.mtx);
1299 
1300 	if (!driver_initiated) {
1301 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1302 		if (err)
1303 			return err;
1304 	}
1305 
1306 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1307 
1308 	cfg80211_del_sched_scan_req(rdev, req);
1309 
1310 	return 0;
1311 }
1312 
__cfg80211_stop_sched_scan(struct cfg80211_registered_device * rdev,u64 reqid,bool driver_initiated)1313 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1314 			       u64 reqid, bool driver_initiated)
1315 {
1316 	struct cfg80211_sched_scan_request *sched_scan_req;
1317 
1318 	lockdep_assert_held(&rdev->wiphy.mtx);
1319 
1320 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1321 	if (!sched_scan_req)
1322 		return -ENOENT;
1323 
1324 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1325 					    driver_initiated);
1326 }
1327 
cfg80211_bss_age(struct cfg80211_registered_device * rdev,unsigned long age_secs)1328 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1329                       unsigned long age_secs)
1330 {
1331 	struct cfg80211_internal_bss *bss;
1332 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1333 
1334 	spin_lock_bh(&rdev->bss_lock);
1335 	list_for_each_entry(bss, &rdev->bss_list, list)
1336 		bss->ts -= age_jiffies;
1337 	spin_unlock_bh(&rdev->bss_lock);
1338 }
1339 
cfg80211_bss_expire(struct cfg80211_registered_device * rdev)1340 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1341 {
1342 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1343 }
1344 
cfg80211_bss_flush(struct wiphy * wiphy)1345 void cfg80211_bss_flush(struct wiphy *wiphy)
1346 {
1347 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1348 
1349 	spin_lock_bh(&rdev->bss_lock);
1350 	__cfg80211_bss_expire(rdev, jiffies);
1351 	spin_unlock_bh(&rdev->bss_lock);
1352 }
1353 EXPORT_SYMBOL(cfg80211_bss_flush);
1354 
1355 const struct element *
cfg80211_find_elem_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)1356 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1357 			 const u8 *match, unsigned int match_len,
1358 			 unsigned int match_offset)
1359 {
1360 	const struct element *elem;
1361 
1362 	for_each_element_id(elem, eid, ies, len) {
1363 		if (elem->datalen >= match_offset + match_len &&
1364 		    !memcmp(elem->data + match_offset, match, match_len))
1365 			return elem;
1366 	}
1367 
1368 	return NULL;
1369 }
1370 EXPORT_SYMBOL(cfg80211_find_elem_match);
1371 
cfg80211_find_vendor_elem(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)1372 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1373 						const u8 *ies,
1374 						unsigned int len)
1375 {
1376 	const struct element *elem;
1377 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1378 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1379 
1380 	if (WARN_ON(oui_type > 0xff))
1381 		return NULL;
1382 
1383 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1384 					match, match_len, 0);
1385 
1386 	if (!elem || elem->datalen < 4)
1387 		return NULL;
1388 
1389 	return elem;
1390 }
1391 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1392 
1393 /**
1394  * enum bss_compare_mode - BSS compare mode
1395  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1396  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1397  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1398  */
1399 enum bss_compare_mode {
1400 	BSS_CMP_REGULAR,
1401 	BSS_CMP_HIDE_ZLEN,
1402 	BSS_CMP_HIDE_NUL,
1403 };
1404 
cmp_bss(struct cfg80211_bss * a,struct cfg80211_bss * b,enum bss_compare_mode mode)1405 static int cmp_bss(struct cfg80211_bss *a,
1406 		   struct cfg80211_bss *b,
1407 		   enum bss_compare_mode mode)
1408 {
1409 	const struct cfg80211_bss_ies *a_ies, *b_ies;
1410 	const u8 *ie1 = NULL;
1411 	const u8 *ie2 = NULL;
1412 	int i, r;
1413 
1414 	if (a->channel != b->channel)
1415 		return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1416 		       (a->channel->center_freq * 1000 + a->channel->freq_offset);
1417 
1418 	a_ies = rcu_access_pointer(a->ies);
1419 	if (!a_ies)
1420 		return -1;
1421 	b_ies = rcu_access_pointer(b->ies);
1422 	if (!b_ies)
1423 		return 1;
1424 
1425 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1426 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1427 				       a_ies->data, a_ies->len);
1428 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1429 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1430 				       b_ies->data, b_ies->len);
1431 	if (ie1 && ie2) {
1432 		int mesh_id_cmp;
1433 
1434 		if (ie1[1] == ie2[1])
1435 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1436 		else
1437 			mesh_id_cmp = ie2[1] - ie1[1];
1438 
1439 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1440 				       a_ies->data, a_ies->len);
1441 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1442 				       b_ies->data, b_ies->len);
1443 		if (ie1 && ie2) {
1444 			if (mesh_id_cmp)
1445 				return mesh_id_cmp;
1446 			if (ie1[1] != ie2[1])
1447 				return ie2[1] - ie1[1];
1448 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1449 		}
1450 	}
1451 
1452 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1453 	if (r)
1454 		return r;
1455 
1456 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1457 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1458 
1459 	if (!ie1 && !ie2)
1460 		return 0;
1461 
1462 	/*
1463 	 * Note that with "hide_ssid", the function returns a match if
1464 	 * the already-present BSS ("b") is a hidden SSID beacon for
1465 	 * the new BSS ("a").
1466 	 */
1467 
1468 	/* sort missing IE before (left of) present IE */
1469 	if (!ie1)
1470 		return -1;
1471 	if (!ie2)
1472 		return 1;
1473 
1474 	switch (mode) {
1475 	case BSS_CMP_HIDE_ZLEN:
1476 		/*
1477 		 * In ZLEN mode we assume the BSS entry we're
1478 		 * looking for has a zero-length SSID. So if
1479 		 * the one we're looking at right now has that,
1480 		 * return 0. Otherwise, return the difference
1481 		 * in length, but since we're looking for the
1482 		 * 0-length it's really equivalent to returning
1483 		 * the length of the one we're looking at.
1484 		 *
1485 		 * No content comparison is needed as we assume
1486 		 * the content length is zero.
1487 		 */
1488 		return ie2[1];
1489 	case BSS_CMP_REGULAR:
1490 	default:
1491 		/* sort by length first, then by contents */
1492 		if (ie1[1] != ie2[1])
1493 			return ie2[1] - ie1[1];
1494 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1495 	case BSS_CMP_HIDE_NUL:
1496 		if (ie1[1] != ie2[1])
1497 			return ie2[1] - ie1[1];
1498 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1499 		for (i = 0; i < ie2[1]; i++)
1500 			if (ie2[i + 2])
1501 				return -1;
1502 		return 0;
1503 	}
1504 }
1505 
cfg80211_bss_type_match(u16 capability,enum nl80211_band band,enum ieee80211_bss_type bss_type)1506 static bool cfg80211_bss_type_match(u16 capability,
1507 				    enum nl80211_band band,
1508 				    enum ieee80211_bss_type bss_type)
1509 {
1510 	bool ret = true;
1511 	u16 mask, val;
1512 
1513 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1514 		return ret;
1515 
1516 	if (band == NL80211_BAND_60GHZ) {
1517 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1518 		switch (bss_type) {
1519 		case IEEE80211_BSS_TYPE_ESS:
1520 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1521 			break;
1522 		case IEEE80211_BSS_TYPE_PBSS:
1523 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1524 			break;
1525 		case IEEE80211_BSS_TYPE_IBSS:
1526 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1527 			break;
1528 		default:
1529 			return false;
1530 		}
1531 	} else {
1532 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1533 		switch (bss_type) {
1534 		case IEEE80211_BSS_TYPE_ESS:
1535 			val = WLAN_CAPABILITY_ESS;
1536 			break;
1537 		case IEEE80211_BSS_TYPE_IBSS:
1538 			val = WLAN_CAPABILITY_IBSS;
1539 			break;
1540 		case IEEE80211_BSS_TYPE_MBSS:
1541 			val = 0;
1542 			break;
1543 		default:
1544 			return false;
1545 		}
1546 	}
1547 
1548 	ret = ((capability & mask) == val);
1549 	return ret;
1550 }
1551 
1552 /* Returned bss is reference counted and must be cleaned up appropriately. */
__cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy,u32 use_for)1553 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1554 					struct ieee80211_channel *channel,
1555 					const u8 *bssid,
1556 					const u8 *ssid, size_t ssid_len,
1557 					enum ieee80211_bss_type bss_type,
1558 					enum ieee80211_privacy privacy,
1559 					u32 use_for)
1560 {
1561 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1562 	struct cfg80211_internal_bss *bss, *res = NULL;
1563 	unsigned long now = jiffies;
1564 	int bss_privacy;
1565 
1566 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1567 			       privacy);
1568 
1569 	spin_lock_bh(&rdev->bss_lock);
1570 
1571 	list_for_each_entry(bss, &rdev->bss_list, list) {
1572 		if (!cfg80211_bss_type_match(bss->pub.capability,
1573 					     bss->pub.channel->band, bss_type))
1574 			continue;
1575 
1576 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1577 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1578 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1579 			continue;
1580 		if (channel && bss->pub.channel != channel)
1581 			continue;
1582 		if (!is_valid_ether_addr(bss->pub.bssid))
1583 			continue;
1584 		if ((bss->pub.use_for & use_for) != use_for)
1585 			continue;
1586 		/* Don't get expired BSS structs */
1587 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1588 		    !atomic_read(&bss->hold))
1589 			continue;
1590 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1591 			res = bss;
1592 			bss_ref_get(rdev, res);
1593 			break;
1594 		}
1595 	}
1596 
1597 	spin_unlock_bh(&rdev->bss_lock);
1598 	if (!res)
1599 		return NULL;
1600 	trace_cfg80211_return_bss(&res->pub);
1601 	return &res->pub;
1602 }
1603 EXPORT_SYMBOL(__cfg80211_get_bss);
1604 
rb_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1605 static bool rb_insert_bss(struct cfg80211_registered_device *rdev,
1606 			  struct cfg80211_internal_bss *bss)
1607 {
1608 	struct rb_node **p = &rdev->bss_tree.rb_node;
1609 	struct rb_node *parent = NULL;
1610 	struct cfg80211_internal_bss *tbss;
1611 	int cmp;
1612 
1613 	while (*p) {
1614 		parent = *p;
1615 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1616 
1617 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1618 
1619 		if (WARN_ON(!cmp)) {
1620 			/* will sort of leak this BSS */
1621 			return false;
1622 		}
1623 
1624 		if (cmp < 0)
1625 			p = &(*p)->rb_left;
1626 		else
1627 			p = &(*p)->rb_right;
1628 	}
1629 
1630 	rb_link_node(&bss->rbn, parent, p);
1631 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1632 	return true;
1633 }
1634 
1635 static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * res,enum bss_compare_mode mode)1636 rb_find_bss(struct cfg80211_registered_device *rdev,
1637 	    struct cfg80211_internal_bss *res,
1638 	    enum bss_compare_mode mode)
1639 {
1640 	struct rb_node *n = rdev->bss_tree.rb_node;
1641 	struct cfg80211_internal_bss *bss;
1642 	int r;
1643 
1644 	while (n) {
1645 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1646 		r = cmp_bss(&res->pub, &bss->pub, mode);
1647 
1648 		if (r == 0)
1649 			return bss;
1650 		else if (r < 0)
1651 			n = n->rb_left;
1652 		else
1653 			n = n->rb_right;
1654 	}
1655 
1656 	return NULL;
1657 }
1658 
cfg80211_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1659 static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev,
1660 				struct cfg80211_internal_bss *bss)
1661 {
1662 	lockdep_assert_held(&rdev->bss_lock);
1663 
1664 	if (!rb_insert_bss(rdev, bss))
1665 		return;
1666 	list_add_tail(&bss->list, &rdev->bss_list);
1667 	rdev->bss_entries++;
1668 }
1669 
cfg80211_rehash_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1670 static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev,
1671                                 struct cfg80211_internal_bss *bss)
1672 {
1673 	lockdep_assert_held(&rdev->bss_lock);
1674 
1675 	rb_erase(&bss->rbn, &rdev->bss_tree);
1676 	if (!rb_insert_bss(rdev, bss)) {
1677 		list_del(&bss->list);
1678 		if (!list_empty(&bss->hidden_list))
1679 			list_del_init(&bss->hidden_list);
1680 		if (!list_empty(&bss->pub.nontrans_list))
1681 			list_del_init(&bss->pub.nontrans_list);
1682 		rdev->bss_entries--;
1683 	}
1684 	rdev->bss_generation++;
1685 }
1686 
cfg80211_combine_bsses(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * new)1687 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1688 				   struct cfg80211_internal_bss *new)
1689 {
1690 	const struct cfg80211_bss_ies *ies;
1691 	struct cfg80211_internal_bss *bss;
1692 	const u8 *ie;
1693 	int i, ssidlen;
1694 	u8 fold = 0;
1695 	u32 n_entries = 0;
1696 
1697 	ies = rcu_access_pointer(new->pub.beacon_ies);
1698 	if (WARN_ON(!ies))
1699 		return false;
1700 
1701 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1702 	if (!ie) {
1703 		/* nothing to do */
1704 		return true;
1705 	}
1706 
1707 	ssidlen = ie[1];
1708 	for (i = 0; i < ssidlen; i++)
1709 		fold |= ie[2 + i];
1710 
1711 	if (fold) {
1712 		/* not a hidden SSID */
1713 		return true;
1714 	}
1715 
1716 	/* This is the bad part ... */
1717 
1718 	list_for_each_entry(bss, &rdev->bss_list, list) {
1719 		/*
1720 		 * we're iterating all the entries anyway, so take the
1721 		 * opportunity to validate the list length accounting
1722 		 */
1723 		n_entries++;
1724 
1725 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1726 			continue;
1727 		if (bss->pub.channel != new->pub.channel)
1728 			continue;
1729 		if (rcu_access_pointer(bss->pub.beacon_ies))
1730 			continue;
1731 		ies = rcu_access_pointer(bss->pub.ies);
1732 		if (!ies)
1733 			continue;
1734 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1735 		if (!ie)
1736 			continue;
1737 		if (ssidlen && ie[1] != ssidlen)
1738 			continue;
1739 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1740 			continue;
1741 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1742 			list_del(&bss->hidden_list);
1743 		/* combine them */
1744 		list_add(&bss->hidden_list, &new->hidden_list);
1745 		bss->pub.hidden_beacon_bss = &new->pub;
1746 		new->refcount += bss->refcount;
1747 		rcu_assign_pointer(bss->pub.beacon_ies,
1748 				   new->pub.beacon_ies);
1749 	}
1750 
1751 	WARN_ONCE(n_entries != rdev->bss_entries,
1752 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1753 		  rdev->bss_entries, n_entries);
1754 
1755 	return true;
1756 }
1757 
cfg80211_update_hidden_bsses(struct cfg80211_internal_bss * known,const struct cfg80211_bss_ies * new_ies,const struct cfg80211_bss_ies * old_ies)1758 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1759 					 const struct cfg80211_bss_ies *new_ies,
1760 					 const struct cfg80211_bss_ies *old_ies)
1761 {
1762 	struct cfg80211_internal_bss *bss;
1763 
1764 	/* Assign beacon IEs to all sub entries */
1765 	list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1766 		const struct cfg80211_bss_ies *ies;
1767 
1768 		ies = rcu_access_pointer(bss->pub.beacon_ies);
1769 		WARN_ON(ies != old_ies);
1770 
1771 		rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1772 	}
1773 }
1774 
cfg80211_check_stuck_ecsa(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,const struct cfg80211_bss_ies * old)1775 static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1776 				      struct cfg80211_internal_bss *known,
1777 				      const struct cfg80211_bss_ies *old)
1778 {
1779 	const struct ieee80211_ext_chansw_ie *ecsa;
1780 	const struct element *elem_new, *elem_old;
1781 	const struct cfg80211_bss_ies *new, *bcn;
1782 
1783 	if (known->pub.proberesp_ecsa_stuck)
1784 		return;
1785 
1786 	new = rcu_dereference_protected(known->pub.proberesp_ies,
1787 					lockdep_is_held(&rdev->bss_lock));
1788 	if (WARN_ON(!new))
1789 		return;
1790 
1791 	if (new->tsf - old->tsf < USEC_PER_SEC)
1792 		return;
1793 
1794 	elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1795 				      old->data, old->len);
1796 	if (!elem_old)
1797 		return;
1798 
1799 	elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1800 				      new->data, new->len);
1801 	if (!elem_new)
1802 		return;
1803 
1804 	bcn = rcu_dereference_protected(known->pub.beacon_ies,
1805 					lockdep_is_held(&rdev->bss_lock));
1806 	if (bcn &&
1807 	    cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1808 			       bcn->data, bcn->len))
1809 		return;
1810 
1811 	if (elem_new->datalen != elem_old->datalen)
1812 		return;
1813 	if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1814 		return;
1815 	if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1816 		return;
1817 
1818 	ecsa = (void *)elem_new->data;
1819 
1820 	if (!ecsa->mode)
1821 		return;
1822 
1823 	if (ecsa->new_ch_num !=
1824 	    ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1825 		return;
1826 
1827 	known->pub.proberesp_ecsa_stuck = 1;
1828 }
1829 
1830 static bool
cfg80211_update_known_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,struct cfg80211_internal_bss * new,bool signal_valid)1831 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1832 			  struct cfg80211_internal_bss *known,
1833 			  struct cfg80211_internal_bss *new,
1834 			  bool signal_valid)
1835 {
1836 	lockdep_assert_held(&rdev->bss_lock);
1837 
1838 	/* Update IEs */
1839 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1840 		const struct cfg80211_bss_ies *old;
1841 
1842 		old = rcu_access_pointer(known->pub.proberesp_ies);
1843 
1844 		rcu_assign_pointer(known->pub.proberesp_ies,
1845 				   new->pub.proberesp_ies);
1846 		/* Override possible earlier Beacon frame IEs */
1847 		rcu_assign_pointer(known->pub.ies,
1848 				   new->pub.proberesp_ies);
1849 		if (old) {
1850 			cfg80211_check_stuck_ecsa(rdev, known, old);
1851 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1852 		}
1853 	}
1854 
1855 	if (rcu_access_pointer(new->pub.beacon_ies)) {
1856 		const struct cfg80211_bss_ies *old;
1857 
1858 		if (known->pub.hidden_beacon_bss &&
1859 		    !list_empty(&known->hidden_list)) {
1860 			const struct cfg80211_bss_ies *f;
1861 
1862 			/* The known BSS struct is one of the probe
1863 			 * response members of a group, but we're
1864 			 * receiving a beacon (beacon_ies in the new
1865 			 * bss is used). This can only mean that the
1866 			 * AP changed its beacon from not having an
1867 			 * SSID to showing it, which is confusing so
1868 			 * drop this information.
1869 			 */
1870 
1871 			f = rcu_access_pointer(new->pub.beacon_ies);
1872 			if (!new->pub.hidden_beacon_bss)
1873 				kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1874 			return false;
1875 		}
1876 
1877 		old = rcu_access_pointer(known->pub.beacon_ies);
1878 
1879 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1880 
1881 		/* Override IEs if they were from a beacon before */
1882 		if (old == rcu_access_pointer(known->pub.ies))
1883 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1884 
1885 		cfg80211_update_hidden_bsses(known,
1886 					     rcu_access_pointer(new->pub.beacon_ies),
1887 					     old);
1888 
1889 		if (old)
1890 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1891 	}
1892 
1893 	known->pub.beacon_interval = new->pub.beacon_interval;
1894 
1895 	/* don't update the signal if beacon was heard on
1896 	 * adjacent channel.
1897 	 */
1898 	if (signal_valid)
1899 		known->pub.signal = new->pub.signal;
1900 	known->pub.capability = new->pub.capability;
1901 	known->ts = new->ts;
1902 	known->ts_boottime = new->ts_boottime;
1903 	known->parent_tsf = new->parent_tsf;
1904 	known->pub.chains = new->pub.chains;
1905 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1906 	       IEEE80211_MAX_CHAINS);
1907 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1908 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1909 	known->pub.bssid_index = new->pub.bssid_index;
1910 	known->pub.use_for &= new->pub.use_for;
1911 	known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1912 	known->bss_source = new->bss_source;
1913 
1914 	return true;
1915 }
1916 
1917 /* Returned bss is reference counted and must be cleaned up appropriately. */
1918 static struct cfg80211_internal_bss *
__cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)1919 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1920 		      struct cfg80211_internal_bss *tmp,
1921 		      bool signal_valid, unsigned long ts)
1922 {
1923 	struct cfg80211_internal_bss *found = NULL;
1924 	struct cfg80211_bss_ies *ies;
1925 
1926 	if (WARN_ON(!tmp->pub.channel))
1927 		goto free_ies;
1928 
1929 	tmp->ts = ts;
1930 
1931 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1932 		goto free_ies;
1933 
1934 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1935 
1936 	if (found) {
1937 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1938 			return NULL;
1939 	} else {
1940 		struct cfg80211_internal_bss *new;
1941 		struct cfg80211_internal_bss *hidden;
1942 
1943 		/*
1944 		 * create a copy -- the "res" variable that is passed in
1945 		 * is allocated on the stack since it's not needed in the
1946 		 * more common case of an update
1947 		 */
1948 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1949 			      GFP_ATOMIC);
1950 		if (!new)
1951 			goto free_ies;
1952 		memcpy(new, tmp, sizeof(*new));
1953 		new->refcount = 1;
1954 		INIT_LIST_HEAD(&new->hidden_list);
1955 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1956 		/* we'll set this later if it was non-NULL */
1957 		new->pub.transmitted_bss = NULL;
1958 
1959 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1960 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1961 			if (!hidden)
1962 				hidden = rb_find_bss(rdev, tmp,
1963 						     BSS_CMP_HIDE_NUL);
1964 			if (hidden) {
1965 				new->pub.hidden_beacon_bss = &hidden->pub;
1966 				list_add(&new->hidden_list,
1967 					 &hidden->hidden_list);
1968 				hidden->refcount++;
1969 
1970 				ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1971 				rcu_assign_pointer(new->pub.beacon_ies,
1972 						   hidden->pub.beacon_ies);
1973 				if (ies)
1974 					kfree_rcu(ies, rcu_head);
1975 			}
1976 		} else {
1977 			/*
1978 			 * Ok so we found a beacon, and don't have an entry. If
1979 			 * it's a beacon with hidden SSID, we might be in for an
1980 			 * expensive search for any probe responses that should
1981 			 * be grouped with this beacon for updates ...
1982 			 */
1983 			if (!cfg80211_combine_bsses(rdev, new)) {
1984 				bss_ref_put(rdev, new);
1985 				return NULL;
1986 			}
1987 		}
1988 
1989 		if (rdev->bss_entries >= bss_entries_limit &&
1990 		    !cfg80211_bss_expire_oldest(rdev)) {
1991 			bss_ref_put(rdev, new);
1992 			return NULL;
1993 		}
1994 
1995 		/* This must be before the call to bss_ref_get */
1996 		if (tmp->pub.transmitted_bss) {
1997 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1998 			bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1999 		}
2000 
2001 		cfg80211_insert_bss(rdev, new);
2002 		found = new;
2003 	}
2004 
2005 	rdev->bss_generation++;
2006 	bss_ref_get(rdev, found);
2007 
2008 	return found;
2009 
2010 free_ies:
2011 	ies = (void *)rcu_access_pointer(tmp->pub.beacon_ies);
2012 	if (ies)
2013 		kfree_rcu(ies, rcu_head);
2014 	ies = (void *)rcu_access_pointer(tmp->pub.proberesp_ies);
2015 	if (ies)
2016 		kfree_rcu(ies, rcu_head);
2017 
2018 	return NULL;
2019 }
2020 
2021 struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)2022 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
2023 		    struct cfg80211_internal_bss *tmp,
2024 		    bool signal_valid, unsigned long ts)
2025 {
2026 	struct cfg80211_internal_bss *res;
2027 
2028 	spin_lock_bh(&rdev->bss_lock);
2029 	res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
2030 	spin_unlock_bh(&rdev->bss_lock);
2031 
2032 	return res;
2033 }
2034 
cfg80211_get_ies_channel_number(const u8 * ie,size_t ielen,enum nl80211_band band)2035 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
2036 				    enum nl80211_band band)
2037 {
2038 	const struct element *tmp;
2039 
2040 	if (band == NL80211_BAND_6GHZ) {
2041 		struct ieee80211_he_operation *he_oper;
2042 
2043 		tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2044 					     ielen);
2045 		if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2046 		    tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2047 			const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2048 
2049 			he_oper = (void *)&tmp->data[1];
2050 
2051 			he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2052 			if (!he_6ghz_oper)
2053 				return -1;
2054 
2055 			return he_6ghz_oper->primary;
2056 		}
2057 	} else if (band == NL80211_BAND_S1GHZ) {
2058 		tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2059 		if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2060 			struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2061 
2062 			return s1gop->oper_ch;
2063 		}
2064 	} else {
2065 		tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2066 		if (tmp && tmp->datalen == 1)
2067 			return tmp->data[0];
2068 
2069 		tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2070 		if (tmp &&
2071 		    tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2072 			struct ieee80211_ht_operation *htop = (void *)tmp->data;
2073 
2074 			return htop->primary_chan;
2075 		}
2076 	}
2077 
2078 	return -1;
2079 }
2080 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2081 
2082 /*
2083  * Update RX channel information based on the available frame payload
2084  * information. This is mainly for the 2.4 GHz band where frames can be received
2085  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2086  * element to indicate the current (transmitting) channel, but this might also
2087  * be needed on other bands if RX frequency does not match with the actual
2088  * operating channel of a BSS, or if the AP reports a different primary channel.
2089  */
2090 static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy * wiphy,const u8 * ie,size_t ielen,struct ieee80211_channel * channel)2091 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2092 			 struct ieee80211_channel *channel)
2093 {
2094 	u32 freq;
2095 	int channel_number;
2096 	struct ieee80211_channel *alt_channel;
2097 
2098 	channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2099 							 channel->band);
2100 
2101 	if (channel_number < 0) {
2102 		/* No channel information in frame payload */
2103 		return channel;
2104 	}
2105 
2106 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2107 
2108 	/*
2109 	 * Frame info (beacon/prob res) is the same as received channel,
2110 	 * no need for further processing.
2111 	 */
2112 	if (freq == ieee80211_channel_to_khz(channel))
2113 		return channel;
2114 
2115 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2116 	if (!alt_channel) {
2117 		if (channel->band == NL80211_BAND_2GHZ ||
2118 		    channel->band == NL80211_BAND_6GHZ) {
2119 			/*
2120 			 * Better not allow unexpected channels when that could
2121 			 * be going beyond the 1-11 range (e.g., discovering
2122 			 * BSS on channel 12 when radio is configured for
2123 			 * channel 11) or beyond the 6 GHz channel range.
2124 			 */
2125 			return NULL;
2126 		}
2127 
2128 		/* No match for the payload channel number - ignore it */
2129 		return channel;
2130 	}
2131 
2132 	/*
2133 	 * Use the channel determined through the payload channel number
2134 	 * instead of the RX channel reported by the driver.
2135 	 */
2136 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2137 		return NULL;
2138 	return alt_channel;
2139 }
2140 
2141 struct cfg80211_inform_single_bss_data {
2142 	struct cfg80211_inform_bss *drv_data;
2143 	enum cfg80211_bss_frame_type ftype;
2144 	struct ieee80211_channel *channel;
2145 	u8 bssid[ETH_ALEN];
2146 	u64 tsf;
2147 	u16 capability;
2148 	u16 beacon_interval;
2149 	const u8 *ie;
2150 	size_t ielen;
2151 
2152 	enum bss_source_type bss_source;
2153 	/* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2154 	struct cfg80211_bss *source_bss;
2155 	u8 max_bssid_indicator;
2156 	u8 bssid_index;
2157 
2158 	u8 use_for;
2159 	u64 cannot_use_reasons;
2160 };
2161 
2162 enum ieee80211_ap_reg_power
cfg80211_get_6ghz_power_type(const u8 * elems,size_t elems_len)2163 cfg80211_get_6ghz_power_type(const u8 *elems, size_t elems_len)
2164 {
2165 	const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2166 	struct ieee80211_he_operation *he_oper;
2167 	const struct element *tmp;
2168 
2169 	tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION,
2170 				     elems, elems_len);
2171 	if (!tmp || tmp->datalen < sizeof(*he_oper) + 1 ||
2172 	    tmp->datalen < ieee80211_he_oper_size(tmp->data + 1))
2173 		return IEEE80211_REG_UNSET_AP;
2174 
2175 	he_oper = (void *)&tmp->data[1];
2176 	he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2177 
2178 	if (!he_6ghz_oper)
2179 		return IEEE80211_REG_UNSET_AP;
2180 
2181 	switch (u8_get_bits(he_6ghz_oper->control,
2182 			    IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2183 	case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2184 	case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP:
2185 		return IEEE80211_REG_LPI_AP;
2186 	case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2187 	case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP:
2188 		return IEEE80211_REG_SP_AP;
2189 	case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2190 		return IEEE80211_REG_VLP_AP;
2191 	default:
2192 		return IEEE80211_REG_UNSET_AP;
2193 	}
2194 }
2195 
cfg80211_6ghz_power_type_valid(const u8 * elems,size_t elems_len,const u32 flags)2196 static bool cfg80211_6ghz_power_type_valid(const u8 *elems, size_t elems_len,
2197 					   const u32 flags)
2198 {
2199 	switch (cfg80211_get_6ghz_power_type(elems, elems_len)) {
2200 	case IEEE80211_REG_LPI_AP:
2201 		return true;
2202 	case IEEE80211_REG_SP_AP:
2203 		return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
2204 	case IEEE80211_REG_VLP_AP:
2205 		return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
2206 	default:
2207 		return false;
2208 	}
2209 }
2210 
2211 /* Returned bss is reference counted and must be cleaned up appropriately. */
2212 static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * data,gfp_t gfp)2213 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2214 				struct cfg80211_inform_single_bss_data *data,
2215 				gfp_t gfp)
2216 {
2217 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2218 	struct cfg80211_inform_bss *drv_data = data->drv_data;
2219 	struct cfg80211_bss_ies *ies;
2220 	struct ieee80211_channel *channel;
2221 	struct cfg80211_internal_bss tmp = {}, *res;
2222 	int bss_type;
2223 	bool signal_valid;
2224 	unsigned long ts;
2225 
2226 	if (WARN_ON(!wiphy))
2227 		return NULL;
2228 
2229 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2230 		    (drv_data->signal < 0 || drv_data->signal > 100)))
2231 		return NULL;
2232 
2233 	if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2234 		return NULL;
2235 
2236 	channel = data->channel;
2237 	if (!channel)
2238 		channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2239 						   drv_data->chan);
2240 	if (!channel)
2241 		return NULL;
2242 
2243 	if (channel->band == NL80211_BAND_6GHZ &&
2244 	    !cfg80211_6ghz_power_type_valid(data->ie, data->ielen,
2245 					    channel->flags)) {
2246 		data->use_for = 0;
2247 		data->cannot_use_reasons =
2248 			NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
2249 	}
2250 
2251 	memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2252 	tmp.pub.channel = channel;
2253 	if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2254 		tmp.pub.signal = drv_data->signal;
2255 	else
2256 		tmp.pub.signal = 0;
2257 	tmp.pub.beacon_interval = data->beacon_interval;
2258 	tmp.pub.capability = data->capability;
2259 	tmp.ts_boottime = drv_data->boottime_ns;
2260 	tmp.parent_tsf = drv_data->parent_tsf;
2261 	ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2262 	tmp.pub.chains = drv_data->chains;
2263 	memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
2264 	       IEEE80211_MAX_CHAINS);
2265 	tmp.pub.use_for = data->use_for;
2266 	tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2267 	tmp.bss_source = data->bss_source;
2268 
2269 	switch (data->bss_source) {
2270 	case BSS_SOURCE_MBSSID:
2271 		tmp.pub.transmitted_bss = data->source_bss;
2272 		fallthrough;
2273 	case BSS_SOURCE_STA_PROFILE:
2274 		ts = bss_from_pub(data->source_bss)->ts;
2275 		tmp.pub.bssid_index = data->bssid_index;
2276 		tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2277 		break;
2278 	case BSS_SOURCE_DIRECT:
2279 		ts = jiffies;
2280 
2281 		if (channel->band == NL80211_BAND_60GHZ) {
2282 			bss_type = data->capability &
2283 				   WLAN_CAPABILITY_DMG_TYPE_MASK;
2284 			if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2285 			    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2286 				regulatory_hint_found_beacon(wiphy, channel,
2287 							     gfp);
2288 		} else {
2289 			if (data->capability & WLAN_CAPABILITY_ESS)
2290 				regulatory_hint_found_beacon(wiphy, channel,
2291 							     gfp);
2292 		}
2293 		break;
2294 	}
2295 
2296 	/*
2297 	 * If we do not know here whether the IEs are from a Beacon or Probe
2298 	 * Response frame, we need to pick one of the options and only use it
2299 	 * with the driver that does not provide the full Beacon/Probe Response
2300 	 * frame. Use Beacon frame pointer to avoid indicating that this should
2301 	 * override the IEs pointer should we have received an earlier
2302 	 * indication of Probe Response data.
2303 	 */
2304 	ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2305 	if (!ies)
2306 		return NULL;
2307 	ies->len = data->ielen;
2308 	ies->tsf = data->tsf;
2309 	ies->from_beacon = false;
2310 	memcpy(ies->data, data->ie, data->ielen);
2311 
2312 	switch (data->ftype) {
2313 	case CFG80211_BSS_FTYPE_BEACON:
2314 	case CFG80211_BSS_FTYPE_S1G_BEACON:
2315 		ies->from_beacon = true;
2316 		fallthrough;
2317 	case CFG80211_BSS_FTYPE_UNKNOWN:
2318 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2319 		break;
2320 	case CFG80211_BSS_FTYPE_PRESP:
2321 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2322 		break;
2323 	}
2324 	rcu_assign_pointer(tmp.pub.ies, ies);
2325 
2326 	signal_valid = drv_data->chan == channel;
2327 	spin_lock_bh(&rdev->bss_lock);
2328 	res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2329 	if (!res)
2330 		goto drop;
2331 
2332 	rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2333 
2334 	if (data->bss_source == BSS_SOURCE_MBSSID) {
2335 		/* this is a nontransmitting bss, we need to add it to
2336 		 * transmitting bss' list if it is not there
2337 		 */
2338 		if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2339 			if (__cfg80211_unlink_bss(rdev, res)) {
2340 				rdev->bss_generation++;
2341 				res = NULL;
2342 			}
2343 		}
2344 
2345 		if (!res)
2346 			goto drop;
2347 	}
2348 	spin_unlock_bh(&rdev->bss_lock);
2349 
2350 	trace_cfg80211_return_bss(&res->pub);
2351 	/* __cfg80211_bss_update gives us a referenced result */
2352 	return &res->pub;
2353 
2354 drop:
2355 	spin_unlock_bh(&rdev->bss_lock);
2356 	return NULL;
2357 }
2358 
2359 static const struct element
cfg80211_get_profile_continuation(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem)2360 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2361 				   const struct element *mbssid_elem,
2362 				   const struct element *sub_elem)
2363 {
2364 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2365 	const struct element *next_mbssid;
2366 	const struct element *next_sub;
2367 
2368 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2369 					 mbssid_end,
2370 					 ielen - (mbssid_end - ie));
2371 
2372 	/*
2373 	 * If it is not the last subelement in current MBSSID IE or there isn't
2374 	 * a next MBSSID IE - profile is complete.
2375 	*/
2376 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2377 	    !next_mbssid)
2378 		return NULL;
2379 
2380 	/* For any length error, just return NULL */
2381 
2382 	if (next_mbssid->datalen < 4)
2383 		return NULL;
2384 
2385 	next_sub = (void *)&next_mbssid->data[1];
2386 
2387 	if (next_mbssid->data + next_mbssid->datalen <
2388 	    next_sub->data + next_sub->datalen)
2389 		return NULL;
2390 
2391 	if (next_sub->id != 0 || next_sub->datalen < 2)
2392 		return NULL;
2393 
2394 	/*
2395 	 * Check if the first element in the next sub element is a start
2396 	 * of a new profile
2397 	 */
2398 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2399 	       NULL : next_mbssid;
2400 }
2401 
cfg80211_merge_profile(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem,u8 * merged_ie,size_t max_copy_len)2402 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2403 			      const struct element *mbssid_elem,
2404 			      const struct element *sub_elem,
2405 			      u8 *merged_ie, size_t max_copy_len)
2406 {
2407 	size_t copied_len = sub_elem->datalen;
2408 	const struct element *next_mbssid;
2409 
2410 	if (sub_elem->datalen > max_copy_len)
2411 		return 0;
2412 
2413 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2414 
2415 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2416 								mbssid_elem,
2417 								sub_elem))) {
2418 		const struct element *next_sub = (void *)&next_mbssid->data[1];
2419 
2420 		if (copied_len + next_sub->datalen > max_copy_len)
2421 			break;
2422 		memcpy(merged_ie + copied_len, next_sub->data,
2423 		       next_sub->datalen);
2424 		copied_len += next_sub->datalen;
2425 	}
2426 
2427 	return copied_len;
2428 }
2429 EXPORT_SYMBOL(cfg80211_merge_profile);
2430 
2431 static void
cfg80211_parse_mbssid_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,gfp_t gfp)2432 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2433 			   struct cfg80211_inform_single_bss_data *tx_data,
2434 			   struct cfg80211_bss *source_bss,
2435 			   gfp_t gfp)
2436 {
2437 	struct cfg80211_inform_single_bss_data data = {
2438 		.drv_data = tx_data->drv_data,
2439 		.ftype = tx_data->ftype,
2440 		.tsf = tx_data->tsf,
2441 		.beacon_interval = tx_data->beacon_interval,
2442 		.source_bss = source_bss,
2443 		.bss_source = BSS_SOURCE_MBSSID,
2444 		.use_for = tx_data->use_for,
2445 		.cannot_use_reasons = tx_data->cannot_use_reasons,
2446 	};
2447 	const u8 *mbssid_index_ie;
2448 	const struct element *elem, *sub;
2449 	u8 *new_ie, *profile;
2450 	u64 seen_indices = 0;
2451 	struct cfg80211_bss *bss;
2452 
2453 	if (!source_bss)
2454 		return;
2455 	if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2456 				tx_data->ie, tx_data->ielen))
2457 		return;
2458 	if (!wiphy->support_mbssid)
2459 		return;
2460 	if (wiphy->support_only_he_mbssid &&
2461 	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2462 				    tx_data->ie, tx_data->ielen))
2463 		return;
2464 
2465 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2466 	if (!new_ie)
2467 		return;
2468 
2469 	profile = kmalloc(tx_data->ielen, gfp);
2470 	if (!profile)
2471 		goto out;
2472 
2473 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2474 			    tx_data->ie, tx_data->ielen) {
2475 		if (elem->datalen < 4)
2476 			continue;
2477 		if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2478 			continue;
2479 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2480 			u8 profile_len;
2481 
2482 			if (sub->id != 0 || sub->datalen < 4) {
2483 				/* not a valid BSS profile */
2484 				continue;
2485 			}
2486 
2487 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2488 			    sub->data[1] != 2) {
2489 				/* The first element within the Nontransmitted
2490 				 * BSSID Profile is not the Nontransmitted
2491 				 * BSSID Capability element.
2492 				 */
2493 				continue;
2494 			}
2495 
2496 			memset(profile, 0, tx_data->ielen);
2497 			profile_len = cfg80211_merge_profile(tx_data->ie,
2498 							     tx_data->ielen,
2499 							     elem,
2500 							     sub,
2501 							     profile,
2502 							     tx_data->ielen);
2503 
2504 			/* found a Nontransmitted BSSID Profile */
2505 			mbssid_index_ie = cfg80211_find_ie
2506 				(WLAN_EID_MULTI_BSSID_IDX,
2507 				 profile, profile_len);
2508 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2509 			    mbssid_index_ie[2] == 0 ||
2510 			    mbssid_index_ie[2] > 46 ||
2511 			    mbssid_index_ie[2] >= (1 << elem->data[0])) {
2512 				/* No valid Multiple BSSID-Index element */
2513 				continue;
2514 			}
2515 
2516 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2517 				/* We don't support legacy split of a profile */
2518 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2519 						    mbssid_index_ie[2]);
2520 
2521 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2522 
2523 			data.bssid_index = mbssid_index_ie[2];
2524 			data.max_bssid_indicator = elem->data[0];
2525 
2526 			cfg80211_gen_new_bssid(tx_data->bssid,
2527 					       data.max_bssid_indicator,
2528 					       data.bssid_index,
2529 					       data.bssid);
2530 
2531 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2532 			data.ie = new_ie;
2533 			data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2534 							 tx_data->ielen,
2535 							 profile,
2536 							 profile_len,
2537 							 new_ie,
2538 							 IEEE80211_MAX_DATA_LEN);
2539 			if (!data.ielen)
2540 				continue;
2541 
2542 			data.capability = get_unaligned_le16(profile + 2);
2543 			bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2544 			if (!bss)
2545 				break;
2546 			cfg80211_put_bss(wiphy, bss);
2547 		}
2548 	}
2549 
2550 out:
2551 	kfree(new_ie);
2552 	kfree(profile);
2553 }
2554 
cfg80211_defragment_element(const struct element * elem,const u8 * ies,size_t ieslen,u8 * data,size_t data_len,u8 frag_id)2555 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2556 				    size_t ieslen, u8 *data, size_t data_len,
2557 				    u8 frag_id)
2558 {
2559 	const struct element *next;
2560 	ssize_t copied;
2561 	u8 elem_datalen;
2562 
2563 	if (!elem)
2564 		return -EINVAL;
2565 
2566 	/* elem might be invalid after the memmove */
2567 	next = (void *)(elem->data + elem->datalen);
2568 	elem_datalen = elem->datalen;
2569 
2570 	if (elem->id == WLAN_EID_EXTENSION) {
2571 		copied = elem->datalen - 1;
2572 
2573 		if (data) {
2574 			if (copied > data_len)
2575 				return -ENOSPC;
2576 
2577 			memmove(data, elem->data + 1, copied);
2578 		}
2579 	} else {
2580 		copied = elem->datalen;
2581 
2582 		if (data) {
2583 			if (copied > data_len)
2584 				return -ENOSPC;
2585 
2586 			memmove(data, elem->data, copied);
2587 		}
2588 	}
2589 
2590 	/* Fragmented elements must have 255 bytes */
2591 	if (elem_datalen < 255)
2592 		return copied;
2593 
2594 	for (elem = next;
2595 	     elem->data < ies + ieslen &&
2596 		elem->data + elem->datalen <= ies + ieslen;
2597 	     elem = next) {
2598 		/* elem might be invalid after the memmove */
2599 		next = (void *)(elem->data + elem->datalen);
2600 
2601 		if (elem->id != frag_id)
2602 			break;
2603 
2604 		elem_datalen = elem->datalen;
2605 
2606 		if (data) {
2607 			if (copied + elem_datalen > data_len)
2608 				return -ENOSPC;
2609 
2610 			memmove(data + copied, elem->data, elem_datalen);
2611 		}
2612 
2613 		copied += elem_datalen;
2614 
2615 		/* Only the last fragment may be short */
2616 		if (elem_datalen != 255)
2617 			break;
2618 	}
2619 
2620 	return copied;
2621 }
2622 EXPORT_SYMBOL(cfg80211_defragment_element);
2623 
2624 struct cfg80211_mle {
2625 	struct ieee80211_multi_link_elem *mle;
2626 	struct ieee80211_mle_per_sta_profile
2627 		*sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2628 	ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2629 
2630 	u8 data[];
2631 };
2632 
2633 static struct cfg80211_mle *
cfg80211_defrag_mle(const struct element * mle,const u8 * ie,size_t ielen,gfp_t gfp)2634 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2635 		    gfp_t gfp)
2636 {
2637 	const struct element *elem;
2638 	struct cfg80211_mle *res;
2639 	size_t buf_len;
2640 	ssize_t mle_len;
2641 	u8 common_size, idx;
2642 
2643 	if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2644 		return NULL;
2645 
2646 	/* Required length for first defragmentation */
2647 	buf_len = mle->datalen - 1;
2648 	for_each_element(elem, mle->data + mle->datalen,
2649 			 ie + ielen - mle->data - mle->datalen) {
2650 		if (elem->id != WLAN_EID_FRAGMENT)
2651 			break;
2652 
2653 		buf_len += elem->datalen;
2654 	}
2655 
2656 	res = kzalloc(struct_size(res, data, buf_len), gfp);
2657 	if (!res)
2658 		return NULL;
2659 
2660 	mle_len = cfg80211_defragment_element(mle, ie, ielen,
2661 					      res->data, buf_len,
2662 					      WLAN_EID_FRAGMENT);
2663 	if (mle_len < 0)
2664 		goto error;
2665 
2666 	res->mle = (void *)res->data;
2667 
2668 	/* Find the sub-element area in the buffer */
2669 	common_size = ieee80211_mle_common_size((u8 *)res->mle);
2670 	ie = res->data + common_size;
2671 	ielen = mle_len - common_size;
2672 
2673 	idx = 0;
2674 	for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2675 			    ie, ielen) {
2676 		res->sta_prof[idx] = (void *)elem->data;
2677 		res->sta_prof_len[idx] = elem->datalen;
2678 
2679 		idx++;
2680 		if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2681 			break;
2682 	}
2683 	if (!for_each_element_completed(elem, ie, ielen))
2684 		goto error;
2685 
2686 	/* Defragment sta_info in-place */
2687 	for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2688 	     idx++) {
2689 		if (res->sta_prof_len[idx] < 255)
2690 			continue;
2691 
2692 		elem = (void *)res->sta_prof[idx] - 2;
2693 
2694 		if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2695 		    res->sta_prof[idx + 1])
2696 			buf_len = (u8 *)res->sta_prof[idx + 1] -
2697 				  (u8 *)res->sta_prof[idx];
2698 		else
2699 			buf_len = ielen + ie - (u8 *)elem;
2700 
2701 		res->sta_prof_len[idx] =
2702 			cfg80211_defragment_element(elem,
2703 						    (u8 *)elem, buf_len,
2704 						    (u8 *)res->sta_prof[idx],
2705 						    buf_len,
2706 						    IEEE80211_MLE_SUBELEM_FRAGMENT);
2707 		if (res->sta_prof_len[idx] < 0)
2708 			goto error;
2709 	}
2710 
2711 	return res;
2712 
2713 error:
2714 	kfree(res);
2715 	return NULL;
2716 }
2717 
2718 struct tbtt_info_iter_data {
2719 	const struct ieee80211_neighbor_ap_info *ap_info;
2720 	u8 param_ch_count;
2721 	u32 use_for;
2722 	u8 mld_id, link_id;
2723 	bool non_tx;
2724 };
2725 
2726 static enum cfg80211_rnr_iter_ret
cfg802121_mld_ap_rnr_iter(void * _data,u8 type,const struct ieee80211_neighbor_ap_info * info,const u8 * tbtt_info,u8 tbtt_info_len)2727 cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
2728 			  const struct ieee80211_neighbor_ap_info *info,
2729 			  const u8 *tbtt_info, u8 tbtt_info_len)
2730 {
2731 	const struct ieee80211_rnr_mld_params *mld_params;
2732 	struct tbtt_info_iter_data *data = _data;
2733 	u8 link_id;
2734 	bool non_tx = false;
2735 
2736 	if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2737 	    tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
2738 					 mld_params)) {
2739 		const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 =
2740 			(void *)tbtt_info;
2741 
2742 		non_tx = (tbtt_info_ge_11->bss_params &
2743 			  (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID |
2744 			   IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) ==
2745 			 IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2746 		mld_params = &tbtt_info_ge_11->mld_params;
2747 	} else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2748 		 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
2749 		mld_params = (void *)tbtt_info;
2750 	else
2751 		return RNR_ITER_CONTINUE;
2752 
2753 	link_id = le16_get_bits(mld_params->params,
2754 				IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2755 
2756 	if (data->mld_id != mld_params->mld_id)
2757 		return RNR_ITER_CONTINUE;
2758 
2759 	if (data->link_id != link_id)
2760 		return RNR_ITER_CONTINUE;
2761 
2762 	data->ap_info = info;
2763 	data->param_ch_count =
2764 		le16_get_bits(mld_params->params,
2765 			      IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2766 	data->non_tx = non_tx;
2767 
2768 	if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
2769 		data->use_for = NL80211_BSS_USE_FOR_ALL;
2770 	else
2771 		data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2772 	return RNR_ITER_BREAK;
2773 }
2774 
2775 static u8
cfg80211_rnr_info_for_mld_ap(const u8 * ie,size_t ielen,u8 mld_id,u8 link_id,const struct ieee80211_neighbor_ap_info ** ap_info,u8 * param_ch_count,bool * non_tx)2776 cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2777 			     const struct ieee80211_neighbor_ap_info **ap_info,
2778 			     u8 *param_ch_count, bool *non_tx)
2779 {
2780 	struct tbtt_info_iter_data data = {
2781 		.mld_id = mld_id,
2782 		.link_id = link_id,
2783 	};
2784 
2785 	cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
2786 
2787 	*ap_info = data.ap_info;
2788 	*param_ch_count = data.param_ch_count;
2789 	*non_tx = data.non_tx;
2790 
2791 	return data.use_for;
2792 }
2793 
2794 static struct element *
cfg80211_gen_reporter_rnr(struct cfg80211_bss * source_bss,bool is_mbssid,bool same_mld,u8 link_id,u8 bss_change_count,gfp_t gfp)2795 cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2796 			  bool same_mld, u8 link_id, u8 bss_change_count,
2797 			  gfp_t gfp)
2798 {
2799 	const struct cfg80211_bss_ies *ies;
2800 	struct ieee80211_neighbor_ap_info ap_info;
2801 	struct ieee80211_tbtt_info_ge_11 tbtt_info;
2802 	u32 short_ssid;
2803 	const struct element *elem;
2804 	struct element *res;
2805 
2806 	/*
2807 	 * We only generate the RNR to permit ML lookups. For that we do not
2808 	 * need an entry for the corresponding transmitting BSS, lets just skip
2809 	 * it even though it would be easy to add.
2810 	 */
2811 	if (!same_mld)
2812 		return NULL;
2813 
2814 	/* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2815 	rcu_read_lock();
2816 	ies = rcu_dereference(source_bss->ies);
2817 
2818 	ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2819 	ap_info.tbtt_info_hdr =
2820 			u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2821 				       IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2822 			u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2823 
2824 	ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
2825 
2826 	/* operating class */
2827 	elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2828 				  ies->data, ies->len);
2829 	if (elem && elem->datalen >= 1) {
2830 		ap_info.op_class = elem->data[0];
2831 	} else {
2832 		struct cfg80211_chan_def chandef;
2833 
2834 		/* The AP is not providing us with anything to work with. So
2835 		 * make up a somewhat reasonable operating class, but don't
2836 		 * bother with it too much as no one will ever use the
2837 		 * information.
2838 		 */
2839 		cfg80211_chandef_create(&chandef, source_bss->channel,
2840 					NL80211_CHAN_NO_HT);
2841 
2842 		if (!ieee80211_chandef_to_operating_class(&chandef,
2843 							  &ap_info.op_class))
2844 			goto out_unlock;
2845 	}
2846 
2847 	/* Just set TBTT offset and PSD 20 to invalid/unknown */
2848 	tbtt_info.tbtt_offset = 255;
2849 	tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2850 
2851 	memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2852 	if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
2853 		goto out_unlock;
2854 
2855 	rcu_read_unlock();
2856 
2857 	tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2858 
2859 	tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2860 
2861 	if (is_mbssid) {
2862 		tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2863 		tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2864 	}
2865 
2866 	tbtt_info.mld_params.mld_id = 0;
2867 	tbtt_info.mld_params.params =
2868 		le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2869 		le16_encode_bits(bss_change_count,
2870 				 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2871 
2872 	res = kzalloc(struct_size(res, data,
2873 				  sizeof(ap_info) + ap_info.tbtt_info_len),
2874 		      gfp);
2875 	if (!res)
2876 		return NULL;
2877 
2878 	/* Copy the data */
2879 	res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2880 	res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2881 	memcpy(res->data, &ap_info, sizeof(ap_info));
2882 	memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2883 
2884 	return res;
2885 
2886 out_unlock:
2887 	rcu_read_unlock();
2888 	return NULL;
2889 }
2890 
2891 static void
cfg80211_parse_ml_elem_sta_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,const struct element * elem,gfp_t gfp)2892 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2893 				struct cfg80211_inform_single_bss_data *tx_data,
2894 				struct cfg80211_bss *source_bss,
2895 				const struct element *elem,
2896 				gfp_t gfp)
2897 {
2898 	struct cfg80211_inform_single_bss_data data = {
2899 		.drv_data = tx_data->drv_data,
2900 		.ftype = tx_data->ftype,
2901 		.source_bss = source_bss,
2902 		.bss_source = BSS_SOURCE_STA_PROFILE,
2903 	};
2904 	struct element *reporter_rnr = NULL;
2905 	struct ieee80211_multi_link_elem *ml_elem;
2906 	struct cfg80211_mle *mle;
2907 	const struct element *ssid_elem;
2908 	const u8 *ssid = NULL;
2909 	size_t ssid_len = 0;
2910 	u16 control;
2911 	u8 ml_common_len;
2912 	u8 *new_ie = NULL;
2913 	struct cfg80211_bss *bss;
2914 	u8 mld_id, reporter_link_id, bss_change_count;
2915 	u16 seen_links = 0;
2916 	u8 i;
2917 
2918 	if (!ieee80211_mle_type_ok(elem->data + 1,
2919 				   IEEE80211_ML_CONTROL_TYPE_BASIC,
2920 				   elem->datalen - 1))
2921 		return;
2922 
2923 	ml_elem = (void *)(elem->data + 1);
2924 	control = le16_to_cpu(ml_elem->control);
2925 	ml_common_len = ml_elem->variable[0];
2926 
2927 	/* Must be present when transmitted by an AP (in a probe response) */
2928 	if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2929 	    !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2930 	    !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2931 		return;
2932 
2933 	reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1);
2934 	bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1);
2935 
2936 	/*
2937 	 * The MLD ID of the reporting AP is always zero. It is set if the AP
2938 	 * is part of an MBSSID set and will be non-zero for ML Elements
2939 	 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2940 	 * Draft P802.11be_D3.2, 35.3.4.2)
2941 	 */
2942 	mld_id = ieee80211_mle_get_mld_id(elem->data + 1);
2943 
2944 	/* Fully defrag the ML element for sta information/profile iteration */
2945 	mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2946 	if (!mle)
2947 		return;
2948 
2949 	/* No point in doing anything if there is no per-STA profile */
2950 	if (!mle->sta_prof[0])
2951 		goto out;
2952 
2953 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2954 	if (!new_ie)
2955 		goto out;
2956 
2957 	reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
2958 						 u16_get_bits(control,
2959 							      IEEE80211_MLC_BASIC_PRES_MLD_ID),
2960 						 mld_id == 0, reporter_link_id,
2961 						 bss_change_count,
2962 						 gfp);
2963 
2964 	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, tx_data->ie,
2965 				       tx_data->ielen);
2966 	if (ssid_elem) {
2967 		ssid = ssid_elem->data;
2968 		ssid_len = ssid_elem->datalen;
2969 	}
2970 
2971 	for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2972 		const struct ieee80211_neighbor_ap_info *ap_info;
2973 		enum nl80211_band band;
2974 		u32 freq;
2975 		const u8 *profile;
2976 		ssize_t profile_len;
2977 		u8 param_ch_count;
2978 		u8 link_id, use_for;
2979 		bool non_tx;
2980 
2981 		if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2982 							  mle->sta_prof_len[i]))
2983 			continue;
2984 
2985 		control = le16_to_cpu(mle->sta_prof[i]->control);
2986 
2987 		if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2988 			continue;
2989 
2990 		link_id = u16_get_bits(control,
2991 				       IEEE80211_MLE_STA_CONTROL_LINK_ID);
2992 		if (seen_links & BIT(link_id))
2993 			break;
2994 		seen_links |= BIT(link_id);
2995 
2996 		if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2997 		    !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2998 		    !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2999 			continue;
3000 
3001 		memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
3002 		data.beacon_interval =
3003 			get_unaligned_le16(mle->sta_prof[i]->variable + 6);
3004 		data.tsf = tx_data->tsf +
3005 			   get_unaligned_le64(mle->sta_prof[i]->variable + 8);
3006 
3007 		/* sta_info_len counts itself */
3008 		profile = mle->sta_prof[i]->variable +
3009 			  mle->sta_prof[i]->sta_info_len - 1;
3010 		profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
3011 			      profile;
3012 
3013 		if (profile_len < 2)
3014 			continue;
3015 
3016 		data.capability = get_unaligned_le16(profile);
3017 		profile += 2;
3018 		profile_len -= 2;
3019 
3020 		/* Find in RNR to look up channel information */
3021 		use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
3022 						       tx_data->ielen,
3023 						       mld_id, link_id,
3024 						       &ap_info,
3025 						       &param_ch_count,
3026 						       &non_tx);
3027 		if (!use_for)
3028 			continue;
3029 
3030 		/*
3031 		 * As of 802.11be_D5.0, the specification does not give us any
3032 		 * way of discovering both the MaxBSSID and the Multiple-BSSID
3033 		 * Index. It does seem like the Multiple-BSSID Index element
3034 		 * may be provided, but section 9.4.2.45 explicitly forbids
3035 		 * including a Multiple-BSSID Element (in this case without any
3036 		 * subelements).
3037 		 * Without both pieces of information we cannot calculate the
3038 		 * reference BSSID, so simply ignore the BSS.
3039 		 */
3040 		if (non_tx)
3041 			continue;
3042 
3043 		/* We could sanity check the BSSID is included */
3044 
3045 		if (!ieee80211_operating_class_to_band(ap_info->op_class,
3046 						       &band))
3047 			continue;
3048 
3049 		freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
3050 		data.channel = ieee80211_get_channel_khz(wiphy, freq);
3051 
3052 		/* Skip if RNR element specifies an unsupported channel */
3053 		if (!data.channel)
3054 			continue;
3055 
3056 		/* Skip if BSS entry generated from MBSSID or DIRECT source
3057 		 * frame data available already.
3058 		 */
3059 		bss = cfg80211_get_bss(wiphy, data.channel, data.bssid, ssid,
3060 				       ssid_len, IEEE80211_BSS_TYPE_ANY,
3061 				       IEEE80211_PRIVACY_ANY);
3062 		if (bss) {
3063 			struct cfg80211_internal_bss *ibss = bss_from_pub(bss);
3064 
3065 			if (data.capability == bss->capability &&
3066 			    ibss->bss_source != BSS_SOURCE_STA_PROFILE) {
3067 				cfg80211_put_bss(wiphy, bss);
3068 				continue;
3069 			}
3070 			cfg80211_put_bss(wiphy, bss);
3071 		}
3072 
3073 		if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
3074 		    !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
3075 			use_for = 0;
3076 			data.cannot_use_reasons =
3077 				NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
3078 		}
3079 		data.use_for = use_for;
3080 
3081 		/* Generate new elements */
3082 		memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
3083 		data.ie = new_ie;
3084 		data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
3085 						 profile, profile_len,
3086 						 new_ie,
3087 						 IEEE80211_MAX_DATA_LEN);
3088 		if (!data.ielen)
3089 			continue;
3090 
3091 		/* The generated elements do not contain:
3092 		 *  - Basic ML element
3093 		 *  - A TBTT entry in the RNR for the transmitting AP
3094 		 *
3095 		 * This information is needed both internally and in userspace
3096 		 * as such, we should append it here.
3097 		 */
3098 		if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
3099 		    IEEE80211_MAX_DATA_LEN)
3100 			continue;
3101 
3102 		/* Copy the Basic Multi-Link element including the common
3103 		 * information, and then fix up the link ID and BSS param
3104 		 * change count.
3105 		 * Note that the ML element length has been verified and we
3106 		 * also checked that it contains the link ID.
3107 		 */
3108 		new_ie[data.ielen++] = WLAN_EID_EXTENSION;
3109 		new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
3110 		new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
3111 		memcpy(new_ie + data.ielen, ml_elem,
3112 		       sizeof(*ml_elem) + ml_common_len);
3113 
3114 		new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
3115 		new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
3116 			param_ch_count;
3117 
3118 		data.ielen += sizeof(*ml_elem) + ml_common_len;
3119 
3120 		if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
3121 			if (data.ielen + sizeof(struct element) +
3122 			    reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
3123 				continue;
3124 
3125 			memcpy(new_ie + data.ielen, reporter_rnr,
3126 			       sizeof(struct element) + reporter_rnr->datalen);
3127 			data.ielen += sizeof(struct element) +
3128 				      reporter_rnr->datalen;
3129 		}
3130 
3131 		bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
3132 		if (!bss)
3133 			break;
3134 		cfg80211_put_bss(wiphy, bss);
3135 	}
3136 
3137 out:
3138 	kfree(reporter_rnr);
3139 	kfree(new_ie);
3140 	kfree(mle);
3141 }
3142 
cfg80211_parse_ml_sta_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,gfp_t gfp)3143 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
3144 				       struct cfg80211_inform_single_bss_data *tx_data,
3145 				       struct cfg80211_bss *source_bss,
3146 				       gfp_t gfp)
3147 {
3148 	const struct element *elem;
3149 
3150 	if (!source_bss)
3151 		return;
3152 
3153 	if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
3154 		return;
3155 
3156 	for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
3157 			       tx_data->ie, tx_data->ielen)
3158 		cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
3159 						elem, gfp);
3160 }
3161 
3162 struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,gfp_t gfp)3163 cfg80211_inform_bss_data(struct wiphy *wiphy,
3164 			 struct cfg80211_inform_bss *data,
3165 			 enum cfg80211_bss_frame_type ftype,
3166 			 const u8 *bssid, u64 tsf, u16 capability,
3167 			 u16 beacon_interval, const u8 *ie, size_t ielen,
3168 			 gfp_t gfp)
3169 {
3170 	struct cfg80211_inform_single_bss_data inform_data = {
3171 		.drv_data = data,
3172 		.ftype = ftype,
3173 		.tsf = tsf,
3174 		.capability = capability,
3175 		.beacon_interval = beacon_interval,
3176 		.ie = ie,
3177 		.ielen = ielen,
3178 		.use_for = data->restrict_use ?
3179 				data->use_for :
3180 				NL80211_BSS_USE_FOR_ALL,
3181 		.cannot_use_reasons = data->cannot_use_reasons,
3182 	};
3183 	struct cfg80211_bss *res;
3184 
3185 	memcpy(inform_data.bssid, bssid, ETH_ALEN);
3186 
3187 	res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
3188 	if (!res)
3189 		return NULL;
3190 
3191 	/* don't do any further MBSSID/ML handling for S1G */
3192 	if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
3193 		return res;
3194 
3195 	cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3196 
3197 	cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3198 
3199 	return res;
3200 }
3201 EXPORT_SYMBOL(cfg80211_inform_bss_data);
3202 
3203 struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)3204 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3205 			       struct cfg80211_inform_bss *data,
3206 			       struct ieee80211_mgmt *mgmt, size_t len,
3207 			       gfp_t gfp)
3208 {
3209 	size_t min_hdr_len;
3210 	struct ieee80211_ext *ext = NULL;
3211 	enum cfg80211_bss_frame_type ftype;
3212 	u16 beacon_interval;
3213 	const u8 *bssid;
3214 	u16 capability;
3215 	const u8 *ie;
3216 	size_t ielen;
3217 	u64 tsf;
3218 	size_t s1g_optional_len;
3219 
3220 	if (WARN_ON(!mgmt))
3221 		return NULL;
3222 
3223 	if (WARN_ON(!wiphy))
3224 		return NULL;
3225 
3226 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3227 		     offsetof(struct ieee80211_mgmt, u.beacon.variable));
3228 
3229 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3230 
3231 	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
3232 		ext = (void *) mgmt;
3233 		s1g_optional_len =
3234 			ieee80211_s1g_optional_len(ext->frame_control);
3235 		min_hdr_len =
3236 			offsetof(struct ieee80211_ext, u.s1g_beacon.variable) +
3237 			s1g_optional_len;
3238 	} else {
3239 		/* same for beacons */
3240 		min_hdr_len = offsetof(struct ieee80211_mgmt,
3241 				       u.probe_resp.variable);
3242 	}
3243 
3244 	if (WARN_ON(len < min_hdr_len))
3245 		return NULL;
3246 
3247 	ielen = len - min_hdr_len;
3248 	ie = mgmt->u.probe_resp.variable;
3249 	if (ext) {
3250 		const struct ieee80211_s1g_bcn_compat_ie *compat;
3251 		const struct element *elem;
3252 
3253 		ie = ext->u.s1g_beacon.variable + s1g_optional_len;
3254 		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen);
3255 		if (!elem)
3256 			return NULL;
3257 		if (elem->datalen < sizeof(*compat))
3258 			return NULL;
3259 		compat = (void *)elem->data;
3260 		bssid = ext->u.s1g_beacon.sa;
3261 		capability = le16_to_cpu(compat->compat_info);
3262 		beacon_interval = le16_to_cpu(compat->beacon_int);
3263 	} else {
3264 		bssid = mgmt->bssid;
3265 		beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3266 		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3267 	}
3268 
3269 	tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3270 
3271 	if (ieee80211_is_probe_resp(mgmt->frame_control))
3272 		ftype = CFG80211_BSS_FTYPE_PRESP;
3273 	else if (ext)
3274 		ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
3275 	else
3276 		ftype = CFG80211_BSS_FTYPE_BEACON;
3277 
3278 	return cfg80211_inform_bss_data(wiphy, data, ftype,
3279 					bssid, tsf, capability,
3280 					beacon_interval, ie, ielen,
3281 					gfp);
3282 }
3283 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3284 
cfg80211_ref_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)3285 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3286 {
3287 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3288 
3289 	if (!pub)
3290 		return;
3291 
3292 	spin_lock_bh(&rdev->bss_lock);
3293 	bss_ref_get(rdev, bss_from_pub(pub));
3294 	spin_unlock_bh(&rdev->bss_lock);
3295 }
3296 EXPORT_SYMBOL(cfg80211_ref_bss);
3297 
cfg80211_put_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)3298 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3299 {
3300 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3301 
3302 	if (!pub)
3303 		return;
3304 
3305 	spin_lock_bh(&rdev->bss_lock);
3306 	bss_ref_put(rdev, bss_from_pub(pub));
3307 	spin_unlock_bh(&rdev->bss_lock);
3308 }
3309 EXPORT_SYMBOL(cfg80211_put_bss);
3310 
cfg80211_unlink_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)3311 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3312 {
3313 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3314 	struct cfg80211_internal_bss *bss, *tmp1;
3315 	struct cfg80211_bss *nontrans_bss, *tmp;
3316 
3317 	if (WARN_ON(!pub))
3318 		return;
3319 
3320 	bss = bss_from_pub(pub);
3321 
3322 	spin_lock_bh(&rdev->bss_lock);
3323 	if (list_empty(&bss->list))
3324 		goto out;
3325 
3326 	list_for_each_entry_safe(nontrans_bss, tmp,
3327 				 &pub->nontrans_list,
3328 				 nontrans_list) {
3329 		tmp1 = bss_from_pub(nontrans_bss);
3330 		if (__cfg80211_unlink_bss(rdev, tmp1))
3331 			rdev->bss_generation++;
3332 	}
3333 
3334 	if (__cfg80211_unlink_bss(rdev, bss))
3335 		rdev->bss_generation++;
3336 out:
3337 	spin_unlock_bh(&rdev->bss_lock);
3338 }
3339 EXPORT_SYMBOL(cfg80211_unlink_bss);
3340 
cfg80211_bss_iter(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,void (* iter)(struct wiphy * wiphy,struct cfg80211_bss * bss,void * data),void * iter_data)3341 void cfg80211_bss_iter(struct wiphy *wiphy,
3342 		       struct cfg80211_chan_def *chandef,
3343 		       void (*iter)(struct wiphy *wiphy,
3344 				    struct cfg80211_bss *bss,
3345 				    void *data),
3346 		       void *iter_data)
3347 {
3348 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3349 	struct cfg80211_internal_bss *bss;
3350 
3351 	spin_lock_bh(&rdev->bss_lock);
3352 
3353 	list_for_each_entry(bss, &rdev->bss_list, list) {
3354 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3355 						     false))
3356 			iter(wiphy, &bss->pub, iter_data);
3357 	}
3358 
3359 	spin_unlock_bh(&rdev->bss_lock);
3360 }
3361 EXPORT_SYMBOL(cfg80211_bss_iter);
3362 
cfg80211_update_assoc_bss_entry(struct wireless_dev * wdev,unsigned int link_id,struct ieee80211_channel * chan)3363 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3364 				     unsigned int link_id,
3365 				     struct ieee80211_channel *chan)
3366 {
3367 	struct wiphy *wiphy = wdev->wiphy;
3368 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3369 	struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3370 	struct cfg80211_internal_bss *new = NULL;
3371 	struct cfg80211_internal_bss *bss;
3372 	struct cfg80211_bss *nontrans_bss;
3373 	struct cfg80211_bss *tmp;
3374 
3375 	spin_lock_bh(&rdev->bss_lock);
3376 
3377 	/*
3378 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
3379 	 * changing the control channel, so no need to update in such a case.
3380 	 */
3381 	if (cbss->pub.channel == chan)
3382 		goto done;
3383 
3384 	/* use transmitting bss */
3385 	if (cbss->pub.transmitted_bss)
3386 		cbss = bss_from_pub(cbss->pub.transmitted_bss);
3387 
3388 	cbss->pub.channel = chan;
3389 
3390 	list_for_each_entry(bss, &rdev->bss_list, list) {
3391 		if (!cfg80211_bss_type_match(bss->pub.capability,
3392 					     bss->pub.channel->band,
3393 					     wdev->conn_bss_type))
3394 			continue;
3395 
3396 		if (bss == cbss)
3397 			continue;
3398 
3399 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3400 			new = bss;
3401 			break;
3402 		}
3403 	}
3404 
3405 	if (new) {
3406 		/* to save time, update IEs for transmitting bss only */
3407 		cfg80211_update_known_bss(rdev, cbss, new, false);
3408 		new->pub.proberesp_ies = NULL;
3409 		new->pub.beacon_ies = NULL;
3410 
3411 		list_for_each_entry_safe(nontrans_bss, tmp,
3412 					 &new->pub.nontrans_list,
3413 					 nontrans_list) {
3414 			bss = bss_from_pub(nontrans_bss);
3415 			if (__cfg80211_unlink_bss(rdev, bss))
3416 				rdev->bss_generation++;
3417 		}
3418 
3419 		WARN_ON(atomic_read(&new->hold));
3420 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3421 			rdev->bss_generation++;
3422 	}
3423 	cfg80211_rehash_bss(rdev, cbss);
3424 
3425 	list_for_each_entry_safe(nontrans_bss, tmp,
3426 				 &cbss->pub.nontrans_list,
3427 				 nontrans_list) {
3428 		bss = bss_from_pub(nontrans_bss);
3429 		bss->pub.channel = chan;
3430 		cfg80211_rehash_bss(rdev, bss);
3431 	}
3432 
3433 done:
3434 	spin_unlock_bh(&rdev->bss_lock);
3435 }
3436 
3437 #ifdef CONFIG_CFG80211_WEXT
3438 static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net * net,int ifindex)3439 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3440 {
3441 	struct cfg80211_registered_device *rdev;
3442 	struct net_device *dev;
3443 
3444 	ASSERT_RTNL();
3445 
3446 	dev = dev_get_by_index(net, ifindex);
3447 	if (!dev)
3448 		return ERR_PTR(-ENODEV);
3449 	if (dev->ieee80211_ptr)
3450 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3451 	else
3452 		rdev = ERR_PTR(-ENODEV);
3453 	dev_put(dev);
3454 	return rdev;
3455 }
3456 
cfg80211_wext_siwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)3457 int cfg80211_wext_siwscan(struct net_device *dev,
3458 			  struct iw_request_info *info,
3459 			  union iwreq_data *wrqu, char *extra)
3460 {
3461 	struct cfg80211_registered_device *rdev;
3462 	struct wiphy *wiphy;
3463 	struct iw_scan_req *wreq = NULL;
3464 	struct cfg80211_scan_request *creq;
3465 	int i, err, n_channels = 0;
3466 	enum nl80211_band band;
3467 
3468 	if (!netif_running(dev))
3469 		return -ENETDOWN;
3470 
3471 	if (wrqu->data.length == sizeof(struct iw_scan_req))
3472 		wreq = (struct iw_scan_req *)extra;
3473 
3474 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3475 
3476 	if (IS_ERR(rdev))
3477 		return PTR_ERR(rdev);
3478 
3479 	if (rdev->scan_req || rdev->scan_msg)
3480 		return -EBUSY;
3481 
3482 	wiphy = &rdev->wiphy;
3483 
3484 	/* Determine number of channels, needed to allocate creq */
3485 	if (wreq && wreq->num_channels) {
3486 		/* Passed from userspace so should be checked */
3487 		if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES))
3488 			return -EINVAL;
3489 		n_channels = wreq->num_channels;
3490 	} else {
3491 		n_channels = ieee80211_get_num_supported_channels(wiphy);
3492 	}
3493 
3494 	creq = kzalloc(struct_size(creq, channels, n_channels) +
3495 		       sizeof(struct cfg80211_ssid),
3496 		       GFP_ATOMIC);
3497 	if (!creq)
3498 		return -ENOMEM;
3499 
3500 	creq->wiphy = wiphy;
3501 	creq->wdev = dev->ieee80211_ptr;
3502 	/* SSIDs come after channels */
3503 	creq->ssids = (void *)creq + struct_size(creq, channels, n_channels);
3504 	creq->n_channels = n_channels;
3505 	creq->n_ssids = 1;
3506 	creq->scan_start = jiffies;
3507 
3508 	/* translate "Scan on frequencies" request */
3509 	i = 0;
3510 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3511 		int j;
3512 
3513 		if (!wiphy->bands[band])
3514 			continue;
3515 
3516 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3517 			struct ieee80211_channel *chan;
3518 
3519 			/* ignore disabled channels */
3520 			chan = &wiphy->bands[band]->channels[j];
3521 			if (chan->flags & IEEE80211_CHAN_DISABLED ||
3522 			    !cfg80211_wdev_channel_allowed(creq->wdev, chan))
3523 				continue;
3524 
3525 			/* If we have a wireless request structure and the
3526 			 * wireless request specifies frequencies, then search
3527 			 * for the matching hardware channel.
3528 			 */
3529 			if (wreq && wreq->num_channels) {
3530 				int k;
3531 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3532 				for (k = 0; k < wreq->num_channels; k++) {
3533 					struct iw_freq *freq =
3534 						&wreq->channel_list[k];
3535 					int wext_freq =
3536 						cfg80211_wext_freq(freq);
3537 
3538 					if (wext_freq == wiphy_freq)
3539 						goto wext_freq_found;
3540 				}
3541 				goto wext_freq_not_found;
3542 			}
3543 
3544 		wext_freq_found:
3545 			creq->channels[i] = &wiphy->bands[band]->channels[j];
3546 			i++;
3547 		wext_freq_not_found: ;
3548 		}
3549 	}
3550 	/* No channels found? */
3551 	if (!i) {
3552 		err = -EINVAL;
3553 		goto out;
3554 	}
3555 
3556 	/* Set real number of channels specified in creq->channels[] */
3557 	creq->n_channels = i;
3558 
3559 	/* translate "Scan for SSID" request */
3560 	if (wreq) {
3561 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3562 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3563 				err = -EINVAL;
3564 				goto out;
3565 			}
3566 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3567 			creq->ssids[0].ssid_len = wreq->essid_len;
3568 		}
3569 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) {
3570 			creq->ssids = NULL;
3571 			creq->n_ssids = 0;
3572 		}
3573 	}
3574 
3575 	for (i = 0; i < NUM_NL80211_BANDS; i++)
3576 		if (wiphy->bands[i])
3577 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3578 
3579 	eth_broadcast_addr(creq->bssid);
3580 
3581 	wiphy_lock(&rdev->wiphy);
3582 
3583 	rdev->scan_req = creq;
3584 	err = rdev_scan(rdev, creq);
3585 	if (err) {
3586 		rdev->scan_req = NULL;
3587 		/* creq will be freed below */
3588 	} else {
3589 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3590 		/* creq now owned by driver */
3591 		creq = NULL;
3592 		dev_hold(dev);
3593 	}
3594 	wiphy_unlock(&rdev->wiphy);
3595  out:
3596 	kfree(creq);
3597 	return err;
3598 }
3599 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3600 
ieee80211_scan_add_ies(struct iw_request_info * info,const struct cfg80211_bss_ies * ies,char * current_ev,char * end_buf)3601 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3602 				    const struct cfg80211_bss_ies *ies,
3603 				    char *current_ev, char *end_buf)
3604 {
3605 	const u8 *pos, *end, *next;
3606 	struct iw_event iwe;
3607 
3608 	if (!ies)
3609 		return current_ev;
3610 
3611 	/*
3612 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
3613 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3614 	 */
3615 	pos = ies->data;
3616 	end = pos + ies->len;
3617 
3618 	while (end - pos > IW_GENERIC_IE_MAX) {
3619 		next = pos + 2 + pos[1];
3620 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3621 			next = next + 2 + next[1];
3622 
3623 		memset(&iwe, 0, sizeof(iwe));
3624 		iwe.cmd = IWEVGENIE;
3625 		iwe.u.data.length = next - pos;
3626 		current_ev = iwe_stream_add_point_check(info, current_ev,
3627 							end_buf, &iwe,
3628 							(void *)pos);
3629 		if (IS_ERR(current_ev))
3630 			return current_ev;
3631 		pos = next;
3632 	}
3633 
3634 	if (end > pos) {
3635 		memset(&iwe, 0, sizeof(iwe));
3636 		iwe.cmd = IWEVGENIE;
3637 		iwe.u.data.length = end - pos;
3638 		current_ev = iwe_stream_add_point_check(info, current_ev,
3639 							end_buf, &iwe,
3640 							(void *)pos);
3641 		if (IS_ERR(current_ev))
3642 			return current_ev;
3643 	}
3644 
3645 	return current_ev;
3646 }
3647 
3648 static char *
ieee80211_bss(struct wiphy * wiphy,struct iw_request_info * info,struct cfg80211_internal_bss * bss,char * current_ev,char * end_buf)3649 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3650 	      struct cfg80211_internal_bss *bss, char *current_ev,
3651 	      char *end_buf)
3652 {
3653 	const struct cfg80211_bss_ies *ies;
3654 	struct iw_event iwe;
3655 	const u8 *ie;
3656 	u8 buf[50];
3657 	u8 *cfg, *p, *tmp;
3658 	int rem, i, sig;
3659 	bool ismesh = false;
3660 
3661 	memset(&iwe, 0, sizeof(iwe));
3662 	iwe.cmd = SIOCGIWAP;
3663 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3664 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3665 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3666 						IW_EV_ADDR_LEN);
3667 	if (IS_ERR(current_ev))
3668 		return current_ev;
3669 
3670 	memset(&iwe, 0, sizeof(iwe));
3671 	iwe.cmd = SIOCGIWFREQ;
3672 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3673 	iwe.u.freq.e = 0;
3674 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3675 						IW_EV_FREQ_LEN);
3676 	if (IS_ERR(current_ev))
3677 		return current_ev;
3678 
3679 	memset(&iwe, 0, sizeof(iwe));
3680 	iwe.cmd = SIOCGIWFREQ;
3681 	iwe.u.freq.m = bss->pub.channel->center_freq;
3682 	iwe.u.freq.e = 6;
3683 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3684 						IW_EV_FREQ_LEN);
3685 	if (IS_ERR(current_ev))
3686 		return current_ev;
3687 
3688 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3689 		memset(&iwe, 0, sizeof(iwe));
3690 		iwe.cmd = IWEVQUAL;
3691 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3692 				     IW_QUAL_NOISE_INVALID |
3693 				     IW_QUAL_QUAL_UPDATED;
3694 		switch (wiphy->signal_type) {
3695 		case CFG80211_SIGNAL_TYPE_MBM:
3696 			sig = bss->pub.signal / 100;
3697 			iwe.u.qual.level = sig;
3698 			iwe.u.qual.updated |= IW_QUAL_DBM;
3699 			if (sig < -110)		/* rather bad */
3700 				sig = -110;
3701 			else if (sig > -40)	/* perfect */
3702 				sig = -40;
3703 			/* will give a range of 0 .. 70 */
3704 			iwe.u.qual.qual = sig + 110;
3705 			break;
3706 		case CFG80211_SIGNAL_TYPE_UNSPEC:
3707 			iwe.u.qual.level = bss->pub.signal;
3708 			/* will give range 0 .. 100 */
3709 			iwe.u.qual.qual = bss->pub.signal;
3710 			break;
3711 		default:
3712 			/* not reached */
3713 			break;
3714 		}
3715 		current_ev = iwe_stream_add_event_check(info, current_ev,
3716 							end_buf, &iwe,
3717 							IW_EV_QUAL_LEN);
3718 		if (IS_ERR(current_ev))
3719 			return current_ev;
3720 	}
3721 
3722 	memset(&iwe, 0, sizeof(iwe));
3723 	iwe.cmd = SIOCGIWENCODE;
3724 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3725 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3726 	else
3727 		iwe.u.data.flags = IW_ENCODE_DISABLED;
3728 	iwe.u.data.length = 0;
3729 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3730 						&iwe, "");
3731 	if (IS_ERR(current_ev))
3732 		return current_ev;
3733 
3734 	rcu_read_lock();
3735 	ies = rcu_dereference(bss->pub.ies);
3736 	rem = ies->len;
3737 	ie = ies->data;
3738 
3739 	while (rem >= 2) {
3740 		/* invalid data */
3741 		if (ie[1] > rem - 2)
3742 			break;
3743 
3744 		switch (ie[0]) {
3745 		case WLAN_EID_SSID:
3746 			memset(&iwe, 0, sizeof(iwe));
3747 			iwe.cmd = SIOCGIWESSID;
3748 			iwe.u.data.length = ie[1];
3749 			iwe.u.data.flags = 1;
3750 			current_ev = iwe_stream_add_point_check(info,
3751 								current_ev,
3752 								end_buf, &iwe,
3753 								(u8 *)ie + 2);
3754 			if (IS_ERR(current_ev))
3755 				goto unlock;
3756 			break;
3757 		case WLAN_EID_MESH_ID:
3758 			memset(&iwe, 0, sizeof(iwe));
3759 			iwe.cmd = SIOCGIWESSID;
3760 			iwe.u.data.length = ie[1];
3761 			iwe.u.data.flags = 1;
3762 			current_ev = iwe_stream_add_point_check(info,
3763 								current_ev,
3764 								end_buf, &iwe,
3765 								(u8 *)ie + 2);
3766 			if (IS_ERR(current_ev))
3767 				goto unlock;
3768 			break;
3769 		case WLAN_EID_MESH_CONFIG:
3770 			ismesh = true;
3771 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3772 				break;
3773 			cfg = (u8 *)ie + 2;
3774 			memset(&iwe, 0, sizeof(iwe));
3775 			iwe.cmd = IWEVCUSTOM;
3776 			iwe.u.data.length = sprintf(buf,
3777 						    "Mesh Network Path Selection Protocol ID: 0x%02X",
3778 						    cfg[0]);
3779 			current_ev = iwe_stream_add_point_check(info,
3780 								current_ev,
3781 								end_buf,
3782 								&iwe, buf);
3783 			if (IS_ERR(current_ev))
3784 				goto unlock;
3785 			iwe.u.data.length = sprintf(buf,
3786 						    "Path Selection Metric ID: 0x%02X",
3787 						    cfg[1]);
3788 			current_ev = iwe_stream_add_point_check(info,
3789 								current_ev,
3790 								end_buf,
3791 								&iwe, buf);
3792 			if (IS_ERR(current_ev))
3793 				goto unlock;
3794 			iwe.u.data.length = sprintf(buf,
3795 						    "Congestion Control Mode ID: 0x%02X",
3796 						    cfg[2]);
3797 			current_ev = iwe_stream_add_point_check(info,
3798 								current_ev,
3799 								end_buf,
3800 								&iwe, buf);
3801 			if (IS_ERR(current_ev))
3802 				goto unlock;
3803 			iwe.u.data.length = sprintf(buf,
3804 						    "Synchronization ID: 0x%02X",
3805 						    cfg[3]);
3806 			current_ev = iwe_stream_add_point_check(info,
3807 								current_ev,
3808 								end_buf,
3809 								&iwe, buf);
3810 			if (IS_ERR(current_ev))
3811 				goto unlock;
3812 			iwe.u.data.length = sprintf(buf,
3813 						    "Authentication ID: 0x%02X",
3814 						    cfg[4]);
3815 			current_ev = iwe_stream_add_point_check(info,
3816 								current_ev,
3817 								end_buf,
3818 								&iwe, buf);
3819 			if (IS_ERR(current_ev))
3820 				goto unlock;
3821 			iwe.u.data.length = sprintf(buf,
3822 						    "Formation Info: 0x%02X",
3823 						    cfg[5]);
3824 			current_ev = iwe_stream_add_point_check(info,
3825 								current_ev,
3826 								end_buf,
3827 								&iwe, buf);
3828 			if (IS_ERR(current_ev))
3829 				goto unlock;
3830 			iwe.u.data.length = sprintf(buf,
3831 						    "Capabilities: 0x%02X",
3832 						    cfg[6]);
3833 			current_ev = iwe_stream_add_point_check(info,
3834 								current_ev,
3835 								end_buf,
3836 								&iwe, buf);
3837 			if (IS_ERR(current_ev))
3838 				goto unlock;
3839 			break;
3840 		case WLAN_EID_SUPP_RATES:
3841 		case WLAN_EID_EXT_SUPP_RATES:
3842 			/* display all supported rates in readable format */
3843 			p = current_ev + iwe_stream_lcp_len(info);
3844 
3845 			memset(&iwe, 0, sizeof(iwe));
3846 			iwe.cmd = SIOCGIWRATE;
3847 			/* Those two flags are ignored... */
3848 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3849 
3850 			for (i = 0; i < ie[1]; i++) {
3851 				iwe.u.bitrate.value =
3852 					((ie[i + 2] & 0x7f) * 500000);
3853 				tmp = p;
3854 				p = iwe_stream_add_value(info, current_ev, p,
3855 							 end_buf, &iwe,
3856 							 IW_EV_PARAM_LEN);
3857 				if (p == tmp) {
3858 					current_ev = ERR_PTR(-E2BIG);
3859 					goto unlock;
3860 				}
3861 			}
3862 			current_ev = p;
3863 			break;
3864 		}
3865 		rem -= ie[1] + 2;
3866 		ie += ie[1] + 2;
3867 	}
3868 
3869 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3870 	    ismesh) {
3871 		memset(&iwe, 0, sizeof(iwe));
3872 		iwe.cmd = SIOCGIWMODE;
3873 		if (ismesh)
3874 			iwe.u.mode = IW_MODE_MESH;
3875 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3876 			iwe.u.mode = IW_MODE_MASTER;
3877 		else
3878 			iwe.u.mode = IW_MODE_ADHOC;
3879 		current_ev = iwe_stream_add_event_check(info, current_ev,
3880 							end_buf, &iwe,
3881 							IW_EV_UINT_LEN);
3882 		if (IS_ERR(current_ev))
3883 			goto unlock;
3884 	}
3885 
3886 	memset(&iwe, 0, sizeof(iwe));
3887 	iwe.cmd = IWEVCUSTOM;
3888 	iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3889 				    (unsigned long long)(ies->tsf));
3890 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3891 						&iwe, buf);
3892 	if (IS_ERR(current_ev))
3893 		goto unlock;
3894 	memset(&iwe, 0, sizeof(iwe));
3895 	iwe.cmd = IWEVCUSTOM;
3896 	iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3897 				    elapsed_jiffies_msecs(bss->ts));
3898 	current_ev = iwe_stream_add_point_check(info, current_ev,
3899 						end_buf, &iwe, buf);
3900 	if (IS_ERR(current_ev))
3901 		goto unlock;
3902 
3903 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3904 
3905  unlock:
3906 	rcu_read_unlock();
3907 	return current_ev;
3908 }
3909 
3910 
ieee80211_scan_results(struct cfg80211_registered_device * rdev,struct iw_request_info * info,char * buf,size_t len)3911 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3912 				  struct iw_request_info *info,
3913 				  char *buf, size_t len)
3914 {
3915 	char *current_ev = buf;
3916 	char *end_buf = buf + len;
3917 	struct cfg80211_internal_bss *bss;
3918 	int err = 0;
3919 
3920 	spin_lock_bh(&rdev->bss_lock);
3921 	cfg80211_bss_expire(rdev);
3922 
3923 	list_for_each_entry(bss, &rdev->bss_list, list) {
3924 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3925 			err = -E2BIG;
3926 			break;
3927 		}
3928 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3929 					   current_ev, end_buf);
3930 		if (IS_ERR(current_ev)) {
3931 			err = PTR_ERR(current_ev);
3932 			break;
3933 		}
3934 	}
3935 	spin_unlock_bh(&rdev->bss_lock);
3936 
3937 	if (err)
3938 		return err;
3939 	return current_ev - buf;
3940 }
3941 
3942 
cfg80211_wext_giwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)3943 int cfg80211_wext_giwscan(struct net_device *dev,
3944 			  struct iw_request_info *info,
3945 			  union iwreq_data *wrqu, char *extra)
3946 {
3947 	struct iw_point *data = &wrqu->data;
3948 	struct cfg80211_registered_device *rdev;
3949 	int res;
3950 
3951 	if (!netif_running(dev))
3952 		return -ENETDOWN;
3953 
3954 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3955 
3956 	if (IS_ERR(rdev))
3957 		return PTR_ERR(rdev);
3958 
3959 	if (rdev->scan_req || rdev->scan_msg)
3960 		return -EAGAIN;
3961 
3962 	res = ieee80211_scan_results(rdev, info, extra, data->length);
3963 	data->length = 0;
3964 	if (res >= 0) {
3965 		data->length = res;
3966 		res = 0;
3967 	}
3968 
3969 	return res;
3970 }
3971 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3972 #endif
3973