• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #ifndef __ARM64_KVM_HYP_SWITCH_H__
8 #define __ARM64_KVM_HYP_SWITCH_H__
9 
10 #include <hyp/adjust_pc.h>
11 #include <hyp/fault.h>
12 
13 #include <linux/arm-smccc.h>
14 #include <linux/kvm_host.h>
15 #include <linux/types.h>
16 #include <linux/jump_label.h>
17 #include <uapi/linux/psci.h>
18 
19 #include <kvm/arm_psci.h>
20 
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/extable.h>
24 #include <asm/kprobes.h>
25 #include <asm/kvm_asm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_nested.h>
30 #include <asm/fpsimd.h>
31 #include <asm/debug-monitors.h>
32 #include <asm/processor.h>
33 #include <asm/traps.h>
34 
35 struct kvm_exception_table_entry {
36 	int insn, fixup;
37 };
38 
39 extern struct kvm_exception_table_entry __start___kvm_ex_table;
40 extern struct kvm_exception_table_entry __stop___kvm_ex_table;
41 
42 /* Save the 32-bit only FPSIMD system register state */
__fpsimd_save_fpexc32(struct kvm_vcpu * vcpu)43 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
44 {
45 	if (!vcpu_el1_is_32bit(vcpu))
46 		return;
47 
48 	__vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
49 }
50 
__activate_traps_fpsimd32(struct kvm_vcpu * vcpu)51 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
52 {
53 	/*
54 	 * We are about to set CPTR_EL2.TFP to trap all floating point
55 	 * register accesses to EL2, however, the ARM ARM clearly states that
56 	 * traps are only taken to EL2 if the operation would not otherwise
57 	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
58 	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
59 	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
60 	 * it will cause an exception.
61 	 */
62 	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
63 		write_sysreg(1 << 30, fpexc32_el2);
64 		isb();
65 	}
66 }
67 
68 #define compute_clr_set(vcpu, reg, clr, set)				\
69 	do {								\
70 		u64 hfg;						\
71 		hfg = __vcpu_sys_reg(vcpu, reg) & ~__ ## reg ## _RES0;	\
72 		set |= hfg & __ ## reg ## _MASK; 			\
73 		clr |= ~hfg & __ ## reg ## _nMASK; 			\
74 	} while(0)
75 
76 #define reg_to_fgt_group_id(reg)					\
77 	({								\
78 		enum fgt_group_id id;					\
79 		switch(reg) {						\
80 		case HFGRTR_EL2:					\
81 		case HFGWTR_EL2:					\
82 			id = HFGxTR_GROUP;				\
83 			break;						\
84 		case HFGITR_EL2:					\
85 			id = HFGITR_GROUP;				\
86 			break;						\
87 		case HDFGRTR_EL2:					\
88 		case HDFGWTR_EL2:					\
89 			id = HDFGRTR_GROUP;				\
90 			break;						\
91 		case HAFGRTR_EL2:					\
92 			id = HAFGRTR_GROUP;				\
93 			break;						\
94 		default:						\
95 			BUILD_BUG_ON(1);				\
96 		}							\
97 									\
98 		id;							\
99 	})
100 
101 #define compute_undef_clr_set(vcpu, kvm, reg, clr, set)			\
102 	do {								\
103 		u64 hfg = kvm->arch.fgu[reg_to_fgt_group_id(reg)];	\
104 		set |= hfg & __ ## reg ## _MASK;			\
105 		clr |= hfg & __ ## reg ## _nMASK; 			\
106 	} while(0)
107 
108 #define update_fgt_traps_cs(hctxt, vcpu, kvm, reg, clr, set)		\
109 	do {								\
110 		u64 c = 0, s = 0;					\
111 									\
112 		ctxt_sys_reg(hctxt, reg) = read_sysreg_s(SYS_ ## reg);	\
113 		if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))		\
114 			compute_clr_set(vcpu, reg, c, s);		\
115 									\
116 		compute_undef_clr_set(vcpu, kvm, reg, c, s);		\
117 									\
118 		s |= set;						\
119 		c |= clr;						\
120 		if (c || s) {						\
121 			u64 val = __ ## reg ## _nMASK;			\
122 			val |= s;					\
123 			val &= ~c;					\
124 			write_sysreg_s(val, SYS_ ## reg);		\
125 		}							\
126 	} while(0)
127 
128 #define update_fgt_traps(hctxt, vcpu, kvm, reg)		\
129 	update_fgt_traps_cs(hctxt, vcpu, kvm, reg, 0, 0)
130 
131 /*
132  * Validate the fine grain trap masks.
133  * Check that the masks do not overlap and that all bits are accounted for.
134  */
135 #define CHECK_FGT_MASKS(reg)							\
136 	do {									\
137 		BUILD_BUG_ON((__ ## reg ## _MASK) & (__ ## reg ## _nMASK));	\
138 		BUILD_BUG_ON(~((__ ## reg ## _RES0) ^ (__ ## reg ## _MASK) ^	\
139 			       (__ ## reg ## _nMASK)));				\
140 	} while(0)
141 
cpu_has_amu(void)142 static inline bool cpu_has_amu(void)
143 {
144        u64 pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1);
145 
146        return cpuid_feature_extract_unsigned_field(pfr0,
147                ID_AA64PFR0_EL1_AMU_SHIFT);
148 }
149 
__activate_traps_hfgxtr(struct kvm_vcpu * vcpu)150 static inline void __activate_traps_hfgxtr(struct kvm_vcpu *vcpu)
151 {
152 	struct kvm_cpu_context *hctxt = host_data_ptr(host_ctxt);
153 	struct kvm *kvm = kern_hyp_va(vcpu->kvm);
154 
155 	CHECK_FGT_MASKS(HFGRTR_EL2);
156 	CHECK_FGT_MASKS(HFGWTR_EL2);
157 	CHECK_FGT_MASKS(HFGITR_EL2);
158 	CHECK_FGT_MASKS(HDFGRTR_EL2);
159 	CHECK_FGT_MASKS(HDFGWTR_EL2);
160 	CHECK_FGT_MASKS(HAFGRTR_EL2);
161 	CHECK_FGT_MASKS(HCRX_EL2);
162 
163 	if (!cpus_have_final_cap(ARM64_HAS_FGT))
164 		return;
165 
166 	update_fgt_traps(hctxt, vcpu, kvm, HFGRTR_EL2);
167 	update_fgt_traps_cs(hctxt, vcpu, kvm, HFGWTR_EL2, 0,
168 			    cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) ?
169 			    HFGxTR_EL2_TCR_EL1_MASK : 0);
170 	update_fgt_traps(hctxt, vcpu, kvm, HFGITR_EL2);
171 	update_fgt_traps(hctxt, vcpu, kvm, HDFGRTR_EL2);
172 	update_fgt_traps(hctxt, vcpu, kvm, HDFGWTR_EL2);
173 
174 	if (cpu_has_amu())
175 		update_fgt_traps(hctxt, vcpu, kvm, HAFGRTR_EL2);
176 }
177 
178 #define __deactivate_fgt(htcxt, vcpu, kvm, reg)				\
179 	do {								\
180 		if ((vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) ||	\
181 		    kvm->arch.fgu[reg_to_fgt_group_id(reg)])		\
182 			write_sysreg_s(ctxt_sys_reg(hctxt, reg),	\
183 				       SYS_ ## reg);			\
184 	} while(0)
185 
__deactivate_traps_hfgxtr(struct kvm_vcpu * vcpu)186 static inline void __deactivate_traps_hfgxtr(struct kvm_vcpu *vcpu)
187 {
188 	struct kvm_cpu_context *hctxt = host_data_ptr(host_ctxt);
189 	struct kvm *kvm = kern_hyp_va(vcpu->kvm);
190 
191 	if (!cpus_have_final_cap(ARM64_HAS_FGT))
192 		return;
193 
194 	__deactivate_fgt(hctxt, vcpu, kvm, HFGRTR_EL2);
195 	if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
196 		write_sysreg_s(ctxt_sys_reg(hctxt, HFGWTR_EL2), SYS_HFGWTR_EL2);
197 	else
198 		__deactivate_fgt(hctxt, vcpu, kvm, HFGWTR_EL2);
199 	__deactivate_fgt(hctxt, vcpu, kvm, HFGITR_EL2);
200 	__deactivate_fgt(hctxt, vcpu, kvm, HDFGRTR_EL2);
201 	__deactivate_fgt(hctxt, vcpu, kvm, HDFGWTR_EL2);
202 
203 	if (cpu_has_amu())
204 		__deactivate_fgt(hctxt, vcpu, kvm, HAFGRTR_EL2);
205 }
206 
__activate_traps_mpam(struct kvm_vcpu * vcpu)207 static inline void  __activate_traps_mpam(struct kvm_vcpu *vcpu)
208 {
209 	u64 r = MPAM2_EL2_TRAPMPAM0EL1 | MPAM2_EL2_TRAPMPAM1EL1;
210 
211 	if (!system_supports_mpam())
212 		return;
213 
214 	/* trap guest access to MPAMIDR_EL1 */
215 	if (system_supports_mpam_hcr()) {
216 		write_sysreg_s(MPAMHCR_EL2_TRAP_MPAMIDR_EL1, SYS_MPAMHCR_EL2);
217 	} else {
218 		/* From v1.1 TIDR can trap MPAMIDR, set it unconditionally */
219 		r |= MPAM2_EL2_TIDR;
220 	}
221 
222 	write_sysreg_s(r, SYS_MPAM2_EL2);
223 }
224 
__deactivate_traps_mpam(void)225 static inline void __deactivate_traps_mpam(void)
226 {
227 	if (!system_supports_mpam())
228 		return;
229 
230 	write_sysreg_s(MPAM2_HOST_FLAGS, SYS_MPAM2_EL2);
231 
232 	if (system_supports_mpam_hcr())
233 		write_sysreg_s(MPAMHCR_HOST_FLAGS, SYS_MPAMHCR_EL2);
234 }
235 
__activate_traps_common(struct kvm_vcpu * vcpu)236 static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
237 {
238 	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
239 	write_sysreg(1 << 15, hstr_el2);
240 
241 	/*
242 	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
243 	 * PMSELR_EL0 to make sure it never contains the cycle
244 	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
245 	 * EL1 instead of being trapped to EL2.
246 	 */
247 	if (kvm_arm_support_pmu_v3()) {
248 		struct kvm_cpu_context *hctxt;
249 
250 		write_sysreg(0, pmselr_el0);
251 
252 		hctxt = host_data_ptr(host_ctxt);
253 		ctxt_sys_reg(hctxt, PMUSERENR_EL0) = read_sysreg(pmuserenr_el0);
254 		write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
255 		vcpu_set_flag(vcpu, PMUSERENR_ON_CPU);
256 	}
257 
258 	*host_data_ptr(host_debug_state.mdcr_el2) = read_sysreg(mdcr_el2);
259 	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
260 }
261 
__activate_traps_hcrx(struct kvm_vcpu * vcpu)262 static inline void __activate_traps_hcrx(struct kvm_vcpu *vcpu)
263 {
264 	u64 hcrx = vcpu->arch.hcrx_el2;
265 
266 	if (!cpus_have_final_cap(ARM64_HAS_HCX))
267 		return;
268 
269 	if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
270 		u64 clr = 0, set = 0;
271 
272 		compute_clr_set(vcpu, HCRX_EL2, clr, set);
273 
274 		hcrx |= set;
275 		hcrx &= ~clr;
276 	}
277 
278 	write_sysreg_s(hcrx, SYS_HCRX_EL2);
279 	__activate_traps_mpam(vcpu);
280 }
281 
__deactivate_traps_common(struct kvm_vcpu * vcpu)282 static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu)
283 {
284 	write_sysreg(*host_data_ptr(host_debug_state.mdcr_el2), mdcr_el2);
285 
286 	write_sysreg(0, hstr_el2);
287 	if (kvm_arm_support_pmu_v3()) {
288 		struct kvm_cpu_context *hctxt;
289 
290 		hctxt = host_data_ptr(host_ctxt);
291 		write_sysreg(ctxt_sys_reg(hctxt, PMUSERENR_EL0), pmuserenr_el0);
292 		vcpu_clear_flag(vcpu, PMUSERENR_ON_CPU);
293 	}
294 
295 	if (cpus_have_final_cap(ARM64_HAS_HCX))
296 		write_sysreg_s(HCRX_HOST_FLAGS, SYS_HCRX_EL2);
297 	__deactivate_traps_mpam();
298 }
299 
___activate_traps(struct kvm_vcpu * vcpu,u64 hcr)300 static inline void ___activate_traps(struct kvm_vcpu *vcpu, u64 hcr)
301 {
302 	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
303 		hcr |= HCR_TVM;
304 
305 	write_sysreg(hcr, hcr_el2);
306 
307 	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
308 		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
309 }
310 
___deactivate_traps(struct kvm_vcpu * vcpu)311 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
312 {
313 	/*
314 	 * If we pended a virtual abort, preserve it until it gets
315 	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
316 	 * the crucial bit is "On taking a vSError interrupt,
317 	 * HCR_EL2.VSE is cleared to 0."
318 	 */
319 	if (vcpu->arch.hcr_el2 & HCR_VSE) {
320 		vcpu->arch.hcr_el2 &= ~HCR_VSE;
321 		vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
322 	}
323 }
324 
__populate_fault_info(struct kvm_vcpu * vcpu)325 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
326 {
327 	return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault);
328 }
329 
kvm_hyp_handle_mops(struct kvm_vcpu * vcpu,u64 * exit_code)330 static inline bool kvm_hyp_handle_mops(struct kvm_vcpu *vcpu, u64 *exit_code)
331 {
332 	*vcpu_pc(vcpu) = read_sysreg_el2(SYS_ELR);
333 	arm64_mops_reset_regs(vcpu_gp_regs(vcpu), vcpu->arch.fault.esr_el2);
334 	write_sysreg_el2(*vcpu_pc(vcpu), SYS_ELR);
335 
336 	/*
337 	 * Finish potential single step before executing the prologue
338 	 * instruction.
339 	 */
340 	*vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
341 	write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
342 
343 	return true;
344 }
345 
__hyp_sve_restore_guest(struct kvm_vcpu * vcpu)346 static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
347 {
348 	/*
349 	 * The vCPU's saved SVE state layout always matches the max VL of the
350 	 * vCPU. Start off with the max VL so we can load the SVE state.
351 	 */
352 	sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
353 	__sve_restore_state(vcpu_sve_pffr(vcpu),
354 			    &vcpu->arch.ctxt.fp_regs.fpsr,
355 			    true);
356 
357 	/*
358 	 * The effective VL for a VM could differ from the max VL when running a
359 	 * nested guest, as the guest hypervisor could select a smaller VL. Slap
360 	 * that into hardware before wrapping up.
361 	 */
362 	if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))
363 		sve_cond_update_zcr_vq(__vcpu_sys_reg(vcpu, ZCR_EL2), SYS_ZCR_EL2);
364 
365 	write_sysreg_el1(__vcpu_sys_reg(vcpu, vcpu_sve_zcr_elx(vcpu)), SYS_ZCR);
366 }
367 
__hyp_sve_save_host(void)368 static inline void __hyp_sve_save_host(void)
369 {
370 	struct cpu_sve_state *sve_state = *host_data_ptr(sve_state);
371 
372 	sve_state->zcr_el1 = read_sysreg_el1(SYS_ZCR);
373 	write_sysreg_s(sve_vq_from_vl(kvm_host_sve_max_vl) - 1, SYS_ZCR_EL2);
374 	__sve_save_state(sve_state->sve_regs + sve_ffr_offset(kvm_host_sve_max_vl),
375 			 &sve_state->fpsr,
376 			 true);
377 }
378 
fpsimd_lazy_switch_to_guest(struct kvm_vcpu * vcpu)379 static inline void fpsimd_lazy_switch_to_guest(struct kvm_vcpu *vcpu)
380 {
381 	u64 zcr_el1, zcr_el2;
382 
383 	if (!guest_owns_fp_regs())
384 		return;
385 
386 	if (vcpu_has_sve(vcpu)) {
387 		/* A guest hypervisor may restrict the effective max VL. */
388 		if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))
389 			zcr_el2 = __vcpu_sys_reg(vcpu, ZCR_EL2);
390 		else
391 			zcr_el2 = vcpu_sve_max_vq(vcpu) - 1;
392 
393 		write_sysreg_el2(zcr_el2, SYS_ZCR);
394 
395 		zcr_el1 = __vcpu_sys_reg(vcpu, vcpu_sve_zcr_elx(vcpu));
396 		write_sysreg_el1(zcr_el1, SYS_ZCR);
397 	}
398 }
399 
fpsimd_lazy_switch_to_host(struct kvm_vcpu * vcpu)400 static inline void fpsimd_lazy_switch_to_host(struct kvm_vcpu *vcpu)
401 {
402 	u64 zcr_el1, zcr_el2;
403 
404 	if (!guest_owns_fp_regs())
405 		return;
406 
407 	/*
408 	 * When the guest owns the FP regs, we know that guest+hyp traps for
409 	 * any FPSIMD/SVE/SME features exposed to the guest have been disabled
410 	 * by either fpsimd_lazy_switch_to_guest() or kvm_hyp_handle_fpsimd()
411 	 * prior to __guest_entry(). As __guest_entry() guarantees a context
412 	 * synchronization event, we don't need an ISB here to avoid taking
413 	 * traps for anything that was exposed to the guest.
414 	 */
415 	if (vcpu_has_sve(vcpu)) {
416 		zcr_el1 = read_sysreg_el1(SYS_ZCR);
417 		__vcpu_sys_reg(vcpu, vcpu_sve_zcr_elx(vcpu)) = zcr_el1;
418 
419 		/*
420 		 * The guest's state is always saved using the guest's max VL.
421 		 * Ensure that the host has the guest's max VL active such that
422 		 * the host can save the guest's state lazily, but don't
423 		 * artificially restrict the host to the guest's max VL.
424 		 */
425 		if (has_vhe()) {
426 			zcr_el2 = vcpu_sve_max_vq(vcpu) - 1;
427 			write_sysreg_el2(zcr_el2, SYS_ZCR);
428 		} else {
429 			zcr_el2 = sve_vq_from_vl(kvm_host_sve_max_vl) - 1;
430 			write_sysreg_el2(zcr_el2, SYS_ZCR);
431 
432 			zcr_el1 = vcpu_sve_max_vq(vcpu) - 1;
433 			write_sysreg_el1(zcr_el1, SYS_ZCR);
434 		}
435 	}
436 }
437 
kvm_hyp_save_fpsimd_host(struct kvm_vcpu * vcpu)438 static void kvm_hyp_save_fpsimd_host(struct kvm_vcpu *vcpu)
439 {
440 	/*
441 	 * Non-protected kvm relies on the host restoring its sve state.
442 	 * Protected kvm restores the host's sve state as not to reveal that
443 	 * fpsimd was used by a guest nor leak upper sve bits.
444 	 */
445 	if (system_supports_sve()) {
446 		__hyp_sve_save_host();
447 
448 		/* Re-enable SVE traps if not supported for the guest vcpu. */
449 		if (!vcpu_has_sve(vcpu))
450 			cpacr_clear_set(CPACR_ELx_ZEN, 0);
451 
452 	} else {
453 		__fpsimd_save_state(host_data_ptr(host_ctxt.fp_regs));
454 	}
455 
456 	if (kvm_has_fpmr(kern_hyp_va(vcpu->kvm)))
457 		*host_data_ptr(fpmr) = read_sysreg_s(SYS_FPMR);
458 }
459 
460 /*
461  * We trap the first access to the FP/SIMD to save the host context and
462  * restore the guest context lazily.
463  * If FP/SIMD is not implemented, handle the trap and inject an undefined
464  * instruction exception to the guest. Similarly for trapped SVE accesses.
465  */
kvm_hyp_handle_fpsimd(struct kvm_vcpu * vcpu,u64 * exit_code)466 static inline bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
467 {
468 	bool sve_guest;
469 	u8 esr_ec;
470 
471 	if (!system_supports_fpsimd())
472 		return false;
473 
474 	sve_guest = vcpu_has_sve(vcpu);
475 	esr_ec = kvm_vcpu_trap_get_class(vcpu);
476 
477 	/* Only handle traps the vCPU can support here: */
478 	switch (esr_ec) {
479 	case ESR_ELx_EC_FP_ASIMD:
480 		/* Forward traps to the guest hypervisor as required */
481 		if (guest_hyp_fpsimd_traps_enabled(vcpu))
482 			return false;
483 		break;
484 	case ESR_ELx_EC_SYS64:
485 		if (WARN_ON_ONCE(!is_hyp_ctxt(vcpu)))
486 			return false;
487 		fallthrough;
488 	case ESR_ELx_EC_SVE:
489 		if (!sve_guest)
490 			return false;
491 		if (guest_hyp_sve_traps_enabled(vcpu))
492 			return false;
493 		break;
494 	default:
495 		return false;
496 	}
497 
498 	/* Valid trap.  Switch the context: */
499 
500 	/* First disable enough traps to allow us to update the registers */
501 	if (sve_guest || (is_protected_kvm_enabled() && system_supports_sve()))
502 		cpacr_clear_set(0, CPACR_ELx_FPEN | CPACR_ELx_ZEN);
503 	else
504 		cpacr_clear_set(0, CPACR_ELx_FPEN);
505 	isb();
506 
507 	/* Write out the host state if it's in the registers */
508 	if (is_protected_kvm_enabled() && host_owns_fp_regs())
509 		kvm_hyp_save_fpsimd_host(vcpu);
510 
511 	/* Restore the guest state */
512 	if (sve_guest)
513 		__hyp_sve_restore_guest(vcpu);
514 	else
515 		__fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
516 
517 	if (kvm_has_fpmr(kern_hyp_va(vcpu->kvm)))
518 		write_sysreg_s(__vcpu_sys_reg(vcpu, FPMR), SYS_FPMR);
519 
520 	/* Skip restoring fpexc32 for AArch64 guests */
521 	if (!(read_sysreg(hcr_el2) & HCR_RW))
522 		write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
523 
524 	*host_data_ptr(fp_owner) = FP_STATE_GUEST_OWNED;
525 
526 	return true;
527 }
528 
handle_tx2_tvm(struct kvm_vcpu * vcpu)529 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
530 {
531 	u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
532 	int rt = kvm_vcpu_sys_get_rt(vcpu);
533 	u64 val = vcpu_get_reg(vcpu, rt);
534 
535 	/*
536 	 * The normal sysreg handling code expects to see the traps,
537 	 * let's not do anything here.
538 	 */
539 	if (vcpu->arch.hcr_el2 & HCR_TVM)
540 		return false;
541 
542 	switch (sysreg) {
543 	case SYS_SCTLR_EL1:
544 		write_sysreg_el1(val, SYS_SCTLR);
545 		break;
546 	case SYS_TTBR0_EL1:
547 		write_sysreg_el1(val, SYS_TTBR0);
548 		break;
549 	case SYS_TTBR1_EL1:
550 		write_sysreg_el1(val, SYS_TTBR1);
551 		break;
552 	case SYS_TCR_EL1:
553 		write_sysreg_el1(val, SYS_TCR);
554 		break;
555 	case SYS_ESR_EL1:
556 		write_sysreg_el1(val, SYS_ESR);
557 		break;
558 	case SYS_FAR_EL1:
559 		write_sysreg_el1(val, SYS_FAR);
560 		break;
561 	case SYS_AFSR0_EL1:
562 		write_sysreg_el1(val, SYS_AFSR0);
563 		break;
564 	case SYS_AFSR1_EL1:
565 		write_sysreg_el1(val, SYS_AFSR1);
566 		break;
567 	case SYS_MAIR_EL1:
568 		write_sysreg_el1(val, SYS_MAIR);
569 		break;
570 	case SYS_AMAIR_EL1:
571 		write_sysreg_el1(val, SYS_AMAIR);
572 		break;
573 	case SYS_CONTEXTIDR_EL1:
574 		write_sysreg_el1(val, SYS_CONTEXTIDR);
575 		break;
576 	default:
577 		return false;
578 	}
579 
580 	__kvm_skip_instr(vcpu);
581 	return true;
582 }
583 
kvm_hyp_handle_cntpct(struct kvm_vcpu * vcpu)584 static bool kvm_hyp_handle_cntpct(struct kvm_vcpu *vcpu)
585 {
586 	struct arch_timer_context *ctxt;
587 	u32 sysreg;
588 	u64 val;
589 
590 	/*
591 	 * We only get here for 64bit guests, 32bit guests will hit
592 	 * the long and winding road all the way to the standard
593 	 * handling. Yes, it sucks to be irrelevant.
594 	 */
595 	sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
596 
597 	switch (sysreg) {
598 	case SYS_CNTPCT_EL0:
599 	case SYS_CNTPCTSS_EL0:
600 		if (vcpu_has_nv(vcpu)) {
601 			if (is_hyp_ctxt(vcpu)) {
602 				ctxt = vcpu_hptimer(vcpu);
603 				break;
604 			}
605 
606 			/* Check for guest hypervisor trapping */
607 			val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
608 			if (!vcpu_el2_e2h_is_set(vcpu))
609 				val = (val & CNTHCTL_EL1PCTEN) << 10;
610 
611 			if (!(val & (CNTHCTL_EL1PCTEN << 10)))
612 				return false;
613 		}
614 
615 		ctxt = vcpu_ptimer(vcpu);
616 		break;
617 	default:
618 		return false;
619 	}
620 
621 	val = arch_timer_read_cntpct_el0();
622 
623 	if (ctxt->offset.vm_offset)
624 		val -= *kern_hyp_va(ctxt->offset.vm_offset);
625 	if (ctxt->offset.vcpu_offset)
626 		val -= *kern_hyp_va(ctxt->offset.vcpu_offset);
627 
628 	vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val);
629 	__kvm_skip_instr(vcpu);
630 	return true;
631 }
632 
handle_ampere1_tcr(struct kvm_vcpu * vcpu)633 static bool handle_ampere1_tcr(struct kvm_vcpu *vcpu)
634 {
635 	u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
636 	int rt = kvm_vcpu_sys_get_rt(vcpu);
637 	u64 val = vcpu_get_reg(vcpu, rt);
638 
639 	if (sysreg != SYS_TCR_EL1)
640 		return false;
641 
642 	/*
643 	 * Affected parts do not advertise support for hardware Access Flag /
644 	 * Dirty state management in ID_AA64MMFR1_EL1.HAFDBS, but the underlying
645 	 * control bits are still functional. The architecture requires these be
646 	 * RES0 on systems that do not implement FEAT_HAFDBS.
647 	 *
648 	 * Uphold the requirements of the architecture by masking guest writes
649 	 * to TCR_EL1.{HA,HD} here.
650 	 */
651 	val &= ~(TCR_HD | TCR_HA);
652 	write_sysreg_el1(val, SYS_TCR);
653 	__kvm_skip_instr(vcpu);
654 	return true;
655 }
656 
kvm_hyp_handle_sysreg(struct kvm_vcpu * vcpu,u64 * exit_code)657 static inline bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
658 {
659 	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
660 	    handle_tx2_tvm(vcpu))
661 		return true;
662 
663 	if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) &&
664 	    handle_ampere1_tcr(vcpu))
665 		return true;
666 
667 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
668 	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
669 		return true;
670 
671 	if (kvm_hyp_handle_cntpct(vcpu))
672 		return true;
673 
674 	return false;
675 }
676 
kvm_hyp_handle_cp15_32(struct kvm_vcpu * vcpu,u64 * exit_code)677 static inline bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
678 {
679 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
680 	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
681 		return true;
682 
683 	return false;
684 }
685 
kvm_hyp_handle_memory_fault(struct kvm_vcpu * vcpu,u64 * exit_code)686 static inline bool kvm_hyp_handle_memory_fault(struct kvm_vcpu *vcpu,
687 					       u64 *exit_code)
688 {
689 	if (!__populate_fault_info(vcpu))
690 		return true;
691 
692 	return false;
693 }
694 #define kvm_hyp_handle_iabt_low		kvm_hyp_handle_memory_fault
695 #define kvm_hyp_handle_watchpt_low	kvm_hyp_handle_memory_fault
696 
kvm_hyp_handle_dabt_low(struct kvm_vcpu * vcpu,u64 * exit_code)697 static inline bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
698 {
699 	if (kvm_hyp_handle_memory_fault(vcpu, exit_code))
700 		return true;
701 
702 	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
703 		bool valid;
704 
705 		valid = kvm_vcpu_trap_is_translation_fault(vcpu) &&
706 			kvm_vcpu_dabt_isvalid(vcpu) &&
707 			!kvm_vcpu_abt_issea(vcpu) &&
708 			!kvm_vcpu_abt_iss1tw(vcpu);
709 
710 		if (valid) {
711 			int ret = __vgic_v2_perform_cpuif_access(vcpu);
712 
713 			if (ret == 1)
714 				return true;
715 
716 			/* Promote an illegal access to an SError.*/
717 			if (ret == -1)
718 				*exit_code = ARM_EXCEPTION_EL1_SERROR;
719 		}
720 	}
721 
722 	return false;
723 }
724 
725 typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *);
726 
727 /*
728  * Allow the hypervisor to handle the exit with an exit handler if it has one.
729  *
730  * Returns true if the hypervisor handled the exit, and control should go back
731  * to the guest, or false if it hasn't.
732  */
kvm_hyp_handle_exit(struct kvm_vcpu * vcpu,u64 * exit_code,const exit_handler_fn * handlers)733 static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code,
734 				       const exit_handler_fn *handlers)
735 {
736 	exit_handler_fn fn = handlers[kvm_vcpu_trap_get_class(vcpu)];
737 	if (fn)
738 		return fn(vcpu, exit_code);
739 
740 	return false;
741 }
742 
synchronize_vcpu_pstate(struct kvm_vcpu * vcpu,u64 * exit_code)743 static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code)
744 {
745 	/*
746 	 * Check for the conditions of Cortex-A510's #2077057. When these occur
747 	 * SPSR_EL2 can't be trusted, but isn't needed either as it is
748 	 * unchanged from the value in vcpu_gp_regs(vcpu)->pstate.
749 	 * Are we single-stepping the guest, and took a PAC exception from the
750 	 * active-not-pending state?
751 	 */
752 	if (cpus_have_final_cap(ARM64_WORKAROUND_2077057)		&&
753 	    vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP			&&
754 	    *vcpu_cpsr(vcpu) & DBG_SPSR_SS				&&
755 	    ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC)
756 		write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
757 
758 	vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
759 }
760 
761 /*
762  * Return true when we were able to fixup the guest exit and should return to
763  * the guest, false when we should restore the host state and return to the
764  * main run loop.
765  */
__fixup_guest_exit(struct kvm_vcpu * vcpu,u64 * exit_code,const exit_handler_fn * handlers)766 static inline bool __fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code,
767 				      const exit_handler_fn *handlers)
768 {
769 	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
770 		vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
771 
772 	if (ARM_SERROR_PENDING(*exit_code) &&
773 	    ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) {
774 		u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
775 
776 		/*
777 		 * HVC already have an adjusted PC, which we need to
778 		 * correct in order to return to after having injected
779 		 * the SError.
780 		 *
781 		 * SMC, on the other hand, is *trapped*, meaning its
782 		 * preferred return address is the SMC itself.
783 		 */
784 		if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
785 			write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
786 	}
787 
788 	/*
789 	 * We're using the raw exception code in order to only process
790 	 * the trap if no SError is pending. We will come back to the
791 	 * same PC once the SError has been injected, and replay the
792 	 * trapping instruction.
793 	 */
794 	if (*exit_code != ARM_EXCEPTION_TRAP)
795 		goto exit;
796 
797 	/* Check if there's an exit handler and allow it to handle the exit. */
798 	if (kvm_hyp_handle_exit(vcpu, exit_code, handlers))
799 		goto guest;
800 exit:
801 	/* Return to the host kernel and handle the exit */
802 	return false;
803 
804 guest:
805 	/* Re-enter the guest */
806 	asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
807 	return true;
808 }
809 
__kvm_unexpected_el2_exception(void)810 static inline void __kvm_unexpected_el2_exception(void)
811 {
812 	extern char __guest_exit_restore_elr_and_panic[];
813 	unsigned long addr, fixup;
814 	struct kvm_exception_table_entry *entry, *end;
815 	unsigned long elr_el2 = read_sysreg(elr_el2);
816 
817 	entry = &__start___kvm_ex_table;
818 	end = &__stop___kvm_ex_table;
819 
820 	while (entry < end) {
821 		addr = (unsigned long)&entry->insn + entry->insn;
822 		fixup = (unsigned long)&entry->fixup + entry->fixup;
823 
824 		if (addr != elr_el2) {
825 			entry++;
826 			continue;
827 		}
828 
829 		write_sysreg(fixup, elr_el2);
830 		return;
831 	}
832 
833 	/* Trigger a panic after restoring the hyp context. */
834 	this_cpu_ptr(&kvm_hyp_ctxt)->sys_regs[ELR_EL2] = elr_el2;
835 	write_sysreg(__guest_exit_restore_elr_and_panic, elr_el2);
836 }
837 
838 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */
839