• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
50 #include <linux/oom.h>
51 #include <uapi/linux/pidfd.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/signal.h>
55 
56 #include <asm/param.h>
57 #include <linux/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/siginfo.h>
60 #include <asm/cacheflush.h>
61 #include <asm/syscall.h>	/* for syscall_get_* */
62 
63 #undef CREATE_TRACE_POINTS
64 #include <trace/hooks/signal.h>
65 /*
66  * SLAB caches for signal bits.
67  */
68 
69 EXPORT_TRACEPOINT_SYMBOL_GPL(signal_generate);
70 
71 static struct kmem_cache *sigqueue_cachep;
72 
73 int print_fatal_signals __read_mostly;
74 
sig_handler(struct task_struct * t,int sig)75 static void __user *sig_handler(struct task_struct *t, int sig)
76 {
77 	return t->sighand->action[sig - 1].sa.sa_handler;
78 }
79 
sig_handler_ignored(void __user * handler,int sig)80 static inline bool sig_handler_ignored(void __user *handler, int sig)
81 {
82 	/* Is it explicitly or implicitly ignored? */
83 	return handler == SIG_IGN ||
84 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
85 }
86 
sig_task_ignored(struct task_struct * t,int sig,bool force)87 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
88 {
89 	void __user *handler;
90 
91 	handler = sig_handler(t, sig);
92 
93 	/* SIGKILL and SIGSTOP may not be sent to the global init */
94 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
95 		return true;
96 
97 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
98 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
99 		return true;
100 
101 	/* Only allow kernel generated signals to this kthread */
102 	if (unlikely((t->flags & PF_KTHREAD) &&
103 		     (handler == SIG_KTHREAD_KERNEL) && !force))
104 		return true;
105 
106 	return sig_handler_ignored(handler, sig);
107 }
108 
sig_ignored(struct task_struct * t,int sig,bool force)109 static bool sig_ignored(struct task_struct *t, int sig, bool force)
110 {
111 	/*
112 	 * Blocked signals are never ignored, since the
113 	 * signal handler may change by the time it is
114 	 * unblocked.
115 	 */
116 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
117 		return false;
118 
119 	/*
120 	 * Tracers may want to know about even ignored signal unless it
121 	 * is SIGKILL which can't be reported anyway but can be ignored
122 	 * by SIGNAL_UNKILLABLE task.
123 	 */
124 	if (t->ptrace && sig != SIGKILL)
125 		return false;
126 
127 	return sig_task_ignored(t, sig, force);
128 }
129 
130 /*
131  * Re-calculate pending state from the set of locally pending
132  * signals, globally pending signals, and blocked signals.
133  */
has_pending_signals(sigset_t * signal,sigset_t * blocked)134 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
135 {
136 	unsigned long ready;
137 	long i;
138 
139 	switch (_NSIG_WORDS) {
140 	default:
141 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
142 			ready |= signal->sig[i] &~ blocked->sig[i];
143 		break;
144 
145 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
146 		ready |= signal->sig[2] &~ blocked->sig[2];
147 		ready |= signal->sig[1] &~ blocked->sig[1];
148 		ready |= signal->sig[0] &~ blocked->sig[0];
149 		break;
150 
151 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
152 		ready |= signal->sig[0] &~ blocked->sig[0];
153 		break;
154 
155 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
156 	}
157 	return ready !=	0;
158 }
159 
160 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
161 
recalc_sigpending_tsk(struct task_struct * t)162 static bool recalc_sigpending_tsk(struct task_struct *t)
163 {
164 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
165 	    PENDING(&t->pending, &t->blocked) ||
166 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
167 	    cgroup_task_frozen(t)) {
168 		set_tsk_thread_flag(t, TIF_SIGPENDING);
169 		return true;
170 	}
171 
172 	/*
173 	 * We must never clear the flag in another thread, or in current
174 	 * when it's possible the current syscall is returning -ERESTART*.
175 	 * So we don't clear it here, and only callers who know they should do.
176 	 */
177 	return false;
178 }
179 
recalc_sigpending(void)180 void recalc_sigpending(void)
181 {
182 	if (!recalc_sigpending_tsk(current) && !freezing(current))
183 		clear_thread_flag(TIF_SIGPENDING);
184 
185 }
186 EXPORT_SYMBOL(recalc_sigpending);
187 
calculate_sigpending(void)188 void calculate_sigpending(void)
189 {
190 	/* Have any signals or users of TIF_SIGPENDING been delayed
191 	 * until after fork?
192 	 */
193 	spin_lock_irq(&current->sighand->siglock);
194 	set_tsk_thread_flag(current, TIF_SIGPENDING);
195 	recalc_sigpending();
196 	spin_unlock_irq(&current->sighand->siglock);
197 }
198 
199 /* Given the mask, find the first available signal that should be serviced. */
200 
201 #define SYNCHRONOUS_MASK \
202 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
203 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
204 
next_signal(struct sigpending * pending,sigset_t * mask)205 int next_signal(struct sigpending *pending, sigset_t *mask)
206 {
207 	unsigned long i, *s, *m, x;
208 	int sig = 0;
209 
210 	s = pending->signal.sig;
211 	m = mask->sig;
212 
213 	/*
214 	 * Handle the first word specially: it contains the
215 	 * synchronous signals that need to be dequeued first.
216 	 */
217 	x = *s &~ *m;
218 	if (x) {
219 		if (x & SYNCHRONOUS_MASK)
220 			x &= SYNCHRONOUS_MASK;
221 		sig = ffz(~x) + 1;
222 		return sig;
223 	}
224 
225 	switch (_NSIG_WORDS) {
226 	default:
227 		for (i = 1; i < _NSIG_WORDS; ++i) {
228 			x = *++s &~ *++m;
229 			if (!x)
230 				continue;
231 			sig = ffz(~x) + i*_NSIG_BPW + 1;
232 			break;
233 		}
234 		break;
235 
236 	case 2:
237 		x = s[1] &~ m[1];
238 		if (!x)
239 			break;
240 		sig = ffz(~x) + _NSIG_BPW + 1;
241 		break;
242 
243 	case 1:
244 		/* Nothing to do */
245 		break;
246 	}
247 
248 	return sig;
249 }
250 
print_dropped_signal(int sig)251 static inline void print_dropped_signal(int sig)
252 {
253 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
254 
255 	if (!print_fatal_signals)
256 		return;
257 
258 	if (!__ratelimit(&ratelimit_state))
259 		return;
260 
261 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
262 				current->comm, current->pid, sig);
263 }
264 
265 /**
266  * task_set_jobctl_pending - set jobctl pending bits
267  * @task: target task
268  * @mask: pending bits to set
269  *
270  * Clear @mask from @task->jobctl.  @mask must be subset of
271  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
272  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
273  * cleared.  If @task is already being killed or exiting, this function
274  * becomes noop.
275  *
276  * CONTEXT:
277  * Must be called with @task->sighand->siglock held.
278  *
279  * RETURNS:
280  * %true if @mask is set, %false if made noop because @task was dying.
281  */
task_set_jobctl_pending(struct task_struct * task,unsigned long mask)282 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
283 {
284 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
285 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
286 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
287 
288 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
289 		return false;
290 
291 	if (mask & JOBCTL_STOP_SIGMASK)
292 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
293 
294 	task->jobctl |= mask;
295 	return true;
296 }
297 
298 /**
299  * task_clear_jobctl_trapping - clear jobctl trapping bit
300  * @task: target task
301  *
302  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
303  * Clear it and wake up the ptracer.  Note that we don't need any further
304  * locking.  @task->siglock guarantees that @task->parent points to the
305  * ptracer.
306  *
307  * CONTEXT:
308  * Must be called with @task->sighand->siglock held.
309  */
task_clear_jobctl_trapping(struct task_struct * task)310 void task_clear_jobctl_trapping(struct task_struct *task)
311 {
312 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
313 		task->jobctl &= ~JOBCTL_TRAPPING;
314 		smp_mb();	/* advised by wake_up_bit() */
315 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
316 	}
317 }
318 
319 /**
320  * task_clear_jobctl_pending - clear jobctl pending bits
321  * @task: target task
322  * @mask: pending bits to clear
323  *
324  * Clear @mask from @task->jobctl.  @mask must be subset of
325  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
326  * STOP bits are cleared together.
327  *
328  * If clearing of @mask leaves no stop or trap pending, this function calls
329  * task_clear_jobctl_trapping().
330  *
331  * CONTEXT:
332  * Must be called with @task->sighand->siglock held.
333  */
task_clear_jobctl_pending(struct task_struct * task,unsigned long mask)334 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
335 {
336 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
337 
338 	if (mask & JOBCTL_STOP_PENDING)
339 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
340 
341 	task->jobctl &= ~mask;
342 
343 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
344 		task_clear_jobctl_trapping(task);
345 }
346 
347 /**
348  * task_participate_group_stop - participate in a group stop
349  * @task: task participating in a group stop
350  *
351  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
352  * Group stop states are cleared and the group stop count is consumed if
353  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
354  * stop, the appropriate `SIGNAL_*` flags are set.
355  *
356  * CONTEXT:
357  * Must be called with @task->sighand->siglock held.
358  *
359  * RETURNS:
360  * %true if group stop completion should be notified to the parent, %false
361  * otherwise.
362  */
task_participate_group_stop(struct task_struct * task)363 static bool task_participate_group_stop(struct task_struct *task)
364 {
365 	struct signal_struct *sig = task->signal;
366 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
367 
368 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
369 
370 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
371 
372 	if (!consume)
373 		return false;
374 
375 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
376 		sig->group_stop_count--;
377 
378 	/*
379 	 * Tell the caller to notify completion iff we are entering into a
380 	 * fresh group stop.  Read comment in do_signal_stop() for details.
381 	 */
382 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
383 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
384 		return true;
385 	}
386 	return false;
387 }
388 
task_join_group_stop(struct task_struct * task)389 void task_join_group_stop(struct task_struct *task)
390 {
391 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
392 	struct signal_struct *sig = current->signal;
393 
394 	if (sig->group_stop_count) {
395 		sig->group_stop_count++;
396 		mask |= JOBCTL_STOP_CONSUME;
397 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
398 		return;
399 
400 	/* Have the new thread join an on-going signal group stop */
401 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
402 }
403 
404 /*
405  * allocate a new signal queue record
406  * - this may be called without locks if and only if t == current, otherwise an
407  *   appropriate lock must be held to stop the target task from exiting
408  */
409 static struct sigqueue *
__sigqueue_alloc(int sig,struct task_struct * t,gfp_t gfp_flags,int override_rlimit,const unsigned int sigqueue_flags)410 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
411 		 int override_rlimit, const unsigned int sigqueue_flags)
412 {
413 	struct sigqueue *q = NULL;
414 	struct ucounts *ucounts;
415 	long sigpending;
416 
417 	/*
418 	 * Protect access to @t credentials. This can go away when all
419 	 * callers hold rcu read lock.
420 	 *
421 	 * NOTE! A pending signal will hold on to the user refcount,
422 	 * and we get/put the refcount only when the sigpending count
423 	 * changes from/to zero.
424 	 */
425 	rcu_read_lock();
426 	ucounts = task_ucounts(t);
427 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING,
428 					    override_rlimit);
429 	rcu_read_unlock();
430 	if (!sigpending)
431 		return NULL;
432 
433 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
434 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
435 	} else {
436 		print_dropped_signal(sig);
437 	}
438 
439 	if (unlikely(q == NULL)) {
440 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
441 	} else {
442 		INIT_LIST_HEAD(&q->list);
443 		q->flags = sigqueue_flags;
444 		q->ucounts = ucounts;
445 	}
446 	return q;
447 }
448 
__sigqueue_free(struct sigqueue * q)449 static void __sigqueue_free(struct sigqueue *q)
450 {
451 	if (q->flags & SIGQUEUE_PREALLOC)
452 		return;
453 	if (q->ucounts) {
454 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
455 		q->ucounts = NULL;
456 	}
457 	kmem_cache_free(sigqueue_cachep, q);
458 }
459 
flush_sigqueue(struct sigpending * queue)460 void flush_sigqueue(struct sigpending *queue)
461 {
462 	struct sigqueue *q;
463 
464 	sigemptyset(&queue->signal);
465 	while (!list_empty(&queue->list)) {
466 		q = list_entry(queue->list.next, struct sigqueue , list);
467 		list_del_init(&q->list);
468 		__sigqueue_free(q);
469 	}
470 }
471 
472 /*
473  * Flush all pending signals for this kthread.
474  */
flush_signals(struct task_struct * t)475 void flush_signals(struct task_struct *t)
476 {
477 	unsigned long flags;
478 
479 	spin_lock_irqsave(&t->sighand->siglock, flags);
480 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
481 	flush_sigqueue(&t->pending);
482 	flush_sigqueue(&t->signal->shared_pending);
483 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
484 }
485 EXPORT_SYMBOL(flush_signals);
486 
487 #ifdef CONFIG_POSIX_TIMERS
__flush_itimer_signals(struct sigpending * pending)488 static void __flush_itimer_signals(struct sigpending *pending)
489 {
490 	sigset_t signal, retain;
491 	struct sigqueue *q, *n;
492 
493 	signal = pending->signal;
494 	sigemptyset(&retain);
495 
496 	list_for_each_entry_safe(q, n, &pending->list, list) {
497 		int sig = q->info.si_signo;
498 
499 		if (likely(q->info.si_code != SI_TIMER)) {
500 			sigaddset(&retain, sig);
501 		} else {
502 			sigdelset(&signal, sig);
503 			list_del_init(&q->list);
504 			__sigqueue_free(q);
505 		}
506 	}
507 
508 	sigorsets(&pending->signal, &signal, &retain);
509 }
510 
flush_itimer_signals(void)511 void flush_itimer_signals(void)
512 {
513 	struct task_struct *tsk = current;
514 	unsigned long flags;
515 
516 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
517 	__flush_itimer_signals(&tsk->pending);
518 	__flush_itimer_signals(&tsk->signal->shared_pending);
519 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
520 }
521 #endif
522 
ignore_signals(struct task_struct * t)523 void ignore_signals(struct task_struct *t)
524 {
525 	int i;
526 
527 	for (i = 0; i < _NSIG; ++i)
528 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
529 
530 	flush_signals(t);
531 }
532 
533 /*
534  * Flush all handlers for a task.
535  */
536 
537 void
flush_signal_handlers(struct task_struct * t,int force_default)538 flush_signal_handlers(struct task_struct *t, int force_default)
539 {
540 	int i;
541 	struct k_sigaction *ka = &t->sighand->action[0];
542 	for (i = _NSIG ; i != 0 ; i--) {
543 		if (force_default || ka->sa.sa_handler != SIG_IGN)
544 			ka->sa.sa_handler = SIG_DFL;
545 		ka->sa.sa_flags = 0;
546 #ifdef __ARCH_HAS_SA_RESTORER
547 		ka->sa.sa_restorer = NULL;
548 #endif
549 		sigemptyset(&ka->sa.sa_mask);
550 		ka++;
551 	}
552 }
553 
unhandled_signal(struct task_struct * tsk,int sig)554 bool unhandled_signal(struct task_struct *tsk, int sig)
555 {
556 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
557 	if (is_global_init(tsk))
558 		return true;
559 
560 	if (handler != SIG_IGN && handler != SIG_DFL)
561 		return false;
562 
563 	/* If dying, we handle all new signals by ignoring them */
564 	if (fatal_signal_pending(tsk))
565 		return false;
566 
567 	/* if ptraced, let the tracer determine */
568 	return !tsk->ptrace;
569 }
570 
collect_signal(int sig,struct sigpending * list,kernel_siginfo_t * info,bool * resched_timer)571 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
572 			   bool *resched_timer)
573 {
574 	struct sigqueue *q, *first = NULL;
575 
576 	/*
577 	 * Collect the siginfo appropriate to this signal.  Check if
578 	 * there is another siginfo for the same signal.
579 	*/
580 	list_for_each_entry(q, &list->list, list) {
581 		if (q->info.si_signo == sig) {
582 			if (first)
583 				goto still_pending;
584 			first = q;
585 		}
586 	}
587 
588 	sigdelset(&list->signal, sig);
589 
590 	if (first) {
591 still_pending:
592 		list_del_init(&first->list);
593 		copy_siginfo(info, &first->info);
594 
595 		*resched_timer =
596 			(first->flags & SIGQUEUE_PREALLOC) &&
597 			(info->si_code == SI_TIMER) &&
598 			(info->si_sys_private);
599 
600 		__sigqueue_free(first);
601 	} else {
602 		/*
603 		 * Ok, it wasn't in the queue.  This must be
604 		 * a fast-pathed signal or we must have been
605 		 * out of queue space.  So zero out the info.
606 		 */
607 		clear_siginfo(info);
608 		info->si_signo = sig;
609 		info->si_errno = 0;
610 		info->si_code = SI_USER;
611 		info->si_pid = 0;
612 		info->si_uid = 0;
613 	}
614 }
615 
__dequeue_signal(struct sigpending * pending,sigset_t * mask,kernel_siginfo_t * info,bool * resched_timer)616 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
617 			kernel_siginfo_t *info, bool *resched_timer)
618 {
619 	int sig = next_signal(pending, mask);
620 
621 	if (sig)
622 		collect_signal(sig, pending, info, resched_timer);
623 	return sig;
624 }
625 
626 /*
627  * Try to dequeue a signal. If a deliverable signal is found fill in the
628  * caller provided siginfo and return the signal number. Otherwise return
629  * 0.
630  */
dequeue_signal(sigset_t * mask,kernel_siginfo_t * info,enum pid_type * type)631 int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type)
632 {
633 	struct task_struct *tsk = current;
634 	bool resched_timer = false;
635 	int signr;
636 
637 	lockdep_assert_held(&tsk->sighand->siglock);
638 
639 	*type = PIDTYPE_PID;
640 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
641 	if (!signr) {
642 		*type = PIDTYPE_TGID;
643 		signr = __dequeue_signal(&tsk->signal->shared_pending,
644 					 mask, info, &resched_timer);
645 #ifdef CONFIG_POSIX_TIMERS
646 		/*
647 		 * itimer signal ?
648 		 *
649 		 * itimers are process shared and we restart periodic
650 		 * itimers in the signal delivery path to prevent DoS
651 		 * attacks in the high resolution timer case. This is
652 		 * compliant with the old way of self-restarting
653 		 * itimers, as the SIGALRM is a legacy signal and only
654 		 * queued once. Changing the restart behaviour to
655 		 * restart the timer in the signal dequeue path is
656 		 * reducing the timer noise on heavy loaded !highres
657 		 * systems too.
658 		 */
659 		if (unlikely(signr == SIGALRM)) {
660 			struct hrtimer *tmr = &tsk->signal->real_timer;
661 
662 			if (!hrtimer_is_queued(tmr) &&
663 			    tsk->signal->it_real_incr != 0) {
664 				hrtimer_forward(tmr, tmr->base->get_time(),
665 						tsk->signal->it_real_incr);
666 				hrtimer_restart(tmr);
667 			}
668 		}
669 #endif
670 	}
671 
672 	recalc_sigpending();
673 	if (!signr)
674 		return 0;
675 
676 	if (unlikely(sig_kernel_stop(signr))) {
677 		/*
678 		 * Set a marker that we have dequeued a stop signal.  Our
679 		 * caller might release the siglock and then the pending
680 		 * stop signal it is about to process is no longer in the
681 		 * pending bitmasks, but must still be cleared by a SIGCONT
682 		 * (and overruled by a SIGKILL).  So those cases clear this
683 		 * shared flag after we've set it.  Note that this flag may
684 		 * remain set after the signal we return is ignored or
685 		 * handled.  That doesn't matter because its only purpose
686 		 * is to alert stop-signal processing code when another
687 		 * processor has come along and cleared the flag.
688 		 */
689 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
690 	}
691 #ifdef CONFIG_POSIX_TIMERS
692 	if (resched_timer) {
693 		/*
694 		 * Release the siglock to ensure proper locking order
695 		 * of timer locks outside of siglocks.  Note, we leave
696 		 * irqs disabled here, since the posix-timers code is
697 		 * about to disable them again anyway.
698 		 */
699 		spin_unlock(&tsk->sighand->siglock);
700 		posixtimer_rearm(info);
701 		spin_lock(&tsk->sighand->siglock);
702 
703 		/* Don't expose the si_sys_private value to userspace */
704 		info->si_sys_private = 0;
705 	}
706 #endif
707 	return signr;
708 }
709 EXPORT_SYMBOL_GPL(dequeue_signal);
710 
dequeue_synchronous_signal(kernel_siginfo_t * info)711 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
712 {
713 	struct task_struct *tsk = current;
714 	struct sigpending *pending = &tsk->pending;
715 	struct sigqueue *q, *sync = NULL;
716 
717 	/*
718 	 * Might a synchronous signal be in the queue?
719 	 */
720 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
721 		return 0;
722 
723 	/*
724 	 * Return the first synchronous signal in the queue.
725 	 */
726 	list_for_each_entry(q, &pending->list, list) {
727 		/* Synchronous signals have a positive si_code */
728 		if ((q->info.si_code > SI_USER) &&
729 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
730 			sync = q;
731 			goto next;
732 		}
733 	}
734 	return 0;
735 next:
736 	/*
737 	 * Check if there is another siginfo for the same signal.
738 	 */
739 	list_for_each_entry_continue(q, &pending->list, list) {
740 		if (q->info.si_signo == sync->info.si_signo)
741 			goto still_pending;
742 	}
743 
744 	sigdelset(&pending->signal, sync->info.si_signo);
745 	recalc_sigpending();
746 still_pending:
747 	list_del_init(&sync->list);
748 	copy_siginfo(info, &sync->info);
749 	__sigqueue_free(sync);
750 	return info->si_signo;
751 }
752 
753 /*
754  * Tell a process that it has a new active signal..
755  *
756  * NOTE! we rely on the previous spin_lock to
757  * lock interrupts for us! We can only be called with
758  * "siglock" held, and the local interrupt must
759  * have been disabled when that got acquired!
760  *
761  * No need to set need_resched since signal event passing
762  * goes through ->blocked
763  */
signal_wake_up_state(struct task_struct * t,unsigned int state)764 void signal_wake_up_state(struct task_struct *t, unsigned int state)
765 {
766 	lockdep_assert_held(&t->sighand->siglock);
767 
768 	set_tsk_thread_flag(t, TIF_SIGPENDING);
769 
770 	/*
771 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
772 	 * case. We don't check t->state here because there is a race with it
773 	 * executing another processor and just now entering stopped state.
774 	 * By using wake_up_state, we ensure the process will wake up and
775 	 * handle its death signal.
776 	 */
777 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
778 		kick_process(t);
779 }
780 
781 /*
782  * Remove signals in mask from the pending set and queue.
783  * Returns 1 if any signals were found.
784  *
785  * All callers must be holding the siglock.
786  */
flush_sigqueue_mask(sigset_t * mask,struct sigpending * s)787 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
788 {
789 	struct sigqueue *q, *n;
790 	sigset_t m;
791 
792 	sigandsets(&m, mask, &s->signal);
793 	if (sigisemptyset(&m))
794 		return;
795 
796 	sigandnsets(&s->signal, &s->signal, mask);
797 	list_for_each_entry_safe(q, n, &s->list, list) {
798 		if (sigismember(mask, q->info.si_signo)) {
799 			list_del_init(&q->list);
800 			__sigqueue_free(q);
801 		}
802 	}
803 }
804 
is_si_special(const struct kernel_siginfo * info)805 static inline int is_si_special(const struct kernel_siginfo *info)
806 {
807 	return info <= SEND_SIG_PRIV;
808 }
809 
si_fromuser(const struct kernel_siginfo * info)810 static inline bool si_fromuser(const struct kernel_siginfo *info)
811 {
812 	return info == SEND_SIG_NOINFO ||
813 		(!is_si_special(info) && SI_FROMUSER(info));
814 }
815 
816 /*
817  * called with RCU read lock from check_kill_permission()
818  */
kill_ok_by_cred(struct task_struct * t)819 static bool kill_ok_by_cred(struct task_struct *t)
820 {
821 	const struct cred *cred = current_cred();
822 	const struct cred *tcred = __task_cred(t);
823 
824 	return uid_eq(cred->euid, tcred->suid) ||
825 	       uid_eq(cred->euid, tcred->uid) ||
826 	       uid_eq(cred->uid, tcred->suid) ||
827 	       uid_eq(cred->uid, tcred->uid) ||
828 	       ns_capable(tcred->user_ns, CAP_KILL);
829 }
830 
831 /*
832  * Bad permissions for sending the signal
833  * - the caller must hold the RCU read lock
834  */
check_kill_permission(int sig,struct kernel_siginfo * info,struct task_struct * t)835 static int check_kill_permission(int sig, struct kernel_siginfo *info,
836 				 struct task_struct *t)
837 {
838 	struct pid *sid;
839 	int error;
840 
841 	if (!valid_signal(sig))
842 		return -EINVAL;
843 
844 	if (!si_fromuser(info))
845 		return 0;
846 
847 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
848 	if (error)
849 		return error;
850 
851 	if (!same_thread_group(current, t) &&
852 	    !kill_ok_by_cred(t)) {
853 		switch (sig) {
854 		case SIGCONT:
855 			sid = task_session(t);
856 			/*
857 			 * We don't return the error if sid == NULL. The
858 			 * task was unhashed, the caller must notice this.
859 			 */
860 			if (!sid || sid == task_session(current))
861 				break;
862 			fallthrough;
863 		default:
864 			return -EPERM;
865 		}
866 	}
867 
868 	return security_task_kill(t, info, sig, NULL);
869 }
870 
871 /**
872  * ptrace_trap_notify - schedule trap to notify ptracer
873  * @t: tracee wanting to notify tracer
874  *
875  * This function schedules sticky ptrace trap which is cleared on the next
876  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
877  * ptracer.
878  *
879  * If @t is running, STOP trap will be taken.  If trapped for STOP and
880  * ptracer is listening for events, tracee is woken up so that it can
881  * re-trap for the new event.  If trapped otherwise, STOP trap will be
882  * eventually taken without returning to userland after the existing traps
883  * are finished by PTRACE_CONT.
884  *
885  * CONTEXT:
886  * Must be called with @task->sighand->siglock held.
887  */
ptrace_trap_notify(struct task_struct * t)888 static void ptrace_trap_notify(struct task_struct *t)
889 {
890 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
891 	lockdep_assert_held(&t->sighand->siglock);
892 
893 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
894 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
895 }
896 
897 /*
898  * Handle magic process-wide effects of stop/continue signals. Unlike
899  * the signal actions, these happen immediately at signal-generation
900  * time regardless of blocking, ignoring, or handling.  This does the
901  * actual continuing for SIGCONT, but not the actual stopping for stop
902  * signals. The process stop is done as a signal action for SIG_DFL.
903  *
904  * Returns true if the signal should be actually delivered, otherwise
905  * it should be dropped.
906  */
prepare_signal(int sig,struct task_struct * p,bool force)907 static bool prepare_signal(int sig, struct task_struct *p, bool force)
908 {
909 	struct signal_struct *signal = p->signal;
910 	struct task_struct *t;
911 	sigset_t flush;
912 
913 	if (signal->flags & SIGNAL_GROUP_EXIT) {
914 		if (signal->core_state)
915 			return sig == SIGKILL;
916 		/*
917 		 * The process is in the middle of dying, drop the signal.
918 		 */
919 		return false;
920 	} else if (sig_kernel_stop(sig)) {
921 		/*
922 		 * This is a stop signal.  Remove SIGCONT from all queues.
923 		 */
924 		siginitset(&flush, sigmask(SIGCONT));
925 		flush_sigqueue_mask(&flush, &signal->shared_pending);
926 		for_each_thread(p, t)
927 			flush_sigqueue_mask(&flush, &t->pending);
928 	} else if (sig == SIGCONT) {
929 		unsigned int why;
930 		/*
931 		 * Remove all stop signals from all queues, wake all threads.
932 		 */
933 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
934 		flush_sigqueue_mask(&flush, &signal->shared_pending);
935 		for_each_thread(p, t) {
936 			flush_sigqueue_mask(&flush, &t->pending);
937 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
938 			if (likely(!(t->ptrace & PT_SEIZED))) {
939 				t->jobctl &= ~JOBCTL_STOPPED;
940 				wake_up_state(t, __TASK_STOPPED);
941 			} else
942 				ptrace_trap_notify(t);
943 		}
944 
945 		/*
946 		 * Notify the parent with CLD_CONTINUED if we were stopped.
947 		 *
948 		 * If we were in the middle of a group stop, we pretend it
949 		 * was already finished, and then continued. Since SIGCHLD
950 		 * doesn't queue we report only CLD_STOPPED, as if the next
951 		 * CLD_CONTINUED was dropped.
952 		 */
953 		why = 0;
954 		if (signal->flags & SIGNAL_STOP_STOPPED)
955 			why |= SIGNAL_CLD_CONTINUED;
956 		else if (signal->group_stop_count)
957 			why |= SIGNAL_CLD_STOPPED;
958 
959 		if (why) {
960 			/*
961 			 * The first thread which returns from do_signal_stop()
962 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
963 			 * notify its parent. See get_signal().
964 			 */
965 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
966 			signal->group_stop_count = 0;
967 			signal->group_exit_code = 0;
968 		}
969 	}
970 
971 	return !sig_ignored(p, sig, force);
972 }
973 
974 /*
975  * Test if P wants to take SIG.  After we've checked all threads with this,
976  * it's equivalent to finding no threads not blocking SIG.  Any threads not
977  * blocking SIG were ruled out because they are not running and already
978  * have pending signals.  Such threads will dequeue from the shared queue
979  * as soon as they're available, so putting the signal on the shared queue
980  * will be equivalent to sending it to one such thread.
981  */
wants_signal(int sig,struct task_struct * p)982 static inline bool wants_signal(int sig, struct task_struct *p)
983 {
984 	if (sigismember(&p->blocked, sig))
985 		return false;
986 
987 	if (p->flags & PF_EXITING)
988 		return false;
989 
990 	if (sig == SIGKILL)
991 		return true;
992 
993 	if (task_is_stopped_or_traced(p))
994 		return false;
995 
996 	return task_curr(p) || !task_sigpending(p);
997 }
998 
complete_signal(int sig,struct task_struct * p,enum pid_type type)999 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
1000 {
1001 	struct signal_struct *signal = p->signal;
1002 	struct task_struct *t;
1003 
1004 	/*
1005 	 * Now find a thread we can wake up to take the signal off the queue.
1006 	 *
1007 	 * Try the suggested task first (may or may not be the main thread).
1008 	 */
1009 	if (wants_signal(sig, p))
1010 		t = p;
1011 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1012 		/*
1013 		 * There is just one thread and it does not need to be woken.
1014 		 * It will dequeue unblocked signals before it runs again.
1015 		 */
1016 		return;
1017 	else {
1018 		/*
1019 		 * Otherwise try to find a suitable thread.
1020 		 */
1021 		t = signal->curr_target;
1022 		while (!wants_signal(sig, t)) {
1023 			t = next_thread(t);
1024 			if (t == signal->curr_target)
1025 				/*
1026 				 * No thread needs to be woken.
1027 				 * Any eligible threads will see
1028 				 * the signal in the queue soon.
1029 				 */
1030 				return;
1031 		}
1032 		signal->curr_target = t;
1033 	}
1034 
1035 	/*
1036 	 * Found a killable thread.  If the signal will be fatal,
1037 	 * then start taking the whole group down immediately.
1038 	 */
1039 	if (sig_fatal(p, sig) &&
1040 	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1041 	    !sigismember(&t->real_blocked, sig) &&
1042 	    (sig == SIGKILL || !p->ptrace)) {
1043 		/*
1044 		 * This signal will be fatal to the whole group.
1045 		 */
1046 		if (!sig_kernel_coredump(sig)) {
1047 			/*
1048 			 * Start a group exit and wake everybody up.
1049 			 * This way we don't have other threads
1050 			 * running and doing things after a slower
1051 			 * thread has the fatal signal pending.
1052 			 */
1053 			signal->flags = SIGNAL_GROUP_EXIT;
1054 			signal->group_exit_code = sig;
1055 			signal->group_stop_count = 0;
1056 			__for_each_thread(signal, t) {
1057 				trace_android_vh_exit_signal(t);
1058 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1059 				sigaddset(&t->pending.signal, SIGKILL);
1060 				signal_wake_up(t, 1);
1061 			}
1062 			return;
1063 		}
1064 	}
1065 
1066 	/*
1067 	 * The signal is already in the shared-pending queue.
1068 	 * Tell the chosen thread to wake up and dequeue it.
1069 	 */
1070 	signal_wake_up(t, sig == SIGKILL);
1071 	return;
1072 }
1073 
legacy_queue(struct sigpending * signals,int sig)1074 static inline bool legacy_queue(struct sigpending *signals, int sig)
1075 {
1076 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1077 }
1078 
__send_signal_locked(int sig,struct kernel_siginfo * info,struct task_struct * t,enum pid_type type,bool force)1079 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1080 				struct task_struct *t, enum pid_type type, bool force)
1081 {
1082 	struct sigpending *pending;
1083 	struct sigqueue *q;
1084 	int override_rlimit;
1085 	int ret = 0, result;
1086 
1087 	lockdep_assert_held(&t->sighand->siglock);
1088 
1089 	result = TRACE_SIGNAL_IGNORED;
1090 	if (!prepare_signal(sig, t, force))
1091 		goto ret;
1092 
1093 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1094 	/*
1095 	 * Short-circuit ignored signals and support queuing
1096 	 * exactly one non-rt signal, so that we can get more
1097 	 * detailed information about the cause of the signal.
1098 	 */
1099 	result = TRACE_SIGNAL_ALREADY_PENDING;
1100 	if (legacy_queue(pending, sig))
1101 		goto ret;
1102 
1103 	result = TRACE_SIGNAL_DELIVERED;
1104 	/*
1105 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1106 	 */
1107 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1108 		goto out_set;
1109 
1110 	/*
1111 	 * Real-time signals must be queued if sent by sigqueue, or
1112 	 * some other real-time mechanism.  It is implementation
1113 	 * defined whether kill() does so.  We attempt to do so, on
1114 	 * the principle of least surprise, but since kill is not
1115 	 * allowed to fail with EAGAIN when low on memory we just
1116 	 * make sure at least one signal gets delivered and don't
1117 	 * pass on the info struct.
1118 	 */
1119 	if (sig < SIGRTMIN)
1120 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1121 	else
1122 		override_rlimit = 0;
1123 
1124 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1125 
1126 	if (q) {
1127 		list_add_tail(&q->list, &pending->list);
1128 		switch ((unsigned long) info) {
1129 		case (unsigned long) SEND_SIG_NOINFO:
1130 			clear_siginfo(&q->info);
1131 			q->info.si_signo = sig;
1132 			q->info.si_errno = 0;
1133 			q->info.si_code = SI_USER;
1134 			q->info.si_pid = task_tgid_nr_ns(current,
1135 							task_active_pid_ns(t));
1136 			rcu_read_lock();
1137 			q->info.si_uid =
1138 				from_kuid_munged(task_cred_xxx(t, user_ns),
1139 						 current_uid());
1140 			rcu_read_unlock();
1141 			break;
1142 		case (unsigned long) SEND_SIG_PRIV:
1143 			clear_siginfo(&q->info);
1144 			q->info.si_signo = sig;
1145 			q->info.si_errno = 0;
1146 			q->info.si_code = SI_KERNEL;
1147 			q->info.si_pid = 0;
1148 			q->info.si_uid = 0;
1149 			break;
1150 		default:
1151 			copy_siginfo(&q->info, info);
1152 			break;
1153 		}
1154 	} else if (!is_si_special(info) &&
1155 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1156 		/*
1157 		 * Queue overflow, abort.  We may abort if the
1158 		 * signal was rt and sent by user using something
1159 		 * other than kill().
1160 		 */
1161 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1162 		ret = -EAGAIN;
1163 		goto ret;
1164 	} else {
1165 		/*
1166 		 * This is a silent loss of information.  We still
1167 		 * send the signal, but the *info bits are lost.
1168 		 */
1169 		result = TRACE_SIGNAL_LOSE_INFO;
1170 	}
1171 
1172 out_set:
1173 	signalfd_notify(t, sig);
1174 	sigaddset(&pending->signal, sig);
1175 
1176 	/* Let multiprocess signals appear after on-going forks */
1177 	if (type > PIDTYPE_TGID) {
1178 		struct multiprocess_signals *delayed;
1179 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1180 			sigset_t *signal = &delayed->signal;
1181 			/* Can't queue both a stop and a continue signal */
1182 			if (sig == SIGCONT)
1183 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1184 			else if (sig_kernel_stop(sig))
1185 				sigdelset(signal, SIGCONT);
1186 			sigaddset(signal, sig);
1187 		}
1188 	}
1189 
1190 	complete_signal(sig, t, type);
1191 ret:
1192 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1193 	return ret;
1194 }
1195 
has_si_pid_and_uid(struct kernel_siginfo * info)1196 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1197 {
1198 	bool ret = false;
1199 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1200 	case SIL_KILL:
1201 	case SIL_CHLD:
1202 	case SIL_RT:
1203 		ret = true;
1204 		break;
1205 	case SIL_TIMER:
1206 	case SIL_POLL:
1207 	case SIL_FAULT:
1208 	case SIL_FAULT_TRAPNO:
1209 	case SIL_FAULT_MCEERR:
1210 	case SIL_FAULT_BNDERR:
1211 	case SIL_FAULT_PKUERR:
1212 	case SIL_FAULT_PERF_EVENT:
1213 	case SIL_SYS:
1214 		ret = false;
1215 		break;
1216 	}
1217 	return ret;
1218 }
1219 
send_signal_locked(int sig,struct kernel_siginfo * info,struct task_struct * t,enum pid_type type)1220 int send_signal_locked(int sig, struct kernel_siginfo *info,
1221 		       struct task_struct *t, enum pid_type type)
1222 {
1223 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1224 	bool force = false;
1225 
1226 	if (info == SEND_SIG_NOINFO) {
1227 		/* Force if sent from an ancestor pid namespace */
1228 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1229 	} else if (info == SEND_SIG_PRIV) {
1230 		/* Don't ignore kernel generated signals */
1231 		force = true;
1232 	} else if (has_si_pid_and_uid(info)) {
1233 		/* SIGKILL and SIGSTOP is special or has ids */
1234 		struct user_namespace *t_user_ns;
1235 
1236 		rcu_read_lock();
1237 		t_user_ns = task_cred_xxx(t, user_ns);
1238 		if (current_user_ns() != t_user_ns) {
1239 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1240 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1241 		}
1242 		rcu_read_unlock();
1243 
1244 		/* A kernel generated signal? */
1245 		force = (info->si_code == SI_KERNEL);
1246 
1247 		/* From an ancestor pid namespace? */
1248 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1249 			info->si_pid = 0;
1250 			force = true;
1251 		}
1252 	}
1253 	return __send_signal_locked(sig, info, t, type, force);
1254 }
1255 
print_fatal_signal(int signr)1256 static void print_fatal_signal(int signr)
1257 {
1258 	struct pt_regs *regs = task_pt_regs(current);
1259 	struct file *exe_file;
1260 
1261 	exe_file = get_task_exe_file(current);
1262 	if (exe_file) {
1263 		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1264 			exe_file, current->comm, signr);
1265 		fput(exe_file);
1266 	} else {
1267 		pr_info("%s: potentially unexpected fatal signal %d.\n",
1268 			current->comm, signr);
1269 	}
1270 
1271 #if defined(__i386__) && !defined(__arch_um__)
1272 	pr_info("code at %08lx: ", regs->ip);
1273 	{
1274 		int i;
1275 		for (i = 0; i < 16; i++) {
1276 			unsigned char insn;
1277 
1278 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1279 				break;
1280 			pr_cont("%02x ", insn);
1281 		}
1282 	}
1283 	pr_cont("\n");
1284 #endif
1285 	preempt_disable();
1286 	show_regs(regs);
1287 	preempt_enable();
1288 }
1289 
setup_print_fatal_signals(char * str)1290 static int __init setup_print_fatal_signals(char *str)
1291 {
1292 	get_option (&str, &print_fatal_signals);
1293 
1294 	return 1;
1295 }
1296 
1297 __setup("print-fatal-signals=", setup_print_fatal_signals);
1298 
do_send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p,enum pid_type type)1299 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1300 			enum pid_type type)
1301 {
1302 	unsigned long flags;
1303 	int ret = -ESRCH;
1304 	trace_android_vh_do_send_sig_info(sig, current, p);
1305 	if (lock_task_sighand(p, &flags)) {
1306 		ret = send_signal_locked(sig, info, p, type);
1307 		unlock_task_sighand(p, &flags);
1308 	}
1309 
1310 	return ret;
1311 }
1312 EXPORT_SYMBOL_GPL(do_send_sig_info);
1313 
1314 enum sig_handler {
1315 	HANDLER_CURRENT, /* If reachable use the current handler */
1316 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1317 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1318 };
1319 
1320 /*
1321  * Force a signal that the process can't ignore: if necessary
1322  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1323  *
1324  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1325  * since we do not want to have a signal handler that was blocked
1326  * be invoked when user space had explicitly blocked it.
1327  *
1328  * We don't want to have recursive SIGSEGV's etc, for example,
1329  * that is why we also clear SIGNAL_UNKILLABLE.
1330  */
1331 static int
force_sig_info_to_task(struct kernel_siginfo * info,struct task_struct * t,enum sig_handler handler)1332 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1333 	enum sig_handler handler)
1334 {
1335 	unsigned long int flags;
1336 	int ret, blocked, ignored;
1337 	struct k_sigaction *action;
1338 	int sig = info->si_signo;
1339 
1340 	spin_lock_irqsave(&t->sighand->siglock, flags);
1341 	action = &t->sighand->action[sig-1];
1342 	ignored = action->sa.sa_handler == SIG_IGN;
1343 	blocked = sigismember(&t->blocked, sig);
1344 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1345 		action->sa.sa_handler = SIG_DFL;
1346 		if (handler == HANDLER_EXIT)
1347 			action->sa.sa_flags |= SA_IMMUTABLE;
1348 		if (blocked)
1349 			sigdelset(&t->blocked, sig);
1350 	}
1351 	/*
1352 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1353 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1354 	 */
1355 	if (action->sa.sa_handler == SIG_DFL &&
1356 	    (!t->ptrace || (handler == HANDLER_EXIT)))
1357 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1358 	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1359 	/* This can happen if the signal was already pending and blocked */
1360 	if (!task_sigpending(t))
1361 		signal_wake_up(t, 0);
1362 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1363 
1364 	return ret;
1365 }
1366 
force_sig_info(struct kernel_siginfo * info)1367 int force_sig_info(struct kernel_siginfo *info)
1368 {
1369 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1370 }
1371 
1372 /*
1373  * Nuke all other threads in the group.
1374  */
zap_other_threads(struct task_struct * p)1375 int zap_other_threads(struct task_struct *p)
1376 {
1377 	struct task_struct *t;
1378 	int count = 0;
1379 
1380 	p->signal->group_stop_count = 0;
1381 
1382 	for_other_threads(p, t) {
1383 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1384 		count++;
1385 
1386 		/* Don't bother with already dead threads */
1387 		if (t->exit_state)
1388 			continue;
1389 		sigaddset(&t->pending.signal, SIGKILL);
1390 		signal_wake_up(t, 1);
1391 	}
1392 
1393 	return count;
1394 }
1395 
__lock_task_sighand(struct task_struct * tsk,unsigned long * flags)1396 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1397 					   unsigned long *flags)
1398 {
1399 	struct sighand_struct *sighand;
1400 
1401 	rcu_read_lock();
1402 	for (;;) {
1403 		sighand = rcu_dereference(tsk->sighand);
1404 		if (unlikely(sighand == NULL))
1405 			break;
1406 
1407 		/*
1408 		 * This sighand can be already freed and even reused, but
1409 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1410 		 * initializes ->siglock: this slab can't go away, it has
1411 		 * the same object type, ->siglock can't be reinitialized.
1412 		 *
1413 		 * We need to ensure that tsk->sighand is still the same
1414 		 * after we take the lock, we can race with de_thread() or
1415 		 * __exit_signal(). In the latter case the next iteration
1416 		 * must see ->sighand == NULL.
1417 		 */
1418 		spin_lock_irqsave(&sighand->siglock, *flags);
1419 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1420 			break;
1421 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1422 	}
1423 	rcu_read_unlock();
1424 
1425 	return sighand;
1426 }
1427 
1428 #ifdef CONFIG_LOCKDEP
lockdep_assert_task_sighand_held(struct task_struct * task)1429 void lockdep_assert_task_sighand_held(struct task_struct *task)
1430 {
1431 	struct sighand_struct *sighand;
1432 
1433 	rcu_read_lock();
1434 	sighand = rcu_dereference(task->sighand);
1435 	if (sighand)
1436 		lockdep_assert_held(&sighand->siglock);
1437 	else
1438 		WARN_ON_ONCE(1);
1439 	rcu_read_unlock();
1440 }
1441 #endif
1442 
1443 /*
1444  * send signal info to all the members of a thread group or to the
1445  * individual thread if type == PIDTYPE_PID.
1446  */
group_send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p,enum pid_type type)1447 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1448 			struct task_struct *p, enum pid_type type)
1449 {
1450 	int ret;
1451 
1452 	rcu_read_lock();
1453 	ret = check_kill_permission(sig, info, p);
1454 	rcu_read_unlock();
1455 
1456 	if (!ret && sig) {
1457 		ret = do_send_sig_info(sig, info, p, type);
1458 		if (!ret && sig == SIGKILL) {
1459 			bool reap = false;
1460 
1461 			trace_android_vh_killed_process(current, p, &reap);
1462 			if (reap)
1463 				add_to_oom_reaper(p);
1464 		}
1465 	}
1466 
1467 	return ret;
1468 }
1469 
1470 /*
1471  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1472  * control characters do (^C, ^Z etc)
1473  * - the caller must hold at least a readlock on tasklist_lock
1474  */
__kill_pgrp_info(int sig,struct kernel_siginfo * info,struct pid * pgrp)1475 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1476 {
1477 	struct task_struct *p = NULL;
1478 	int ret = -ESRCH;
1479 
1480 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1481 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1482 		/*
1483 		 * If group_send_sig_info() succeeds at least once ret
1484 		 * becomes 0 and after that the code below has no effect.
1485 		 * Otherwise we return the last err or -ESRCH if this
1486 		 * process group is empty.
1487 		 */
1488 		if (ret)
1489 			ret = err;
1490 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1491 
1492 	return ret;
1493 }
1494 
kill_pid_info_type(int sig,struct kernel_siginfo * info,struct pid * pid,enum pid_type type)1495 static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1496 				struct pid *pid, enum pid_type type)
1497 {
1498 	int error = -ESRCH;
1499 	struct task_struct *p;
1500 
1501 	for (;;) {
1502 		rcu_read_lock();
1503 		p = pid_task(pid, PIDTYPE_PID);
1504 		if (p)
1505 			error = group_send_sig_info(sig, info, p, type);
1506 		rcu_read_unlock();
1507 		if (likely(!p || error != -ESRCH))
1508 			return error;
1509 		/*
1510 		 * The task was unhashed in between, try again.  If it
1511 		 * is dead, pid_task() will return NULL, if we race with
1512 		 * de_thread() it will find the new leader.
1513 		 */
1514 	}
1515 }
1516 
kill_pid_info(int sig,struct kernel_siginfo * info,struct pid * pid)1517 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1518 {
1519 	return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1520 }
1521 
kill_proc_info(int sig,struct kernel_siginfo * info,pid_t pid)1522 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1523 {
1524 	int error;
1525 	rcu_read_lock();
1526 	error = kill_pid_info(sig, info, find_vpid(pid));
1527 	rcu_read_unlock();
1528 	return error;
1529 }
1530 
kill_as_cred_perm(const struct cred * cred,struct task_struct * target)1531 static inline bool kill_as_cred_perm(const struct cred *cred,
1532 				     struct task_struct *target)
1533 {
1534 	const struct cred *pcred = __task_cred(target);
1535 
1536 	return uid_eq(cred->euid, pcred->suid) ||
1537 	       uid_eq(cred->euid, pcred->uid) ||
1538 	       uid_eq(cred->uid, pcred->suid) ||
1539 	       uid_eq(cred->uid, pcred->uid);
1540 }
1541 
1542 /*
1543  * The usb asyncio usage of siginfo is wrong.  The glibc support
1544  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1545  * AKA after the generic fields:
1546  *	kernel_pid_t	si_pid;
1547  *	kernel_uid32_t	si_uid;
1548  *	sigval_t	si_value;
1549  *
1550  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1551  * after the generic fields is:
1552  *	void __user 	*si_addr;
1553  *
1554  * This is a practical problem when there is a 64bit big endian kernel
1555  * and a 32bit userspace.  As the 32bit address will encoded in the low
1556  * 32bits of the pointer.  Those low 32bits will be stored at higher
1557  * address than appear in a 32 bit pointer.  So userspace will not
1558  * see the address it was expecting for it's completions.
1559  *
1560  * There is nothing in the encoding that can allow
1561  * copy_siginfo_to_user32 to detect this confusion of formats, so
1562  * handle this by requiring the caller of kill_pid_usb_asyncio to
1563  * notice when this situration takes place and to store the 32bit
1564  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1565  * parameter.
1566  */
kill_pid_usb_asyncio(int sig,int errno,sigval_t addr,struct pid * pid,const struct cred * cred)1567 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1568 			 struct pid *pid, const struct cred *cred)
1569 {
1570 	struct kernel_siginfo info;
1571 	struct task_struct *p;
1572 	unsigned long flags;
1573 	int ret = -EINVAL;
1574 
1575 	if (!valid_signal(sig))
1576 		return ret;
1577 
1578 	clear_siginfo(&info);
1579 	info.si_signo = sig;
1580 	info.si_errno = errno;
1581 	info.si_code = SI_ASYNCIO;
1582 	*((sigval_t *)&info.si_pid) = addr;
1583 
1584 	rcu_read_lock();
1585 	p = pid_task(pid, PIDTYPE_PID);
1586 	if (!p) {
1587 		ret = -ESRCH;
1588 		goto out_unlock;
1589 	}
1590 	if (!kill_as_cred_perm(cred, p)) {
1591 		ret = -EPERM;
1592 		goto out_unlock;
1593 	}
1594 	ret = security_task_kill(p, &info, sig, cred);
1595 	if (ret)
1596 		goto out_unlock;
1597 
1598 	if (sig) {
1599 		if (lock_task_sighand(p, &flags)) {
1600 			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1601 			unlock_task_sighand(p, &flags);
1602 		} else
1603 			ret = -ESRCH;
1604 	}
1605 out_unlock:
1606 	rcu_read_unlock();
1607 	return ret;
1608 }
1609 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1610 
1611 /*
1612  * kill_something_info() interprets pid in interesting ways just like kill(2).
1613  *
1614  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1615  * is probably wrong.  Should make it like BSD or SYSV.
1616  */
1617 
kill_something_info(int sig,struct kernel_siginfo * info,pid_t pid)1618 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1619 {
1620 	int ret;
1621 
1622 	if (pid > 0)
1623 		return kill_proc_info(sig, info, pid);
1624 
1625 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1626 	if (pid == INT_MIN)
1627 		return -ESRCH;
1628 
1629 	read_lock(&tasklist_lock);
1630 	if (pid != -1) {
1631 		ret = __kill_pgrp_info(sig, info,
1632 				pid ? find_vpid(-pid) : task_pgrp(current));
1633 	} else {
1634 		int retval = 0, count = 0;
1635 		struct task_struct * p;
1636 
1637 		for_each_process(p) {
1638 			if (task_pid_vnr(p) > 1 &&
1639 					!same_thread_group(p, current)) {
1640 				int err = group_send_sig_info(sig, info, p,
1641 							      PIDTYPE_MAX);
1642 				++count;
1643 				if (err != -EPERM)
1644 					retval = err;
1645 			}
1646 		}
1647 		ret = count ? retval : -ESRCH;
1648 	}
1649 	read_unlock(&tasklist_lock);
1650 
1651 	return ret;
1652 }
1653 
1654 /*
1655  * These are for backward compatibility with the rest of the kernel source.
1656  */
1657 
send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p)1658 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1659 {
1660 	/*
1661 	 * Make sure legacy kernel users don't send in bad values
1662 	 * (normal paths check this in check_kill_permission).
1663 	 */
1664 	if (!valid_signal(sig))
1665 		return -EINVAL;
1666 
1667 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1668 }
1669 EXPORT_SYMBOL(send_sig_info);
1670 
1671 #define __si_special(priv) \
1672 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1673 
1674 int
send_sig(int sig,struct task_struct * p,int priv)1675 send_sig(int sig, struct task_struct *p, int priv)
1676 {
1677 	return send_sig_info(sig, __si_special(priv), p);
1678 }
1679 EXPORT_SYMBOL(send_sig);
1680 
force_sig(int sig)1681 void force_sig(int sig)
1682 {
1683 	struct kernel_siginfo info;
1684 
1685 	clear_siginfo(&info);
1686 	info.si_signo = sig;
1687 	info.si_errno = 0;
1688 	info.si_code = SI_KERNEL;
1689 	info.si_pid = 0;
1690 	info.si_uid = 0;
1691 	force_sig_info(&info);
1692 }
1693 EXPORT_SYMBOL(force_sig);
1694 
force_fatal_sig(int sig)1695 void force_fatal_sig(int sig)
1696 {
1697 	struct kernel_siginfo info;
1698 
1699 	clear_siginfo(&info);
1700 	info.si_signo = sig;
1701 	info.si_errno = 0;
1702 	info.si_code = SI_KERNEL;
1703 	info.si_pid = 0;
1704 	info.si_uid = 0;
1705 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1706 }
1707 
force_exit_sig(int sig)1708 void force_exit_sig(int sig)
1709 {
1710 	struct kernel_siginfo info;
1711 
1712 	clear_siginfo(&info);
1713 	info.si_signo = sig;
1714 	info.si_errno = 0;
1715 	info.si_code = SI_KERNEL;
1716 	info.si_pid = 0;
1717 	info.si_uid = 0;
1718 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1719 }
1720 
1721 /*
1722  * When things go south during signal handling, we
1723  * will force a SIGSEGV. And if the signal that caused
1724  * the problem was already a SIGSEGV, we'll want to
1725  * make sure we don't even try to deliver the signal..
1726  */
force_sigsegv(int sig)1727 void force_sigsegv(int sig)
1728 {
1729 	if (sig == SIGSEGV)
1730 		force_fatal_sig(SIGSEGV);
1731 	else
1732 		force_sig(SIGSEGV);
1733 }
1734 
force_sig_fault_to_task(int sig,int code,void __user * addr,struct task_struct * t)1735 int force_sig_fault_to_task(int sig, int code, void __user *addr,
1736 			    struct task_struct *t)
1737 {
1738 	struct kernel_siginfo info;
1739 
1740 	clear_siginfo(&info);
1741 	info.si_signo = sig;
1742 	info.si_errno = 0;
1743 	info.si_code  = code;
1744 	info.si_addr  = addr;
1745 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1746 }
1747 
force_sig_fault(int sig,int code,void __user * addr)1748 int force_sig_fault(int sig, int code, void __user *addr)
1749 {
1750 	return force_sig_fault_to_task(sig, code, addr, current);
1751 }
1752 
send_sig_fault(int sig,int code,void __user * addr,struct task_struct * t)1753 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1754 {
1755 	struct kernel_siginfo info;
1756 
1757 	clear_siginfo(&info);
1758 	info.si_signo = sig;
1759 	info.si_errno = 0;
1760 	info.si_code  = code;
1761 	info.si_addr  = addr;
1762 	return send_sig_info(info.si_signo, &info, t);
1763 }
1764 
force_sig_mceerr(int code,void __user * addr,short lsb)1765 int force_sig_mceerr(int code, void __user *addr, short lsb)
1766 {
1767 	struct kernel_siginfo info;
1768 
1769 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1770 	clear_siginfo(&info);
1771 	info.si_signo = SIGBUS;
1772 	info.si_errno = 0;
1773 	info.si_code = code;
1774 	info.si_addr = addr;
1775 	info.si_addr_lsb = lsb;
1776 	return force_sig_info(&info);
1777 }
1778 
send_sig_mceerr(int code,void __user * addr,short lsb,struct task_struct * t)1779 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1780 {
1781 	struct kernel_siginfo info;
1782 
1783 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1784 	clear_siginfo(&info);
1785 	info.si_signo = SIGBUS;
1786 	info.si_errno = 0;
1787 	info.si_code = code;
1788 	info.si_addr = addr;
1789 	info.si_addr_lsb = lsb;
1790 	return send_sig_info(info.si_signo, &info, t);
1791 }
1792 EXPORT_SYMBOL(send_sig_mceerr);
1793 
force_sig_bnderr(void __user * addr,void __user * lower,void __user * upper)1794 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1795 {
1796 	struct kernel_siginfo info;
1797 
1798 	clear_siginfo(&info);
1799 	info.si_signo = SIGSEGV;
1800 	info.si_errno = 0;
1801 	info.si_code  = SEGV_BNDERR;
1802 	info.si_addr  = addr;
1803 	info.si_lower = lower;
1804 	info.si_upper = upper;
1805 	return force_sig_info(&info);
1806 }
1807 
1808 #ifdef SEGV_PKUERR
force_sig_pkuerr(void __user * addr,u32 pkey)1809 int force_sig_pkuerr(void __user *addr, u32 pkey)
1810 {
1811 	struct kernel_siginfo info;
1812 
1813 	clear_siginfo(&info);
1814 	info.si_signo = SIGSEGV;
1815 	info.si_errno = 0;
1816 	info.si_code  = SEGV_PKUERR;
1817 	info.si_addr  = addr;
1818 	info.si_pkey  = pkey;
1819 	return force_sig_info(&info);
1820 }
1821 #endif
1822 
send_sig_perf(void __user * addr,u32 type,u64 sig_data)1823 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1824 {
1825 	struct kernel_siginfo info;
1826 
1827 	clear_siginfo(&info);
1828 	info.si_signo     = SIGTRAP;
1829 	info.si_errno     = 0;
1830 	info.si_code      = TRAP_PERF;
1831 	info.si_addr      = addr;
1832 	info.si_perf_data = sig_data;
1833 	info.si_perf_type = type;
1834 
1835 	/*
1836 	 * Signals generated by perf events should not terminate the whole
1837 	 * process if SIGTRAP is blocked, however, delivering the signal
1838 	 * asynchronously is better than not delivering at all. But tell user
1839 	 * space if the signal was asynchronous, so it can clearly be
1840 	 * distinguished from normal synchronous ones.
1841 	 */
1842 	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1843 				     TRAP_PERF_FLAG_ASYNC :
1844 				     0;
1845 
1846 	return send_sig_info(info.si_signo, &info, current);
1847 }
1848 
1849 /**
1850  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1851  * @syscall: syscall number to send to userland
1852  * @reason: filter-supplied reason code to send to userland (via si_errno)
1853  * @force_coredump: true to trigger a coredump
1854  *
1855  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1856  */
force_sig_seccomp(int syscall,int reason,bool force_coredump)1857 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1858 {
1859 	struct kernel_siginfo info;
1860 
1861 	clear_siginfo(&info);
1862 	info.si_signo = SIGSYS;
1863 	info.si_code = SYS_SECCOMP;
1864 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1865 	info.si_errno = reason;
1866 	info.si_arch = syscall_get_arch(current);
1867 	info.si_syscall = syscall;
1868 	return force_sig_info_to_task(&info, current,
1869 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1870 }
1871 
1872 /* For the crazy architectures that include trap information in
1873  * the errno field, instead of an actual errno value.
1874  */
force_sig_ptrace_errno_trap(int errno,void __user * addr)1875 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1876 {
1877 	struct kernel_siginfo info;
1878 
1879 	clear_siginfo(&info);
1880 	info.si_signo = SIGTRAP;
1881 	info.si_errno = errno;
1882 	info.si_code  = TRAP_HWBKPT;
1883 	info.si_addr  = addr;
1884 	return force_sig_info(&info);
1885 }
1886 
1887 /* For the rare architectures that include trap information using
1888  * si_trapno.
1889  */
force_sig_fault_trapno(int sig,int code,void __user * addr,int trapno)1890 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1891 {
1892 	struct kernel_siginfo info;
1893 
1894 	clear_siginfo(&info);
1895 	info.si_signo = sig;
1896 	info.si_errno = 0;
1897 	info.si_code  = code;
1898 	info.si_addr  = addr;
1899 	info.si_trapno = trapno;
1900 	return force_sig_info(&info);
1901 }
1902 
1903 /* For the rare architectures that include trap information using
1904  * si_trapno.
1905  */
send_sig_fault_trapno(int sig,int code,void __user * addr,int trapno,struct task_struct * t)1906 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1907 			  struct task_struct *t)
1908 {
1909 	struct kernel_siginfo info;
1910 
1911 	clear_siginfo(&info);
1912 	info.si_signo = sig;
1913 	info.si_errno = 0;
1914 	info.si_code  = code;
1915 	info.si_addr  = addr;
1916 	info.si_trapno = trapno;
1917 	return send_sig_info(info.si_signo, &info, t);
1918 }
1919 
kill_pgrp_info(int sig,struct kernel_siginfo * info,struct pid * pgrp)1920 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1921 {
1922 	int ret;
1923 	read_lock(&tasklist_lock);
1924 	ret = __kill_pgrp_info(sig, info, pgrp);
1925 	read_unlock(&tasklist_lock);
1926 	return ret;
1927 }
1928 
kill_pgrp(struct pid * pid,int sig,int priv)1929 int kill_pgrp(struct pid *pid, int sig, int priv)
1930 {
1931 	return kill_pgrp_info(sig, __si_special(priv), pid);
1932 }
1933 EXPORT_SYMBOL(kill_pgrp);
1934 
kill_pid(struct pid * pid,int sig,int priv)1935 int kill_pid(struct pid *pid, int sig, int priv)
1936 {
1937 	return kill_pid_info(sig, __si_special(priv), pid);
1938 }
1939 EXPORT_SYMBOL(kill_pid);
1940 
1941 /*
1942  * These functions support sending signals using preallocated sigqueue
1943  * structures.  This is needed "because realtime applications cannot
1944  * afford to lose notifications of asynchronous events, like timer
1945  * expirations or I/O completions".  In the case of POSIX Timers
1946  * we allocate the sigqueue structure from the timer_create.  If this
1947  * allocation fails we are able to report the failure to the application
1948  * with an EAGAIN error.
1949  */
sigqueue_alloc(void)1950 struct sigqueue *sigqueue_alloc(void)
1951 {
1952 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1953 }
1954 
sigqueue_free(struct sigqueue * q)1955 void sigqueue_free(struct sigqueue *q)
1956 {
1957 	spinlock_t *lock = &current->sighand->siglock;
1958 	unsigned long flags;
1959 
1960 	if (WARN_ON_ONCE(!(q->flags & SIGQUEUE_PREALLOC)))
1961 		return;
1962 	/*
1963 	 * We must hold ->siglock while testing q->list
1964 	 * to serialize with collect_signal() or with
1965 	 * __exit_signal()->flush_sigqueue().
1966 	 */
1967 	spin_lock_irqsave(lock, flags);
1968 	q->flags &= ~SIGQUEUE_PREALLOC;
1969 	/*
1970 	 * If it is queued it will be freed when dequeued,
1971 	 * like the "regular" sigqueue.
1972 	 */
1973 	if (!list_empty(&q->list))
1974 		q = NULL;
1975 	spin_unlock_irqrestore(lock, flags);
1976 
1977 	if (q)
1978 		__sigqueue_free(q);
1979 }
1980 
send_sigqueue(struct sigqueue * q,struct pid * pid,enum pid_type type)1981 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1982 {
1983 	int sig = q->info.si_signo;
1984 	struct sigpending *pending;
1985 	struct task_struct *t;
1986 	unsigned long flags;
1987 	int ret, result;
1988 
1989 	if (WARN_ON_ONCE(!(q->flags & SIGQUEUE_PREALLOC)))
1990 		return 0;
1991 	if (WARN_ON_ONCE(q->info.si_code != SI_TIMER))
1992 		return 0;
1993 
1994 	ret = -1;
1995 	rcu_read_lock();
1996 
1997 	/*
1998 	 * This function is used by POSIX timers to deliver a timer signal.
1999 	 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
2000 	 * set), the signal must be delivered to the specific thread (queues
2001 	 * into t->pending).
2002 	 *
2003 	 * Where type is not PIDTYPE_PID, signals must be delivered to the
2004 	 * process. In this case, prefer to deliver to current if it is in the
2005 	 * same thread group as the target process and its sighand is stable,
2006 	 * which avoids unnecessarily waking up a potentially idle task.
2007 	 */
2008 	t = pid_task(pid, type);
2009 	if (!t)
2010 		goto ret;
2011 	if (type != PIDTYPE_PID &&
2012 	    same_thread_group(t, current) && !current->exit_state)
2013 		t = current;
2014 	if (!likely(lock_task_sighand(t, &flags)))
2015 		goto ret;
2016 
2017 	ret = 1; /* the signal is ignored */
2018 	result = TRACE_SIGNAL_IGNORED;
2019 	if (!prepare_signal(sig, t, false))
2020 		goto out;
2021 
2022 	ret = 0;
2023 	if (unlikely(!list_empty(&q->list))) {
2024 		/*
2025 		 * If an SI_TIMER entry is already queue just increment
2026 		 * the overrun count.
2027 		 */
2028 		q->info.si_overrun++;
2029 		result = TRACE_SIGNAL_ALREADY_PENDING;
2030 		goto out;
2031 	}
2032 	q->info.si_overrun = 0;
2033 
2034 	signalfd_notify(t, sig);
2035 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2036 	list_add_tail(&q->list, &pending->list);
2037 	sigaddset(&pending->signal, sig);
2038 	complete_signal(sig, t, type);
2039 	result = TRACE_SIGNAL_DELIVERED;
2040 out:
2041 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2042 	unlock_task_sighand(t, &flags);
2043 ret:
2044 	rcu_read_unlock();
2045 	return ret;
2046 }
2047 
do_notify_pidfd(struct task_struct * task)2048 void do_notify_pidfd(struct task_struct *task)
2049 {
2050 	struct pid *pid = task_pid(task);
2051 
2052 	WARN_ON(task->exit_state == 0);
2053 
2054 	__wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2055 			poll_to_key(EPOLLIN | EPOLLRDNORM));
2056 }
2057 
2058 /*
2059  * Let a parent know about the death of a child.
2060  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2061  *
2062  * Returns true if our parent ignored us and so we've switched to
2063  * self-reaping.
2064  */
do_notify_parent(struct task_struct * tsk,int sig)2065 bool do_notify_parent(struct task_struct *tsk, int sig)
2066 {
2067 	struct kernel_siginfo info;
2068 	unsigned long flags;
2069 	struct sighand_struct *psig;
2070 	bool autoreap = false;
2071 	u64 utime, stime;
2072 
2073 	WARN_ON_ONCE(sig == -1);
2074 
2075 	/* do_notify_parent_cldstop should have been called instead.  */
2076 	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2077 
2078 	WARN_ON_ONCE(!tsk->ptrace &&
2079 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2080 	/*
2081 	 * Notify for thread-group leaders without subthreads.
2082 	 */
2083 	if (thread_group_empty(tsk))
2084 		do_notify_pidfd(tsk);
2085 
2086 	if (sig != SIGCHLD) {
2087 		/*
2088 		 * This is only possible if parent == real_parent.
2089 		 * Check if it has changed security domain.
2090 		 */
2091 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2092 			sig = SIGCHLD;
2093 	}
2094 
2095 	clear_siginfo(&info);
2096 	info.si_signo = sig;
2097 	info.si_errno = 0;
2098 	/*
2099 	 * We are under tasklist_lock here so our parent is tied to
2100 	 * us and cannot change.
2101 	 *
2102 	 * task_active_pid_ns will always return the same pid namespace
2103 	 * until a task passes through release_task.
2104 	 *
2105 	 * write_lock() currently calls preempt_disable() which is the
2106 	 * same as rcu_read_lock(), but according to Oleg, this is not
2107 	 * correct to rely on this
2108 	 */
2109 	rcu_read_lock();
2110 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2111 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2112 				       task_uid(tsk));
2113 	rcu_read_unlock();
2114 
2115 	task_cputime(tsk, &utime, &stime);
2116 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2117 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2118 
2119 	info.si_status = tsk->exit_code & 0x7f;
2120 	if (tsk->exit_code & 0x80)
2121 		info.si_code = CLD_DUMPED;
2122 	else if (tsk->exit_code & 0x7f)
2123 		info.si_code = CLD_KILLED;
2124 	else {
2125 		info.si_code = CLD_EXITED;
2126 		info.si_status = tsk->exit_code >> 8;
2127 	}
2128 
2129 	psig = tsk->parent->sighand;
2130 	spin_lock_irqsave(&psig->siglock, flags);
2131 	if (!tsk->ptrace && sig == SIGCHLD &&
2132 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2133 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2134 		/*
2135 		 * We are exiting and our parent doesn't care.  POSIX.1
2136 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2137 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2138 		 * automatically and not left for our parent's wait4 call.
2139 		 * Rather than having the parent do it as a magic kind of
2140 		 * signal handler, we just set this to tell do_exit that we
2141 		 * can be cleaned up without becoming a zombie.  Note that
2142 		 * we still call __wake_up_parent in this case, because a
2143 		 * blocked sys_wait4 might now return -ECHILD.
2144 		 *
2145 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2146 		 * is implementation-defined: we do (if you don't want
2147 		 * it, just use SIG_IGN instead).
2148 		 */
2149 		autoreap = true;
2150 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2151 			sig = 0;
2152 	}
2153 	/*
2154 	 * Send with __send_signal as si_pid and si_uid are in the
2155 	 * parent's namespaces.
2156 	 */
2157 	if (valid_signal(sig) && sig)
2158 		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2159 	__wake_up_parent(tsk, tsk->parent);
2160 	spin_unlock_irqrestore(&psig->siglock, flags);
2161 
2162 	return autoreap;
2163 }
2164 
2165 /**
2166  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2167  * @tsk: task reporting the state change
2168  * @for_ptracer: the notification is for ptracer
2169  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2170  *
2171  * Notify @tsk's parent that the stopped/continued state has changed.  If
2172  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2173  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2174  *
2175  * CONTEXT:
2176  * Must be called with tasklist_lock at least read locked.
2177  */
do_notify_parent_cldstop(struct task_struct * tsk,bool for_ptracer,int why)2178 static void do_notify_parent_cldstop(struct task_struct *tsk,
2179 				     bool for_ptracer, int why)
2180 {
2181 	struct kernel_siginfo info;
2182 	unsigned long flags;
2183 	struct task_struct *parent;
2184 	struct sighand_struct *sighand;
2185 	u64 utime, stime;
2186 
2187 	if (for_ptracer) {
2188 		parent = tsk->parent;
2189 	} else {
2190 		tsk = tsk->group_leader;
2191 		parent = tsk->real_parent;
2192 	}
2193 
2194 	clear_siginfo(&info);
2195 	info.si_signo = SIGCHLD;
2196 	info.si_errno = 0;
2197 	/*
2198 	 * see comment in do_notify_parent() about the following 4 lines
2199 	 */
2200 	rcu_read_lock();
2201 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2202 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2203 	rcu_read_unlock();
2204 
2205 	task_cputime(tsk, &utime, &stime);
2206 	info.si_utime = nsec_to_clock_t(utime);
2207 	info.si_stime = nsec_to_clock_t(stime);
2208 
2209  	info.si_code = why;
2210  	switch (why) {
2211  	case CLD_CONTINUED:
2212  		info.si_status = SIGCONT;
2213  		break;
2214  	case CLD_STOPPED:
2215  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2216  		break;
2217  	case CLD_TRAPPED:
2218  		info.si_status = tsk->exit_code & 0x7f;
2219  		break;
2220  	default:
2221  		BUG();
2222  	}
2223 
2224 	sighand = parent->sighand;
2225 	spin_lock_irqsave(&sighand->siglock, flags);
2226 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2227 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2228 		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2229 	/*
2230 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2231 	 */
2232 	__wake_up_parent(tsk, parent);
2233 	spin_unlock_irqrestore(&sighand->siglock, flags);
2234 }
2235 
2236 /*
2237  * This must be called with current->sighand->siglock held.
2238  *
2239  * This should be the path for all ptrace stops.
2240  * We always set current->last_siginfo while stopped here.
2241  * That makes it a way to test a stopped process for
2242  * being ptrace-stopped vs being job-control-stopped.
2243  *
2244  * Returns the signal the ptracer requested the code resume
2245  * with.  If the code did not stop because the tracer is gone,
2246  * the stop signal remains unchanged unless clear_code.
2247  */
ptrace_stop(int exit_code,int why,unsigned long message,kernel_siginfo_t * info)2248 static int ptrace_stop(int exit_code, int why, unsigned long message,
2249 		       kernel_siginfo_t *info)
2250 	__releases(&current->sighand->siglock)
2251 	__acquires(&current->sighand->siglock)
2252 {
2253 	bool gstop_done = false;
2254 
2255 	if (arch_ptrace_stop_needed()) {
2256 		/*
2257 		 * The arch code has something special to do before a
2258 		 * ptrace stop.  This is allowed to block, e.g. for faults
2259 		 * on user stack pages.  We can't keep the siglock while
2260 		 * calling arch_ptrace_stop, so we must release it now.
2261 		 * To preserve proper semantics, we must do this before
2262 		 * any signal bookkeeping like checking group_stop_count.
2263 		 */
2264 		spin_unlock_irq(&current->sighand->siglock);
2265 		arch_ptrace_stop();
2266 		spin_lock_irq(&current->sighand->siglock);
2267 	}
2268 
2269 	/*
2270 	 * After this point ptrace_signal_wake_up or signal_wake_up
2271 	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2272 	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2273 	 * signals here to prevent ptrace_stop sleeping in schedule.
2274 	 */
2275 	if (!current->ptrace || __fatal_signal_pending(current))
2276 		return exit_code;
2277 
2278 	set_special_state(TASK_TRACED);
2279 	current->jobctl |= JOBCTL_TRACED;
2280 
2281 	/*
2282 	 * We're committing to trapping.  TRACED should be visible before
2283 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2284 	 * Also, transition to TRACED and updates to ->jobctl should be
2285 	 * atomic with respect to siglock and should be done after the arch
2286 	 * hook as siglock is released and regrabbed across it.
2287 	 *
2288 	 *     TRACER				    TRACEE
2289 	 *
2290 	 *     ptrace_attach()
2291 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2292 	 *     do_wait()
2293 	 *       set_current_state()                smp_wmb();
2294 	 *       ptrace_do_wait()
2295 	 *         wait_task_stopped()
2296 	 *           task_stopped_code()
2297 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2298 	 */
2299 	smp_wmb();
2300 
2301 	current->ptrace_message = message;
2302 	current->last_siginfo = info;
2303 	current->exit_code = exit_code;
2304 
2305 	/*
2306 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2307 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2308 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2309 	 * could be clear now.  We act as if SIGCONT is received after
2310 	 * TASK_TRACED is entered - ignore it.
2311 	 */
2312 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2313 		gstop_done = task_participate_group_stop(current);
2314 
2315 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2316 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2317 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2318 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2319 
2320 	/* entering a trap, clear TRAPPING */
2321 	task_clear_jobctl_trapping(current);
2322 
2323 	spin_unlock_irq(&current->sighand->siglock);
2324 	read_lock(&tasklist_lock);
2325 	/*
2326 	 * Notify parents of the stop.
2327 	 *
2328 	 * While ptraced, there are two parents - the ptracer and
2329 	 * the real_parent of the group_leader.  The ptracer should
2330 	 * know about every stop while the real parent is only
2331 	 * interested in the completion of group stop.  The states
2332 	 * for the two don't interact with each other.  Notify
2333 	 * separately unless they're gonna be duplicates.
2334 	 */
2335 	if (current->ptrace)
2336 		do_notify_parent_cldstop(current, true, why);
2337 	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2338 		do_notify_parent_cldstop(current, false, why);
2339 
2340 	/*
2341 	 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2342 	 * One a PREEMPTION kernel this can result in preemption requirement
2343 	 * which will be fulfilled after read_unlock() and the ptracer will be
2344 	 * put on the CPU.
2345 	 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2346 	 * this task wait in schedule(). If this task gets preempted then it
2347 	 * remains enqueued on the runqueue. The ptracer will observe this and
2348 	 * then sleep for a delay of one HZ tick. In the meantime this task
2349 	 * gets scheduled, enters schedule() and will wait for the ptracer.
2350 	 *
2351 	 * This preemption point is not bad from a correctness point of
2352 	 * view but extends the runtime by one HZ tick time due to the
2353 	 * ptracer's sleep.  The preempt-disable section ensures that there
2354 	 * will be no preemption between unlock and schedule() and so
2355 	 * improving the performance since the ptracer will observe that
2356 	 * the tracee is scheduled out once it gets on the CPU.
2357 	 *
2358 	 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2359 	 * Therefore the task can be preempted after do_notify_parent_cldstop()
2360 	 * before unlocking tasklist_lock so there is no benefit in doing this.
2361 	 *
2362 	 * In fact disabling preemption is harmful on PREEMPT_RT because
2363 	 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2364 	 * with preemption disabled due to the 'sleeping' spinlock
2365 	 * substitution of RT.
2366 	 */
2367 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2368 		preempt_disable();
2369 	read_unlock(&tasklist_lock);
2370 	cgroup_enter_frozen();
2371 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2372 		preempt_enable_no_resched();
2373 	schedule();
2374 	cgroup_leave_frozen(true);
2375 
2376 	/*
2377 	 * We are back.  Now reacquire the siglock before touching
2378 	 * last_siginfo, so that we are sure to have synchronized with
2379 	 * any signal-sending on another CPU that wants to examine it.
2380 	 */
2381 	spin_lock_irq(&current->sighand->siglock);
2382 	exit_code = current->exit_code;
2383 	current->last_siginfo = NULL;
2384 	current->ptrace_message = 0;
2385 	current->exit_code = 0;
2386 
2387 	/* LISTENING can be set only during STOP traps, clear it */
2388 	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2389 
2390 	/*
2391 	 * Queued signals ignored us while we were stopped for tracing.
2392 	 * So check for any that we should take before resuming user mode.
2393 	 * This sets TIF_SIGPENDING, but never clears it.
2394 	 */
2395 	recalc_sigpending_tsk(current);
2396 	return exit_code;
2397 }
2398 
ptrace_do_notify(int signr,int exit_code,int why,unsigned long message)2399 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2400 {
2401 	kernel_siginfo_t info;
2402 
2403 	clear_siginfo(&info);
2404 	info.si_signo = signr;
2405 	info.si_code = exit_code;
2406 	info.si_pid = task_pid_vnr(current);
2407 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2408 
2409 	/* Let the debugger run.  */
2410 	return ptrace_stop(exit_code, why, message, &info);
2411 }
2412 
ptrace_notify(int exit_code,unsigned long message)2413 int ptrace_notify(int exit_code, unsigned long message)
2414 {
2415 	int signr;
2416 
2417 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2418 	if (unlikely(task_work_pending(current)))
2419 		task_work_run();
2420 
2421 	spin_lock_irq(&current->sighand->siglock);
2422 	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2423 	spin_unlock_irq(&current->sighand->siglock);
2424 	return signr;
2425 }
2426 
2427 /**
2428  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2429  * @signr: signr causing group stop if initiating
2430  *
2431  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2432  * and participate in it.  If already set, participate in the existing
2433  * group stop.  If participated in a group stop (and thus slept), %true is
2434  * returned with siglock released.
2435  *
2436  * If ptraced, this function doesn't handle stop itself.  Instead,
2437  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2438  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2439  * places afterwards.
2440  *
2441  * CONTEXT:
2442  * Must be called with @current->sighand->siglock held, which is released
2443  * on %true return.
2444  *
2445  * RETURNS:
2446  * %false if group stop is already cancelled or ptrace trap is scheduled.
2447  * %true if participated in group stop.
2448  */
do_signal_stop(int signr)2449 static bool do_signal_stop(int signr)
2450 	__releases(&current->sighand->siglock)
2451 {
2452 	struct signal_struct *sig = current->signal;
2453 
2454 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2455 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2456 		struct task_struct *t;
2457 
2458 		/* signr will be recorded in task->jobctl for retries */
2459 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2460 
2461 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2462 		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2463 		    unlikely(sig->group_exec_task))
2464 			return false;
2465 		/*
2466 		 * There is no group stop already in progress.  We must
2467 		 * initiate one now.
2468 		 *
2469 		 * While ptraced, a task may be resumed while group stop is
2470 		 * still in effect and then receive a stop signal and
2471 		 * initiate another group stop.  This deviates from the
2472 		 * usual behavior as two consecutive stop signals can't
2473 		 * cause two group stops when !ptraced.  That is why we
2474 		 * also check !task_is_stopped(t) below.
2475 		 *
2476 		 * The condition can be distinguished by testing whether
2477 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2478 		 * group_exit_code in such case.
2479 		 *
2480 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2481 		 * an intervening stop signal is required to cause two
2482 		 * continued events regardless of ptrace.
2483 		 */
2484 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2485 			sig->group_exit_code = signr;
2486 
2487 		sig->group_stop_count = 0;
2488 		if (task_set_jobctl_pending(current, signr | gstop))
2489 			sig->group_stop_count++;
2490 
2491 		for_other_threads(current, t) {
2492 			/*
2493 			 * Setting state to TASK_STOPPED for a group
2494 			 * stop is always done with the siglock held,
2495 			 * so this check has no races.
2496 			 */
2497 			if (!task_is_stopped(t) &&
2498 			    task_set_jobctl_pending(t, signr | gstop)) {
2499 				sig->group_stop_count++;
2500 				if (likely(!(t->ptrace & PT_SEIZED)))
2501 					signal_wake_up(t, 0);
2502 				else
2503 					ptrace_trap_notify(t);
2504 			}
2505 		}
2506 	}
2507 
2508 	if (likely(!current->ptrace)) {
2509 		int notify = 0;
2510 
2511 		/*
2512 		 * If there are no other threads in the group, or if there
2513 		 * is a group stop in progress and we are the last to stop,
2514 		 * report to the parent.
2515 		 */
2516 		if (task_participate_group_stop(current))
2517 			notify = CLD_STOPPED;
2518 
2519 		current->jobctl |= JOBCTL_STOPPED;
2520 		set_special_state(TASK_STOPPED);
2521 		spin_unlock_irq(&current->sighand->siglock);
2522 
2523 		/*
2524 		 * Notify the parent of the group stop completion.  Because
2525 		 * we're not holding either the siglock or tasklist_lock
2526 		 * here, ptracer may attach inbetween; however, this is for
2527 		 * group stop and should always be delivered to the real
2528 		 * parent of the group leader.  The new ptracer will get
2529 		 * its notification when this task transitions into
2530 		 * TASK_TRACED.
2531 		 */
2532 		if (notify) {
2533 			read_lock(&tasklist_lock);
2534 			do_notify_parent_cldstop(current, false, notify);
2535 			read_unlock(&tasklist_lock);
2536 		}
2537 
2538 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2539 		cgroup_enter_frozen();
2540 		schedule();
2541 		return true;
2542 	} else {
2543 		/*
2544 		 * While ptraced, group stop is handled by STOP trap.
2545 		 * Schedule it and let the caller deal with it.
2546 		 */
2547 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2548 		return false;
2549 	}
2550 }
2551 
2552 /**
2553  * do_jobctl_trap - take care of ptrace jobctl traps
2554  *
2555  * When PT_SEIZED, it's used for both group stop and explicit
2556  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2557  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2558  * the stop signal; otherwise, %SIGTRAP.
2559  *
2560  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2561  * number as exit_code and no siginfo.
2562  *
2563  * CONTEXT:
2564  * Must be called with @current->sighand->siglock held, which may be
2565  * released and re-acquired before returning with intervening sleep.
2566  */
do_jobctl_trap(void)2567 static void do_jobctl_trap(void)
2568 {
2569 	struct signal_struct *signal = current->signal;
2570 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2571 
2572 	if (current->ptrace & PT_SEIZED) {
2573 		if (!signal->group_stop_count &&
2574 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2575 			signr = SIGTRAP;
2576 		WARN_ON_ONCE(!signr);
2577 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2578 				 CLD_STOPPED, 0);
2579 	} else {
2580 		WARN_ON_ONCE(!signr);
2581 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2582 	}
2583 }
2584 
2585 /**
2586  * do_freezer_trap - handle the freezer jobctl trap
2587  *
2588  * Puts the task into frozen state, if only the task is not about to quit.
2589  * In this case it drops JOBCTL_TRAP_FREEZE.
2590  *
2591  * CONTEXT:
2592  * Must be called with @current->sighand->siglock held,
2593  * which is always released before returning.
2594  */
do_freezer_trap(void)2595 static void do_freezer_trap(void)
2596 	__releases(&current->sighand->siglock)
2597 {
2598 	/*
2599 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2600 	 * let's make another loop to give it a chance to be handled.
2601 	 * In any case, we'll return back.
2602 	 */
2603 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2604 	     JOBCTL_TRAP_FREEZE) {
2605 		spin_unlock_irq(&current->sighand->siglock);
2606 		return;
2607 	}
2608 
2609 	/*
2610 	 * Now we're sure that there is no pending fatal signal and no
2611 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2612 	 * immediately (if there is a non-fatal signal pending), and
2613 	 * put the task into sleep.
2614 	 */
2615 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2616 	clear_thread_flag(TIF_SIGPENDING);
2617 	spin_unlock_irq(&current->sighand->siglock);
2618 	cgroup_enter_frozen();
2619 	schedule();
2620 
2621 	/*
2622 	 * We could've been woken by task_work, run it to clear
2623 	 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary.
2624 	 */
2625 	clear_notify_signal();
2626 	if (unlikely(task_work_pending(current)))
2627 		task_work_run();
2628 }
2629 
ptrace_signal(int signr,kernel_siginfo_t * info,enum pid_type type)2630 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2631 {
2632 	/*
2633 	 * We do not check sig_kernel_stop(signr) but set this marker
2634 	 * unconditionally because we do not know whether debugger will
2635 	 * change signr. This flag has no meaning unless we are going
2636 	 * to stop after return from ptrace_stop(). In this case it will
2637 	 * be checked in do_signal_stop(), we should only stop if it was
2638 	 * not cleared by SIGCONT while we were sleeping. See also the
2639 	 * comment in dequeue_signal().
2640 	 */
2641 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2642 	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2643 
2644 	/* We're back.  Did the debugger cancel the sig?  */
2645 	if (signr == 0)
2646 		return signr;
2647 
2648 	/*
2649 	 * Update the siginfo structure if the signal has
2650 	 * changed.  If the debugger wanted something
2651 	 * specific in the siginfo structure then it should
2652 	 * have updated *info via PTRACE_SETSIGINFO.
2653 	 */
2654 	if (signr != info->si_signo) {
2655 		clear_siginfo(info);
2656 		info->si_signo = signr;
2657 		info->si_errno = 0;
2658 		info->si_code = SI_USER;
2659 		rcu_read_lock();
2660 		info->si_pid = task_pid_vnr(current->parent);
2661 		info->si_uid = from_kuid_munged(current_user_ns(),
2662 						task_uid(current->parent));
2663 		rcu_read_unlock();
2664 	}
2665 
2666 	/* If the (new) signal is now blocked, requeue it.  */
2667 	if (sigismember(&current->blocked, signr) ||
2668 	    fatal_signal_pending(current)) {
2669 		send_signal_locked(signr, info, current, type);
2670 		signr = 0;
2671 	}
2672 
2673 	return signr;
2674 }
2675 
hide_si_addr_tag_bits(struct ksignal * ksig)2676 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2677 {
2678 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2679 	case SIL_FAULT:
2680 	case SIL_FAULT_TRAPNO:
2681 	case SIL_FAULT_MCEERR:
2682 	case SIL_FAULT_BNDERR:
2683 	case SIL_FAULT_PKUERR:
2684 	case SIL_FAULT_PERF_EVENT:
2685 		ksig->info.si_addr = arch_untagged_si_addr(
2686 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2687 		break;
2688 	case SIL_KILL:
2689 	case SIL_TIMER:
2690 	case SIL_POLL:
2691 	case SIL_CHLD:
2692 	case SIL_RT:
2693 	case SIL_SYS:
2694 		break;
2695 	}
2696 }
2697 
get_signal(struct ksignal * ksig)2698 bool get_signal(struct ksignal *ksig)
2699 {
2700 	struct sighand_struct *sighand = current->sighand;
2701 	struct signal_struct *signal = current->signal;
2702 	int signr;
2703 
2704 	clear_notify_signal();
2705 	if (unlikely(task_work_pending(current)))
2706 		task_work_run();
2707 
2708 	if (!task_sigpending(current))
2709 		return false;
2710 
2711 	if (unlikely(uprobe_deny_signal()))
2712 		return false;
2713 
2714 	/*
2715 	 * Do this once, we can't return to user-mode if freezing() == T.
2716 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2717 	 * thus do not need another check after return.
2718 	 */
2719 	try_to_freeze();
2720 
2721 relock:
2722 	spin_lock_irq(&sighand->siglock);
2723 
2724 	/*
2725 	 * Every stopped thread goes here after wakeup. Check to see if
2726 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2727 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2728 	 */
2729 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2730 		int why;
2731 
2732 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2733 			why = CLD_CONTINUED;
2734 		else
2735 			why = CLD_STOPPED;
2736 
2737 		signal->flags &= ~SIGNAL_CLD_MASK;
2738 
2739 		spin_unlock_irq(&sighand->siglock);
2740 
2741 		/*
2742 		 * Notify the parent that we're continuing.  This event is
2743 		 * always per-process and doesn't make whole lot of sense
2744 		 * for ptracers, who shouldn't consume the state via
2745 		 * wait(2) either, but, for backward compatibility, notify
2746 		 * the ptracer of the group leader too unless it's gonna be
2747 		 * a duplicate.
2748 		 */
2749 		read_lock(&tasklist_lock);
2750 		do_notify_parent_cldstop(current, false, why);
2751 
2752 		if (ptrace_reparented(current->group_leader))
2753 			do_notify_parent_cldstop(current->group_leader,
2754 						true, why);
2755 		read_unlock(&tasklist_lock);
2756 
2757 		goto relock;
2758 	}
2759 
2760 	for (;;) {
2761 		struct k_sigaction *ka;
2762 		enum pid_type type;
2763 
2764 		/* Has this task already been marked for death? */
2765 		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2766 		     signal->group_exec_task) {
2767 			signr = SIGKILL;
2768 			sigdelset(&current->pending.signal, SIGKILL);
2769 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2770 					     &sighand->action[SIGKILL-1]);
2771 			recalc_sigpending();
2772 			/*
2773 			 * implies do_group_exit() or return to PF_USER_WORKER,
2774 			 * no need to initialize ksig->info/etc.
2775 			 */
2776 			goto fatal;
2777 		}
2778 
2779 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2780 		    do_signal_stop(0))
2781 			goto relock;
2782 
2783 		if (unlikely(current->jobctl &
2784 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2785 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2786 				do_jobctl_trap();
2787 				spin_unlock_irq(&sighand->siglock);
2788 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2789 				do_freezer_trap();
2790 
2791 			goto relock;
2792 		}
2793 
2794 		/*
2795 		 * If the task is leaving the frozen state, let's update
2796 		 * cgroup counters and reset the frozen bit.
2797 		 */
2798 		if (unlikely(cgroup_task_frozen(current))) {
2799 			spin_unlock_irq(&sighand->siglock);
2800 			cgroup_leave_frozen(false);
2801 			goto relock;
2802 		}
2803 
2804 		/*
2805 		 * Signals generated by the execution of an instruction
2806 		 * need to be delivered before any other pending signals
2807 		 * so that the instruction pointer in the signal stack
2808 		 * frame points to the faulting instruction.
2809 		 */
2810 		type = PIDTYPE_PID;
2811 		signr = dequeue_synchronous_signal(&ksig->info);
2812 		if (!signr)
2813 			signr = dequeue_signal(&current->blocked, &ksig->info, &type);
2814 
2815 		if (!signr)
2816 			break; /* will return 0 */
2817 
2818 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2819 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2820 			signr = ptrace_signal(signr, &ksig->info, type);
2821 			if (!signr)
2822 				continue;
2823 		}
2824 
2825 		ka = &sighand->action[signr-1];
2826 
2827 		/* Trace actually delivered signals. */
2828 		trace_signal_deliver(signr, &ksig->info, ka);
2829 
2830 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2831 			continue;
2832 		if (ka->sa.sa_handler != SIG_DFL) {
2833 			/* Run the handler.  */
2834 			ksig->ka = *ka;
2835 
2836 			if (ka->sa.sa_flags & SA_ONESHOT)
2837 				ka->sa.sa_handler = SIG_DFL;
2838 
2839 			break; /* will return non-zero "signr" value */
2840 		}
2841 
2842 		/*
2843 		 * Now we are doing the default action for this signal.
2844 		 */
2845 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2846 			continue;
2847 
2848 		/*
2849 		 * Global init gets no signals it doesn't want.
2850 		 * Container-init gets no signals it doesn't want from same
2851 		 * container.
2852 		 *
2853 		 * Note that if global/container-init sees a sig_kernel_only()
2854 		 * signal here, the signal must have been generated internally
2855 		 * or must have come from an ancestor namespace. In either
2856 		 * case, the signal cannot be dropped.
2857 		 */
2858 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2859 				!sig_kernel_only(signr))
2860 			continue;
2861 
2862 		if (sig_kernel_stop(signr)) {
2863 			/*
2864 			 * The default action is to stop all threads in
2865 			 * the thread group.  The job control signals
2866 			 * do nothing in an orphaned pgrp, but SIGSTOP
2867 			 * always works.  Note that siglock needs to be
2868 			 * dropped during the call to is_orphaned_pgrp()
2869 			 * because of lock ordering with tasklist_lock.
2870 			 * This allows an intervening SIGCONT to be posted.
2871 			 * We need to check for that and bail out if necessary.
2872 			 */
2873 			if (signr != SIGSTOP) {
2874 				spin_unlock_irq(&sighand->siglock);
2875 
2876 				/* signals can be posted during this window */
2877 
2878 				if (is_current_pgrp_orphaned())
2879 					goto relock;
2880 
2881 				spin_lock_irq(&sighand->siglock);
2882 			}
2883 
2884 			if (likely(do_signal_stop(signr))) {
2885 				/* It released the siglock.  */
2886 				goto relock;
2887 			}
2888 
2889 			/*
2890 			 * We didn't actually stop, due to a race
2891 			 * with SIGCONT or something like that.
2892 			 */
2893 			continue;
2894 		}
2895 
2896 	fatal:
2897 		spin_unlock_irq(&sighand->siglock);
2898 		if (unlikely(cgroup_task_frozen(current)))
2899 			cgroup_leave_frozen(true);
2900 
2901 		/*
2902 		 * Anything else is fatal, maybe with a core dump.
2903 		 */
2904 		current->flags |= PF_SIGNALED;
2905 
2906 		if (sig_kernel_coredump(signr)) {
2907 			if (print_fatal_signals)
2908 				print_fatal_signal(signr);
2909 			proc_coredump_connector(current);
2910 			/*
2911 			 * If it was able to dump core, this kills all
2912 			 * other threads in the group and synchronizes with
2913 			 * their demise.  If we lost the race with another
2914 			 * thread getting here, it set group_exit_code
2915 			 * first and our do_group_exit call below will use
2916 			 * that value and ignore the one we pass it.
2917 			 */
2918 			do_coredump(&ksig->info);
2919 		}
2920 
2921 		/*
2922 		 * PF_USER_WORKER threads will catch and exit on fatal signals
2923 		 * themselves. They have cleanup that must be performed, so we
2924 		 * cannot call do_exit() on their behalf. Note that ksig won't
2925 		 * be properly initialized, PF_USER_WORKER's shouldn't use it.
2926 		 */
2927 		if (current->flags & PF_USER_WORKER)
2928 			goto out;
2929 
2930 		/*
2931 		 * Death signals, no core dump.
2932 		 */
2933 		do_group_exit(signr);
2934 		/* NOTREACHED */
2935 	}
2936 	spin_unlock_irq(&sighand->siglock);
2937 
2938 	ksig->sig = signr;
2939 
2940 	if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2941 		hide_si_addr_tag_bits(ksig);
2942 out:
2943 	return signr > 0;
2944 }
2945 
2946 /**
2947  * signal_delivered - called after signal delivery to update blocked signals
2948  * @ksig:		kernel signal struct
2949  * @stepping:		nonzero if debugger single-step or block-step in use
2950  *
2951  * This function should be called when a signal has successfully been
2952  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2953  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2954  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2955  */
signal_delivered(struct ksignal * ksig,int stepping)2956 static void signal_delivered(struct ksignal *ksig, int stepping)
2957 {
2958 	sigset_t blocked;
2959 
2960 	/* A signal was successfully delivered, and the
2961 	   saved sigmask was stored on the signal frame,
2962 	   and will be restored by sigreturn.  So we can
2963 	   simply clear the restore sigmask flag.  */
2964 	clear_restore_sigmask();
2965 
2966 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2967 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2968 		sigaddset(&blocked, ksig->sig);
2969 	set_current_blocked(&blocked);
2970 	if (current->sas_ss_flags & SS_AUTODISARM)
2971 		sas_ss_reset(current);
2972 	if (stepping)
2973 		ptrace_notify(SIGTRAP, 0);
2974 }
2975 
signal_setup_done(int failed,struct ksignal * ksig,int stepping)2976 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2977 {
2978 	if (failed)
2979 		force_sigsegv(ksig->sig);
2980 	else
2981 		signal_delivered(ksig, stepping);
2982 }
2983 
2984 /*
2985  * It could be that complete_signal() picked us to notify about the
2986  * group-wide signal. Other threads should be notified now to take
2987  * the shared signals in @which since we will not.
2988  */
retarget_shared_pending(struct task_struct * tsk,sigset_t * which)2989 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2990 {
2991 	sigset_t retarget;
2992 	struct task_struct *t;
2993 
2994 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2995 	if (sigisemptyset(&retarget))
2996 		return;
2997 
2998 	for_other_threads(tsk, t) {
2999 		if (t->flags & PF_EXITING)
3000 			continue;
3001 
3002 		if (!has_pending_signals(&retarget, &t->blocked))
3003 			continue;
3004 		/* Remove the signals this thread can handle. */
3005 		sigandsets(&retarget, &retarget, &t->blocked);
3006 
3007 		if (!task_sigpending(t))
3008 			signal_wake_up(t, 0);
3009 
3010 		if (sigisemptyset(&retarget))
3011 			break;
3012 	}
3013 }
3014 
exit_signals(struct task_struct * tsk)3015 void exit_signals(struct task_struct *tsk)
3016 {
3017 	int group_stop = 0;
3018 	sigset_t unblocked;
3019 
3020 	/*
3021 	 * @tsk is about to have PF_EXITING set - lock out users which
3022 	 * expect stable threadgroup.
3023 	 */
3024 	cgroup_threadgroup_change_begin(tsk);
3025 
3026 	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3027 		sched_mm_cid_exit_signals(tsk);
3028 		tsk->flags |= PF_EXITING;
3029 		cgroup_threadgroup_change_end(tsk);
3030 		return;
3031 	}
3032 
3033 	spin_lock_irq(&tsk->sighand->siglock);
3034 	/*
3035 	 * From now this task is not visible for group-wide signals,
3036 	 * see wants_signal(), do_signal_stop().
3037 	 */
3038 	sched_mm_cid_exit_signals(tsk);
3039 	tsk->flags |= PF_EXITING;
3040 
3041 	cgroup_threadgroup_change_end(tsk);
3042 
3043 	if (!task_sigpending(tsk))
3044 		goto out;
3045 
3046 	unblocked = tsk->blocked;
3047 	signotset(&unblocked);
3048 	retarget_shared_pending(tsk, &unblocked);
3049 
3050 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3051 	    task_participate_group_stop(tsk))
3052 		group_stop = CLD_STOPPED;
3053 out:
3054 	spin_unlock_irq(&tsk->sighand->siglock);
3055 
3056 	/*
3057 	 * If group stop has completed, deliver the notification.  This
3058 	 * should always go to the real parent of the group leader.
3059 	 */
3060 	if (unlikely(group_stop)) {
3061 		read_lock(&tasklist_lock);
3062 		do_notify_parent_cldstop(tsk, false, group_stop);
3063 		read_unlock(&tasklist_lock);
3064 	}
3065 }
3066 
3067 /*
3068  * System call entry points.
3069  */
3070 
3071 /**
3072  *  sys_restart_syscall - restart a system call
3073  */
SYSCALL_DEFINE0(restart_syscall)3074 SYSCALL_DEFINE0(restart_syscall)
3075 {
3076 	struct restart_block *restart = &current->restart_block;
3077 	return restart->fn(restart);
3078 }
3079 
do_no_restart_syscall(struct restart_block * param)3080 long do_no_restart_syscall(struct restart_block *param)
3081 {
3082 	return -EINTR;
3083 }
3084 
__set_task_blocked(struct task_struct * tsk,const sigset_t * newset)3085 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3086 {
3087 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3088 		sigset_t newblocked;
3089 		/* A set of now blocked but previously unblocked signals. */
3090 		sigandnsets(&newblocked, newset, &current->blocked);
3091 		retarget_shared_pending(tsk, &newblocked);
3092 	}
3093 	tsk->blocked = *newset;
3094 	recalc_sigpending();
3095 }
3096 
3097 /**
3098  * set_current_blocked - change current->blocked mask
3099  * @newset: new mask
3100  *
3101  * It is wrong to change ->blocked directly, this helper should be used
3102  * to ensure the process can't miss a shared signal we are going to block.
3103  */
set_current_blocked(sigset_t * newset)3104 void set_current_blocked(sigset_t *newset)
3105 {
3106 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3107 	__set_current_blocked(newset);
3108 }
3109 
__set_current_blocked(const sigset_t * newset)3110 void __set_current_blocked(const sigset_t *newset)
3111 {
3112 	struct task_struct *tsk = current;
3113 
3114 	/*
3115 	 * In case the signal mask hasn't changed, there is nothing we need
3116 	 * to do. The current->blocked shouldn't be modified by other task.
3117 	 */
3118 	if (sigequalsets(&tsk->blocked, newset))
3119 		return;
3120 
3121 	spin_lock_irq(&tsk->sighand->siglock);
3122 	__set_task_blocked(tsk, newset);
3123 	spin_unlock_irq(&tsk->sighand->siglock);
3124 }
3125 
3126 /*
3127  * This is also useful for kernel threads that want to temporarily
3128  * (or permanently) block certain signals.
3129  *
3130  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3131  * interface happily blocks "unblockable" signals like SIGKILL
3132  * and friends.
3133  */
sigprocmask(int how,sigset_t * set,sigset_t * oldset)3134 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3135 {
3136 	struct task_struct *tsk = current;
3137 	sigset_t newset;
3138 
3139 	/* Lockless, only current can change ->blocked, never from irq */
3140 	if (oldset)
3141 		*oldset = tsk->blocked;
3142 
3143 	switch (how) {
3144 	case SIG_BLOCK:
3145 		sigorsets(&newset, &tsk->blocked, set);
3146 		break;
3147 	case SIG_UNBLOCK:
3148 		sigandnsets(&newset, &tsk->blocked, set);
3149 		break;
3150 	case SIG_SETMASK:
3151 		newset = *set;
3152 		break;
3153 	default:
3154 		return -EINVAL;
3155 	}
3156 
3157 	__set_current_blocked(&newset);
3158 	return 0;
3159 }
3160 EXPORT_SYMBOL(sigprocmask);
3161 
3162 /*
3163  * The api helps set app-provided sigmasks.
3164  *
3165  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3166  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3167  *
3168  * Note that it does set_restore_sigmask() in advance, so it must be always
3169  * paired with restore_saved_sigmask_unless() before return from syscall.
3170  */
set_user_sigmask(const sigset_t __user * umask,size_t sigsetsize)3171 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3172 {
3173 	sigset_t kmask;
3174 
3175 	if (!umask)
3176 		return 0;
3177 	if (sigsetsize != sizeof(sigset_t))
3178 		return -EINVAL;
3179 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3180 		return -EFAULT;
3181 
3182 	set_restore_sigmask();
3183 	current->saved_sigmask = current->blocked;
3184 	set_current_blocked(&kmask);
3185 
3186 	return 0;
3187 }
3188 
3189 #ifdef CONFIG_COMPAT
set_compat_user_sigmask(const compat_sigset_t __user * umask,size_t sigsetsize)3190 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3191 			    size_t sigsetsize)
3192 {
3193 	sigset_t kmask;
3194 
3195 	if (!umask)
3196 		return 0;
3197 	if (sigsetsize != sizeof(compat_sigset_t))
3198 		return -EINVAL;
3199 	if (get_compat_sigset(&kmask, umask))
3200 		return -EFAULT;
3201 
3202 	set_restore_sigmask();
3203 	current->saved_sigmask = current->blocked;
3204 	set_current_blocked(&kmask);
3205 
3206 	return 0;
3207 }
3208 #endif
3209 
3210 /**
3211  *  sys_rt_sigprocmask - change the list of currently blocked signals
3212  *  @how: whether to add, remove, or set signals
3213  *  @nset: stores pending signals
3214  *  @oset: previous value of signal mask if non-null
3215  *  @sigsetsize: size of sigset_t type
3216  */
SYSCALL_DEFINE4(rt_sigprocmask,int,how,sigset_t __user *,nset,sigset_t __user *,oset,size_t,sigsetsize)3217 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3218 		sigset_t __user *, oset, size_t, sigsetsize)
3219 {
3220 	sigset_t old_set, new_set;
3221 	int error;
3222 
3223 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3224 	if (sigsetsize != sizeof(sigset_t))
3225 		return -EINVAL;
3226 
3227 	old_set = current->blocked;
3228 
3229 	if (nset) {
3230 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3231 			return -EFAULT;
3232 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3233 
3234 		error = sigprocmask(how, &new_set, NULL);
3235 		if (error)
3236 			return error;
3237 	}
3238 
3239 	if (oset) {
3240 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3241 			return -EFAULT;
3242 	}
3243 
3244 	return 0;
3245 }
3246 
3247 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigprocmask,int,how,compat_sigset_t __user *,nset,compat_sigset_t __user *,oset,compat_size_t,sigsetsize)3248 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3249 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3250 {
3251 	sigset_t old_set = current->blocked;
3252 
3253 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3254 	if (sigsetsize != sizeof(sigset_t))
3255 		return -EINVAL;
3256 
3257 	if (nset) {
3258 		sigset_t new_set;
3259 		int error;
3260 		if (get_compat_sigset(&new_set, nset))
3261 			return -EFAULT;
3262 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3263 
3264 		error = sigprocmask(how, &new_set, NULL);
3265 		if (error)
3266 			return error;
3267 	}
3268 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3269 }
3270 #endif
3271 
do_sigpending(sigset_t * set)3272 static void do_sigpending(sigset_t *set)
3273 {
3274 	spin_lock_irq(&current->sighand->siglock);
3275 	sigorsets(set, &current->pending.signal,
3276 		  &current->signal->shared_pending.signal);
3277 	spin_unlock_irq(&current->sighand->siglock);
3278 
3279 	/* Outside the lock because only this thread touches it.  */
3280 	sigandsets(set, &current->blocked, set);
3281 }
3282 
3283 /**
3284  *  sys_rt_sigpending - examine a pending signal that has been raised
3285  *			while blocked
3286  *  @uset: stores pending signals
3287  *  @sigsetsize: size of sigset_t type or larger
3288  */
SYSCALL_DEFINE2(rt_sigpending,sigset_t __user *,uset,size_t,sigsetsize)3289 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3290 {
3291 	sigset_t set;
3292 
3293 	if (sigsetsize > sizeof(*uset))
3294 		return -EINVAL;
3295 
3296 	do_sigpending(&set);
3297 
3298 	if (copy_to_user(uset, &set, sigsetsize))
3299 		return -EFAULT;
3300 
3301 	return 0;
3302 }
3303 
3304 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigpending,compat_sigset_t __user *,uset,compat_size_t,sigsetsize)3305 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3306 		compat_size_t, sigsetsize)
3307 {
3308 	sigset_t set;
3309 
3310 	if (sigsetsize > sizeof(*uset))
3311 		return -EINVAL;
3312 
3313 	do_sigpending(&set);
3314 
3315 	return put_compat_sigset(uset, &set, sigsetsize);
3316 }
3317 #endif
3318 
3319 static const struct {
3320 	unsigned char limit, layout;
3321 } sig_sicodes[] = {
3322 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3323 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3324 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3325 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3326 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3327 #if defined(SIGEMT)
3328 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3329 #endif
3330 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3331 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3332 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3333 };
3334 
known_siginfo_layout(unsigned sig,int si_code)3335 static bool known_siginfo_layout(unsigned sig, int si_code)
3336 {
3337 	if (si_code == SI_KERNEL)
3338 		return true;
3339 	else if ((si_code > SI_USER)) {
3340 		if (sig_specific_sicodes(sig)) {
3341 			if (si_code <= sig_sicodes[sig].limit)
3342 				return true;
3343 		}
3344 		else if (si_code <= NSIGPOLL)
3345 			return true;
3346 	}
3347 	else if (si_code >= SI_DETHREAD)
3348 		return true;
3349 	else if (si_code == SI_ASYNCNL)
3350 		return true;
3351 	return false;
3352 }
3353 
siginfo_layout(unsigned sig,int si_code)3354 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3355 {
3356 	enum siginfo_layout layout = SIL_KILL;
3357 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3358 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3359 		    (si_code <= sig_sicodes[sig].limit)) {
3360 			layout = sig_sicodes[sig].layout;
3361 			/* Handle the exceptions */
3362 			if ((sig == SIGBUS) &&
3363 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3364 				layout = SIL_FAULT_MCEERR;
3365 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3366 				layout = SIL_FAULT_BNDERR;
3367 #ifdef SEGV_PKUERR
3368 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3369 				layout = SIL_FAULT_PKUERR;
3370 #endif
3371 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3372 				layout = SIL_FAULT_PERF_EVENT;
3373 			else if (IS_ENABLED(CONFIG_SPARC) &&
3374 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3375 				layout = SIL_FAULT_TRAPNO;
3376 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3377 				 ((sig == SIGFPE) ||
3378 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3379 				layout = SIL_FAULT_TRAPNO;
3380 		}
3381 		else if (si_code <= NSIGPOLL)
3382 			layout = SIL_POLL;
3383 	} else {
3384 		if (si_code == SI_TIMER)
3385 			layout = SIL_TIMER;
3386 		else if (si_code == SI_SIGIO)
3387 			layout = SIL_POLL;
3388 		else if (si_code < 0)
3389 			layout = SIL_RT;
3390 	}
3391 	return layout;
3392 }
3393 
si_expansion(const siginfo_t __user * info)3394 static inline char __user *si_expansion(const siginfo_t __user *info)
3395 {
3396 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3397 }
3398 
copy_siginfo_to_user(siginfo_t __user * to,const kernel_siginfo_t * from)3399 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3400 {
3401 	char __user *expansion = si_expansion(to);
3402 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3403 		return -EFAULT;
3404 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3405 		return -EFAULT;
3406 	return 0;
3407 }
3408 
post_copy_siginfo_from_user(kernel_siginfo_t * info,const siginfo_t __user * from)3409 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3410 				       const siginfo_t __user *from)
3411 {
3412 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3413 		char __user *expansion = si_expansion(from);
3414 		char buf[SI_EXPANSION_SIZE];
3415 		int i;
3416 		/*
3417 		 * An unknown si_code might need more than
3418 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3419 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3420 		 * will return this data to userspace exactly.
3421 		 */
3422 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3423 			return -EFAULT;
3424 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3425 			if (buf[i] != 0)
3426 				return -E2BIG;
3427 		}
3428 	}
3429 	return 0;
3430 }
3431 
__copy_siginfo_from_user(int signo,kernel_siginfo_t * to,const siginfo_t __user * from)3432 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3433 				    const siginfo_t __user *from)
3434 {
3435 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3436 		return -EFAULT;
3437 	to->si_signo = signo;
3438 	return post_copy_siginfo_from_user(to, from);
3439 }
3440 
copy_siginfo_from_user(kernel_siginfo_t * to,const siginfo_t __user * from)3441 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3442 {
3443 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3444 		return -EFAULT;
3445 	return post_copy_siginfo_from_user(to, from);
3446 }
3447 
3448 #ifdef CONFIG_COMPAT
3449 /**
3450  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3451  * @to: compat siginfo destination
3452  * @from: kernel siginfo source
3453  *
3454  * Note: This function does not work properly for the SIGCHLD on x32, but
3455  * fortunately it doesn't have to.  The only valid callers for this function are
3456  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3457  * The latter does not care because SIGCHLD will never cause a coredump.
3458  */
copy_siginfo_to_external32(struct compat_siginfo * to,const struct kernel_siginfo * from)3459 void copy_siginfo_to_external32(struct compat_siginfo *to,
3460 		const struct kernel_siginfo *from)
3461 {
3462 	memset(to, 0, sizeof(*to));
3463 
3464 	to->si_signo = from->si_signo;
3465 	to->si_errno = from->si_errno;
3466 	to->si_code  = from->si_code;
3467 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3468 	case SIL_KILL:
3469 		to->si_pid = from->si_pid;
3470 		to->si_uid = from->si_uid;
3471 		break;
3472 	case SIL_TIMER:
3473 		to->si_tid     = from->si_tid;
3474 		to->si_overrun = from->si_overrun;
3475 		to->si_int     = from->si_int;
3476 		break;
3477 	case SIL_POLL:
3478 		to->si_band = from->si_band;
3479 		to->si_fd   = from->si_fd;
3480 		break;
3481 	case SIL_FAULT:
3482 		to->si_addr = ptr_to_compat(from->si_addr);
3483 		break;
3484 	case SIL_FAULT_TRAPNO:
3485 		to->si_addr = ptr_to_compat(from->si_addr);
3486 		to->si_trapno = from->si_trapno;
3487 		break;
3488 	case SIL_FAULT_MCEERR:
3489 		to->si_addr = ptr_to_compat(from->si_addr);
3490 		to->si_addr_lsb = from->si_addr_lsb;
3491 		break;
3492 	case SIL_FAULT_BNDERR:
3493 		to->si_addr = ptr_to_compat(from->si_addr);
3494 		to->si_lower = ptr_to_compat(from->si_lower);
3495 		to->si_upper = ptr_to_compat(from->si_upper);
3496 		break;
3497 	case SIL_FAULT_PKUERR:
3498 		to->si_addr = ptr_to_compat(from->si_addr);
3499 		to->si_pkey = from->si_pkey;
3500 		break;
3501 	case SIL_FAULT_PERF_EVENT:
3502 		to->si_addr = ptr_to_compat(from->si_addr);
3503 		to->si_perf_data = from->si_perf_data;
3504 		to->si_perf_type = from->si_perf_type;
3505 		to->si_perf_flags = from->si_perf_flags;
3506 		break;
3507 	case SIL_CHLD:
3508 		to->si_pid = from->si_pid;
3509 		to->si_uid = from->si_uid;
3510 		to->si_status = from->si_status;
3511 		to->si_utime = from->si_utime;
3512 		to->si_stime = from->si_stime;
3513 		break;
3514 	case SIL_RT:
3515 		to->si_pid = from->si_pid;
3516 		to->si_uid = from->si_uid;
3517 		to->si_int = from->si_int;
3518 		break;
3519 	case SIL_SYS:
3520 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3521 		to->si_syscall   = from->si_syscall;
3522 		to->si_arch      = from->si_arch;
3523 		break;
3524 	}
3525 }
3526 
__copy_siginfo_to_user32(struct compat_siginfo __user * to,const struct kernel_siginfo * from)3527 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3528 			   const struct kernel_siginfo *from)
3529 {
3530 	struct compat_siginfo new;
3531 
3532 	copy_siginfo_to_external32(&new, from);
3533 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3534 		return -EFAULT;
3535 	return 0;
3536 }
3537 
post_copy_siginfo_from_user32(kernel_siginfo_t * to,const struct compat_siginfo * from)3538 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3539 					 const struct compat_siginfo *from)
3540 {
3541 	clear_siginfo(to);
3542 	to->si_signo = from->si_signo;
3543 	to->si_errno = from->si_errno;
3544 	to->si_code  = from->si_code;
3545 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3546 	case SIL_KILL:
3547 		to->si_pid = from->si_pid;
3548 		to->si_uid = from->si_uid;
3549 		break;
3550 	case SIL_TIMER:
3551 		to->si_tid     = from->si_tid;
3552 		to->si_overrun = from->si_overrun;
3553 		to->si_int     = from->si_int;
3554 		break;
3555 	case SIL_POLL:
3556 		to->si_band = from->si_band;
3557 		to->si_fd   = from->si_fd;
3558 		break;
3559 	case SIL_FAULT:
3560 		to->si_addr = compat_ptr(from->si_addr);
3561 		break;
3562 	case SIL_FAULT_TRAPNO:
3563 		to->si_addr = compat_ptr(from->si_addr);
3564 		to->si_trapno = from->si_trapno;
3565 		break;
3566 	case SIL_FAULT_MCEERR:
3567 		to->si_addr = compat_ptr(from->si_addr);
3568 		to->si_addr_lsb = from->si_addr_lsb;
3569 		break;
3570 	case SIL_FAULT_BNDERR:
3571 		to->si_addr = compat_ptr(from->si_addr);
3572 		to->si_lower = compat_ptr(from->si_lower);
3573 		to->si_upper = compat_ptr(from->si_upper);
3574 		break;
3575 	case SIL_FAULT_PKUERR:
3576 		to->si_addr = compat_ptr(from->si_addr);
3577 		to->si_pkey = from->si_pkey;
3578 		break;
3579 	case SIL_FAULT_PERF_EVENT:
3580 		to->si_addr = compat_ptr(from->si_addr);
3581 		to->si_perf_data = from->si_perf_data;
3582 		to->si_perf_type = from->si_perf_type;
3583 		to->si_perf_flags = from->si_perf_flags;
3584 		break;
3585 	case SIL_CHLD:
3586 		to->si_pid    = from->si_pid;
3587 		to->si_uid    = from->si_uid;
3588 		to->si_status = from->si_status;
3589 #ifdef CONFIG_X86_X32_ABI
3590 		if (in_x32_syscall()) {
3591 			to->si_utime = from->_sifields._sigchld_x32._utime;
3592 			to->si_stime = from->_sifields._sigchld_x32._stime;
3593 		} else
3594 #endif
3595 		{
3596 			to->si_utime = from->si_utime;
3597 			to->si_stime = from->si_stime;
3598 		}
3599 		break;
3600 	case SIL_RT:
3601 		to->si_pid = from->si_pid;
3602 		to->si_uid = from->si_uid;
3603 		to->si_int = from->si_int;
3604 		break;
3605 	case SIL_SYS:
3606 		to->si_call_addr = compat_ptr(from->si_call_addr);
3607 		to->si_syscall   = from->si_syscall;
3608 		to->si_arch      = from->si_arch;
3609 		break;
3610 	}
3611 	return 0;
3612 }
3613 
__copy_siginfo_from_user32(int signo,struct kernel_siginfo * to,const struct compat_siginfo __user * ufrom)3614 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3615 				      const struct compat_siginfo __user *ufrom)
3616 {
3617 	struct compat_siginfo from;
3618 
3619 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3620 		return -EFAULT;
3621 
3622 	from.si_signo = signo;
3623 	return post_copy_siginfo_from_user32(to, &from);
3624 }
3625 
copy_siginfo_from_user32(struct kernel_siginfo * to,const struct compat_siginfo __user * ufrom)3626 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3627 			     const struct compat_siginfo __user *ufrom)
3628 {
3629 	struct compat_siginfo from;
3630 
3631 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3632 		return -EFAULT;
3633 
3634 	return post_copy_siginfo_from_user32(to, &from);
3635 }
3636 #endif /* CONFIG_COMPAT */
3637 
3638 /**
3639  *  do_sigtimedwait - wait for queued signals specified in @which
3640  *  @which: queued signals to wait for
3641  *  @info: if non-null, the signal's siginfo is returned here
3642  *  @ts: upper bound on process time suspension
3643  */
do_sigtimedwait(const sigset_t * which,kernel_siginfo_t * info,const struct timespec64 * ts)3644 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3645 		    const struct timespec64 *ts)
3646 {
3647 	ktime_t *to = NULL, timeout = KTIME_MAX;
3648 	struct task_struct *tsk = current;
3649 	sigset_t mask = *which;
3650 	enum pid_type type;
3651 	int sig, ret = 0;
3652 
3653 	if (ts) {
3654 		if (!timespec64_valid(ts))
3655 			return -EINVAL;
3656 		timeout = timespec64_to_ktime(*ts);
3657 		to = &timeout;
3658 	}
3659 
3660 	/*
3661 	 * Invert the set of allowed signals to get those we want to block.
3662 	 */
3663 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3664 	signotset(&mask);
3665 
3666 	spin_lock_irq(&tsk->sighand->siglock);
3667 	sig = dequeue_signal(&mask, info, &type);
3668 	if (!sig && timeout) {
3669 		/*
3670 		 * None ready, temporarily unblock those we're interested
3671 		 * while we are sleeping in so that we'll be awakened when
3672 		 * they arrive. Unblocking is always fine, we can avoid
3673 		 * set_current_blocked().
3674 		 */
3675 		tsk->real_blocked = tsk->blocked;
3676 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3677 		recalc_sigpending();
3678 		spin_unlock_irq(&tsk->sighand->siglock);
3679 
3680 		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3681 		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3682 					       HRTIMER_MODE_REL);
3683 		spin_lock_irq(&tsk->sighand->siglock);
3684 		__set_task_blocked(tsk, &tsk->real_blocked);
3685 		sigemptyset(&tsk->real_blocked);
3686 		sig = dequeue_signal(&mask, info, &type);
3687 	}
3688 	spin_unlock_irq(&tsk->sighand->siglock);
3689 
3690 	if (sig)
3691 		return sig;
3692 	return ret ? -EINTR : -EAGAIN;
3693 }
3694 
3695 /**
3696  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3697  *			in @uthese
3698  *  @uthese: queued signals to wait for
3699  *  @uinfo: if non-null, the signal's siginfo is returned here
3700  *  @uts: upper bound on process time suspension
3701  *  @sigsetsize: size of sigset_t type
3702  */
SYSCALL_DEFINE4(rt_sigtimedwait,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct __kernel_timespec __user *,uts,size_t,sigsetsize)3703 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3704 		siginfo_t __user *, uinfo,
3705 		const struct __kernel_timespec __user *, uts,
3706 		size_t, sigsetsize)
3707 {
3708 	sigset_t these;
3709 	struct timespec64 ts;
3710 	kernel_siginfo_t info;
3711 	int ret;
3712 
3713 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3714 	if (sigsetsize != sizeof(sigset_t))
3715 		return -EINVAL;
3716 
3717 	if (copy_from_user(&these, uthese, sizeof(these)))
3718 		return -EFAULT;
3719 
3720 	if (uts) {
3721 		if (get_timespec64(&ts, uts))
3722 			return -EFAULT;
3723 	}
3724 
3725 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3726 
3727 	if (ret > 0 && uinfo) {
3728 		if (copy_siginfo_to_user(uinfo, &info))
3729 			ret = -EFAULT;
3730 	}
3731 
3732 	return ret;
3733 }
3734 
3735 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(rt_sigtimedwait_time32,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct old_timespec32 __user *,uts,size_t,sigsetsize)3736 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3737 		siginfo_t __user *, uinfo,
3738 		const struct old_timespec32 __user *, uts,
3739 		size_t, sigsetsize)
3740 {
3741 	sigset_t these;
3742 	struct timespec64 ts;
3743 	kernel_siginfo_t info;
3744 	int ret;
3745 
3746 	if (sigsetsize != sizeof(sigset_t))
3747 		return -EINVAL;
3748 
3749 	if (copy_from_user(&these, uthese, sizeof(these)))
3750 		return -EFAULT;
3751 
3752 	if (uts) {
3753 		if (get_old_timespec32(&ts, uts))
3754 			return -EFAULT;
3755 	}
3756 
3757 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3758 
3759 	if (ret > 0 && uinfo) {
3760 		if (copy_siginfo_to_user(uinfo, &info))
3761 			ret = -EFAULT;
3762 	}
3763 
3764 	return ret;
3765 }
3766 #endif
3767 
3768 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64,compat_sigset_t __user *,uthese,struct compat_siginfo __user *,uinfo,struct __kernel_timespec __user *,uts,compat_size_t,sigsetsize)3769 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3770 		struct compat_siginfo __user *, uinfo,
3771 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3772 {
3773 	sigset_t s;
3774 	struct timespec64 t;
3775 	kernel_siginfo_t info;
3776 	long ret;
3777 
3778 	if (sigsetsize != sizeof(sigset_t))
3779 		return -EINVAL;
3780 
3781 	if (get_compat_sigset(&s, uthese))
3782 		return -EFAULT;
3783 
3784 	if (uts) {
3785 		if (get_timespec64(&t, uts))
3786 			return -EFAULT;
3787 	}
3788 
3789 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3790 
3791 	if (ret > 0 && uinfo) {
3792 		if (copy_siginfo_to_user32(uinfo, &info))
3793 			ret = -EFAULT;
3794 	}
3795 
3796 	return ret;
3797 }
3798 
3799 #ifdef CONFIG_COMPAT_32BIT_TIME
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32,compat_sigset_t __user *,uthese,struct compat_siginfo __user *,uinfo,struct old_timespec32 __user *,uts,compat_size_t,sigsetsize)3800 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3801 		struct compat_siginfo __user *, uinfo,
3802 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3803 {
3804 	sigset_t s;
3805 	struct timespec64 t;
3806 	kernel_siginfo_t info;
3807 	long ret;
3808 
3809 	if (sigsetsize != sizeof(sigset_t))
3810 		return -EINVAL;
3811 
3812 	if (get_compat_sigset(&s, uthese))
3813 		return -EFAULT;
3814 
3815 	if (uts) {
3816 		if (get_old_timespec32(&t, uts))
3817 			return -EFAULT;
3818 	}
3819 
3820 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3821 
3822 	if (ret > 0 && uinfo) {
3823 		if (copy_siginfo_to_user32(uinfo, &info))
3824 			ret = -EFAULT;
3825 	}
3826 
3827 	return ret;
3828 }
3829 #endif
3830 #endif
3831 
prepare_kill_siginfo(int sig,struct kernel_siginfo * info,enum pid_type type)3832 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3833 				 enum pid_type type)
3834 {
3835 	clear_siginfo(info);
3836 	info->si_signo = sig;
3837 	info->si_errno = 0;
3838 	info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3839 	info->si_pid = task_tgid_vnr(current);
3840 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3841 }
3842 
3843 /**
3844  *  sys_kill - send a signal to a process
3845  *  @pid: the PID of the process
3846  *  @sig: signal to be sent
3847  */
SYSCALL_DEFINE2(kill,pid_t,pid,int,sig)3848 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3849 {
3850 	struct kernel_siginfo info;
3851 
3852 	prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
3853 
3854 	return kill_something_info(sig, &info, pid);
3855 }
3856 
3857 /*
3858  * Verify that the signaler and signalee either are in the same pid namespace
3859  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3860  * namespace.
3861  */
access_pidfd_pidns(struct pid * pid)3862 static bool access_pidfd_pidns(struct pid *pid)
3863 {
3864 	struct pid_namespace *active = task_active_pid_ns(current);
3865 	struct pid_namespace *p = ns_of_pid(pid);
3866 
3867 	for (;;) {
3868 		if (!p)
3869 			return false;
3870 		if (p == active)
3871 			break;
3872 		p = p->parent;
3873 	}
3874 
3875 	return true;
3876 }
3877 
copy_siginfo_from_user_any(kernel_siginfo_t * kinfo,siginfo_t __user * info)3878 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3879 		siginfo_t __user *info)
3880 {
3881 #ifdef CONFIG_COMPAT
3882 	/*
3883 	 * Avoid hooking up compat syscalls and instead handle necessary
3884 	 * conversions here. Note, this is a stop-gap measure and should not be
3885 	 * considered a generic solution.
3886 	 */
3887 	if (in_compat_syscall())
3888 		return copy_siginfo_from_user32(
3889 			kinfo, (struct compat_siginfo __user *)info);
3890 #endif
3891 	return copy_siginfo_from_user(kinfo, info);
3892 }
3893 
pidfd_to_pid(const struct file * file)3894 static struct pid *pidfd_to_pid(const struct file *file)
3895 {
3896 	struct pid *pid;
3897 
3898 	pid = pidfd_pid(file);
3899 	if (!IS_ERR(pid))
3900 		return pid;
3901 
3902 	return tgid_pidfd_to_pid(file);
3903 }
3904 
3905 #define PIDFD_SEND_SIGNAL_FLAGS                            \
3906 	(PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
3907 	 PIDFD_SIGNAL_PROCESS_GROUP)
3908 
do_pidfd_send_signal(struct pid * pid,int sig,enum pid_type type,siginfo_t __user * info,unsigned int flags)3909 static int do_pidfd_send_signal(struct pid *pid, int sig, enum pid_type type,
3910 				siginfo_t __user *info, unsigned int flags)
3911 {
3912 	kernel_siginfo_t kinfo;
3913 
3914 	switch (flags) {
3915 	case PIDFD_SIGNAL_THREAD:
3916 		type = PIDTYPE_PID;
3917 		break;
3918 	case PIDFD_SIGNAL_THREAD_GROUP:
3919 		type = PIDTYPE_TGID;
3920 		break;
3921 	case PIDFD_SIGNAL_PROCESS_GROUP:
3922 		type = PIDTYPE_PGID;
3923 		break;
3924 	}
3925 
3926 	if (info) {
3927 		int ret;
3928 
3929 		ret = copy_siginfo_from_user_any(&kinfo, info);
3930 		if (unlikely(ret))
3931 			return ret;
3932 
3933 		if (unlikely(sig != kinfo.si_signo))
3934 			return -EINVAL;
3935 
3936 		/* Only allow sending arbitrary signals to yourself. */
3937 		if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
3938 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3939 			return -EPERM;
3940 	} else {
3941 		prepare_kill_siginfo(sig, &kinfo, type);
3942 	}
3943 
3944 	if (type == PIDTYPE_PGID)
3945 		return kill_pgrp_info(sig, &kinfo, pid);
3946 
3947 	return kill_pid_info_type(sig, &kinfo, pid, type);
3948 }
3949 
3950 /**
3951  * sys_pidfd_send_signal - Signal a process through a pidfd
3952  * @pidfd:  file descriptor of the process
3953  * @sig:    signal to send
3954  * @info:   signal info
3955  * @flags:  future flags
3956  *
3957  * Send the signal to the thread group or to the individual thread depending
3958  * on PIDFD_THREAD.
3959  * In the future extension to @flags may be used to override the default scope
3960  * of @pidfd.
3961  *
3962  * Return: 0 on success, negative errno on failure
3963  */
SYSCALL_DEFINE4(pidfd_send_signal,int,pidfd,int,sig,siginfo_t __user *,info,unsigned int,flags)3964 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3965 		siginfo_t __user *, info, unsigned int, flags)
3966 {
3967 	int ret;
3968 	struct fd f;
3969 	struct pid *pid;
3970 	enum pid_type type;
3971 
3972 	/* Enforce flags be set to 0 until we add an extension. */
3973 	if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
3974 		return -EINVAL;
3975 
3976 	/* Ensure that only a single signal scope determining flag is set. */
3977 	if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
3978 		return -EINVAL;
3979 
3980 	switch (pidfd) {
3981 	case PIDFD_SELF_THREAD:
3982 		pid = get_task_pid(current, PIDTYPE_PID);
3983 		type = PIDTYPE_PID;
3984 		break;
3985 	case PIDFD_SELF_THREAD_GROUP:
3986 		pid = get_task_pid(current, PIDTYPE_TGID);
3987 		type = PIDTYPE_TGID;
3988 		break;
3989 	default: {
3990 		f = fdget(pidfd);
3991 		if (!fd_file(f))
3992 			return -EBADF;
3993 
3994 		/* Is this a pidfd? */
3995 		pid = pidfd_to_pid(fd_file(f));
3996 		if (IS_ERR(pid)) {
3997 			ret = PTR_ERR(pid);
3998 			goto err;
3999 		}
4000 
4001 		if (!access_pidfd_pidns(pid)) {
4002 			ret = -EINVAL;
4003 			goto err;
4004 		}
4005 
4006 		/* Infer scope from the type of pidfd. */
4007 		if (fd_file(f)->f_flags & PIDFD_THREAD)
4008 			type = PIDTYPE_PID;
4009 		else
4010 			type = PIDTYPE_TGID;
4011 
4012 		ret = do_pidfd_send_signal(pid, sig, type, info, flags);
4013 err:
4014 		fdput(f);
4015 		return ret;
4016 	}
4017 	}
4018 
4019 	return do_pidfd_send_signal(pid, sig, type, info, flags);
4020 }
4021 
4022 static int
do_send_specific(pid_t tgid,pid_t pid,int sig,struct kernel_siginfo * info)4023 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
4024 {
4025 	struct task_struct *p;
4026 	int error = -ESRCH;
4027 
4028 	rcu_read_lock();
4029 	p = find_task_by_vpid(pid);
4030 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
4031 		error = check_kill_permission(sig, info, p);
4032 		/*
4033 		 * The null signal is a permissions and process existence
4034 		 * probe.  No signal is actually delivered.
4035 		 */
4036 		if (!error && sig) {
4037 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
4038 			/*
4039 			 * If lock_task_sighand() failed we pretend the task
4040 			 * dies after receiving the signal. The window is tiny,
4041 			 * and the signal is private anyway.
4042 			 */
4043 			if (unlikely(error == -ESRCH))
4044 				error = 0;
4045 		}
4046 	}
4047 	rcu_read_unlock();
4048 
4049 	return error;
4050 }
4051 
do_tkill(pid_t tgid,pid_t pid,int sig)4052 static int do_tkill(pid_t tgid, pid_t pid, int sig)
4053 {
4054 	struct kernel_siginfo info;
4055 
4056 	prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
4057 
4058 	return do_send_specific(tgid, pid, sig, &info);
4059 }
4060 
4061 /**
4062  *  sys_tgkill - send signal to one specific thread
4063  *  @tgid: the thread group ID of the thread
4064  *  @pid: the PID of the thread
4065  *  @sig: signal to be sent
4066  *
4067  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
4068  *  exists but it's not belonging to the target process anymore. This
4069  *  method solves the problem of threads exiting and PIDs getting reused.
4070  */
SYSCALL_DEFINE3(tgkill,pid_t,tgid,pid_t,pid,int,sig)4071 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4072 {
4073 	/* This is only valid for single tasks */
4074 	if (pid <= 0 || tgid <= 0)
4075 		return -EINVAL;
4076 
4077 	return do_tkill(tgid, pid, sig);
4078 }
4079 
4080 /**
4081  *  sys_tkill - send signal to one specific task
4082  *  @pid: the PID of the task
4083  *  @sig: signal to be sent
4084  *
4085  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4086  */
SYSCALL_DEFINE2(tkill,pid_t,pid,int,sig)4087 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4088 {
4089 	/* This is only valid for single tasks */
4090 	if (pid <= 0)
4091 		return -EINVAL;
4092 
4093 	return do_tkill(0, pid, sig);
4094 }
4095 
do_rt_sigqueueinfo(pid_t pid,int sig,kernel_siginfo_t * info)4096 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4097 {
4098 	/* Not even root can pretend to send signals from the kernel.
4099 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4100 	 */
4101 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4102 	    (task_pid_vnr(current) != pid))
4103 		return -EPERM;
4104 
4105 	/* POSIX.1b doesn't mention process groups.  */
4106 	return kill_proc_info(sig, info, pid);
4107 }
4108 
4109 /**
4110  *  sys_rt_sigqueueinfo - send signal information to a signal
4111  *  @pid: the PID of the thread
4112  *  @sig: signal to be sent
4113  *  @uinfo: signal info to be sent
4114  */
SYSCALL_DEFINE3(rt_sigqueueinfo,pid_t,pid,int,sig,siginfo_t __user *,uinfo)4115 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4116 		siginfo_t __user *, uinfo)
4117 {
4118 	kernel_siginfo_t info;
4119 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4120 	if (unlikely(ret))
4121 		return ret;
4122 	return do_rt_sigqueueinfo(pid, sig, &info);
4123 }
4124 
4125 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)4126 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4127 			compat_pid_t, pid,
4128 			int, sig,
4129 			struct compat_siginfo __user *, uinfo)
4130 {
4131 	kernel_siginfo_t info;
4132 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4133 	if (unlikely(ret))
4134 		return ret;
4135 	return do_rt_sigqueueinfo(pid, sig, &info);
4136 }
4137 #endif
4138 
do_rt_tgsigqueueinfo(pid_t tgid,pid_t pid,int sig,kernel_siginfo_t * info)4139 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4140 {
4141 	/* This is only valid for single tasks */
4142 	if (pid <= 0 || tgid <= 0)
4143 		return -EINVAL;
4144 
4145 	/* Not even root can pretend to send signals from the kernel.
4146 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4147 	 */
4148 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4149 	    (task_pid_vnr(current) != pid))
4150 		return -EPERM;
4151 
4152 	return do_send_specific(tgid, pid, sig, info);
4153 }
4154 
SYSCALL_DEFINE4(rt_tgsigqueueinfo,pid_t,tgid,pid_t,pid,int,sig,siginfo_t __user *,uinfo)4155 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4156 		siginfo_t __user *, uinfo)
4157 {
4158 	kernel_siginfo_t info;
4159 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4160 	if (unlikely(ret))
4161 		return ret;
4162 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4163 }
4164 
4165 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,compat_pid_t,tgid,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)4166 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4167 			compat_pid_t, tgid,
4168 			compat_pid_t, pid,
4169 			int, sig,
4170 			struct compat_siginfo __user *, uinfo)
4171 {
4172 	kernel_siginfo_t info;
4173 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4174 	if (unlikely(ret))
4175 		return ret;
4176 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4177 }
4178 #endif
4179 
4180 /*
4181  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4182  */
kernel_sigaction(int sig,__sighandler_t action)4183 void kernel_sigaction(int sig, __sighandler_t action)
4184 {
4185 	spin_lock_irq(&current->sighand->siglock);
4186 	current->sighand->action[sig - 1].sa.sa_handler = action;
4187 	if (action == SIG_IGN) {
4188 		sigset_t mask;
4189 
4190 		sigemptyset(&mask);
4191 		sigaddset(&mask, sig);
4192 
4193 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4194 		flush_sigqueue_mask(&mask, &current->pending);
4195 		recalc_sigpending();
4196 	}
4197 	spin_unlock_irq(&current->sighand->siglock);
4198 }
4199 EXPORT_SYMBOL(kernel_sigaction);
4200 
sigaction_compat_abi(struct k_sigaction * act,struct k_sigaction * oact)4201 void __weak sigaction_compat_abi(struct k_sigaction *act,
4202 		struct k_sigaction *oact)
4203 {
4204 }
4205 
do_sigaction(int sig,struct k_sigaction * act,struct k_sigaction * oact)4206 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4207 {
4208 	struct task_struct *p = current, *t;
4209 	struct k_sigaction *k;
4210 	sigset_t mask;
4211 
4212 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4213 		return -EINVAL;
4214 
4215 	k = &p->sighand->action[sig-1];
4216 
4217 	spin_lock_irq(&p->sighand->siglock);
4218 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4219 		spin_unlock_irq(&p->sighand->siglock);
4220 		return -EINVAL;
4221 	}
4222 	if (oact)
4223 		*oact = *k;
4224 
4225 	/*
4226 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4227 	 * e.g. by having an architecture use the bit in their uapi.
4228 	 */
4229 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4230 
4231 	/*
4232 	 * Clear unknown flag bits in order to allow userspace to detect missing
4233 	 * support for flag bits and to allow the kernel to use non-uapi bits
4234 	 * internally.
4235 	 */
4236 	if (act)
4237 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4238 	if (oact)
4239 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4240 
4241 	sigaction_compat_abi(act, oact);
4242 
4243 	if (act) {
4244 		sigdelsetmask(&act->sa.sa_mask,
4245 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4246 		*k = *act;
4247 		/*
4248 		 * POSIX 3.3.1.3:
4249 		 *  "Setting a signal action to SIG_IGN for a signal that is
4250 		 *   pending shall cause the pending signal to be discarded,
4251 		 *   whether or not it is blocked."
4252 		 *
4253 		 *  "Setting a signal action to SIG_DFL for a signal that is
4254 		 *   pending and whose default action is to ignore the signal
4255 		 *   (for example, SIGCHLD), shall cause the pending signal to
4256 		 *   be discarded, whether or not it is blocked"
4257 		 */
4258 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4259 			sigemptyset(&mask);
4260 			sigaddset(&mask, sig);
4261 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4262 			for_each_thread(p, t)
4263 				flush_sigqueue_mask(&mask, &t->pending);
4264 		}
4265 	}
4266 
4267 	spin_unlock_irq(&p->sighand->siglock);
4268 	return 0;
4269 }
4270 
4271 #ifdef CONFIG_DYNAMIC_SIGFRAME
sigaltstack_lock(void)4272 static inline void sigaltstack_lock(void)
4273 	__acquires(&current->sighand->siglock)
4274 {
4275 	spin_lock_irq(&current->sighand->siglock);
4276 }
4277 
sigaltstack_unlock(void)4278 static inline void sigaltstack_unlock(void)
4279 	__releases(&current->sighand->siglock)
4280 {
4281 	spin_unlock_irq(&current->sighand->siglock);
4282 }
4283 #else
sigaltstack_lock(void)4284 static inline void sigaltstack_lock(void) { }
sigaltstack_unlock(void)4285 static inline void sigaltstack_unlock(void) { }
4286 #endif
4287 
4288 static int
do_sigaltstack(const stack_t * ss,stack_t * oss,unsigned long sp,size_t min_ss_size)4289 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4290 		size_t min_ss_size)
4291 {
4292 	struct task_struct *t = current;
4293 	int ret = 0;
4294 
4295 	if (oss) {
4296 		memset(oss, 0, sizeof(stack_t));
4297 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4298 		oss->ss_size = t->sas_ss_size;
4299 		oss->ss_flags = sas_ss_flags(sp) |
4300 			(current->sas_ss_flags & SS_FLAG_BITS);
4301 	}
4302 
4303 	if (ss) {
4304 		void __user *ss_sp = ss->ss_sp;
4305 		size_t ss_size = ss->ss_size;
4306 		unsigned ss_flags = ss->ss_flags;
4307 		int ss_mode;
4308 
4309 		if (unlikely(on_sig_stack(sp)))
4310 			return -EPERM;
4311 
4312 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4313 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4314 				ss_mode != 0))
4315 			return -EINVAL;
4316 
4317 		/*
4318 		 * Return before taking any locks if no actual
4319 		 * sigaltstack changes were requested.
4320 		 */
4321 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4322 		    t->sas_ss_size == ss_size &&
4323 		    t->sas_ss_flags == ss_flags)
4324 			return 0;
4325 
4326 		sigaltstack_lock();
4327 		if (ss_mode == SS_DISABLE) {
4328 			ss_size = 0;
4329 			ss_sp = NULL;
4330 		} else {
4331 			if (unlikely(ss_size < min_ss_size))
4332 				ret = -ENOMEM;
4333 			if (!sigaltstack_size_valid(ss_size))
4334 				ret = -ENOMEM;
4335 		}
4336 		if (!ret) {
4337 			t->sas_ss_sp = (unsigned long) ss_sp;
4338 			t->sas_ss_size = ss_size;
4339 			t->sas_ss_flags = ss_flags;
4340 		}
4341 		sigaltstack_unlock();
4342 	}
4343 	return ret;
4344 }
4345 
SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss,stack_t __user *,uoss)4346 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4347 {
4348 	stack_t new, old;
4349 	int err;
4350 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4351 		return -EFAULT;
4352 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4353 			      current_user_stack_pointer(),
4354 			      MINSIGSTKSZ);
4355 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4356 		err = -EFAULT;
4357 	return err;
4358 }
4359 
restore_altstack(const stack_t __user * uss)4360 int restore_altstack(const stack_t __user *uss)
4361 {
4362 	stack_t new;
4363 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4364 		return -EFAULT;
4365 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4366 			     MINSIGSTKSZ);
4367 	/* squash all but EFAULT for now */
4368 	return 0;
4369 }
4370 
__save_altstack(stack_t __user * uss,unsigned long sp)4371 int __save_altstack(stack_t __user *uss, unsigned long sp)
4372 {
4373 	struct task_struct *t = current;
4374 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4375 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4376 		__put_user(t->sas_ss_size, &uss->ss_size);
4377 	return err;
4378 }
4379 
4380 #ifdef CONFIG_COMPAT
do_compat_sigaltstack(const compat_stack_t __user * uss_ptr,compat_stack_t __user * uoss_ptr)4381 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4382 				 compat_stack_t __user *uoss_ptr)
4383 {
4384 	stack_t uss, uoss;
4385 	int ret;
4386 
4387 	if (uss_ptr) {
4388 		compat_stack_t uss32;
4389 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4390 			return -EFAULT;
4391 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4392 		uss.ss_flags = uss32.ss_flags;
4393 		uss.ss_size = uss32.ss_size;
4394 	}
4395 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4396 			     compat_user_stack_pointer(),
4397 			     COMPAT_MINSIGSTKSZ);
4398 	if (ret >= 0 && uoss_ptr)  {
4399 		compat_stack_t old;
4400 		memset(&old, 0, sizeof(old));
4401 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4402 		old.ss_flags = uoss.ss_flags;
4403 		old.ss_size = uoss.ss_size;
4404 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4405 			ret = -EFAULT;
4406 	}
4407 	return ret;
4408 }
4409 
COMPAT_SYSCALL_DEFINE2(sigaltstack,const compat_stack_t __user *,uss_ptr,compat_stack_t __user *,uoss_ptr)4410 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4411 			const compat_stack_t __user *, uss_ptr,
4412 			compat_stack_t __user *, uoss_ptr)
4413 {
4414 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4415 }
4416 
compat_restore_altstack(const compat_stack_t __user * uss)4417 int compat_restore_altstack(const compat_stack_t __user *uss)
4418 {
4419 	int err = do_compat_sigaltstack(uss, NULL);
4420 	/* squash all but -EFAULT for now */
4421 	return err == -EFAULT ? err : 0;
4422 }
4423 
__compat_save_altstack(compat_stack_t __user * uss,unsigned long sp)4424 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4425 {
4426 	int err;
4427 	struct task_struct *t = current;
4428 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4429 			 &uss->ss_sp) |
4430 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4431 		__put_user(t->sas_ss_size, &uss->ss_size);
4432 	return err;
4433 }
4434 #endif
4435 
4436 #ifdef __ARCH_WANT_SYS_SIGPENDING
4437 
4438 /**
4439  *  sys_sigpending - examine pending signals
4440  *  @uset: where mask of pending signal is returned
4441  */
SYSCALL_DEFINE1(sigpending,old_sigset_t __user *,uset)4442 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4443 {
4444 	sigset_t set;
4445 
4446 	if (sizeof(old_sigset_t) > sizeof(*uset))
4447 		return -EINVAL;
4448 
4449 	do_sigpending(&set);
4450 
4451 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4452 		return -EFAULT;
4453 
4454 	return 0;
4455 }
4456 
4457 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE1(sigpending,compat_old_sigset_t __user *,set32)4458 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4459 {
4460 	sigset_t set;
4461 
4462 	do_sigpending(&set);
4463 
4464 	return put_user(set.sig[0], set32);
4465 }
4466 #endif
4467 
4468 #endif
4469 
4470 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4471 /**
4472  *  sys_sigprocmask - examine and change blocked signals
4473  *  @how: whether to add, remove, or set signals
4474  *  @nset: signals to add or remove (if non-null)
4475  *  @oset: previous value of signal mask if non-null
4476  *
4477  * Some platforms have their own version with special arguments;
4478  * others support only sys_rt_sigprocmask.
4479  */
4480 
SYSCALL_DEFINE3(sigprocmask,int,how,old_sigset_t __user *,nset,old_sigset_t __user *,oset)4481 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4482 		old_sigset_t __user *, oset)
4483 {
4484 	old_sigset_t old_set, new_set;
4485 	sigset_t new_blocked;
4486 
4487 	old_set = current->blocked.sig[0];
4488 
4489 	if (nset) {
4490 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4491 			return -EFAULT;
4492 
4493 		new_blocked = current->blocked;
4494 
4495 		switch (how) {
4496 		case SIG_BLOCK:
4497 			sigaddsetmask(&new_blocked, new_set);
4498 			break;
4499 		case SIG_UNBLOCK:
4500 			sigdelsetmask(&new_blocked, new_set);
4501 			break;
4502 		case SIG_SETMASK:
4503 			new_blocked.sig[0] = new_set;
4504 			break;
4505 		default:
4506 			return -EINVAL;
4507 		}
4508 
4509 		set_current_blocked(&new_blocked);
4510 	}
4511 
4512 	if (oset) {
4513 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4514 			return -EFAULT;
4515 	}
4516 
4517 	return 0;
4518 }
4519 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4520 
4521 #ifndef CONFIG_ODD_RT_SIGACTION
4522 /**
4523  *  sys_rt_sigaction - alter an action taken by a process
4524  *  @sig: signal to be sent
4525  *  @act: new sigaction
4526  *  @oact: used to save the previous sigaction
4527  *  @sigsetsize: size of sigset_t type
4528  */
SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct sigaction __user *,act,struct sigaction __user *,oact,size_t,sigsetsize)4529 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4530 		const struct sigaction __user *, act,
4531 		struct sigaction __user *, oact,
4532 		size_t, sigsetsize)
4533 {
4534 	struct k_sigaction new_sa, old_sa;
4535 	int ret;
4536 
4537 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4538 	if (sigsetsize != sizeof(sigset_t))
4539 		return -EINVAL;
4540 
4541 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4542 		return -EFAULT;
4543 
4544 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4545 	if (ret)
4546 		return ret;
4547 
4548 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4549 		return -EFAULT;
4550 
4551 	return 0;
4552 }
4553 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct compat_sigaction __user *,act,struct compat_sigaction __user *,oact,compat_size_t,sigsetsize)4554 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4555 		const struct compat_sigaction __user *, act,
4556 		struct compat_sigaction __user *, oact,
4557 		compat_size_t, sigsetsize)
4558 {
4559 	struct k_sigaction new_ka, old_ka;
4560 #ifdef __ARCH_HAS_SA_RESTORER
4561 	compat_uptr_t restorer;
4562 #endif
4563 	int ret;
4564 
4565 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4566 	if (sigsetsize != sizeof(compat_sigset_t))
4567 		return -EINVAL;
4568 
4569 	if (act) {
4570 		compat_uptr_t handler;
4571 		ret = get_user(handler, &act->sa_handler);
4572 		new_ka.sa.sa_handler = compat_ptr(handler);
4573 #ifdef __ARCH_HAS_SA_RESTORER
4574 		ret |= get_user(restorer, &act->sa_restorer);
4575 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4576 #endif
4577 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4578 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4579 		if (ret)
4580 			return -EFAULT;
4581 	}
4582 
4583 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4584 	if (!ret && oact) {
4585 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4586 			       &oact->sa_handler);
4587 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4588 					 sizeof(oact->sa_mask));
4589 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4590 #ifdef __ARCH_HAS_SA_RESTORER
4591 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4592 				&oact->sa_restorer);
4593 #endif
4594 	}
4595 	return ret;
4596 }
4597 #endif
4598 #endif /* !CONFIG_ODD_RT_SIGACTION */
4599 
4600 #ifdef CONFIG_OLD_SIGACTION
SYSCALL_DEFINE3(sigaction,int,sig,const struct old_sigaction __user *,act,struct old_sigaction __user *,oact)4601 SYSCALL_DEFINE3(sigaction, int, sig,
4602 		const struct old_sigaction __user *, act,
4603 	        struct old_sigaction __user *, oact)
4604 {
4605 	struct k_sigaction new_ka, old_ka;
4606 	int ret;
4607 
4608 	if (act) {
4609 		old_sigset_t mask;
4610 		if (!access_ok(act, sizeof(*act)) ||
4611 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4612 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4613 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4614 		    __get_user(mask, &act->sa_mask))
4615 			return -EFAULT;
4616 #ifdef __ARCH_HAS_KA_RESTORER
4617 		new_ka.ka_restorer = NULL;
4618 #endif
4619 		siginitset(&new_ka.sa.sa_mask, mask);
4620 	}
4621 
4622 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4623 
4624 	if (!ret && oact) {
4625 		if (!access_ok(oact, sizeof(*oact)) ||
4626 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4627 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4628 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4629 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4630 			return -EFAULT;
4631 	}
4632 
4633 	return ret;
4634 }
4635 #endif
4636 #ifdef CONFIG_COMPAT_OLD_SIGACTION
COMPAT_SYSCALL_DEFINE3(sigaction,int,sig,const struct compat_old_sigaction __user *,act,struct compat_old_sigaction __user *,oact)4637 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4638 		const struct compat_old_sigaction __user *, act,
4639 	        struct compat_old_sigaction __user *, oact)
4640 {
4641 	struct k_sigaction new_ka, old_ka;
4642 	int ret;
4643 	compat_old_sigset_t mask;
4644 	compat_uptr_t handler, restorer;
4645 
4646 	if (act) {
4647 		if (!access_ok(act, sizeof(*act)) ||
4648 		    __get_user(handler, &act->sa_handler) ||
4649 		    __get_user(restorer, &act->sa_restorer) ||
4650 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4651 		    __get_user(mask, &act->sa_mask))
4652 			return -EFAULT;
4653 
4654 #ifdef __ARCH_HAS_KA_RESTORER
4655 		new_ka.ka_restorer = NULL;
4656 #endif
4657 		new_ka.sa.sa_handler = compat_ptr(handler);
4658 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4659 		siginitset(&new_ka.sa.sa_mask, mask);
4660 	}
4661 
4662 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4663 
4664 	if (!ret && oact) {
4665 		if (!access_ok(oact, sizeof(*oact)) ||
4666 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4667 			       &oact->sa_handler) ||
4668 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4669 			       &oact->sa_restorer) ||
4670 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4671 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4672 			return -EFAULT;
4673 	}
4674 	return ret;
4675 }
4676 #endif
4677 
4678 #ifdef CONFIG_SGETMASK_SYSCALL
4679 
4680 /*
4681  * For backwards compatibility.  Functionality superseded by sigprocmask.
4682  */
SYSCALL_DEFINE0(sgetmask)4683 SYSCALL_DEFINE0(sgetmask)
4684 {
4685 	/* SMP safe */
4686 	return current->blocked.sig[0];
4687 }
4688 
SYSCALL_DEFINE1(ssetmask,int,newmask)4689 SYSCALL_DEFINE1(ssetmask, int, newmask)
4690 {
4691 	int old = current->blocked.sig[0];
4692 	sigset_t newset;
4693 
4694 	siginitset(&newset, newmask);
4695 	set_current_blocked(&newset);
4696 
4697 	return old;
4698 }
4699 #endif /* CONFIG_SGETMASK_SYSCALL */
4700 
4701 #ifdef __ARCH_WANT_SYS_SIGNAL
4702 /*
4703  * For backwards compatibility.  Functionality superseded by sigaction.
4704  */
SYSCALL_DEFINE2(signal,int,sig,__sighandler_t,handler)4705 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4706 {
4707 	struct k_sigaction new_sa, old_sa;
4708 	int ret;
4709 
4710 	new_sa.sa.sa_handler = handler;
4711 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4712 	sigemptyset(&new_sa.sa.sa_mask);
4713 
4714 	ret = do_sigaction(sig, &new_sa, &old_sa);
4715 
4716 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4717 }
4718 #endif /* __ARCH_WANT_SYS_SIGNAL */
4719 
4720 #ifdef __ARCH_WANT_SYS_PAUSE
4721 
SYSCALL_DEFINE0(pause)4722 SYSCALL_DEFINE0(pause)
4723 {
4724 	while (!signal_pending(current)) {
4725 		__set_current_state(TASK_INTERRUPTIBLE);
4726 		schedule();
4727 	}
4728 	return -ERESTARTNOHAND;
4729 }
4730 
4731 #endif
4732 
sigsuspend(sigset_t * set)4733 static int sigsuspend(sigset_t *set)
4734 {
4735 	current->saved_sigmask = current->blocked;
4736 	set_current_blocked(set);
4737 
4738 	while (!signal_pending(current)) {
4739 		__set_current_state(TASK_INTERRUPTIBLE);
4740 		schedule();
4741 	}
4742 	set_restore_sigmask();
4743 	return -ERESTARTNOHAND;
4744 }
4745 
4746 /**
4747  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4748  *	@unewset value until a signal is received
4749  *  @unewset: new signal mask value
4750  *  @sigsetsize: size of sigset_t type
4751  */
SYSCALL_DEFINE2(rt_sigsuspend,sigset_t __user *,unewset,size_t,sigsetsize)4752 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4753 {
4754 	sigset_t newset;
4755 
4756 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4757 	if (sigsetsize != sizeof(sigset_t))
4758 		return -EINVAL;
4759 
4760 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4761 		return -EFAULT;
4762 	return sigsuspend(&newset);
4763 }
4764 
4765 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigsuspend,compat_sigset_t __user *,unewset,compat_size_t,sigsetsize)4766 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4767 {
4768 	sigset_t newset;
4769 
4770 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4771 	if (sigsetsize != sizeof(sigset_t))
4772 		return -EINVAL;
4773 
4774 	if (get_compat_sigset(&newset, unewset))
4775 		return -EFAULT;
4776 	return sigsuspend(&newset);
4777 }
4778 #endif
4779 
4780 #ifdef CONFIG_OLD_SIGSUSPEND
SYSCALL_DEFINE1(sigsuspend,old_sigset_t,mask)4781 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4782 {
4783 	sigset_t blocked;
4784 	siginitset(&blocked, mask);
4785 	return sigsuspend(&blocked);
4786 }
4787 #endif
4788 #ifdef CONFIG_OLD_SIGSUSPEND3
SYSCALL_DEFINE3(sigsuspend,int,unused1,int,unused2,old_sigset_t,mask)4789 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4790 {
4791 	sigset_t blocked;
4792 	siginitset(&blocked, mask);
4793 	return sigsuspend(&blocked);
4794 }
4795 #endif
4796 
arch_vma_name(struct vm_area_struct * vma)4797 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4798 {
4799 	return NULL;
4800 }
4801 EXPORT_SYMBOL_GPL(arch_vma_name);
4802 
siginfo_buildtime_checks(void)4803 static inline void siginfo_buildtime_checks(void)
4804 {
4805 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4806 
4807 	/* Verify the offsets in the two siginfos match */
4808 #define CHECK_OFFSET(field) \
4809 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4810 
4811 	/* kill */
4812 	CHECK_OFFSET(si_pid);
4813 	CHECK_OFFSET(si_uid);
4814 
4815 	/* timer */
4816 	CHECK_OFFSET(si_tid);
4817 	CHECK_OFFSET(si_overrun);
4818 	CHECK_OFFSET(si_value);
4819 
4820 	/* rt */
4821 	CHECK_OFFSET(si_pid);
4822 	CHECK_OFFSET(si_uid);
4823 	CHECK_OFFSET(si_value);
4824 
4825 	/* sigchld */
4826 	CHECK_OFFSET(si_pid);
4827 	CHECK_OFFSET(si_uid);
4828 	CHECK_OFFSET(si_status);
4829 	CHECK_OFFSET(si_utime);
4830 	CHECK_OFFSET(si_stime);
4831 
4832 	/* sigfault */
4833 	CHECK_OFFSET(si_addr);
4834 	CHECK_OFFSET(si_trapno);
4835 	CHECK_OFFSET(si_addr_lsb);
4836 	CHECK_OFFSET(si_lower);
4837 	CHECK_OFFSET(si_upper);
4838 	CHECK_OFFSET(si_pkey);
4839 	CHECK_OFFSET(si_perf_data);
4840 	CHECK_OFFSET(si_perf_type);
4841 	CHECK_OFFSET(si_perf_flags);
4842 
4843 	/* sigpoll */
4844 	CHECK_OFFSET(si_band);
4845 	CHECK_OFFSET(si_fd);
4846 
4847 	/* sigsys */
4848 	CHECK_OFFSET(si_call_addr);
4849 	CHECK_OFFSET(si_syscall);
4850 	CHECK_OFFSET(si_arch);
4851 #undef CHECK_OFFSET
4852 
4853 	/* usb asyncio */
4854 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4855 		     offsetof(struct siginfo, si_addr));
4856 	if (sizeof(int) == sizeof(void __user *)) {
4857 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4858 			     sizeof(void __user *));
4859 	} else {
4860 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4861 			      sizeof_field(struct siginfo, si_uid)) !=
4862 			     sizeof(void __user *));
4863 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4864 			     offsetof(struct siginfo, si_uid));
4865 	}
4866 #ifdef CONFIG_COMPAT
4867 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4868 		     offsetof(struct compat_siginfo, si_addr));
4869 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4870 		     sizeof(compat_uptr_t));
4871 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4872 		     sizeof_field(struct siginfo, si_pid));
4873 #endif
4874 }
4875 
4876 #if defined(CONFIG_SYSCTL)
4877 static struct ctl_table signal_debug_table[] = {
4878 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4879 	{
4880 		.procname	= "exception-trace",
4881 		.data		= &show_unhandled_signals,
4882 		.maxlen		= sizeof(int),
4883 		.mode		= 0644,
4884 		.proc_handler	= proc_dointvec
4885 	},
4886 #endif
4887 };
4888 
init_signal_sysctls(void)4889 static int __init init_signal_sysctls(void)
4890 {
4891 	register_sysctl_init("debug", signal_debug_table);
4892 	return 0;
4893 }
4894 early_initcall(init_signal_sysctls);
4895 #endif /* CONFIG_SYSCTL */
4896 
signals_init(void)4897 void __init signals_init(void)
4898 {
4899 	siginfo_buildtime_checks();
4900 
4901 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4902 }
4903 
4904 #ifdef CONFIG_KGDB_KDB
4905 #include <linux/kdb.h>
4906 /*
4907  * kdb_send_sig - Allows kdb to send signals without exposing
4908  * signal internals.  This function checks if the required locks are
4909  * available before calling the main signal code, to avoid kdb
4910  * deadlocks.
4911  */
kdb_send_sig(struct task_struct * t,int sig)4912 void kdb_send_sig(struct task_struct *t, int sig)
4913 {
4914 	static struct task_struct *kdb_prev_t;
4915 	int new_t, ret;
4916 	if (!spin_trylock(&t->sighand->siglock)) {
4917 		kdb_printf("Can't do kill command now.\n"
4918 			   "The sigmask lock is held somewhere else in "
4919 			   "kernel, try again later\n");
4920 		return;
4921 	}
4922 	new_t = kdb_prev_t != t;
4923 	kdb_prev_t = t;
4924 	if (!task_is_running(t) && new_t) {
4925 		spin_unlock(&t->sighand->siglock);
4926 		kdb_printf("Process is not RUNNING, sending a signal from "
4927 			   "kdb risks deadlock\n"
4928 			   "on the run queue locks. "
4929 			   "The signal has _not_ been sent.\n"
4930 			   "Reissue the kill command if you want to risk "
4931 			   "the deadlock.\n");
4932 		return;
4933 	}
4934 	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4935 	spin_unlock(&t->sighand->siglock);
4936 	if (ret)
4937 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4938 			   sig, t->pid);
4939 	else
4940 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4941 }
4942 #endif	/* CONFIG_KGDB_KDB */
4943