1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * x86 SMP booting functions
4 *
5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7 * Copyright 2001 Andi Kleen, SuSE Labs.
8 *
9 * Much of the core SMP work is based on previous work by Thomas Radke, to
10 * whom a great many thanks are extended.
11 *
12 * Thanks to Intel for making available several different Pentium,
13 * Pentium Pro and Pentium-II/Xeon MP machines.
14 * Original development of Linux SMP code supported by Caldera.
15 *
16 * Fixes
17 * Felix Koop : NR_CPUS used properly
18 * Jose Renau : Handle single CPU case.
19 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
20 * Greg Wright : Fix for kernel stacks panic.
21 * Erich Boleyn : MP v1.4 and additional changes.
22 * Matthias Sattler : Changes for 2.1 kernel map.
23 * Michel Lespinasse : Changes for 2.1 kernel map.
24 * Michael Chastain : Change trampoline.S to gnu as.
25 * Alan Cox : Dumb bug: 'B' step PPro's are fine
26 * Ingo Molnar : Added APIC timers, based on code
27 * from Jose Renau
28 * Ingo Molnar : various cleanups and rewrites
29 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
30 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
31 * Andi Kleen : Changed for SMP boot into long mode.
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
35 * Andi Kleen : Converted to new state machine.
36 * Ashok Raj : CPU hotplug support
37 * Glauber Costa : i386 and x86_64 integration
38 */
39
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/kexec.h>
57 #include <linux/numa.h>
58 #include <linux/pgtable.h>
59 #include <linux/overflow.h>
60 #include <linux/stackprotector.h>
61 #include <linux/cpuhotplug.h>
62 #include <linux/mc146818rtc.h>
63 #include <linux/acpi.h>
64
65 #include <asm/acpi.h>
66 #include <asm/cacheinfo.h>
67 #include <asm/desc.h>
68 #include <asm/nmi.h>
69 #include <asm/irq.h>
70 #include <asm/realmode.h>
71 #include <asm/cpu.h>
72 #include <asm/numa.h>
73 #include <asm/tlbflush.h>
74 #include <asm/mtrr.h>
75 #include <asm/mwait.h>
76 #include <asm/apic.h>
77 #include <asm/io_apic.h>
78 #include <asm/fpu/api.h>
79 #include <asm/setup.h>
80 #include <asm/uv/uv.h>
81 #include <asm/microcode.h>
82 #include <asm/i8259.h>
83 #include <asm/misc.h>
84 #include <asm/qspinlock.h>
85 #include <asm/intel-family.h>
86 #include <asm/cpu_device_id.h>
87 #include <asm/spec-ctrl.h>
88 #include <asm/hw_irq.h>
89 #include <asm/stackprotector.h>
90 #include <asm/sev.h>
91 #include <asm/spec-ctrl.h>
92
93 /* representing HT siblings of each logical CPU */
94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
95 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
96
97 /* representing HT and core siblings of each logical CPU */
98 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
99 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
100
101 /* representing HT, core, and die siblings of each logical CPU */
102 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
103 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
104
105 /* CPUs which are the primary SMT threads */
106 struct cpumask __cpu_primary_thread_mask __read_mostly;
107
108 /* Representing CPUs for which sibling maps can be computed */
109 static cpumask_var_t cpu_sibling_setup_mask;
110
111 struct mwait_cpu_dead {
112 unsigned int control;
113 unsigned int status;
114 };
115
116 #define CPUDEAD_MWAIT_WAIT 0xDEADBEEF
117 #define CPUDEAD_MWAIT_KEXEC_HLT 0x4A17DEAD
118
119 /*
120 * Cache line aligned data for mwait_play_dead(). Separate on purpose so
121 * that it's unlikely to be touched by other CPUs.
122 */
123 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
124
125 /* Maximum number of SMT threads on any online core */
126 int __read_mostly __max_smt_threads = 1;
127
128 /* Flag to indicate if a complete sched domain rebuild is required */
129 bool x86_topology_update;
130
arch_update_cpu_topology(void)131 int arch_update_cpu_topology(void)
132 {
133 int retval = x86_topology_update;
134
135 x86_topology_update = false;
136 return retval;
137 }
138
139 static unsigned int smpboot_warm_reset_vector_count;
140
smpboot_setup_warm_reset_vector(unsigned long start_eip)141 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
142 {
143 unsigned long flags;
144
145 spin_lock_irqsave(&rtc_lock, flags);
146 if (!smpboot_warm_reset_vector_count++) {
147 CMOS_WRITE(0xa, 0xf);
148 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
149 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
150 }
151 spin_unlock_irqrestore(&rtc_lock, flags);
152 }
153
smpboot_restore_warm_reset_vector(void)154 static inline void smpboot_restore_warm_reset_vector(void)
155 {
156 unsigned long flags;
157
158 /*
159 * Paranoid: Set warm reset code and vector here back
160 * to default values.
161 */
162 spin_lock_irqsave(&rtc_lock, flags);
163 if (!--smpboot_warm_reset_vector_count) {
164 CMOS_WRITE(0, 0xf);
165 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
166 }
167 spin_unlock_irqrestore(&rtc_lock, flags);
168
169 }
170
171 /* Run the next set of setup steps for the upcoming CPU */
ap_starting(void)172 static void ap_starting(void)
173 {
174 int cpuid = smp_processor_id();
175
176 /* Mop up eventual mwait_play_dead() wreckage */
177 this_cpu_write(mwait_cpu_dead.status, 0);
178 this_cpu_write(mwait_cpu_dead.control, 0);
179
180 /*
181 * If woken up by an INIT in an 82489DX configuration the alive
182 * synchronization guarantees that the CPU does not reach this
183 * point before an INIT_deassert IPI reaches the local APIC, so it
184 * is now safe to touch the local APIC.
185 *
186 * Set up this CPU, first the APIC, which is probably redundant on
187 * most boards.
188 */
189 apic_ap_setup();
190
191 /* Save the processor parameters. */
192 smp_store_cpu_info(cpuid);
193
194 /*
195 * The topology information must be up to date before
196 * notify_cpu_starting().
197 */
198 set_cpu_sibling_map(cpuid);
199
200 ap_init_aperfmperf();
201
202 pr_debug("Stack at about %p\n", &cpuid);
203
204 wmb();
205
206 /*
207 * This runs the AP through all the cpuhp states to its target
208 * state CPUHP_ONLINE.
209 */
210 notify_cpu_starting(cpuid);
211 }
212
ap_calibrate_delay(void)213 static void ap_calibrate_delay(void)
214 {
215 /*
216 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
217 * smp_store_cpu_info() stored a value that is close but not as
218 * accurate as the value just calculated.
219 *
220 * As this is invoked after the TSC synchronization check,
221 * calibrate_delay_is_known() will skip the calibration routine
222 * when TSC is synchronized across sockets.
223 */
224 calibrate_delay();
225 cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
226 }
227
228 /*
229 * Activate a secondary processor.
230 */
start_secondary(void * unused)231 static void notrace start_secondary(void *unused)
232 {
233 /*
234 * Don't put *anything* except direct CPU state initialization
235 * before cpu_init(), SMP booting is too fragile that we want to
236 * limit the things done here to the most necessary things.
237 */
238 cr4_init();
239
240 /*
241 * 32-bit specific. 64-bit reaches this code with the correct page
242 * table established. Yet another historical divergence.
243 */
244 if (IS_ENABLED(CONFIG_X86_32)) {
245 /* switch away from the initial page table */
246 load_cr3(swapper_pg_dir);
247 __flush_tlb_all();
248 }
249
250 cpu_init_exception_handling(false);
251
252 /*
253 * Load the microcode before reaching the AP alive synchronization
254 * point below so it is not part of the full per CPU serialized
255 * bringup part when "parallel" bringup is enabled.
256 *
257 * That's even safe when hyperthreading is enabled in the CPU as
258 * the core code starts the primary threads first and leaves the
259 * secondary threads waiting for SIPI. Loading microcode on
260 * physical cores concurrently is a safe operation.
261 *
262 * This covers both the Intel specific issue that concurrent
263 * microcode loading on SMT siblings must be prohibited and the
264 * vendor independent issue`that microcode loading which changes
265 * CPUID, MSRs etc. must be strictly serialized to maintain
266 * software state correctness.
267 */
268 load_ucode_ap();
269
270 /*
271 * Synchronization point with the hotplug core. Sets this CPUs
272 * synchronization state to ALIVE and spin-waits for the control CPU to
273 * release this CPU for further bringup.
274 */
275 cpuhp_ap_sync_alive();
276
277 cpu_init();
278 fpu__init_cpu();
279 rcutree_report_cpu_starting(raw_smp_processor_id());
280 x86_cpuinit.early_percpu_clock_init();
281
282 ap_starting();
283
284 /* Check TSC synchronization with the control CPU. */
285 check_tsc_sync_target();
286
287 /*
288 * Calibrate the delay loop after the TSC synchronization check.
289 * This allows to skip the calibration when TSC is synchronized
290 * across sockets.
291 */
292 ap_calibrate_delay();
293
294 speculative_store_bypass_ht_init();
295
296 /*
297 * Lock vector_lock, set CPU online and bring the vector
298 * allocator online. Online must be set with vector_lock held
299 * to prevent a concurrent irq setup/teardown from seeing a
300 * half valid vector space.
301 */
302 lock_vector_lock();
303 set_cpu_online(smp_processor_id(), true);
304 lapic_online();
305 unlock_vector_lock();
306 x86_platform.nmi_init();
307
308 /* enable local interrupts */
309 local_irq_enable();
310
311 x86_cpuinit.setup_percpu_clockev();
312
313 wmb();
314 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
315 }
316
317 /*
318 * The bootstrap kernel entry code has set these up. Save them for
319 * a given CPU
320 */
smp_store_cpu_info(int id)321 void smp_store_cpu_info(int id)
322 {
323 struct cpuinfo_x86 *c = &cpu_data(id);
324
325 /* Copy boot_cpu_data only on the first bringup */
326 if (!c->initialized)
327 *c = boot_cpu_data;
328 c->cpu_index = id;
329 /*
330 * During boot time, CPU0 has this setup already. Save the info when
331 * bringing up an AP.
332 */
333 identify_secondary_cpu(c);
334 c->initialized = true;
335 }
336
337 static bool
topology_same_node(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)338 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
339 {
340 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
341
342 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
343 }
344
345 static bool
topology_sane(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o,const char * name)346 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
347 {
348 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
349
350 return !WARN_ONCE(!topology_same_node(c, o),
351 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
352 "[node: %d != %d]. Ignoring dependency.\n",
353 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
354 }
355
356 #define link_mask(mfunc, c1, c2) \
357 do { \
358 cpumask_set_cpu((c1), mfunc(c2)); \
359 cpumask_set_cpu((c2), mfunc(c1)); \
360 } while (0)
361
match_smt(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)362 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
363 {
364 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
365 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
366
367 if (c->topo.pkg_id == o->topo.pkg_id &&
368 c->topo.die_id == o->topo.die_id &&
369 c->topo.amd_node_id == o->topo.amd_node_id &&
370 per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) {
371 if (c->topo.core_id == o->topo.core_id)
372 return topology_sane(c, o, "smt");
373
374 if ((c->topo.cu_id != 0xff) &&
375 (o->topo.cu_id != 0xff) &&
376 (c->topo.cu_id == o->topo.cu_id))
377 return topology_sane(c, o, "smt");
378 }
379
380 } else if (c->topo.pkg_id == o->topo.pkg_id &&
381 c->topo.die_id == o->topo.die_id &&
382 c->topo.core_id == o->topo.core_id) {
383 return topology_sane(c, o, "smt");
384 }
385
386 return false;
387 }
388
match_die(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)389 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
390 {
391 if (c->topo.pkg_id != o->topo.pkg_id || c->topo.die_id != o->topo.die_id)
392 return false;
393
394 if (cpu_feature_enabled(X86_FEATURE_TOPOEXT) && topology_amd_nodes_per_pkg() > 1)
395 return c->topo.amd_node_id == o->topo.amd_node_id;
396
397 return true;
398 }
399
match_l2c(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)400 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
401 {
402 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
403
404 /* If the arch didn't set up l2c_id, fall back to SMT */
405 if (per_cpu_l2c_id(cpu1) == BAD_APICID)
406 return match_smt(c, o);
407
408 /* Do not match if L2 cache id does not match: */
409 if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2))
410 return false;
411
412 return topology_sane(c, o, "l2c");
413 }
414
415 /*
416 * Unlike the other levels, we do not enforce keeping a
417 * multicore group inside a NUMA node. If this happens, we will
418 * discard the MC level of the topology later.
419 */
match_pkg(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)420 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
421 {
422 if (c->topo.pkg_id == o->topo.pkg_id)
423 return true;
424 return false;
425 }
426
427 /*
428 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
429 *
430 * Any Intel CPU that has multiple nodes per package and does not
431 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
432 *
433 * When in SNC mode, these CPUs enumerate an LLC that is shared
434 * by multiple NUMA nodes. The LLC is shared for off-package data
435 * access but private to the NUMA node (half of the package) for
436 * on-package access. CPUID (the source of the information about
437 * the LLC) can only enumerate the cache as shared or unshared,
438 * but not this particular configuration.
439 */
440
441 static const struct x86_cpu_id intel_cod_cpu[] = {
442 X86_MATCH_VFM(INTEL_HASWELL_X, 0), /* COD */
443 X86_MATCH_VFM(INTEL_BROADWELL_X, 0), /* COD */
444 X86_MATCH_VFM(INTEL_ANY, 1), /* SNC */
445 {}
446 };
447
match_llc(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)448 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
449 {
450 const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
451 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
452 bool intel_snc = id && id->driver_data;
453
454 /* Do not match if we do not have a valid APICID for cpu: */
455 if (per_cpu_llc_id(cpu1) == BAD_APICID)
456 return false;
457
458 /* Do not match if LLC id does not match: */
459 if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2))
460 return false;
461
462 /*
463 * Allow the SNC topology without warning. Return of false
464 * means 'c' does not share the LLC of 'o'. This will be
465 * reflected to userspace.
466 */
467 if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
468 return false;
469
470 return topology_sane(c, o, "llc");
471 }
472
473
x86_sched_itmt_flags(void)474 static inline int x86_sched_itmt_flags(void)
475 {
476 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
477 }
478
479 #ifdef CONFIG_SCHED_MC
x86_core_flags(void)480 static int x86_core_flags(void)
481 {
482 return cpu_core_flags() | x86_sched_itmt_flags();
483 }
484 #endif
485 #ifdef CONFIG_SCHED_SMT
x86_smt_flags(void)486 static int x86_smt_flags(void)
487 {
488 return cpu_smt_flags();
489 }
490 #endif
491 #ifdef CONFIG_SCHED_CLUSTER
x86_cluster_flags(void)492 static int x86_cluster_flags(void)
493 {
494 return cpu_cluster_flags() | x86_sched_itmt_flags();
495 }
496 #endif
497
498 /*
499 * Set if a package/die has multiple NUMA nodes inside.
500 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
501 * Sub-NUMA Clustering have this.
502 */
503 static bool x86_has_numa_in_package;
504
505 static struct sched_domain_topology_level x86_topology[6];
506
build_sched_topology(void)507 static void __init build_sched_topology(void)
508 {
509 int i = 0;
510
511 #ifdef CONFIG_SCHED_SMT
512 x86_topology[i++] = (struct sched_domain_topology_level){
513 cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
514 };
515 #endif
516 #ifdef CONFIG_SCHED_CLUSTER
517 x86_topology[i++] = (struct sched_domain_topology_level){
518 cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
519 };
520 #endif
521 #ifdef CONFIG_SCHED_MC
522 x86_topology[i++] = (struct sched_domain_topology_level){
523 cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
524 };
525 #endif
526 /*
527 * When there is NUMA topology inside the package skip the PKG domain
528 * since the NUMA domains will auto-magically create the right spanning
529 * domains based on the SLIT.
530 */
531 if (!x86_has_numa_in_package) {
532 x86_topology[i++] = (struct sched_domain_topology_level){
533 cpu_cpu_mask, x86_sched_itmt_flags, SD_INIT_NAME(PKG)
534 };
535 }
536
537 /*
538 * There must be one trailing NULL entry left.
539 */
540 BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
541
542 set_sched_topology(x86_topology);
543 }
544
set_cpu_sibling_map(int cpu)545 void set_cpu_sibling_map(int cpu)
546 {
547 bool has_smt = __max_threads_per_core > 1;
548 bool has_mp = has_smt || topology_num_cores_per_package() > 1;
549 struct cpuinfo_x86 *c = &cpu_data(cpu);
550 struct cpuinfo_x86 *o;
551 int i, threads;
552
553 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
554
555 if (!has_mp) {
556 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
557 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
558 cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
559 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
560 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
561 c->booted_cores = 1;
562 return;
563 }
564
565 for_each_cpu(i, cpu_sibling_setup_mask) {
566 o = &cpu_data(i);
567
568 if (match_pkg(c, o) && !topology_same_node(c, o))
569 x86_has_numa_in_package = true;
570
571 if ((i == cpu) || (has_smt && match_smt(c, o)))
572 link_mask(topology_sibling_cpumask, cpu, i);
573
574 if ((i == cpu) || (has_mp && match_llc(c, o)))
575 link_mask(cpu_llc_shared_mask, cpu, i);
576
577 if ((i == cpu) || (has_mp && match_l2c(c, o)))
578 link_mask(cpu_l2c_shared_mask, cpu, i);
579
580 if ((i == cpu) || (has_mp && match_die(c, o)))
581 link_mask(topology_die_cpumask, cpu, i);
582 }
583
584 threads = cpumask_weight(topology_sibling_cpumask(cpu));
585 if (threads > __max_smt_threads)
586 __max_smt_threads = threads;
587
588 for_each_cpu(i, topology_sibling_cpumask(cpu))
589 cpu_data(i).smt_active = threads > 1;
590
591 /*
592 * This needs a separate iteration over the cpus because we rely on all
593 * topology_sibling_cpumask links to be set-up.
594 */
595 for_each_cpu(i, cpu_sibling_setup_mask) {
596 o = &cpu_data(i);
597
598 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
599 link_mask(topology_core_cpumask, cpu, i);
600
601 /*
602 * Does this new cpu bringup a new core?
603 */
604 if (threads == 1) {
605 /*
606 * for each core in package, increment
607 * the booted_cores for this new cpu
608 */
609 if (cpumask_first(
610 topology_sibling_cpumask(i)) == i)
611 c->booted_cores++;
612 /*
613 * increment the core count for all
614 * the other cpus in this package
615 */
616 if (i != cpu)
617 cpu_data(i).booted_cores++;
618 } else if (i != cpu && !c->booted_cores)
619 c->booted_cores = cpu_data(i).booted_cores;
620 }
621 }
622 }
623
624 /* maps the cpu to the sched domain representing multi-core */
cpu_coregroup_mask(int cpu)625 const struct cpumask *cpu_coregroup_mask(int cpu)
626 {
627 return cpu_llc_shared_mask(cpu);
628 }
629
cpu_clustergroup_mask(int cpu)630 const struct cpumask *cpu_clustergroup_mask(int cpu)
631 {
632 return cpu_l2c_shared_mask(cpu);
633 }
634 EXPORT_SYMBOL_GPL(cpu_clustergroup_mask);
635
impress_friends(void)636 static void impress_friends(void)
637 {
638 int cpu;
639 unsigned long bogosum = 0;
640 /*
641 * Allow the user to impress friends.
642 */
643 pr_debug("Before bogomips\n");
644 for_each_online_cpu(cpu)
645 bogosum += cpu_data(cpu).loops_per_jiffy;
646
647 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
648 num_online_cpus(),
649 bogosum/(500000/HZ),
650 (bogosum/(5000/HZ))%100);
651
652 pr_debug("Before bogocount - setting activated=1\n");
653 }
654
655 /*
656 * The Multiprocessor Specification 1.4 (1997) example code suggests
657 * that there should be a 10ms delay between the BSP asserting INIT
658 * and de-asserting INIT, when starting a remote processor.
659 * But that slows boot and resume on modern processors, which include
660 * many cores and don't require that delay.
661 *
662 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
663 * Modern processor families are quirked to remove the delay entirely.
664 */
665 #define UDELAY_10MS_DEFAULT 10000
666
667 static unsigned int init_udelay = UINT_MAX;
668
cpu_init_udelay(char * str)669 static int __init cpu_init_udelay(char *str)
670 {
671 get_option(&str, &init_udelay);
672
673 return 0;
674 }
675 early_param("cpu_init_udelay", cpu_init_udelay);
676
smp_quirk_init_udelay(void)677 static void __init smp_quirk_init_udelay(void)
678 {
679 /* if cmdline changed it from default, leave it alone */
680 if (init_udelay != UINT_MAX)
681 return;
682
683 /* if modern processor, use no delay */
684 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && boot_cpu_data.x86_vfm >= INTEL_PENTIUM_PRO) ||
685 (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON && boot_cpu_data.x86 >= 0x18) ||
686 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && boot_cpu_data.x86 >= 0xF)) {
687 init_udelay = 0;
688 return;
689 }
690 /* else, use legacy delay */
691 init_udelay = UDELAY_10MS_DEFAULT;
692 }
693
694 /*
695 * Wake up AP by INIT, INIT, STARTUP sequence.
696 */
send_init_sequence(u32 phys_apicid)697 static void send_init_sequence(u32 phys_apicid)
698 {
699 int maxlvt = lapic_get_maxlvt();
700
701 /* Be paranoid about clearing APIC errors. */
702 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
703 /* Due to the Pentium erratum 3AP. */
704 if (maxlvt > 3)
705 apic_write(APIC_ESR, 0);
706 apic_read(APIC_ESR);
707 }
708
709 /* Assert INIT on the target CPU */
710 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
711 safe_apic_wait_icr_idle();
712
713 udelay(init_udelay);
714
715 /* Deassert INIT on the target CPU */
716 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
717 safe_apic_wait_icr_idle();
718 }
719
720 /*
721 * Wake up AP by INIT, INIT, STARTUP sequence.
722 */
wakeup_secondary_cpu_via_init(u32 phys_apicid,unsigned long start_eip)723 static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip)
724 {
725 unsigned long send_status = 0, accept_status = 0;
726 int num_starts, j, maxlvt;
727
728 preempt_disable();
729 maxlvt = lapic_get_maxlvt();
730 send_init_sequence(phys_apicid);
731
732 mb();
733
734 /*
735 * Should we send STARTUP IPIs ?
736 *
737 * Determine this based on the APIC version.
738 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
739 */
740 if (APIC_INTEGRATED(boot_cpu_apic_version))
741 num_starts = 2;
742 else
743 num_starts = 0;
744
745 /*
746 * Run STARTUP IPI loop.
747 */
748 pr_debug("#startup loops: %d\n", num_starts);
749
750 for (j = 1; j <= num_starts; j++) {
751 pr_debug("Sending STARTUP #%d\n", j);
752 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
753 apic_write(APIC_ESR, 0);
754 apic_read(APIC_ESR);
755 pr_debug("After apic_write\n");
756
757 /*
758 * STARTUP IPI
759 */
760
761 /* Target chip */
762 /* Boot on the stack */
763 /* Kick the second */
764 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
765 phys_apicid);
766
767 /*
768 * Give the other CPU some time to accept the IPI.
769 */
770 if (init_udelay == 0)
771 udelay(10);
772 else
773 udelay(300);
774
775 pr_debug("Startup point 1\n");
776
777 pr_debug("Waiting for send to finish...\n");
778 send_status = safe_apic_wait_icr_idle();
779
780 /*
781 * Give the other CPU some time to accept the IPI.
782 */
783 if (init_udelay == 0)
784 udelay(10);
785 else
786 udelay(200);
787
788 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
789 apic_write(APIC_ESR, 0);
790 accept_status = (apic_read(APIC_ESR) & 0xEF);
791 if (send_status || accept_status)
792 break;
793 }
794 pr_debug("After Startup\n");
795
796 if (send_status)
797 pr_err("APIC never delivered???\n");
798 if (accept_status)
799 pr_err("APIC delivery error (%lx)\n", accept_status);
800
801 preempt_enable();
802 return (send_status | accept_status);
803 }
804
805 /* reduce the number of lines printed when booting a large cpu count system */
announce_cpu(int cpu,int apicid)806 static void announce_cpu(int cpu, int apicid)
807 {
808 static int width, node_width, first = 1;
809 static int current_node = NUMA_NO_NODE;
810 int node = early_cpu_to_node(cpu);
811
812 if (!width)
813 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
814
815 if (!node_width)
816 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
817
818 if (system_state < SYSTEM_RUNNING) {
819 if (first)
820 pr_info("x86: Booting SMP configuration:\n");
821
822 if (node != current_node) {
823 if (current_node > (-1))
824 pr_cont("\n");
825 current_node = node;
826
827 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
828 node_width - num_digits(node), " ", node);
829 }
830
831 /* Add padding for the BSP */
832 if (first)
833 pr_cont("%*s", width + 1, " ");
834 first = 0;
835
836 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
837 } else
838 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
839 node, cpu, apicid);
840 }
841
common_cpu_up(unsigned int cpu,struct task_struct * idle)842 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
843 {
844 int ret;
845
846 /* Just in case we booted with a single CPU. */
847 alternatives_enable_smp();
848
849 per_cpu(pcpu_hot.current_task, cpu) = idle;
850 cpu_init_stack_canary(cpu, idle);
851
852 /* Initialize the interrupt stack(s) */
853 ret = irq_init_percpu_irqstack(cpu);
854 if (ret)
855 return ret;
856
857 #ifdef CONFIG_X86_32
858 /* Stack for startup_32 can be just as for start_secondary onwards */
859 per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
860 #endif
861 return 0;
862 }
863
864 /*
865 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
866 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
867 * Returns zero if startup was successfully sent, else error code from
868 * ->wakeup_secondary_cpu.
869 */
do_boot_cpu(u32 apicid,int cpu,struct task_struct * idle)870 static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle)
871 {
872 unsigned long start_ip = real_mode_header->trampoline_start;
873 int ret;
874
875 #ifdef CONFIG_X86_64
876 /* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
877 if (apic->wakeup_secondary_cpu_64)
878 start_ip = real_mode_header->trampoline_start64;
879 #endif
880 idle->thread.sp = (unsigned long)task_pt_regs(idle);
881 initial_code = (unsigned long)start_secondary;
882
883 if (IS_ENABLED(CONFIG_X86_32)) {
884 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
885 initial_stack = idle->thread.sp;
886 } else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
887 smpboot_control = cpu;
888 }
889
890 /* Enable the espfix hack for this CPU */
891 init_espfix_ap(cpu);
892
893 /* So we see what's up */
894 announce_cpu(cpu, apicid);
895
896 /*
897 * This grunge runs the startup process for
898 * the targeted processor.
899 */
900 if (x86_platform.legacy.warm_reset) {
901
902 pr_debug("Setting warm reset code and vector.\n");
903
904 smpboot_setup_warm_reset_vector(start_ip);
905 /*
906 * Be paranoid about clearing APIC errors.
907 */
908 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
909 apic_write(APIC_ESR, 0);
910 apic_read(APIC_ESR);
911 }
912 }
913
914 smp_mb();
915
916 /*
917 * Wake up a CPU in difference cases:
918 * - Use a method from the APIC driver if one defined, with wakeup
919 * straight to 64-bit mode preferred over wakeup to RM.
920 * Otherwise,
921 * - Use an INIT boot APIC message
922 */
923 if (apic->wakeup_secondary_cpu_64)
924 ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
925 else if (apic->wakeup_secondary_cpu)
926 ret = apic->wakeup_secondary_cpu(apicid, start_ip);
927 else
928 ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
929
930 /* If the wakeup mechanism failed, cleanup the warm reset vector */
931 if (ret)
932 arch_cpuhp_cleanup_kick_cpu(cpu);
933 return ret;
934 }
935
native_kick_ap(unsigned int cpu,struct task_struct * tidle)936 int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
937 {
938 u32 apicid = apic->cpu_present_to_apicid(cpu);
939 int err;
940
941 lockdep_assert_irqs_enabled();
942
943 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
944
945 if (apicid == BAD_APICID || !apic_id_valid(apicid)) {
946 pr_err("CPU %u has invalid APIC ID %x. Aborting bringup\n", cpu, apicid);
947 return -EINVAL;
948 }
949
950 if (!test_bit(apicid, phys_cpu_present_map)) {
951 pr_err("CPU %u APIC ID %x is not present. Aborting bringup\n", cpu, apicid);
952 return -EINVAL;
953 }
954
955 /*
956 * Save current MTRR state in case it was changed since early boot
957 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
958 */
959 mtrr_save_state();
960
961 /* the FPU context is blank, nobody can own it */
962 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
963
964 err = common_cpu_up(cpu, tidle);
965 if (err)
966 return err;
967
968 err = do_boot_cpu(apicid, cpu, tidle);
969 if (err)
970 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
971
972 return err;
973 }
974
arch_cpuhp_kick_ap_alive(unsigned int cpu,struct task_struct * tidle)975 int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
976 {
977 return smp_ops.kick_ap_alive(cpu, tidle);
978 }
979
arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)980 void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
981 {
982 /* Cleanup possible dangling ends... */
983 if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
984 smpboot_restore_warm_reset_vector();
985 }
986
arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)987 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
988 {
989 if (smp_ops.cleanup_dead_cpu)
990 smp_ops.cleanup_dead_cpu(cpu);
991
992 if (system_state == SYSTEM_RUNNING)
993 pr_info("CPU %u is now offline\n", cpu);
994 }
995
arch_cpuhp_sync_state_poll(void)996 void arch_cpuhp_sync_state_poll(void)
997 {
998 if (smp_ops.poll_sync_state)
999 smp_ops.poll_sync_state();
1000 }
1001
1002 /**
1003 * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1004 */
arch_disable_smp_support(void)1005 void __init arch_disable_smp_support(void)
1006 {
1007 disable_ioapic_support();
1008 }
1009
1010 /*
1011 * Fall back to non SMP mode after errors.
1012 *
1013 * RED-PEN audit/test this more. I bet there is more state messed up here.
1014 */
disable_smp(void)1015 static __init void disable_smp(void)
1016 {
1017 pr_info("SMP disabled\n");
1018
1019 disable_ioapic_support();
1020 topology_reset_possible_cpus_up();
1021
1022 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1023 cpumask_set_cpu(0, topology_core_cpumask(0));
1024 cpumask_set_cpu(0, topology_die_cpumask(0));
1025 }
1026
smp_prepare_cpus_common(void)1027 void __init smp_prepare_cpus_common(void)
1028 {
1029 unsigned int cpu, node;
1030
1031 /* Mark all except the boot CPU as hotpluggable */
1032 for_each_possible_cpu(cpu) {
1033 if (cpu)
1034 per_cpu(cpu_info.cpu_index, cpu) = nr_cpu_ids;
1035 }
1036
1037 for_each_possible_cpu(cpu) {
1038 node = cpu_to_node(cpu);
1039
1040 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), GFP_KERNEL, node);
1041 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), GFP_KERNEL, node);
1042 zalloc_cpumask_var_node(&per_cpu(cpu_die_map, cpu), GFP_KERNEL, node);
1043 zalloc_cpumask_var_node(&per_cpu(cpu_llc_shared_map, cpu), GFP_KERNEL, node);
1044 zalloc_cpumask_var_node(&per_cpu(cpu_l2c_shared_map, cpu), GFP_KERNEL, node);
1045 }
1046
1047 set_cpu_sibling_map(0);
1048 }
1049
smp_prepare_boot_cpu(void)1050 void __init smp_prepare_boot_cpu(void)
1051 {
1052 smp_ops.smp_prepare_boot_cpu();
1053 }
1054
1055 #ifdef CONFIG_X86_64
1056 /* Establish whether parallel bringup can be supported. */
arch_cpuhp_init_parallel_bringup(void)1057 bool __init arch_cpuhp_init_parallel_bringup(void)
1058 {
1059 if (!x86_cpuinit.parallel_bringup) {
1060 pr_info("Parallel CPU startup disabled by the platform\n");
1061 return false;
1062 }
1063
1064 smpboot_control = STARTUP_READ_APICID;
1065 pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1066 return true;
1067 }
1068 #endif
1069
1070 /*
1071 * Prepare for SMP bootup.
1072 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1073 * for common interface support.
1074 */
native_smp_prepare_cpus(unsigned int max_cpus)1075 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1076 {
1077 smp_prepare_cpus_common();
1078
1079 switch (apic_intr_mode) {
1080 case APIC_PIC:
1081 case APIC_VIRTUAL_WIRE_NO_CONFIG:
1082 disable_smp();
1083 return;
1084 case APIC_SYMMETRIC_IO_NO_ROUTING:
1085 disable_smp();
1086 /* Setup local timer */
1087 x86_init.timers.setup_percpu_clockev();
1088 return;
1089 case APIC_VIRTUAL_WIRE:
1090 case APIC_SYMMETRIC_IO:
1091 break;
1092 }
1093
1094 /* Setup local timer */
1095 x86_init.timers.setup_percpu_clockev();
1096
1097 pr_info("CPU0: ");
1098 print_cpu_info(&cpu_data(0));
1099
1100 uv_system_init();
1101
1102 smp_quirk_init_udelay();
1103
1104 speculative_store_bypass_ht_init();
1105
1106 snp_set_wakeup_secondary_cpu();
1107 }
1108
arch_thaw_secondary_cpus_begin(void)1109 void arch_thaw_secondary_cpus_begin(void)
1110 {
1111 set_cache_aps_delayed_init(true);
1112 }
1113
arch_thaw_secondary_cpus_end(void)1114 void arch_thaw_secondary_cpus_end(void)
1115 {
1116 cache_aps_init();
1117 }
1118
1119 /*
1120 * Early setup to make printk work.
1121 */
native_smp_prepare_boot_cpu(void)1122 void __init native_smp_prepare_boot_cpu(void)
1123 {
1124 int me = smp_processor_id();
1125
1126 /* SMP handles this from setup_per_cpu_areas() */
1127 if (!IS_ENABLED(CONFIG_SMP))
1128 switch_gdt_and_percpu_base(me);
1129
1130 native_pv_lock_init();
1131 }
1132
native_smp_cpus_done(unsigned int max_cpus)1133 void __init native_smp_cpus_done(unsigned int max_cpus)
1134 {
1135 pr_debug("Boot done\n");
1136
1137 build_sched_topology();
1138 nmi_selftest();
1139 impress_friends();
1140 cache_aps_init();
1141 }
1142
1143 /* correctly size the local cpu masks */
setup_cpu_local_masks(void)1144 void __init setup_cpu_local_masks(void)
1145 {
1146 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1147 }
1148
1149 #ifdef CONFIG_HOTPLUG_CPU
1150
1151 /* Recompute SMT state for all CPUs on offline */
recompute_smt_state(void)1152 static void recompute_smt_state(void)
1153 {
1154 int max_threads, cpu;
1155
1156 max_threads = 0;
1157 for_each_online_cpu (cpu) {
1158 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1159
1160 if (threads > max_threads)
1161 max_threads = threads;
1162 }
1163 __max_smt_threads = max_threads;
1164 }
1165
remove_siblinginfo(int cpu)1166 static void remove_siblinginfo(int cpu)
1167 {
1168 int sibling;
1169 struct cpuinfo_x86 *c = &cpu_data(cpu);
1170
1171 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1172 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1173 /*/
1174 * last thread sibling in this cpu core going down
1175 */
1176 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1177 cpu_data(sibling).booted_cores--;
1178 }
1179
1180 for_each_cpu(sibling, topology_die_cpumask(cpu))
1181 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1182
1183 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1184 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1185 if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1186 cpu_data(sibling).smt_active = false;
1187 }
1188
1189 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1190 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1191 for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1192 cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1193 cpumask_clear(cpu_llc_shared_mask(cpu));
1194 cpumask_clear(cpu_l2c_shared_mask(cpu));
1195 cpumask_clear(topology_sibling_cpumask(cpu));
1196 cpumask_clear(topology_core_cpumask(cpu));
1197 cpumask_clear(topology_die_cpumask(cpu));
1198 c->topo.core_id = 0;
1199 c->booted_cores = 0;
1200 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1201 recompute_smt_state();
1202 }
1203
remove_cpu_from_maps(int cpu)1204 static void remove_cpu_from_maps(int cpu)
1205 {
1206 set_cpu_online(cpu, false);
1207 numa_remove_cpu(cpu);
1208 }
1209
cpu_disable_common(void)1210 void cpu_disable_common(void)
1211 {
1212 int cpu = smp_processor_id();
1213
1214 remove_siblinginfo(cpu);
1215
1216 /* It's now safe to remove this processor from the online map */
1217 lock_vector_lock();
1218 remove_cpu_from_maps(cpu);
1219 unlock_vector_lock();
1220 fixup_irqs();
1221 lapic_offline();
1222 }
1223
native_cpu_disable(void)1224 int native_cpu_disable(void)
1225 {
1226 int ret;
1227
1228 ret = lapic_can_unplug_cpu();
1229 if (ret)
1230 return ret;
1231
1232 cpu_disable_common();
1233
1234 /*
1235 * Disable the local APIC. Otherwise IPI broadcasts will reach
1236 * it. It still responds normally to INIT, NMI, SMI, and SIPI
1237 * messages.
1238 *
1239 * Disabling the APIC must happen after cpu_disable_common()
1240 * which invokes fixup_irqs().
1241 *
1242 * Disabling the APIC preserves already set bits in IRR, but
1243 * an interrupt arriving after disabling the local APIC does not
1244 * set the corresponding IRR bit.
1245 *
1246 * fixup_irqs() scans IRR for set bits so it can raise a not
1247 * yet handled interrupt on the new destination CPU via an IPI
1248 * but obviously it can't do so for IRR bits which are not set.
1249 * IOW, interrupts arriving after disabling the local APIC will
1250 * be lost.
1251 */
1252 apic_soft_disable();
1253
1254 return 0;
1255 }
1256
play_dead_common(void)1257 void play_dead_common(void)
1258 {
1259 idle_task_exit();
1260
1261 cpuhp_ap_report_dead();
1262
1263 local_irq_disable();
1264 }
1265
1266 /*
1267 * We need to flush the caches before going to sleep, lest we have
1268 * dirty data in our caches when we come back up.
1269 */
mwait_play_dead(void)1270 static inline void mwait_play_dead(void)
1271 {
1272 struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1273 unsigned int eax, ebx, ecx, edx;
1274 unsigned int highest_cstate = 0;
1275 unsigned int highest_subcstate = 0;
1276 int i;
1277
1278 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1279 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1280 return;
1281 if (!this_cpu_has(X86_FEATURE_MWAIT))
1282 return;
1283 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1284 return;
1285 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1286 return;
1287
1288 eax = CPUID_MWAIT_LEAF;
1289 ecx = 0;
1290 native_cpuid(&eax, &ebx, &ecx, &edx);
1291
1292 /*
1293 * eax will be 0 if EDX enumeration is not valid.
1294 * Initialized below to cstate, sub_cstate value when EDX is valid.
1295 */
1296 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1297 eax = 0;
1298 } else {
1299 edx >>= MWAIT_SUBSTATE_SIZE;
1300 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1301 if (edx & MWAIT_SUBSTATE_MASK) {
1302 highest_cstate = i;
1303 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1304 }
1305 }
1306 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1307 (highest_subcstate - 1);
1308 }
1309
1310 /* Set up state for the kexec() hack below */
1311 md->status = CPUDEAD_MWAIT_WAIT;
1312 md->control = CPUDEAD_MWAIT_WAIT;
1313
1314 wbinvd();
1315
1316 while (1) {
1317 /*
1318 * The CLFLUSH is a workaround for erratum AAI65 for
1319 * the Xeon 7400 series. It's not clear it is actually
1320 * needed, but it should be harmless in either case.
1321 * The WBINVD is insufficient due to the spurious-wakeup
1322 * case where we return around the loop.
1323 */
1324 mb();
1325 clflush(md);
1326 mb();
1327 __monitor(md, 0, 0);
1328 mb();
1329 __mwait(eax, 0);
1330
1331 if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1332 /*
1333 * Kexec is about to happen. Don't go back into mwait() as
1334 * the kexec kernel might overwrite text and data including
1335 * page tables and stack. So mwait() would resume when the
1336 * monitor cache line is written to and then the CPU goes
1337 * south due to overwritten text, page tables and stack.
1338 *
1339 * Note: This does _NOT_ protect against a stray MCE, NMI,
1340 * SMI. They will resume execution at the instruction
1341 * following the HLT instruction and run into the problem
1342 * which this is trying to prevent.
1343 */
1344 WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1345 while(1)
1346 native_halt();
1347 }
1348 }
1349 }
1350
1351 /*
1352 * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1353 * mwait_play_dead().
1354 */
smp_kick_mwait_play_dead(void)1355 void smp_kick_mwait_play_dead(void)
1356 {
1357 u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1358 struct mwait_cpu_dead *md;
1359 unsigned int cpu, i;
1360
1361 for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1362 md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1363
1364 /* Does it sit in mwait_play_dead() ? */
1365 if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1366 continue;
1367
1368 /* Wait up to 5ms */
1369 for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1370 /* Bring it out of mwait */
1371 WRITE_ONCE(md->control, newstate);
1372 udelay(5);
1373 }
1374
1375 if (READ_ONCE(md->status) != newstate)
1376 pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1377 }
1378 }
1379
hlt_play_dead(void)1380 void __noreturn hlt_play_dead(void)
1381 {
1382 if (__this_cpu_read(cpu_info.x86) >= 4)
1383 wbinvd();
1384
1385 while (1)
1386 native_halt();
1387 }
1388
1389 /*
1390 * native_play_dead() is essentially a __noreturn function, but it can't
1391 * be marked as such as the compiler may complain about it.
1392 */
native_play_dead(void)1393 void native_play_dead(void)
1394 {
1395 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
1396 __update_spec_ctrl(0);
1397
1398 play_dead_common();
1399 tboot_shutdown(TB_SHUTDOWN_WFS);
1400
1401 mwait_play_dead();
1402 if (cpuidle_play_dead())
1403 hlt_play_dead();
1404 }
1405
1406 #else /* ... !CONFIG_HOTPLUG_CPU */
native_cpu_disable(void)1407 int native_cpu_disable(void)
1408 {
1409 return -ENOSYS;
1410 }
1411
native_play_dead(void)1412 void native_play_dead(void)
1413 {
1414 BUG();
1415 }
1416
1417 #endif
1418