1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
4 *
5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
7 * Copyright (c) 2022 David Vernet <dvernet@meta.com>
8 */
9 #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void)))
10
11 enum scx_consts {
12 SCX_DSP_DFL_MAX_BATCH = 32,
13 SCX_DSP_MAX_LOOPS = 32,
14 SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ,
15
16 SCX_EXIT_BT_LEN = 64,
17 SCX_EXIT_MSG_LEN = 1024,
18 SCX_EXIT_DUMP_DFL_LEN = 32768,
19
20 SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE,
21
22 /*
23 * Iterating all tasks may take a while. Periodically drop
24 * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls.
25 */
26 SCX_OPS_TASK_ITER_BATCH = 32,
27 };
28
29 enum scx_exit_kind {
30 SCX_EXIT_NONE,
31 SCX_EXIT_DONE,
32
33 SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */
34 SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */
35 SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */
36 SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */
37
38 SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */
39 SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */
40 SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */
41 };
42
43 /*
44 * An exit code can be specified when exiting with scx_bpf_exit() or
45 * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN
46 * respectively. The codes are 64bit of the format:
47 *
48 * Bits: [63 .. 48 47 .. 32 31 .. 0]
49 * [ SYS ACT ] [ SYS RSN ] [ USR ]
50 *
51 * SYS ACT: System-defined exit actions
52 * SYS RSN: System-defined exit reasons
53 * USR : User-defined exit codes and reasons
54 *
55 * Using the above, users may communicate intention and context by ORing system
56 * actions and/or system reasons with a user-defined exit code.
57 */
58 enum scx_exit_code {
59 /* Reasons */
60 SCX_ECODE_RSN_HOTPLUG = 1LLU << 32,
61
62 /* Actions */
63 SCX_ECODE_ACT_RESTART = 1LLU << 48,
64 };
65
66 /*
67 * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is
68 * being disabled.
69 */
70 struct scx_exit_info {
71 /* %SCX_EXIT_* - broad category of the exit reason */
72 enum scx_exit_kind kind;
73
74 /* exit code if gracefully exiting */
75 s64 exit_code;
76
77 /* textual representation of the above */
78 const char *reason;
79
80 /* backtrace if exiting due to an error */
81 unsigned long *bt;
82 u32 bt_len;
83
84 /* informational message */
85 char *msg;
86
87 /* debug dump */
88 char *dump;
89 };
90
91 /* sched_ext_ops.flags */
92 enum scx_ops_flags {
93 /*
94 * Keep built-in idle tracking even if ops.update_idle() is implemented.
95 */
96 SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0,
97
98 /*
99 * By default, if there are no other task to run on the CPU, ext core
100 * keeps running the current task even after its slice expires. If this
101 * flag is specified, such tasks are passed to ops.enqueue() with
102 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info.
103 */
104 SCX_OPS_ENQ_LAST = 1LLU << 1,
105
106 /*
107 * An exiting task may schedule after PF_EXITING is set. In such cases,
108 * bpf_task_from_pid() may not be able to find the task and if the BPF
109 * scheduler depends on pid lookup for dispatching, the task will be
110 * lost leading to various issues including RCU grace period stalls.
111 *
112 * To mask this problem, by default, unhashed tasks are automatically
113 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't
114 * depend on pid lookups and wants to handle these tasks directly, the
115 * following flag can be used.
116 */
117 SCX_OPS_ENQ_EXITING = 1LLU << 2,
118
119 /*
120 * If set, only tasks with policy set to SCHED_EXT are attached to
121 * sched_ext. If clear, SCHED_NORMAL tasks are also included.
122 */
123 SCX_OPS_SWITCH_PARTIAL = 1LLU << 3,
124
125 /*
126 * CPU cgroup support flags
127 */
128 SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* cpu.weight */
129
130 SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE |
131 SCX_OPS_ENQ_LAST |
132 SCX_OPS_ENQ_EXITING |
133 SCX_OPS_SWITCH_PARTIAL |
134 SCX_OPS_HAS_CGROUP_WEIGHT,
135 };
136
137 /* argument container for ops.init_task() */
138 struct scx_init_task_args {
139 /*
140 * Set if ops.init_task() is being invoked on the fork path, as opposed
141 * to the scheduler transition path.
142 */
143 bool fork;
144 #ifdef CONFIG_EXT_GROUP_SCHED
145 /* the cgroup the task is joining */
146 struct cgroup *cgroup;
147 #endif
148 };
149
150 /* argument container for ops.exit_task() */
151 struct scx_exit_task_args {
152 /* Whether the task exited before running on sched_ext. */
153 bool cancelled;
154 };
155
156 /* argument container for ops->cgroup_init() */
157 struct scx_cgroup_init_args {
158 /* the weight of the cgroup [1..10000] */
159 u32 weight;
160 };
161
162 enum scx_cpu_preempt_reason {
163 /* next task is being scheduled by &sched_class_rt */
164 SCX_CPU_PREEMPT_RT,
165 /* next task is being scheduled by &sched_class_dl */
166 SCX_CPU_PREEMPT_DL,
167 /* next task is being scheduled by &sched_class_stop */
168 SCX_CPU_PREEMPT_STOP,
169 /* unknown reason for SCX being preempted */
170 SCX_CPU_PREEMPT_UNKNOWN,
171 };
172
173 /*
174 * Argument container for ops->cpu_acquire(). Currently empty, but may be
175 * expanded in the future.
176 */
177 struct scx_cpu_acquire_args {};
178
179 /* argument container for ops->cpu_release() */
180 struct scx_cpu_release_args {
181 /* the reason the CPU was preempted */
182 enum scx_cpu_preempt_reason reason;
183
184 /* the task that's going to be scheduled on the CPU */
185 struct task_struct *task;
186 };
187
188 /*
189 * Informational context provided to dump operations.
190 */
191 struct scx_dump_ctx {
192 enum scx_exit_kind kind;
193 s64 exit_code;
194 const char *reason;
195 u64 at_ns;
196 u64 at_jiffies;
197 };
198
199 /**
200 * struct sched_ext_ops - Operation table for BPF scheduler implementation
201 *
202 * Userland can implement an arbitrary scheduling policy by implementing and
203 * loading operations in this table.
204 */
205 struct sched_ext_ops {
206 /**
207 * select_cpu - Pick the target CPU for a task which is being woken up
208 * @p: task being woken up
209 * @prev_cpu: the cpu @p was on before sleeping
210 * @wake_flags: SCX_WAKE_*
211 *
212 * Decision made here isn't final. @p may be moved to any CPU while it
213 * is getting dispatched for execution later. However, as @p is not on
214 * the rq at this point, getting the eventual execution CPU right here
215 * saves a small bit of overhead down the line.
216 *
217 * If an idle CPU is returned, the CPU is kicked and will try to
218 * dispatch. While an explicit custom mechanism can be added,
219 * select_cpu() serves as the default way to wake up idle CPUs.
220 *
221 * @p may be dispatched directly by calling scx_bpf_dispatch(). If @p
222 * is dispatched, the ops.enqueue() callback will be skipped. Finally,
223 * if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the
224 * local DSQ of whatever CPU is returned by this callback.
225 */
226 s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags);
227
228 /**
229 * enqueue - Enqueue a task on the BPF scheduler
230 * @p: task being enqueued
231 * @enq_flags: %SCX_ENQ_*
232 *
233 * @p is ready to run. Dispatch directly by calling scx_bpf_dispatch()
234 * or enqueue on the BPF scheduler. If not directly dispatched, the bpf
235 * scheduler owns @p and if it fails to dispatch @p, the task will
236 * stall.
237 *
238 * If @p was dispatched from ops.select_cpu(), this callback is
239 * skipped.
240 */
241 void (*enqueue)(struct task_struct *p, u64 enq_flags);
242
243 /**
244 * dequeue - Remove a task from the BPF scheduler
245 * @p: task being dequeued
246 * @deq_flags: %SCX_DEQ_*
247 *
248 * Remove @p from the BPF scheduler. This is usually called to isolate
249 * the task while updating its scheduling properties (e.g. priority).
250 *
251 * The ext core keeps track of whether the BPF side owns a given task or
252 * not and can gracefully ignore spurious dispatches from BPF side,
253 * which makes it safe to not implement this method. However, depending
254 * on the scheduling logic, this can lead to confusing behaviors - e.g.
255 * scheduling position not being updated across a priority change.
256 */
257 void (*dequeue)(struct task_struct *p, u64 deq_flags);
258
259 /**
260 * dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs
261 * @cpu: CPU to dispatch tasks for
262 * @prev: previous task being switched out
263 *
264 * Called when a CPU's local dsq is empty. The operation should dispatch
265 * one or more tasks from the BPF scheduler into the DSQs using
266 * scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using
267 * scx_bpf_consume().
268 *
269 * The maximum number of times scx_bpf_dispatch() can be called without
270 * an intervening scx_bpf_consume() is specified by
271 * ops.dispatch_max_batch. See the comments on top of the two functions
272 * for more details.
273 *
274 * When not %NULL, @prev is an SCX task with its slice depleted. If
275 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in
276 * @prev->scx.flags, it is not enqueued yet and will be enqueued after
277 * ops.dispatch() returns. To keep executing @prev, return without
278 * dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST.
279 */
280 void (*dispatch)(s32 cpu, struct task_struct *prev);
281
282 /**
283 * tick - Periodic tick
284 * @p: task running currently
285 *
286 * This operation is called every 1/HZ seconds on CPUs which are
287 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an
288 * immediate dispatch cycle on the CPU.
289 */
290 void (*tick)(struct task_struct *p);
291
292 /**
293 * runnable - A task is becoming runnable on its associated CPU
294 * @p: task becoming runnable
295 * @enq_flags: %SCX_ENQ_*
296 *
297 * This and the following three functions can be used to track a task's
298 * execution state transitions. A task becomes ->runnable() on a CPU,
299 * and then goes through one or more ->running() and ->stopping() pairs
300 * as it runs on the CPU, and eventually becomes ->quiescent() when it's
301 * done running on the CPU.
302 *
303 * @p is becoming runnable on the CPU because it's
304 *
305 * - waking up (%SCX_ENQ_WAKEUP)
306 * - being moved from another CPU
307 * - being restored after temporarily taken off the queue for an
308 * attribute change.
309 *
310 * This and ->enqueue() are related but not coupled. This operation
311 * notifies @p's state transition and may not be followed by ->enqueue()
312 * e.g. when @p is being dispatched to a remote CPU, or when @p is
313 * being enqueued on a CPU experiencing a hotplug event. Likewise, a
314 * task may be ->enqueue()'d without being preceded by this operation
315 * e.g. after exhausting its slice.
316 */
317 void (*runnable)(struct task_struct *p, u64 enq_flags);
318
319 /**
320 * running - A task is starting to run on its associated CPU
321 * @p: task starting to run
322 *
323 * See ->runnable() for explanation on the task state notifiers.
324 */
325 void (*running)(struct task_struct *p);
326
327 /**
328 * stopping - A task is stopping execution
329 * @p: task stopping to run
330 * @runnable: is task @p still runnable?
331 *
332 * See ->runnable() for explanation on the task state notifiers. If
333 * !@runnable, ->quiescent() will be invoked after this operation
334 * returns.
335 */
336 void (*stopping)(struct task_struct *p, bool runnable);
337
338 /**
339 * quiescent - A task is becoming not runnable on its associated CPU
340 * @p: task becoming not runnable
341 * @deq_flags: %SCX_DEQ_*
342 *
343 * See ->runnable() for explanation on the task state notifiers.
344 *
345 * @p is becoming quiescent on the CPU because it's
346 *
347 * - sleeping (%SCX_DEQ_SLEEP)
348 * - being moved to another CPU
349 * - being temporarily taken off the queue for an attribute change
350 * (%SCX_DEQ_SAVE)
351 *
352 * This and ->dequeue() are related but not coupled. This operation
353 * notifies @p's state transition and may not be preceded by ->dequeue()
354 * e.g. when @p is being dispatched to a remote CPU.
355 */
356 void (*quiescent)(struct task_struct *p, u64 deq_flags);
357
358 /**
359 * yield - Yield CPU
360 * @from: yielding task
361 * @to: optional yield target task
362 *
363 * If @to is NULL, @from is yielding the CPU to other runnable tasks.
364 * The BPF scheduler should ensure that other available tasks are
365 * dispatched before the yielding task. Return value is ignored in this
366 * case.
367 *
368 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf
369 * scheduler can implement the request, return %true; otherwise, %false.
370 */
371 bool (*yield)(struct task_struct *from, struct task_struct *to);
372
373 /**
374 * core_sched_before - Task ordering for core-sched
375 * @a: task A
376 * @b: task B
377 *
378 * Used by core-sched to determine the ordering between two tasks. See
379 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on
380 * core-sched.
381 *
382 * Both @a and @b are runnable and may or may not currently be queued on
383 * the BPF scheduler. Should return %true if @a should run before @b.
384 * %false if there's no required ordering or @b should run before @a.
385 *
386 * If not specified, the default is ordering them according to when they
387 * became runnable.
388 */
389 bool (*core_sched_before)(struct task_struct *a, struct task_struct *b);
390
391 /**
392 * set_weight - Set task weight
393 * @p: task to set weight for
394 * @weight: new weight [1..10000]
395 *
396 * Update @p's weight to @weight.
397 */
398 void (*set_weight)(struct task_struct *p, u32 weight);
399
400 /**
401 * set_cpumask - Set CPU affinity
402 * @p: task to set CPU affinity for
403 * @cpumask: cpumask of cpus that @p can run on
404 *
405 * Update @p's CPU affinity to @cpumask.
406 */
407 void (*set_cpumask)(struct task_struct *p,
408 const struct cpumask *cpumask);
409
410 /**
411 * update_idle - Update the idle state of a CPU
412 * @cpu: CPU to udpate the idle state for
413 * @idle: whether entering or exiting the idle state
414 *
415 * This operation is called when @rq's CPU goes or leaves the idle
416 * state. By default, implementing this operation disables the built-in
417 * idle CPU tracking and the following helpers become unavailable:
418 *
419 * - scx_bpf_select_cpu_dfl()
420 * - scx_bpf_test_and_clear_cpu_idle()
421 * - scx_bpf_pick_idle_cpu()
422 *
423 * The user also must implement ops.select_cpu() as the default
424 * implementation relies on scx_bpf_select_cpu_dfl().
425 *
426 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle
427 * tracking.
428 */
429 void (*update_idle)(s32 cpu, bool idle);
430
431 /**
432 * cpu_acquire - A CPU is becoming available to the BPF scheduler
433 * @cpu: The CPU being acquired by the BPF scheduler.
434 * @args: Acquire arguments, see the struct definition.
435 *
436 * A CPU that was previously released from the BPF scheduler is now once
437 * again under its control.
438 */
439 void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args);
440
441 /**
442 * cpu_release - A CPU is taken away from the BPF scheduler
443 * @cpu: The CPU being released by the BPF scheduler.
444 * @args: Release arguments, see the struct definition.
445 *
446 * The specified CPU is no longer under the control of the BPF
447 * scheduler. This could be because it was preempted by a higher
448 * priority sched_class, though there may be other reasons as well. The
449 * caller should consult @args->reason to determine the cause.
450 */
451 void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args);
452
453 /**
454 * init_task - Initialize a task to run in a BPF scheduler
455 * @p: task to initialize for BPF scheduling
456 * @args: init arguments, see the struct definition
457 *
458 * Either we're loading a BPF scheduler or a new task is being forked.
459 * Initialize @p for BPF scheduling. This operation may block and can
460 * be used for allocations, and is called exactly once for a task.
461 *
462 * Return 0 for success, -errno for failure. An error return while
463 * loading will abort loading of the BPF scheduler. During a fork, it
464 * will abort that specific fork.
465 */
466 s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args);
467
468 /**
469 * exit_task - Exit a previously-running task from the system
470 * @p: task to exit
471 *
472 * @p is exiting or the BPF scheduler is being unloaded. Perform any
473 * necessary cleanup for @p.
474 */
475 void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args);
476
477 /**
478 * enable - Enable BPF scheduling for a task
479 * @p: task to enable BPF scheduling for
480 *
481 * Enable @p for BPF scheduling. enable() is called on @p any time it
482 * enters SCX, and is always paired with a matching disable().
483 */
484 void (*enable)(struct task_struct *p);
485
486 /**
487 * disable - Disable BPF scheduling for a task
488 * @p: task to disable BPF scheduling for
489 *
490 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded.
491 * Disable BPF scheduling for @p. A disable() call is always matched
492 * with a prior enable() call.
493 */
494 void (*disable)(struct task_struct *p);
495
496 /**
497 * dump - Dump BPF scheduler state on error
498 * @ctx: debug dump context
499 *
500 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump.
501 */
502 void (*dump)(struct scx_dump_ctx *ctx);
503
504 /**
505 * dump_cpu - Dump BPF scheduler state for a CPU on error
506 * @ctx: debug dump context
507 * @cpu: CPU to generate debug dump for
508 * @idle: @cpu is currently idle without any runnable tasks
509 *
510 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
511 * @cpu. If @idle is %true and this operation doesn't produce any
512 * output, @cpu is skipped for dump.
513 */
514 void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle);
515
516 /**
517 * dump_task - Dump BPF scheduler state for a runnable task on error
518 * @ctx: debug dump context
519 * @p: runnable task to generate debug dump for
520 *
521 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
522 * @p.
523 */
524 void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p);
525
526 #ifdef CONFIG_EXT_GROUP_SCHED
527 /**
528 * cgroup_init - Initialize a cgroup
529 * @cgrp: cgroup being initialized
530 * @args: init arguments, see the struct definition
531 *
532 * Either the BPF scheduler is being loaded or @cgrp created, initialize
533 * @cgrp for sched_ext. This operation may block.
534 *
535 * Return 0 for success, -errno for failure. An error return while
536 * loading will abort loading of the BPF scheduler. During cgroup
537 * creation, it will abort the specific cgroup creation.
538 */
539 s32 (*cgroup_init)(struct cgroup *cgrp,
540 struct scx_cgroup_init_args *args);
541
542 /**
543 * cgroup_exit - Exit a cgroup
544 * @cgrp: cgroup being exited
545 *
546 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit
547 * @cgrp for sched_ext. This operation my block.
548 */
549 void (*cgroup_exit)(struct cgroup *cgrp);
550
551 /**
552 * cgroup_prep_move - Prepare a task to be moved to a different cgroup
553 * @p: task being moved
554 * @from: cgroup @p is being moved from
555 * @to: cgroup @p is being moved to
556 *
557 * Prepare @p for move from cgroup @from to @to. This operation may
558 * block and can be used for allocations.
559 *
560 * Return 0 for success, -errno for failure. An error return aborts the
561 * migration.
562 */
563 s32 (*cgroup_prep_move)(struct task_struct *p,
564 struct cgroup *from, struct cgroup *to);
565
566 /**
567 * cgroup_move - Commit cgroup move
568 * @p: task being moved
569 * @from: cgroup @p is being moved from
570 * @to: cgroup @p is being moved to
571 *
572 * Commit the move. @p is dequeued during this operation.
573 */
574 void (*cgroup_move)(struct task_struct *p,
575 struct cgroup *from, struct cgroup *to);
576
577 /**
578 * cgroup_cancel_move - Cancel cgroup move
579 * @p: task whose cgroup move is being canceled
580 * @from: cgroup @p was being moved from
581 * @to: cgroup @p was being moved to
582 *
583 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move().
584 * Undo the preparation.
585 */
586 void (*cgroup_cancel_move)(struct task_struct *p,
587 struct cgroup *from, struct cgroup *to);
588
589 /**
590 * cgroup_set_weight - A cgroup's weight is being changed
591 * @cgrp: cgroup whose weight is being updated
592 * @weight: new weight [1..10000]
593 *
594 * Update @tg's weight to @weight.
595 */
596 void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight);
597 #endif /* CONFIG_CGROUPS */
598
599 /*
600 * All online ops must come before ops.cpu_online().
601 */
602
603 /**
604 * cpu_online - A CPU became online
605 * @cpu: CPU which just came up
606 *
607 * @cpu just came online. @cpu will not call ops.enqueue() or
608 * ops.dispatch(), nor run tasks associated with other CPUs beforehand.
609 */
610 void (*cpu_online)(s32 cpu);
611
612 /**
613 * cpu_offline - A CPU is going offline
614 * @cpu: CPU which is going offline
615 *
616 * @cpu is going offline. @cpu will not call ops.enqueue() or
617 * ops.dispatch(), nor run tasks associated with other CPUs afterwards.
618 */
619 void (*cpu_offline)(s32 cpu);
620
621 /*
622 * All CPU hotplug ops must come before ops.init().
623 */
624
625 /**
626 * init - Initialize the BPF scheduler
627 */
628 s32 (*init)(void);
629
630 /**
631 * exit - Clean up after the BPF scheduler
632 * @info: Exit info
633 *
634 * ops.exit() is also called on ops.init() failure, which is a bit
635 * unusual. This is to allow rich reporting through @info on how
636 * ops.init() failed.
637 */
638 void (*exit)(struct scx_exit_info *info);
639
640 /**
641 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch
642 */
643 u32 dispatch_max_batch;
644
645 /**
646 * flags - %SCX_OPS_* flags
647 */
648 u64 flags;
649
650 /**
651 * timeout_ms - The maximum amount of time, in milliseconds, that a
652 * runnable task should be able to wait before being scheduled. The
653 * maximum timeout may not exceed the default timeout of 30 seconds.
654 *
655 * Defaults to the maximum allowed timeout value of 30 seconds.
656 */
657 u32 timeout_ms;
658
659 /**
660 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default
661 * value of 32768 is used.
662 */
663 u32 exit_dump_len;
664
665 /**
666 * hotplug_seq - A sequence number that may be set by the scheduler to
667 * detect when a hotplug event has occurred during the loading process.
668 * If 0, no detection occurs. Otherwise, the scheduler will fail to
669 * load if the sequence number does not match @scx_hotplug_seq on the
670 * enable path.
671 */
672 u64 hotplug_seq;
673
674 /**
675 * name - BPF scheduler's name
676 *
677 * Must be a non-zero valid BPF object name including only isalnum(),
678 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the
679 * BPF scheduler is enabled.
680 */
681 char name[SCX_OPS_NAME_LEN];
682 };
683
684 enum scx_opi {
685 SCX_OPI_BEGIN = 0,
686 SCX_OPI_NORMAL_BEGIN = 0,
687 SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online),
688 SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online),
689 SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init),
690 SCX_OPI_END = SCX_OP_IDX(init),
691 };
692
693 enum scx_wake_flags {
694 /* expose select WF_* flags as enums */
695 SCX_WAKE_FORK = WF_FORK,
696 SCX_WAKE_TTWU = WF_TTWU,
697 SCX_WAKE_SYNC = WF_SYNC,
698 };
699
700 enum scx_enq_flags {
701 /* expose select ENQUEUE_* flags as enums */
702 SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP,
703 SCX_ENQ_HEAD = ENQUEUE_HEAD,
704 SCX_ENQ_CPU_SELECTED = ENQUEUE_RQ_SELECTED,
705
706 /* high 32bits are SCX specific */
707
708 /*
709 * Set the following to trigger preemption when calling
710 * scx_bpf_dispatch() with a local dsq as the target. The slice of the
711 * current task is cleared to zero and the CPU is kicked into the
712 * scheduling path. Implies %SCX_ENQ_HEAD.
713 */
714 SCX_ENQ_PREEMPT = 1LLU << 32,
715
716 /*
717 * The task being enqueued was previously enqueued on the current CPU's
718 * %SCX_DSQ_LOCAL, but was removed from it in a call to the
719 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was
720 * invoked in a ->cpu_release() callback, and the task is again
721 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the
722 * task will not be scheduled on the CPU until at least the next invocation
723 * of the ->cpu_acquire() callback.
724 */
725 SCX_ENQ_REENQ = 1LLU << 40,
726
727 /*
728 * The task being enqueued is the only task available for the cpu. By
729 * default, ext core keeps executing such tasks but when
730 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the
731 * %SCX_ENQ_LAST flag set.
732 *
733 * The BPF scheduler is responsible for triggering a follow-up
734 * scheduling event. Otherwise, Execution may stall.
735 */
736 SCX_ENQ_LAST = 1LLU << 41,
737
738 /* high 8 bits are internal */
739 __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56,
740
741 SCX_ENQ_CLEAR_OPSS = 1LLU << 56,
742 SCX_ENQ_DSQ_PRIQ = 1LLU << 57,
743 };
744
745 enum scx_deq_flags {
746 /* expose select DEQUEUE_* flags as enums */
747 SCX_DEQ_SLEEP = DEQUEUE_SLEEP,
748
749 /* high 32bits are SCX specific */
750
751 /*
752 * The generic core-sched layer decided to execute the task even though
753 * it hasn't been dispatched yet. Dequeue from the BPF side.
754 */
755 SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32,
756 };
757
758 enum scx_pick_idle_cpu_flags {
759 SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */
760 };
761
762 enum scx_kick_flags {
763 /*
764 * Kick the target CPU if idle. Guarantees that the target CPU goes
765 * through at least one full scheduling cycle before going idle. If the
766 * target CPU can be determined to be currently not idle and going to go
767 * through a scheduling cycle before going idle, noop.
768 */
769 SCX_KICK_IDLE = 1LLU << 0,
770
771 /*
772 * Preempt the current task and execute the dispatch path. If the
773 * current task of the target CPU is an SCX task, its ->scx.slice is
774 * cleared to zero before the scheduling path is invoked so that the
775 * task expires and the dispatch path is invoked.
776 */
777 SCX_KICK_PREEMPT = 1LLU << 1,
778
779 /*
780 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will
781 * return after the target CPU finishes picking the next task.
782 */
783 SCX_KICK_WAIT = 1LLU << 2,
784 };
785
786 enum scx_tg_flags {
787 SCX_TG_ONLINE = 1U << 0,
788 SCX_TG_INITED = 1U << 1,
789 };
790
791 enum scx_ops_enable_state {
792 SCX_OPS_ENABLING,
793 SCX_OPS_ENABLED,
794 SCX_OPS_DISABLING,
795 SCX_OPS_DISABLED,
796 };
797
798 static const char *scx_ops_enable_state_str[] = {
799 [SCX_OPS_ENABLING] = "enabling",
800 [SCX_OPS_ENABLED] = "enabled",
801 [SCX_OPS_DISABLING] = "disabling",
802 [SCX_OPS_DISABLED] = "disabled",
803 };
804
805 /*
806 * sched_ext_entity->ops_state
807 *
808 * Used to track the task ownership between the SCX core and the BPF scheduler.
809 * State transitions look as follows:
810 *
811 * NONE -> QUEUEING -> QUEUED -> DISPATCHING
812 * ^ | |
813 * | v v
814 * \-------------------------------/
815 *
816 * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call
817 * sites for explanations on the conditions being waited upon and why they are
818 * safe. Transitions out of them into NONE or QUEUED must store_release and the
819 * waiters should load_acquire.
820 *
821 * Tracking scx_ops_state enables sched_ext core to reliably determine whether
822 * any given task can be dispatched by the BPF scheduler at all times and thus
823 * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler
824 * to try to dispatch any task anytime regardless of its state as the SCX core
825 * can safely reject invalid dispatches.
826 */
827 enum scx_ops_state {
828 SCX_OPSS_NONE, /* owned by the SCX core */
829 SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */
830 SCX_OPSS_QUEUED, /* owned by the BPF scheduler */
831 SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */
832
833 /*
834 * QSEQ brands each QUEUED instance so that, when dispatch races
835 * dequeue/requeue, the dispatcher can tell whether it still has a claim
836 * on the task being dispatched.
837 *
838 * As some 32bit archs can't do 64bit store_release/load_acquire,
839 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on
840 * 32bit machines. The dispatch race window QSEQ protects is very narrow
841 * and runs with IRQ disabled. 30 bits should be sufficient.
842 */
843 SCX_OPSS_QSEQ_SHIFT = 2,
844 };
845
846 /* Use macros to ensure that the type is unsigned long for the masks */
847 #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1)
848 #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK)
849
850 /*
851 * During exit, a task may schedule after losing its PIDs. When disabling the
852 * BPF scheduler, we need to be able to iterate tasks in every state to
853 * guarantee system safety. Maintain a dedicated task list which contains every
854 * task between its fork and eventual free.
855 */
856 static DEFINE_SPINLOCK(scx_tasks_lock);
857 static LIST_HEAD(scx_tasks);
858
859 /* ops enable/disable */
860 static struct kthread_worker *scx_ops_helper;
861 static DEFINE_MUTEX(scx_ops_enable_mutex);
862 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled);
863 EXPORT_SYMBOL_GPL(__scx_ops_enabled);
864 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
865 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED);
866 static int scx_ops_bypass_depth;
867 static DEFINE_RAW_SPINLOCK(__scx_ops_bypass_lock);
868 static bool scx_ops_init_task_enabled;
869 static bool scx_switching_all;
870 DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
871 EXPORT_SYMBOL_GPL(__scx_switched_all);
872 static struct sched_ext_ops scx_ops;
873 static bool scx_warned_zero_slice;
874
875 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last);
876 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting);
877 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt);
878 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
879
880 static struct static_key_false scx_has_op[SCX_OPI_END] =
881 { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT };
882
883 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE);
884 static struct scx_exit_info *scx_exit_info;
885
886 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
887 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
888
889 /*
890 * A monotically increasing sequence number that is incremented every time a
891 * scheduler is enabled. This can be used by to check if any custom sched_ext
892 * scheduler has ever been used in the system.
893 */
894 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0);
895
896 /*
897 * The maximum amount of time in jiffies that a task may be runnable without
898 * being scheduled on a CPU. If this timeout is exceeded, it will trigger
899 * scx_ops_error().
900 */
901 static unsigned long scx_watchdog_timeout;
902
903 /*
904 * The last time the delayed work was run. This delayed work relies on
905 * ksoftirqd being able to run to service timer interrupts, so it's possible
906 * that this work itself could get wedged. To account for this, we check that
907 * it's not stalled in the timer tick, and trigger an error if it is.
908 */
909 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
910
911 static struct delayed_work scx_watchdog_work;
912
913 /* idle tracking */
914 #ifdef CONFIG_SMP
915 #ifdef CONFIG_CPUMASK_OFFSTACK
916 #define CL_ALIGNED_IF_ONSTACK
917 #else
918 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp
919 #endif
920
921 static struct {
922 cpumask_var_t cpu;
923 cpumask_var_t smt;
924 } idle_masks CL_ALIGNED_IF_ONSTACK;
925
926 #endif /* CONFIG_SMP */
927
928 /* for %SCX_KICK_WAIT */
929 static unsigned long __percpu *scx_kick_cpus_pnt_seqs;
930
931 /*
932 * Direct dispatch marker.
933 *
934 * Non-NULL values are used for direct dispatch from enqueue path. A valid
935 * pointer points to the task currently being enqueued. An ERR_PTR value is used
936 * to indicate that direct dispatch has already happened.
937 */
938 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
939
940 /*
941 * Dispatch queues.
942 *
943 * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is
944 * to avoid live-locking in bypass mode where all tasks are dispatched to
945 * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't
946 * sufficient, it can be further split.
947 */
948 static struct scx_dispatch_q **global_dsqs;
949
950 static const struct rhashtable_params dsq_hash_params = {
951 .key_len = 8,
952 .key_offset = offsetof(struct scx_dispatch_q, id),
953 .head_offset = offsetof(struct scx_dispatch_q, hash_node),
954 };
955
956 static struct rhashtable dsq_hash;
957 static LLIST_HEAD(dsqs_to_free);
958
959 /* dispatch buf */
960 struct scx_dsp_buf_ent {
961 struct task_struct *task;
962 unsigned long qseq;
963 u64 dsq_id;
964 u64 enq_flags;
965 };
966
967 static u32 scx_dsp_max_batch;
968
969 struct scx_dsp_ctx {
970 struct rq *rq;
971 u32 cursor;
972 u32 nr_tasks;
973 struct scx_dsp_buf_ent buf[];
974 };
975
976 static struct scx_dsp_ctx __percpu *scx_dsp_ctx;
977
978 /* string formatting from BPF */
979 struct scx_bstr_buf {
980 u64 data[MAX_BPRINTF_VARARGS];
981 char line[SCX_EXIT_MSG_LEN];
982 };
983
984 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock);
985 static struct scx_bstr_buf scx_exit_bstr_buf;
986
987 /* ops debug dump */
988 struct scx_dump_data {
989 s32 cpu;
990 bool first;
991 s32 cursor;
992 struct seq_buf *s;
993 const char *prefix;
994 struct scx_bstr_buf buf;
995 };
996
997 static struct scx_dump_data scx_dump_data = {
998 .cpu = -1,
999 };
1000
1001 /* /sys/kernel/sched_ext interface */
1002 static struct kset *scx_kset;
1003 static struct kobject *scx_root_kobj;
1004
1005 #define CREATE_TRACE_POINTS
1006 #include <trace/events/sched_ext.h>
1007 #undef CREATE_TRACE_POINTS
1008
1009 static void process_ddsp_deferred_locals(struct rq *rq);
1010 static void scx_bpf_kick_cpu(s32 cpu, u64 flags);
1011 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
1012 s64 exit_code,
1013 const char *fmt, ...);
1014
1015 #define scx_ops_error_kind(err, fmt, args...) \
1016 scx_ops_exit_kind((err), 0, fmt, ##args)
1017
1018 #define scx_ops_exit(code, fmt, args...) \
1019 scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args)
1020
1021 #define scx_ops_error(fmt, args...) \
1022 scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args)
1023
1024 #define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)])
1025
jiffies_delta_msecs(unsigned long at,unsigned long now)1026 static long jiffies_delta_msecs(unsigned long at, unsigned long now)
1027 {
1028 if (time_after(at, now))
1029 return jiffies_to_msecs(at - now);
1030 else
1031 return -(long)jiffies_to_msecs(now - at);
1032 }
1033
1034 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */
higher_bits(u32 flags)1035 static u32 higher_bits(u32 flags)
1036 {
1037 return ~((1 << fls(flags)) - 1);
1038 }
1039
1040 /* return the mask with only the highest bit set */
highest_bit(u32 flags)1041 static u32 highest_bit(u32 flags)
1042 {
1043 int bit = fls(flags);
1044 return ((u64)1 << bit) >> 1;
1045 }
1046
u32_before(u32 a,u32 b)1047 static bool u32_before(u32 a, u32 b)
1048 {
1049 return (s32)(a - b) < 0;
1050 }
1051
find_global_dsq(struct task_struct * p)1052 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p)
1053 {
1054 return global_dsqs[cpu_to_node(task_cpu(p))];
1055 }
1056
find_user_dsq(u64 dsq_id)1057 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id)
1058 {
1059 return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params);
1060 }
1061
1062 /*
1063 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
1064 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
1065 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
1066 * whether it's running from an allowed context.
1067 *
1068 * @mask is constant, always inline to cull the mask calculations.
1069 */
scx_kf_allow(u32 mask)1070 static __always_inline void scx_kf_allow(u32 mask)
1071 {
1072 /* nesting is allowed only in increasing scx_kf_mask order */
1073 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
1074 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
1075 current->scx.kf_mask, mask);
1076 current->scx.kf_mask |= mask;
1077 barrier();
1078 }
1079
scx_kf_disallow(u32 mask)1080 static void scx_kf_disallow(u32 mask)
1081 {
1082 barrier();
1083 current->scx.kf_mask &= ~mask;
1084 }
1085
1086 #define SCX_CALL_OP(mask, op, args...) \
1087 do { \
1088 if (mask) { \
1089 scx_kf_allow(mask); \
1090 scx_ops.op(args); \
1091 scx_kf_disallow(mask); \
1092 } else { \
1093 scx_ops.op(args); \
1094 } \
1095 } while (0)
1096
1097 #define SCX_CALL_OP_RET(mask, op, args...) \
1098 ({ \
1099 __typeof__(scx_ops.op(args)) __ret; \
1100 if (mask) { \
1101 scx_kf_allow(mask); \
1102 __ret = scx_ops.op(args); \
1103 scx_kf_disallow(mask); \
1104 } else { \
1105 __ret = scx_ops.op(args); \
1106 } \
1107 __ret; \
1108 })
1109
1110 /*
1111 * Some kfuncs are allowed only on the tasks that are subjects of the
1112 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
1113 * restrictions, the following SCX_CALL_OP_*() variants should be used when
1114 * invoking scx_ops operations that take task arguments. These can only be used
1115 * for non-nesting operations due to the way the tasks are tracked.
1116 *
1117 * kfuncs which can only operate on such tasks can in turn use
1118 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
1119 * the specific task.
1120 */
1121 #define SCX_CALL_OP_TASK(mask, op, task, args...) \
1122 do { \
1123 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
1124 current->scx.kf_tasks[0] = task; \
1125 SCX_CALL_OP(mask, op, task, ##args); \
1126 current->scx.kf_tasks[0] = NULL; \
1127 } while (0)
1128
1129 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \
1130 ({ \
1131 __typeof__(scx_ops.op(task, ##args)) __ret; \
1132 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
1133 current->scx.kf_tasks[0] = task; \
1134 __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \
1135 current->scx.kf_tasks[0] = NULL; \
1136 __ret; \
1137 })
1138
1139 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \
1140 ({ \
1141 __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \
1142 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
1143 current->scx.kf_tasks[0] = task0; \
1144 current->scx.kf_tasks[1] = task1; \
1145 __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \
1146 current->scx.kf_tasks[0] = NULL; \
1147 current->scx.kf_tasks[1] = NULL; \
1148 __ret; \
1149 })
1150
1151 /* @mask is constant, always inline to cull unnecessary branches */
scx_kf_allowed(u32 mask)1152 static __always_inline bool scx_kf_allowed(u32 mask)
1153 {
1154 if (unlikely(!(current->scx.kf_mask & mask))) {
1155 scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x",
1156 mask, current->scx.kf_mask);
1157 return false;
1158 }
1159
1160 /*
1161 * Enforce nesting boundaries. e.g. A kfunc which can be called from
1162 * DISPATCH must not be called if we're running DEQUEUE which is nested
1163 * inside ops.dispatch(). We don't need to check boundaries for any
1164 * blocking kfuncs as the verifier ensures they're only called from
1165 * sleepable progs.
1166 */
1167 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
1168 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
1169 scx_ops_error("cpu_release kfunc called from a nested operation");
1170 return false;
1171 }
1172
1173 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
1174 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
1175 scx_ops_error("dispatch kfunc called from a nested operation");
1176 return false;
1177 }
1178
1179 return true;
1180 }
1181
1182 /* see SCX_CALL_OP_TASK() */
scx_kf_allowed_on_arg_tasks(u32 mask,struct task_struct * p)1183 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask,
1184 struct task_struct *p)
1185 {
1186 if (!scx_kf_allowed(mask))
1187 return false;
1188
1189 if (unlikely((p != current->scx.kf_tasks[0] &&
1190 p != current->scx.kf_tasks[1]))) {
1191 scx_ops_error("called on a task not being operated on");
1192 return false;
1193 }
1194
1195 return true;
1196 }
1197
scx_kf_allowed_if_unlocked(void)1198 static bool scx_kf_allowed_if_unlocked(void)
1199 {
1200 return !current->scx.kf_mask;
1201 }
1202
1203 /**
1204 * nldsq_next_task - Iterate to the next task in a non-local DSQ
1205 * @dsq: user dsq being interated
1206 * @cur: current position, %NULL to start iteration
1207 * @rev: walk backwards
1208 *
1209 * Returns %NULL when iteration is finished.
1210 */
nldsq_next_task(struct scx_dispatch_q * dsq,struct task_struct * cur,bool rev)1211 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq,
1212 struct task_struct *cur, bool rev)
1213 {
1214 struct list_head *list_node;
1215 struct scx_dsq_list_node *dsq_lnode;
1216
1217 lockdep_assert_held(&dsq->lock);
1218
1219 if (cur)
1220 list_node = &cur->scx.dsq_list.node;
1221 else
1222 list_node = &dsq->list;
1223
1224 /* find the next task, need to skip BPF iteration cursors */
1225 do {
1226 if (rev)
1227 list_node = list_node->prev;
1228 else
1229 list_node = list_node->next;
1230
1231 if (list_node == &dsq->list)
1232 return NULL;
1233
1234 dsq_lnode = container_of(list_node, struct scx_dsq_list_node,
1235 node);
1236 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR);
1237
1238 return container_of(dsq_lnode, struct task_struct, scx.dsq_list);
1239 }
1240
1241 #define nldsq_for_each_task(p, dsq) \
1242 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \
1243 (p) = nldsq_next_task((dsq), (p), false))
1244
1245
1246 /*
1247 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
1248 * dispatch order. BPF-visible iterator is opaque and larger to allow future
1249 * changes without breaking backward compatibility. Can be used with
1250 * bpf_for_each(). See bpf_iter_scx_dsq_*().
1251 */
1252 enum scx_dsq_iter_flags {
1253 /* iterate in the reverse dispatch order */
1254 SCX_DSQ_ITER_REV = 1U << 16,
1255
1256 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30,
1257 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31,
1258
1259 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV,
1260 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS |
1261 __SCX_DSQ_ITER_HAS_SLICE |
1262 __SCX_DSQ_ITER_HAS_VTIME,
1263 };
1264
1265 struct bpf_iter_scx_dsq_kern {
1266 struct scx_dsq_list_node cursor;
1267 struct scx_dispatch_q *dsq;
1268 u64 slice;
1269 u64 vtime;
1270 } __attribute__((aligned(8)));
1271
1272 struct bpf_iter_scx_dsq {
1273 u64 __opaque[6];
1274 } __attribute__((aligned(8)));
1275
1276
1277 /*
1278 * SCX task iterator.
1279 */
1280 struct scx_task_iter {
1281 struct sched_ext_entity cursor;
1282 struct task_struct *locked;
1283 struct rq *rq;
1284 struct rq_flags rf;
1285 u32 cnt;
1286 };
1287
1288 /**
1289 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration
1290 * @iter: iterator to init
1291 *
1292 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter
1293 * must eventually be stopped with scx_task_iter_stop().
1294 *
1295 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock()
1296 * between this and the first next() call or between any two next() calls. If
1297 * the locks are released between two next() calls, the caller is responsible
1298 * for ensuring that the task being iterated remains accessible either through
1299 * RCU read lock or obtaining a reference count.
1300 *
1301 * All tasks which existed when the iteration started are guaranteed to be
1302 * visited as long as they still exist.
1303 */
scx_task_iter_start(struct scx_task_iter * iter)1304 static void scx_task_iter_start(struct scx_task_iter *iter)
1305 {
1306 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS &
1307 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1));
1308
1309 spin_lock_irq(&scx_tasks_lock);
1310
1311 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
1312 list_add(&iter->cursor.tasks_node, &scx_tasks);
1313 iter->locked = NULL;
1314 iter->cnt = 0;
1315 }
1316
__scx_task_iter_rq_unlock(struct scx_task_iter * iter)1317 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter)
1318 {
1319 if (iter->locked) {
1320 task_rq_unlock(iter->rq, iter->locked, &iter->rf);
1321 iter->locked = NULL;
1322 }
1323 }
1324
1325 /**
1326 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator
1327 * @iter: iterator to unlock
1328 *
1329 * If @iter is in the middle of a locked iteration, it may be locking the rq of
1330 * the task currently being visited in addition to scx_tasks_lock. Unlock both.
1331 * This function can be safely called anytime during an iteration.
1332 */
scx_task_iter_unlock(struct scx_task_iter * iter)1333 static void scx_task_iter_unlock(struct scx_task_iter *iter)
1334 {
1335 __scx_task_iter_rq_unlock(iter);
1336 spin_unlock_irq(&scx_tasks_lock);
1337 }
1338
1339 /**
1340 * scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock()
1341 * @iter: iterator to re-lock
1342 *
1343 * Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it
1344 * doesn't re-lock the rq lock. Must be called before other iterator operations.
1345 */
scx_task_iter_relock(struct scx_task_iter * iter)1346 static void scx_task_iter_relock(struct scx_task_iter *iter)
1347 {
1348 spin_lock_irq(&scx_tasks_lock);
1349 }
1350
1351 /**
1352 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock
1353 * @iter: iterator to exit
1354 *
1355 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held
1356 * which is released on return. If the iterator holds a task's rq lock, that rq
1357 * lock is also released. See scx_task_iter_start() for details.
1358 */
scx_task_iter_stop(struct scx_task_iter * iter)1359 static void scx_task_iter_stop(struct scx_task_iter *iter)
1360 {
1361 list_del_init(&iter->cursor.tasks_node);
1362 scx_task_iter_unlock(iter);
1363 }
1364
1365 /**
1366 * scx_task_iter_next - Next task
1367 * @iter: iterator to walk
1368 *
1369 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped
1370 * and re-acquired every %SCX_OPS_TASK_ITER_BATCH iterations to avoid causing
1371 * stalls by holding scx_tasks_lock for too long.
1372 */
scx_task_iter_next(struct scx_task_iter * iter)1373 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
1374 {
1375 struct list_head *cursor = &iter->cursor.tasks_node;
1376 struct sched_ext_entity *pos;
1377
1378 if (!(++iter->cnt % SCX_OPS_TASK_ITER_BATCH)) {
1379 scx_task_iter_unlock(iter);
1380 cond_resched();
1381 scx_task_iter_relock(iter);
1382 }
1383
1384 list_for_each_entry(pos, cursor, tasks_node) {
1385 if (&pos->tasks_node == &scx_tasks)
1386 return NULL;
1387 if (!(pos->flags & SCX_TASK_CURSOR)) {
1388 list_move(cursor, &pos->tasks_node);
1389 return container_of(pos, struct task_struct, scx);
1390 }
1391 }
1392
1393 /* can't happen, should always terminate at scx_tasks above */
1394 BUG();
1395 }
1396
1397 /**
1398 * scx_task_iter_next_locked - Next non-idle task with its rq locked
1399 * @iter: iterator to walk
1400 * @include_dead: Whether we should include dead tasks in the iteration
1401 *
1402 * Visit the non-idle task with its rq lock held. Allows callers to specify
1403 * whether they would like to filter out dead tasks. See scx_task_iter_start()
1404 * for details.
1405 */
scx_task_iter_next_locked(struct scx_task_iter * iter)1406 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter)
1407 {
1408 struct task_struct *p;
1409
1410 __scx_task_iter_rq_unlock(iter);
1411
1412 while ((p = scx_task_iter_next(iter))) {
1413 /*
1414 * scx_task_iter is used to prepare and move tasks into SCX
1415 * while loading the BPF scheduler and vice-versa while
1416 * unloading. The init_tasks ("swappers") should be excluded
1417 * from the iteration because:
1418 *
1419 * - It's unsafe to use __setschduler_prio() on an init_task to
1420 * determine the sched_class to use as it won't preserve its
1421 * idle_sched_class.
1422 *
1423 * - ops.init/exit_task() can easily be confused if called with
1424 * init_tasks as they, e.g., share PID 0.
1425 *
1426 * As init_tasks are never scheduled through SCX, they can be
1427 * skipped safely. Note that is_idle_task() which tests %PF_IDLE
1428 * doesn't work here:
1429 *
1430 * - %PF_IDLE may not be set for an init_task whose CPU hasn't
1431 * yet been onlined.
1432 *
1433 * - %PF_IDLE can be set on tasks that are not init_tasks. See
1434 * play_idle_precise() used by CONFIG_IDLE_INJECT.
1435 *
1436 * Test for idle_sched_class as only init_tasks are on it.
1437 */
1438 if (p->sched_class != &idle_sched_class)
1439 break;
1440 }
1441 if (!p)
1442 return NULL;
1443
1444 iter->rq = task_rq_lock(p, &iter->rf);
1445 iter->locked = p;
1446
1447 return p;
1448 }
1449
scx_ops_enable_state(void)1450 static enum scx_ops_enable_state scx_ops_enable_state(void)
1451 {
1452 return atomic_read(&scx_ops_enable_state_var);
1453 }
1454
1455 static enum scx_ops_enable_state
scx_ops_set_enable_state(enum scx_ops_enable_state to)1456 scx_ops_set_enable_state(enum scx_ops_enable_state to)
1457 {
1458 return atomic_xchg(&scx_ops_enable_state_var, to);
1459 }
1460
scx_ops_tryset_enable_state(enum scx_ops_enable_state to,enum scx_ops_enable_state from)1461 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to,
1462 enum scx_ops_enable_state from)
1463 {
1464 int from_v = from;
1465
1466 return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to);
1467 }
1468
scx_rq_bypassing(struct rq * rq)1469 static bool scx_rq_bypassing(struct rq *rq)
1470 {
1471 return unlikely(rq->scx.flags & SCX_RQ_BYPASSING);
1472 }
1473
1474 /**
1475 * wait_ops_state - Busy-wait the specified ops state to end
1476 * @p: target task
1477 * @opss: state to wait the end of
1478 *
1479 * Busy-wait for @p to transition out of @opss. This can only be used when the
1480 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
1481 * has load_acquire semantics to ensure that the caller can see the updates made
1482 * in the enqueueing and dispatching paths.
1483 */
wait_ops_state(struct task_struct * p,unsigned long opss)1484 static void wait_ops_state(struct task_struct *p, unsigned long opss)
1485 {
1486 do {
1487 cpu_relax();
1488 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
1489 }
1490
1491 /**
1492 * ops_cpu_valid - Verify a cpu number
1493 * @cpu: cpu number which came from a BPF ops
1494 * @where: extra information reported on error
1495 *
1496 * @cpu is a cpu number which came from the BPF scheduler and can be any value.
1497 * Verify that it is in range and one of the possible cpus. If invalid, trigger
1498 * an ops error.
1499 */
ops_cpu_valid(s32 cpu,const char * where)1500 static bool ops_cpu_valid(s32 cpu, const char *where)
1501 {
1502 if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) {
1503 return true;
1504 } else {
1505 scx_ops_error("invalid CPU %d%s%s", cpu,
1506 where ? " " : "", where ?: "");
1507 return false;
1508 }
1509 }
1510
1511 /**
1512 * ops_sanitize_err - Sanitize a -errno value
1513 * @ops_name: operation to blame on failure
1514 * @err: -errno value to sanitize
1515 *
1516 * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return
1517 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can
1518 * cause misbehaviors. For an example, a large negative return from
1519 * ops.init_task() triggers an oops when passed up the call chain because the
1520 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is
1521 * handled as a pointer.
1522 */
ops_sanitize_err(const char * ops_name,s32 err)1523 static int ops_sanitize_err(const char *ops_name, s32 err)
1524 {
1525 if (err < 0 && err >= -MAX_ERRNO)
1526 return err;
1527
1528 scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err);
1529 return -EPROTO;
1530 }
1531
run_deferred(struct rq * rq)1532 static void run_deferred(struct rq *rq)
1533 {
1534 process_ddsp_deferred_locals(rq);
1535 }
1536
1537 #ifdef CONFIG_SMP
deferred_bal_cb_workfn(struct rq * rq)1538 static void deferred_bal_cb_workfn(struct rq *rq)
1539 {
1540 run_deferred(rq);
1541 }
1542 #endif
1543
deferred_irq_workfn(struct irq_work * irq_work)1544 static void deferred_irq_workfn(struct irq_work *irq_work)
1545 {
1546 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work);
1547
1548 raw_spin_rq_lock(rq);
1549 run_deferred(rq);
1550 raw_spin_rq_unlock(rq);
1551 }
1552
1553 /**
1554 * schedule_deferred - Schedule execution of deferred actions on an rq
1555 * @rq: target rq
1556 *
1557 * Schedule execution of deferred actions on @rq. Must be called with @rq
1558 * locked. Deferred actions are executed with @rq locked but unpinned, and thus
1559 * can unlock @rq to e.g. migrate tasks to other rqs.
1560 */
schedule_deferred(struct rq * rq)1561 static void schedule_deferred(struct rq *rq)
1562 {
1563 lockdep_assert_rq_held(rq);
1564
1565 #ifdef CONFIG_SMP
1566 /*
1567 * If in the middle of waking up a task, task_woken_scx() will be called
1568 * afterwards which will then run the deferred actions, no need to
1569 * schedule anything.
1570 */
1571 if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
1572 return;
1573
1574 /*
1575 * If in balance, the balance callbacks will be called before rq lock is
1576 * released. Schedule one.
1577 */
1578 if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
1579 queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
1580 deferred_bal_cb_workfn);
1581 return;
1582 }
1583 #endif
1584 /*
1585 * No scheduler hooks available. Queue an irq work. They are executed on
1586 * IRQ re-enable which may take a bit longer than the scheduler hooks.
1587 * The above WAKEUP and BALANCE paths should cover most of the cases and
1588 * the time to IRQ re-enable shouldn't be long.
1589 */
1590 irq_work_queue(&rq->scx.deferred_irq_work);
1591 }
1592
1593 /**
1594 * touch_core_sched - Update timestamp used for core-sched task ordering
1595 * @rq: rq to read clock from, must be locked
1596 * @p: task to update the timestamp for
1597 *
1598 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
1599 * implement global or local-DSQ FIFO ordering for core-sched. Should be called
1600 * when a task becomes runnable and its turn on the CPU ends (e.g. slice
1601 * exhaustion).
1602 */
touch_core_sched(struct rq * rq,struct task_struct * p)1603 static void touch_core_sched(struct rq *rq, struct task_struct *p)
1604 {
1605 lockdep_assert_rq_held(rq);
1606
1607 #ifdef CONFIG_SCHED_CORE
1608 /*
1609 * It's okay to update the timestamp spuriously. Use
1610 * sched_core_disabled() which is cheaper than enabled().
1611 *
1612 * As this is used to determine ordering between tasks of sibling CPUs,
1613 * it may be better to use per-core dispatch sequence instead.
1614 */
1615 if (!sched_core_disabled())
1616 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq));
1617 #endif
1618 }
1619
1620 /**
1621 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch
1622 * @rq: rq to read clock from, must be locked
1623 * @p: task being dispatched
1624 *
1625 * If the BPF scheduler implements custom core-sched ordering via
1626 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
1627 * ordering within each local DSQ. This function is called from dispatch paths
1628 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
1629 */
touch_core_sched_dispatch(struct rq * rq,struct task_struct * p)1630 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
1631 {
1632 lockdep_assert_rq_held(rq);
1633
1634 #ifdef CONFIG_SCHED_CORE
1635 if (SCX_HAS_OP(core_sched_before))
1636 touch_core_sched(rq, p);
1637 #endif
1638 }
1639
update_curr_scx(struct rq * rq)1640 static void update_curr_scx(struct rq *rq)
1641 {
1642 struct task_struct *curr = rq->curr;
1643 s64 delta_exec;
1644
1645 delta_exec = update_curr_common(rq);
1646 if (unlikely(delta_exec <= 0))
1647 return;
1648
1649 if (curr->scx.slice != SCX_SLICE_INF) {
1650 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec);
1651 if (!curr->scx.slice)
1652 touch_core_sched(rq, curr);
1653 }
1654 }
1655
scx_dsq_priq_less(struct rb_node * node_a,const struct rb_node * node_b)1656 static bool scx_dsq_priq_less(struct rb_node *node_a,
1657 const struct rb_node *node_b)
1658 {
1659 const struct task_struct *a =
1660 container_of(node_a, struct task_struct, scx.dsq_priq);
1661 const struct task_struct *b =
1662 container_of(node_b, struct task_struct, scx.dsq_priq);
1663
1664 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime);
1665 }
1666
dsq_mod_nr(struct scx_dispatch_q * dsq,s32 delta)1667 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
1668 {
1669 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
1670 WRITE_ONCE(dsq->nr, dsq->nr + delta);
1671 }
1672
dispatch_enqueue(struct scx_dispatch_q * dsq,struct task_struct * p,u64 enq_flags)1673 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p,
1674 u64 enq_flags)
1675 {
1676 bool is_local = dsq->id == SCX_DSQ_LOCAL;
1677
1678 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1679 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) ||
1680 !RB_EMPTY_NODE(&p->scx.dsq_priq));
1681
1682 if (!is_local) {
1683 raw_spin_lock(&dsq->lock);
1684 if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
1685 scx_ops_error("attempting to dispatch to a destroyed dsq");
1686 /* fall back to the global dsq */
1687 raw_spin_unlock(&dsq->lock);
1688 dsq = find_global_dsq(p);
1689 raw_spin_lock(&dsq->lock);
1690 }
1691 }
1692
1693 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) &&
1694 (enq_flags & SCX_ENQ_DSQ_PRIQ))) {
1695 /*
1696 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
1697 * their FIFO queues. To avoid confusion and accidentally
1698 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we
1699 * disallow any internal DSQ from doing vtime ordering of
1700 * tasks.
1701 */
1702 scx_ops_error("cannot use vtime ordering for built-in DSQs");
1703 enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
1704 }
1705
1706 if (enq_flags & SCX_ENQ_DSQ_PRIQ) {
1707 struct rb_node *rbp;
1708
1709 /*
1710 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
1711 * linked to both the rbtree and list on PRIQs, this can only be
1712 * tested easily when adding the first task.
1713 */
1714 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
1715 nldsq_next_task(dsq, NULL, false)))
1716 scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks",
1717 dsq->id);
1718
1719 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
1720 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
1721
1722 /*
1723 * Find the previous task and insert after it on the list so
1724 * that @dsq->list is vtime ordered.
1725 */
1726 rbp = rb_prev(&p->scx.dsq_priq);
1727 if (rbp) {
1728 struct task_struct *prev =
1729 container_of(rbp, struct task_struct,
1730 scx.dsq_priq);
1731 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
1732 } else {
1733 list_add(&p->scx.dsq_list.node, &dsq->list);
1734 }
1735 } else {
1736 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */
1737 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
1738 scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
1739 dsq->id);
1740
1741 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
1742 list_add(&p->scx.dsq_list.node, &dsq->list);
1743 else
1744 list_add_tail(&p->scx.dsq_list.node, &dsq->list);
1745 }
1746
1747 /* seq records the order tasks are queued, used by BPF DSQ iterator */
1748 dsq->seq++;
1749 p->scx.dsq_seq = dsq->seq;
1750
1751 dsq_mod_nr(dsq, 1);
1752 p->scx.dsq = dsq;
1753
1754 /*
1755 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
1756 * direct dispatch path, but we clear them here because the direct
1757 * dispatch verdict may be overridden on the enqueue path during e.g.
1758 * bypass.
1759 */
1760 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
1761 p->scx.ddsp_enq_flags = 0;
1762
1763 /*
1764 * We're transitioning out of QUEUEING or DISPATCHING. store_release to
1765 * match waiters' load_acquire.
1766 */
1767 if (enq_flags & SCX_ENQ_CLEAR_OPSS)
1768 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1769
1770 if (is_local) {
1771 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
1772 bool preempt = false;
1773
1774 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr &&
1775 rq->curr->sched_class == &ext_sched_class) {
1776 rq->curr->scx.slice = 0;
1777 preempt = true;
1778 }
1779
1780 if (preempt || sched_class_above(&ext_sched_class,
1781 rq->curr->sched_class))
1782 resched_curr(rq);
1783 } else {
1784 raw_spin_unlock(&dsq->lock);
1785 }
1786 }
1787
task_unlink_from_dsq(struct task_struct * p,struct scx_dispatch_q * dsq)1788 static void task_unlink_from_dsq(struct task_struct *p,
1789 struct scx_dispatch_q *dsq)
1790 {
1791 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node));
1792
1793 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) {
1794 rb_erase(&p->scx.dsq_priq, &dsq->priq);
1795 RB_CLEAR_NODE(&p->scx.dsq_priq);
1796 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ;
1797 }
1798
1799 list_del_init(&p->scx.dsq_list.node);
1800 dsq_mod_nr(dsq, -1);
1801 }
1802
dispatch_dequeue(struct rq * rq,struct task_struct * p)1803 static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
1804 {
1805 struct scx_dispatch_q *dsq = p->scx.dsq;
1806 bool is_local = dsq == &rq->scx.local_dsq;
1807
1808 if (!dsq) {
1809 /*
1810 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
1811 * Unlinking is all that's needed to cancel.
1812 */
1813 if (unlikely(!list_empty(&p->scx.dsq_list.node)))
1814 list_del_init(&p->scx.dsq_list.node);
1815
1816 /*
1817 * When dispatching directly from the BPF scheduler to a local
1818 * DSQ, the task isn't associated with any DSQ but
1819 * @p->scx.holding_cpu may be set under the protection of
1820 * %SCX_OPSS_DISPATCHING.
1821 */
1822 if (p->scx.holding_cpu >= 0)
1823 p->scx.holding_cpu = -1;
1824
1825 return;
1826 }
1827
1828 if (!is_local)
1829 raw_spin_lock(&dsq->lock);
1830
1831 /*
1832 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
1833 * change underneath us.
1834 */
1835 if (p->scx.holding_cpu < 0) {
1836 /* @p must still be on @dsq, dequeue */
1837 task_unlink_from_dsq(p, dsq);
1838 } else {
1839 /*
1840 * We're racing against dispatch_to_local_dsq() which already
1841 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the
1842 * holding_cpu which tells dispatch_to_local_dsq() that it lost
1843 * the race.
1844 */
1845 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node));
1846 p->scx.holding_cpu = -1;
1847 }
1848 p->scx.dsq = NULL;
1849
1850 if (!is_local)
1851 raw_spin_unlock(&dsq->lock);
1852 }
1853
find_dsq_for_dispatch(struct rq * rq,u64 dsq_id,struct task_struct * p)1854 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id,
1855 struct task_struct *p)
1856 {
1857 struct scx_dispatch_q *dsq;
1858
1859 if (dsq_id == SCX_DSQ_LOCAL)
1860 return &rq->scx.local_dsq;
1861
1862 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
1863 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
1864
1865 if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
1866 return find_global_dsq(p);
1867
1868 return &cpu_rq(cpu)->scx.local_dsq;
1869 }
1870
1871 if (dsq_id == SCX_DSQ_GLOBAL)
1872 dsq = find_global_dsq(p);
1873 else
1874 dsq = find_user_dsq(dsq_id);
1875
1876 if (unlikely(!dsq)) {
1877 scx_ops_error("non-existent DSQ 0x%llx for %s[%d]",
1878 dsq_id, p->comm, p->pid);
1879 return find_global_dsq(p);
1880 }
1881
1882 return dsq;
1883 }
1884
mark_direct_dispatch(struct task_struct * ddsp_task,struct task_struct * p,u64 dsq_id,u64 enq_flags)1885 static void mark_direct_dispatch(struct task_struct *ddsp_task,
1886 struct task_struct *p, u64 dsq_id,
1887 u64 enq_flags)
1888 {
1889 /*
1890 * Mark that dispatch already happened from ops.select_cpu() or
1891 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
1892 * which can never match a valid task pointer.
1893 */
1894 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
1895
1896 /* @p must match the task on the enqueue path */
1897 if (unlikely(p != ddsp_task)) {
1898 if (IS_ERR(ddsp_task))
1899 scx_ops_error("%s[%d] already direct-dispatched",
1900 p->comm, p->pid);
1901 else
1902 scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
1903 ddsp_task->comm, ddsp_task->pid,
1904 p->comm, p->pid);
1905 return;
1906 }
1907
1908 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
1909 WARN_ON_ONCE(p->scx.ddsp_enq_flags);
1910
1911 p->scx.ddsp_dsq_id = dsq_id;
1912 p->scx.ddsp_enq_flags = enq_flags;
1913 }
1914
direct_dispatch(struct task_struct * p,u64 enq_flags)1915 static void direct_dispatch(struct task_struct *p, u64 enq_flags)
1916 {
1917 struct rq *rq = task_rq(p);
1918 struct scx_dispatch_q *dsq =
1919 find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
1920
1921 touch_core_sched_dispatch(rq, p);
1922
1923 p->scx.ddsp_enq_flags |= enq_flags;
1924
1925 /*
1926 * We are in the enqueue path with @rq locked and pinned, and thus can't
1927 * double lock a remote rq and enqueue to its local DSQ. For
1928 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
1929 * the enqueue so that it's executed when @rq can be unlocked.
1930 */
1931 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) {
1932 unsigned long opss;
1933
1934 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK;
1935
1936 switch (opss & SCX_OPSS_STATE_MASK) {
1937 case SCX_OPSS_NONE:
1938 break;
1939 case SCX_OPSS_QUEUEING:
1940 /*
1941 * As @p was never passed to the BPF side, _release is
1942 * not strictly necessary. Still do it for consistency.
1943 */
1944 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1945 break;
1946 default:
1947 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
1948 p->comm, p->pid, opss);
1949 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1950 break;
1951 }
1952
1953 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1954 list_add_tail(&p->scx.dsq_list.node,
1955 &rq->scx.ddsp_deferred_locals);
1956 schedule_deferred(rq);
1957 return;
1958 }
1959
1960 dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
1961 }
1962
scx_rq_online(struct rq * rq)1963 static bool scx_rq_online(struct rq *rq)
1964 {
1965 /*
1966 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
1967 * the online state as seen from the BPF scheduler. cpu_active() test
1968 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
1969 * stay set until the current scheduling operation is complete even if
1970 * we aren't locking @rq.
1971 */
1972 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq)));
1973 }
1974
do_enqueue_task(struct rq * rq,struct task_struct * p,u64 enq_flags,int sticky_cpu)1975 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
1976 int sticky_cpu)
1977 {
1978 struct task_struct **ddsp_taskp;
1979 unsigned long qseq;
1980
1981 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
1982
1983 /* rq migration */
1984 if (sticky_cpu == cpu_of(rq))
1985 goto local_norefill;
1986
1987 /*
1988 * If !scx_rq_online(), we already told the BPF scheduler that the CPU
1989 * is offline and are just running the hotplug path. Don't bother the
1990 * BPF scheduler.
1991 */
1992 if (!scx_rq_online(rq))
1993 goto local;
1994
1995 if (scx_rq_bypassing(rq))
1996 goto global;
1997
1998 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
1999 goto direct;
2000
2001 /* see %SCX_OPS_ENQ_EXITING */
2002 if (!static_branch_unlikely(&scx_ops_enq_exiting) &&
2003 unlikely(p->flags & PF_EXITING))
2004 goto local;
2005
2006 if (!SCX_HAS_OP(enqueue))
2007 goto global;
2008
2009 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
2010 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
2011
2012 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
2013 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
2014
2015 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
2016 WARN_ON_ONCE(*ddsp_taskp);
2017 *ddsp_taskp = p;
2018
2019 SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags);
2020
2021 *ddsp_taskp = NULL;
2022 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
2023 goto direct;
2024
2025 /*
2026 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or
2027 * dequeue may be waiting. The store_release matches their load_acquire.
2028 */
2029 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
2030 return;
2031
2032 direct:
2033 direct_dispatch(p, enq_flags);
2034 return;
2035
2036 local:
2037 /*
2038 * For task-ordering, slice refill must be treated as implying the end
2039 * of the current slice. Otherwise, the longer @p stays on the CPU, the
2040 * higher priority it becomes from scx_prio_less()'s POV.
2041 */
2042 touch_core_sched(rq, p);
2043 p->scx.slice = SCX_SLICE_DFL;
2044 local_norefill:
2045 dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags);
2046 return;
2047
2048 global:
2049 touch_core_sched(rq, p); /* see the comment in local: */
2050 p->scx.slice = SCX_SLICE_DFL;
2051 dispatch_enqueue(find_global_dsq(p), p, enq_flags);
2052 }
2053
task_runnable(const struct task_struct * p)2054 static bool task_runnable(const struct task_struct *p)
2055 {
2056 return !list_empty(&p->scx.runnable_node);
2057 }
2058
set_task_runnable(struct rq * rq,struct task_struct * p)2059 static void set_task_runnable(struct rq *rq, struct task_struct *p)
2060 {
2061 lockdep_assert_rq_held(rq);
2062
2063 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) {
2064 p->scx.runnable_at = jiffies;
2065 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT;
2066 }
2067
2068 /*
2069 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being
2070 * appened to the runnable_list.
2071 */
2072 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
2073 }
2074
clr_task_runnable(struct task_struct * p,bool reset_runnable_at)2075 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
2076 {
2077 list_del_init(&p->scx.runnable_node);
2078 if (reset_runnable_at)
2079 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
2080 }
2081
enqueue_task_scx(struct rq * rq,struct task_struct * p,int enq_flags)2082 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
2083 {
2084 bool consider_migration = false;
2085 int sticky_cpu = p->scx.sticky_cpu;
2086
2087 if (enq_flags & ENQUEUE_WAKEUP)
2088 rq->scx.flags |= SCX_RQ_IN_WAKEUP;
2089
2090 enq_flags |= rq->scx.extra_enq_flags;
2091
2092 if (sticky_cpu >= 0)
2093 p->scx.sticky_cpu = -1;
2094
2095 /*
2096 * Restoring a running task will be immediately followed by
2097 * set_next_task_scx() which expects the task to not be on the BPF
2098 * scheduler as tasks can only start running through local DSQs. Force
2099 * direct-dispatch into the local DSQ by setting the sticky_cpu.
2100 */
2101 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
2102 sticky_cpu = cpu_of(rq);
2103
2104 if (p->scx.flags & SCX_TASK_QUEUED) {
2105 WARN_ON_ONCE(!task_runnable(p));
2106 goto out;
2107 }
2108
2109 set_task_runnable(rq, p);
2110 p->scx.flags |= SCX_TASK_QUEUED;
2111 rq->scx.nr_running++;
2112 add_nr_running(rq, 1);
2113
2114 if (SCX_HAS_OP(runnable)) {
2115 trace_android_vh_scx_ops_consider_migration(&consider_migration);
2116 if (consider_migration || !task_on_rq_migrating(p))
2117 SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags);
2118 }
2119
2120 if (enq_flags & SCX_ENQ_WAKEUP)
2121 touch_core_sched(rq, p);
2122
2123 do_enqueue_task(rq, p, enq_flags, sticky_cpu);
2124 out:
2125 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
2126 }
2127
ops_dequeue(struct task_struct * p,u64 deq_flags)2128 static void ops_dequeue(struct task_struct *p, u64 deq_flags)
2129 {
2130 unsigned long opss;
2131
2132 /* dequeue is always temporary, don't reset runnable_at */
2133 clr_task_runnable(p, false);
2134
2135 /* acquire ensures that we see the preceding updates on QUEUED */
2136 opss = atomic_long_read_acquire(&p->scx.ops_state);
2137
2138 switch (opss & SCX_OPSS_STATE_MASK) {
2139 case SCX_OPSS_NONE:
2140 break;
2141 case SCX_OPSS_QUEUEING:
2142 /*
2143 * QUEUEING is started and finished while holding @p's rq lock.
2144 * As we're holding the rq lock now, we shouldn't see QUEUEING.
2145 */
2146 BUG();
2147 case SCX_OPSS_QUEUED:
2148 if (SCX_HAS_OP(dequeue))
2149 SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags);
2150
2151 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2152 SCX_OPSS_NONE))
2153 break;
2154 fallthrough;
2155 case SCX_OPSS_DISPATCHING:
2156 /*
2157 * If @p is being dispatched from the BPF scheduler to a DSQ,
2158 * wait for the transfer to complete so that @p doesn't get
2159 * added to its DSQ after dequeueing is complete.
2160 *
2161 * As we're waiting on DISPATCHING with the rq locked, the
2162 * dispatching side shouldn't try to lock the rq while
2163 * DISPATCHING is set. See dispatch_to_local_dsq().
2164 *
2165 * DISPATCHING shouldn't have qseq set and control can reach
2166 * here with NONE @opss from the above QUEUED case block.
2167 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
2168 */
2169 wait_ops_state(p, SCX_OPSS_DISPATCHING);
2170 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
2171 break;
2172 }
2173 }
2174
dequeue_task_scx(struct rq * rq,struct task_struct * p,int deq_flags)2175 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
2176 {
2177 bool consider_migration = false;
2178
2179 if (!(p->scx.flags & SCX_TASK_QUEUED)) {
2180 WARN_ON_ONCE(task_runnable(p));
2181 return true;
2182 }
2183
2184 ops_dequeue(p, deq_flags);
2185
2186 /*
2187 * A currently running task which is going off @rq first gets dequeued
2188 * and then stops running. As we want running <-> stopping transitions
2189 * to be contained within runnable <-> quiescent transitions, trigger
2190 * ->stopping() early here instead of in put_prev_task_scx().
2191 *
2192 * @p may go through multiple stopping <-> running transitions between
2193 * here and put_prev_task_scx() if task attribute changes occur while
2194 * balance_scx() leaves @rq unlocked. However, they don't contain any
2195 * information meaningful to the BPF scheduler and can be suppressed by
2196 * skipping the callbacks if the task is !QUEUED.
2197 */
2198 if (SCX_HAS_OP(stopping) && task_current(rq, p)) {
2199 update_curr_scx(rq);
2200 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false);
2201 }
2202
2203 if (SCX_HAS_OP(quiescent)) {
2204 trace_android_vh_scx_ops_consider_migration(&consider_migration);
2205 if (consider_migration || !task_on_rq_migrating(p))
2206 SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags);
2207 }
2208
2209 if (deq_flags & SCX_DEQ_SLEEP)
2210 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
2211 else
2212 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
2213
2214 p->scx.flags &= ~SCX_TASK_QUEUED;
2215 rq->scx.nr_running--;
2216 sub_nr_running(rq, 1);
2217
2218 dispatch_dequeue(rq, p);
2219 return true;
2220 }
2221
yield_task_scx(struct rq * rq)2222 static void yield_task_scx(struct rq *rq)
2223 {
2224 struct task_struct *p = rq->curr;
2225
2226 if (SCX_HAS_OP(yield))
2227 SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL);
2228 else
2229 p->scx.slice = 0;
2230 }
2231
yield_to_task_scx(struct rq * rq,struct task_struct * to)2232 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
2233 {
2234 struct task_struct *from = rq->curr;
2235
2236 if (SCX_HAS_OP(yield))
2237 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to);
2238 else
2239 return false;
2240 }
2241
move_local_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct scx_dispatch_q * src_dsq,struct rq * dst_rq)2242 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
2243 struct scx_dispatch_q *src_dsq,
2244 struct rq *dst_rq)
2245 {
2246 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq;
2247
2248 /* @dsq is locked and @p is on @dst_rq */
2249 lockdep_assert_held(&src_dsq->lock);
2250 lockdep_assert_rq_held(dst_rq);
2251
2252 WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2253
2254 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
2255 list_add(&p->scx.dsq_list.node, &dst_dsq->list);
2256 else
2257 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list);
2258
2259 dsq_mod_nr(dst_dsq, 1);
2260 p->scx.dsq = dst_dsq;
2261 }
2262
2263 #ifdef CONFIG_SMP
2264 /**
2265 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ
2266 * @p: task to move
2267 * @enq_flags: %SCX_ENQ_*
2268 * @src_rq: rq to move the task from, locked on entry, released on return
2269 * @dst_rq: rq to move the task into, locked on return
2270 *
2271 * Move @p which is currently on @src_rq to @dst_rq's local DSQ.
2272 */
move_remote_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct rq * src_rq,struct rq * dst_rq)2273 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
2274 struct rq *src_rq, struct rq *dst_rq)
2275 {
2276 lockdep_assert_rq_held(src_rq);
2277
2278 /* the following marks @p MIGRATING which excludes dequeue */
2279 deactivate_task(src_rq, p, 0);
2280 set_task_cpu(p, cpu_of(dst_rq));
2281 p->scx.sticky_cpu = cpu_of(dst_rq);
2282
2283 raw_spin_rq_unlock(src_rq);
2284 raw_spin_rq_lock(dst_rq);
2285
2286 /*
2287 * We want to pass scx-specific enq_flags but activate_task() will
2288 * truncate the upper 32 bit. As we own @rq, we can pass them through
2289 * @rq->scx.extra_enq_flags instead.
2290 */
2291 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr));
2292 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags);
2293 dst_rq->scx.extra_enq_flags = enq_flags;
2294 activate_task(dst_rq, p, 0);
2295 dst_rq->scx.extra_enq_flags = 0;
2296 }
2297
2298 /*
2299 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
2300 * differences:
2301 *
2302 * - is_cpu_allowed() asks "Can this task run on this CPU?" while
2303 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
2304 * this CPU?".
2305 *
2306 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task
2307 * must be allowed to finish on the CPU that it's currently on regardless of
2308 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
2309 * BPF scheduler shouldn't attempt to migrate a task which has migration
2310 * disabled.
2311 *
2312 * - The BPF scheduler is bypassed while the rq is offline and we can always say
2313 * no to the BPF scheduler initiated migrations while offline.
2314 *
2315 * The caller must ensure that @p and @rq are on different CPUs.
2316 */
task_can_run_on_remote_rq(struct task_struct * p,struct rq * rq,bool trigger_error)2317 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq,
2318 bool trigger_error)
2319 {
2320 int cpu = cpu_of(rq);
2321
2322 SCHED_WARN_ON(task_cpu(p) == cpu);
2323
2324 /*
2325 * If @p has migration disabled, @p->cpus_ptr is updated to contain only
2326 * the pinned CPU in migrate_disable_switch() while @p is being switched
2327 * out. However, put_prev_task_scx() is called before @p->cpus_ptr is
2328 * updated and thus another CPU may see @p on a DSQ inbetween leading to
2329 * @p passing the below task_allowed_on_cpu() check while migration is
2330 * disabled.
2331 *
2332 * Test the migration disabled state first as the race window is narrow
2333 * and the BPF scheduler failing to check migration disabled state can
2334 * easily be masked if task_allowed_on_cpu() is done first.
2335 */
2336 if (unlikely(is_migration_disabled(p))) {
2337 if (trigger_error)
2338 scx_ops_error("SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d",
2339 p->comm, p->pid, task_cpu(p), cpu);
2340 return false;
2341 }
2342
2343 /*
2344 * We don't require the BPF scheduler to avoid dispatching to offline
2345 * CPUs mostly for convenience but also because CPUs can go offline
2346 * between scx_bpf_dispatch() calls and here. Trigger error iff the
2347 * picked CPU is outside the allowed mask.
2348 */
2349 if (!task_allowed_on_cpu(p, cpu)) {
2350 if (trigger_error)
2351 scx_ops_error("SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]",
2352 cpu, p->comm, p->pid);
2353 return false;
2354 }
2355
2356 if (!scx_rq_online(rq))
2357 return false;
2358
2359 return true;
2360 }
2361
2362 /**
2363 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq
2364 * @p: target task
2365 * @dsq: locked DSQ @p is currently on
2366 * @src_rq: rq @p is currently on, stable with @dsq locked
2367 *
2368 * Called with @dsq locked but no rq's locked. We want to move @p to a different
2369 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is
2370 * required when transferring into a local DSQ. Even when transferring into a
2371 * non-local DSQ, it's better to use the same mechanism to protect against
2372 * dequeues and maintain the invariant that @p->scx.dsq can only change while
2373 * @src_rq is locked, which e.g. scx_dump_task() depends on.
2374 *
2375 * We want to grab @src_rq but that can deadlock if we try while locking @dsq,
2376 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As
2377 * this may race with dequeue, which can't drop the rq lock or fail, do a little
2378 * dancing from our side.
2379 *
2380 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets
2381 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu
2382 * would be cleared to -1. While other cpus may have updated it to different
2383 * values afterwards, as this operation can't be preempted or recurse, the
2384 * holding_cpu can never become this CPU again before we're done. Thus, we can
2385 * tell whether we lost to dequeue by testing whether the holding_cpu still
2386 * points to this CPU. See dispatch_dequeue() for the counterpart.
2387 *
2388 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is
2389 * still valid. %false if lost to dequeue.
2390 */
unlink_dsq_and_lock_src_rq(struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * src_rq)2391 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p,
2392 struct scx_dispatch_q *dsq,
2393 struct rq *src_rq)
2394 {
2395 s32 cpu = raw_smp_processor_id();
2396
2397 lockdep_assert_held(&dsq->lock);
2398
2399 WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2400 task_unlink_from_dsq(p, dsq);
2401 p->scx.holding_cpu = cpu;
2402
2403 raw_spin_unlock(&dsq->lock);
2404 raw_spin_rq_lock(src_rq);
2405
2406 /* task_rq couldn't have changed if we're still the holding cpu */
2407 return likely(p->scx.holding_cpu == cpu) &&
2408 !WARN_ON_ONCE(src_rq != task_rq(p));
2409 }
2410
consume_remote_task(struct rq * this_rq,struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * src_rq)2411 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p,
2412 struct scx_dispatch_q *dsq, struct rq *src_rq)
2413 {
2414 raw_spin_rq_unlock(this_rq);
2415
2416 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) {
2417 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq);
2418 return true;
2419 } else {
2420 raw_spin_rq_unlock(src_rq);
2421 raw_spin_rq_lock(this_rq);
2422 return false;
2423 }
2424 }
2425 #else /* CONFIG_SMP */
move_remote_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct rq * src_rq,struct rq * dst_rq)2426 static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); }
task_can_run_on_remote_rq(struct task_struct * p,struct rq * rq,bool trigger_error)2427 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; }
consume_remote_task(struct rq * this_rq,struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * task_rq)2428 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; }
2429 #endif /* CONFIG_SMP */
2430
2431 /**
2432 * move_task_between_dsqs() - Move a task from one DSQ to another
2433 * @p: target task
2434 * @enq_flags: %SCX_ENQ_*
2435 * @src_dsq: DSQ @p is currently on, must not be a local DSQ
2436 * @dst_dsq: DSQ @p is being moved to, can be any DSQ
2437 *
2438 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local
2439 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq
2440 * will change. As @p's task_rq is locked, this function doesn't need to use the
2441 * holding_cpu mechanism.
2442 *
2443 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the
2444 * return value, is locked.
2445 */
move_task_between_dsqs(struct task_struct * p,u64 enq_flags,struct scx_dispatch_q * src_dsq,struct scx_dispatch_q * dst_dsq)2446 static struct rq *move_task_between_dsqs(struct task_struct *p, u64 enq_flags,
2447 struct scx_dispatch_q *src_dsq,
2448 struct scx_dispatch_q *dst_dsq)
2449 {
2450 struct rq *src_rq = task_rq(p), *dst_rq;
2451
2452 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL);
2453 lockdep_assert_held(&src_dsq->lock);
2454 lockdep_assert_rq_held(src_rq);
2455
2456 if (dst_dsq->id == SCX_DSQ_LOCAL) {
2457 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
2458 if (src_rq != dst_rq &&
2459 unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) {
2460 dst_dsq = find_global_dsq(p);
2461 dst_rq = src_rq;
2462 }
2463 } else {
2464 /* no need to migrate if destination is a non-local DSQ */
2465 dst_rq = src_rq;
2466 }
2467
2468 /*
2469 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
2470 * CPU, @p will be migrated.
2471 */
2472 if (dst_dsq->id == SCX_DSQ_LOCAL) {
2473 /* @p is going from a non-local DSQ to a local DSQ */
2474 if (src_rq == dst_rq) {
2475 task_unlink_from_dsq(p, src_dsq);
2476 move_local_task_to_local_dsq(p, enq_flags,
2477 src_dsq, dst_rq);
2478 raw_spin_unlock(&src_dsq->lock);
2479 } else {
2480 raw_spin_unlock(&src_dsq->lock);
2481 move_remote_task_to_local_dsq(p, enq_flags,
2482 src_rq, dst_rq);
2483 }
2484 } else {
2485 /*
2486 * @p is going from a non-local DSQ to a non-local DSQ. As
2487 * $src_dsq is already locked, do an abbreviated dequeue.
2488 */
2489 task_unlink_from_dsq(p, src_dsq);
2490 p->scx.dsq = NULL;
2491 raw_spin_unlock(&src_dsq->lock);
2492
2493 dispatch_enqueue(dst_dsq, p, enq_flags);
2494 }
2495
2496 return dst_rq;
2497 }
2498
consume_dispatch_q(struct rq * rq,struct scx_dispatch_q * dsq)2499 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq)
2500 {
2501 struct task_struct *p;
2502 retry:
2503 /*
2504 * The caller can't expect to successfully consume a task if the task's
2505 * addition to @dsq isn't guaranteed to be visible somehow. Test
2506 * @dsq->list without locking and skip if it seems empty.
2507 */
2508 if (list_empty(&dsq->list))
2509 return false;
2510
2511 raw_spin_lock(&dsq->lock);
2512
2513 nldsq_for_each_task(p, dsq) {
2514 struct rq *task_rq = task_rq(p);
2515
2516 if (rq == task_rq) {
2517 task_unlink_from_dsq(p, dsq);
2518 move_local_task_to_local_dsq(p, 0, dsq, rq);
2519 raw_spin_unlock(&dsq->lock);
2520 return true;
2521 }
2522
2523 if (task_can_run_on_remote_rq(p, rq, false)) {
2524 if (likely(consume_remote_task(rq, p, dsq, task_rq)))
2525 return true;
2526 goto retry;
2527 }
2528 }
2529
2530 raw_spin_unlock(&dsq->lock);
2531 return false;
2532 }
2533
consume_global_dsq(struct rq * rq)2534 static bool consume_global_dsq(struct rq *rq)
2535 {
2536 int node = cpu_to_node(cpu_of(rq));
2537
2538 return consume_dispatch_q(rq, global_dsqs[node]);
2539 }
2540
2541 /**
2542 * dispatch_to_local_dsq - Dispatch a task to a local dsq
2543 * @rq: current rq which is locked
2544 * @dst_dsq: destination DSQ
2545 * @p: task to dispatch
2546 * @enq_flags: %SCX_ENQ_*
2547 *
2548 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local
2549 * DSQ. This function performs all the synchronization dancing needed because
2550 * local DSQs are protected with rq locks.
2551 *
2552 * The caller must have exclusive ownership of @p (e.g. through
2553 * %SCX_OPSS_DISPATCHING).
2554 */
dispatch_to_local_dsq(struct rq * rq,struct scx_dispatch_q * dst_dsq,struct task_struct * p,u64 enq_flags)2555 static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq,
2556 struct task_struct *p, u64 enq_flags)
2557 {
2558 struct rq *src_rq = task_rq(p);
2559 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
2560 #ifdef CONFIG_SMP
2561 struct rq *locked_rq = rq;
2562 #endif
2563
2564 /*
2565 * We're synchronized against dequeue through DISPATCHING. As @p can't
2566 * be dequeued, its task_rq and cpus_allowed are stable too.
2567 *
2568 * If dispatching to @rq that @p is already on, no lock dancing needed.
2569 */
2570 if (rq == src_rq && rq == dst_rq) {
2571 dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2572 return;
2573 }
2574
2575 #ifdef CONFIG_SMP
2576 if (src_rq != dst_rq &&
2577 unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) {
2578 dispatch_enqueue(find_global_dsq(p), p,
2579 enq_flags | SCX_ENQ_CLEAR_OPSS);
2580 return;
2581 }
2582
2583 /*
2584 * @p is on a possibly remote @src_rq which we need to lock to move the
2585 * task. If dequeue is in progress, it'd be locking @src_rq and waiting
2586 * on DISPATCHING, so we can't grab @src_rq lock while holding
2587 * DISPATCHING.
2588 *
2589 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that
2590 * we're moving from a DSQ and use the same mechanism - mark the task
2591 * under transfer with holding_cpu, release DISPATCHING and then follow
2592 * the same protocol. See unlink_dsq_and_lock_src_rq().
2593 */
2594 p->scx.holding_cpu = raw_smp_processor_id();
2595
2596 /* store_release ensures that dequeue sees the above */
2597 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
2598
2599 /* switch to @src_rq lock */
2600 if (locked_rq != src_rq) {
2601 raw_spin_rq_unlock(locked_rq);
2602 locked_rq = src_rq;
2603 raw_spin_rq_lock(src_rq);
2604 }
2605
2606 /* task_rq couldn't have changed if we're still the holding cpu */
2607 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) &&
2608 !WARN_ON_ONCE(src_rq != task_rq(p))) {
2609 /*
2610 * If @p is staying on the same rq, there's no need to go
2611 * through the full deactivate/activate cycle. Optimize by
2612 * abbreviating move_remote_task_to_local_dsq().
2613 */
2614 if (src_rq == dst_rq) {
2615 p->scx.holding_cpu = -1;
2616 dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags);
2617 } else {
2618 move_remote_task_to_local_dsq(p, enq_flags,
2619 src_rq, dst_rq);
2620 /* task has been moved to dst_rq, which is now locked */
2621 locked_rq = dst_rq;
2622 }
2623
2624 /* if the destination CPU is idle, wake it up */
2625 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class))
2626 resched_curr(dst_rq);
2627 }
2628
2629 /* switch back to @rq lock */
2630 if (locked_rq != rq) {
2631 raw_spin_rq_unlock(locked_rq);
2632 raw_spin_rq_lock(rq);
2633 }
2634 #else /* CONFIG_SMP */
2635 BUG(); /* control can not reach here on UP */
2636 #endif /* CONFIG_SMP */
2637 }
2638
2639 /**
2640 * finish_dispatch - Asynchronously finish dispatching a task
2641 * @rq: current rq which is locked
2642 * @p: task to finish dispatching
2643 * @qseq_at_dispatch: qseq when @p started getting dispatched
2644 * @dsq_id: destination DSQ ID
2645 * @enq_flags: %SCX_ENQ_*
2646 *
2647 * Dispatching to local DSQs may need to wait for queueing to complete or
2648 * require rq lock dancing. As we don't wanna do either while inside
2649 * ops.dispatch() to avoid locking order inversion, we split dispatching into
2650 * two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the
2651 * task and its qseq. Once ops.dispatch() returns, this function is called to
2652 * finish up.
2653 *
2654 * There is no guarantee that @p is still valid for dispatching or even that it
2655 * was valid in the first place. Make sure that the task is still owned by the
2656 * BPF scheduler and claim the ownership before dispatching.
2657 */
finish_dispatch(struct rq * rq,struct task_struct * p,unsigned long qseq_at_dispatch,u64 dsq_id,u64 enq_flags)2658 static void finish_dispatch(struct rq *rq, struct task_struct *p,
2659 unsigned long qseq_at_dispatch,
2660 u64 dsq_id, u64 enq_flags)
2661 {
2662 struct scx_dispatch_q *dsq;
2663 unsigned long opss;
2664
2665 touch_core_sched_dispatch(rq, p);
2666 retry:
2667 /*
2668 * No need for _acquire here. @p is accessed only after a successful
2669 * try_cmpxchg to DISPATCHING.
2670 */
2671 opss = atomic_long_read(&p->scx.ops_state);
2672
2673 switch (opss & SCX_OPSS_STATE_MASK) {
2674 case SCX_OPSS_DISPATCHING:
2675 case SCX_OPSS_NONE:
2676 /* someone else already got to it */
2677 return;
2678 case SCX_OPSS_QUEUED:
2679 /*
2680 * If qseq doesn't match, @p has gone through at least one
2681 * dispatch/dequeue and re-enqueue cycle between
2682 * scx_bpf_dispatch() and here and we have no claim on it.
2683 */
2684 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
2685 return;
2686
2687 /*
2688 * While we know @p is accessible, we don't yet have a claim on
2689 * it - the BPF scheduler is allowed to dispatch tasks
2690 * spuriously and there can be a racing dequeue attempt. Let's
2691 * claim @p by atomically transitioning it from QUEUED to
2692 * DISPATCHING.
2693 */
2694 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2695 SCX_OPSS_DISPATCHING)))
2696 break;
2697 goto retry;
2698 case SCX_OPSS_QUEUEING:
2699 /*
2700 * do_enqueue_task() is in the process of transferring the task
2701 * to the BPF scheduler while holding @p's rq lock. As we aren't
2702 * holding any kernel or BPF resource that the enqueue path may
2703 * depend upon, it's safe to wait.
2704 */
2705 wait_ops_state(p, opss);
2706 goto retry;
2707 }
2708
2709 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
2710
2711 dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p);
2712
2713 if (dsq->id == SCX_DSQ_LOCAL)
2714 dispatch_to_local_dsq(rq, dsq, p, enq_flags);
2715 else
2716 dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2717 }
2718
flush_dispatch_buf(struct rq * rq)2719 static void flush_dispatch_buf(struct rq *rq)
2720 {
2721 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2722 u32 u;
2723
2724 for (u = 0; u < dspc->cursor; u++) {
2725 struct scx_dsp_buf_ent *ent = &dspc->buf[u];
2726
2727 finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id,
2728 ent->enq_flags);
2729 }
2730
2731 dspc->nr_tasks += dspc->cursor;
2732 dspc->cursor = 0;
2733 }
2734
balance_one(struct rq * rq,struct task_struct * prev)2735 static int balance_one(struct rq *rq, struct task_struct *prev)
2736 {
2737 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2738 bool prev_on_scx = prev->sched_class == &ext_sched_class;
2739 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED;
2740 int nr_loops = SCX_DSP_MAX_LOOPS;
2741
2742 lockdep_assert_rq_held(rq);
2743 rq->scx.flags |= SCX_RQ_IN_BALANCE;
2744 rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP);
2745
2746 if (static_branch_unlikely(&scx_ops_cpu_preempt) &&
2747 unlikely(rq->scx.cpu_released)) {
2748 /*
2749 * If the previous sched_class for the current CPU was not SCX,
2750 * notify the BPF scheduler that it again has control of the
2751 * core. This callback complements ->cpu_release(), which is
2752 * emitted in scx_next_task_picked().
2753 */
2754 if (SCX_HAS_OP(cpu_acquire))
2755 SCX_CALL_OP(SCX_KF_REST, cpu_acquire, cpu_of(rq), NULL);
2756 rq->scx.cpu_released = false;
2757 }
2758
2759 if (prev_on_scx) {
2760 update_curr_scx(rq);
2761
2762 /*
2763 * If @prev is runnable & has slice left, it has priority and
2764 * fetching more just increases latency for the fetched tasks.
2765 * Tell pick_task_scx() to keep running @prev. If the BPF
2766 * scheduler wants to handle this explicitly, it should
2767 * implement ->cpu_release().
2768 *
2769 * See scx_ops_disable_workfn() for the explanation on the
2770 * bypassing test.
2771 */
2772 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) {
2773 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2774 goto has_tasks;
2775 }
2776 }
2777
2778 /* if there already are tasks to run, nothing to do */
2779 if (rq->scx.local_dsq.nr)
2780 goto has_tasks;
2781
2782 if (consume_global_dsq(rq))
2783 goto has_tasks;
2784
2785 if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq))
2786 goto no_tasks;
2787
2788 dspc->rq = rq;
2789
2790 /*
2791 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
2792 * the local DSQ might still end up empty after a successful
2793 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
2794 * produced some tasks, retry. The BPF scheduler may depend on this
2795 * looping behavior to simplify its implementation.
2796 */
2797 do {
2798 dspc->nr_tasks = 0;
2799
2800 SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq),
2801 prev_on_scx ? prev : NULL);
2802
2803 flush_dispatch_buf(rq);
2804
2805 if (prev_on_rq && prev->scx.slice) {
2806 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2807 goto has_tasks;
2808 }
2809 if (rq->scx.local_dsq.nr)
2810 goto has_tasks;
2811 if (consume_global_dsq(rq))
2812 goto has_tasks;
2813
2814 /*
2815 * ops.dispatch() can trap us in this loop by repeatedly
2816 * dispatching ineligible tasks. Break out once in a while to
2817 * allow the watchdog to run. As IRQ can't be enabled in
2818 * balance(), we want to complete this scheduling cycle and then
2819 * start a new one. IOW, we want to call resched_curr() on the
2820 * next, most likely idle, task, not the current one. Use
2821 * scx_bpf_kick_cpu() for deferred kicking.
2822 */
2823 if (unlikely(!--nr_loops)) {
2824 scx_bpf_kick_cpu(cpu_of(rq), 0);
2825 break;
2826 }
2827 } while (dspc->nr_tasks);
2828
2829 no_tasks:
2830 /*
2831 * Didn't find another task to run. Keep running @prev unless
2832 * %SCX_OPS_ENQ_LAST is in effect.
2833 */
2834 if (prev_on_rq && (!static_branch_unlikely(&scx_ops_enq_last) ||
2835 scx_rq_bypassing(rq))) {
2836 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2837 goto has_tasks;
2838 }
2839 rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2840 return false;
2841
2842 has_tasks:
2843 rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2844 return true;
2845 }
2846
balance_scx(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)2847 static int balance_scx(struct rq *rq, struct task_struct *prev,
2848 struct rq_flags *rf)
2849 {
2850 int ret;
2851
2852 rq_unpin_lock(rq, rf);
2853
2854 ret = balance_one(rq, prev);
2855
2856 #ifdef CONFIG_SCHED_SMT
2857 /*
2858 * When core-sched is enabled, this ops.balance() call will be followed
2859 * by pick_task_scx() on this CPU and the SMT siblings. Balance the
2860 * siblings too.
2861 */
2862 if (sched_core_enabled(rq)) {
2863 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq));
2864 int scpu;
2865
2866 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) {
2867 struct rq *srq = cpu_rq(scpu);
2868 struct task_struct *sprev = srq->curr;
2869
2870 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq));
2871 update_rq_clock(srq);
2872 balance_one(srq, sprev);
2873 }
2874 }
2875 #endif
2876 rq_repin_lock(rq, rf);
2877
2878 return ret;
2879 }
2880
process_ddsp_deferred_locals(struct rq * rq)2881 static void process_ddsp_deferred_locals(struct rq *rq)
2882 {
2883 struct task_struct *p;
2884
2885 lockdep_assert_rq_held(rq);
2886
2887 /*
2888 * Now that @rq can be unlocked, execute the deferred enqueueing of
2889 * tasks directly dispatched to the local DSQs of other CPUs. See
2890 * direct_dispatch(). Keep popping from the head instead of using
2891 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
2892 * temporarily.
2893 */
2894 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
2895 struct task_struct, scx.dsq_list.node))) {
2896 struct scx_dispatch_q *dsq;
2897
2898 list_del_init(&p->scx.dsq_list.node);
2899
2900 dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
2901 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL))
2902 dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags);
2903 }
2904 }
2905
set_next_task_scx(struct rq * rq,struct task_struct * p,bool first)2906 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
2907 {
2908 if (p->scx.flags & SCX_TASK_QUEUED) {
2909 /*
2910 * Core-sched might decide to execute @p before it is
2911 * dispatched. Call ops_dequeue() to notify the BPF scheduler.
2912 */
2913 ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC);
2914 dispatch_dequeue(rq, p);
2915 }
2916
2917 p->se.exec_start = rq_clock_task(rq);
2918
2919 /* see dequeue_task_scx() on why we skip when !QUEUED */
2920 if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED))
2921 SCX_CALL_OP_TASK(SCX_KF_REST, running, p);
2922
2923 clr_task_runnable(p, true);
2924
2925 /*
2926 * @p is getting newly scheduled or got kicked after someone updated its
2927 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
2928 */
2929 if ((p->scx.slice == SCX_SLICE_INF) !=
2930 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) {
2931 if (p->scx.slice == SCX_SLICE_INF)
2932 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK;
2933 else
2934 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK;
2935
2936 sched_update_tick_dependency(rq);
2937
2938 /*
2939 * For now, let's refresh the load_avgs just when transitioning
2940 * in and out of nohz. In the future, we might want to add a
2941 * mechanism which calls the following periodically on
2942 * tick-stopped CPUs.
2943 */
2944 update_other_load_avgs(rq);
2945 }
2946 }
2947
2948 static enum scx_cpu_preempt_reason
preempt_reason_from_class(const struct sched_class * class)2949 preempt_reason_from_class(const struct sched_class *class)
2950 {
2951 #ifdef CONFIG_SMP
2952 if (class == &stop_sched_class)
2953 return SCX_CPU_PREEMPT_STOP;
2954 #endif
2955 if (class == &dl_sched_class)
2956 return SCX_CPU_PREEMPT_DL;
2957 if (class == &rt_sched_class)
2958 return SCX_CPU_PREEMPT_RT;
2959 return SCX_CPU_PREEMPT_UNKNOWN;
2960 }
2961
switch_class(struct rq * rq,struct task_struct * next)2962 static void switch_class(struct rq *rq, struct task_struct *next)
2963 {
2964 const struct sched_class *next_class = next->sched_class;
2965
2966 #ifdef CONFIG_SMP
2967 /*
2968 * Pairs with the smp_load_acquire() issued by a CPU in
2969 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a
2970 * resched.
2971 */
2972 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1);
2973 #endif
2974 if (!static_branch_unlikely(&scx_ops_cpu_preempt))
2975 return;
2976
2977 /*
2978 * The callback is conceptually meant to convey that the CPU is no
2979 * longer under the control of SCX. Therefore, don't invoke the callback
2980 * if the next class is below SCX (in which case the BPF scheduler has
2981 * actively decided not to schedule any tasks on the CPU).
2982 */
2983 if (sched_class_above(&ext_sched_class, next_class))
2984 return;
2985
2986 /*
2987 * At this point we know that SCX was preempted by a higher priority
2988 * sched_class, so invoke the ->cpu_release() callback if we have not
2989 * done so already. We only send the callback once between SCX being
2990 * preempted, and it regaining control of the CPU.
2991 *
2992 * ->cpu_release() complements ->cpu_acquire(), which is emitted the
2993 * next time that balance_scx() is invoked.
2994 */
2995 if (!rq->scx.cpu_released) {
2996 if (SCX_HAS_OP(cpu_release)) {
2997 struct scx_cpu_release_args args = {
2998 .reason = preempt_reason_from_class(next_class),
2999 .task = next,
3000 };
3001
3002 SCX_CALL_OP(SCX_KF_CPU_RELEASE,
3003 cpu_release, cpu_of(rq), &args);
3004 }
3005 rq->scx.cpu_released = true;
3006 }
3007 }
3008
put_prev_task_scx(struct rq * rq,struct task_struct * p,struct task_struct * next)3009 static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
3010 struct task_struct *next)
3011 {
3012 update_curr_scx(rq);
3013
3014 /* see dequeue_task_scx() on why we skip when !QUEUED */
3015 if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED))
3016 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true);
3017
3018 if (p->scx.flags & SCX_TASK_QUEUED) {
3019 set_task_runnable(rq, p);
3020
3021 /*
3022 * If @p has slice left and is being put, @p is getting
3023 * preempted by a higher priority scheduler class or core-sched
3024 * forcing a different task. Leave it at the head of the local
3025 * DSQ.
3026 */
3027 if (p->scx.slice && !scx_rq_bypassing(rq)) {
3028 dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD);
3029 goto switch_class;
3030 }
3031
3032 /*
3033 * If @p is runnable but we're about to enter a lower
3034 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell
3035 * ops.enqueue() that @p is the only one available for this cpu,
3036 * which should trigger an explicit follow-up scheduling event.
3037 */
3038 if (sched_class_above(&ext_sched_class, next->sched_class)) {
3039 WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last));
3040 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
3041 } else {
3042 do_enqueue_task(rq, p, 0, -1);
3043 }
3044 }
3045
3046 switch_class:
3047 if (next && next->sched_class != &ext_sched_class)
3048 switch_class(rq, next);
3049 }
3050
first_local_task(struct rq * rq)3051 static struct task_struct *first_local_task(struct rq *rq)
3052 {
3053 return list_first_entry_or_null(&rq->scx.local_dsq.list,
3054 struct task_struct, scx.dsq_list.node);
3055 }
3056
pick_task_scx(struct rq * rq)3057 static struct task_struct *pick_task_scx(struct rq *rq)
3058 {
3059 struct task_struct *prev = rq->curr;
3060 struct task_struct *p;
3061 bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP;
3062 bool kick_idle = false;
3063
3064 /*
3065 * WORKAROUND:
3066 *
3067 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just
3068 * have gone through balance_scx(). Unfortunately, there currently is a
3069 * bug where fair could say yes on balance() but no on pick_task(),
3070 * which then ends up calling pick_task_scx() without preceding
3071 * balance_scx().
3072 *
3073 * Keep running @prev if possible and avoid stalling from entering idle
3074 * without balancing.
3075 *
3076 * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE()
3077 * if pick_task_scx() is called without preceding balance_scx().
3078 */
3079 if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) {
3080 if (prev->scx.flags & SCX_TASK_QUEUED) {
3081 keep_prev = true;
3082 } else {
3083 keep_prev = false;
3084 kick_idle = true;
3085 }
3086 } else if (unlikely(keep_prev &&
3087 prev->sched_class != &ext_sched_class)) {
3088 /*
3089 * Can happen while enabling as SCX_RQ_BAL_PENDING assertion is
3090 * conditional on scx_enabled() and may have been skipped.
3091 */
3092 WARN_ON_ONCE(scx_ops_enable_state() == SCX_OPS_ENABLED);
3093 keep_prev = false;
3094 }
3095
3096 /*
3097 * If balance_scx() is telling us to keep running @prev, replenish slice
3098 * if necessary and keep running @prev. Otherwise, pop the first one
3099 * from the local DSQ.
3100 */
3101 if (keep_prev) {
3102 p = prev;
3103 if (!p->scx.slice) {
3104 p->scx.slice = SCX_SLICE_DFL;
3105 trace_android_vh_scx_fix_prev_slice(p);
3106 }
3107 } else {
3108 p = first_local_task(rq);
3109 if (!p) {
3110 if (kick_idle)
3111 scx_bpf_kick_cpu(cpu_of(rq), SCX_KICK_IDLE);
3112 return NULL;
3113 }
3114
3115 if (unlikely(!p->scx.slice)) {
3116 if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) {
3117 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n",
3118 p->comm, p->pid, __func__);
3119 scx_warned_zero_slice = true;
3120 }
3121 p->scx.slice = SCX_SLICE_DFL;
3122 }
3123 }
3124
3125 return p;
3126 }
3127
3128 #ifdef CONFIG_SCHED_CORE
3129 /**
3130 * scx_prio_less - Task ordering for core-sched
3131 * @a: task A
3132 * @b: task B
3133 *
3134 * Core-sched is implemented as an additional scheduling layer on top of the
3135 * usual sched_class'es and needs to find out the expected task ordering. For
3136 * SCX, core-sched calls this function to interrogate the task ordering.
3137 *
3138 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
3139 * to implement the default task ordering. The older the timestamp, the higher
3140 * prority the task - the global FIFO ordering matching the default scheduling
3141 * behavior.
3142 *
3143 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
3144 * implement FIFO ordering within each local DSQ. See pick_task_scx().
3145 */
scx_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)3146 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
3147 bool in_fi)
3148 {
3149 /*
3150 * The const qualifiers are dropped from task_struct pointers when
3151 * calling ops.core_sched_before(). Accesses are controlled by the
3152 * verifier.
3153 */
3154 if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a)))
3155 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before,
3156 (struct task_struct *)a,
3157 (struct task_struct *)b);
3158 else
3159 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at);
3160 }
3161 #endif /* CONFIG_SCHED_CORE */
3162
3163 #ifdef CONFIG_SMP
3164
test_and_clear_cpu_idle(int cpu)3165 static bool test_and_clear_cpu_idle(int cpu)
3166 {
3167 #ifdef CONFIG_SCHED_SMT
3168 /*
3169 * SMT mask should be cleared whether we can claim @cpu or not. The SMT
3170 * cluster is not wholly idle either way. This also prevents
3171 * scx_pick_idle_cpu() from getting caught in an infinite loop.
3172 */
3173 if (sched_smt_active()) {
3174 const struct cpumask *smt = cpu_smt_mask(cpu);
3175
3176 /*
3177 * If offline, @cpu is not its own sibling and
3178 * scx_pick_idle_cpu() can get caught in an infinite loop as
3179 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu
3180 * is eventually cleared.
3181 */
3182 if (cpumask_intersects(smt, idle_masks.smt))
3183 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
3184 else if (cpumask_test_cpu(cpu, idle_masks.smt))
3185 __cpumask_clear_cpu(cpu, idle_masks.smt);
3186 }
3187 #endif
3188 return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu);
3189 }
3190
scx_pick_idle_cpu(const struct cpumask * cpus_allowed,u64 flags)3191 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags)
3192 {
3193 int cpu;
3194
3195 retry:
3196 if (sched_smt_active()) {
3197 cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed);
3198 if (cpu < nr_cpu_ids)
3199 goto found;
3200
3201 if (flags & SCX_PICK_IDLE_CORE)
3202 return -EBUSY;
3203 }
3204
3205 cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed);
3206 if (cpu >= nr_cpu_ids)
3207 return -EBUSY;
3208
3209 found:
3210 if (test_and_clear_cpu_idle(cpu))
3211 return cpu;
3212 else
3213 goto retry;
3214 }
3215
scx_select_cpu_dfl(struct task_struct * p,s32 prev_cpu,u64 wake_flags,bool * found)3216 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
3217 u64 wake_flags, bool *found)
3218 {
3219 s32 cpu;
3220
3221 *found = false;
3222
3223
3224 /*
3225 * This is necessary to protect llc_cpus.
3226 */
3227 rcu_read_lock();
3228
3229 /*
3230 * If WAKE_SYNC, the waker's local DSQ is empty, and the system is
3231 * under utilized, wake up @p to the local DSQ of the waker. Checking
3232 * only for an empty local DSQ is insufficient as it could give the
3233 * wakee an unfair advantage when the system is oversaturated.
3234 * Checking only for the presence of idle CPUs is also insufficient as
3235 * the local DSQ of the waker could have tasks piled up on it even if
3236 * there is an idle core elsewhere on the system.
3237 */
3238 cpu = smp_processor_id();
3239 if ((wake_flags & SCX_WAKE_SYNC) &&
3240 !cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) &&
3241 cpu_rq(cpu)->scx.local_dsq.nr == 0) {
3242 if (cpumask_test_cpu(cpu, p->cpus_ptr))
3243 goto cpu_found;
3244 }
3245
3246 /*
3247 * If CPU has SMT, any wholly idle CPU is likely a better pick than
3248 * partially idle @prev_cpu.
3249 */
3250 if (sched_smt_active()) {
3251 if (cpumask_test_cpu(prev_cpu, idle_masks.smt) &&
3252 test_and_clear_cpu_idle(prev_cpu)) {
3253 cpu = prev_cpu;
3254 goto cpu_found;
3255 }
3256
3257 cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE);
3258 if (cpu >= 0)
3259 goto cpu_found;
3260 }
3261
3262 if (test_and_clear_cpu_idle(prev_cpu)) {
3263 cpu = prev_cpu;
3264 goto cpu_found;
3265 }
3266
3267 cpu = scx_pick_idle_cpu(p->cpus_ptr, 0);
3268 if (cpu >= 0)
3269 goto cpu_found;
3270
3271 rcu_read_unlock();
3272 return prev_cpu;
3273
3274 cpu_found:
3275 rcu_read_unlock();
3276
3277 *found = true;
3278 return cpu;
3279 }
3280
select_task_rq_scx(struct task_struct * p,int prev_cpu,int wake_flags)3281 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
3282 {
3283 /*
3284 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
3285 * can be a good migration opportunity with low cache and memory
3286 * footprint. Returning a CPU different than @prev_cpu triggers
3287 * immediate rq migration. However, for SCX, as the current rq
3288 * association doesn't dictate where the task is going to run, this
3289 * doesn't fit well. If necessary, we can later add a dedicated method
3290 * which can decide to preempt self to force it through the regular
3291 * scheduling path.
3292 */
3293 if (unlikely(wake_flags & WF_EXEC))
3294 return prev_cpu;
3295
3296 if (SCX_HAS_OP(select_cpu) && !scx_rq_bypassing(task_rq(p))) {
3297 s32 cpu;
3298 struct task_struct **ddsp_taskp;
3299
3300 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
3301 WARN_ON_ONCE(*ddsp_taskp);
3302 *ddsp_taskp = p;
3303
3304 cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
3305 select_cpu, p, prev_cpu, wake_flags);
3306 *ddsp_taskp = NULL;
3307 if (ops_cpu_valid(cpu, "from ops.select_cpu()"))
3308 return cpu;
3309 else
3310 return prev_cpu;
3311 } else {
3312 bool found;
3313 s32 cpu;
3314
3315 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found);
3316 if (found) {
3317 p->scx.slice = SCX_SLICE_DFL;
3318 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
3319 }
3320 return cpu;
3321 }
3322 }
3323
task_woken_scx(struct rq * rq,struct task_struct * p)3324 static void task_woken_scx(struct rq *rq, struct task_struct *p)
3325 {
3326 run_deferred(rq);
3327 }
3328
set_cpus_allowed_scx(struct task_struct * p,struct affinity_context * ac)3329 static void set_cpus_allowed_scx(struct task_struct *p,
3330 struct affinity_context *ac)
3331 {
3332 int done = 0;
3333
3334 trace_android_vh_scx_set_cpus_allowed(p, ac, &done);
3335 if (done)
3336 return;
3337
3338 set_cpus_allowed_common(p, ac);
3339
3340 /*
3341 * The effective cpumask is stored in @p->cpus_ptr which may temporarily
3342 * differ from the configured one in @p->cpus_mask. Always tell the bpf
3343 * scheduler the effective one.
3344 *
3345 * Fine-grained memory write control is enforced by BPF making the const
3346 * designation pointless. Cast it away when calling the operation.
3347 */
3348 if (SCX_HAS_OP(set_cpumask))
3349 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
3350 (struct cpumask *)p->cpus_ptr);
3351 }
3352
reset_idle_masks(void)3353 static void reset_idle_masks(void)
3354 {
3355 /*
3356 * Consider all online cpus idle. Should converge to the actual state
3357 * quickly.
3358 */
3359 cpumask_copy(idle_masks.cpu, cpu_online_mask);
3360 cpumask_copy(idle_masks.smt, cpu_online_mask);
3361 }
3362
update_builtin_idle(int cpu,bool idle)3363 static void update_builtin_idle(int cpu, bool idle)
3364 {
3365 if (idle)
3366 cpumask_set_cpu(cpu, idle_masks.cpu);
3367 else
3368 cpumask_clear_cpu(cpu, idle_masks.cpu);
3369
3370 #ifdef CONFIG_SCHED_SMT
3371 if (sched_smt_active()) {
3372 const struct cpumask *smt = cpu_smt_mask(cpu);
3373
3374 if (idle) {
3375 /*
3376 * idle_masks.smt handling is racy but that's fine as
3377 * it's only for optimization and self-correcting.
3378 */
3379 for_each_cpu(cpu, smt) {
3380 if (!cpumask_test_cpu(cpu, idle_masks.cpu))
3381 return;
3382 }
3383 cpumask_or(idle_masks.smt, idle_masks.smt, smt);
3384 } else {
3385 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
3386 }
3387 }
3388 #endif
3389 }
3390
3391 /*
3392 * Update the idle state of a CPU to @idle.
3393 *
3394 * If @do_notify is true, ops.update_idle() is invoked to notify the scx
3395 * scheduler of an actual idle state transition (idle to busy or vice
3396 * versa). If @do_notify is false, only the idle state in the idle masks is
3397 * refreshed without invoking ops.update_idle().
3398 *
3399 * This distinction is necessary, because an idle CPU can be "reserved" and
3400 * awakened via scx_bpf_pick_idle_cpu() + scx_bpf_kick_cpu(), marking it as
3401 * busy even if no tasks are dispatched. In this case, the CPU may return
3402 * to idle without a true state transition. Refreshing the idle masks
3403 * without invoking ops.update_idle() ensures accurate idle state tracking
3404 * while avoiding unnecessary updates and maintaining balanced state
3405 * transitions.
3406 */
__scx_update_idle(struct rq * rq,bool idle,bool do_notify)3407 void __scx_update_idle(struct rq *rq, bool idle, bool do_notify)
3408 {
3409 int cpu = cpu_of(rq);
3410
3411 lockdep_assert_rq_held(rq);
3412
3413 /*
3414 * Trigger ops.update_idle() only when transitioning from a task to
3415 * the idle thread and vice versa.
3416 *
3417 * Idle transitions are indicated by do_notify being set to true,
3418 * managed by put_prev_task_idle()/set_next_task_idle().
3419 */
3420 if (SCX_HAS_OP(update_idle) && do_notify && !scx_rq_bypassing(rq))
3421 SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);
3422
3423 /*
3424 * Update the idle masks:
3425 * - for real idle transitions (do_notify == true)
3426 * - for idle-to-idle transitions (indicated by the previous task
3427 * being the idle thread, managed by pick_task_idle())
3428 *
3429 * Skip updating idle masks if the previous task is not the idle
3430 * thread, since set_next_task_idle() has already handled it when
3431 * transitioning from a task to the idle thread (calling this
3432 * function with do_notify == true).
3433 *
3434 * In this way we can avoid updating the idle masks twice,
3435 * unnecessarily.
3436 */
3437 if (static_branch_likely(&scx_builtin_idle_enabled))
3438 if (do_notify || is_idle_task(rq->curr))
3439 update_builtin_idle(cpu, idle);
3440 }
3441
handle_hotplug(struct rq * rq,bool online)3442 static void handle_hotplug(struct rq *rq, bool online)
3443 {
3444 int cpu = cpu_of(rq);
3445
3446 atomic_long_inc(&scx_hotplug_seq);
3447
3448 if (online && SCX_HAS_OP(cpu_online))
3449 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu);
3450 else if (!online && SCX_HAS_OP(cpu_offline))
3451 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu);
3452 else
3453 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
3454 "cpu %d going %s, exiting scheduler", cpu,
3455 online ? "online" : "offline");
3456 }
3457
scx_rq_activate(struct rq * rq)3458 void scx_rq_activate(struct rq *rq)
3459 {
3460 handle_hotplug(rq, true);
3461 }
3462
scx_rq_deactivate(struct rq * rq)3463 void scx_rq_deactivate(struct rq *rq)
3464 {
3465 handle_hotplug(rq, false);
3466 }
3467
rq_online_scx(struct rq * rq)3468 static void rq_online_scx(struct rq *rq)
3469 {
3470 rq->scx.flags |= SCX_RQ_ONLINE;
3471 }
3472
rq_offline_scx(struct rq * rq)3473 static void rq_offline_scx(struct rq *rq)
3474 {
3475 rq->scx.flags &= ~SCX_RQ_ONLINE;
3476 }
3477
3478 #else /* CONFIG_SMP */
3479
test_and_clear_cpu_idle(int cpu)3480 static bool test_and_clear_cpu_idle(int cpu) { return false; }
scx_pick_idle_cpu(const struct cpumask * cpus_allowed,u64 flags)3481 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; }
reset_idle_masks(void)3482 static void reset_idle_masks(void) {}
3483
3484 #endif /* CONFIG_SMP */
3485
check_rq_for_timeouts(struct rq * rq)3486 static bool check_rq_for_timeouts(struct rq *rq)
3487 {
3488 struct task_struct *p;
3489 struct rq_flags rf;
3490 bool timed_out = false;
3491
3492 rq_lock_irqsave(rq, &rf);
3493 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
3494 unsigned long last_runnable = p->scx.runnable_at;
3495
3496 if (unlikely(time_after(jiffies,
3497 last_runnable + scx_watchdog_timeout))) {
3498 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
3499
3500 scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3501 "%s[%d] failed to run for %u.%03us",
3502 p->comm, p->pid,
3503 dur_ms / 1000, dur_ms % 1000);
3504 timed_out = true;
3505 break;
3506 }
3507 }
3508 rq_unlock_irqrestore(rq, &rf);
3509
3510 return timed_out;
3511 }
3512
scx_watchdog_workfn(struct work_struct * work)3513 static void scx_watchdog_workfn(struct work_struct *work)
3514 {
3515 int cpu;
3516
3517 WRITE_ONCE(scx_watchdog_timestamp, jiffies);
3518
3519 for_each_online_cpu(cpu) {
3520 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu))))
3521 break;
3522
3523 cond_resched();
3524 }
3525 queue_delayed_work(system_unbound_wq, to_delayed_work(work),
3526 scx_watchdog_timeout / 2);
3527 }
3528
scx_tick(struct rq * rq)3529 void scx_tick(struct rq *rq)
3530 {
3531 unsigned long last_check;
3532
3533 if (!scx_enabled())
3534 return;
3535
3536 last_check = READ_ONCE(scx_watchdog_timestamp);
3537 if (unlikely(time_after(jiffies,
3538 last_check + READ_ONCE(scx_watchdog_timeout)))) {
3539 u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
3540
3541 scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3542 "watchdog failed to check in for %u.%03us",
3543 dur_ms / 1000, dur_ms % 1000);
3544 }
3545
3546 update_other_load_avgs(rq);
3547 }
3548
task_tick_scx(struct rq * rq,struct task_struct * curr,int queued)3549 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
3550 {
3551 update_curr_scx(rq);
3552
3553 /*
3554 * While disabling, always resched and refresh core-sched timestamp as
3555 * we can't trust the slice management or ops.core_sched_before().
3556 */
3557 if (scx_rq_bypassing(rq)) {
3558 curr->scx.slice = 0;
3559 touch_core_sched(rq, curr);
3560 } else if (SCX_HAS_OP(tick)) {
3561 SCX_CALL_OP_TASK(SCX_KF_REST, tick, curr);
3562 }
3563
3564 if (!curr->scx.slice)
3565 resched_curr(rq);
3566 }
3567
3568 #ifdef CONFIG_EXT_GROUP_SCHED
tg_cgrp(struct task_group * tg)3569 static struct cgroup *tg_cgrp(struct task_group *tg)
3570 {
3571 /*
3572 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup,
3573 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the
3574 * root cgroup.
3575 */
3576 if (tg && tg->css.cgroup)
3577 return tg->css.cgroup;
3578 else
3579 return &cgrp_dfl_root.cgrp;
3580 }
3581
3582 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg),
3583
3584 #else /* CONFIG_EXT_GROUP_SCHED */
3585
3586 #define SCX_INIT_TASK_ARGS_CGROUP(tg)
3587
3588 #endif /* CONFIG_EXT_GROUP_SCHED */
3589
scx_get_task_state(const struct task_struct * p)3590 static enum scx_task_state scx_get_task_state(const struct task_struct *p)
3591 {
3592 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
3593 }
3594
scx_set_task_state(struct task_struct * p,enum scx_task_state state)3595 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
3596 {
3597 enum scx_task_state prev_state = scx_get_task_state(p);
3598 bool warn = false;
3599
3600 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
3601
3602 switch (state) {
3603 case SCX_TASK_NONE:
3604 break;
3605 case SCX_TASK_INIT:
3606 warn = prev_state != SCX_TASK_NONE;
3607 break;
3608 case SCX_TASK_READY:
3609 warn = prev_state == SCX_TASK_NONE;
3610 break;
3611 case SCX_TASK_ENABLED:
3612 warn = prev_state != SCX_TASK_READY;
3613 break;
3614 default:
3615 warn = true;
3616 return;
3617 }
3618
3619 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
3620 prev_state, state, p->comm, p->pid);
3621
3622 p->scx.flags &= ~SCX_TASK_STATE_MASK;
3623 p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
3624 }
3625
scx_ops_init_task(struct task_struct * p,struct task_group * tg,bool fork)3626 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork)
3627 {
3628 int ret;
3629
3630 p->scx.disallow = false;
3631
3632 if (SCX_HAS_OP(init_task)) {
3633 struct scx_init_task_args args = {
3634 SCX_INIT_TASK_ARGS_CGROUP(tg)
3635 .fork = fork,
3636 };
3637
3638 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args);
3639 if (unlikely(ret)) {
3640 ret = ops_sanitize_err("init_task", ret);
3641 return ret;
3642 }
3643 }
3644
3645 scx_set_task_state(p, SCX_TASK_INIT);
3646
3647 if (p->scx.disallow) {
3648 if (!fork) {
3649 struct rq *rq;
3650 struct rq_flags rf;
3651
3652 rq = task_rq_lock(p, &rf);
3653
3654 /*
3655 * We're in the load path and @p->policy will be applied
3656 * right after. Reverting @p->policy here and rejecting
3657 * %SCHED_EXT transitions from scx_check_setscheduler()
3658 * guarantees that if ops.init_task() sets @p->disallow,
3659 * @p can never be in SCX.
3660 */
3661 if (p->policy == SCHED_EXT) {
3662 p->policy = SCHED_NORMAL;
3663 atomic_long_inc(&scx_nr_rejected);
3664 }
3665
3666 task_rq_unlock(rq, p, &rf);
3667 } else if (p->policy == SCHED_EXT) {
3668 scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork",
3669 p->comm, p->pid);
3670 }
3671 }
3672
3673 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
3674 return 0;
3675 }
3676
scx_ops_enable_task(struct task_struct * p)3677 static void scx_ops_enable_task(struct task_struct *p)
3678 {
3679 u32 weight;
3680
3681 lockdep_assert_rq_held(task_rq(p));
3682
3683 /*
3684 * Set the weight before calling ops.enable() so that the scheduler
3685 * doesn't see a stale value if they inspect the task struct.
3686 */
3687 if (task_has_idle_policy(p))
3688 weight = WEIGHT_IDLEPRIO;
3689 else
3690 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
3691
3692 p->scx.weight = sched_weight_to_cgroup(weight);
3693
3694 if (SCX_HAS_OP(enable))
3695 SCX_CALL_OP_TASK(SCX_KF_REST, enable, p);
3696 scx_set_task_state(p, SCX_TASK_ENABLED);
3697
3698 if (SCX_HAS_OP(set_weight))
3699 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
3700 }
3701
scx_ops_disable_task(struct task_struct * p)3702 static void scx_ops_disable_task(struct task_struct *p)
3703 {
3704 lockdep_assert_rq_held(task_rq(p));
3705 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
3706
3707 if (SCX_HAS_OP(disable))
3708 SCX_CALL_OP_TASK(SCX_KF_REST, disable, p);
3709 scx_set_task_state(p, SCX_TASK_READY);
3710 }
3711
scx_ops_exit_task(struct task_struct * p)3712 static void scx_ops_exit_task(struct task_struct *p)
3713 {
3714 struct scx_exit_task_args args = {
3715 .cancelled = false,
3716 };
3717
3718 lockdep_assert_rq_held(task_rq(p));
3719
3720 switch (scx_get_task_state(p)) {
3721 case SCX_TASK_NONE:
3722 return;
3723 case SCX_TASK_INIT:
3724 args.cancelled = true;
3725 break;
3726 case SCX_TASK_READY:
3727 break;
3728 case SCX_TASK_ENABLED:
3729 scx_ops_disable_task(p);
3730 break;
3731 default:
3732 WARN_ON_ONCE(true);
3733 return;
3734 }
3735
3736 if (SCX_HAS_OP(exit_task))
3737 SCX_CALL_OP_TASK(SCX_KF_REST, exit_task, p, &args);
3738 scx_set_task_state(p, SCX_TASK_NONE);
3739 }
3740
init_scx_entity(struct sched_ext_entity * scx)3741 void init_scx_entity(struct sched_ext_entity *scx)
3742 {
3743 memset(scx, 0, sizeof(*scx));
3744 INIT_LIST_HEAD(&scx->dsq_list.node);
3745 RB_CLEAR_NODE(&scx->dsq_priq);
3746 scx->sticky_cpu = -1;
3747 scx->holding_cpu = -1;
3748 INIT_LIST_HEAD(&scx->runnable_node);
3749 scx->runnable_at = jiffies;
3750 scx->ddsp_dsq_id = SCX_DSQ_INVALID;
3751 scx->slice = SCX_SLICE_DFL;
3752 }
3753
scx_pre_fork(struct task_struct * p)3754 void scx_pre_fork(struct task_struct *p)
3755 {
3756 /*
3757 * BPF scheduler enable/disable paths want to be able to iterate and
3758 * update all tasks which can become complex when racing forks. As
3759 * enable/disable are very cold paths, let's use a percpu_rwsem to
3760 * exclude forks.
3761 */
3762 percpu_down_read(&scx_fork_rwsem);
3763 }
3764
scx_fork(struct task_struct * p)3765 int scx_fork(struct task_struct *p)
3766 {
3767 percpu_rwsem_assert_held(&scx_fork_rwsem);
3768
3769 if (scx_ops_init_task_enabled)
3770 return scx_ops_init_task(p, task_group(p), true);
3771 else
3772 return 0;
3773 }
3774
scx_post_fork(struct task_struct * p)3775 void scx_post_fork(struct task_struct *p)
3776 {
3777 if (scx_ops_init_task_enabled) {
3778 scx_set_task_state(p, SCX_TASK_READY);
3779
3780 /*
3781 * Enable the task immediately if it's running on sched_ext.
3782 * Otherwise, it'll be enabled in switching_to_scx() if and
3783 * when it's ever configured to run with a SCHED_EXT policy.
3784 */
3785 if (p->sched_class == &ext_sched_class) {
3786 struct rq_flags rf;
3787 struct rq *rq;
3788
3789 rq = task_rq_lock(p, &rf);
3790 scx_ops_enable_task(p);
3791 task_rq_unlock(rq, p, &rf);
3792 }
3793 }
3794
3795 spin_lock_irq(&scx_tasks_lock);
3796 list_add_tail(&p->scx.tasks_node, &scx_tasks);
3797 spin_unlock_irq(&scx_tasks_lock);
3798
3799 percpu_up_read(&scx_fork_rwsem);
3800 }
3801
scx_cancel_fork(struct task_struct * p)3802 void scx_cancel_fork(struct task_struct *p)
3803 {
3804 if (scx_enabled()) {
3805 struct rq *rq;
3806 struct rq_flags rf;
3807
3808 rq = task_rq_lock(p, &rf);
3809 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
3810 scx_ops_exit_task(p);
3811 task_rq_unlock(rq, p, &rf);
3812 }
3813
3814 percpu_up_read(&scx_fork_rwsem);
3815 }
3816
sched_ext_free(struct task_struct * p)3817 void sched_ext_free(struct task_struct *p)
3818 {
3819 unsigned long flags;
3820
3821 spin_lock_irqsave(&scx_tasks_lock, flags);
3822 list_del_init(&p->scx.tasks_node);
3823 spin_unlock_irqrestore(&scx_tasks_lock, flags);
3824
3825 /*
3826 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY ->
3827 * ENABLED transitions can't race us. Disable ops for @p.
3828 */
3829 if (scx_get_task_state(p) != SCX_TASK_NONE) {
3830 struct rq_flags rf;
3831 struct rq *rq;
3832
3833 rq = task_rq_lock(p, &rf);
3834 scx_ops_exit_task(p);
3835 task_rq_unlock(rq, p, &rf);
3836 }
3837 }
3838
reweight_task_scx(struct rq * rq,struct task_struct * p,const struct load_weight * lw)3839 static void reweight_task_scx(struct rq *rq, struct task_struct *p,
3840 const struct load_weight *lw)
3841 {
3842 lockdep_assert_rq_held(task_rq(p));
3843
3844 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
3845 if (SCX_HAS_OP(set_weight))
3846 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
3847 }
3848
prio_changed_scx(struct rq * rq,struct task_struct * p,int oldprio)3849 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio)
3850 {
3851 }
3852
switching_to_scx(struct rq * rq,struct task_struct * p)3853 static void switching_to_scx(struct rq *rq, struct task_struct *p)
3854 {
3855 scx_ops_enable_task(p);
3856
3857 /*
3858 * set_cpus_allowed_scx() is not called while @p is associated with a
3859 * different scheduler class. Keep the BPF scheduler up-to-date.
3860 */
3861 if (SCX_HAS_OP(set_cpumask))
3862 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
3863 (struct cpumask *)p->cpus_ptr);
3864
3865 trace_android_vh_switching_to_scx(rq, p);
3866 }
3867
switched_from_scx(struct rq * rq,struct task_struct * p)3868 static void switched_from_scx(struct rq *rq, struct task_struct *p)
3869 {
3870 scx_ops_disable_task(p);
3871 }
3872
wakeup_preempt_scx(struct rq * rq,struct task_struct * p,int wake_flags)3873 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
switched_to_scx(struct rq * rq,struct task_struct * p)3874 static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
3875
scx_check_setscheduler(struct task_struct * p,int policy)3876 int scx_check_setscheduler(struct task_struct *p, int policy)
3877 {
3878 lockdep_assert_rq_held(task_rq(p));
3879
3880 /* if disallow, reject transitioning into SCX */
3881 if (scx_enabled() && READ_ONCE(p->scx.disallow) &&
3882 p->policy != policy && policy == SCHED_EXT)
3883 return -EACCES;
3884
3885 return 0;
3886 }
3887
3888 #ifdef CONFIG_NO_HZ_FULL
scx_can_stop_tick(struct rq * rq)3889 bool scx_can_stop_tick(struct rq *rq)
3890 {
3891 struct task_struct *p = rq->curr;
3892
3893 if (scx_rq_bypassing(rq))
3894 return false;
3895
3896 if (p->sched_class != &ext_sched_class)
3897 return true;
3898
3899 /*
3900 * @rq can dispatch from different DSQs, so we can't tell whether it
3901 * needs the tick or not by looking at nr_running. Allow stopping ticks
3902 * iff the BPF scheduler indicated so. See set_next_task_scx().
3903 */
3904 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK;
3905 }
3906 #endif
3907
3908 #ifdef CONFIG_EXT_GROUP_SCHED
3909
3910 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem);
3911 static bool scx_cgroup_enabled;
3912 static bool cgroup_warned_missing_weight;
3913 static bool cgroup_warned_missing_idle;
3914
scx_cgroup_warn_missing_weight(struct task_group * tg)3915 static void scx_cgroup_warn_missing_weight(struct task_group *tg)
3916 {
3917 if (scx_ops_enable_state() == SCX_OPS_DISABLED ||
3918 cgroup_warned_missing_weight)
3919 return;
3920
3921 if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent)
3922 return;
3923
3924 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n",
3925 scx_ops.name);
3926 cgroup_warned_missing_weight = true;
3927 }
3928
scx_cgroup_warn_missing_idle(struct task_group * tg)3929 static void scx_cgroup_warn_missing_idle(struct task_group *tg)
3930 {
3931 if (!scx_cgroup_enabled || cgroup_warned_missing_idle)
3932 return;
3933
3934 if (!tg->idle)
3935 return;
3936
3937 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n",
3938 scx_ops.name);
3939 cgroup_warned_missing_idle = true;
3940 }
3941
scx_tg_init(struct task_group * tg)3942 void scx_tg_init(struct task_group *tg)
3943 {
3944 tg->scx_weight = CGROUP_WEIGHT_DFL;
3945 }
3946
scx_tg_online(struct task_group * tg)3947 int scx_tg_online(struct task_group *tg)
3948 {
3949 int ret = 0;
3950
3951 WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED));
3952
3953 percpu_down_read(&scx_cgroup_rwsem);
3954
3955 scx_cgroup_warn_missing_weight(tg);
3956
3957 if (scx_cgroup_enabled) {
3958 if (SCX_HAS_OP(cgroup_init)) {
3959 struct scx_cgroup_init_args args =
3960 { .weight = tg->scx_weight };
3961
3962 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
3963 tg->css.cgroup, &args);
3964 if (ret)
3965 ret = ops_sanitize_err("cgroup_init", ret);
3966 }
3967 if (ret == 0)
3968 tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED;
3969 } else {
3970 tg->scx_flags |= SCX_TG_ONLINE;
3971 }
3972
3973 percpu_up_read(&scx_cgroup_rwsem);
3974 return ret;
3975 }
3976
scx_tg_offline(struct task_group * tg)3977 void scx_tg_offline(struct task_group *tg)
3978 {
3979 WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE));
3980
3981 percpu_down_read(&scx_cgroup_rwsem);
3982
3983 if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED))
3984 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup);
3985 tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
3986
3987 percpu_up_read(&scx_cgroup_rwsem);
3988 }
3989
scx_cgroup_can_attach(struct cgroup_taskset * tset)3990 int scx_cgroup_can_attach(struct cgroup_taskset *tset)
3991 {
3992 struct cgroup_subsys_state *css;
3993 struct task_struct *p;
3994 int ret;
3995
3996 /* released in scx_finish/cancel_attach() */
3997 percpu_down_read(&scx_cgroup_rwsem);
3998
3999 if (!scx_cgroup_enabled)
4000 return 0;
4001
4002 cgroup_taskset_for_each(p, css, tset) {
4003 struct cgroup *from = tg_cgrp(task_group(p));
4004 struct cgroup *to = tg_cgrp(css_tg(css));
4005
4006 WARN_ON_ONCE(p->scx.cgrp_moving_from);
4007
4008 /*
4009 * sched_move_task() omits identity migrations. Let's match the
4010 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move()
4011 * always match one-to-one.
4012 */
4013 if (from == to)
4014 continue;
4015
4016 if (SCX_HAS_OP(cgroup_prep_move)) {
4017 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move,
4018 p, from, css->cgroup);
4019 if (ret)
4020 goto err;
4021 }
4022
4023 p->scx.cgrp_moving_from = from;
4024 }
4025
4026 return 0;
4027
4028 err:
4029 cgroup_taskset_for_each(p, css, tset) {
4030 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
4031 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
4032 p->scx.cgrp_moving_from, css->cgroup);
4033 p->scx.cgrp_moving_from = NULL;
4034 }
4035
4036 percpu_up_read(&scx_cgroup_rwsem);
4037 return ops_sanitize_err("cgroup_prep_move", ret);
4038 }
4039
scx_cgroup_move_task(struct task_struct * p)4040 void scx_cgroup_move_task(struct task_struct *p)
4041 {
4042 if (!scx_cgroup_enabled)
4043 return;
4044
4045 /*
4046 * @p must have ops.cgroup_prep_move() called on it and thus
4047 * cgrp_moving_from set.
4048 */
4049 if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
4050 SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p,
4051 p->scx.cgrp_moving_from, tg_cgrp(task_group(p)));
4052 p->scx.cgrp_moving_from = NULL;
4053 }
4054
scx_cgroup_finish_attach(void)4055 void scx_cgroup_finish_attach(void)
4056 {
4057 percpu_up_read(&scx_cgroup_rwsem);
4058 }
4059
scx_cgroup_cancel_attach(struct cgroup_taskset * tset)4060 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset)
4061 {
4062 struct cgroup_subsys_state *css;
4063 struct task_struct *p;
4064
4065 if (!scx_cgroup_enabled)
4066 goto out_unlock;
4067
4068 cgroup_taskset_for_each(p, css, tset) {
4069 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
4070 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
4071 p->scx.cgrp_moving_from, css->cgroup);
4072 p->scx.cgrp_moving_from = NULL;
4073 }
4074 out_unlock:
4075 percpu_up_read(&scx_cgroup_rwsem);
4076 }
4077
scx_group_set_weight(struct task_group * tg,unsigned long weight)4078 void scx_group_set_weight(struct task_group *tg, unsigned long weight)
4079 {
4080 percpu_down_read(&scx_cgroup_rwsem);
4081
4082 if (scx_cgroup_enabled && SCX_HAS_OP(cgroup_set_weight) &&
4083 tg->scx_weight != weight)
4084 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight,
4085 tg_cgrp(tg), weight);
4086
4087 tg->scx_weight = weight;
4088
4089 percpu_up_read(&scx_cgroup_rwsem);
4090 }
4091
scx_group_set_idle(struct task_group * tg,bool idle)4092 void scx_group_set_idle(struct task_group *tg, bool idle)
4093 {
4094 percpu_down_read(&scx_cgroup_rwsem);
4095 scx_cgroup_warn_missing_idle(tg);
4096 percpu_up_read(&scx_cgroup_rwsem);
4097 }
4098
scx_cgroup_lock(void)4099 static void scx_cgroup_lock(void)
4100 {
4101 percpu_down_write(&scx_cgroup_rwsem);
4102 }
4103
scx_cgroup_unlock(void)4104 static void scx_cgroup_unlock(void)
4105 {
4106 percpu_up_write(&scx_cgroup_rwsem);
4107 }
4108
4109 #else /* CONFIG_EXT_GROUP_SCHED */
4110
scx_cgroup_lock(void)4111 static inline void scx_cgroup_lock(void) {}
scx_cgroup_unlock(void)4112 static inline void scx_cgroup_unlock(void) {}
4113
4114 #endif /* CONFIG_EXT_GROUP_SCHED */
4115
4116 /*
4117 * Omitted operations:
4118 *
4119 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
4120 * isn't tied to the CPU at that point. Preemption is implemented by resetting
4121 * the victim task's slice to 0 and triggering reschedule on the target CPU.
4122 *
4123 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
4124 *
4125 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of
4126 * their current sched_class. Call them directly from sched core instead.
4127 */
4128 DEFINE_SCHED_CLASS(ext) = {
4129 .enqueue_task = enqueue_task_scx,
4130 .dequeue_task = dequeue_task_scx,
4131 .yield_task = yield_task_scx,
4132 .yield_to_task = yield_to_task_scx,
4133
4134 .wakeup_preempt = wakeup_preempt_scx,
4135
4136 .balance = balance_scx,
4137 .pick_task = pick_task_scx,
4138
4139 .put_prev_task = put_prev_task_scx,
4140 .set_next_task = set_next_task_scx,
4141
4142 #ifdef CONFIG_SMP
4143 .select_task_rq = select_task_rq_scx,
4144 .task_woken = task_woken_scx,
4145 .set_cpus_allowed = set_cpus_allowed_scx,
4146
4147 .rq_online = rq_online_scx,
4148 .rq_offline = rq_offline_scx,
4149 #endif
4150
4151 .task_tick = task_tick_scx,
4152
4153 .switching_to = switching_to_scx,
4154 .switched_from = switched_from_scx,
4155 .switched_to = switched_to_scx,
4156 .reweight_task = reweight_task_scx,
4157 .prio_changed = prio_changed_scx,
4158
4159 .update_curr = update_curr_scx,
4160
4161 #ifdef CONFIG_UCLAMP_TASK
4162 .uclamp_enabled = 1,
4163 #endif
4164 };
4165 EXPORT_SYMBOL_GPL(ext_sched_class);
4166
init_dsq(struct scx_dispatch_q * dsq,u64 dsq_id)4167 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
4168 {
4169 memset(dsq, 0, sizeof(*dsq));
4170
4171 raw_spin_lock_init(&dsq->lock);
4172 INIT_LIST_HEAD(&dsq->list);
4173 dsq->id = dsq_id;
4174 }
4175
create_dsq(u64 dsq_id,int node)4176 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node)
4177 {
4178 struct scx_dispatch_q *dsq;
4179 int ret;
4180
4181 if (dsq_id & SCX_DSQ_FLAG_BUILTIN)
4182 return ERR_PTR(-EINVAL);
4183
4184 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
4185 if (!dsq)
4186 return ERR_PTR(-ENOMEM);
4187
4188 init_dsq(dsq, dsq_id);
4189
4190 ret = rhashtable_lookup_insert_fast(&dsq_hash, &dsq->hash_node,
4191 dsq_hash_params);
4192 if (ret) {
4193 kfree(dsq);
4194 return ERR_PTR(ret);
4195 }
4196 return dsq;
4197 }
4198
free_dsq_irq_workfn(struct irq_work * irq_work)4199 static void free_dsq_irq_workfn(struct irq_work *irq_work)
4200 {
4201 struct llist_node *to_free = llist_del_all(&dsqs_to_free);
4202 struct scx_dispatch_q *dsq, *tmp_dsq;
4203
4204 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
4205 kfree_rcu(dsq, rcu);
4206 }
4207
4208 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
4209
destroy_dsq(u64 dsq_id)4210 static void destroy_dsq(u64 dsq_id)
4211 {
4212 struct scx_dispatch_q *dsq;
4213 unsigned long flags;
4214
4215 rcu_read_lock();
4216
4217 dsq = find_user_dsq(dsq_id);
4218 if (!dsq)
4219 goto out_unlock_rcu;
4220
4221 raw_spin_lock_irqsave(&dsq->lock, flags);
4222
4223 if (dsq->nr) {
4224 scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)",
4225 dsq->id, dsq->nr);
4226 goto out_unlock_dsq;
4227 }
4228
4229 if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params))
4230 goto out_unlock_dsq;
4231
4232 /*
4233 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from
4234 * queueing more tasks. As this function can be called from anywhere,
4235 * freeing is bounced through an irq work to avoid nesting RCU
4236 * operations inside scheduler locks.
4237 */
4238 dsq->id = SCX_DSQ_INVALID;
4239 llist_add(&dsq->free_node, &dsqs_to_free);
4240 irq_work_queue(&free_dsq_irq_work);
4241
4242 out_unlock_dsq:
4243 raw_spin_unlock_irqrestore(&dsq->lock, flags);
4244 out_unlock_rcu:
4245 rcu_read_unlock();
4246 }
4247
4248 #ifdef CONFIG_EXT_GROUP_SCHED
scx_cgroup_exit(void)4249 static void scx_cgroup_exit(void)
4250 {
4251 struct cgroup_subsys_state *css;
4252
4253 percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4254
4255 scx_cgroup_enabled = false;
4256
4257 /*
4258 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk
4259 * cgroups and exit all the inited ones, all online cgroups are exited.
4260 */
4261 rcu_read_lock();
4262 css_for_each_descendant_post(css, &root_task_group.css) {
4263 struct task_group *tg = css_tg(css);
4264
4265 if (!(tg->scx_flags & SCX_TG_INITED))
4266 continue;
4267 tg->scx_flags &= ~SCX_TG_INITED;
4268
4269 if (!scx_ops.cgroup_exit)
4270 continue;
4271
4272 if (WARN_ON_ONCE(!css_tryget(css)))
4273 continue;
4274 rcu_read_unlock();
4275
4276 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup);
4277
4278 rcu_read_lock();
4279 css_put(css);
4280 }
4281 rcu_read_unlock();
4282 }
4283
scx_cgroup_init(void)4284 static int scx_cgroup_init(void)
4285 {
4286 struct cgroup_subsys_state *css;
4287 int ret;
4288
4289 percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4290
4291 cgroup_warned_missing_weight = false;
4292 cgroup_warned_missing_idle = false;
4293
4294 /*
4295 * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk
4296 * cgroups and init, all online cgroups are initialized.
4297 */
4298 rcu_read_lock();
4299 css_for_each_descendant_pre(css, &root_task_group.css) {
4300 struct task_group *tg = css_tg(css);
4301 struct scx_cgroup_init_args args = { .weight = tg->scx_weight };
4302
4303 scx_cgroup_warn_missing_weight(tg);
4304 scx_cgroup_warn_missing_idle(tg);
4305
4306 if ((tg->scx_flags &
4307 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE)
4308 continue;
4309
4310 if (!scx_ops.cgroup_init) {
4311 tg->scx_flags |= SCX_TG_INITED;
4312 continue;
4313 }
4314
4315 if (WARN_ON_ONCE(!css_tryget(css)))
4316 continue;
4317 rcu_read_unlock();
4318
4319 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
4320 css->cgroup, &args);
4321 if (ret) {
4322 css_put(css);
4323 scx_ops_error("ops.cgroup_init() failed (%d)", ret);
4324 return ret;
4325 }
4326 tg->scx_flags |= SCX_TG_INITED;
4327
4328 rcu_read_lock();
4329 css_put(css);
4330 }
4331 rcu_read_unlock();
4332
4333 WARN_ON_ONCE(scx_cgroup_enabled);
4334 scx_cgroup_enabled = true;
4335
4336 return 0;
4337 }
4338
4339 #else
scx_cgroup_exit(void)4340 static void scx_cgroup_exit(void) {}
scx_cgroup_init(void)4341 static int scx_cgroup_init(void) { return 0; }
4342 #endif
4343
4344
4345 /********************************************************************************
4346 * Sysfs interface and ops enable/disable.
4347 */
4348
4349 #define SCX_ATTR(_name) \
4350 static struct kobj_attribute scx_attr_##_name = { \
4351 .attr = { .name = __stringify(_name), .mode = 0444 }, \
4352 .show = scx_attr_##_name##_show, \
4353 }
4354
scx_attr_state_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4355 static ssize_t scx_attr_state_show(struct kobject *kobj,
4356 struct kobj_attribute *ka, char *buf)
4357 {
4358 return sysfs_emit(buf, "%s\n",
4359 scx_ops_enable_state_str[scx_ops_enable_state()]);
4360 }
4361 SCX_ATTR(state);
4362
scx_attr_switch_all_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4363 static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
4364 struct kobj_attribute *ka, char *buf)
4365 {
4366 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
4367 }
4368 SCX_ATTR(switch_all);
4369
scx_attr_nr_rejected_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4370 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj,
4371 struct kobj_attribute *ka, char *buf)
4372 {
4373 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected));
4374 }
4375 SCX_ATTR(nr_rejected);
4376
scx_attr_hotplug_seq_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4377 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj,
4378 struct kobj_attribute *ka, char *buf)
4379 {
4380 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq));
4381 }
4382 SCX_ATTR(hotplug_seq);
4383
scx_attr_enable_seq_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4384 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj,
4385 struct kobj_attribute *ka, char *buf)
4386 {
4387 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq));
4388 }
4389 SCX_ATTR(enable_seq);
4390
4391 static struct attribute *scx_global_attrs[] = {
4392 &scx_attr_state.attr,
4393 &scx_attr_switch_all.attr,
4394 &scx_attr_nr_rejected.attr,
4395 &scx_attr_hotplug_seq.attr,
4396 &scx_attr_enable_seq.attr,
4397 NULL,
4398 };
4399
4400 static const struct attribute_group scx_global_attr_group = {
4401 .attrs = scx_global_attrs,
4402 };
4403
scx_kobj_release(struct kobject * kobj)4404 static void scx_kobj_release(struct kobject *kobj)
4405 {
4406 kfree(kobj);
4407 }
4408
scx_attr_ops_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4409 static ssize_t scx_attr_ops_show(struct kobject *kobj,
4410 struct kobj_attribute *ka, char *buf)
4411 {
4412 return sysfs_emit(buf, "%s\n", scx_ops.name);
4413 }
4414 SCX_ATTR(ops);
4415
4416 static struct attribute *scx_sched_attrs[] = {
4417 &scx_attr_ops.attr,
4418 NULL,
4419 };
4420 ATTRIBUTE_GROUPS(scx_sched);
4421
4422 static const struct kobj_type scx_ktype = {
4423 .release = scx_kobj_release,
4424 .sysfs_ops = &kobj_sysfs_ops,
4425 .default_groups = scx_sched_groups,
4426 };
4427
scx_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)4428 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
4429 {
4430 return add_uevent_var(env, "SCXOPS=%s", scx_ops.name);
4431 }
4432
4433 static const struct kset_uevent_ops scx_uevent_ops = {
4434 .uevent = scx_uevent,
4435 };
4436
4437 /*
4438 * Used by sched_fork() and __setscheduler_prio() to pick the matching
4439 * sched_class. dl/rt are already handled.
4440 */
task_should_scx(int policy)4441 bool task_should_scx(int policy)
4442 {
4443 if (!scx_enabled() ||
4444 unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING))
4445 return false;
4446 if (READ_ONCE(scx_switching_all))
4447 return true;
4448 return policy == SCHED_EXT;
4449 }
4450
4451 /**
4452 * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress
4453 *
4454 * Bypassing guarantees that all runnable tasks make forward progress without
4455 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
4456 * be held by tasks that the BPF scheduler is forgetting to run, which
4457 * unfortunately also excludes toggling the static branches.
4458 *
4459 * Let's work around by overriding a couple ops and modifying behaviors based on
4460 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue
4461 * to force global FIFO scheduling.
4462 *
4463 * - ops.select_cpu() is ignored and the default select_cpu() is used.
4464 *
4465 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
4466 * %SCX_OPS_ENQ_LAST is also ignored.
4467 *
4468 * - ops.dispatch() is ignored.
4469 *
4470 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice
4471 * can't be trusted. Whenever a tick triggers, the running task is rotated to
4472 * the tail of the queue with core_sched_at touched.
4473 *
4474 * - pick_next_task() suppresses zero slice warning.
4475 *
4476 * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM
4477 * operations.
4478 *
4479 * - scx_prio_less() reverts to the default core_sched_at order.
4480 */
scx_ops_bypass(bool bypass)4481 static void scx_ops_bypass(bool bypass)
4482 {
4483 int cpu;
4484 unsigned long flags;
4485
4486 raw_spin_lock_irqsave(&__scx_ops_bypass_lock, flags);
4487 if (bypass) {
4488 scx_ops_bypass_depth++;
4489 WARN_ON_ONCE(scx_ops_bypass_depth <= 0);
4490 if (scx_ops_bypass_depth != 1)
4491 goto unlock;
4492 } else {
4493 scx_ops_bypass_depth--;
4494 WARN_ON_ONCE(scx_ops_bypass_depth < 0);
4495 if (scx_ops_bypass_depth != 0)
4496 goto unlock;
4497 }
4498
4499 /*
4500 * No task property is changing. We just need to make sure all currently
4501 * queued tasks are re-queued according to the new scx_rq_bypassing()
4502 * state. As an optimization, walk each rq's runnable_list instead of
4503 * the scx_tasks list.
4504 *
4505 * This function can't trust the scheduler and thus can't use
4506 * cpus_read_lock(). Walk all possible CPUs instead of online.
4507 */
4508 for_each_possible_cpu(cpu) {
4509 struct rq *rq = cpu_rq(cpu);
4510 struct task_struct *p, *n;
4511
4512 raw_spin_rq_lock(rq);
4513
4514 if (bypass) {
4515 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING);
4516 rq->scx.flags |= SCX_RQ_BYPASSING;
4517 } else {
4518 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING));
4519 rq->scx.flags &= ~SCX_RQ_BYPASSING;
4520 }
4521
4522 /*
4523 * We need to guarantee that no tasks are on the BPF scheduler
4524 * while bypassing. Either we see enabled or the enable path
4525 * sees scx_rq_bypassing() before moving tasks to SCX.
4526 */
4527 if (!scx_enabled()) {
4528 raw_spin_rq_unlock(rq);
4529 continue;
4530 }
4531
4532 /*
4533 * The use of list_for_each_entry_safe_reverse() is required
4534 * because each task is going to be removed from and added back
4535 * to the runnable_list during iteration. Because they're added
4536 * to the tail of the list, safe reverse iteration can still
4537 * visit all nodes.
4538 */
4539 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
4540 scx.runnable_node) {
4541 struct sched_enq_and_set_ctx ctx;
4542
4543 /* cycling deq/enq is enough, see the function comment */
4544 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4545 sched_enq_and_set_task(&ctx);
4546 }
4547
4548 /* resched to restore ticks and idle state */
4549 if (cpu_online(cpu) || cpu == smp_processor_id())
4550 resched_curr(rq);
4551
4552 raw_spin_rq_unlock(rq);
4553 }
4554 unlock:
4555 raw_spin_unlock_irqrestore(&__scx_ops_bypass_lock, flags);
4556 }
4557
free_exit_info(struct scx_exit_info * ei)4558 static void free_exit_info(struct scx_exit_info *ei)
4559 {
4560 kvfree(ei->dump);
4561 kfree(ei->msg);
4562 kfree(ei->bt);
4563 kfree(ei);
4564 }
4565
alloc_exit_info(size_t exit_dump_len)4566 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
4567 {
4568 struct scx_exit_info *ei;
4569
4570 ei = kzalloc(sizeof(*ei), GFP_KERNEL);
4571 if (!ei)
4572 return NULL;
4573
4574 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
4575 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
4576 ei->dump = kvzalloc(exit_dump_len, GFP_KERNEL);
4577
4578 if (!ei->bt || !ei->msg || !ei->dump) {
4579 free_exit_info(ei);
4580 return NULL;
4581 }
4582
4583 return ei;
4584 }
4585
scx_exit_reason(enum scx_exit_kind kind)4586 static const char *scx_exit_reason(enum scx_exit_kind kind)
4587 {
4588 switch (kind) {
4589 case SCX_EXIT_UNREG:
4590 return "unregistered from user space";
4591 case SCX_EXIT_UNREG_BPF:
4592 return "unregistered from BPF";
4593 case SCX_EXIT_UNREG_KERN:
4594 return "unregistered from the main kernel";
4595 case SCX_EXIT_SYSRQ:
4596 return "disabled by sysrq-S";
4597 case SCX_EXIT_ERROR:
4598 return "runtime error";
4599 case SCX_EXIT_ERROR_BPF:
4600 return "scx_bpf_error";
4601 case SCX_EXIT_ERROR_STALL:
4602 return "runnable task stall";
4603 default:
4604 return "<UNKNOWN>";
4605 }
4606 }
4607
scx_ops_disable_workfn(struct kthread_work * work)4608 static void scx_ops_disable_workfn(struct kthread_work *work)
4609 {
4610 struct scx_exit_info *ei = scx_exit_info;
4611 struct scx_task_iter sti;
4612 struct task_struct *p;
4613 struct rhashtable_iter rht_iter;
4614 struct scx_dispatch_q *dsq;
4615 int i, kind;
4616
4617 kind = atomic_read(&scx_exit_kind);
4618 while (true) {
4619 /*
4620 * NONE indicates that a new scx_ops has been registered since
4621 * disable was scheduled - don't kill the new ops. DONE
4622 * indicates that the ops has already been disabled.
4623 */
4624 if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)
4625 return;
4626 if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE))
4627 break;
4628 }
4629 ei->kind = kind;
4630 ei->reason = scx_exit_reason(ei->kind);
4631
4632 /* guarantee forward progress by bypassing scx_ops */
4633 scx_ops_bypass(true);
4634
4635 switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) {
4636 case SCX_OPS_DISABLING:
4637 WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
4638 break;
4639 case SCX_OPS_DISABLED:
4640 pr_warn("sched_ext: ops error detected without ops (%s)\n",
4641 scx_exit_info->msg);
4642 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
4643 SCX_OPS_DISABLING);
4644 goto done;
4645 default:
4646 break;
4647 }
4648
4649 /*
4650 * Here, every runnable task is guaranteed to make forward progress and
4651 * we can safely use blocking synchronization constructs. Actually
4652 * disable ops.
4653 */
4654 mutex_lock(&scx_ops_enable_mutex);
4655
4656 static_branch_disable(&__scx_switched_all);
4657 WRITE_ONCE(scx_switching_all, false);
4658
4659 /*
4660 * Shut down cgroup support before tasks so that the cgroup attach path
4661 * doesn't race against scx_ops_exit_task().
4662 */
4663 scx_cgroup_lock();
4664 scx_cgroup_exit();
4665 scx_cgroup_unlock();
4666
4667 /*
4668 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones
4669 * must be switched out and exited synchronously.
4670 */
4671 percpu_down_write(&scx_fork_rwsem);
4672 trace_android_vh_scx_ops_enable_state(SCX_OPS_DISABLING);
4673
4674 scx_ops_init_task_enabled = false;
4675
4676 scx_task_iter_start(&sti);
4677 while ((p = scx_task_iter_next_locked(&sti))) {
4678 const struct sched_class *old_class = p->sched_class;
4679 const struct sched_class *new_class =
4680 __setscheduler_class(p->policy, p->prio);
4681 struct sched_enq_and_set_ctx ctx;
4682
4683 if (old_class != new_class && p->se.sched_delayed)
4684 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
4685
4686 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4687
4688 p->sched_class = new_class;
4689 check_class_changing(task_rq(p), p, old_class);
4690 trace_android_vh_scx_task_switch_finish(p, 0);
4691
4692 sched_enq_and_set_task(&ctx);
4693
4694 check_class_changed(task_rq(p), p, old_class, p->prio);
4695 scx_ops_exit_task(p);
4696 }
4697 scx_task_iter_stop(&sti);
4698 percpu_up_write(&scx_fork_rwsem);
4699
4700 /* no task is on scx, turn off all the switches and flush in-progress calls */
4701 static_branch_disable(&__scx_ops_enabled);
4702 trace_android_vh_scx_enabled(0);
4703 for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++)
4704 static_branch_disable(&scx_has_op[i]);
4705 static_branch_disable(&scx_ops_enq_last);
4706 static_branch_disable(&scx_ops_enq_exiting);
4707 static_branch_disable(&scx_ops_cpu_preempt);
4708 static_branch_disable(&scx_builtin_idle_enabled);
4709 synchronize_rcu();
4710
4711 if (ei->kind >= SCX_EXIT_ERROR) {
4712 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4713 scx_ops.name, ei->reason);
4714
4715 if (ei->msg[0] != '\0')
4716 pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg);
4717 #ifdef CONFIG_STACKTRACE
4718 stack_trace_print(ei->bt, ei->bt_len, 2);
4719 #endif
4720 } else {
4721 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4722 scx_ops.name, ei->reason);
4723 }
4724
4725 if (scx_ops.exit)
4726 SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei);
4727
4728 cancel_delayed_work_sync(&scx_watchdog_work);
4729
4730 /*
4731 * Delete the kobject from the hierarchy eagerly in addition to just
4732 * dropping a reference. Otherwise, if the object is deleted
4733 * asynchronously, sysfs could observe an object of the same name still
4734 * in the hierarchy when another scheduler is loaded.
4735 */
4736 kobject_del(scx_root_kobj);
4737 kobject_put(scx_root_kobj);
4738 scx_root_kobj = NULL;
4739
4740 memset(&scx_ops, 0, sizeof(scx_ops));
4741
4742 rhashtable_walk_enter(&dsq_hash, &rht_iter);
4743 do {
4744 rhashtable_walk_start(&rht_iter);
4745
4746 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
4747 destroy_dsq(dsq->id);
4748
4749 rhashtable_walk_stop(&rht_iter);
4750 } while (dsq == ERR_PTR(-EAGAIN));
4751 rhashtable_walk_exit(&rht_iter);
4752
4753 free_percpu(scx_dsp_ctx);
4754 scx_dsp_ctx = NULL;
4755 scx_dsp_max_batch = 0;
4756
4757 free_exit_info(scx_exit_info);
4758 scx_exit_info = NULL;
4759
4760 mutex_unlock(&scx_ops_enable_mutex);
4761
4762 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
4763 SCX_OPS_DISABLING);
4764 trace_android_vh_scx_ops_enable_state(SCX_OPS_DISABLED);
4765 done:
4766 scx_ops_bypass(false);
4767 }
4768
4769 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn);
4770
schedule_scx_ops_disable_work(void)4771 static void schedule_scx_ops_disable_work(void)
4772 {
4773 struct kthread_worker *helper = READ_ONCE(scx_ops_helper);
4774
4775 /*
4776 * We may be called spuriously before the first bpf_sched_ext_reg(). If
4777 * scx_ops_helper isn't set up yet, there's nothing to do.
4778 */
4779 if (helper)
4780 kthread_queue_work(helper, &scx_ops_disable_work);
4781 }
4782
scx_ops_disable(enum scx_exit_kind kind)4783 static void scx_ops_disable(enum scx_exit_kind kind)
4784 {
4785 int none = SCX_EXIT_NONE;
4786
4787 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
4788 kind = SCX_EXIT_ERROR;
4789
4790 atomic_try_cmpxchg(&scx_exit_kind, &none, kind);
4791
4792 schedule_scx_ops_disable_work();
4793 }
4794
dump_newline(struct seq_buf * s)4795 static void dump_newline(struct seq_buf *s)
4796 {
4797 trace_sched_ext_dump("");
4798
4799 /* @s may be zero sized and seq_buf triggers WARN if so */
4800 if (s->size)
4801 seq_buf_putc(s, '\n');
4802 }
4803
dump_line(struct seq_buf * s,const char * fmt,...)4804 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...)
4805 {
4806 va_list args;
4807
4808 #ifdef CONFIG_TRACEPOINTS
4809 if (trace_sched_ext_dump_enabled()) {
4810 /* protected by scx_dump_state()::dump_lock */
4811 static char line_buf[SCX_EXIT_MSG_LEN];
4812
4813 va_start(args, fmt);
4814 vscnprintf(line_buf, sizeof(line_buf), fmt, args);
4815 va_end(args);
4816
4817 trace_sched_ext_dump(line_buf);
4818 }
4819 #endif
4820 /* @s may be zero sized and seq_buf triggers WARN if so */
4821 if (s->size) {
4822 va_start(args, fmt);
4823 seq_buf_vprintf(s, fmt, args);
4824 va_end(args);
4825
4826 seq_buf_putc(s, '\n');
4827 }
4828 }
4829
dump_stack_trace(struct seq_buf * s,const char * prefix,const unsigned long * bt,unsigned int len)4830 static void dump_stack_trace(struct seq_buf *s, const char *prefix,
4831 const unsigned long *bt, unsigned int len)
4832 {
4833 unsigned int i;
4834
4835 for (i = 0; i < len; i++)
4836 dump_line(s, "%s%pS", prefix, (void *)bt[i]);
4837 }
4838
ops_dump_init(struct seq_buf * s,const char * prefix)4839 static void ops_dump_init(struct seq_buf *s, const char *prefix)
4840 {
4841 struct scx_dump_data *dd = &scx_dump_data;
4842
4843 lockdep_assert_irqs_disabled();
4844
4845 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */
4846 dd->first = true;
4847 dd->cursor = 0;
4848 dd->s = s;
4849 dd->prefix = prefix;
4850 }
4851
ops_dump_flush(void)4852 static void ops_dump_flush(void)
4853 {
4854 struct scx_dump_data *dd = &scx_dump_data;
4855 char *line = dd->buf.line;
4856
4857 if (!dd->cursor)
4858 return;
4859
4860 /*
4861 * There's something to flush and this is the first line. Insert a blank
4862 * line to distinguish ops dump.
4863 */
4864 if (dd->first) {
4865 dump_newline(dd->s);
4866 dd->first = false;
4867 }
4868
4869 /*
4870 * There may be multiple lines in $line. Scan and emit each line
4871 * separately.
4872 */
4873 while (true) {
4874 char *end = line;
4875 char c;
4876
4877 while (*end != '\n' && *end != '\0')
4878 end++;
4879
4880 /*
4881 * If $line overflowed, it may not have newline at the end.
4882 * Always emit with a newline.
4883 */
4884 c = *end;
4885 *end = '\0';
4886 dump_line(dd->s, "%s%s", dd->prefix, line);
4887 if (c == '\0')
4888 break;
4889
4890 /* move to the next line */
4891 end++;
4892 if (*end == '\0')
4893 break;
4894 line = end;
4895 }
4896
4897 dd->cursor = 0;
4898 }
4899
ops_dump_exit(void)4900 static void ops_dump_exit(void)
4901 {
4902 ops_dump_flush();
4903 scx_dump_data.cpu = -1;
4904 }
4905
scx_dump_task(struct seq_buf * s,struct scx_dump_ctx * dctx,struct task_struct * p,char marker)4906 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
4907 struct task_struct *p, char marker)
4908 {
4909 static unsigned long bt[SCX_EXIT_BT_LEN];
4910 char dsq_id_buf[19] = "(n/a)";
4911 unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
4912 unsigned int bt_len = 0;
4913
4914 if (p->scx.dsq)
4915 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx",
4916 (unsigned long long)p->scx.dsq->id);
4917
4918 dump_newline(s);
4919 dump_line(s, " %c%c %s[%d] %+ldms",
4920 marker, task_state_to_char(p), p->comm, p->pid,
4921 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies));
4922 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
4923 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
4924 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
4925 ops_state >> SCX_OPSS_QSEQ_SHIFT);
4926 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu",
4927 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf,
4928 p->scx.dsq_vtime);
4929 dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr));
4930
4931 if (SCX_HAS_OP(dump_task)) {
4932 ops_dump_init(s, " ");
4933 SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p);
4934 ops_dump_exit();
4935 }
4936
4937 #ifdef CONFIG_STACKTRACE
4938 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1);
4939 #endif
4940 if (bt_len) {
4941 dump_newline(s);
4942 dump_stack_trace(s, " ", bt, bt_len);
4943 }
4944 }
4945
scx_dump_state(struct scx_exit_info * ei,size_t dump_len)4946 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
4947 {
4948 static DEFINE_SPINLOCK(dump_lock);
4949 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
4950 struct scx_dump_ctx dctx = {
4951 .kind = ei->kind,
4952 .exit_code = ei->exit_code,
4953 .reason = ei->reason,
4954 .at_ns = ktime_get_ns(),
4955 .at_jiffies = jiffies,
4956 };
4957 struct seq_buf s;
4958 unsigned long flags;
4959 char *buf;
4960 int cpu;
4961
4962 spin_lock_irqsave(&dump_lock, flags);
4963
4964 seq_buf_init(&s, ei->dump, dump_len);
4965
4966 if (ei->kind == SCX_EXIT_NONE) {
4967 dump_line(&s, "Debug dump triggered by %s", ei->reason);
4968 } else {
4969 dump_line(&s, "%s[%d] triggered exit kind %d:",
4970 current->comm, current->pid, ei->kind);
4971 dump_line(&s, " %s (%s)", ei->reason, ei->msg);
4972 dump_newline(&s);
4973 dump_line(&s, "Backtrace:");
4974 dump_stack_trace(&s, " ", ei->bt, ei->bt_len);
4975 }
4976
4977 if (SCX_HAS_OP(dump)) {
4978 ops_dump_init(&s, "");
4979 SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx);
4980 ops_dump_exit();
4981 }
4982
4983 dump_newline(&s);
4984 dump_line(&s, "CPU states");
4985 dump_line(&s, "----------");
4986
4987 for_each_possible_cpu(cpu) {
4988 struct rq *rq = cpu_rq(cpu);
4989 struct rq_flags rf;
4990 struct task_struct *p;
4991 struct seq_buf ns;
4992 size_t avail, used;
4993 bool idle;
4994
4995 rq_lock(rq, &rf);
4996
4997 idle = list_empty(&rq->scx.runnable_list) &&
4998 rq->curr->sched_class == &idle_sched_class;
4999
5000 if (idle && !SCX_HAS_OP(dump_cpu))
5001 goto next;
5002
5003 /*
5004 * We don't yet know whether ops.dump_cpu() will produce output
5005 * and we may want to skip the default CPU dump if it doesn't.
5006 * Use a nested seq_buf to generate the standard dump so that we
5007 * can decide whether to commit later.
5008 */
5009 avail = seq_buf_get_buf(&s, &buf);
5010 seq_buf_init(&ns, buf, avail);
5011
5012 dump_newline(&ns);
5013 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu",
5014 cpu, rq->scx.nr_running, rq->scx.flags,
5015 rq->scx.cpu_released, rq->scx.ops_qseq,
5016 rq->scx.pnt_seq);
5017 dump_line(&ns, " curr=%s[%d] class=%ps",
5018 rq->curr->comm, rq->curr->pid,
5019 rq->curr->sched_class);
5020 if (!cpumask_empty(rq->scx.cpus_to_kick))
5021 dump_line(&ns, " cpus_to_kick : %*pb",
5022 cpumask_pr_args(rq->scx.cpus_to_kick));
5023 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle))
5024 dump_line(&ns, " idle_to_kick : %*pb",
5025 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle));
5026 if (!cpumask_empty(rq->scx.cpus_to_preempt))
5027 dump_line(&ns, " cpus_to_preempt: %*pb",
5028 cpumask_pr_args(rq->scx.cpus_to_preempt));
5029 if (!cpumask_empty(rq->scx.cpus_to_wait))
5030 dump_line(&ns, " cpus_to_wait : %*pb",
5031 cpumask_pr_args(rq->scx.cpus_to_wait));
5032
5033 used = seq_buf_used(&ns);
5034 if (SCX_HAS_OP(dump_cpu)) {
5035 ops_dump_init(&ns, " ");
5036 SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle);
5037 ops_dump_exit();
5038 }
5039
5040 /*
5041 * If idle && nothing generated by ops.dump_cpu(), there's
5042 * nothing interesting. Skip.
5043 */
5044 if (idle && used == seq_buf_used(&ns))
5045 goto next;
5046
5047 /*
5048 * $s may already have overflowed when $ns was created. If so,
5049 * calling commit on it will trigger BUG.
5050 */
5051 if (avail) {
5052 seq_buf_commit(&s, seq_buf_used(&ns));
5053 if (seq_buf_has_overflowed(&ns))
5054 seq_buf_set_overflow(&s);
5055 }
5056
5057 if (rq->curr->sched_class == &ext_sched_class)
5058 scx_dump_task(&s, &dctx, rq->curr, '*');
5059
5060 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
5061 scx_dump_task(&s, &dctx, p, ' ');
5062 next:
5063 rq_unlock(rq, &rf);
5064 }
5065
5066 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
5067 memcpy(ei->dump + dump_len - sizeof(trunc_marker),
5068 trunc_marker, sizeof(trunc_marker));
5069
5070 spin_unlock_irqrestore(&dump_lock, flags);
5071 }
5072
scx_ops_error_irq_workfn(struct irq_work * irq_work)5073 static void scx_ops_error_irq_workfn(struct irq_work *irq_work)
5074 {
5075 struct scx_exit_info *ei = scx_exit_info;
5076
5077 if (ei->kind >= SCX_EXIT_ERROR)
5078 scx_dump_state(ei, scx_ops.exit_dump_len);
5079
5080 schedule_scx_ops_disable_work();
5081 }
5082
5083 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn);
5084
scx_ops_exit_kind(enum scx_exit_kind kind,s64 exit_code,const char * fmt,...)5085 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
5086 s64 exit_code,
5087 const char *fmt, ...)
5088 {
5089 struct scx_exit_info *ei = scx_exit_info;
5090 int none = SCX_EXIT_NONE;
5091 va_list args;
5092
5093 if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind))
5094 return;
5095
5096 ei->exit_code = exit_code;
5097 #ifdef CONFIG_STACKTRACE
5098 if (kind >= SCX_EXIT_ERROR)
5099 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
5100 #endif
5101 va_start(args, fmt);
5102 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
5103 va_end(args);
5104
5105 /*
5106 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again
5107 * in scx_ops_disable_workfn().
5108 */
5109 ei->kind = kind;
5110 ei->reason = scx_exit_reason(ei->kind);
5111
5112 irq_work_queue(&scx_ops_error_irq_work);
5113 }
5114
scx_create_rt_helper(const char * name)5115 static struct kthread_worker *scx_create_rt_helper(const char *name)
5116 {
5117 struct kthread_worker *helper;
5118
5119 helper = kthread_create_worker(0, name);
5120 if (helper)
5121 sched_set_fifo(helper->task);
5122 return helper;
5123 }
5124
check_hotplug_seq(const struct sched_ext_ops * ops)5125 static void check_hotplug_seq(const struct sched_ext_ops *ops)
5126 {
5127 unsigned long long global_hotplug_seq;
5128
5129 /*
5130 * If a hotplug event has occurred between when a scheduler was
5131 * initialized, and when we were able to attach, exit and notify user
5132 * space about it.
5133 */
5134 if (ops->hotplug_seq) {
5135 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
5136 if (ops->hotplug_seq != global_hotplug_seq) {
5137 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
5138 "expected hotplug seq %llu did not match actual %llu",
5139 ops->hotplug_seq, global_hotplug_seq);
5140 }
5141 }
5142 }
5143
validate_ops(const struct sched_ext_ops * ops)5144 static int validate_ops(const struct sched_ext_ops *ops)
5145 {
5146 /*
5147 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
5148 * ops.enqueue() callback isn't implemented.
5149 */
5150 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
5151 scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
5152 return -EINVAL;
5153 }
5154
5155 return 0;
5156 }
5157
scx_ops_enable(struct sched_ext_ops * ops,struct bpf_link * link)5158 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
5159 {
5160 struct scx_task_iter sti;
5161 struct task_struct *p;
5162 unsigned long timeout;
5163 int i, cpu, node, ret;
5164
5165 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
5166 cpu_possible_mask)) {
5167 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n");
5168 return -EINVAL;
5169 }
5170
5171 mutex_lock(&scx_ops_enable_mutex);
5172
5173 if (!scx_ops_helper) {
5174 WRITE_ONCE(scx_ops_helper,
5175 scx_create_rt_helper("sched_ext_ops_helper"));
5176 if (!scx_ops_helper) {
5177 ret = -ENOMEM;
5178 goto err_unlock;
5179 }
5180 }
5181
5182 if (!global_dsqs) {
5183 struct scx_dispatch_q **dsqs;
5184
5185 dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL);
5186 if (!dsqs) {
5187 ret = -ENOMEM;
5188 goto err_unlock;
5189 }
5190
5191 for_each_node_state(node, N_POSSIBLE) {
5192 struct scx_dispatch_q *dsq;
5193
5194 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node);
5195 if (!dsq) {
5196 for_each_node_state(node, N_POSSIBLE)
5197 kfree(dsqs[node]);
5198 kfree(dsqs);
5199 ret = -ENOMEM;
5200 goto err_unlock;
5201 }
5202
5203 init_dsq(dsq, SCX_DSQ_GLOBAL);
5204 dsqs[node] = dsq;
5205 }
5206
5207 global_dsqs = dsqs;
5208 }
5209
5210 if (scx_ops_enable_state() != SCX_OPS_DISABLED) {
5211 ret = -EBUSY;
5212 goto err_unlock;
5213 }
5214
5215 scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL);
5216 if (!scx_root_kobj) {
5217 ret = -ENOMEM;
5218 goto err_unlock;
5219 }
5220
5221 scx_root_kobj->kset = scx_kset;
5222 ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root");
5223 if (ret < 0)
5224 goto err;
5225
5226 scx_exit_info = alloc_exit_info(ops->exit_dump_len);
5227 if (!scx_exit_info) {
5228 ret = -ENOMEM;
5229 goto err_del;
5230 }
5231
5232 /*
5233 * Set scx_ops, transition to ENABLING and clear exit info to arm the
5234 * disable path. Failure triggers full disabling from here on.
5235 */
5236 scx_ops = *ops;
5237
5238 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) !=
5239 SCX_OPS_DISABLED);
5240 trace_android_vh_scx_ops_enable_state(SCX_OPS_ENABLING);
5241
5242 atomic_set(&scx_exit_kind, SCX_EXIT_NONE);
5243 scx_warned_zero_slice = false;
5244
5245 atomic_long_set(&scx_nr_rejected, 0);
5246
5247 for_each_possible_cpu(cpu)
5248 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE;
5249
5250 if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) {
5251 reset_idle_masks();
5252 static_branch_enable(&scx_builtin_idle_enabled);
5253 } else {
5254 static_branch_disable(&scx_builtin_idle_enabled);
5255 }
5256
5257 /*
5258 * Keep CPUs stable during enable so that the BPF scheduler can track
5259 * online CPUs by watching ->on/offline_cpu() after ->init().
5260 */
5261 cpus_read_lock();
5262
5263 if (scx_ops.init) {
5264 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init);
5265 if (ret) {
5266 ret = ops_sanitize_err("init", ret);
5267 cpus_read_unlock();
5268 scx_ops_error("ops.init() failed (%d)", ret);
5269 goto err_disable;
5270 }
5271 }
5272
5273 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
5274 if (((void (**)(void))ops)[i])
5275 static_branch_enable_cpuslocked(&scx_has_op[i]);
5276
5277 check_hotplug_seq(ops);
5278 cpus_read_unlock();
5279
5280 ret = validate_ops(ops);
5281 if (ret)
5282 goto err_disable;
5283
5284 WARN_ON_ONCE(scx_dsp_ctx);
5285 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
5286 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf,
5287 scx_dsp_max_batch),
5288 __alignof__(struct scx_dsp_ctx));
5289 if (!scx_dsp_ctx) {
5290 ret = -ENOMEM;
5291 goto err_disable;
5292 }
5293
5294 if (ops->timeout_ms)
5295 timeout = msecs_to_jiffies(ops->timeout_ms);
5296 else
5297 timeout = SCX_WATCHDOG_MAX_TIMEOUT;
5298
5299 WRITE_ONCE(scx_watchdog_timeout, timeout);
5300 WRITE_ONCE(scx_watchdog_timestamp, jiffies);
5301 queue_delayed_work(system_unbound_wq, &scx_watchdog_work,
5302 scx_watchdog_timeout / 2);
5303
5304 /*
5305 * Once __scx_ops_enabled is set, %current can be switched to SCX
5306 * anytime. This can lead to stalls as some BPF schedulers (e.g.
5307 * userspace scheduling) may not function correctly before all tasks are
5308 * switched. Init in bypass mode to guarantee forward progress.
5309 */
5310 scx_ops_bypass(true);
5311
5312 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
5313 if (((void (**)(void))ops)[i])
5314 static_branch_enable(&scx_has_op[i]);
5315
5316 if (ops->flags & SCX_OPS_ENQ_LAST)
5317 static_branch_enable(&scx_ops_enq_last);
5318
5319 if (ops->flags & SCX_OPS_ENQ_EXITING)
5320 static_branch_enable(&scx_ops_enq_exiting);
5321 if (scx_ops.cpu_acquire || scx_ops.cpu_release)
5322 static_branch_enable(&scx_ops_cpu_preempt);
5323
5324 /*
5325 * Lock out forks, cgroup on/offlining and moves before opening the
5326 * floodgate so that they don't wander into the operations prematurely.
5327 */
5328 percpu_down_write(&scx_fork_rwsem);
5329
5330 WARN_ON_ONCE(scx_ops_init_task_enabled);
5331 scx_ops_init_task_enabled = true;
5332
5333 /*
5334 * Enable ops for every task. Fork is excluded by scx_fork_rwsem
5335 * preventing new tasks from being added. No need to exclude tasks
5336 * leaving as sched_ext_free() can handle both prepped and enabled
5337 * tasks. Prep all tasks first and then enable them with preemption
5338 * disabled.
5339 *
5340 * All cgroups should be initialized before scx_ops_init_task() so that
5341 * the BPF scheduler can reliably track each task's cgroup membership
5342 * from scx_ops_init_task(). Lock out cgroup on/offlining and task
5343 * migrations while tasks are being initialized so that
5344 * scx_cgroup_can_attach() never sees uninitialized tasks.
5345 */
5346 scx_cgroup_lock();
5347 ret = scx_cgroup_init();
5348 if (ret)
5349 goto err_disable_unlock_all;
5350
5351 scx_task_iter_start(&sti);
5352 while ((p = scx_task_iter_next_locked(&sti))) {
5353 /*
5354 * @p may already be dead, have lost all its usages counts and
5355 * be waiting for RCU grace period before being freed. @p can't
5356 * be initialized for SCX in such cases and should be ignored.
5357 */
5358 if (!tryget_task_struct(p))
5359 continue;
5360
5361 scx_task_iter_unlock(&sti);
5362
5363 ret = scx_ops_init_task(p, task_group(p), false);
5364 if (ret) {
5365 put_task_struct(p);
5366 scx_task_iter_relock(&sti);
5367 scx_task_iter_stop(&sti);
5368 scx_ops_error("ops.init_task() failed (%d) for %s[%d]",
5369 ret, p->comm, p->pid);
5370 goto err_disable_unlock_all;
5371 }
5372
5373 scx_set_task_state(p, SCX_TASK_READY);
5374
5375 put_task_struct(p);
5376 scx_task_iter_relock(&sti);
5377 }
5378 scx_task_iter_stop(&sti);
5379 scx_cgroup_unlock();
5380 percpu_up_write(&scx_fork_rwsem);
5381
5382 /*
5383 * All tasks are READY. It's safe to turn on scx_enabled() and switch
5384 * all eligible tasks.
5385 */
5386 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
5387 static_branch_enable(&__scx_ops_enabled);
5388 trace_android_vh_scx_enabled(1);
5389
5390 /*
5391 * We're fully committed and can't fail. The task READY -> ENABLED
5392 * transitions here are synchronized against sched_ext_free() through
5393 * scx_tasks_lock.
5394 */
5395 percpu_down_write(&scx_fork_rwsem);
5396 scx_task_iter_start(&sti);
5397 while ((p = scx_task_iter_next_locked(&sti))) {
5398 const struct sched_class *old_class = p->sched_class;
5399 const struct sched_class *new_class =
5400 __setscheduler_class(p->policy, p->prio);
5401 struct sched_enq_and_set_ctx ctx;
5402
5403 if (!tryget_task_struct(p))
5404 continue;
5405
5406 if (old_class != new_class && p->se.sched_delayed)
5407 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5408
5409 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
5410
5411 p->scx.slice = SCX_SLICE_DFL;
5412 p->sched_class = new_class;
5413 check_class_changing(task_rq(p), p, old_class);
5414 trace_android_vh_scx_task_switch_finish(p, 1);
5415
5416 sched_enq_and_set_task(&ctx);
5417
5418 check_class_changed(task_rq(p), p, old_class, p->prio);
5419 put_task_struct(p);
5420 }
5421 scx_task_iter_stop(&sti);
5422 percpu_up_write(&scx_fork_rwsem);
5423
5424 scx_ops_bypass(false);
5425
5426 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) {
5427 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE);
5428 goto err_disable;
5429 }
5430 trace_android_vh_scx_ops_enable_state(SCX_OPS_ENABLED);
5431
5432 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
5433 static_branch_enable(&__scx_switched_all);
5434
5435 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
5436 scx_ops.name, scx_switched_all() ? "" : " (partial)");
5437 kobject_uevent(scx_root_kobj, KOBJ_ADD);
5438 mutex_unlock(&scx_ops_enable_mutex);
5439
5440 atomic_long_inc(&scx_enable_seq);
5441
5442 add_taint(TAINT_AUX, LOCKDEP_STILL_OK);
5443 return 0;
5444
5445 err_del:
5446 kobject_del(scx_root_kobj);
5447 err:
5448 kobject_put(scx_root_kobj);
5449 scx_root_kobj = NULL;
5450 if (scx_exit_info) {
5451 free_exit_info(scx_exit_info);
5452 scx_exit_info = NULL;
5453 }
5454 err_unlock:
5455 mutex_unlock(&scx_ops_enable_mutex);
5456 return ret;
5457
5458 err_disable_unlock_all:
5459 scx_cgroup_unlock();
5460 percpu_up_write(&scx_fork_rwsem);
5461 scx_ops_bypass(false);
5462 err_disable:
5463 mutex_unlock(&scx_ops_enable_mutex);
5464 /*
5465 * Returning an error code here would not pass all the error information
5466 * to userspace. Record errno using scx_ops_error() for cases
5467 * scx_ops_error() wasn't already invoked and exit indicating success so
5468 * that the error is notified through ops.exit() with all the details.
5469 *
5470 * Flush scx_ops_disable_work to ensure that error is reported before
5471 * init completion.
5472 */
5473 scx_ops_error("scx_ops_enable() failed (%d)", ret);
5474 kthread_flush_work(&scx_ops_disable_work);
5475 return 0;
5476 }
5477
5478
5479 /********************************************************************************
5480 * bpf_struct_ops plumbing.
5481 */
5482 #include <linux/bpf_verifier.h>
5483 #include <linux/bpf.h>
5484 #include <linux/btf.h>
5485
5486 extern struct btf *btf_vmlinux;
5487 static const struct btf_type *task_struct_type;
5488 static u32 task_struct_type_id;
5489
set_arg_maybe_null(const char * op,int arg_n,int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5490 static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size,
5491 enum bpf_access_type type,
5492 const struct bpf_prog *prog,
5493 struct bpf_insn_access_aux *info)
5494 {
5495 struct btf *btf = bpf_get_btf_vmlinux();
5496 const struct bpf_struct_ops_desc *st_ops_desc;
5497 const struct btf_member *member;
5498 const struct btf_type *t;
5499 u32 btf_id, member_idx;
5500 const char *mname;
5501
5502 /* struct_ops op args are all sequential, 64-bit numbers */
5503 if (off != arg_n * sizeof(__u64))
5504 return false;
5505
5506 /* btf_id should be the type id of struct sched_ext_ops */
5507 btf_id = prog->aux->attach_btf_id;
5508 st_ops_desc = bpf_struct_ops_find(btf, btf_id);
5509 if (!st_ops_desc)
5510 return false;
5511
5512 /* BTF type of struct sched_ext_ops */
5513 t = st_ops_desc->type;
5514
5515 member_idx = prog->expected_attach_type;
5516 if (member_idx >= btf_type_vlen(t))
5517 return false;
5518
5519 /*
5520 * Get the member name of this struct_ops program, which corresponds to
5521 * a field in struct sched_ext_ops. For example, the member name of the
5522 * dispatch struct_ops program (callback) is "dispatch".
5523 */
5524 member = &btf_type_member(t)[member_idx];
5525 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
5526
5527 if (!strcmp(mname, op)) {
5528 /*
5529 * The value is a pointer to a type (struct task_struct) given
5530 * by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED),
5531 * however, can be a NULL (PTR_MAYBE_NULL). The BPF program
5532 * should check the pointer to make sure it is not NULL before
5533 * using it, or the verifier will reject the program.
5534 *
5535 * Longer term, this is something that should be addressed by
5536 * BTF, and be fully contained within the verifier.
5537 */
5538 info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED;
5539 info->btf = btf_vmlinux;
5540 info->btf_id = task_struct_type_id;
5541
5542 return true;
5543 }
5544
5545 return false;
5546 }
5547
bpf_scx_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5548 static bool bpf_scx_is_valid_access(int off, int size,
5549 enum bpf_access_type type,
5550 const struct bpf_prog *prog,
5551 struct bpf_insn_access_aux *info)
5552 {
5553 if (type != BPF_READ)
5554 return false;
5555 if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) ||
5556 set_arg_maybe_null("yield", 1, off, size, type, prog, info))
5557 return true;
5558 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
5559 return false;
5560 if (off % size != 0)
5561 return false;
5562
5563 return btf_ctx_access(off, size, type, prog, info);
5564 }
5565
bpf_scx_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)5566 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
5567 const struct bpf_reg_state *reg, int off,
5568 int size)
5569 {
5570 const struct btf_type *t;
5571
5572 t = btf_type_by_id(reg->btf, reg->btf_id);
5573 if (t == task_struct_type) {
5574 if (off >= offsetof(struct task_struct, scx.slice) &&
5575 off + size <= offsetofend(struct task_struct, scx.slice))
5576 return SCALAR_VALUE;
5577 if (off >= offsetof(struct task_struct, scx.dsq_vtime) &&
5578 off + size <= offsetofend(struct task_struct, scx.dsq_vtime))
5579 return SCALAR_VALUE;
5580 if (off >= offsetof(struct task_struct, scx.disallow) &&
5581 off + size <= offsetofend(struct task_struct, scx.disallow))
5582 return SCALAR_VALUE;
5583 }
5584
5585 return -EACCES;
5586 }
5587
5588 static const struct bpf_func_proto *
bpf_scx_get_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)5589 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5590 {
5591 switch (func_id) {
5592 case BPF_FUNC_task_storage_get:
5593 return &bpf_task_storage_get_proto;
5594 case BPF_FUNC_task_storage_delete:
5595 return &bpf_task_storage_delete_proto;
5596 default:
5597 return bpf_base_func_proto(func_id, prog);
5598 }
5599 }
5600
5601 static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
5602 .get_func_proto = bpf_scx_get_func_proto,
5603 .is_valid_access = bpf_scx_is_valid_access,
5604 .btf_struct_access = bpf_scx_btf_struct_access,
5605 };
5606
bpf_scx_init_member(const struct btf_type * t,const struct btf_member * member,void * kdata,const void * udata)5607 static int bpf_scx_init_member(const struct btf_type *t,
5608 const struct btf_member *member,
5609 void *kdata, const void *udata)
5610 {
5611 const struct sched_ext_ops *uops = udata;
5612 struct sched_ext_ops *ops = kdata;
5613 u32 moff = __btf_member_bit_offset(t, member) / 8;
5614 int ret;
5615
5616 switch (moff) {
5617 case offsetof(struct sched_ext_ops, dispatch_max_batch):
5618 if (*(u32 *)(udata + moff) > INT_MAX)
5619 return -E2BIG;
5620 ops->dispatch_max_batch = *(u32 *)(udata + moff);
5621 return 1;
5622 case offsetof(struct sched_ext_ops, flags):
5623 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
5624 return -EINVAL;
5625 ops->flags = *(u64 *)(udata + moff);
5626 return 1;
5627 case offsetof(struct sched_ext_ops, name):
5628 ret = bpf_obj_name_cpy(ops->name, uops->name,
5629 sizeof(ops->name));
5630 if (ret < 0)
5631 return ret;
5632 if (ret == 0)
5633 return -EINVAL;
5634 return 1;
5635 case offsetof(struct sched_ext_ops, timeout_ms):
5636 if (msecs_to_jiffies(*(u32 *)(udata + moff)) >
5637 SCX_WATCHDOG_MAX_TIMEOUT)
5638 return -E2BIG;
5639 ops->timeout_ms = *(u32 *)(udata + moff);
5640 return 1;
5641 case offsetof(struct sched_ext_ops, exit_dump_len):
5642 ops->exit_dump_len =
5643 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN;
5644 return 1;
5645 case offsetof(struct sched_ext_ops, hotplug_seq):
5646 ops->hotplug_seq = *(u64 *)(udata + moff);
5647 return 1;
5648 }
5649
5650 return 0;
5651 }
5652
bpf_scx_check_member(const struct btf_type * t,const struct btf_member * member,const struct bpf_prog * prog)5653 static int bpf_scx_check_member(const struct btf_type *t,
5654 const struct btf_member *member,
5655 const struct bpf_prog *prog)
5656 {
5657 u32 moff = __btf_member_bit_offset(t, member) / 8;
5658
5659 switch (moff) {
5660 case offsetof(struct sched_ext_ops, init_task):
5661 #ifdef CONFIG_EXT_GROUP_SCHED
5662 case offsetof(struct sched_ext_ops, cgroup_init):
5663 case offsetof(struct sched_ext_ops, cgroup_exit):
5664 case offsetof(struct sched_ext_ops, cgroup_prep_move):
5665 #endif
5666 case offsetof(struct sched_ext_ops, cpu_online):
5667 case offsetof(struct sched_ext_ops, cpu_offline):
5668 case offsetof(struct sched_ext_ops, init):
5669 case offsetof(struct sched_ext_ops, exit):
5670 break;
5671 default:
5672 if (prog->sleepable)
5673 return -EINVAL;
5674 }
5675
5676 return 0;
5677 }
5678
bpf_scx_reg(void * kdata,struct bpf_link * link)5679 static int bpf_scx_reg(void *kdata, struct bpf_link *link)
5680 {
5681 return scx_ops_enable(kdata, link);
5682 }
5683
bpf_scx_unreg(void * kdata,struct bpf_link * link)5684 static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
5685 {
5686 scx_ops_disable(SCX_EXIT_UNREG);
5687 kthread_flush_work(&scx_ops_disable_work);
5688 }
5689
bpf_scx_init(struct btf * btf)5690 static int bpf_scx_init(struct btf *btf)
5691 {
5692 s32 type_id;
5693
5694 type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT);
5695 if (type_id < 0)
5696 return -EINVAL;
5697 task_struct_type = btf_type_by_id(btf, type_id);
5698 task_struct_type_id = type_id;
5699
5700 return 0;
5701 }
5702
bpf_scx_update(void * kdata,void * old_kdata,struct bpf_link * link)5703 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link)
5704 {
5705 /*
5706 * sched_ext does not support updating the actively-loaded BPF
5707 * scheduler, as registering a BPF scheduler can always fail if the
5708 * scheduler returns an error code for e.g. ops.init(), ops.init_task(),
5709 * etc. Similarly, we can always race with unregistration happening
5710 * elsewhere, such as with sysrq.
5711 */
5712 return -EOPNOTSUPP;
5713 }
5714
bpf_scx_validate(void * kdata)5715 static int bpf_scx_validate(void *kdata)
5716 {
5717 return 0;
5718 }
5719
select_cpu_stub(struct task_struct * p,s32 prev_cpu,u64 wake_flags)5720 static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
enqueue_stub(struct task_struct * p,u64 enq_flags)5721 static void enqueue_stub(struct task_struct *p, u64 enq_flags) {}
dequeue_stub(struct task_struct * p,u64 enq_flags)5722 static void dequeue_stub(struct task_struct *p, u64 enq_flags) {}
dispatch_stub(s32 prev_cpu,struct task_struct * p)5723 static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {}
tick_stub(struct task_struct * p)5724 static void tick_stub(struct task_struct *p) {}
runnable_stub(struct task_struct * p,u64 enq_flags)5725 static void runnable_stub(struct task_struct *p, u64 enq_flags) {}
running_stub(struct task_struct * p)5726 static void running_stub(struct task_struct *p) {}
stopping_stub(struct task_struct * p,bool runnable)5727 static void stopping_stub(struct task_struct *p, bool runnable) {}
quiescent_stub(struct task_struct * p,u64 deq_flags)5728 static void quiescent_stub(struct task_struct *p, u64 deq_flags) {}
yield_stub(struct task_struct * from,struct task_struct * to)5729 static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; }
core_sched_before_stub(struct task_struct * a,struct task_struct * b)5730 static bool core_sched_before_stub(struct task_struct *a, struct task_struct *b) { return false; }
set_weight_stub(struct task_struct * p,u32 weight)5731 static void set_weight_stub(struct task_struct *p, u32 weight) {}
set_cpumask_stub(struct task_struct * p,const struct cpumask * mask)5732 static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {}
update_idle_stub(s32 cpu,bool idle)5733 static void update_idle_stub(s32 cpu, bool idle) {}
cpu_acquire_stub(s32 cpu,struct scx_cpu_acquire_args * args)5734 static void cpu_acquire_stub(s32 cpu, struct scx_cpu_acquire_args *args) {}
cpu_release_stub(s32 cpu,struct scx_cpu_release_args * args)5735 static void cpu_release_stub(s32 cpu, struct scx_cpu_release_args *args) {}
init_task_stub(struct task_struct * p,struct scx_init_task_args * args)5736 static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
exit_task_stub(struct task_struct * p,struct scx_exit_task_args * args)5737 static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {}
enable_stub(struct task_struct * p)5738 static void enable_stub(struct task_struct *p) {}
disable_stub(struct task_struct * p)5739 static void disable_stub(struct task_struct *p) {}
5740 #ifdef CONFIG_EXT_GROUP_SCHED
cgroup_init_stub(struct cgroup * cgrp,struct scx_cgroup_init_args * args)5741 static s32 cgroup_init_stub(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
cgroup_exit_stub(struct cgroup * cgrp)5742 static void cgroup_exit_stub(struct cgroup *cgrp) {}
cgroup_prep_move_stub(struct task_struct * p,struct cgroup * from,struct cgroup * to)5743 static s32 cgroup_prep_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
cgroup_move_stub(struct task_struct * p,struct cgroup * from,struct cgroup * to)5744 static void cgroup_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
cgroup_cancel_move_stub(struct task_struct * p,struct cgroup * from,struct cgroup * to)5745 static void cgroup_cancel_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
cgroup_set_weight_stub(struct cgroup * cgrp,u32 weight)5746 static void cgroup_set_weight_stub(struct cgroup *cgrp, u32 weight) {}
5747 #endif
cpu_online_stub(s32 cpu)5748 static void cpu_online_stub(s32 cpu) {}
cpu_offline_stub(s32 cpu)5749 static void cpu_offline_stub(s32 cpu) {}
init_stub(void)5750 static s32 init_stub(void) { return -EINVAL; }
exit_stub(struct scx_exit_info * info)5751 static void exit_stub(struct scx_exit_info *info) {}
dump_stub(struct scx_dump_ctx * ctx)5752 static void dump_stub(struct scx_dump_ctx *ctx) {}
dump_cpu_stub(struct scx_dump_ctx * ctx,s32 cpu,bool idle)5753 static void dump_cpu_stub(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
dump_task_stub(struct scx_dump_ctx * ctx,struct task_struct * p)5754 static void dump_task_stub(struct scx_dump_ctx *ctx, struct task_struct *p) {}
5755
5756 static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
5757 .select_cpu = select_cpu_stub,
5758 .enqueue = enqueue_stub,
5759 .dequeue = dequeue_stub,
5760 .dispatch = dispatch_stub,
5761 .tick = tick_stub,
5762 .runnable = runnable_stub,
5763 .running = running_stub,
5764 .stopping = stopping_stub,
5765 .quiescent = quiescent_stub,
5766 .yield = yield_stub,
5767 .core_sched_before = core_sched_before_stub,
5768 .set_weight = set_weight_stub,
5769 .set_cpumask = set_cpumask_stub,
5770 .update_idle = update_idle_stub,
5771 .cpu_acquire = cpu_acquire_stub,
5772 .cpu_release = cpu_release_stub,
5773 .init_task = init_task_stub,
5774 .exit_task = exit_task_stub,
5775 .enable = enable_stub,
5776 .disable = disable_stub,
5777 #ifdef CONFIG_EXT_GROUP_SCHED
5778 .cgroup_init = cgroup_init_stub,
5779 .cgroup_exit = cgroup_exit_stub,
5780 .cgroup_prep_move = cgroup_prep_move_stub,
5781 .cgroup_move = cgroup_move_stub,
5782 .cgroup_cancel_move = cgroup_cancel_move_stub,
5783 .cgroup_set_weight = cgroup_set_weight_stub,
5784 #endif
5785 .cpu_online = cpu_online_stub,
5786 .cpu_offline = cpu_offline_stub,
5787 .init = init_stub,
5788 .exit = exit_stub,
5789 .dump = dump_stub,
5790 .dump_cpu = dump_cpu_stub,
5791 .dump_task = dump_task_stub,
5792 };
5793
5794 static struct bpf_struct_ops bpf_sched_ext_ops = {
5795 .verifier_ops = &bpf_scx_verifier_ops,
5796 .reg = bpf_scx_reg,
5797 .unreg = bpf_scx_unreg,
5798 .check_member = bpf_scx_check_member,
5799 .init_member = bpf_scx_init_member,
5800 .init = bpf_scx_init,
5801 .update = bpf_scx_update,
5802 .validate = bpf_scx_validate,
5803 .name = "sched_ext_ops",
5804 .owner = THIS_MODULE,
5805 .cfi_stubs = &__bpf_ops_sched_ext_ops
5806 };
5807
5808
5809 /********************************************************************************
5810 * System integration and init.
5811 */
5812
sysrq_handle_sched_ext_reset(u8 key)5813 static void sysrq_handle_sched_ext_reset(u8 key)
5814 {
5815 if (scx_ops_helper)
5816 scx_ops_disable(SCX_EXIT_SYSRQ);
5817 else
5818 pr_info("sched_ext: BPF scheduler not yet used\n");
5819 }
5820
5821 static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
5822 .handler = sysrq_handle_sched_ext_reset,
5823 .help_msg = "reset-sched-ext(S)",
5824 .action_msg = "Disable sched_ext and revert all tasks to CFS",
5825 .enable_mask = SYSRQ_ENABLE_RTNICE,
5826 };
5827
sysrq_handle_sched_ext_dump(u8 key)5828 static void sysrq_handle_sched_ext_dump(u8 key)
5829 {
5830 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" };
5831
5832 if (scx_enabled())
5833 scx_dump_state(&ei, 0);
5834 }
5835
5836 static const struct sysrq_key_op sysrq_sched_ext_dump_op = {
5837 .handler = sysrq_handle_sched_ext_dump,
5838 .help_msg = "dump-sched-ext(D)",
5839 .action_msg = "Trigger sched_ext debug dump",
5840 .enable_mask = SYSRQ_ENABLE_RTNICE,
5841 };
5842
can_skip_idle_kick(struct rq * rq)5843 static bool can_skip_idle_kick(struct rq *rq)
5844 {
5845 lockdep_assert_rq_held(rq);
5846
5847 /*
5848 * We can skip idle kicking if @rq is going to go through at least one
5849 * full SCX scheduling cycle before going idle. Just checking whether
5850 * curr is not idle is insufficient because we could be racing
5851 * balance_one() trying to pull the next task from a remote rq, which
5852 * may fail, and @rq may become idle afterwards.
5853 *
5854 * The race window is small and we don't and can't guarantee that @rq is
5855 * only kicked while idle anyway. Skip only when sure.
5856 */
5857 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
5858 }
5859
kick_one_cpu(s32 cpu,struct rq * this_rq,unsigned long * pseqs)5860 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs)
5861 {
5862 struct rq *rq = cpu_rq(cpu);
5863 struct scx_rq *this_scx = &this_rq->scx;
5864 bool should_wait = false;
5865 unsigned long flags;
5866
5867 raw_spin_rq_lock_irqsave(rq, flags);
5868
5869 /*
5870 * During CPU hotplug, a CPU may depend on kicking itself to make
5871 * forward progress. Allow kicking self regardless of online state.
5872 */
5873 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) {
5874 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
5875 if (rq->curr->sched_class == &ext_sched_class)
5876 rq->curr->scx.slice = 0;
5877 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5878 }
5879
5880 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
5881 pseqs[cpu] = rq->scx.pnt_seq;
5882 should_wait = true;
5883 }
5884
5885 resched_curr(rq);
5886 } else {
5887 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5888 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5889 }
5890
5891 raw_spin_rq_unlock_irqrestore(rq, flags);
5892
5893 return should_wait;
5894 }
5895
kick_one_cpu_if_idle(s32 cpu,struct rq * this_rq)5896 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq)
5897 {
5898 struct rq *rq = cpu_rq(cpu);
5899 unsigned long flags;
5900
5901 raw_spin_rq_lock_irqsave(rq, flags);
5902
5903 if (!can_skip_idle_kick(rq) &&
5904 (cpu_online(cpu) || cpu == cpu_of(this_rq)))
5905 resched_curr(rq);
5906
5907 raw_spin_rq_unlock_irqrestore(rq, flags);
5908 }
5909
kick_cpus_irq_workfn(struct irq_work * irq_work)5910 static void kick_cpus_irq_workfn(struct irq_work *irq_work)
5911 {
5912 struct rq *this_rq = this_rq();
5913 struct scx_rq *this_scx = &this_rq->scx;
5914 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs);
5915 bool should_wait = false;
5916 s32 cpu;
5917
5918 for_each_cpu(cpu, this_scx->cpus_to_kick) {
5919 should_wait |= kick_one_cpu(cpu, this_rq, pseqs);
5920 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
5921 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5922 }
5923
5924 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) {
5925 kick_one_cpu_if_idle(cpu, this_rq);
5926 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5927 }
5928
5929 if (!should_wait)
5930 return;
5931
5932 for_each_cpu(cpu, this_scx->cpus_to_wait) {
5933 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq;
5934
5935 if (cpu != cpu_of(this_rq)) {
5936 /*
5937 * Pairs with smp_store_release() issued by this CPU in
5938 * scx_next_task_picked() on the resched path.
5939 *
5940 * We busy-wait here to guarantee that no other task can
5941 * be scheduled on our core before the target CPU has
5942 * entered the resched path.
5943 */
5944 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu])
5945 cpu_relax();
5946 }
5947
5948 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5949 }
5950 }
5951
5952 /**
5953 * print_scx_info - print out sched_ext scheduler state
5954 * @log_lvl: the log level to use when printing
5955 * @p: target task
5956 *
5957 * If a sched_ext scheduler is enabled, print the name and state of the
5958 * scheduler. If @p is on sched_ext, print further information about the task.
5959 *
5960 * This function can be safely called on any task as long as the task_struct
5961 * itself is accessible. While safe, this function isn't synchronized and may
5962 * print out mixups or garbages of limited length.
5963 */
print_scx_info(const char * log_lvl,struct task_struct * p)5964 void print_scx_info(const char *log_lvl, struct task_struct *p)
5965 {
5966 enum scx_ops_enable_state state = scx_ops_enable_state();
5967 const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
5968 char runnable_at_buf[22] = "?";
5969 struct sched_class *class;
5970 unsigned long runnable_at;
5971
5972 if (state == SCX_OPS_DISABLED)
5973 return;
5974
5975 /*
5976 * Carefully check if the task was running on sched_ext, and then
5977 * carefully copy the time it's been runnable, and its state.
5978 */
5979 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
5980 class != &ext_sched_class) {
5981 printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name,
5982 scx_ops_enable_state_str[state], all);
5983 return;
5984 }
5985
5986 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at,
5987 sizeof(runnable_at)))
5988 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms",
5989 jiffies_delta_msecs(runnable_at, jiffies));
5990
5991 /* print everything onto one line to conserve console space */
5992 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
5993 log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all,
5994 runnable_at_buf);
5995 }
5996
scx_pm_handler(struct notifier_block * nb,unsigned long event,void * ptr)5997 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr)
5998 {
5999 /*
6000 * SCX schedulers often have userspace components which are sometimes
6001 * involved in critial scheduling paths. PM operations involve freezing
6002 * userspace which can lead to scheduling misbehaviors including stalls.
6003 * Let's bypass while PM operations are in progress.
6004 */
6005 switch (event) {
6006 case PM_HIBERNATION_PREPARE:
6007 case PM_SUSPEND_PREPARE:
6008 case PM_RESTORE_PREPARE:
6009 scx_ops_bypass(true);
6010 break;
6011 case PM_POST_HIBERNATION:
6012 case PM_POST_SUSPEND:
6013 case PM_POST_RESTORE:
6014 scx_ops_bypass(false);
6015 break;
6016 }
6017
6018 return NOTIFY_OK;
6019 }
6020
6021 static struct notifier_block scx_pm_notifier = {
6022 .notifier_call = scx_pm_handler,
6023 };
6024
init_sched_ext_class(void)6025 void __init init_sched_ext_class(void)
6026 {
6027 s32 cpu, v;
6028
6029 /*
6030 * The following is to prevent the compiler from optimizing out the enum
6031 * definitions so that BPF scheduler implementations can use them
6032 * through the generated vmlinux.h.
6033 */
6034 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT |
6035 SCX_TG_ONLINE);
6036
6037 BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params));
6038 #ifdef CONFIG_SMP
6039 BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL));
6040 BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL));
6041 #endif
6042 scx_kick_cpus_pnt_seqs =
6043 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids,
6044 __alignof__(scx_kick_cpus_pnt_seqs[0]));
6045 BUG_ON(!scx_kick_cpus_pnt_seqs);
6046
6047 for_each_possible_cpu(cpu) {
6048 struct rq *rq = cpu_rq(cpu);
6049
6050 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
6051 INIT_LIST_HEAD(&rq->scx.runnable_list);
6052 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
6053
6054 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL));
6055 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL));
6056 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL));
6057 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL));
6058 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn);
6059 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn);
6060
6061 if (cpu_online(cpu))
6062 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
6063 }
6064
6065 register_sysrq_key('S', &sysrq_sched_ext_reset_op);
6066 register_sysrq_key('D', &sysrq_sched_ext_dump_op);
6067 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn);
6068 }
6069
6070
6071 /********************************************************************************
6072 * Helpers that can be called from the BPF scheduler.
6073 */
6074 #include <linux/btf_ids.h>
6075
6076 __bpf_kfunc_start_defs();
6077
6078 /**
6079 * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
6080 * @p: task_struct to select a CPU for
6081 * @prev_cpu: CPU @p was on previously
6082 * @wake_flags: %SCX_WAKE_* flags
6083 * @is_idle: out parameter indicating whether the returned CPU is idle
6084 *
6085 * Can only be called from ops.select_cpu() if the built-in CPU selection is
6086 * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
6087 * @p, @prev_cpu and @wake_flags match ops.select_cpu().
6088 *
6089 * Returns the picked CPU with *@is_idle indicating whether the picked CPU is
6090 * currently idle and thus a good candidate for direct dispatching.
6091 */
scx_bpf_select_cpu_dfl(struct task_struct * p,s32 prev_cpu,u64 wake_flags,bool * is_idle)6092 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
6093 u64 wake_flags, bool *is_idle)
6094 {
6095 if (!ops_cpu_valid(prev_cpu, NULL))
6096 goto prev_cpu;
6097
6098 if (!static_branch_likely(&scx_builtin_idle_enabled)) {
6099 scx_ops_error("built-in idle tracking is disabled");
6100 goto prev_cpu;
6101 }
6102
6103 if (!scx_kf_allowed(SCX_KF_SELECT_CPU))
6104 goto prev_cpu;
6105
6106 #ifdef CONFIG_SMP
6107 return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle);
6108 #endif
6109
6110 prev_cpu:
6111 *is_idle = false;
6112 return prev_cpu;
6113 }
6114
6115 __bpf_kfunc_end_defs();
6116
6117 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
6118 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
6119 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)
6120
6121 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
6122 .owner = THIS_MODULE,
6123 .set = &scx_kfunc_ids_select_cpu,
6124 };
6125
scx_dispatch_preamble(struct task_struct * p,u64 enq_flags)6126 static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags)
6127 {
6128 if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
6129 return false;
6130
6131 lockdep_assert_irqs_disabled();
6132
6133 if (unlikely(!p)) {
6134 scx_ops_error("called with NULL task");
6135 return false;
6136 }
6137
6138 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
6139 scx_ops_error("invalid enq_flags 0x%llx", enq_flags);
6140 return false;
6141 }
6142
6143 return true;
6144 }
6145
scx_dispatch_commit(struct task_struct * p,u64 dsq_id,u64 enq_flags)6146 static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags)
6147 {
6148 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6149 struct task_struct *ddsp_task;
6150
6151 ddsp_task = __this_cpu_read(direct_dispatch_task);
6152 if (ddsp_task) {
6153 mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags);
6154 return;
6155 }
6156
6157 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
6158 scx_ops_error("dispatch buffer overflow");
6159 return;
6160 }
6161
6162 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){
6163 .task = p,
6164 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
6165 .dsq_id = dsq_id,
6166 .enq_flags = enq_flags,
6167 };
6168 }
6169
6170 __bpf_kfunc_start_defs();
6171
6172 /**
6173 * scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ
6174 * @p: task_struct to dispatch
6175 * @dsq_id: DSQ to dispatch to
6176 * @slice: duration @p can run for in nsecs, 0 to keep the current value
6177 * @enq_flags: SCX_ENQ_*
6178 *
6179 * Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe
6180 * to call this function spuriously. Can be called from ops.enqueue(),
6181 * ops.select_cpu(), and ops.dispatch().
6182 *
6183 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
6184 * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be
6185 * used to target the local DSQ of a CPU other than the enqueueing one. Use
6186 * ops.select_cpu() to be on the target CPU in the first place.
6187 *
6188 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
6189 * will be directly dispatched to the corresponding dispatch queue after
6190 * ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be
6191 * dispatched to the local DSQ of the CPU returned by ops.select_cpu().
6192 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the
6193 * task is dispatched.
6194 *
6195 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
6196 * and this function can be called upto ops.dispatch_max_batch times to dispatch
6197 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
6198 * remaining slots. scx_bpf_consume() flushes the batch and resets the counter.
6199 *
6200 * This function doesn't have any locking restrictions and may be called under
6201 * BPF locks (in the future when BPF introduces more flexible locking).
6202 *
6203 * @p is allowed to run for @slice. The scheduling path is triggered on slice
6204 * exhaustion. If zero, the current residual slice is maintained. If
6205 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
6206 * scx_bpf_kick_cpu() to trigger scheduling.
6207 */
scx_bpf_dispatch(struct task_struct * p,u64 dsq_id,u64 slice,u64 enq_flags)6208 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice,
6209 u64 enq_flags)
6210 {
6211 if (!scx_dispatch_preamble(p, enq_flags))
6212 return;
6213
6214 if (slice)
6215 p->scx.slice = slice;
6216 else
6217 p->scx.slice = p->scx.slice ?: 1;
6218
6219 scx_dispatch_commit(p, dsq_id, enq_flags);
6220 }
6221
6222 /**
6223 * scx_bpf_dispatch_vtime - Dispatch a task into the vtime priority queue of a DSQ
6224 * @p: task_struct to dispatch
6225 * @dsq_id: DSQ to dispatch to
6226 * @slice: duration @p can run for in nsecs, 0 to keep the current value
6227 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
6228 * @enq_flags: SCX_ENQ_*
6229 *
6230 * Dispatch @p into the vtime priority queue of the DSQ identified by @dsq_id.
6231 * Tasks queued into the priority queue are ordered by @vtime and always
6232 * consumed after the tasks in the FIFO queue. All other aspects are identical
6233 * to scx_bpf_dispatch().
6234 *
6235 * @vtime ordering is according to time_before64() which considers wrapping. A
6236 * numerically larger vtime may indicate an earlier position in the ordering and
6237 * vice-versa.
6238 */
scx_bpf_dispatch_vtime(struct task_struct * p,u64 dsq_id,u64 slice,u64 vtime,u64 enq_flags)6239 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id,
6240 u64 slice, u64 vtime, u64 enq_flags)
6241 {
6242 if (!scx_dispatch_preamble(p, enq_flags))
6243 return;
6244
6245 if (slice)
6246 p->scx.slice = slice;
6247 else
6248 p->scx.slice = p->scx.slice ?: 1;
6249
6250 p->scx.dsq_vtime = vtime;
6251
6252 scx_dispatch_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6253 }
6254
6255 __bpf_kfunc_end_defs();
6256
6257 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
6258 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU)
6259 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU)
6260 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
6261
6262 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
6263 .owner = THIS_MODULE,
6264 .set = &scx_kfunc_ids_enqueue_dispatch,
6265 };
6266
scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern * kit,struct task_struct * p,u64 dsq_id,u64 enq_flags)6267 static bool scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern *kit,
6268 struct task_struct *p, u64 dsq_id,
6269 u64 enq_flags)
6270 {
6271 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq;
6272 struct rq *this_rq, *src_rq, *locked_rq;
6273 bool dispatched = false;
6274 bool in_balance;
6275 unsigned long flags;
6276
6277 if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH))
6278 return false;
6279
6280 /*
6281 * Can be called from either ops.dispatch() locking this_rq() or any
6282 * context where no rq lock is held. If latter, lock @p's task_rq which
6283 * we'll likely need anyway.
6284 */
6285 src_rq = task_rq(p);
6286
6287 local_irq_save(flags);
6288 this_rq = this_rq();
6289 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE;
6290
6291 if (in_balance) {
6292 if (this_rq != src_rq) {
6293 raw_spin_rq_unlock(this_rq);
6294 raw_spin_rq_lock(src_rq);
6295 }
6296 } else {
6297 raw_spin_rq_lock(src_rq);
6298 }
6299
6300 locked_rq = src_rq;
6301 raw_spin_lock(&src_dsq->lock);
6302
6303 /*
6304 * Did someone else get to it? @p could have already left $src_dsq, got
6305 * re-enqueud, or be in the process of being consumed by someone else.
6306 */
6307 if (unlikely(p->scx.dsq != src_dsq ||
6308 u32_before(kit->cursor.priv, p->scx.dsq_seq) ||
6309 p->scx.holding_cpu >= 0) ||
6310 WARN_ON_ONCE(src_rq != task_rq(p))) {
6311 raw_spin_unlock(&src_dsq->lock);
6312 goto out;
6313 }
6314
6315 /* @p is still on $src_dsq and stable, determine the destination */
6316 dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p);
6317
6318 /*
6319 * Apply vtime and slice updates before moving so that the new time is
6320 * visible before inserting into $dst_dsq. @p is still on $src_dsq but
6321 * this is safe as we're locking it.
6322 */
6323 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME)
6324 p->scx.dsq_vtime = kit->vtime;
6325 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE)
6326 p->scx.slice = kit->slice;
6327
6328 /* execute move */
6329 locked_rq = move_task_between_dsqs(p, enq_flags, src_dsq, dst_dsq);
6330 dispatched = true;
6331 out:
6332 if (in_balance) {
6333 if (this_rq != locked_rq) {
6334 raw_spin_rq_unlock(locked_rq);
6335 raw_spin_rq_lock(this_rq);
6336 }
6337 } else {
6338 raw_spin_rq_unlock_irqrestore(locked_rq, flags);
6339 }
6340
6341 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE |
6342 __SCX_DSQ_ITER_HAS_VTIME);
6343 return dispatched;
6344 }
6345
6346 __bpf_kfunc_start_defs();
6347
6348 /**
6349 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
6350 *
6351 * Can only be called from ops.dispatch().
6352 */
scx_bpf_dispatch_nr_slots(void)6353 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
6354 {
6355 if (!scx_kf_allowed(SCX_KF_DISPATCH))
6356 return 0;
6357
6358 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
6359 }
6360
6361 /**
6362 * scx_bpf_dispatch_cancel - Cancel the latest dispatch
6363 *
6364 * Cancel the latest dispatch. Can be called multiple times to cancel further
6365 * dispatches. Can only be called from ops.dispatch().
6366 */
scx_bpf_dispatch_cancel(void)6367 __bpf_kfunc void scx_bpf_dispatch_cancel(void)
6368 {
6369 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6370
6371 if (!scx_kf_allowed(SCX_KF_DISPATCH))
6372 return;
6373
6374 if (dspc->cursor > 0)
6375 dspc->cursor--;
6376 else
6377 scx_ops_error("dispatch buffer underflow");
6378 }
6379
6380 /**
6381 * scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ
6382 * @dsq_id: DSQ to consume
6383 *
6384 * Consume a task from the non-local DSQ identified by @dsq_id and transfer it
6385 * to the current CPU's local DSQ for execution. Can only be called from
6386 * ops.dispatch().
6387 *
6388 * This function flushes the in-flight dispatches from scx_bpf_dispatch() before
6389 * trying to consume the specified DSQ. It may also grab rq locks and thus can't
6390 * be called under any BPF locks.
6391 *
6392 * Returns %true if a task has been consumed, %false if there isn't any task to
6393 * consume.
6394 */
scx_bpf_consume(u64 dsq_id)6395 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id)
6396 {
6397 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6398 struct scx_dispatch_q *dsq;
6399
6400 if (!scx_kf_allowed(SCX_KF_DISPATCH))
6401 return false;
6402
6403 flush_dispatch_buf(dspc->rq);
6404
6405 dsq = find_user_dsq(dsq_id);
6406 if (unlikely(!dsq)) {
6407 scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id);
6408 return false;
6409 }
6410
6411 if (consume_dispatch_q(dspc->rq, dsq)) {
6412 /*
6413 * A successfully consumed task can be dequeued before it starts
6414 * running while the CPU is trying to migrate other dispatched
6415 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty
6416 * local DSQ.
6417 */
6418 dspc->nr_tasks++;
6419 return true;
6420 } else {
6421 return false;
6422 }
6423 }
6424
6425 /**
6426 * scx_bpf_dispatch_from_dsq_set_slice - Override slice when dispatching from DSQ
6427 * @it__iter: DSQ iterator in progress
6428 * @slice: duration the dispatched task can run for in nsecs
6429 *
6430 * Override the slice of the next task that will be dispatched from @it__iter
6431 * using scx_bpf_dispatch_from_dsq[_vtime](). If this function is not called,
6432 * the previous slice duration is kept.
6433 */
scx_bpf_dispatch_from_dsq_set_slice(struct bpf_iter_scx_dsq * it__iter,u64 slice)6434 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice(
6435 struct bpf_iter_scx_dsq *it__iter, u64 slice)
6436 {
6437 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6438
6439 kit->slice = slice;
6440 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE;
6441 }
6442
6443 /**
6444 * scx_bpf_dispatch_from_dsq_set_vtime - Override vtime when dispatching from DSQ
6445 * @it__iter: DSQ iterator in progress
6446 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ
6447 *
6448 * Override the vtime of the next task that will be dispatched from @it__iter
6449 * using scx_bpf_dispatch_from_dsq_vtime(). If this function is not called, the
6450 * previous slice vtime is kept. If scx_bpf_dispatch_from_dsq() is used to
6451 * dispatch the next task, the override is ignored and cleared.
6452 */
scx_bpf_dispatch_from_dsq_set_vtime(struct bpf_iter_scx_dsq * it__iter,u64 vtime)6453 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime(
6454 struct bpf_iter_scx_dsq *it__iter, u64 vtime)
6455 {
6456 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6457
6458 kit->vtime = vtime;
6459 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME;
6460 }
6461
6462 /**
6463 * scx_bpf_dispatch_from_dsq - Move a task from DSQ iteration to a DSQ
6464 * @it__iter: DSQ iterator in progress
6465 * @p: task to transfer
6466 * @dsq_id: DSQ to move @p to
6467 * @enq_flags: SCX_ENQ_*
6468 *
6469 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ
6470 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can
6471 * be the destination.
6472 *
6473 * For the transfer to be successful, @p must still be on the DSQ and have been
6474 * queued before the DSQ iteration started. This function doesn't care whether
6475 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have
6476 * been queued before the iteration started.
6477 *
6478 * @p's slice is kept by default. Use scx_bpf_dispatch_from_dsq_set_slice() to
6479 * update.
6480 *
6481 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
6482 * lock (e.g. BPF timers or SYSCALL programs).
6483 *
6484 * Returns %true if @p has been consumed, %false if @p had already been consumed
6485 * or dequeued.
6486 */
scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq * it__iter,struct task_struct * p,u64 dsq_id,u64 enq_flags)6487 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter,
6488 struct task_struct *p, u64 dsq_id,
6489 u64 enq_flags)
6490 {
6491 return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter,
6492 p, dsq_id, enq_flags);
6493 }
6494
6495 /**
6496 * scx_bpf_dispatch_vtime_from_dsq - Move a task from DSQ iteration to a PRIQ DSQ
6497 * @it__iter: DSQ iterator in progress
6498 * @p: task to transfer
6499 * @dsq_id: DSQ to move @p to
6500 * @enq_flags: SCX_ENQ_*
6501 *
6502 * Transfer @p which is on the DSQ currently iterated by @it__iter to the
6503 * priority queue of the DSQ specified by @dsq_id. The destination must be a
6504 * user DSQ as only user DSQs support priority queue.
6505 *
6506 * @p's slice and vtime are kept by default. Use
6507 * scx_bpf_dispatch_from_dsq_set_slice() and
6508 * scx_bpf_dispatch_from_dsq_set_vtime() to update.
6509 *
6510 * All other aspects are identical to scx_bpf_dispatch_from_dsq(). See
6511 * scx_bpf_dispatch_vtime() for more information on @vtime.
6512 */
scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq * it__iter,struct task_struct * p,u64 dsq_id,u64 enq_flags)6513 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter,
6514 struct task_struct *p, u64 dsq_id,
6515 u64 enq_flags)
6516 {
6517 return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter,
6518 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6519 }
6520
6521 __bpf_kfunc_end_defs();
6522
6523 BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
6524 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
6525 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
6526 BTF_ID_FLAGS(func, scx_bpf_consume)
6527 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
6528 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
6529 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
6530 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
6531 BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
6532
6533 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
6534 .owner = THIS_MODULE,
6535 .set = &scx_kfunc_ids_dispatch,
6536 };
6537
6538 __bpf_kfunc_start_defs();
6539
6540 /**
6541 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
6542 *
6543 * Iterate over all of the tasks currently enqueued on the local DSQ of the
6544 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
6545 * processed tasks. Can only be called from ops.cpu_release().
6546 */
scx_bpf_reenqueue_local(void)6547 __bpf_kfunc u32 scx_bpf_reenqueue_local(void)
6548 {
6549 LIST_HEAD(tasks);
6550 u32 nr_enqueued = 0;
6551 struct rq *rq;
6552 struct task_struct *p, *n;
6553
6554 if (!scx_kf_allowed(SCX_KF_CPU_RELEASE))
6555 return 0;
6556
6557 rq = cpu_rq(smp_processor_id());
6558 lockdep_assert_rq_held(rq);
6559
6560 /*
6561 * The BPF scheduler may choose to dispatch tasks back to
6562 * @rq->scx.local_dsq. Move all candidate tasks off to a private list
6563 * first to avoid processing the same tasks repeatedly.
6564 */
6565 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list,
6566 scx.dsq_list.node) {
6567 /*
6568 * If @p is being migrated, @p's current CPU may not agree with
6569 * its allowed CPUs and the migration_cpu_stop is about to
6570 * deactivate and re-activate @p anyway. Skip re-enqueueing.
6571 *
6572 * While racing sched property changes may also dequeue and
6573 * re-enqueue a migrating task while its current CPU and allowed
6574 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
6575 * the current local DSQ for running tasks and thus are not
6576 * visible to the BPF scheduler.
6577 */
6578 if (p->migration_pending)
6579 continue;
6580
6581 dispatch_dequeue(rq, p);
6582 list_add_tail(&p->scx.dsq_list.node, &tasks);
6583 }
6584
6585 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) {
6586 list_del_init(&p->scx.dsq_list.node);
6587 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1);
6588 nr_enqueued++;
6589 }
6590
6591 return nr_enqueued;
6592 }
6593
6594 __bpf_kfunc_end_defs();
6595
6596 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
6597 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local)
6598 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release)
6599
6600 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = {
6601 .owner = THIS_MODULE,
6602 .set = &scx_kfunc_ids_cpu_release,
6603 };
6604
6605 __bpf_kfunc_start_defs();
6606
6607 /**
6608 * scx_bpf_create_dsq - Create a custom DSQ
6609 * @dsq_id: DSQ to create
6610 * @node: NUMA node to allocate from
6611 *
6612 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
6613 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
6614 */
scx_bpf_create_dsq(u64 dsq_id,s32 node)6615 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
6616 {
6617 if (unlikely(node >= (int)nr_node_ids ||
6618 (node < 0 && node != NUMA_NO_NODE)))
6619 return -EINVAL;
6620 return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node));
6621 }
6622
6623 __bpf_kfunc_end_defs();
6624
6625 BTF_KFUNCS_START(scx_kfunc_ids_unlocked)
6626 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
6627 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
6628 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
6629 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
6630 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
6631 BTF_KFUNCS_END(scx_kfunc_ids_unlocked)
6632
6633 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = {
6634 .owner = THIS_MODULE,
6635 .set = &scx_kfunc_ids_unlocked,
6636 };
6637
6638 __bpf_kfunc_start_defs();
6639
6640 /**
6641 * scx_bpf_kick_cpu - Trigger reschedule on a CPU
6642 * @cpu: cpu to kick
6643 * @flags: %SCX_KICK_* flags
6644 *
6645 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
6646 * trigger rescheduling on a busy CPU. This can be called from any online
6647 * scx_ops operation and the actual kicking is performed asynchronously through
6648 * an irq work.
6649 */
scx_bpf_kick_cpu(s32 cpu,u64 flags)6650 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
6651 {
6652 struct rq *this_rq;
6653 unsigned long irq_flags;
6654
6655 if (!ops_cpu_valid(cpu, NULL))
6656 return;
6657
6658 local_irq_save(irq_flags);
6659
6660 this_rq = this_rq();
6661
6662 /*
6663 * While bypassing for PM ops, IRQ handling may not be online which can
6664 * lead to irq_work_queue() malfunction such as infinite busy wait for
6665 * IRQ status update. Suppress kicking.
6666 */
6667 if (scx_rq_bypassing(this_rq))
6668 goto out;
6669
6670 /*
6671 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
6672 * rq locks. We can probably be smarter and avoid bouncing if called
6673 * from ops which don't hold a rq lock.
6674 */
6675 if (flags & SCX_KICK_IDLE) {
6676 struct rq *target_rq = cpu_rq(cpu);
6677
6678 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
6679 scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
6680
6681 if (raw_spin_rq_trylock(target_rq)) {
6682 if (can_skip_idle_kick(target_rq)) {
6683 raw_spin_rq_unlock(target_rq);
6684 goto out;
6685 }
6686 raw_spin_rq_unlock(target_rq);
6687 }
6688 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle);
6689 } else {
6690 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick);
6691
6692 if (flags & SCX_KICK_PREEMPT)
6693 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt);
6694 if (flags & SCX_KICK_WAIT)
6695 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait);
6696 }
6697
6698 irq_work_queue(&this_rq->scx.kick_cpus_irq_work);
6699 out:
6700 local_irq_restore(irq_flags);
6701 }
6702
6703 /**
6704 * scx_bpf_dsq_nr_queued - Return the number of queued tasks
6705 * @dsq_id: id of the DSQ
6706 *
6707 * Return the number of tasks in the DSQ matching @dsq_id. If not found,
6708 * -%ENOENT is returned.
6709 */
scx_bpf_dsq_nr_queued(u64 dsq_id)6710 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
6711 {
6712 struct scx_dispatch_q *dsq;
6713 s32 ret;
6714
6715 preempt_disable();
6716
6717 if (dsq_id == SCX_DSQ_LOCAL) {
6718 ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
6719 goto out;
6720 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
6721 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
6722
6723 if (ops_cpu_valid(cpu, NULL)) {
6724 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
6725 goto out;
6726 }
6727 } else {
6728 dsq = find_user_dsq(dsq_id);
6729 if (dsq) {
6730 ret = READ_ONCE(dsq->nr);
6731 goto out;
6732 }
6733 }
6734 ret = -ENOENT;
6735 out:
6736 preempt_enable();
6737 return ret;
6738 }
6739
6740 /**
6741 * scx_bpf_destroy_dsq - Destroy a custom DSQ
6742 * @dsq_id: DSQ to destroy
6743 *
6744 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
6745 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
6746 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ
6747 * which doesn't exist. Can be called from any online scx_ops operations.
6748 */
scx_bpf_destroy_dsq(u64 dsq_id)6749 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
6750 {
6751 destroy_dsq(dsq_id);
6752 }
6753
6754 /**
6755 * bpf_iter_scx_dsq_new - Create a DSQ iterator
6756 * @it: iterator to initialize
6757 * @dsq_id: DSQ to iterate
6758 * @flags: %SCX_DSQ_ITER_*
6759 *
6760 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk
6761 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
6762 * tasks which are already queued when this function is invoked.
6763 */
bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq * it,u64 dsq_id,u64 flags)6764 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
6765 u64 flags)
6766 {
6767 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6768
6769 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
6770 sizeof(struct bpf_iter_scx_dsq));
6771 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
6772 __alignof__(struct bpf_iter_scx_dsq));
6773
6774 /*
6775 * next() and destroy() will be called regardless of the return value.
6776 * Always clear $kit->dsq.
6777 */
6778 kit->dsq = NULL;
6779
6780 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS)
6781 return -EINVAL;
6782
6783 kit->dsq = find_user_dsq(dsq_id);
6784 if (!kit->dsq)
6785 return -ENOENT;
6786
6787 INIT_LIST_HEAD(&kit->cursor.node);
6788 kit->cursor.flags = SCX_DSQ_LNODE_ITER_CURSOR | flags;
6789 kit->cursor.priv = READ_ONCE(kit->dsq->seq);
6790
6791 return 0;
6792 }
6793
6794 /**
6795 * bpf_iter_scx_dsq_next - Progress a DSQ iterator
6796 * @it: iterator to progress
6797 *
6798 * Return the next task. See bpf_iter_scx_dsq_new().
6799 */
bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq * it)6800 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it)
6801 {
6802 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6803 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV;
6804 struct task_struct *p;
6805 unsigned long flags;
6806
6807 if (!kit->dsq)
6808 return NULL;
6809
6810 raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6811
6812 if (list_empty(&kit->cursor.node))
6813 p = NULL;
6814 else
6815 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list);
6816
6817 /*
6818 * Only tasks which were queued before the iteration started are
6819 * visible. This bounds BPF iterations and guarantees that vtime never
6820 * jumps in the other direction while iterating.
6821 */
6822 do {
6823 p = nldsq_next_task(kit->dsq, p, rev);
6824 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq)));
6825
6826 if (p) {
6827 if (rev)
6828 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node);
6829 else
6830 list_move(&kit->cursor.node, &p->scx.dsq_list.node);
6831 } else {
6832 list_del_init(&kit->cursor.node);
6833 }
6834
6835 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6836
6837 return p;
6838 }
6839
6840 /**
6841 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
6842 * @it: iterator to destroy
6843 *
6844 * Undo scx_iter_scx_dsq_new().
6845 */
bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq * it)6846 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
6847 {
6848 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6849
6850 if (!kit->dsq)
6851 return;
6852
6853 if (!list_empty(&kit->cursor.node)) {
6854 unsigned long flags;
6855
6856 raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6857 list_del_init(&kit->cursor.node);
6858 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6859 }
6860 kit->dsq = NULL;
6861 }
6862
6863 __bpf_kfunc_end_defs();
6864
__bstr_format(u64 * data_buf,char * line_buf,size_t line_size,char * fmt,unsigned long long * data,u32 data__sz)6865 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size,
6866 char *fmt, unsigned long long *data, u32 data__sz)
6867 {
6868 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
6869 s32 ret;
6870
6871 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
6872 (data__sz && !data)) {
6873 scx_ops_error("invalid data=%p and data__sz=%u",
6874 (void *)data, data__sz);
6875 return -EINVAL;
6876 }
6877
6878 ret = copy_from_kernel_nofault(data_buf, data, data__sz);
6879 if (ret < 0) {
6880 scx_ops_error("failed to read data fields (%d)", ret);
6881 return ret;
6882 }
6883
6884 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
6885 &bprintf_data);
6886 if (ret < 0) {
6887 scx_ops_error("format preparation failed (%d)", ret);
6888 return ret;
6889 }
6890
6891 ret = bstr_printf(line_buf, line_size, fmt,
6892 bprintf_data.bin_args);
6893 bpf_bprintf_cleanup(&bprintf_data);
6894 if (ret < 0) {
6895 scx_ops_error("(\"%s\", %p, %u) failed to format",
6896 fmt, data, data__sz);
6897 return ret;
6898 }
6899
6900 return ret;
6901 }
6902
bstr_format(struct scx_bstr_buf * buf,char * fmt,unsigned long long * data,u32 data__sz)6903 static s32 bstr_format(struct scx_bstr_buf *buf,
6904 char *fmt, unsigned long long *data, u32 data__sz)
6905 {
6906 return __bstr_format(buf->data, buf->line, sizeof(buf->line),
6907 fmt, data, data__sz);
6908 }
6909
6910 __bpf_kfunc_start_defs();
6911
6912 /**
6913 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
6914 * @exit_code: Exit value to pass to user space via struct scx_exit_info.
6915 * @fmt: error message format string
6916 * @data: format string parameters packaged using ___bpf_fill() macro
6917 * @data__sz: @data len, must end in '__sz' for the verifier
6918 *
6919 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
6920 * disabling.
6921 */
scx_bpf_exit_bstr(s64 exit_code,char * fmt,unsigned long long * data,u32 data__sz)6922 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
6923 unsigned long long *data, u32 data__sz)
6924 {
6925 unsigned long flags;
6926
6927 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6928 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6929 scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s",
6930 scx_exit_bstr_buf.line);
6931 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6932 }
6933
6934 /**
6935 * scx_bpf_error_bstr - Indicate fatal error
6936 * @fmt: error message format string
6937 * @data: format string parameters packaged using ___bpf_fill() macro
6938 * @data__sz: @data len, must end in '__sz' for the verifier
6939 *
6940 * Indicate that the BPF scheduler encountered a fatal error and initiate ops
6941 * disabling.
6942 */
scx_bpf_error_bstr(char * fmt,unsigned long long * data,u32 data__sz)6943 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
6944 u32 data__sz)
6945 {
6946 unsigned long flags;
6947
6948 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6949 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6950 scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s",
6951 scx_exit_bstr_buf.line);
6952 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6953 }
6954
6955 /**
6956 * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler
6957 * @fmt: format string
6958 * @data: format string parameters packaged using ___bpf_fill() macro
6959 * @data__sz: @data len, must end in '__sz' for the verifier
6960 *
6961 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
6962 * dump_task() to generate extra debug dump specific to the BPF scheduler.
6963 *
6964 * The extra dump may be multiple lines. A single line may be split over
6965 * multiple calls. The last line is automatically terminated.
6966 */
scx_bpf_dump_bstr(char * fmt,unsigned long long * data,u32 data__sz)6967 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
6968 u32 data__sz)
6969 {
6970 struct scx_dump_data *dd = &scx_dump_data;
6971 struct scx_bstr_buf *buf = &dd->buf;
6972 s32 ret;
6973
6974 if (raw_smp_processor_id() != dd->cpu) {
6975 scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends");
6976 return;
6977 }
6978
6979 /* append the formatted string to the line buf */
6980 ret = __bstr_format(buf->data, buf->line + dd->cursor,
6981 sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
6982 if (ret < 0) {
6983 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
6984 dd->prefix, fmt, data, data__sz, ret);
6985 return;
6986 }
6987
6988 dd->cursor += ret;
6989 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line));
6990
6991 if (!dd->cursor)
6992 return;
6993
6994 /*
6995 * If the line buf overflowed or ends in a newline, flush it into the
6996 * dump. This is to allow the caller to generate a single line over
6997 * multiple calls. As ops_dump_flush() can also handle multiple lines in
6998 * the line buf, the only case which can lead to an unexpected
6999 * truncation is when the caller keeps generating newlines in the middle
7000 * instead of the end consecutively. Don't do that.
7001 */
7002 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n')
7003 ops_dump_flush();
7004 }
7005
7006 /**
7007 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
7008 * @cpu: CPU of interest
7009 *
7010 * Return the maximum relative capacity of @cpu in relation to the most
7011 * performant CPU in the system. The return value is in the range [1,
7012 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
7013 */
scx_bpf_cpuperf_cap(s32 cpu)7014 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
7015 {
7016 if (ops_cpu_valid(cpu, NULL))
7017 return arch_scale_cpu_capacity(cpu);
7018 else
7019 return SCX_CPUPERF_ONE;
7020 }
7021
7022 /**
7023 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
7024 * @cpu: CPU of interest
7025 *
7026 * Return the current relative performance of @cpu in relation to its maximum.
7027 * The return value is in the range [1, %SCX_CPUPERF_ONE].
7028 *
7029 * The current performance level of a CPU in relation to the maximum performance
7030 * available in the system can be calculated as follows:
7031 *
7032 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
7033 *
7034 * The result is in the range [1, %SCX_CPUPERF_ONE].
7035 */
scx_bpf_cpuperf_cur(s32 cpu)7036 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
7037 {
7038 if (ops_cpu_valid(cpu, NULL))
7039 return arch_scale_freq_capacity(cpu);
7040 else
7041 return SCX_CPUPERF_ONE;
7042 }
7043
7044 /**
7045 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU
7046 * @cpu: CPU of interest
7047 * @perf: target performance level [0, %SCX_CPUPERF_ONE]
7048 * @flags: %SCX_CPUPERF_* flags
7049 *
7050 * Set the target performance level of @cpu to @perf. @perf is in linear
7051 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
7052 * schedutil cpufreq governor chooses the target frequency.
7053 *
7054 * The actual performance level chosen, CPU grouping, and the overhead and
7055 * latency of the operations are dependent on the hardware and cpufreq driver in
7056 * use. Consult hardware and cpufreq documentation for more information. The
7057 * current performance level can be monitored using scx_bpf_cpuperf_cur().
7058 */
scx_bpf_cpuperf_set(s32 cpu,u32 perf)7059 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
7060 {
7061 if (unlikely(perf > SCX_CPUPERF_ONE)) {
7062 scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu);
7063 return;
7064 }
7065
7066 if (ops_cpu_valid(cpu, NULL)) {
7067 struct rq *rq = cpu_rq(cpu);
7068
7069 rq->scx.cpuperf_target = perf;
7070
7071 rcu_read_lock_sched_notrace();
7072 cpufreq_update_util(cpu_rq(cpu), 0);
7073 rcu_read_unlock_sched_notrace();
7074 }
7075 }
7076
7077 /**
7078 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
7079 *
7080 * All valid CPU IDs in the system are smaller than the returned value.
7081 */
scx_bpf_nr_cpu_ids(void)7082 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
7083 {
7084 return nr_cpu_ids;
7085 }
7086
7087 /**
7088 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
7089 */
scx_bpf_get_possible_cpumask(void)7090 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
7091 {
7092 return cpu_possible_mask;
7093 }
7094
7095 /**
7096 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
7097 */
scx_bpf_get_online_cpumask(void)7098 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
7099 {
7100 return cpu_online_mask;
7101 }
7102
7103 /**
7104 * scx_bpf_put_cpumask - Release a possible/online cpumask
7105 * @cpumask: cpumask to release
7106 */
scx_bpf_put_cpumask(const struct cpumask * cpumask)7107 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
7108 {
7109 /*
7110 * Empty function body because we aren't actually acquiring or releasing
7111 * a reference to a global cpumask, which is read-only in the caller and
7112 * is never released. The acquire / release semantics here are just used
7113 * to make the cpumask is a trusted pointer in the caller.
7114 */
7115 }
7116
7117 /**
7118 * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
7119 * per-CPU cpumask.
7120 *
7121 * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
7122 */
scx_bpf_get_idle_cpumask(void)7123 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
7124 {
7125 if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7126 scx_ops_error("built-in idle tracking is disabled");
7127 return cpu_none_mask;
7128 }
7129
7130 #ifdef CONFIG_SMP
7131 return idle_masks.cpu;
7132 #else
7133 return cpu_none_mask;
7134 #endif
7135 }
7136
7137 /**
7138 * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
7139 * per-physical-core cpumask. Can be used to determine if an entire physical
7140 * core is free.
7141 *
7142 * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
7143 */
scx_bpf_get_idle_smtmask(void)7144 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
7145 {
7146 if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7147 scx_ops_error("built-in idle tracking is disabled");
7148 return cpu_none_mask;
7149 }
7150
7151 #ifdef CONFIG_SMP
7152 if (sched_smt_active())
7153 return idle_masks.smt;
7154 else
7155 return idle_masks.cpu;
7156 #else
7157 return cpu_none_mask;
7158 #endif
7159 }
7160
7161 /**
7162 * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
7163 * either the percpu, or SMT idle-tracking cpumask.
7164 */
scx_bpf_put_idle_cpumask(const struct cpumask * idle_mask)7165 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
7166 {
7167 /*
7168 * Empty function body because we aren't actually acquiring or releasing
7169 * a reference to a global idle cpumask, which is read-only in the
7170 * caller and is never released. The acquire / release semantics here
7171 * are just used to make the cpumask a trusted pointer in the caller.
7172 */
7173 }
7174
7175 /**
7176 * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
7177 * @cpu: cpu to test and clear idle for
7178 *
7179 * Returns %true if @cpu was idle and its idle state was successfully cleared.
7180 * %false otherwise.
7181 *
7182 * Unavailable if ops.update_idle() is implemented and
7183 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
7184 */
scx_bpf_test_and_clear_cpu_idle(s32 cpu)7185 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
7186 {
7187 if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7188 scx_ops_error("built-in idle tracking is disabled");
7189 return false;
7190 }
7191
7192 if (ops_cpu_valid(cpu, NULL))
7193 return test_and_clear_cpu_idle(cpu);
7194 else
7195 return false;
7196 }
7197
7198 /**
7199 * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
7200 * @cpus_allowed: Allowed cpumask
7201 * @flags: %SCX_PICK_IDLE_CPU_* flags
7202 *
7203 * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
7204 * number on success. -%EBUSY if no matching cpu was found.
7205 *
7206 * Idle CPU tracking may race against CPU scheduling state transitions. For
7207 * example, this function may return -%EBUSY as CPUs are transitioning into the
7208 * idle state. If the caller then assumes that there will be dispatch events on
7209 * the CPUs as they were all busy, the scheduler may end up stalling with CPUs
7210 * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
7211 * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
7212 * event in the near future.
7213 *
7214 * Unavailable if ops.update_idle() is implemented and
7215 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
7216 */
scx_bpf_pick_idle_cpu(const struct cpumask * cpus_allowed,u64 flags)7217 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
7218 u64 flags)
7219 {
7220 if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7221 scx_ops_error("built-in idle tracking is disabled");
7222 return -EBUSY;
7223 }
7224
7225 return scx_pick_idle_cpu(cpus_allowed, flags);
7226 }
7227
7228 /**
7229 * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
7230 * @cpus_allowed: Allowed cpumask
7231 * @flags: %SCX_PICK_IDLE_CPU_* flags
7232 *
7233 * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
7234 * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
7235 * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
7236 * empty.
7237 *
7238 * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
7239 * set, this function can't tell which CPUs are idle and will always pick any
7240 * CPU.
7241 */
scx_bpf_pick_any_cpu(const struct cpumask * cpus_allowed,u64 flags)7242 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
7243 u64 flags)
7244 {
7245 s32 cpu;
7246
7247 if (static_branch_likely(&scx_builtin_idle_enabled)) {
7248 cpu = scx_pick_idle_cpu(cpus_allowed, flags);
7249 if (cpu >= 0)
7250 return cpu;
7251 }
7252
7253 cpu = cpumask_any_distribute(cpus_allowed);
7254 if (cpu < nr_cpu_ids)
7255 return cpu;
7256 else
7257 return -EBUSY;
7258 }
7259
7260 /**
7261 * scx_bpf_task_running - Is task currently running?
7262 * @p: task of interest
7263 */
scx_bpf_task_running(const struct task_struct * p)7264 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
7265 {
7266 return task_rq(p)->curr == p;
7267 }
7268
7269 /**
7270 * scx_bpf_task_cpu - CPU a task is currently associated with
7271 * @p: task of interest
7272 */
scx_bpf_task_cpu(const struct task_struct * p)7273 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
7274 {
7275 return task_cpu(p);
7276 }
7277
7278 /**
7279 * scx_bpf_cpu_rq - Fetch the rq of a CPU
7280 * @cpu: CPU of the rq
7281 */
scx_bpf_cpu_rq(s32 cpu)7282 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
7283 {
7284 if (!ops_cpu_valid(cpu, NULL))
7285 return NULL;
7286
7287 return cpu_rq(cpu);
7288 }
7289
7290 /**
7291 * scx_bpf_task_cgroup - Return the sched cgroup of a task
7292 * @p: task of interest
7293 *
7294 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with
7295 * from the scheduler's POV. SCX operations should use this function to
7296 * determine @p's current cgroup as, unlike following @p->cgroups,
7297 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all
7298 * rq-locked operations. Can be called on the parameter tasks of rq-locked
7299 * operations. The restriction guarantees that @p's rq is locked by the caller.
7300 */
7301 #ifdef CONFIG_CGROUP_SCHED
scx_bpf_task_cgroup(struct task_struct * p)7302 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
7303 {
7304 struct task_group *tg = p->sched_task_group;
7305 struct cgroup *cgrp = &cgrp_dfl_root.cgrp;
7306
7307 if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p))
7308 goto out;
7309
7310 /*
7311 * A task_group may either be a cgroup or an autogroup. In the latter
7312 * case, @tg->css.cgroup is %NULL. A task_group can't become the other
7313 * kind once created.
7314 */
7315 if (tg && tg->css.cgroup)
7316 cgrp = tg->css.cgroup;
7317 else
7318 cgrp = &cgrp_dfl_root.cgrp;
7319 out:
7320 cgroup_get(cgrp);
7321 return cgrp;
7322 }
7323 #endif
7324
7325 __bpf_kfunc_end_defs();
7326
7327 BTF_KFUNCS_START(scx_kfunc_ids_any)
7328 BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
7329 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
7330 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
7331 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
7332 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
7333 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
7334 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
7335 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
7336 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS)
7337 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
7338 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
7339 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
7340 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
7341 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
7342 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
7343 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
7344 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
7345 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
7346 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
7347 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
7348 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
7349 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
7350 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
7351 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
7352 BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
7353 #ifdef CONFIG_CGROUP_SCHED
7354 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
7355 #endif
7356 BTF_KFUNCS_END(scx_kfunc_ids_any)
7357
7358 static const struct btf_kfunc_id_set scx_kfunc_set_any = {
7359 .owner = THIS_MODULE,
7360 .set = &scx_kfunc_ids_any,
7361 };
7362
scx_init(void)7363 static int __init scx_init(void)
7364 {
7365 int ret;
7366
7367 /*
7368 * kfunc registration can't be done from init_sched_ext_class() as
7369 * register_btf_kfunc_id_set() needs most of the system to be up.
7370 *
7371 * Some kfuncs are context-sensitive and can only be called from
7372 * specific SCX ops. They are grouped into BTF sets accordingly.
7373 * Unfortunately, BPF currently doesn't have a way of enforcing such
7374 * restrictions. Eventually, the verifier should be able to enforce
7375 * them. For now, register them the same and make each kfunc explicitly
7376 * check using scx_kf_allowed().
7377 */
7378 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7379 &scx_kfunc_set_select_cpu)) ||
7380 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7381 &scx_kfunc_set_enqueue_dispatch)) ||
7382 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7383 &scx_kfunc_set_dispatch)) ||
7384 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7385 &scx_kfunc_set_cpu_release)) ||
7386 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7387 &scx_kfunc_set_unlocked)) ||
7388 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7389 &scx_kfunc_set_unlocked)) ||
7390 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7391 &scx_kfunc_set_any)) ||
7392 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
7393 &scx_kfunc_set_any)) ||
7394 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7395 &scx_kfunc_set_any))) {
7396 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
7397 return ret;
7398 }
7399
7400 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
7401 if (ret) {
7402 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
7403 return ret;
7404 }
7405
7406 ret = register_pm_notifier(&scx_pm_notifier);
7407 if (ret) {
7408 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret);
7409 return ret;
7410 }
7411
7412 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
7413 if (!scx_kset) {
7414 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
7415 return -ENOMEM;
7416 }
7417
7418 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
7419 if (ret < 0) {
7420 pr_err("sched_ext: Failed to add global attributes\n");
7421 return ret;
7422 }
7423
7424 return 0;
7425 }
7426 __initcall(scx_init);
7427