• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements most of the debugging stuff which is compiled in only
13  * when it is enabled. But some debugging check functions are implemented in
14  * corresponding subsystem, just because they are closely related and utilize
15  * various local functions of those subsystems.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/debugfs.h>
20 #include <linux/math64.h>
21 #include <linux/uaccess.h>
22 #include <linux/random.h>
23 #include <linux/ctype.h>
24 #include "ubifs.h"
25 
26 static DEFINE_SPINLOCK(dbg_lock);
27 
get_key_fmt(int fmt)28 static const char *get_key_fmt(int fmt)
29 {
30 	switch (fmt) {
31 	case UBIFS_SIMPLE_KEY_FMT:
32 		return "simple";
33 	default:
34 		return "unknown/invalid format";
35 	}
36 }
37 
get_key_hash(int hash)38 static const char *get_key_hash(int hash)
39 {
40 	switch (hash) {
41 	case UBIFS_KEY_HASH_R5:
42 		return "R5";
43 	case UBIFS_KEY_HASH_TEST:
44 		return "test";
45 	default:
46 		return "unknown/invalid name hash";
47 	}
48 }
49 
get_key_type(int type)50 static const char *get_key_type(int type)
51 {
52 	switch (type) {
53 	case UBIFS_INO_KEY:
54 		return "inode";
55 	case UBIFS_DENT_KEY:
56 		return "direntry";
57 	case UBIFS_XENT_KEY:
58 		return "xentry";
59 	case UBIFS_DATA_KEY:
60 		return "data";
61 	case UBIFS_TRUN_KEY:
62 		return "truncate";
63 	default:
64 		return "unknown/invalid key";
65 	}
66 }
67 
get_dent_type(int type)68 static const char *get_dent_type(int type)
69 {
70 	switch (type) {
71 	case UBIFS_ITYPE_REG:
72 		return "file";
73 	case UBIFS_ITYPE_DIR:
74 		return "dir";
75 	case UBIFS_ITYPE_LNK:
76 		return "symlink";
77 	case UBIFS_ITYPE_BLK:
78 		return "blkdev";
79 	case UBIFS_ITYPE_CHR:
80 		return "char dev";
81 	case UBIFS_ITYPE_FIFO:
82 		return "fifo";
83 	case UBIFS_ITYPE_SOCK:
84 		return "socket";
85 	default:
86 		return "unknown/invalid type";
87 	}
88 }
89 
dbg_snprintf_key(const struct ubifs_info * c,const union ubifs_key * key,char * buffer,int len)90 const char *dbg_snprintf_key(const struct ubifs_info *c,
91 			     const union ubifs_key *key, char *buffer, int len)
92 {
93 	char *p = buffer;
94 	int type = key_type(c, key);
95 
96 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
97 		switch (type) {
98 		case UBIFS_INO_KEY:
99 			len -= snprintf(p, len, "(%lu, %s)",
100 					(unsigned long)key_inum(c, key),
101 					get_key_type(type));
102 			break;
103 		case UBIFS_DENT_KEY:
104 		case UBIFS_XENT_KEY:
105 			len -= snprintf(p, len, "(%lu, %s, %#08x)",
106 					(unsigned long)key_inum(c, key),
107 					get_key_type(type), key_hash(c, key));
108 			break;
109 		case UBIFS_DATA_KEY:
110 			len -= snprintf(p, len, "(%lu, %s, %u)",
111 					(unsigned long)key_inum(c, key),
112 					get_key_type(type), key_block(c, key));
113 			break;
114 		case UBIFS_TRUN_KEY:
115 			len -= snprintf(p, len, "(%lu, %s)",
116 					(unsigned long)key_inum(c, key),
117 					get_key_type(type));
118 			break;
119 		default:
120 			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
121 					key->u32[0], key->u32[1]);
122 		}
123 	} else
124 		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
125 	ubifs_assert(c, len > 0);
126 	return p;
127 }
128 
dbg_ntype(int type)129 const char *dbg_ntype(int type)
130 {
131 	switch (type) {
132 	case UBIFS_PAD_NODE:
133 		return "padding node";
134 	case UBIFS_SB_NODE:
135 		return "superblock node";
136 	case UBIFS_MST_NODE:
137 		return "master node";
138 	case UBIFS_REF_NODE:
139 		return "reference node";
140 	case UBIFS_INO_NODE:
141 		return "inode node";
142 	case UBIFS_DENT_NODE:
143 		return "direntry node";
144 	case UBIFS_XENT_NODE:
145 		return "xentry node";
146 	case UBIFS_DATA_NODE:
147 		return "data node";
148 	case UBIFS_TRUN_NODE:
149 		return "truncate node";
150 	case UBIFS_IDX_NODE:
151 		return "indexing node";
152 	case UBIFS_CS_NODE:
153 		return "commit start node";
154 	case UBIFS_ORPH_NODE:
155 		return "orphan node";
156 	case UBIFS_AUTH_NODE:
157 		return "auth node";
158 	default:
159 		return "unknown node";
160 	}
161 }
162 
dbg_gtype(int type)163 static const char *dbg_gtype(int type)
164 {
165 	switch (type) {
166 	case UBIFS_NO_NODE_GROUP:
167 		return "no node group";
168 	case UBIFS_IN_NODE_GROUP:
169 		return "in node group";
170 	case UBIFS_LAST_OF_NODE_GROUP:
171 		return "last of node group";
172 	default:
173 		return "unknown";
174 	}
175 }
176 
dbg_cstate(int cmt_state)177 const char *dbg_cstate(int cmt_state)
178 {
179 	switch (cmt_state) {
180 	case COMMIT_RESTING:
181 		return "commit resting";
182 	case COMMIT_BACKGROUND:
183 		return "background commit requested";
184 	case COMMIT_REQUIRED:
185 		return "commit required";
186 	case COMMIT_RUNNING_BACKGROUND:
187 		return "BACKGROUND commit running";
188 	case COMMIT_RUNNING_REQUIRED:
189 		return "commit running and required";
190 	case COMMIT_BROKEN:
191 		return "broken commit";
192 	default:
193 		return "unknown commit state";
194 	}
195 }
196 
dbg_jhead(int jhead)197 const char *dbg_jhead(int jhead)
198 {
199 	switch (jhead) {
200 	case GCHD:
201 		return "0 (GC)";
202 	case BASEHD:
203 		return "1 (base)";
204 	case DATAHD:
205 		return "2 (data)";
206 	default:
207 		return "unknown journal head";
208 	}
209 }
210 
dump_ch(const struct ubifs_ch * ch)211 static void dump_ch(const struct ubifs_ch *ch)
212 {
213 	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
214 	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
215 	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
216 	       dbg_ntype(ch->node_type));
217 	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
218 	       dbg_gtype(ch->group_type));
219 	pr_err("\tsqnum          %llu\n",
220 	       (unsigned long long)le64_to_cpu(ch->sqnum));
221 	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
222 }
223 
ubifs_dump_inode(struct ubifs_info * c,const struct inode * inode)224 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
225 {
226 	const struct ubifs_inode *ui = ubifs_inode(inode);
227 	struct fscrypt_name nm = {0};
228 	union ubifs_key key;
229 	struct ubifs_dent_node *dent, *pdent = NULL;
230 	int count = 2;
231 
232 	pr_err("Dump in-memory inode:");
233 	pr_err("\tinode          %lu\n", inode->i_ino);
234 	pr_err("\tsize           %llu\n",
235 	       (unsigned long long)i_size_read(inode));
236 	pr_err("\tnlink          %u\n", inode->i_nlink);
237 	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
238 	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
239 	pr_err("\tatime          %u.%u\n",
240 	       (unsigned int) inode_get_atime_sec(inode),
241 	       (unsigned int) inode_get_atime_nsec(inode));
242 	pr_err("\tmtime          %u.%u\n",
243 	       (unsigned int) inode_get_mtime_sec(inode),
244 	       (unsigned int) inode_get_mtime_nsec(inode));
245 	pr_err("\tctime          %u.%u\n",
246 	       (unsigned int) inode_get_ctime_sec(inode),
247 	       (unsigned int) inode_get_ctime_nsec(inode));
248 	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
249 	pr_err("\txattr_size     %u\n", ui->xattr_size);
250 	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
251 	pr_err("\txattr_names    %u\n", ui->xattr_names);
252 	pr_err("\tdirty          %u\n", ui->dirty);
253 	pr_err("\txattr          %u\n", ui->xattr);
254 	pr_err("\tbulk_read      %u\n", ui->bulk_read);
255 	pr_err("\tsynced_i_size  %llu\n",
256 	       (unsigned long long)ui->synced_i_size);
257 	pr_err("\tui_size        %llu\n",
258 	       (unsigned long long)ui->ui_size);
259 	pr_err("\tflags          %d\n", ui->flags);
260 	pr_err("\tcompr_type     %d\n", ui->compr_type);
261 	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
262 	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
263 	pr_err("\tdata_len       %d\n", ui->data_len);
264 
265 	if (!S_ISDIR(inode->i_mode))
266 		return;
267 
268 	pr_err("List of directory entries:\n");
269 	ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
270 
271 	lowest_dent_key(c, &key, inode->i_ino);
272 	while (1) {
273 		dent = ubifs_tnc_next_ent(c, &key, &nm);
274 		if (IS_ERR(dent)) {
275 			if (PTR_ERR(dent) != -ENOENT)
276 				pr_err("error %ld\n", PTR_ERR(dent));
277 			break;
278 		}
279 
280 		pr_err("\t%d: inode %llu, type %s, len %d\n",
281 		       count++, (unsigned long long) le64_to_cpu(dent->inum),
282 		       get_dent_type(dent->type),
283 		       le16_to_cpu(dent->nlen));
284 
285 		fname_name(&nm) = dent->name;
286 		fname_len(&nm) = le16_to_cpu(dent->nlen);
287 		kfree(pdent);
288 		pdent = dent;
289 		key_read(c, &dent->key, &key);
290 	}
291 	kfree(pdent);
292 }
293 
ubifs_dump_node(const struct ubifs_info * c,const void * node,int node_len)294 void ubifs_dump_node(const struct ubifs_info *c, const void *node, int node_len)
295 {
296 	int i, n, type, safe_len, max_node_len, min_node_len;
297 	union ubifs_key key;
298 	const struct ubifs_ch *ch = node;
299 	char key_buf[DBG_KEY_BUF_LEN];
300 
301 	/* If the magic is incorrect, just hexdump the first bytes */
302 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
303 		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
304 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
305 			       (void *)node, UBIFS_CH_SZ, 1);
306 		return;
307 	}
308 
309 	/* Skip dumping unknown type node */
310 	type = ch->node_type;
311 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
312 		pr_err("node type %d was not recognized\n", type);
313 		return;
314 	}
315 
316 	spin_lock(&dbg_lock);
317 	dump_ch(node);
318 
319 	if (c->ranges[type].max_len == 0) {
320 		max_node_len = min_node_len = c->ranges[type].len;
321 	} else {
322 		max_node_len = c->ranges[type].max_len;
323 		min_node_len = c->ranges[type].min_len;
324 	}
325 	safe_len = le32_to_cpu(ch->len);
326 	safe_len = safe_len > 0 ? safe_len : 0;
327 	safe_len = min3(safe_len, max_node_len, node_len);
328 	if (safe_len < min_node_len) {
329 		pr_err("node len(%d) is too short for %s, left %d bytes:\n",
330 		       safe_len, dbg_ntype(type),
331 		       safe_len > UBIFS_CH_SZ ?
332 		       safe_len - (int)UBIFS_CH_SZ : 0);
333 		if (safe_len > UBIFS_CH_SZ)
334 			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
335 				       (void *)node + UBIFS_CH_SZ,
336 				       safe_len - UBIFS_CH_SZ, 0);
337 		goto out_unlock;
338 	}
339 	if (safe_len != le32_to_cpu(ch->len))
340 		pr_err("\ttruncated node length      %d\n", safe_len);
341 
342 	switch (type) {
343 	case UBIFS_PAD_NODE:
344 	{
345 		const struct ubifs_pad_node *pad = node;
346 
347 		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
348 		break;
349 	}
350 	case UBIFS_SB_NODE:
351 	{
352 		const struct ubifs_sb_node *sup = node;
353 		unsigned int sup_flags = le32_to_cpu(sup->flags);
354 
355 		pr_err("\tkey_hash       %d (%s)\n",
356 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
357 		pr_err("\tkey_fmt        %d (%s)\n",
358 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
359 		pr_err("\tflags          %#x\n", sup_flags);
360 		pr_err("\tbig_lpt        %u\n",
361 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
362 		pr_err("\tspace_fixup    %u\n",
363 		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
364 		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
365 		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
366 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
367 		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
368 		pr_err("\tmax_bud_bytes  %llu\n",
369 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
370 		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
371 		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
372 		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
373 		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
374 		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
375 		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
376 		pr_err("\tdefault_compr  %u\n",
377 		       (int)le16_to_cpu(sup->default_compr));
378 		pr_err("\trp_size        %llu\n",
379 		       (unsigned long long)le64_to_cpu(sup->rp_size));
380 		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
381 		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
382 		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
383 		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
384 		pr_err("\tUUID           %pUB\n", sup->uuid);
385 		break;
386 	}
387 	case UBIFS_MST_NODE:
388 	{
389 		const struct ubifs_mst_node *mst = node;
390 
391 		pr_err("\thighest_inum   %llu\n",
392 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
393 		pr_err("\tcommit number  %llu\n",
394 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
395 		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
396 		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
397 		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
398 		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
399 		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
400 		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
401 		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
402 		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
403 		pr_err("\tindex_size     %llu\n",
404 		       (unsigned long long)le64_to_cpu(mst->index_size));
405 		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
406 		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
407 		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
408 		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
409 		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
410 		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
411 		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
412 		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
413 		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
414 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
415 		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
416 		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
417 		pr_err("\ttotal_free     %llu\n",
418 		       (unsigned long long)le64_to_cpu(mst->total_free));
419 		pr_err("\ttotal_dirty    %llu\n",
420 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
421 		pr_err("\ttotal_used     %llu\n",
422 		       (unsigned long long)le64_to_cpu(mst->total_used));
423 		pr_err("\ttotal_dead     %llu\n",
424 		       (unsigned long long)le64_to_cpu(mst->total_dead));
425 		pr_err("\ttotal_dark     %llu\n",
426 		       (unsigned long long)le64_to_cpu(mst->total_dark));
427 		break;
428 	}
429 	case UBIFS_REF_NODE:
430 	{
431 		const struct ubifs_ref_node *ref = node;
432 
433 		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
434 		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
435 		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
436 		break;
437 	}
438 	case UBIFS_INO_NODE:
439 	{
440 		const struct ubifs_ino_node *ino = node;
441 
442 		key_read(c, &ino->key, &key);
443 		pr_err("\tkey            %s\n",
444 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
445 		pr_err("\tcreat_sqnum    %llu\n",
446 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
447 		pr_err("\tsize           %llu\n",
448 		       (unsigned long long)le64_to_cpu(ino->size));
449 		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
450 		pr_err("\tatime          %lld.%u\n",
451 		       (long long)le64_to_cpu(ino->atime_sec),
452 		       le32_to_cpu(ino->atime_nsec));
453 		pr_err("\tmtime          %lld.%u\n",
454 		       (long long)le64_to_cpu(ino->mtime_sec),
455 		       le32_to_cpu(ino->mtime_nsec));
456 		pr_err("\tctime          %lld.%u\n",
457 		       (long long)le64_to_cpu(ino->ctime_sec),
458 		       le32_to_cpu(ino->ctime_nsec));
459 		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
460 		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
461 		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
462 		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
463 		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
464 		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
465 		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
466 		pr_err("\tcompr_type     %#x\n",
467 		       (int)le16_to_cpu(ino->compr_type));
468 		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
469 		break;
470 	}
471 	case UBIFS_DENT_NODE:
472 	case UBIFS_XENT_NODE:
473 	{
474 		const struct ubifs_dent_node *dent = node;
475 		int nlen = le16_to_cpu(dent->nlen);
476 
477 		key_read(c, &dent->key, &key);
478 		pr_err("\tkey            %s\n",
479 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
480 		pr_err("\tinum           %llu\n",
481 		       (unsigned long long)le64_to_cpu(dent->inum));
482 		pr_err("\ttype           %d\n", (int)dent->type);
483 		pr_err("\tnlen           %d\n", nlen);
484 		pr_err("\tname           ");
485 
486 		if (nlen > UBIFS_MAX_NLEN ||
487 		    nlen > safe_len - UBIFS_DENT_NODE_SZ)
488 			pr_err("(bad name length, not printing, bad or corrupted node)");
489 		else {
490 			for (i = 0; i < nlen && dent->name[i]; i++)
491 				pr_cont("%c", isprint(dent->name[i]) ?
492 					dent->name[i] : '?');
493 		}
494 		pr_cont("\n");
495 
496 		break;
497 	}
498 	case UBIFS_DATA_NODE:
499 	{
500 		const struct ubifs_data_node *dn = node;
501 
502 		key_read(c, &dn->key, &key);
503 		pr_err("\tkey            %s\n",
504 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
505 		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
506 		pr_err("\tcompr_typ      %d\n",
507 		       (int)le16_to_cpu(dn->compr_type));
508 		pr_err("\tdata size      %u\n",
509 		       le32_to_cpu(ch->len) - (unsigned int)UBIFS_DATA_NODE_SZ);
510 		pr_err("\tdata (length = %d):\n",
511 		       safe_len - (int)UBIFS_DATA_NODE_SZ);
512 		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
513 			       (void *)&dn->data,
514 			       safe_len - (int)UBIFS_DATA_NODE_SZ, 0);
515 		break;
516 	}
517 	case UBIFS_TRUN_NODE:
518 	{
519 		const struct ubifs_trun_node *trun = node;
520 
521 		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
522 		pr_err("\told_size       %llu\n",
523 		       (unsigned long long)le64_to_cpu(trun->old_size));
524 		pr_err("\tnew_size       %llu\n",
525 		       (unsigned long long)le64_to_cpu(trun->new_size));
526 		break;
527 	}
528 	case UBIFS_IDX_NODE:
529 	{
530 		const struct ubifs_idx_node *idx = node;
531 		int max_child_cnt = (safe_len - UBIFS_IDX_NODE_SZ) /
532 				    (ubifs_idx_node_sz(c, 1) -
533 				    UBIFS_IDX_NODE_SZ);
534 
535 		n = min_t(int, le16_to_cpu(idx->child_cnt), max_child_cnt);
536 		pr_err("\tchild_cnt      %d\n", (int)le16_to_cpu(idx->child_cnt));
537 		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
538 		pr_err("\tBranches:\n");
539 
540 		for (i = 0; i < n && i < c->fanout; i++) {
541 			const struct ubifs_branch *br;
542 
543 			br = ubifs_idx_branch(c, idx, i);
544 			key_read(c, &br->key, &key);
545 			pr_err("\t%d: LEB %d:%d len %d key %s\n",
546 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
547 			       le32_to_cpu(br->len),
548 			       dbg_snprintf_key(c, &key, key_buf,
549 						DBG_KEY_BUF_LEN));
550 		}
551 		break;
552 	}
553 	case UBIFS_CS_NODE:
554 		break;
555 	case UBIFS_ORPH_NODE:
556 	{
557 		const struct ubifs_orph_node *orph = node;
558 
559 		pr_err("\tcommit number  %llu\n",
560 		       (unsigned long long)
561 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
562 		pr_err("\tlast node flag %llu\n",
563 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
564 		n = (safe_len - UBIFS_ORPH_NODE_SZ) >> 3;
565 		pr_err("\t%d orphan inode numbers:\n", n);
566 		for (i = 0; i < n; i++)
567 			pr_err("\t  ino %llu\n",
568 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
569 		break;
570 	}
571 	case UBIFS_AUTH_NODE:
572 	{
573 		break;
574 	}
575 	default:
576 		pr_err("node type %d was not recognized\n", type);
577 	}
578 
579 out_unlock:
580 	spin_unlock(&dbg_lock);
581 }
582 
ubifs_dump_budget_req(const struct ubifs_budget_req * req)583 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
584 {
585 	spin_lock(&dbg_lock);
586 	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
587 	       req->new_ino, req->dirtied_ino);
588 	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
589 	       req->new_ino_d, req->dirtied_ino_d);
590 	pr_err("\tnew_page    %d, dirtied_page %d\n",
591 	       req->new_page, req->dirtied_page);
592 	pr_err("\tnew_dent    %d, mod_dent     %d\n",
593 	       req->new_dent, req->mod_dent);
594 	pr_err("\tidx_growth  %d\n", req->idx_growth);
595 	pr_err("\tdata_growth %d dd_growth     %d\n",
596 	       req->data_growth, req->dd_growth);
597 	spin_unlock(&dbg_lock);
598 }
599 
ubifs_dump_lstats(const struct ubifs_lp_stats * lst)600 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
601 {
602 	spin_lock(&dbg_lock);
603 	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
604 	       current->pid, lst->empty_lebs, lst->idx_lebs);
605 	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
606 	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
607 	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
608 	       lst->total_used, lst->total_dark, lst->total_dead);
609 	spin_unlock(&dbg_lock);
610 }
611 
ubifs_dump_budg(struct ubifs_info * c,const struct ubifs_budg_info * bi)612 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
613 {
614 	int i;
615 	struct rb_node *rb;
616 	struct ubifs_bud *bud;
617 	struct ubifs_gced_idx_leb *idx_gc;
618 	long long available, outstanding, free;
619 
620 	spin_lock(&c->space_lock);
621 	spin_lock(&dbg_lock);
622 	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
623 	       current->pid, bi->data_growth + bi->dd_growth,
624 	       bi->data_growth + bi->dd_growth + bi->idx_growth);
625 	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
626 	       bi->data_growth, bi->dd_growth, bi->idx_growth);
627 	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
628 	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
629 	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
630 	       bi->page_budget, bi->inode_budget, bi->dent_budget);
631 	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
632 	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
633 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
634 
635 	if (bi != &c->bi)
636 		/*
637 		 * If we are dumping saved budgeting data, do not print
638 		 * additional information which is about the current state, not
639 		 * the old one which corresponded to the saved budgeting data.
640 		 */
641 		goto out_unlock;
642 
643 	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
644 	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
645 	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
646 	       atomic_long_read(&c->dirty_pg_cnt),
647 	       atomic_long_read(&c->dirty_zn_cnt),
648 	       atomic_long_read(&c->clean_zn_cnt));
649 	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
650 
651 	/* If we are in R/O mode, journal heads do not exist */
652 	if (c->jheads)
653 		for (i = 0; i < c->jhead_cnt; i++)
654 			pr_err("\tjhead %s\t LEB %d\n",
655 			       dbg_jhead(c->jheads[i].wbuf.jhead),
656 			       c->jheads[i].wbuf.lnum);
657 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
658 		bud = rb_entry(rb, struct ubifs_bud, rb);
659 		pr_err("\tbud LEB %d\n", bud->lnum);
660 	}
661 	list_for_each_entry(bud, &c->old_buds, list)
662 		pr_err("\told bud LEB %d\n", bud->lnum);
663 	list_for_each_entry(idx_gc, &c->idx_gc, list)
664 		pr_err("\tGC'ed idx LEB %d unmap %d\n",
665 		       idx_gc->lnum, idx_gc->unmap);
666 	pr_err("\tcommit state %d\n", c->cmt_state);
667 
668 	/* Print budgeting predictions */
669 	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
670 	outstanding = c->bi.data_growth + c->bi.dd_growth;
671 	free = ubifs_get_free_space_nolock(c);
672 	pr_err("Budgeting predictions:\n");
673 	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
674 	       available, outstanding, free);
675 out_unlock:
676 	spin_unlock(&dbg_lock);
677 	spin_unlock(&c->space_lock);
678 }
679 
ubifs_dump_lprop(const struct ubifs_info * c,const struct ubifs_lprops * lp)680 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
681 {
682 	int i, spc, dark = 0, dead = 0;
683 	struct rb_node *rb;
684 	struct ubifs_bud *bud;
685 
686 	spc = lp->free + lp->dirty;
687 	if (spc < c->dead_wm)
688 		dead = spc;
689 	else
690 		dark = ubifs_calc_dark(c, spc);
691 
692 	if (lp->flags & LPROPS_INDEX)
693 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
694 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
695 		       lp->flags);
696 	else
697 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
698 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
699 		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
700 
701 	if (lp->flags & LPROPS_TAKEN) {
702 		if (lp->flags & LPROPS_INDEX)
703 			pr_cont("index, taken");
704 		else
705 			pr_cont("taken");
706 	} else {
707 		const char *s;
708 
709 		if (lp->flags & LPROPS_INDEX) {
710 			switch (lp->flags & LPROPS_CAT_MASK) {
711 			case LPROPS_DIRTY_IDX:
712 				s = "dirty index";
713 				break;
714 			case LPROPS_FRDI_IDX:
715 				s = "freeable index";
716 				break;
717 			default:
718 				s = "index";
719 			}
720 		} else {
721 			switch (lp->flags & LPROPS_CAT_MASK) {
722 			case LPROPS_UNCAT:
723 				s = "not categorized";
724 				break;
725 			case LPROPS_DIRTY:
726 				s = "dirty";
727 				break;
728 			case LPROPS_FREE:
729 				s = "free";
730 				break;
731 			case LPROPS_EMPTY:
732 				s = "empty";
733 				break;
734 			case LPROPS_FREEABLE:
735 				s = "freeable";
736 				break;
737 			default:
738 				s = NULL;
739 				break;
740 			}
741 		}
742 		pr_cont("%s", s);
743 	}
744 
745 	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
746 		bud = rb_entry(rb, struct ubifs_bud, rb);
747 		if (bud->lnum == lp->lnum) {
748 			int head = 0;
749 			for (i = 0; i < c->jhead_cnt; i++) {
750 				/*
751 				 * Note, if we are in R/O mode or in the middle
752 				 * of mounting/re-mounting, the write-buffers do
753 				 * not exist.
754 				 */
755 				if (c->jheads &&
756 				    lp->lnum == c->jheads[i].wbuf.lnum) {
757 					pr_cont(", jhead %s", dbg_jhead(i));
758 					head = 1;
759 				}
760 			}
761 			if (!head)
762 				pr_cont(", bud of jhead %s",
763 				       dbg_jhead(bud->jhead));
764 		}
765 	}
766 	if (lp->lnum == c->gc_lnum)
767 		pr_cont(", GC LEB");
768 	pr_cont(")\n");
769 }
770 
ubifs_dump_lprops(struct ubifs_info * c)771 void ubifs_dump_lprops(struct ubifs_info *c)
772 {
773 	int lnum, err;
774 	struct ubifs_lprops lp;
775 	struct ubifs_lp_stats lst;
776 
777 	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
778 	ubifs_get_lp_stats(c, &lst);
779 	ubifs_dump_lstats(&lst);
780 
781 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
782 		err = ubifs_read_one_lp(c, lnum, &lp);
783 		if (err) {
784 			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
785 			continue;
786 		}
787 
788 		ubifs_dump_lprop(c, &lp);
789 	}
790 	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
791 }
792 
ubifs_dump_lpt_info(struct ubifs_info * c)793 void ubifs_dump_lpt_info(struct ubifs_info *c)
794 {
795 	int i;
796 
797 	spin_lock(&dbg_lock);
798 	pr_err("(pid %d) dumping LPT information\n", current->pid);
799 	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
800 	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
801 	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
802 	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
803 	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
804 	pr_err("\tbig_lpt:       %u\n", c->big_lpt);
805 	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
806 	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
807 	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
808 	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
809 	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
810 	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
811 	pr_err("\tspace_bits:    %d\n", c->space_bits);
812 	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
813 	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
814 	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
815 	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
816 	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
817 	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
818 	pr_err("\tLPT head is at %d:%d\n",
819 	       c->nhead_lnum, c->nhead_offs);
820 	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
821 	if (c->big_lpt)
822 		pr_err("\tLPT lsave is at %d:%d\n",
823 		       c->lsave_lnum, c->lsave_offs);
824 	for (i = 0; i < c->lpt_lebs; i++)
825 		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
826 		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
827 		       c->ltab[i].tgc, c->ltab[i].cmt);
828 	spin_unlock(&dbg_lock);
829 }
830 
ubifs_dump_leb(const struct ubifs_info * c,int lnum)831 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
832 {
833 	struct ubifs_scan_leb *sleb;
834 	struct ubifs_scan_node *snod;
835 	void *buf;
836 
837 	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
838 
839 	buf = __vmalloc(c->leb_size, GFP_NOFS);
840 	if (!buf) {
841 		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
842 		return;
843 	}
844 
845 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
846 	if (IS_ERR(sleb)) {
847 		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
848 		goto out;
849 	}
850 
851 	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
852 	       sleb->nodes_cnt, sleb->endpt);
853 
854 	list_for_each_entry(snod, &sleb->nodes, list) {
855 		cond_resched();
856 		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
857 		       snod->offs, snod->len);
858 		ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
859 	}
860 
861 	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
862 	ubifs_scan_destroy(sleb);
863 
864 out:
865 	vfree(buf);
866 	return;
867 }
868 
ubifs_dump_znode(const struct ubifs_info * c,const struct ubifs_znode * znode)869 void ubifs_dump_znode(const struct ubifs_info *c,
870 		      const struct ubifs_znode *znode)
871 {
872 	int n;
873 	const struct ubifs_zbranch *zbr;
874 	char key_buf[DBG_KEY_BUF_LEN];
875 
876 	spin_lock(&dbg_lock);
877 	if (znode->parent)
878 		zbr = &znode->parent->zbranch[znode->iip];
879 	else
880 		zbr = &c->zroot;
881 
882 	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
883 	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
884 	       znode->level, znode->child_cnt, znode->flags);
885 
886 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
887 		spin_unlock(&dbg_lock);
888 		return;
889 	}
890 
891 	pr_err("zbranches:\n");
892 	for (n = 0; n < znode->child_cnt; n++) {
893 		zbr = &znode->zbranch[n];
894 		if (znode->level > 0)
895 			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
896 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
897 			       dbg_snprintf_key(c, &zbr->key, key_buf,
898 						DBG_KEY_BUF_LEN));
899 		else
900 			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
901 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
902 			       dbg_snprintf_key(c, &zbr->key, key_buf,
903 						DBG_KEY_BUF_LEN));
904 	}
905 	spin_unlock(&dbg_lock);
906 }
907 
ubifs_dump_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,int cat)908 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
909 {
910 	int i;
911 
912 	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
913 	       current->pid, cat, heap->cnt);
914 	for (i = 0; i < heap->cnt; i++) {
915 		struct ubifs_lprops *lprops = heap->arr[i];
916 
917 		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
918 		       i, lprops->lnum, lprops->hpos, lprops->free,
919 		       lprops->dirty, lprops->flags);
920 	}
921 	pr_err("(pid %d) finish dumping heap\n", current->pid);
922 }
923 
ubifs_dump_pnode(struct ubifs_info * c,struct ubifs_pnode * pnode,struct ubifs_nnode * parent,int iip)924 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
925 		      struct ubifs_nnode *parent, int iip)
926 {
927 	int i;
928 
929 	pr_err("(pid %d) dumping pnode:\n", current->pid);
930 	pr_err("\taddress %zx parent %zx cnext %zx\n",
931 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
932 	pr_err("\tflags %lu iip %d level %d num %d\n",
933 	       pnode->flags, iip, pnode->level, pnode->num);
934 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
935 		struct ubifs_lprops *lp = &pnode->lprops[i];
936 
937 		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
938 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
939 	}
940 }
941 
ubifs_dump_tnc(struct ubifs_info * c)942 void ubifs_dump_tnc(struct ubifs_info *c)
943 {
944 	struct ubifs_znode *znode;
945 	int level;
946 
947 	pr_err("\n");
948 	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
949 	if (c->zroot.znode) {
950 		znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
951 		level = znode->level;
952 		pr_err("== Level %d ==\n", level);
953 		while (znode) {
954 			if (level != znode->level) {
955 				level = znode->level;
956 				pr_err("== Level %d ==\n", level);
957 			}
958 			ubifs_dump_znode(c, znode);
959 			znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
960 		}
961 	} else {
962 		pr_err("empty TNC tree in memory\n");
963 	}
964 	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
965 }
966 
dump_znode(struct ubifs_info * c,struct ubifs_znode * znode,void * priv)967 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
968 		      void *priv)
969 {
970 	ubifs_dump_znode(c, znode);
971 	return 0;
972 }
973 
974 /**
975  * ubifs_dump_index - dump the on-flash index.
976  * @c: UBIFS file-system description object
977  *
978  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
979  * which dumps only in-memory znodes and does not read znodes which from flash.
980  */
ubifs_dump_index(struct ubifs_info * c)981 void ubifs_dump_index(struct ubifs_info *c)
982 {
983 	dbg_walk_index(c, NULL, dump_znode, NULL);
984 }
985 
986 /**
987  * dbg_save_space_info - save information about flash space.
988  * @c: UBIFS file-system description object
989  *
990  * This function saves information about UBIFS free space, dirty space, etc, in
991  * order to check it later.
992  */
dbg_save_space_info(struct ubifs_info * c)993 void dbg_save_space_info(struct ubifs_info *c)
994 {
995 	struct ubifs_debug_info *d = c->dbg;
996 	int freeable_cnt;
997 
998 	spin_lock(&c->space_lock);
999 	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1000 	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1001 	d->saved_idx_gc_cnt = c->idx_gc_cnt;
1002 
1003 	/*
1004 	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1005 	 * affects the free space calculations, and UBIFS might not know about
1006 	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1007 	 * only when we read their lprops, and we do this only lazily, upon the
1008 	 * need. So at any given point of time @c->freeable_cnt might be not
1009 	 * exactly accurate.
1010 	 *
1011 	 * Just one example about the issue we hit when we did not zero
1012 	 * @c->freeable_cnt.
1013 	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1014 	 *    amount of free space in @d->saved_free
1015 	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1016 	 *    information from flash, where we cache LEBs from various
1017 	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1018 	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1019 	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1020 	 *    -> 'ubifs_add_to_cat()').
1021 	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1022 	 *    becomes %1.
1023 	 * 4. We calculate the amount of free space when the re-mount is
1024 	 *    finished in 'dbg_check_space_info()' and it does not match
1025 	 *    @d->saved_free.
1026 	 */
1027 	freeable_cnt = c->freeable_cnt;
1028 	c->freeable_cnt = 0;
1029 	d->saved_free = ubifs_get_free_space_nolock(c);
1030 	c->freeable_cnt = freeable_cnt;
1031 	spin_unlock(&c->space_lock);
1032 }
1033 
1034 /**
1035  * dbg_check_space_info - check flash space information.
1036  * @c: UBIFS file-system description object
1037  *
1038  * This function compares current flash space information with the information
1039  * which was saved when the 'dbg_save_space_info()' function was called.
1040  * Returns zero if the information has not changed, and %-EINVAL if it has
1041  * changed.
1042  */
dbg_check_space_info(struct ubifs_info * c)1043 int dbg_check_space_info(struct ubifs_info *c)
1044 {
1045 	struct ubifs_debug_info *d = c->dbg;
1046 	struct ubifs_lp_stats lst;
1047 	long long free;
1048 	int freeable_cnt;
1049 
1050 	spin_lock(&c->space_lock);
1051 	freeable_cnt = c->freeable_cnt;
1052 	c->freeable_cnt = 0;
1053 	free = ubifs_get_free_space_nolock(c);
1054 	c->freeable_cnt = freeable_cnt;
1055 	spin_unlock(&c->space_lock);
1056 
1057 	if (free != d->saved_free) {
1058 		ubifs_err(c, "free space changed from %lld to %lld",
1059 			  d->saved_free, free);
1060 		goto out;
1061 	}
1062 
1063 	return 0;
1064 
1065 out:
1066 	ubifs_msg(c, "saved lprops statistics dump");
1067 	ubifs_dump_lstats(&d->saved_lst);
1068 	ubifs_msg(c, "saved budgeting info dump");
1069 	ubifs_dump_budg(c, &d->saved_bi);
1070 	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1071 	ubifs_msg(c, "current lprops statistics dump");
1072 	ubifs_get_lp_stats(c, &lst);
1073 	ubifs_dump_lstats(&lst);
1074 	ubifs_msg(c, "current budgeting info dump");
1075 	ubifs_dump_budg(c, &c->bi);
1076 	dump_stack();
1077 	return -EINVAL;
1078 }
1079 
1080 /**
1081  * dbg_check_synced_i_size - check synchronized inode size.
1082  * @c: UBIFS file-system description object
1083  * @inode: inode to check
1084  *
1085  * If inode is clean, synchronized inode size has to be equivalent to current
1086  * inode size. This function has to be called only for locked inodes (@i_mutex
1087  * has to be locked). Returns %0 if synchronized inode size if correct, and
1088  * %-EINVAL if not.
1089  */
dbg_check_synced_i_size(const struct ubifs_info * c,struct inode * inode)1090 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1091 {
1092 	int err = 0;
1093 	struct ubifs_inode *ui = ubifs_inode(inode);
1094 
1095 	if (!dbg_is_chk_gen(c))
1096 		return 0;
1097 	if (!S_ISREG(inode->i_mode))
1098 		return 0;
1099 
1100 	mutex_lock(&ui->ui_mutex);
1101 	spin_lock(&ui->ui_lock);
1102 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1103 		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1104 			  ui->ui_size, ui->synced_i_size);
1105 		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1106 			  inode->i_mode, i_size_read(inode));
1107 		dump_stack();
1108 		err = -EINVAL;
1109 	}
1110 	spin_unlock(&ui->ui_lock);
1111 	mutex_unlock(&ui->ui_mutex);
1112 	return err;
1113 }
1114 
1115 /*
1116  * dbg_check_dir - check directory inode size and link count.
1117  * @c: UBIFS file-system description object
1118  * @dir: the directory to calculate size for
1119  * @size: the result is returned here
1120  *
1121  * This function makes sure that directory size and link count are correct.
1122  * Returns zero in case of success and a negative error code in case of
1123  * failure.
1124  *
1125  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1126  * calling this function.
1127  */
dbg_check_dir(struct ubifs_info * c,const struct inode * dir)1128 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1129 {
1130 	unsigned int nlink = 2;
1131 	union ubifs_key key;
1132 	struct ubifs_dent_node *dent, *pdent = NULL;
1133 	struct fscrypt_name nm = {0};
1134 	loff_t size = UBIFS_INO_NODE_SZ;
1135 
1136 	if (!dbg_is_chk_gen(c))
1137 		return 0;
1138 
1139 	if (!S_ISDIR(dir->i_mode))
1140 		return 0;
1141 
1142 	lowest_dent_key(c, &key, dir->i_ino);
1143 	while (1) {
1144 		int err;
1145 
1146 		dent = ubifs_tnc_next_ent(c, &key, &nm);
1147 		if (IS_ERR(dent)) {
1148 			err = PTR_ERR(dent);
1149 			if (err == -ENOENT)
1150 				break;
1151 			kfree(pdent);
1152 			return err;
1153 		}
1154 
1155 		fname_name(&nm) = dent->name;
1156 		fname_len(&nm) = le16_to_cpu(dent->nlen);
1157 		size += CALC_DENT_SIZE(fname_len(&nm));
1158 		if (dent->type == UBIFS_ITYPE_DIR)
1159 			nlink += 1;
1160 		kfree(pdent);
1161 		pdent = dent;
1162 		key_read(c, &dent->key, &key);
1163 	}
1164 	kfree(pdent);
1165 
1166 	if (i_size_read(dir) != size) {
1167 		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1168 			  dir->i_ino, (unsigned long long)i_size_read(dir),
1169 			  (unsigned long long)size);
1170 		ubifs_dump_inode(c, dir);
1171 		dump_stack();
1172 		return -EINVAL;
1173 	}
1174 	if (dir->i_nlink != nlink) {
1175 		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1176 			  dir->i_ino, dir->i_nlink, nlink);
1177 		ubifs_dump_inode(c, dir);
1178 		dump_stack();
1179 		return -EINVAL;
1180 	}
1181 
1182 	return 0;
1183 }
1184 
1185 /**
1186  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1187  * @c: UBIFS file-system description object
1188  * @zbr1: first zbranch
1189  * @zbr2: following zbranch
1190  *
1191  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1192  * names of the direntries/xentries which are referred by the keys. This
1193  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1194  * sure the name of direntry/xentry referred by @zbr1 is less than
1195  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1196  * and a negative error code in case of failure.
1197  */
dbg_check_key_order(struct ubifs_info * c,struct ubifs_zbranch * zbr1,struct ubifs_zbranch * zbr2)1198 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1199 			       struct ubifs_zbranch *zbr2)
1200 {
1201 	int err, nlen1, nlen2, cmp;
1202 	struct ubifs_dent_node *dent1, *dent2;
1203 	union ubifs_key key;
1204 	char key_buf[DBG_KEY_BUF_LEN];
1205 
1206 	ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1207 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1208 	if (!dent1)
1209 		return -ENOMEM;
1210 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1211 	if (!dent2) {
1212 		err = -ENOMEM;
1213 		goto out_free;
1214 	}
1215 
1216 	err = ubifs_tnc_read_node(c, zbr1, dent1);
1217 	if (err)
1218 		goto out_free;
1219 	err = ubifs_validate_entry(c, dent1);
1220 	if (err)
1221 		goto out_free;
1222 
1223 	err = ubifs_tnc_read_node(c, zbr2, dent2);
1224 	if (err)
1225 		goto out_free;
1226 	err = ubifs_validate_entry(c, dent2);
1227 	if (err)
1228 		goto out_free;
1229 
1230 	/* Make sure node keys are the same as in zbranch */
1231 	err = 1;
1232 	key_read(c, &dent1->key, &key);
1233 	if (keys_cmp(c, &zbr1->key, &key)) {
1234 		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1235 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1236 						       DBG_KEY_BUF_LEN));
1237 		ubifs_err(c, "but it should have key %s according to tnc",
1238 			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1239 					   DBG_KEY_BUF_LEN));
1240 		ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1241 		goto out_free;
1242 	}
1243 
1244 	key_read(c, &dent2->key, &key);
1245 	if (keys_cmp(c, &zbr2->key, &key)) {
1246 		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1247 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1248 						       DBG_KEY_BUF_LEN));
1249 		ubifs_err(c, "but it should have key %s according to tnc",
1250 			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1251 					   DBG_KEY_BUF_LEN));
1252 		ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1253 		goto out_free;
1254 	}
1255 
1256 	nlen1 = le16_to_cpu(dent1->nlen);
1257 	nlen2 = le16_to_cpu(dent2->nlen);
1258 
1259 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1260 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1261 		err = 0;
1262 		goto out_free;
1263 	}
1264 	if (cmp == 0 && nlen1 == nlen2)
1265 		ubifs_err(c, "2 xent/dent nodes with the same name");
1266 	else
1267 		ubifs_err(c, "bad order of colliding key %s",
1268 			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1269 
1270 	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1271 	ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1272 	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1273 	ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1274 
1275 out_free:
1276 	kfree(dent2);
1277 	kfree(dent1);
1278 	return err;
1279 }
1280 
1281 /**
1282  * dbg_check_znode - check if znode is all right.
1283  * @c: UBIFS file-system description object
1284  * @zbr: zbranch which points to this znode
1285  *
1286  * This function makes sure that znode referred to by @zbr is all right.
1287  * Returns zero if it is, and %-EINVAL if it is not.
1288  */
dbg_check_znode(struct ubifs_info * c,struct ubifs_zbranch * zbr)1289 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1290 {
1291 	struct ubifs_znode *znode = zbr->znode;
1292 	struct ubifs_znode *zp = znode->parent;
1293 	int n, err, cmp;
1294 
1295 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1296 		err = 1;
1297 		goto out;
1298 	}
1299 	if (znode->level < 0) {
1300 		err = 2;
1301 		goto out;
1302 	}
1303 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1304 		err = 3;
1305 		goto out;
1306 	}
1307 
1308 	if (zbr->len == 0)
1309 		/* Only dirty zbranch may have no on-flash nodes */
1310 		if (!ubifs_zn_dirty(znode)) {
1311 			err = 4;
1312 			goto out;
1313 		}
1314 
1315 	if (ubifs_zn_dirty(znode)) {
1316 		/*
1317 		 * If znode is dirty, its parent has to be dirty as well. The
1318 		 * order of the operation is important, so we have to have
1319 		 * memory barriers.
1320 		 */
1321 		smp_mb();
1322 		if (zp && !ubifs_zn_dirty(zp)) {
1323 			/*
1324 			 * The dirty flag is atomic and is cleared outside the
1325 			 * TNC mutex, so znode's dirty flag may now have
1326 			 * been cleared. The child is always cleared before the
1327 			 * parent, so we just need to check again.
1328 			 */
1329 			smp_mb();
1330 			if (ubifs_zn_dirty(znode)) {
1331 				err = 5;
1332 				goto out;
1333 			}
1334 		}
1335 	}
1336 
1337 	if (zp) {
1338 		const union ubifs_key *min, *max;
1339 
1340 		if (znode->level != zp->level - 1) {
1341 			err = 6;
1342 			goto out;
1343 		}
1344 
1345 		/* Make sure the 'parent' pointer in our znode is correct */
1346 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1347 		if (!err) {
1348 			/* This zbranch does not exist in the parent */
1349 			err = 7;
1350 			goto out;
1351 		}
1352 
1353 		if (znode->iip >= zp->child_cnt) {
1354 			err = 8;
1355 			goto out;
1356 		}
1357 
1358 		if (znode->iip != n) {
1359 			/* This may happen only in case of collisions */
1360 			if (keys_cmp(c, &zp->zbranch[n].key,
1361 				     &zp->zbranch[znode->iip].key)) {
1362 				err = 9;
1363 				goto out;
1364 			}
1365 			n = znode->iip;
1366 		}
1367 
1368 		/*
1369 		 * Make sure that the first key in our znode is greater than or
1370 		 * equal to the key in the pointing zbranch.
1371 		 */
1372 		min = &zbr->key;
1373 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1374 		if (cmp == 1) {
1375 			err = 10;
1376 			goto out;
1377 		}
1378 
1379 		if (n + 1 < zp->child_cnt) {
1380 			max = &zp->zbranch[n + 1].key;
1381 
1382 			/*
1383 			 * Make sure the last key in our znode is less or
1384 			 * equivalent than the key in the zbranch which goes
1385 			 * after our pointing zbranch.
1386 			 */
1387 			cmp = keys_cmp(c, max,
1388 				&znode->zbranch[znode->child_cnt - 1].key);
1389 			if (cmp == -1) {
1390 				err = 11;
1391 				goto out;
1392 			}
1393 		}
1394 	} else {
1395 		/* This may only be root znode */
1396 		if (zbr != &c->zroot) {
1397 			err = 12;
1398 			goto out;
1399 		}
1400 	}
1401 
1402 	/*
1403 	 * Make sure that next key is greater or equivalent then the previous
1404 	 * one.
1405 	 */
1406 	for (n = 1; n < znode->child_cnt; n++) {
1407 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1408 			       &znode->zbranch[n].key);
1409 		if (cmp > 0) {
1410 			err = 13;
1411 			goto out;
1412 		}
1413 		if (cmp == 0) {
1414 			/* This can only be keys with colliding hash */
1415 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1416 				err = 14;
1417 				goto out;
1418 			}
1419 
1420 			if (znode->level != 0 || c->replaying)
1421 				continue;
1422 
1423 			/*
1424 			 * Colliding keys should follow binary order of
1425 			 * corresponding xentry/dentry names.
1426 			 */
1427 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1428 						  &znode->zbranch[n]);
1429 			if (err < 0)
1430 				return err;
1431 			if (err) {
1432 				err = 15;
1433 				goto out;
1434 			}
1435 		}
1436 	}
1437 
1438 	for (n = 0; n < znode->child_cnt; n++) {
1439 		if (!znode->zbranch[n].znode &&
1440 		    (znode->zbranch[n].lnum == 0 ||
1441 		     znode->zbranch[n].len == 0)) {
1442 			err = 16;
1443 			goto out;
1444 		}
1445 
1446 		if (znode->zbranch[n].lnum != 0 &&
1447 		    znode->zbranch[n].len == 0) {
1448 			err = 17;
1449 			goto out;
1450 		}
1451 
1452 		if (znode->zbranch[n].lnum == 0 &&
1453 		    znode->zbranch[n].len != 0) {
1454 			err = 18;
1455 			goto out;
1456 		}
1457 
1458 		if (znode->zbranch[n].lnum == 0 &&
1459 		    znode->zbranch[n].offs != 0) {
1460 			err = 19;
1461 			goto out;
1462 		}
1463 
1464 		if (znode->level != 0 && znode->zbranch[n].znode)
1465 			if (znode->zbranch[n].znode->parent != znode) {
1466 				err = 20;
1467 				goto out;
1468 			}
1469 	}
1470 
1471 	return 0;
1472 
1473 out:
1474 	ubifs_err(c, "failed, error %d", err);
1475 	ubifs_msg(c, "dump of the znode");
1476 	ubifs_dump_znode(c, znode);
1477 	if (zp) {
1478 		ubifs_msg(c, "dump of the parent znode");
1479 		ubifs_dump_znode(c, zp);
1480 	}
1481 	dump_stack();
1482 	return -EINVAL;
1483 }
1484 
1485 /**
1486  * dbg_check_tnc - check TNC tree.
1487  * @c: UBIFS file-system description object
1488  * @extra: do extra checks that are possible at start commit
1489  *
1490  * This function traverses whole TNC tree and checks every znode. Returns zero
1491  * if everything is all right and %-EINVAL if something is wrong with TNC.
1492  */
dbg_check_tnc(struct ubifs_info * c,int extra)1493 int dbg_check_tnc(struct ubifs_info *c, int extra)
1494 {
1495 	struct ubifs_znode *znode;
1496 	long clean_cnt = 0, dirty_cnt = 0;
1497 	int err, last;
1498 
1499 	if (!dbg_is_chk_index(c))
1500 		return 0;
1501 
1502 	ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1503 	if (!c->zroot.znode)
1504 		return 0;
1505 
1506 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1507 	while (1) {
1508 		struct ubifs_znode *prev;
1509 		struct ubifs_zbranch *zbr;
1510 
1511 		if (!znode->parent)
1512 			zbr = &c->zroot;
1513 		else
1514 			zbr = &znode->parent->zbranch[znode->iip];
1515 
1516 		err = dbg_check_znode(c, zbr);
1517 		if (err)
1518 			return err;
1519 
1520 		if (extra) {
1521 			if (ubifs_zn_dirty(znode))
1522 				dirty_cnt += 1;
1523 			else
1524 				clean_cnt += 1;
1525 		}
1526 
1527 		prev = znode;
1528 		znode = ubifs_tnc_postorder_next(c, znode);
1529 		if (!znode)
1530 			break;
1531 
1532 		/*
1533 		 * If the last key of this znode is equivalent to the first key
1534 		 * of the next znode (collision), then check order of the keys.
1535 		 */
1536 		last = prev->child_cnt - 1;
1537 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1538 		    !keys_cmp(c, &prev->zbranch[last].key,
1539 			      &znode->zbranch[0].key)) {
1540 			err = dbg_check_key_order(c, &prev->zbranch[last],
1541 						  &znode->zbranch[0]);
1542 			if (err < 0)
1543 				return err;
1544 			if (err) {
1545 				ubifs_msg(c, "first znode");
1546 				ubifs_dump_znode(c, prev);
1547 				ubifs_msg(c, "second znode");
1548 				ubifs_dump_znode(c, znode);
1549 				return -EINVAL;
1550 			}
1551 		}
1552 	}
1553 
1554 	if (extra) {
1555 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1556 			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1557 				  atomic_long_read(&c->clean_zn_cnt),
1558 				  clean_cnt);
1559 			return -EINVAL;
1560 		}
1561 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1562 			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1563 				  atomic_long_read(&c->dirty_zn_cnt),
1564 				  dirty_cnt);
1565 			return -EINVAL;
1566 		}
1567 	}
1568 
1569 	return 0;
1570 }
1571 
1572 /**
1573  * dbg_walk_index - walk the on-flash index.
1574  * @c: UBIFS file-system description object
1575  * @leaf_cb: called for each leaf node
1576  * @znode_cb: called for each indexing node
1577  * @priv: private data which is passed to callbacks
1578  *
1579  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1580  * node and @znode_cb for each indexing node. Returns zero in case of success
1581  * and a negative error code in case of failure.
1582  *
1583  * It would be better if this function removed every znode it pulled to into
1584  * the TNC, so that the behavior more closely matched the non-debugging
1585  * behavior.
1586  */
dbg_walk_index(struct ubifs_info * c,dbg_leaf_callback leaf_cb,dbg_znode_callback znode_cb,void * priv)1587 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1588 		   dbg_znode_callback znode_cb, void *priv)
1589 {
1590 	int err;
1591 	struct ubifs_zbranch *zbr;
1592 	struct ubifs_znode *znode, *child;
1593 
1594 	mutex_lock(&c->tnc_mutex);
1595 	/* If the root indexing node is not in TNC - pull it */
1596 	if (!c->zroot.znode) {
1597 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1598 		if (IS_ERR(c->zroot.znode)) {
1599 			err = PTR_ERR(c->zroot.znode);
1600 			c->zroot.znode = NULL;
1601 			goto out_unlock;
1602 		}
1603 	}
1604 
1605 	/*
1606 	 * We are going to traverse the indexing tree in the postorder manner.
1607 	 * Go down and find the leftmost indexing node where we are going to
1608 	 * start from.
1609 	 */
1610 	znode = c->zroot.znode;
1611 	while (znode->level > 0) {
1612 		zbr = &znode->zbranch[0];
1613 		child = zbr->znode;
1614 		if (!child) {
1615 			child = ubifs_load_znode(c, zbr, znode, 0);
1616 			if (IS_ERR(child)) {
1617 				err = PTR_ERR(child);
1618 				goto out_unlock;
1619 			}
1620 		}
1621 
1622 		znode = child;
1623 	}
1624 
1625 	/* Iterate over all indexing nodes */
1626 	while (1) {
1627 		int idx;
1628 
1629 		cond_resched();
1630 
1631 		if (znode_cb) {
1632 			err = znode_cb(c, znode, priv);
1633 			if (err) {
1634 				ubifs_err(c, "znode checking function returned error %d",
1635 					  err);
1636 				ubifs_dump_znode(c, znode);
1637 				goto out_dump;
1638 			}
1639 		}
1640 		if (leaf_cb && znode->level == 0) {
1641 			for (idx = 0; idx < znode->child_cnt; idx++) {
1642 				zbr = &znode->zbranch[idx];
1643 				err = leaf_cb(c, zbr, priv);
1644 				if (err) {
1645 					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1646 						  err, zbr->lnum, zbr->offs);
1647 					goto out_dump;
1648 				}
1649 			}
1650 		}
1651 
1652 		if (!znode->parent)
1653 			break;
1654 
1655 		idx = znode->iip + 1;
1656 		znode = znode->parent;
1657 		if (idx < znode->child_cnt) {
1658 			/* Switch to the next index in the parent */
1659 			zbr = &znode->zbranch[idx];
1660 			child = zbr->znode;
1661 			if (!child) {
1662 				child = ubifs_load_znode(c, zbr, znode, idx);
1663 				if (IS_ERR(child)) {
1664 					err = PTR_ERR(child);
1665 					goto out_unlock;
1666 				}
1667 				zbr->znode = child;
1668 			}
1669 			znode = child;
1670 		} else
1671 			/*
1672 			 * This is the last child, switch to the parent and
1673 			 * continue.
1674 			 */
1675 			continue;
1676 
1677 		/* Go to the lowest leftmost znode in the new sub-tree */
1678 		while (znode->level > 0) {
1679 			zbr = &znode->zbranch[0];
1680 			child = zbr->znode;
1681 			if (!child) {
1682 				child = ubifs_load_znode(c, zbr, znode, 0);
1683 				if (IS_ERR(child)) {
1684 					err = PTR_ERR(child);
1685 					goto out_unlock;
1686 				}
1687 				zbr->znode = child;
1688 			}
1689 			znode = child;
1690 		}
1691 	}
1692 
1693 	mutex_unlock(&c->tnc_mutex);
1694 	return 0;
1695 
1696 out_dump:
1697 	if (znode->parent)
1698 		zbr = &znode->parent->zbranch[znode->iip];
1699 	else
1700 		zbr = &c->zroot;
1701 	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1702 	ubifs_dump_znode(c, znode);
1703 out_unlock:
1704 	mutex_unlock(&c->tnc_mutex);
1705 	return err;
1706 }
1707 
1708 /**
1709  * add_size - add znode size to partially calculated index size.
1710  * @c: UBIFS file-system description object
1711  * @znode: znode to add size for
1712  * @priv: partially calculated index size
1713  *
1714  * This is a helper function for 'dbg_check_idx_size()' which is called for
1715  * every indexing node and adds its size to the 'long long' variable pointed to
1716  * by @priv.
1717  */
add_size(struct ubifs_info * c,struct ubifs_znode * znode,void * priv)1718 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1719 {
1720 	long long *idx_size = priv;
1721 	int add;
1722 
1723 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1724 	add = ALIGN(add, 8);
1725 	*idx_size += add;
1726 	return 0;
1727 }
1728 
1729 /**
1730  * dbg_check_idx_size - check index size.
1731  * @c: UBIFS file-system description object
1732  * @idx_size: size to check
1733  *
1734  * This function walks the UBIFS index, calculates its size and checks that the
1735  * size is equivalent to @idx_size. Returns zero in case of success and a
1736  * negative error code in case of failure.
1737  */
dbg_check_idx_size(struct ubifs_info * c,long long idx_size)1738 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1739 {
1740 	int err;
1741 	long long calc = 0;
1742 
1743 	if (!dbg_is_chk_index(c))
1744 		return 0;
1745 
1746 	err = dbg_walk_index(c, NULL, add_size, &calc);
1747 	if (err) {
1748 		ubifs_err(c, "error %d while walking the index", err);
1749 		goto out_err;
1750 	}
1751 
1752 	if (calc != idx_size) {
1753 		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1754 			  calc, idx_size);
1755 		dump_stack();
1756 		err = -EINVAL;
1757 		goto out_err;
1758 	}
1759 
1760 	return 0;
1761 
1762 out_err:
1763 	ubifs_destroy_tnc_tree(c);
1764 	return err;
1765 }
1766 
1767 /**
1768  * struct fsck_inode - information about an inode used when checking the file-system.
1769  * @rb: link in the RB-tree of inodes
1770  * @inum: inode number
1771  * @mode: inode type, permissions, etc
1772  * @nlink: inode link count
1773  * @xattr_cnt: count of extended attributes
1774  * @references: how many directory/xattr entries refer this inode (calculated
1775  *              while walking the index)
1776  * @calc_cnt: for directory inode count of child directories
1777  * @size: inode size (read from on-flash inode)
1778  * @xattr_sz: summary size of all extended attributes (read from on-flash
1779  *            inode)
1780  * @calc_sz: for directories calculated directory size
1781  * @calc_xcnt: count of extended attributes
1782  * @calc_xsz: calculated summary size of all extended attributes
1783  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1784  *             inode (read from on-flash inode)
1785  * @calc_xnms: calculated sum of lengths of all extended attribute names
1786  */
1787 struct fsck_inode {
1788 	struct rb_node rb;
1789 	ino_t inum;
1790 	umode_t mode;
1791 	unsigned int nlink;
1792 	unsigned int xattr_cnt;
1793 	int references;
1794 	int calc_cnt;
1795 	long long size;
1796 	unsigned int xattr_sz;
1797 	long long calc_sz;
1798 	long long calc_xcnt;
1799 	long long calc_xsz;
1800 	unsigned int xattr_nms;
1801 	long long calc_xnms;
1802 };
1803 
1804 /**
1805  * struct fsck_data - private FS checking information.
1806  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1807  */
1808 struct fsck_data {
1809 	struct rb_root inodes;
1810 };
1811 
1812 /**
1813  * add_inode - add inode information to RB-tree of inodes.
1814  * @c: UBIFS file-system description object
1815  * @fsckd: FS checking information
1816  * @ino: raw UBIFS inode to add
1817  *
1818  * This is a helper function for 'check_leaf()' which adds information about
1819  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1820  * case of success and a negative error code in case of failure.
1821  */
add_inode(struct ubifs_info * c,struct fsck_data * fsckd,struct ubifs_ino_node * ino)1822 static struct fsck_inode *add_inode(struct ubifs_info *c,
1823 				    struct fsck_data *fsckd,
1824 				    struct ubifs_ino_node *ino)
1825 {
1826 	struct rb_node **p, *parent = NULL;
1827 	struct fsck_inode *fscki;
1828 	ino_t inum = key_inum_flash(c, &ino->key);
1829 	struct inode *inode;
1830 	struct ubifs_inode *ui;
1831 
1832 	p = &fsckd->inodes.rb_node;
1833 	while (*p) {
1834 		parent = *p;
1835 		fscki = rb_entry(parent, struct fsck_inode, rb);
1836 		if (inum < fscki->inum)
1837 			p = &(*p)->rb_left;
1838 		else if (inum > fscki->inum)
1839 			p = &(*p)->rb_right;
1840 		else
1841 			return fscki;
1842 	}
1843 
1844 	if (inum > c->highest_inum) {
1845 		ubifs_err(c, "too high inode number, max. is %lu",
1846 			  (unsigned long)c->highest_inum);
1847 		return ERR_PTR(-EINVAL);
1848 	}
1849 
1850 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1851 	if (!fscki)
1852 		return ERR_PTR(-ENOMEM);
1853 
1854 	inode = ilookup(c->vfs_sb, inum);
1855 
1856 	fscki->inum = inum;
1857 	/*
1858 	 * If the inode is present in the VFS inode cache, use it instead of
1859 	 * the on-flash inode which might be out-of-date. E.g., the size might
1860 	 * be out-of-date. If we do not do this, the following may happen, for
1861 	 * example:
1862 	 *   1. A power cut happens
1863 	 *   2. We mount the file-system R/O, the replay process fixes up the
1864 	 *      inode size in the VFS cache, but on on-flash.
1865 	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1866 	 *      size.
1867 	 */
1868 	if (!inode) {
1869 		fscki->nlink = le32_to_cpu(ino->nlink);
1870 		fscki->size = le64_to_cpu(ino->size);
1871 		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1872 		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1873 		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1874 		fscki->mode = le32_to_cpu(ino->mode);
1875 	} else {
1876 		ui = ubifs_inode(inode);
1877 		fscki->nlink = inode->i_nlink;
1878 		fscki->size = inode->i_size;
1879 		fscki->xattr_cnt = ui->xattr_cnt;
1880 		fscki->xattr_sz = ui->xattr_size;
1881 		fscki->xattr_nms = ui->xattr_names;
1882 		fscki->mode = inode->i_mode;
1883 		iput(inode);
1884 	}
1885 
1886 	if (S_ISDIR(fscki->mode)) {
1887 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1888 		fscki->calc_cnt = 2;
1889 	}
1890 
1891 	rb_link_node(&fscki->rb, parent, p);
1892 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1893 
1894 	return fscki;
1895 }
1896 
1897 /**
1898  * search_inode - search inode in the RB-tree of inodes.
1899  * @fsckd: FS checking information
1900  * @inum: inode number to search
1901  *
1902  * This is a helper function for 'check_leaf()' which searches inode @inum in
1903  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1904  * the inode was not found.
1905  */
search_inode(struct fsck_data * fsckd,ino_t inum)1906 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1907 {
1908 	struct rb_node *p;
1909 	struct fsck_inode *fscki;
1910 
1911 	p = fsckd->inodes.rb_node;
1912 	while (p) {
1913 		fscki = rb_entry(p, struct fsck_inode, rb);
1914 		if (inum < fscki->inum)
1915 			p = p->rb_left;
1916 		else if (inum > fscki->inum)
1917 			p = p->rb_right;
1918 		else
1919 			return fscki;
1920 	}
1921 	return NULL;
1922 }
1923 
1924 /**
1925  * read_add_inode - read inode node and add it to RB-tree of inodes.
1926  * @c: UBIFS file-system description object
1927  * @fsckd: FS checking information
1928  * @inum: inode number to read
1929  *
1930  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1931  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1932  * information pointer in case of success and a negative error code in case of
1933  * failure.
1934  */
read_add_inode(struct ubifs_info * c,struct fsck_data * fsckd,ino_t inum)1935 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1936 					 struct fsck_data *fsckd, ino_t inum)
1937 {
1938 	int n, err;
1939 	union ubifs_key key;
1940 	struct ubifs_znode *znode;
1941 	struct ubifs_zbranch *zbr;
1942 	struct ubifs_ino_node *ino;
1943 	struct fsck_inode *fscki;
1944 
1945 	fscki = search_inode(fsckd, inum);
1946 	if (fscki)
1947 		return fscki;
1948 
1949 	ino_key_init(c, &key, inum);
1950 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1951 	if (!err) {
1952 		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1953 		return ERR_PTR(-ENOENT);
1954 	} else if (err < 0) {
1955 		ubifs_err(c, "error %d while looking up inode %lu",
1956 			  err, (unsigned long)inum);
1957 		return ERR_PTR(err);
1958 	}
1959 
1960 	zbr = &znode->zbranch[n];
1961 	if (zbr->len < UBIFS_INO_NODE_SZ) {
1962 		ubifs_err(c, "bad node %lu node length %d",
1963 			  (unsigned long)inum, zbr->len);
1964 		return ERR_PTR(-EINVAL);
1965 	}
1966 
1967 	ino = kmalloc(zbr->len, GFP_NOFS);
1968 	if (!ino)
1969 		return ERR_PTR(-ENOMEM);
1970 
1971 	err = ubifs_tnc_read_node(c, zbr, ino);
1972 	if (err) {
1973 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1974 			  zbr->lnum, zbr->offs, err);
1975 		kfree(ino);
1976 		return ERR_PTR(err);
1977 	}
1978 
1979 	fscki = add_inode(c, fsckd, ino);
1980 	kfree(ino);
1981 	if (IS_ERR(fscki)) {
1982 		ubifs_err(c, "error %ld while adding inode %lu node",
1983 			  PTR_ERR(fscki), (unsigned long)inum);
1984 		return fscki;
1985 	}
1986 
1987 	return fscki;
1988 }
1989 
1990 /**
1991  * check_leaf - check leaf node.
1992  * @c: UBIFS file-system description object
1993  * @zbr: zbranch of the leaf node to check
1994  * @priv: FS checking information
1995  *
1996  * This is a helper function for 'dbg_check_filesystem()' which is called for
1997  * every single leaf node while walking the indexing tree. It checks that the
1998  * leaf node referred from the indexing tree exists, has correct CRC, and does
1999  * some other basic validation. This function is also responsible for building
2000  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2001  * calculates reference count, size, etc for each inode in order to later
2002  * compare them to the information stored inside the inodes and detect possible
2003  * inconsistencies. Returns zero in case of success and a negative error code
2004  * in case of failure.
2005  */
check_leaf(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * priv)2006 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2007 		      void *priv)
2008 {
2009 	ino_t inum;
2010 	void *node;
2011 	struct ubifs_ch *ch;
2012 	int err, type = key_type(c, &zbr->key);
2013 	struct fsck_inode *fscki;
2014 
2015 	if (zbr->len < UBIFS_CH_SZ) {
2016 		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2017 			  zbr->len, zbr->lnum, zbr->offs);
2018 		return -EINVAL;
2019 	}
2020 
2021 	node = kmalloc(zbr->len, GFP_NOFS);
2022 	if (!node)
2023 		return -ENOMEM;
2024 
2025 	err = ubifs_tnc_read_node(c, zbr, node);
2026 	if (err) {
2027 		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2028 			  zbr->lnum, zbr->offs, err);
2029 		goto out_free;
2030 	}
2031 
2032 	/* If this is an inode node, add it to RB-tree of inodes */
2033 	if (type == UBIFS_INO_KEY) {
2034 		fscki = add_inode(c, priv, node);
2035 		if (IS_ERR(fscki)) {
2036 			err = PTR_ERR(fscki);
2037 			ubifs_err(c, "error %d while adding inode node", err);
2038 			goto out_dump;
2039 		}
2040 		goto out;
2041 	}
2042 
2043 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2044 	    type != UBIFS_DATA_KEY) {
2045 		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2046 			  type, zbr->lnum, zbr->offs);
2047 		err = -EINVAL;
2048 		goto out_free;
2049 	}
2050 
2051 	ch = node;
2052 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2053 		ubifs_err(c, "too high sequence number, max. is %llu",
2054 			  c->max_sqnum);
2055 		err = -EINVAL;
2056 		goto out_dump;
2057 	}
2058 
2059 	if (type == UBIFS_DATA_KEY) {
2060 		long long blk_offs;
2061 		struct ubifs_data_node *dn = node;
2062 
2063 		ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2064 
2065 		/*
2066 		 * Search the inode node this data node belongs to and insert
2067 		 * it to the RB-tree of inodes.
2068 		 */
2069 		inum = key_inum_flash(c, &dn->key);
2070 		fscki = read_add_inode(c, priv, inum);
2071 		if (IS_ERR(fscki)) {
2072 			err = PTR_ERR(fscki);
2073 			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2074 				  err, (unsigned long)inum);
2075 			goto out_dump;
2076 		}
2077 
2078 		/* Make sure the data node is within inode size */
2079 		blk_offs = key_block_flash(c, &dn->key);
2080 		blk_offs <<= UBIFS_BLOCK_SHIFT;
2081 		blk_offs += le32_to_cpu(dn->size);
2082 		if (blk_offs > fscki->size) {
2083 			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2084 				  zbr->lnum, zbr->offs, fscki->size);
2085 			err = -EINVAL;
2086 			goto out_dump;
2087 		}
2088 	} else {
2089 		int nlen;
2090 		struct ubifs_dent_node *dent = node;
2091 		struct fsck_inode *fscki1;
2092 
2093 		ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2094 
2095 		err = ubifs_validate_entry(c, dent);
2096 		if (err)
2097 			goto out_dump;
2098 
2099 		/*
2100 		 * Search the inode node this entry refers to and the parent
2101 		 * inode node and insert them to the RB-tree of inodes.
2102 		 */
2103 		inum = le64_to_cpu(dent->inum);
2104 		fscki = read_add_inode(c, priv, inum);
2105 		if (IS_ERR(fscki)) {
2106 			err = PTR_ERR(fscki);
2107 			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2108 				  err, (unsigned long)inum);
2109 			goto out_dump;
2110 		}
2111 
2112 		/* Count how many direntries or xentries refers this inode */
2113 		fscki->references += 1;
2114 
2115 		inum = key_inum_flash(c, &dent->key);
2116 		fscki1 = read_add_inode(c, priv, inum);
2117 		if (IS_ERR(fscki1)) {
2118 			err = PTR_ERR(fscki1);
2119 			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2120 				  err, (unsigned long)inum);
2121 			goto out_dump;
2122 		}
2123 
2124 		nlen = le16_to_cpu(dent->nlen);
2125 		if (type == UBIFS_XENT_KEY) {
2126 			fscki1->calc_xcnt += 1;
2127 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2128 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2129 			fscki1->calc_xnms += nlen;
2130 		} else {
2131 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2132 			if (dent->type == UBIFS_ITYPE_DIR)
2133 				fscki1->calc_cnt += 1;
2134 		}
2135 	}
2136 
2137 out:
2138 	kfree(node);
2139 	return 0;
2140 
2141 out_dump:
2142 	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2143 	ubifs_dump_node(c, node, zbr->len);
2144 out_free:
2145 	kfree(node);
2146 	return err;
2147 }
2148 
2149 /**
2150  * free_inodes - free RB-tree of inodes.
2151  * @fsckd: FS checking information
2152  */
free_inodes(struct fsck_data * fsckd)2153 static void free_inodes(struct fsck_data *fsckd)
2154 {
2155 	struct fsck_inode *fscki, *n;
2156 
2157 	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2158 		kfree(fscki);
2159 }
2160 
2161 /**
2162  * check_inodes - checks all inodes.
2163  * @c: UBIFS file-system description object
2164  * @fsckd: FS checking information
2165  *
2166  * This is a helper function for 'dbg_check_filesystem()' which walks the
2167  * RB-tree of inodes after the index scan has been finished, and checks that
2168  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2169  * %-EINVAL if not, and a negative error code in case of failure.
2170  */
check_inodes(struct ubifs_info * c,struct fsck_data * fsckd)2171 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2172 {
2173 	int n, err;
2174 	union ubifs_key key;
2175 	struct ubifs_znode *znode;
2176 	struct ubifs_zbranch *zbr;
2177 	struct ubifs_ino_node *ino;
2178 	struct fsck_inode *fscki;
2179 	struct rb_node *this = rb_first(&fsckd->inodes);
2180 
2181 	while (this) {
2182 		fscki = rb_entry(this, struct fsck_inode, rb);
2183 		this = rb_next(this);
2184 
2185 		if (S_ISDIR(fscki->mode)) {
2186 			/*
2187 			 * Directories have to have exactly one reference (they
2188 			 * cannot have hardlinks), although root inode is an
2189 			 * exception.
2190 			 */
2191 			if (fscki->inum != UBIFS_ROOT_INO &&
2192 			    fscki->references != 1) {
2193 				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2194 					  (unsigned long)fscki->inum,
2195 					  fscki->references);
2196 				goto out_dump;
2197 			}
2198 			if (fscki->inum == UBIFS_ROOT_INO &&
2199 			    fscki->references != 0) {
2200 				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2201 					  (unsigned long)fscki->inum,
2202 					  fscki->references);
2203 				goto out_dump;
2204 			}
2205 			if (fscki->calc_sz != fscki->size) {
2206 				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2207 					  (unsigned long)fscki->inum,
2208 					  fscki->size, fscki->calc_sz);
2209 				goto out_dump;
2210 			}
2211 			if (fscki->calc_cnt != fscki->nlink) {
2212 				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2213 					  (unsigned long)fscki->inum,
2214 					  fscki->nlink, fscki->calc_cnt);
2215 				goto out_dump;
2216 			}
2217 		} else {
2218 			if (fscki->references != fscki->nlink) {
2219 				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2220 					  (unsigned long)fscki->inum,
2221 					  fscki->nlink, fscki->references);
2222 				goto out_dump;
2223 			}
2224 		}
2225 		if (fscki->xattr_sz != fscki->calc_xsz) {
2226 			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2227 				  (unsigned long)fscki->inum, fscki->xattr_sz,
2228 				  fscki->calc_xsz);
2229 			goto out_dump;
2230 		}
2231 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2232 			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2233 				  (unsigned long)fscki->inum,
2234 				  fscki->xattr_cnt, fscki->calc_xcnt);
2235 			goto out_dump;
2236 		}
2237 		if (fscki->xattr_nms != fscki->calc_xnms) {
2238 			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2239 				  (unsigned long)fscki->inum, fscki->xattr_nms,
2240 				  fscki->calc_xnms);
2241 			goto out_dump;
2242 		}
2243 	}
2244 
2245 	return 0;
2246 
2247 out_dump:
2248 	/* Read the bad inode and dump it */
2249 	ino_key_init(c, &key, fscki->inum);
2250 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2251 	if (!err) {
2252 		ubifs_err(c, "inode %lu not found in index",
2253 			  (unsigned long)fscki->inum);
2254 		return -ENOENT;
2255 	} else if (err < 0) {
2256 		ubifs_err(c, "error %d while looking up inode %lu",
2257 			  err, (unsigned long)fscki->inum);
2258 		return err;
2259 	}
2260 
2261 	zbr = &znode->zbranch[n];
2262 	ino = kmalloc(zbr->len, GFP_NOFS);
2263 	if (!ino)
2264 		return -ENOMEM;
2265 
2266 	err = ubifs_tnc_read_node(c, zbr, ino);
2267 	if (err) {
2268 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2269 			  zbr->lnum, zbr->offs, err);
2270 		kfree(ino);
2271 		return err;
2272 	}
2273 
2274 	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2275 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2276 	ubifs_dump_node(c, ino, zbr->len);
2277 	kfree(ino);
2278 	return -EINVAL;
2279 }
2280 
2281 /**
2282  * dbg_check_filesystem - check the file-system.
2283  * @c: UBIFS file-system description object
2284  *
2285  * This function checks the file system, namely:
2286  * o makes sure that all leaf nodes exist and their CRCs are correct;
2287  * o makes sure inode nlink, size, xattr size/count are correct (for all
2288  *   inodes).
2289  *
2290  * The function reads whole indexing tree and all nodes, so it is pretty
2291  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2292  * not, and a negative error code in case of failure.
2293  */
dbg_check_filesystem(struct ubifs_info * c)2294 int dbg_check_filesystem(struct ubifs_info *c)
2295 {
2296 	int err;
2297 	struct fsck_data fsckd;
2298 
2299 	if (!dbg_is_chk_fs(c))
2300 		return 0;
2301 
2302 	fsckd.inodes = RB_ROOT;
2303 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2304 	if (err)
2305 		goto out_free;
2306 
2307 	err = check_inodes(c, &fsckd);
2308 	if (err)
2309 		goto out_free;
2310 
2311 	free_inodes(&fsckd);
2312 	return 0;
2313 
2314 out_free:
2315 	ubifs_err(c, "file-system check failed with error %d", err);
2316 	dump_stack();
2317 	free_inodes(&fsckd);
2318 	return err;
2319 }
2320 
2321 /**
2322  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2323  * @c: UBIFS file-system description object
2324  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2325  *
2326  * This function returns zero if the list of data nodes is sorted correctly,
2327  * and %-EINVAL if not.
2328  */
dbg_check_data_nodes_order(struct ubifs_info * c,struct list_head * head)2329 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2330 {
2331 	struct list_head *cur;
2332 	struct ubifs_scan_node *sa, *sb;
2333 
2334 	if (!dbg_is_chk_gen(c))
2335 		return 0;
2336 
2337 	for (cur = head->next; cur->next != head; cur = cur->next) {
2338 		ino_t inuma, inumb;
2339 		uint32_t blka, blkb;
2340 
2341 		cond_resched();
2342 		sa = container_of(cur, struct ubifs_scan_node, list);
2343 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2344 
2345 		if (sa->type != UBIFS_DATA_NODE) {
2346 			ubifs_err(c, "bad node type %d", sa->type);
2347 			ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2348 			return -EINVAL;
2349 		}
2350 		if (sb->type != UBIFS_DATA_NODE) {
2351 			ubifs_err(c, "bad node type %d", sb->type);
2352 			ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2353 			return -EINVAL;
2354 		}
2355 
2356 		inuma = key_inum(c, &sa->key);
2357 		inumb = key_inum(c, &sb->key);
2358 
2359 		if (inuma < inumb)
2360 			continue;
2361 		if (inuma > inumb) {
2362 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2363 				  (unsigned long)inuma, (unsigned long)inumb);
2364 			goto error_dump;
2365 		}
2366 
2367 		blka = key_block(c, &sa->key);
2368 		blkb = key_block(c, &sb->key);
2369 
2370 		if (blka > blkb) {
2371 			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2372 			goto error_dump;
2373 		}
2374 		if (blka == blkb) {
2375 			ubifs_err(c, "two data nodes for the same block");
2376 			goto error_dump;
2377 		}
2378 	}
2379 
2380 	return 0;
2381 
2382 error_dump:
2383 	ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2384 	ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2385 	return -EINVAL;
2386 }
2387 
2388 /**
2389  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2390  * @c: UBIFS file-system description object
2391  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2392  *
2393  * This function returns zero if the list of non-data nodes is sorted correctly,
2394  * and %-EINVAL if not.
2395  */
dbg_check_nondata_nodes_order(struct ubifs_info * c,struct list_head * head)2396 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2397 {
2398 	struct list_head *cur;
2399 	struct ubifs_scan_node *sa, *sb;
2400 
2401 	if (!dbg_is_chk_gen(c))
2402 		return 0;
2403 
2404 	for (cur = head->next; cur->next != head; cur = cur->next) {
2405 		ino_t inuma, inumb;
2406 		uint32_t hasha, hashb;
2407 
2408 		cond_resched();
2409 		sa = container_of(cur, struct ubifs_scan_node, list);
2410 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2411 
2412 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2413 		    sa->type != UBIFS_XENT_NODE) {
2414 			ubifs_err(c, "bad node type %d", sa->type);
2415 			ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2416 			return -EINVAL;
2417 		}
2418 		if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2419 		    sb->type != UBIFS_XENT_NODE) {
2420 			ubifs_err(c, "bad node type %d", sb->type);
2421 			ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2422 			return -EINVAL;
2423 		}
2424 
2425 		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2426 			ubifs_err(c, "non-inode node goes before inode node");
2427 			goto error_dump;
2428 		}
2429 
2430 		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2431 			continue;
2432 
2433 		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2434 			/* Inode nodes are sorted in descending size order */
2435 			if (sa->len < sb->len) {
2436 				ubifs_err(c, "smaller inode node goes first");
2437 				goto error_dump;
2438 			}
2439 			continue;
2440 		}
2441 
2442 		/*
2443 		 * This is either a dentry or xentry, which should be sorted in
2444 		 * ascending (parent ino, hash) order.
2445 		 */
2446 		inuma = key_inum(c, &sa->key);
2447 		inumb = key_inum(c, &sb->key);
2448 
2449 		if (inuma < inumb)
2450 			continue;
2451 		if (inuma > inumb) {
2452 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2453 				  (unsigned long)inuma, (unsigned long)inumb);
2454 			goto error_dump;
2455 		}
2456 
2457 		hasha = key_block(c, &sa->key);
2458 		hashb = key_block(c, &sb->key);
2459 
2460 		if (hasha > hashb) {
2461 			ubifs_err(c, "larger hash %u goes before %u",
2462 				  hasha, hashb);
2463 			goto error_dump;
2464 		}
2465 	}
2466 
2467 	return 0;
2468 
2469 error_dump:
2470 	ubifs_msg(c, "dumping first node");
2471 	ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2472 	ubifs_msg(c, "dumping second node");
2473 	ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2474 	return -EINVAL;
2475 }
2476 
chance(unsigned int n,unsigned int out_of)2477 static inline int chance(unsigned int n, unsigned int out_of)
2478 {
2479 	return !!(get_random_u32_below(out_of) + 1 <= n);
2480 
2481 }
2482 
power_cut_emulated(struct ubifs_info * c,int lnum,int write)2483 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2484 {
2485 	struct ubifs_debug_info *d = c->dbg;
2486 
2487 	ubifs_assert(c, dbg_is_tst_rcvry(c));
2488 
2489 	if (!d->pc_cnt) {
2490 		/* First call - decide delay to the power cut */
2491 		if (chance(1, 2)) {
2492 			unsigned long delay;
2493 
2494 			if (chance(1, 2)) {
2495 				d->pc_delay = 1;
2496 				/* Fail within 1 minute */
2497 				delay = get_random_u32_below(60000);
2498 				d->pc_timeout = jiffies;
2499 				d->pc_timeout += msecs_to_jiffies(delay);
2500 				ubifs_warn(c, "failing after %lums", delay);
2501 			} else {
2502 				d->pc_delay = 2;
2503 				delay = get_random_u32_below(10000);
2504 				/* Fail within 10000 operations */
2505 				d->pc_cnt_max = delay;
2506 				ubifs_warn(c, "failing after %lu calls", delay);
2507 			}
2508 		}
2509 
2510 		d->pc_cnt += 1;
2511 	}
2512 
2513 	/* Determine if failure delay has expired */
2514 	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2515 			return 0;
2516 	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2517 			return 0;
2518 
2519 	if (lnum == UBIFS_SB_LNUM) {
2520 		if (write && chance(1, 2))
2521 			return 0;
2522 		if (chance(19, 20))
2523 			return 0;
2524 		ubifs_warn(c, "failing in super block LEB %d", lnum);
2525 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2526 		if (chance(19, 20))
2527 			return 0;
2528 		ubifs_warn(c, "failing in master LEB %d", lnum);
2529 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2530 		if (write && chance(99, 100))
2531 			return 0;
2532 		if (chance(399, 400))
2533 			return 0;
2534 		ubifs_warn(c, "failing in log LEB %d", lnum);
2535 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2536 		if (write && chance(7, 8))
2537 			return 0;
2538 		if (chance(19, 20))
2539 			return 0;
2540 		ubifs_warn(c, "failing in LPT LEB %d", lnum);
2541 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2542 		if (write && chance(1, 2))
2543 			return 0;
2544 		if (chance(9, 10))
2545 			return 0;
2546 		ubifs_warn(c, "failing in orphan LEB %d", lnum);
2547 	} else if (lnum == c->ihead_lnum) {
2548 		if (chance(99, 100))
2549 			return 0;
2550 		ubifs_warn(c, "failing in index head LEB %d", lnum);
2551 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2552 		if (chance(9, 10))
2553 			return 0;
2554 		ubifs_warn(c, "failing in GC head LEB %d", lnum);
2555 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2556 		   !ubifs_search_bud(c, lnum)) {
2557 		if (chance(19, 20))
2558 			return 0;
2559 		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2560 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2561 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2562 		if (chance(999, 1000))
2563 			return 0;
2564 		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2565 	} else {
2566 		if (chance(9999, 10000))
2567 			return 0;
2568 		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2569 	}
2570 
2571 	d->pc_happened = 1;
2572 	ubifs_warn(c, "========== Power cut emulated ==========");
2573 	dump_stack();
2574 	return 1;
2575 }
2576 
corrupt_data(const struct ubifs_info * c,const void * buf,unsigned int len)2577 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2578 			unsigned int len)
2579 {
2580 	unsigned int from, to, ffs = chance(1, 2);
2581 	unsigned char *p = (void *)buf;
2582 
2583 	from = get_random_u32_below(len);
2584 	/* Corruption span max to end of write unit */
2585 	to = min(len, ALIGN(from + 1, c->max_write_size));
2586 
2587 	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2588 		   ffs ? "0xFFs" : "random data");
2589 
2590 	if (ffs)
2591 		memset(p + from, 0xFF, to - from);
2592 	else
2593 		get_random_bytes(p + from, to - from);
2594 
2595 	return to;
2596 }
2597 
dbg_leb_write(struct ubifs_info * c,int lnum,const void * buf,int offs,int len)2598 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2599 		  int offs, int len)
2600 {
2601 	int err, failing;
2602 
2603 	if (dbg_is_power_cut(c))
2604 		return -EROFS;
2605 
2606 	failing = power_cut_emulated(c, lnum, 1);
2607 	if (failing) {
2608 		len = corrupt_data(c, buf, len);
2609 		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2610 			   len, lnum, offs);
2611 	}
2612 	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2613 	if (err)
2614 		return err;
2615 	if (failing)
2616 		return -EROFS;
2617 	return 0;
2618 }
2619 
dbg_leb_change(struct ubifs_info * c,int lnum,const void * buf,int len)2620 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2621 		   int len)
2622 {
2623 	int err;
2624 
2625 	if (dbg_is_power_cut(c))
2626 		return -EROFS;
2627 	if (power_cut_emulated(c, lnum, 1))
2628 		return -EROFS;
2629 	err = ubi_leb_change(c->ubi, lnum, buf, len);
2630 	if (err)
2631 		return err;
2632 	if (power_cut_emulated(c, lnum, 1))
2633 		return -EROFS;
2634 	return 0;
2635 }
2636 
dbg_leb_unmap(struct ubifs_info * c,int lnum)2637 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2638 {
2639 	int err;
2640 
2641 	if (dbg_is_power_cut(c))
2642 		return -EROFS;
2643 	if (power_cut_emulated(c, lnum, 0))
2644 		return -EROFS;
2645 	err = ubi_leb_unmap(c->ubi, lnum);
2646 	if (err)
2647 		return err;
2648 	if (power_cut_emulated(c, lnum, 0))
2649 		return -EROFS;
2650 	return 0;
2651 }
2652 
dbg_leb_map(struct ubifs_info * c,int lnum)2653 int dbg_leb_map(struct ubifs_info *c, int lnum)
2654 {
2655 	int err;
2656 
2657 	if (dbg_is_power_cut(c))
2658 		return -EROFS;
2659 	if (power_cut_emulated(c, lnum, 0))
2660 		return -EROFS;
2661 	err = ubi_leb_map(c->ubi, lnum);
2662 	if (err)
2663 		return err;
2664 	if (power_cut_emulated(c, lnum, 0))
2665 		return -EROFS;
2666 	return 0;
2667 }
2668 
2669 /*
2670  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2671  * contain the stuff specific to particular file-system mounts.
2672  */
2673 static struct dentry *dfs_rootdir;
2674 
dfs_file_open(struct inode * inode,struct file * file)2675 static int dfs_file_open(struct inode *inode, struct file *file)
2676 {
2677 	file->private_data = inode->i_private;
2678 	return nonseekable_open(inode, file);
2679 }
2680 
2681 /**
2682  * provide_user_output - provide output to the user reading a debugfs file.
2683  * @val: boolean value for the answer
2684  * @u: the buffer to store the answer at
2685  * @count: size of the buffer
2686  * @ppos: position in the @u output buffer
2687  *
2688  * This is a simple helper function which stores @val boolean value in the user
2689  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2690  * bytes written to @u in case of success and a negative error code in case of
2691  * failure.
2692  */
provide_user_output(int val,char __user * u,size_t count,loff_t * ppos)2693 static int provide_user_output(int val, char __user *u, size_t count,
2694 			       loff_t *ppos)
2695 {
2696 	char buf[3];
2697 
2698 	if (val)
2699 		buf[0] = '1';
2700 	else
2701 		buf[0] = '0';
2702 	buf[1] = '\n';
2703 	buf[2] = 0x00;
2704 
2705 	return simple_read_from_buffer(u, count, ppos, buf, 2);
2706 }
2707 
dfs_file_read(struct file * file,char __user * u,size_t count,loff_t * ppos)2708 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2709 			     loff_t *ppos)
2710 {
2711 	struct dentry *dent = file->f_path.dentry;
2712 	struct ubifs_info *c = file->private_data;
2713 	struct ubifs_debug_info *d = c->dbg;
2714 	int val;
2715 
2716 	if (dent == d->dfs_chk_gen)
2717 		val = d->chk_gen;
2718 	else if (dent == d->dfs_chk_index)
2719 		val = d->chk_index;
2720 	else if (dent == d->dfs_chk_orph)
2721 		val = d->chk_orph;
2722 	else if (dent == d->dfs_chk_lprops)
2723 		val = d->chk_lprops;
2724 	else if (dent == d->dfs_chk_fs)
2725 		val = d->chk_fs;
2726 	else if (dent == d->dfs_tst_rcvry)
2727 		val = d->tst_rcvry;
2728 	else if (dent == d->dfs_ro_error)
2729 		val = c->ro_error;
2730 	else
2731 		return -EINVAL;
2732 
2733 	return provide_user_output(val, u, count, ppos);
2734 }
2735 
2736 /**
2737  * interpret_user_input - interpret user debugfs file input.
2738  * @u: user-provided buffer with the input
2739  * @count: buffer size
2740  *
2741  * This is a helper function which interpret user input to a boolean UBIFS
2742  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2743  * in case of failure.
2744  */
interpret_user_input(const char __user * u,size_t count)2745 static int interpret_user_input(const char __user *u, size_t count)
2746 {
2747 	size_t buf_size;
2748 	char buf[8];
2749 
2750 	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2751 	if (copy_from_user(buf, u, buf_size))
2752 		return -EFAULT;
2753 
2754 	if (buf[0] == '1')
2755 		return 1;
2756 	else if (buf[0] == '0')
2757 		return 0;
2758 
2759 	return -EINVAL;
2760 }
2761 
dfs_file_write(struct file * file,const char __user * u,size_t count,loff_t * ppos)2762 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2763 			      size_t count, loff_t *ppos)
2764 {
2765 	struct ubifs_info *c = file->private_data;
2766 	struct ubifs_debug_info *d = c->dbg;
2767 	struct dentry *dent = file->f_path.dentry;
2768 	int val;
2769 
2770 	if (file->f_path.dentry == d->dfs_dump_lprops) {
2771 		ubifs_dump_lprops(c);
2772 		return count;
2773 	}
2774 	if (file->f_path.dentry == d->dfs_dump_budg) {
2775 		ubifs_dump_budg(c, &c->bi);
2776 		return count;
2777 	}
2778 	if (file->f_path.dentry == d->dfs_dump_tnc) {
2779 		mutex_lock(&c->tnc_mutex);
2780 		ubifs_dump_tnc(c);
2781 		mutex_unlock(&c->tnc_mutex);
2782 		return count;
2783 	}
2784 
2785 	val = interpret_user_input(u, count);
2786 	if (val < 0)
2787 		return val;
2788 
2789 	if (dent == d->dfs_chk_gen)
2790 		d->chk_gen = val;
2791 	else if (dent == d->dfs_chk_index)
2792 		d->chk_index = val;
2793 	else if (dent == d->dfs_chk_orph)
2794 		d->chk_orph = val;
2795 	else if (dent == d->dfs_chk_lprops)
2796 		d->chk_lprops = val;
2797 	else if (dent == d->dfs_chk_fs)
2798 		d->chk_fs = val;
2799 	else if (dent == d->dfs_tst_rcvry)
2800 		d->tst_rcvry = val;
2801 	else if (dent == d->dfs_ro_error)
2802 		c->ro_error = !!val;
2803 	else
2804 		return -EINVAL;
2805 
2806 	return count;
2807 }
2808 
2809 static const struct file_operations dfs_fops = {
2810 	.open = dfs_file_open,
2811 	.read = dfs_file_read,
2812 	.write = dfs_file_write,
2813 	.owner = THIS_MODULE,
2814 };
2815 
2816 /**
2817  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2818  * @c: UBIFS file-system description object
2819  *
2820  * This function creates all debugfs files for this instance of UBIFS.
2821  *
2822  * Note, the only reason we have not merged this function with the
2823  * 'ubifs_debugging_init()' function is because it is better to initialize
2824  * debugfs interfaces at the very end of the mount process, and remove them at
2825  * the very beginning of the mount process.
2826  */
dbg_debugfs_init_fs(struct ubifs_info * c)2827 void dbg_debugfs_init_fs(struct ubifs_info *c)
2828 {
2829 	int n;
2830 	const char *fname;
2831 	struct ubifs_debug_info *d = c->dbg;
2832 
2833 	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN, UBIFS_DFS_DIR_NAME,
2834 		     c->vi.ubi_num, c->vi.vol_id);
2835 	if (n >= UBIFS_DFS_DIR_LEN) {
2836 		/* The array size is too small */
2837 		return;
2838 	}
2839 
2840 	fname = d->dfs_dir_name;
2841 	d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
2842 
2843 	fname = "dump_lprops";
2844 	d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2845 						 &dfs_fops);
2846 
2847 	fname = "dump_budg";
2848 	d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2849 					       &dfs_fops);
2850 
2851 	fname = "dump_tnc";
2852 	d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2853 					      &dfs_fops);
2854 
2855 	fname = "chk_general";
2856 	d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2857 					     d->dfs_dir, c, &dfs_fops);
2858 
2859 	fname = "chk_index";
2860 	d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2861 					       d->dfs_dir, c, &dfs_fops);
2862 
2863 	fname = "chk_orphans";
2864 	d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2865 					      d->dfs_dir, c, &dfs_fops);
2866 
2867 	fname = "chk_lprops";
2868 	d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2869 						d->dfs_dir, c, &dfs_fops);
2870 
2871 	fname = "chk_fs";
2872 	d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2873 					    d->dfs_dir, c, &dfs_fops);
2874 
2875 	fname = "tst_recovery";
2876 	d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2877 					       d->dfs_dir, c, &dfs_fops);
2878 
2879 	fname = "ro_error";
2880 	d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2881 					      d->dfs_dir, c, &dfs_fops);
2882 }
2883 
2884 /**
2885  * dbg_debugfs_exit_fs - remove all debugfs files.
2886  * @c: UBIFS file-system description object
2887  */
dbg_debugfs_exit_fs(struct ubifs_info * c)2888 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2889 {
2890 	debugfs_remove_recursive(c->dbg->dfs_dir);
2891 }
2892 
2893 struct ubifs_global_debug_info ubifs_dbg;
2894 
2895 static struct dentry *dfs_chk_gen;
2896 static struct dentry *dfs_chk_index;
2897 static struct dentry *dfs_chk_orph;
2898 static struct dentry *dfs_chk_lprops;
2899 static struct dentry *dfs_chk_fs;
2900 static struct dentry *dfs_tst_rcvry;
2901 
dfs_global_file_read(struct file * file,char __user * u,size_t count,loff_t * ppos)2902 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2903 				    size_t count, loff_t *ppos)
2904 {
2905 	struct dentry *dent = file->f_path.dentry;
2906 	int val;
2907 
2908 	if (dent == dfs_chk_gen)
2909 		val = ubifs_dbg.chk_gen;
2910 	else if (dent == dfs_chk_index)
2911 		val = ubifs_dbg.chk_index;
2912 	else if (dent == dfs_chk_orph)
2913 		val = ubifs_dbg.chk_orph;
2914 	else if (dent == dfs_chk_lprops)
2915 		val = ubifs_dbg.chk_lprops;
2916 	else if (dent == dfs_chk_fs)
2917 		val = ubifs_dbg.chk_fs;
2918 	else if (dent == dfs_tst_rcvry)
2919 		val = ubifs_dbg.tst_rcvry;
2920 	else
2921 		return -EINVAL;
2922 
2923 	return provide_user_output(val, u, count, ppos);
2924 }
2925 
dfs_global_file_write(struct file * file,const char __user * u,size_t count,loff_t * ppos)2926 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2927 				     size_t count, loff_t *ppos)
2928 {
2929 	struct dentry *dent = file->f_path.dentry;
2930 	int val;
2931 
2932 	val = interpret_user_input(u, count);
2933 	if (val < 0)
2934 		return val;
2935 
2936 	if (dent == dfs_chk_gen)
2937 		ubifs_dbg.chk_gen = val;
2938 	else if (dent == dfs_chk_index)
2939 		ubifs_dbg.chk_index = val;
2940 	else if (dent == dfs_chk_orph)
2941 		ubifs_dbg.chk_orph = val;
2942 	else if (dent == dfs_chk_lprops)
2943 		ubifs_dbg.chk_lprops = val;
2944 	else if (dent == dfs_chk_fs)
2945 		ubifs_dbg.chk_fs = val;
2946 	else if (dent == dfs_tst_rcvry)
2947 		ubifs_dbg.tst_rcvry = val;
2948 	else
2949 		return -EINVAL;
2950 
2951 	return count;
2952 }
2953 
2954 static const struct file_operations dfs_global_fops = {
2955 	.read = dfs_global_file_read,
2956 	.write = dfs_global_file_write,
2957 	.owner = THIS_MODULE,
2958 };
2959 
2960 /**
2961  * dbg_debugfs_init - initialize debugfs file-system.
2962  *
2963  * UBIFS uses debugfs file-system to expose various debugging knobs to
2964  * user-space. This function creates "ubifs" directory in the debugfs
2965  * file-system.
2966  */
dbg_debugfs_init(void)2967 void dbg_debugfs_init(void)
2968 {
2969 	const char *fname;
2970 
2971 	fname = "ubifs";
2972 	dfs_rootdir = debugfs_create_dir(fname, NULL);
2973 
2974 	fname = "chk_general";
2975 	dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2976 					  NULL, &dfs_global_fops);
2977 
2978 	fname = "chk_index";
2979 	dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2980 					    dfs_rootdir, NULL, &dfs_global_fops);
2981 
2982 	fname = "chk_orphans";
2983 	dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2984 					   dfs_rootdir, NULL, &dfs_global_fops);
2985 
2986 	fname = "chk_lprops";
2987 	dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2988 					     dfs_rootdir, NULL, &dfs_global_fops);
2989 
2990 	fname = "chk_fs";
2991 	dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2992 					 NULL, &dfs_global_fops);
2993 
2994 	fname = "tst_recovery";
2995 	dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2996 					    dfs_rootdir, NULL, &dfs_global_fops);
2997 }
2998 
2999 /**
3000  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3001  */
dbg_debugfs_exit(void)3002 void dbg_debugfs_exit(void)
3003 {
3004 	debugfs_remove_recursive(dfs_rootdir);
3005 }
3006 
ubifs_assert_failed(struct ubifs_info * c,const char * expr,const char * file,int line)3007 void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
3008 			 const char *file, int line)
3009 {
3010 	ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
3011 
3012 	switch (c->assert_action) {
3013 		case ASSACT_PANIC:
3014 		BUG();
3015 		break;
3016 
3017 		case ASSACT_RO:
3018 		ubifs_ro_mode(c, -EINVAL);
3019 		break;
3020 
3021 		case ASSACT_REPORT:
3022 		default:
3023 		dump_stack();
3024 		break;
3025 
3026 	}
3027 }
3028 
3029 /**
3030  * ubifs_debugging_init - initialize UBIFS debugging.
3031  * @c: UBIFS file-system description object
3032  *
3033  * This function initializes debugging-related data for the file system.
3034  * Returns zero in case of success and a negative error code in case of
3035  * failure.
3036  */
ubifs_debugging_init(struct ubifs_info * c)3037 int ubifs_debugging_init(struct ubifs_info *c)
3038 {
3039 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3040 	if (!c->dbg)
3041 		return -ENOMEM;
3042 
3043 	return 0;
3044 }
3045 
3046 /**
3047  * ubifs_debugging_exit - free debugging data.
3048  * @c: UBIFS file-system description object
3049  */
ubifs_debugging_exit(struct ubifs_info * c)3050 void ubifs_debugging_exit(struct ubifs_info *c)
3051 {
3052 	kfree(c->dbg);
3053 }
3054