• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include <linux/delay.h>
27 #include "dm_services.h"
28 #include "basics/dc_common.h"
29 #include "core_types.h"
30 #include "resource.h"
31 #include "custom_float.h"
32 #include "dcn10_hwseq.h"
33 #include "dcn10/dcn10_hw_sequencer_debug.h"
34 #include "dce/dce_hwseq.h"
35 #include "abm.h"
36 #include "dmcu.h"
37 #include "dcn10/dcn10_optc.h"
38 #include "dcn10/dcn10_dpp.h"
39 #include "dcn10/dcn10_mpc.h"
40 #include "timing_generator.h"
41 #include "opp.h"
42 #include "ipp.h"
43 #include "mpc.h"
44 #include "reg_helper.h"
45 #include "dcn10/dcn10_hubp.h"
46 #include "dcn10/dcn10_hubbub.h"
47 #include "dcn10/dcn10_cm_common.h"
48 #include "dccg.h"
49 #include "clk_mgr.h"
50 #include "link_hwss.h"
51 #include "dpcd_defs.h"
52 #include "dsc.h"
53 #include "dce/dmub_psr.h"
54 #include "dc_dmub_srv.h"
55 #include "dce/dmub_hw_lock_mgr.h"
56 #include "dc_trace.h"
57 #include "dce/dmub_outbox.h"
58 #include "link.h"
59 #include "dc_state_priv.h"
60 
61 #define DC_LOGGER \
62 	dc_logger
63 #define DC_LOGGER_INIT(logger) \
64 	struct dal_logger *dc_logger = logger
65 
66 #define CTX \
67 	hws->ctx
68 #define REG(reg)\
69 	hws->regs->reg
70 
71 #undef FN
72 #define FN(reg_name, field_name) \
73 	hws->shifts->field_name, hws->masks->field_name
74 
75 /*print is 17 wide, first two characters are spaces*/
76 #define DTN_INFO_MICRO_SEC(ref_cycle) \
77 	print_microsec(dc_ctx, log_ctx, ref_cycle)
78 
79 #define GAMMA_HW_POINTS_NUM 256
80 
81 #define PGFSM_POWER_ON 0
82 #define PGFSM_POWER_OFF 2
83 
print_microsec(struct dc_context * dc_ctx,struct dc_log_buffer_ctx * log_ctx,uint32_t ref_cycle)84 static void print_microsec(struct dc_context *dc_ctx,
85 			   struct dc_log_buffer_ctx *log_ctx,
86 			   uint32_t ref_cycle)
87 {
88 	const uint32_t ref_clk_mhz = dc_ctx->dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000;
89 	static const unsigned int frac = 1000;
90 	uint32_t us_x10 = (ref_cycle * frac) / ref_clk_mhz;
91 
92 	DTN_INFO("  %11d.%03d",
93 			us_x10 / frac,
94 			us_x10 % frac);
95 }
96 
dcn10_lock_all_pipes(struct dc * dc,struct dc_state * context,bool lock)97 void dcn10_lock_all_pipes(struct dc *dc,
98 	struct dc_state *context,
99 	bool lock)
100 {
101 	struct pipe_ctx *pipe_ctx;
102 	struct pipe_ctx *old_pipe_ctx;
103 	struct timing_generator *tg;
104 	int i;
105 
106 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
107 		old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
108 		pipe_ctx = &context->res_ctx.pipe_ctx[i];
109 		tg = pipe_ctx->stream_res.tg;
110 
111 		/*
112 		 * Only lock the top pipe's tg to prevent redundant
113 		 * (un)locking. Also skip if pipe is disabled.
114 		 */
115 		if (pipe_ctx->top_pipe ||
116 		    !pipe_ctx->stream ||
117 		    (!pipe_ctx->plane_state && !old_pipe_ctx->plane_state) ||
118 		    !tg->funcs->is_tg_enabled(tg) ||
119 			dc_state_get_pipe_subvp_type(context, pipe_ctx) == SUBVP_PHANTOM)
120 			continue;
121 
122 		if (lock)
123 			dc->hwss.pipe_control_lock(dc, pipe_ctx, true);
124 		else
125 			dc->hwss.pipe_control_lock(dc, pipe_ctx, false);
126 	}
127 }
128 
log_mpc_crc(struct dc * dc,struct dc_log_buffer_ctx * log_ctx)129 static void log_mpc_crc(struct dc *dc,
130 	struct dc_log_buffer_ctx *log_ctx)
131 {
132 	struct dc_context *dc_ctx = dc->ctx;
133 	struct dce_hwseq *hws = dc->hwseq;
134 
135 	if (REG(MPC_CRC_RESULT_GB))
136 		DTN_INFO("MPC_CRC_RESULT_GB:%d MPC_CRC_RESULT_C:%d MPC_CRC_RESULT_AR:%d\n",
137 		REG_READ(MPC_CRC_RESULT_GB), REG_READ(MPC_CRC_RESULT_C), REG_READ(MPC_CRC_RESULT_AR));
138 	if (REG(DPP_TOP0_DPP_CRC_VAL_B_A))
139 		DTN_INFO("DPP_TOP0_DPP_CRC_VAL_B_A:%d DPP_TOP0_DPP_CRC_VAL_R_G:%d\n",
140 		REG_READ(DPP_TOP0_DPP_CRC_VAL_B_A), REG_READ(DPP_TOP0_DPP_CRC_VAL_R_G));
141 }
142 
dcn10_log_hubbub_state(struct dc * dc,struct dc_log_buffer_ctx * log_ctx)143 static void dcn10_log_hubbub_state(struct dc *dc,
144 				   struct dc_log_buffer_ctx *log_ctx)
145 {
146 	struct dc_context *dc_ctx = dc->ctx;
147 	struct dcn_hubbub_wm wm;
148 	int i;
149 
150 	memset(&wm, 0, sizeof(struct dcn_hubbub_wm));
151 	dc->res_pool->hubbub->funcs->wm_read_state(dc->res_pool->hubbub, &wm);
152 
153 	DTN_INFO("HUBBUB WM:      data_urgent  pte_meta_urgent"
154 			"         sr_enter          sr_exit  dram_clk_change\n");
155 
156 	for (i = 0; i < 4; i++) {
157 		struct dcn_hubbub_wm_set *s;
158 
159 		s = &wm.sets[i];
160 		DTN_INFO("WM_Set[%d]:", s->wm_set);
161 		DTN_INFO_MICRO_SEC(s->data_urgent);
162 		DTN_INFO_MICRO_SEC(s->pte_meta_urgent);
163 		DTN_INFO_MICRO_SEC(s->sr_enter);
164 		DTN_INFO_MICRO_SEC(s->sr_exit);
165 		DTN_INFO_MICRO_SEC(s->dram_clk_change);
166 		DTN_INFO("\n");
167 	}
168 
169 	DTN_INFO("\n");
170 }
171 
dcn10_log_hubp_states(struct dc * dc,void * log_ctx)172 static void dcn10_log_hubp_states(struct dc *dc, void *log_ctx)
173 {
174 	struct dc_context *dc_ctx = dc->ctx;
175 	struct resource_pool *pool = dc->res_pool;
176 	int i;
177 
178 	DTN_INFO(
179 		"HUBP:  format  addr_hi  width  height  rot  mir  sw_mode  dcc_en  blank_en  clock_en  ttu_dis  underflow   min_ttu_vblank       qos_low_wm      qos_high_wm\n");
180 	for (i = 0; i < pool->pipe_count; i++) {
181 		struct hubp *hubp = pool->hubps[i];
182 		struct dcn_hubp_state *s = &(TO_DCN10_HUBP(hubp)->state);
183 
184 		hubp->funcs->hubp_read_state(hubp);
185 
186 		if (!s->blank_en) {
187 			DTN_INFO("[%2d]:  %5xh  %6xh  %5d  %6d  %2xh  %2xh  %6xh  %6d  %8d  %8d  %7d  %8xh",
188 					hubp->inst,
189 					s->pixel_format,
190 					s->inuse_addr_hi,
191 					s->viewport_width,
192 					s->viewport_height,
193 					s->rotation_angle,
194 					s->h_mirror_en,
195 					s->sw_mode,
196 					s->dcc_en,
197 					s->blank_en,
198 					s->clock_en,
199 					s->ttu_disable,
200 					s->underflow_status);
201 			DTN_INFO_MICRO_SEC(s->min_ttu_vblank);
202 			DTN_INFO_MICRO_SEC(s->qos_level_low_wm);
203 			DTN_INFO_MICRO_SEC(s->qos_level_high_wm);
204 			DTN_INFO("\n");
205 		}
206 	}
207 
208 	DTN_INFO("\n=========RQ========\n");
209 	DTN_INFO("HUBP:  drq_exp_m  prq_exp_m  mrq_exp_m  crq_exp_m  plane1_ba  L:chunk_s  min_chu_s  meta_ch_s"
210 		"  min_m_c_s  dpte_gr_s  mpte_gr_s  swath_hei  pte_row_h  C:chunk_s  min_chu_s  meta_ch_s"
211 		"  min_m_c_s  dpte_gr_s  mpte_gr_s  swath_hei  pte_row_h\n");
212 	for (i = 0; i < pool->pipe_count; i++) {
213 		struct dcn_hubp_state *s = &(TO_DCN10_HUBP(pool->hubps[i])->state);
214 		struct _vcs_dpi_display_rq_regs_st *rq_regs = &s->rq_regs;
215 
216 		if (!s->blank_en)
217 			DTN_INFO("[%2d]:  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh\n",
218 				pool->hubps[i]->inst, rq_regs->drq_expansion_mode, rq_regs->prq_expansion_mode, rq_regs->mrq_expansion_mode,
219 				rq_regs->crq_expansion_mode, rq_regs->plane1_base_address, rq_regs->rq_regs_l.chunk_size,
220 				rq_regs->rq_regs_l.min_chunk_size, rq_regs->rq_regs_l.meta_chunk_size,
221 				rq_regs->rq_regs_l.min_meta_chunk_size, rq_regs->rq_regs_l.dpte_group_size,
222 				rq_regs->rq_regs_l.mpte_group_size, rq_regs->rq_regs_l.swath_height,
223 				rq_regs->rq_regs_l.pte_row_height_linear, rq_regs->rq_regs_c.chunk_size, rq_regs->rq_regs_c.min_chunk_size,
224 				rq_regs->rq_regs_c.meta_chunk_size, rq_regs->rq_regs_c.min_meta_chunk_size,
225 				rq_regs->rq_regs_c.dpte_group_size, rq_regs->rq_regs_c.mpte_group_size,
226 				rq_regs->rq_regs_c.swath_height, rq_regs->rq_regs_c.pte_row_height_linear);
227 	}
228 
229 	DTN_INFO("========DLG========\n");
230 	DTN_INFO("HUBP:  rc_hbe     dlg_vbe    min_d_y_n  rc_per_ht  rc_x_a_s "
231 			"  dst_y_a_s  dst_y_pf   dst_y_vvb  dst_y_rvb  dst_y_vfl  dst_y_rfl  rf_pix_fq"
232 			"  vratio_pf  vrat_pf_c  rc_pg_vbl  rc_pg_vbc  rc_mc_vbl  rc_mc_vbc  rc_pg_fll"
233 			"  rc_pg_flc  rc_mc_fll  rc_mc_flc  pr_nom_l   pr_nom_c   rc_pg_nl   rc_pg_nc "
234 			"  mr_nom_l   mr_nom_c   rc_mc_nl   rc_mc_nc   rc_ld_pl   rc_ld_pc   rc_ld_l  "
235 			"  rc_ld_c    cha_cur0   ofst_cur1  cha_cur1   vr_af_vc0  ddrq_limt  x_rt_dlay"
236 			"  x_rp_dlay  x_rr_sfl  rc_td_grp\n");
237 
238 	for (i = 0; i < pool->pipe_count; i++) {
239 		struct dcn_hubp_state *s = &(TO_DCN10_HUBP(pool->hubps[i])->state);
240 		struct _vcs_dpi_display_dlg_regs_st *dlg_regs = &s->dlg_attr;
241 
242 		if (!s->blank_en)
243 			DTN_INFO("[%2d]:  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh"
244 				"  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh"
245 				"  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh %xh\n",
246 				pool->hubps[i]->inst, dlg_regs->refcyc_h_blank_end, dlg_regs->dlg_vblank_end, dlg_regs->min_dst_y_next_start,
247 				dlg_regs->refcyc_per_htotal, dlg_regs->refcyc_x_after_scaler, dlg_regs->dst_y_after_scaler,
248 				dlg_regs->dst_y_prefetch, dlg_regs->dst_y_per_vm_vblank, dlg_regs->dst_y_per_row_vblank,
249 				dlg_regs->dst_y_per_vm_flip, dlg_regs->dst_y_per_row_flip, dlg_regs->ref_freq_to_pix_freq,
250 				dlg_regs->vratio_prefetch, dlg_regs->vratio_prefetch_c, dlg_regs->refcyc_per_pte_group_vblank_l,
251 				dlg_regs->refcyc_per_pte_group_vblank_c, dlg_regs->refcyc_per_meta_chunk_vblank_l,
252 				dlg_regs->refcyc_per_meta_chunk_vblank_c, dlg_regs->refcyc_per_pte_group_flip_l,
253 				dlg_regs->refcyc_per_pte_group_flip_c, dlg_regs->refcyc_per_meta_chunk_flip_l,
254 				dlg_regs->refcyc_per_meta_chunk_flip_c, dlg_regs->dst_y_per_pte_row_nom_l,
255 				dlg_regs->dst_y_per_pte_row_nom_c, dlg_regs->refcyc_per_pte_group_nom_l,
256 				dlg_regs->refcyc_per_pte_group_nom_c, dlg_regs->dst_y_per_meta_row_nom_l,
257 				dlg_regs->dst_y_per_meta_row_nom_c, dlg_regs->refcyc_per_meta_chunk_nom_l,
258 				dlg_regs->refcyc_per_meta_chunk_nom_c, dlg_regs->refcyc_per_line_delivery_pre_l,
259 				dlg_regs->refcyc_per_line_delivery_pre_c, dlg_regs->refcyc_per_line_delivery_l,
260 				dlg_regs->refcyc_per_line_delivery_c, dlg_regs->chunk_hdl_adjust_cur0, dlg_regs->dst_y_offset_cur1,
261 				dlg_regs->chunk_hdl_adjust_cur1, dlg_regs->vready_after_vcount0, dlg_regs->dst_y_delta_drq_limit,
262 				dlg_regs->xfc_reg_transfer_delay, dlg_regs->xfc_reg_precharge_delay,
263 				dlg_regs->xfc_reg_remote_surface_flip_latency, dlg_regs->refcyc_per_tdlut_group);
264 	}
265 
266 	DTN_INFO("========TTU========\n");
267 	DTN_INFO("HUBP:  qos_ll_wm  qos_lh_wm  mn_ttu_vb  qos_l_flp  rc_rd_p_l  rc_rd_l    rc_rd_p_c"
268 			"  rc_rd_c    rc_rd_c0   rc_rd_pc0  rc_rd_c1   rc_rd_pc1  qos_lf_l   qos_rds_l"
269 			"  qos_lf_c   qos_rds_c  qos_lf_c0  qos_rds_c0 qos_lf_c1  qos_rds_c1\n");
270 	for (i = 0; i < pool->pipe_count; i++) {
271 		struct dcn_hubp_state *s = &(TO_DCN10_HUBP(pool->hubps[i])->state);
272 		struct _vcs_dpi_display_ttu_regs_st *ttu_regs = &s->ttu_attr;
273 
274 		if (!s->blank_en)
275 			DTN_INFO("[%2d]:  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh\n",
276 				pool->hubps[i]->inst, ttu_regs->qos_level_low_wm, ttu_regs->qos_level_high_wm, ttu_regs->min_ttu_vblank,
277 				ttu_regs->qos_level_flip, ttu_regs->refcyc_per_req_delivery_pre_l, ttu_regs->refcyc_per_req_delivery_l,
278 				ttu_regs->refcyc_per_req_delivery_pre_c, ttu_regs->refcyc_per_req_delivery_c, ttu_regs->refcyc_per_req_delivery_cur0,
279 				ttu_regs->refcyc_per_req_delivery_pre_cur0, ttu_regs->refcyc_per_req_delivery_cur1,
280 				ttu_regs->refcyc_per_req_delivery_pre_cur1, ttu_regs->qos_level_fixed_l, ttu_regs->qos_ramp_disable_l,
281 				ttu_regs->qos_level_fixed_c, ttu_regs->qos_ramp_disable_c, ttu_regs->qos_level_fixed_cur0,
282 				ttu_regs->qos_ramp_disable_cur0, ttu_regs->qos_level_fixed_cur1, ttu_regs->qos_ramp_disable_cur1);
283 	}
284 	DTN_INFO("\n");
285 }
286 
dcn10_log_color_state(struct dc * dc,struct dc_log_buffer_ctx * log_ctx)287 static void dcn10_log_color_state(struct dc *dc,
288 				  struct dc_log_buffer_ctx *log_ctx)
289 {
290 	struct dc_context *dc_ctx = dc->ctx;
291 	struct resource_pool *pool = dc->res_pool;
292 	bool is_gamut_remap_available = false;
293 	int i;
294 
295 	DTN_INFO("DPP:    IGAM format    IGAM mode    DGAM mode    RGAM mode"
296 		 "  GAMUT adjust  "
297 		 "C11        C12        C13        C14        "
298 		 "C21        C22        C23        C24        "
299 		 "C31        C32        C33        C34        \n");
300 	for (i = 0; i < pool->pipe_count; i++) {
301 		struct dpp *dpp = pool->dpps[i];
302 		struct dcn_dpp_state s = {0};
303 
304 		dpp->funcs->dpp_read_state(dpp, &s);
305 		if (dpp->funcs->dpp_get_gamut_remap) {
306 			dpp->funcs->dpp_get_gamut_remap(dpp, &s.gamut_remap);
307 			is_gamut_remap_available = true;
308 		}
309 
310 		if (!s.is_enabled)
311 			continue;
312 
313 		DTN_INFO("[%2d]:  %11xh  %11s    %9s    %9s",
314 				dpp->inst,
315 				s.igam_input_format,
316 				(s.igam_lut_mode == 0) ? "BypassFixed" :
317 					((s.igam_lut_mode == 1) ? "BypassFloat" :
318 					((s.igam_lut_mode == 2) ? "RAM" :
319 					((s.igam_lut_mode == 3) ? "RAM" :
320 								 "Unknown"))),
321 				(s.dgam_lut_mode == 0) ? "Bypass" :
322 					((s.dgam_lut_mode == 1) ? "sRGB" :
323 					((s.dgam_lut_mode == 2) ? "Ycc" :
324 					((s.dgam_lut_mode == 3) ? "RAM" :
325 					((s.dgam_lut_mode == 4) ? "RAM" :
326 								 "Unknown")))),
327 				(s.rgam_lut_mode == 0) ? "Bypass" :
328 					((s.rgam_lut_mode == 1) ? "sRGB" :
329 					((s.rgam_lut_mode == 2) ? "Ycc" :
330 					((s.rgam_lut_mode == 3) ? "RAM" :
331 					((s.rgam_lut_mode == 4) ? "RAM" :
332 								 "Unknown")))));
333 		if (is_gamut_remap_available)
334 			DTN_INFO("  %12s  "
335 				 "%010lld %010lld %010lld %010lld "
336 				 "%010lld %010lld %010lld %010lld "
337 				 "%010lld %010lld %010lld %010lld",
338 				 (s.gamut_remap.gamut_adjust_type == 0) ? "Bypass" :
339 					((s.gamut_remap.gamut_adjust_type == 1) ? "HW" : "SW"),
340 				 s.gamut_remap.temperature_matrix[0].value,
341 				 s.gamut_remap.temperature_matrix[1].value,
342 				 s.gamut_remap.temperature_matrix[2].value,
343 				 s.gamut_remap.temperature_matrix[3].value,
344 				 s.gamut_remap.temperature_matrix[4].value,
345 				 s.gamut_remap.temperature_matrix[5].value,
346 				 s.gamut_remap.temperature_matrix[6].value,
347 				 s.gamut_remap.temperature_matrix[7].value,
348 				 s.gamut_remap.temperature_matrix[8].value,
349 				 s.gamut_remap.temperature_matrix[9].value,
350 				 s.gamut_remap.temperature_matrix[10].value,
351 				 s.gamut_remap.temperature_matrix[11].value);
352 
353 		DTN_INFO("\n");
354 	}
355 	DTN_INFO("\n");
356 	DTN_INFO("DPP Color Caps: input_lut_shared:%d  icsc:%d"
357 		 "  dgam_ram:%d  dgam_rom: srgb:%d,bt2020:%d,gamma2_2:%d,pq:%d,hlg:%d"
358 		 "  post_csc:%d  gamcor:%d  dgam_rom_for_yuv:%d  3d_lut:%d"
359 		 "  blnd_lut:%d  oscs:%d\n\n",
360 		 dc->caps.color.dpp.input_lut_shared,
361 		 dc->caps.color.dpp.icsc,
362 		 dc->caps.color.dpp.dgam_ram,
363 		 dc->caps.color.dpp.dgam_rom_caps.srgb,
364 		 dc->caps.color.dpp.dgam_rom_caps.bt2020,
365 		 dc->caps.color.dpp.dgam_rom_caps.gamma2_2,
366 		 dc->caps.color.dpp.dgam_rom_caps.pq,
367 		 dc->caps.color.dpp.dgam_rom_caps.hlg,
368 		 dc->caps.color.dpp.post_csc,
369 		 dc->caps.color.dpp.gamma_corr,
370 		 dc->caps.color.dpp.dgam_rom_for_yuv,
371 		 dc->caps.color.dpp.hw_3d_lut,
372 		 dc->caps.color.dpp.ogam_ram,
373 		 dc->caps.color.dpp.ocsc);
374 
375 	DTN_INFO("MPCC:  OPP  DPP  MPCCBOT  MODE  ALPHA_MODE  PREMULT  OVERLAP_ONLY  IDLE\n");
376 	for (i = 0; i < pool->mpcc_count; i++) {
377 		struct mpcc_state s = {0};
378 
379 		pool->mpc->funcs->read_mpcc_state(pool->mpc, i, &s);
380 		if (s.opp_id != 0xf)
381 			DTN_INFO("[%2d]:  %2xh  %2xh  %6xh  %4d  %10d  %7d  %12d  %4d\n",
382 				i, s.opp_id, s.dpp_id, s.bot_mpcc_id,
383 				s.mode, s.alpha_mode, s.pre_multiplied_alpha, s.overlap_only,
384 				s.idle);
385 	}
386 	DTN_INFO("\n");
387 	DTN_INFO("MPC Color Caps: gamut_remap:%d, 3dlut:%d, ogam_ram:%d, ocsc:%d\n\n",
388 		 dc->caps.color.mpc.gamut_remap,
389 		 dc->caps.color.mpc.num_3dluts,
390 		 dc->caps.color.mpc.ogam_ram,
391 		 dc->caps.color.mpc.ocsc);
392 }
393 
dcn10_log_hw_state(struct dc * dc,struct dc_log_buffer_ctx * log_ctx)394 void dcn10_log_hw_state(struct dc *dc,
395 			struct dc_log_buffer_ctx *log_ctx)
396 {
397 	struct dc_context *dc_ctx = dc->ctx;
398 	struct resource_pool *pool = dc->res_pool;
399 	int i;
400 
401 	DTN_INFO_BEGIN();
402 
403 	dcn10_log_hubbub_state(dc, log_ctx);
404 
405 	dcn10_log_hubp_states(dc, log_ctx);
406 
407 	if (dc->hwss.log_color_state)
408 		dc->hwss.log_color_state(dc, log_ctx);
409 	else
410 		dcn10_log_color_state(dc, log_ctx);
411 
412 	DTN_INFO("OTG:  v_bs  v_be  v_ss  v_se  vpol  vmax  vmin  vmax_sel  vmin_sel  h_bs  h_be  h_ss  h_se  hpol  htot  vtot  underflow blank_en\n");
413 
414 	for (i = 0; i < pool->timing_generator_count; i++) {
415 		struct timing_generator *tg = pool->timing_generators[i];
416 		struct dcn_otg_state s = {0};
417 		/* Read shared OTG state registers for all DCNx */
418 		optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
419 
420 		/*
421 		 * For DCN2 and greater, a register on the OPP is used to
422 		 * determine if the CRTC is blanked instead of the OTG. So use
423 		 * dpg_is_blanked() if exists, otherwise fallback on otg.
424 		 *
425 		 * TODO: Implement DCN-specific read_otg_state hooks.
426 		 */
427 		if (pool->opps[i]->funcs->dpg_is_blanked)
428 			s.blank_enabled = pool->opps[i]->funcs->dpg_is_blanked(pool->opps[i]);
429 		else
430 			s.blank_enabled = tg->funcs->is_blanked(tg);
431 
432 		//only print if OTG master is enabled
433 		if ((s.otg_enabled & 1) == 0)
434 			continue;
435 
436 		DTN_INFO("[%d]: %5d %5d %5d %5d %5d %5d %5d %9d %9d %5d %5d %5d %5d %5d %5d %5d  %9d %8d\n",
437 				tg->inst,
438 				s.v_blank_start,
439 				s.v_blank_end,
440 				s.v_sync_a_start,
441 				s.v_sync_a_end,
442 				s.v_sync_a_pol,
443 				s.v_total_max,
444 				s.v_total_min,
445 				s.v_total_max_sel,
446 				s.v_total_min_sel,
447 				s.h_blank_start,
448 				s.h_blank_end,
449 				s.h_sync_a_start,
450 				s.h_sync_a_end,
451 				s.h_sync_a_pol,
452 				s.h_total,
453 				s.v_total,
454 				s.underflow_occurred_status,
455 				s.blank_enabled);
456 
457 		// Clear underflow for debug purposes
458 		// We want to keep underflow sticky bit on for the longevity tests outside of test environment.
459 		// This function is called only from Windows or Diags test environment, hence it's safe to clear
460 		// it from here without affecting the original intent.
461 		tg->funcs->clear_optc_underflow(tg);
462 	}
463 	DTN_INFO("\n");
464 
465 	// dcn_dsc_state struct field bytes_per_pixel was renamed to bits_per_pixel
466 	// TODO: Update golden log header to reflect this name change
467 	DTN_INFO("DSC: CLOCK_EN  SLICE_WIDTH  Bytes_pp\n");
468 	for (i = 0; i < pool->res_cap->num_dsc; i++) {
469 		struct display_stream_compressor *dsc = pool->dscs[i];
470 		struct dcn_dsc_state s = {0};
471 
472 		dsc->funcs->dsc_read_state(dsc, &s);
473 		DTN_INFO("[%d]: %-9d %-12d %-10d\n",
474 		dsc->inst,
475 			s.dsc_clock_en,
476 			s.dsc_slice_width,
477 			s.dsc_bits_per_pixel);
478 		DTN_INFO("\n");
479 	}
480 	DTN_INFO("\n");
481 
482 	DTN_INFO("S_ENC: DSC_MODE  SEC_GSP7_LINE_NUM"
483 			"  VBID6_LINE_REFERENCE  VBID6_LINE_NUM  SEC_GSP7_ENABLE  SEC_STREAM_ENABLE\n");
484 	for (i = 0; i < pool->stream_enc_count; i++) {
485 		struct stream_encoder *enc = pool->stream_enc[i];
486 		struct enc_state s = {0};
487 
488 		if (enc->funcs->enc_read_state) {
489 			enc->funcs->enc_read_state(enc, &s);
490 			DTN_INFO("[%-3d]: %-9d %-18d %-21d %-15d %-16d %-17d\n",
491 				enc->id,
492 				s.dsc_mode,
493 				s.sec_gsp_pps_line_num,
494 				s.vbid6_line_reference,
495 				s.vbid6_line_num,
496 				s.sec_gsp_pps_enable,
497 				s.sec_stream_enable);
498 			DTN_INFO("\n");
499 		}
500 	}
501 	DTN_INFO("\n");
502 
503 	DTN_INFO("L_ENC: DPHY_FEC_EN  DPHY_FEC_READY_SHADOW  DPHY_FEC_ACTIVE_STATUS  DP_LINK_TRAINING_COMPLETE\n");
504 	for (i = 0; i < dc->link_count; i++) {
505 		struct link_encoder *lenc = dc->links[i]->link_enc;
506 
507 		struct link_enc_state s = {0};
508 
509 		if (lenc && lenc->funcs->read_state) {
510 			lenc->funcs->read_state(lenc, &s);
511 			DTN_INFO("[%-3d]: %-12d %-22d %-22d %-25d\n",
512 				i,
513 				s.dphy_fec_en,
514 				s.dphy_fec_ready_shadow,
515 				s.dphy_fec_active_status,
516 				s.dp_link_training_complete);
517 			DTN_INFO("\n");
518 		}
519 	}
520 	DTN_INFO("\n");
521 
522 	DTN_INFO("\nCALCULATED Clocks: dcfclk_khz:%d  dcfclk_deep_sleep_khz:%d  dispclk_khz:%d\n"
523 		"dppclk_khz:%d  max_supported_dppclk_khz:%d  fclk_khz:%d  socclk_khz:%d\n\n",
524 			dc->current_state->bw_ctx.bw.dcn.clk.dcfclk_khz,
525 			dc->current_state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz,
526 			dc->current_state->bw_ctx.bw.dcn.clk.dispclk_khz,
527 			dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz,
528 			dc->current_state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz,
529 			dc->current_state->bw_ctx.bw.dcn.clk.fclk_khz,
530 			dc->current_state->bw_ctx.bw.dcn.clk.socclk_khz);
531 
532 	log_mpc_crc(dc, log_ctx);
533 
534 	{
535 		if (pool->hpo_dp_stream_enc_count > 0) {
536 			DTN_INFO("DP HPO S_ENC:  Enabled  OTG   Format   Depth   Vid   SDP   Compressed  Link\n");
537 			for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
538 				struct hpo_dp_stream_encoder_state hpo_dp_se_state = {0};
539 				struct hpo_dp_stream_encoder *hpo_dp_stream_enc = pool->hpo_dp_stream_enc[i];
540 
541 				if (hpo_dp_stream_enc && hpo_dp_stream_enc->funcs->read_state) {
542 					hpo_dp_stream_enc->funcs->read_state(hpo_dp_stream_enc, &hpo_dp_se_state);
543 
544 					DTN_INFO("[%d]:                 %d    %d   %6s       %d     %d     %d            %d     %d\n",
545 							hpo_dp_stream_enc->id - ENGINE_ID_HPO_DP_0,
546 							hpo_dp_se_state.stream_enc_enabled,
547 							hpo_dp_se_state.otg_inst,
548 							(hpo_dp_se_state.pixel_encoding == 0) ? "4:4:4" :
549 									((hpo_dp_se_state.pixel_encoding == 1) ? "4:2:2" :
550 									(hpo_dp_se_state.pixel_encoding == 2) ? "4:2:0" : "Y-Only"),
551 							(hpo_dp_se_state.component_depth == 0) ? 6 :
552 									((hpo_dp_se_state.component_depth == 1) ? 8 :
553 									(hpo_dp_se_state.component_depth == 2) ? 10 : 12),
554 							hpo_dp_se_state.vid_stream_enabled,
555 							hpo_dp_se_state.sdp_enabled,
556 							hpo_dp_se_state.compressed_format,
557 							hpo_dp_se_state.mapped_to_link_enc);
558 				}
559 			}
560 
561 			DTN_INFO("\n");
562 		}
563 
564 		/* log DP HPO L_ENC section if any hpo_dp_link_enc exists */
565 		if (pool->hpo_dp_link_enc_count) {
566 			DTN_INFO("DP HPO L_ENC:  Enabled  Mode   Lanes   Stream  Slots   VC Rate X    VC Rate Y\n");
567 
568 			for (i = 0; i < pool->hpo_dp_link_enc_count; i++) {
569 				struct hpo_dp_link_encoder *hpo_dp_link_enc = pool->hpo_dp_link_enc[i];
570 				struct hpo_dp_link_enc_state hpo_dp_le_state = {0};
571 
572 				if (hpo_dp_link_enc->funcs->read_state) {
573 					hpo_dp_link_enc->funcs->read_state(hpo_dp_link_enc, &hpo_dp_le_state);
574 					DTN_INFO("[%d]:                 %d  %6s     %d        %d      %d     %d     %d\n",
575 							hpo_dp_link_enc->inst,
576 							hpo_dp_le_state.link_enc_enabled,
577 							(hpo_dp_le_state.link_mode == 0) ? "TPS1" :
578 									(hpo_dp_le_state.link_mode == 1) ? "TPS2" :
579 									(hpo_dp_le_state.link_mode == 2) ? "ACTIVE" : "TEST",
580 							hpo_dp_le_state.lane_count,
581 							hpo_dp_le_state.stream_src[0],
582 							hpo_dp_le_state.slot_count[0],
583 							hpo_dp_le_state.vc_rate_x[0],
584 							hpo_dp_le_state.vc_rate_y[0]);
585 					DTN_INFO("\n");
586 				}
587 			}
588 
589 			DTN_INFO("\n");
590 		}
591 	}
592 
593 	DTN_INFO_END();
594 }
595 
dcn10_did_underflow_occur(struct dc * dc,struct pipe_ctx * pipe_ctx)596 bool dcn10_did_underflow_occur(struct dc *dc, struct pipe_ctx *pipe_ctx)
597 {
598 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
599 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
600 
601 	if (tg->funcs->is_optc_underflow_occurred(tg)) {
602 		tg->funcs->clear_optc_underflow(tg);
603 		return true;
604 	}
605 
606 	if (hubp->funcs->hubp_get_underflow_status(hubp)) {
607 		hubp->funcs->hubp_clear_underflow(hubp);
608 		return true;
609 	}
610 	return false;
611 }
612 
dcn10_enable_power_gating_plane(struct dce_hwseq * hws,bool enable)613 void dcn10_enable_power_gating_plane(
614 	struct dce_hwseq *hws,
615 	bool enable)
616 {
617 	bool force_on = true; /* disable power gating */
618 
619 	if (enable)
620 		force_on = false;
621 
622 	/* DCHUBP0/1/2/3 */
623 	REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_FORCEON, force_on);
624 	REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_FORCEON, force_on);
625 	REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_FORCEON, force_on);
626 	REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_FORCEON, force_on);
627 
628 	/* DPP0/1/2/3 */
629 	REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_FORCEON, force_on);
630 	REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_FORCEON, force_on);
631 	REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_FORCEON, force_on);
632 	REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_FORCEON, force_on);
633 }
634 
dcn10_disable_vga(struct dce_hwseq * hws)635 void dcn10_disable_vga(
636 	struct dce_hwseq *hws)
637 {
638 	unsigned int in_vga1_mode = 0;
639 	unsigned int in_vga2_mode = 0;
640 	unsigned int in_vga3_mode = 0;
641 	unsigned int in_vga4_mode = 0;
642 
643 	REG_GET(D1VGA_CONTROL, D1VGA_MODE_ENABLE, &in_vga1_mode);
644 	REG_GET(D2VGA_CONTROL, D2VGA_MODE_ENABLE, &in_vga2_mode);
645 	REG_GET(D3VGA_CONTROL, D3VGA_MODE_ENABLE, &in_vga3_mode);
646 	REG_GET(D4VGA_CONTROL, D4VGA_MODE_ENABLE, &in_vga4_mode);
647 
648 	if (in_vga1_mode == 0 && in_vga2_mode == 0 &&
649 			in_vga3_mode == 0 && in_vga4_mode == 0)
650 		return;
651 
652 	REG_WRITE(D1VGA_CONTROL, 0);
653 	REG_WRITE(D2VGA_CONTROL, 0);
654 	REG_WRITE(D3VGA_CONTROL, 0);
655 	REG_WRITE(D4VGA_CONTROL, 0);
656 
657 	/* HW Engineer's Notes:
658 	 *  During switch from vga->extended, if we set the VGA_TEST_ENABLE and
659 	 *  then hit the VGA_TEST_RENDER_START, then the DCHUBP timing gets updated correctly.
660 	 *
661 	 *  Then vBIOS will have it poll for the VGA_TEST_RENDER_DONE and unset
662 	 *  VGA_TEST_ENABLE, to leave it in the same state as before.
663 	 */
664 	REG_UPDATE(VGA_TEST_CONTROL, VGA_TEST_ENABLE, 1);
665 	REG_UPDATE(VGA_TEST_CONTROL, VGA_TEST_RENDER_START, 1);
666 }
667 
668 /**
669  * dcn10_dpp_pg_control - DPP power gate control.
670  *
671  * @hws: dce_hwseq reference.
672  * @dpp_inst: DPP instance reference.
673  * @power_on: true if we want to enable power gate, false otherwise.
674  *
675  * Enable or disable power gate in the specific DPP instance.
676  */
dcn10_dpp_pg_control(struct dce_hwseq * hws,unsigned int dpp_inst,bool power_on)677 void dcn10_dpp_pg_control(
678 		struct dce_hwseq *hws,
679 		unsigned int dpp_inst,
680 		bool power_on)
681 {
682 	uint32_t power_gate = power_on ? 0 : 1;
683 	uint32_t pwr_status = power_on ? PGFSM_POWER_ON : PGFSM_POWER_OFF;
684 
685 	if (hws->ctx->dc->debug.disable_dpp_power_gate)
686 		return;
687 	if (REG(DOMAIN1_PG_CONFIG) == 0)
688 		return;
689 
690 	switch (dpp_inst) {
691 	case 0: /* DPP0 */
692 		REG_UPDATE(DOMAIN1_PG_CONFIG,
693 				DOMAIN1_POWER_GATE, power_gate);
694 
695 		REG_WAIT(DOMAIN1_PG_STATUS,
696 				DOMAIN1_PGFSM_PWR_STATUS, pwr_status,
697 				1, 1000);
698 		break;
699 	case 1: /* DPP1 */
700 		REG_UPDATE(DOMAIN3_PG_CONFIG,
701 				DOMAIN3_POWER_GATE, power_gate);
702 
703 		REG_WAIT(DOMAIN3_PG_STATUS,
704 				DOMAIN3_PGFSM_PWR_STATUS, pwr_status,
705 				1, 1000);
706 		break;
707 	case 2: /* DPP2 */
708 		REG_UPDATE(DOMAIN5_PG_CONFIG,
709 				DOMAIN5_POWER_GATE, power_gate);
710 
711 		REG_WAIT(DOMAIN5_PG_STATUS,
712 				DOMAIN5_PGFSM_PWR_STATUS, pwr_status,
713 				1, 1000);
714 		break;
715 	case 3: /* DPP3 */
716 		REG_UPDATE(DOMAIN7_PG_CONFIG,
717 				DOMAIN7_POWER_GATE, power_gate);
718 
719 		REG_WAIT(DOMAIN7_PG_STATUS,
720 				DOMAIN7_PGFSM_PWR_STATUS, pwr_status,
721 				1, 1000);
722 		break;
723 	default:
724 		BREAK_TO_DEBUGGER();
725 		break;
726 	}
727 }
728 
729 /**
730  * dcn10_hubp_pg_control - HUBP power gate control.
731  *
732  * @hws: dce_hwseq reference.
733  * @hubp_inst: DPP instance reference.
734  * @power_on: true if we want to enable power gate, false otherwise.
735  *
736  * Enable or disable power gate in the specific HUBP instance.
737  */
dcn10_hubp_pg_control(struct dce_hwseq * hws,unsigned int hubp_inst,bool power_on)738 void dcn10_hubp_pg_control(
739 		struct dce_hwseq *hws,
740 		unsigned int hubp_inst,
741 		bool power_on)
742 {
743 	uint32_t power_gate = power_on ? 0 : 1;
744 	uint32_t pwr_status = power_on ? PGFSM_POWER_ON : PGFSM_POWER_OFF;
745 
746 	if (hws->ctx->dc->debug.disable_hubp_power_gate)
747 		return;
748 	if (REG(DOMAIN0_PG_CONFIG) == 0)
749 		return;
750 
751 	switch (hubp_inst) {
752 	case 0: /* DCHUBP0 */
753 		REG_UPDATE(DOMAIN0_PG_CONFIG,
754 				DOMAIN0_POWER_GATE, power_gate);
755 
756 		REG_WAIT(DOMAIN0_PG_STATUS,
757 				DOMAIN0_PGFSM_PWR_STATUS, pwr_status,
758 				1, 1000);
759 		break;
760 	case 1: /* DCHUBP1 */
761 		REG_UPDATE(DOMAIN2_PG_CONFIG,
762 				DOMAIN2_POWER_GATE, power_gate);
763 
764 		REG_WAIT(DOMAIN2_PG_STATUS,
765 				DOMAIN2_PGFSM_PWR_STATUS, pwr_status,
766 				1, 1000);
767 		break;
768 	case 2: /* DCHUBP2 */
769 		REG_UPDATE(DOMAIN4_PG_CONFIG,
770 				DOMAIN4_POWER_GATE, power_gate);
771 
772 		REG_WAIT(DOMAIN4_PG_STATUS,
773 				DOMAIN4_PGFSM_PWR_STATUS, pwr_status,
774 				1, 1000);
775 		break;
776 	case 3: /* DCHUBP3 */
777 		REG_UPDATE(DOMAIN6_PG_CONFIG,
778 				DOMAIN6_POWER_GATE, power_gate);
779 
780 		REG_WAIT(DOMAIN6_PG_STATUS,
781 				DOMAIN6_PGFSM_PWR_STATUS, pwr_status,
782 				1, 1000);
783 		break;
784 	default:
785 		BREAK_TO_DEBUGGER();
786 		break;
787 	}
788 }
789 
power_on_plane_resources(struct dce_hwseq * hws,int plane_id)790 static void power_on_plane_resources(
791 	struct dce_hwseq *hws,
792 	int plane_id)
793 {
794 	DC_LOGGER_INIT(hws->ctx->logger);
795 
796 	if (hws->funcs.dpp_root_clock_control)
797 		hws->funcs.dpp_root_clock_control(hws, plane_id, true);
798 
799 	if (REG(DC_IP_REQUEST_CNTL)) {
800 		REG_SET(DC_IP_REQUEST_CNTL, 0,
801 				IP_REQUEST_EN, 1);
802 
803 		if (hws->funcs.dpp_pg_control)
804 			hws->funcs.dpp_pg_control(hws, plane_id, true);
805 
806 		if (hws->funcs.hubp_pg_control)
807 			hws->funcs.hubp_pg_control(hws, plane_id, true);
808 
809 		REG_SET(DC_IP_REQUEST_CNTL, 0,
810 				IP_REQUEST_EN, 0);
811 		DC_LOG_DEBUG(
812 				"Un-gated front end for pipe %d\n", plane_id);
813 	}
814 }
815 
undo_DEGVIDCN10_253_wa(struct dc * dc)816 static void undo_DEGVIDCN10_253_wa(struct dc *dc)
817 {
818 	struct dce_hwseq *hws = dc->hwseq;
819 	struct hubp *hubp = dc->res_pool->hubps[0];
820 
821 	if (!hws->wa_state.DEGVIDCN10_253_applied)
822 		return;
823 
824 	hubp->funcs->set_blank(hubp, true);
825 
826 	REG_SET(DC_IP_REQUEST_CNTL, 0,
827 			IP_REQUEST_EN, 1);
828 
829 	hws->funcs.hubp_pg_control(hws, 0, false);
830 	REG_SET(DC_IP_REQUEST_CNTL, 0,
831 			IP_REQUEST_EN, 0);
832 
833 	hws->wa_state.DEGVIDCN10_253_applied = false;
834 }
835 
apply_DEGVIDCN10_253_wa(struct dc * dc)836 static void apply_DEGVIDCN10_253_wa(struct dc *dc)
837 {
838 	struct dce_hwseq *hws = dc->hwseq;
839 	struct hubp *hubp = dc->res_pool->hubps[0];
840 	int i;
841 
842 	if (dc->debug.disable_stutter)
843 		return;
844 
845 	if (!hws->wa.DEGVIDCN10_253)
846 		return;
847 
848 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
849 		if (!dc->res_pool->hubps[i]->power_gated)
850 			return;
851 	}
852 
853 	/* all pipe power gated, apply work around to enable stutter. */
854 
855 	REG_SET(DC_IP_REQUEST_CNTL, 0,
856 			IP_REQUEST_EN, 1);
857 
858 	hws->funcs.hubp_pg_control(hws, 0, true);
859 	REG_SET(DC_IP_REQUEST_CNTL, 0,
860 			IP_REQUEST_EN, 0);
861 
862 	hubp->funcs->set_hubp_blank_en(hubp, false);
863 	hws->wa_state.DEGVIDCN10_253_applied = true;
864 }
865 
dcn10_bios_golden_init(struct dc * dc)866 void dcn10_bios_golden_init(struct dc *dc)
867 {
868 	struct dce_hwseq *hws = dc->hwseq;
869 	struct dc_bios *bp = dc->ctx->dc_bios;
870 	int i;
871 	bool allow_self_fresh_force_enable = true;
872 
873 	if (hws->funcs.s0i3_golden_init_wa && hws->funcs.s0i3_golden_init_wa(dc))
874 		return;
875 
876 	if (dc->res_pool->hubbub->funcs->is_allow_self_refresh_enabled)
877 		allow_self_fresh_force_enable =
878 				dc->res_pool->hubbub->funcs->is_allow_self_refresh_enabled(dc->res_pool->hubbub);
879 
880 
881 	/* WA for making DF sleep when idle after resume from S0i3.
882 	 * DCHUBBUB_ARB_ALLOW_SELF_REFRESH_FORCE_ENABLE is set to 1 by
883 	 * command table, if DCHUBBUB_ARB_ALLOW_SELF_REFRESH_FORCE_ENABLE = 0
884 	 * before calling command table and it changed to 1 after,
885 	 * it should be set back to 0.
886 	 */
887 
888 	/* initialize dcn global */
889 	bp->funcs->enable_disp_power_gating(bp,
890 			CONTROLLER_ID_D0, ASIC_PIPE_INIT);
891 
892 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
893 		/* initialize dcn per pipe */
894 		bp->funcs->enable_disp_power_gating(bp,
895 				CONTROLLER_ID_D0 + i, ASIC_PIPE_DISABLE);
896 	}
897 
898 	if (dc->res_pool->hubbub->funcs->allow_self_refresh_control)
899 		if (allow_self_fresh_force_enable == false &&
900 				dc->res_pool->hubbub->funcs->is_allow_self_refresh_enabled(dc->res_pool->hubbub))
901 			dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub,
902 										!dc->res_pool->hubbub->ctx->dc->debug.disable_stutter);
903 
904 }
905 
false_optc_underflow_wa(struct dc * dc,const struct dc_stream_state * stream,struct timing_generator * tg)906 static void false_optc_underflow_wa(
907 		struct dc *dc,
908 		const struct dc_stream_state *stream,
909 		struct timing_generator *tg)
910 {
911 	int i;
912 	bool underflow;
913 
914 	if (!dc->hwseq->wa.false_optc_underflow)
915 		return;
916 
917 	underflow = tg->funcs->is_optc_underflow_occurred(tg);
918 
919 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
920 		struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
921 
922 		if (old_pipe_ctx->stream != stream)
923 			continue;
924 
925 		dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, old_pipe_ctx);
926 	}
927 
928 	if (tg->funcs->set_blank_data_double_buffer)
929 		tg->funcs->set_blank_data_double_buffer(tg, true);
930 
931 	if (tg->funcs->is_optc_underflow_occurred(tg) && !underflow)
932 		tg->funcs->clear_optc_underflow(tg);
933 }
934 
calculate_vready_offset_for_group(struct pipe_ctx * pipe)935 static int calculate_vready_offset_for_group(struct pipe_ctx *pipe)
936 {
937 	struct pipe_ctx *other_pipe;
938 	int vready_offset = pipe->pipe_dlg_param.vready_offset;
939 
940 	/* Always use the largest vready_offset of all connected pipes */
941 	for (other_pipe = pipe->bottom_pipe; other_pipe != NULL; other_pipe = other_pipe->bottom_pipe) {
942 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
943 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
944 	}
945 	for (other_pipe = pipe->top_pipe; other_pipe != NULL; other_pipe = other_pipe->top_pipe) {
946 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
947 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
948 	}
949 	for (other_pipe = pipe->next_odm_pipe; other_pipe != NULL; other_pipe = other_pipe->next_odm_pipe) {
950 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
951 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
952 	}
953 	for (other_pipe = pipe->prev_odm_pipe; other_pipe != NULL; other_pipe = other_pipe->prev_odm_pipe) {
954 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
955 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
956 	}
957 
958 	return vready_offset;
959 }
960 
dcn10_enable_stream_timing(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)961 enum dc_status dcn10_enable_stream_timing(
962 		struct pipe_ctx *pipe_ctx,
963 		struct dc_state *context,
964 		struct dc *dc)
965 {
966 	struct dc_stream_state *stream = pipe_ctx->stream;
967 	enum dc_color_space color_space;
968 	struct tg_color black_color = {0};
969 
970 	/* by upper caller loop, pipe0 is parent pipe and be called first.
971 	 * back end is set up by for pipe0. Other children pipe share back end
972 	 * with pipe 0. No program is needed.
973 	 */
974 	if (pipe_ctx->top_pipe != NULL)
975 		return DC_OK;
976 
977 	/* TODO check if timing_changed, disable stream if timing changed */
978 
979 	/* HW program guide assume display already disable
980 	 * by unplug sequence. OTG assume stop.
981 	 */
982 	pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, true);
983 
984 	if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
985 			pipe_ctx->clock_source,
986 			&pipe_ctx->stream_res.pix_clk_params,
987 			dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
988 			&pipe_ctx->pll_settings)) {
989 		BREAK_TO_DEBUGGER();
990 		return DC_ERROR_UNEXPECTED;
991 	}
992 
993 	if (dc_is_hdmi_tmds_signal(stream->signal)) {
994 		stream->link->phy_state.symclk_ref_cnts.otg = 1;
995 		if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
996 			stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
997 		else
998 			stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
999 	}
1000 
1001 	pipe_ctx->stream_res.tg->funcs->program_timing(
1002 			pipe_ctx->stream_res.tg,
1003 			&stream->timing,
1004 			calculate_vready_offset_for_group(pipe_ctx),
1005 			pipe_ctx->pipe_dlg_param.vstartup_start,
1006 			pipe_ctx->pipe_dlg_param.vupdate_offset,
1007 			pipe_ctx->pipe_dlg_param.vupdate_width,
1008 			pipe_ctx->pipe_dlg_param.pstate_keepout,
1009 			pipe_ctx->stream->signal,
1010 			true);
1011 
1012 #if 0 /* move to after enable_crtc */
1013 	/* TODO: OPP FMT, ABM. etc. should be done here. */
1014 	/* or FPGA now. instance 0 only. TODO: move to opp.c */
1015 
1016 	inst_offset = reg_offsets[pipe_ctx->stream_res.tg->inst].fmt;
1017 
1018 	pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1019 				pipe_ctx->stream_res.opp,
1020 				&stream->bit_depth_params,
1021 				&stream->clamping);
1022 #endif
1023 	/* program otg blank color */
1024 	color_space = stream->output_color_space;
1025 	color_space_to_black_color(dc, color_space, &black_color);
1026 
1027 	/*
1028 	 * The way 420 is packed, 2 channels carry Y component, 1 channel
1029 	 * alternate between Cb and Cr, so both channels need the pixel
1030 	 * value for Y
1031 	 */
1032 	if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1033 		black_color.color_r_cr = black_color.color_g_y;
1034 
1035 	if (pipe_ctx->stream_res.tg->funcs->set_blank_color)
1036 		pipe_ctx->stream_res.tg->funcs->set_blank_color(
1037 				pipe_ctx->stream_res.tg,
1038 				&black_color);
1039 
1040 	if (pipe_ctx->stream_res.tg->funcs->is_blanked &&
1041 			!pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg)) {
1042 		pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1043 		hwss_wait_for_blank_complete(pipe_ctx->stream_res.tg);
1044 		false_optc_underflow_wa(dc, pipe_ctx->stream, pipe_ctx->stream_res.tg);
1045 	}
1046 
1047 	/* VTG is  within DCHUB command block. DCFCLK is always on */
1048 	if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(pipe_ctx->stream_res.tg)) {
1049 		BREAK_TO_DEBUGGER();
1050 		return DC_ERROR_UNEXPECTED;
1051 	}
1052 
1053 	/* TODO program crtc source select for non-virtual signal*/
1054 	/* TODO program FMT */
1055 	/* TODO setup link_enc */
1056 	/* TODO set stream attributes */
1057 	/* TODO program audio */
1058 	/* TODO enable stream if timing changed */
1059 	/* TODO unblank stream if DP */
1060 
1061 	return DC_OK;
1062 }
1063 
dcn10_reset_back_end_for_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx,struct dc_state * context)1064 static void dcn10_reset_back_end_for_pipe(
1065 		struct dc *dc,
1066 		struct pipe_ctx *pipe_ctx,
1067 		struct dc_state *context)
1068 {
1069 	int i;
1070 	struct dc_link *link;
1071 	DC_LOGGER_INIT(dc->ctx->logger);
1072 	if (pipe_ctx->stream_res.stream_enc == NULL) {
1073 		pipe_ctx->stream = NULL;
1074 		return;
1075 	}
1076 
1077 	link = pipe_ctx->stream->link;
1078 	/* DPMS may already disable or */
1079 	/* dpms_off status is incorrect due to fastboot
1080 	 * feature. When system resume from S4 with second
1081 	 * screen only, the dpms_off would be true but
1082 	 * VBIOS lit up eDP, so check link status too.
1083 	 */
1084 	if (!pipe_ctx->stream->dpms_off || link->link_status.link_active)
1085 		dc->link_srv->set_dpms_off(pipe_ctx);
1086 	else if (pipe_ctx->stream_res.audio)
1087 		dc->hwss.disable_audio_stream(pipe_ctx);
1088 
1089 	if (pipe_ctx->stream_res.audio) {
1090 		/*disable az_endpoint*/
1091 		pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
1092 
1093 		/*free audio*/
1094 		if (dc->caps.dynamic_audio == true) {
1095 			/*we have to dynamic arbitrate the audio endpoints*/
1096 			/*we free the resource, need reset is_audio_acquired*/
1097 			update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
1098 					pipe_ctx->stream_res.audio, false);
1099 			pipe_ctx->stream_res.audio = NULL;
1100 		}
1101 	}
1102 
1103 	/* by upper caller loop, parent pipe: pipe0, will be reset last.
1104 	 * back end share by all pipes and will be disable only when disable
1105 	 * parent pipe.
1106 	 */
1107 	if (pipe_ctx->top_pipe == NULL) {
1108 
1109 		if (pipe_ctx->stream_res.abm)
1110 			dc->hwss.set_abm_immediate_disable(pipe_ctx);
1111 
1112 		pipe_ctx->stream_res.tg->funcs->disable_crtc(pipe_ctx->stream_res.tg);
1113 
1114 		pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, false);
1115 		set_drr_and_clear_adjust_pending(pipe_ctx, pipe_ctx->stream, NULL);
1116 		if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal))
1117 			pipe_ctx->stream->link->phy_state.symclk_ref_cnts.otg = 0;
1118 	}
1119 
1120 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1121 		if (&dc->current_state->res_ctx.pipe_ctx[i] == pipe_ctx)
1122 			break;
1123 
1124 	if (i == dc->res_pool->pipe_count)
1125 		return;
1126 
1127 	pipe_ctx->stream = NULL;
1128 	DC_LOG_DEBUG("Reset back end for pipe %d, tg:%d\n",
1129 					pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst);
1130 }
1131 
dcn10_hw_wa_force_recovery(struct dc * dc)1132 static bool dcn10_hw_wa_force_recovery(struct dc *dc)
1133 {
1134 	struct hubp *hubp ;
1135 	unsigned int i;
1136 
1137 	if (!dc->debug.recovery_enabled)
1138 		return false;
1139 	/*
1140 	DCHUBP_CNTL:HUBP_BLANK_EN=1
1141 	DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=1
1142 	DCHUBP_CNTL:HUBP_DISABLE=1
1143 	DCHUBP_CNTL:HUBP_DISABLE=0
1144 	DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=0
1145 	DCSURF_PRIMARY_SURFACE_ADDRESS
1146 	DCHUBP_CNTL:HUBP_BLANK_EN=0
1147 	*/
1148 
1149 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1150 		struct pipe_ctx *pipe_ctx =
1151 			&dc->current_state->res_ctx.pipe_ctx[i];
1152 		if (pipe_ctx != NULL) {
1153 			hubp = pipe_ctx->plane_res.hubp;
1154 			/*DCHUBP_CNTL:HUBP_BLANK_EN=1*/
1155 			if (hubp != NULL && hubp->funcs->set_hubp_blank_en)
1156 				hubp->funcs->set_hubp_blank_en(hubp, true);
1157 		}
1158 	}
1159 	/*DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=1*/
1160 	hubbub1_soft_reset(dc->res_pool->hubbub, true);
1161 
1162 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1163 		struct pipe_ctx *pipe_ctx =
1164 			&dc->current_state->res_ctx.pipe_ctx[i];
1165 		if (pipe_ctx != NULL) {
1166 			hubp = pipe_ctx->plane_res.hubp;
1167 			/*DCHUBP_CNTL:HUBP_DISABLE=1*/
1168 			if (hubp != NULL && hubp->funcs->hubp_disable_control)
1169 				hubp->funcs->hubp_disable_control(hubp, true);
1170 		}
1171 	}
1172 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1173 		struct pipe_ctx *pipe_ctx =
1174 			&dc->current_state->res_ctx.pipe_ctx[i];
1175 		if (pipe_ctx != NULL) {
1176 			hubp = pipe_ctx->plane_res.hubp;
1177 			/*DCHUBP_CNTL:HUBP_DISABLE=0*/
1178 			if (hubp != NULL && hubp->funcs->hubp_disable_control)
1179 				hubp->funcs->hubp_disable_control(hubp, true);
1180 		}
1181 	}
1182 	/*DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=0*/
1183 	hubbub1_soft_reset(dc->res_pool->hubbub, false);
1184 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1185 		struct pipe_ctx *pipe_ctx =
1186 			&dc->current_state->res_ctx.pipe_ctx[i];
1187 		if (pipe_ctx != NULL) {
1188 			hubp = pipe_ctx->plane_res.hubp;
1189 			/*DCHUBP_CNTL:HUBP_BLANK_EN=0*/
1190 			if (hubp != NULL && hubp->funcs->set_hubp_blank_en)
1191 				hubp->funcs->set_hubp_blank_en(hubp, true);
1192 		}
1193 	}
1194 	return true;
1195 
1196 }
1197 
dcn10_verify_allow_pstate_change_high(struct dc * dc)1198 void dcn10_verify_allow_pstate_change_high(struct dc *dc)
1199 {
1200 	struct hubbub *hubbub = dc->res_pool->hubbub;
1201 	static bool should_log_hw_state; /* prevent hw state log by default */
1202 
1203 	if (!hubbub->funcs->verify_allow_pstate_change_high)
1204 		return;
1205 
1206 	if (!hubbub->funcs->verify_allow_pstate_change_high(hubbub)) {
1207 		int i = 0;
1208 
1209 		if (should_log_hw_state)
1210 			dcn10_log_hw_state(dc, NULL);
1211 
1212 		TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
1213 		BREAK_TO_DEBUGGER();
1214 		if (dcn10_hw_wa_force_recovery(dc)) {
1215 			/*check again*/
1216 			if (!hubbub->funcs->verify_allow_pstate_change_high(hubbub))
1217 				BREAK_TO_DEBUGGER();
1218 		}
1219 	}
1220 }
1221 
1222 /* trigger HW to start disconnect plane from stream on the next vsync */
dcn10_plane_atomic_disconnect(struct dc * dc,struct dc_state * state,struct pipe_ctx * pipe_ctx)1223 void dcn10_plane_atomic_disconnect(struct dc *dc,
1224 		struct dc_state *state,
1225 		struct pipe_ctx *pipe_ctx)
1226 {
1227 	struct dce_hwseq *hws = dc->hwseq;
1228 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
1229 	int dpp_id = pipe_ctx->plane_res.dpp->inst;
1230 	struct mpc *mpc = dc->res_pool->mpc;
1231 	struct mpc_tree *mpc_tree_params;
1232 	struct mpcc *mpcc_to_remove = NULL;
1233 	struct output_pixel_processor *opp = pipe_ctx->stream_res.opp;
1234 
1235 	mpc_tree_params = &(opp->mpc_tree_params);
1236 	mpcc_to_remove = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, dpp_id);
1237 
1238 	/*Already reset*/
1239 	if (mpcc_to_remove == NULL)
1240 		return;
1241 
1242 	mpc->funcs->remove_mpcc(mpc, mpc_tree_params, mpcc_to_remove);
1243 	// Phantom pipes have OTG disabled by default, so MPCC_STATUS will never assert idle,
1244 	// so don't wait for MPCC_IDLE in the programming sequence
1245 	if (dc_state_get_pipe_subvp_type(state, pipe_ctx) != SUBVP_PHANTOM)
1246 		opp->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
1247 
1248 	dc->optimized_required = true;
1249 
1250 	if (hubp->funcs->hubp_disconnect)
1251 		hubp->funcs->hubp_disconnect(hubp);
1252 
1253 	if (dc->debug.sanity_checks)
1254 		hws->funcs.verify_allow_pstate_change_high(dc);
1255 }
1256 
1257 /**
1258  * dcn10_plane_atomic_power_down - Power down plane components.
1259  *
1260  * @dc: dc struct reference. used for grab hwseq.
1261  * @dpp: dpp struct reference.
1262  * @hubp: hubp struct reference.
1263  *
1264  * Keep in mind that this operation requires a power gate configuration;
1265  * however, requests for switch power gate are precisely controlled to avoid
1266  * problems. For this reason, power gate request is usually disabled. This
1267  * function first needs to enable the power gate request before disabling DPP
1268  * and HUBP. Finally, it disables the power gate request again.
1269  */
dcn10_plane_atomic_power_down(struct dc * dc,struct dpp * dpp,struct hubp * hubp)1270 void dcn10_plane_atomic_power_down(struct dc *dc,
1271 		struct dpp *dpp,
1272 		struct hubp *hubp)
1273 {
1274 	struct dce_hwseq *hws = dc->hwseq;
1275 	DC_LOGGER_INIT(dc->ctx->logger);
1276 
1277 	if (REG(DC_IP_REQUEST_CNTL)) {
1278 		REG_SET(DC_IP_REQUEST_CNTL, 0,
1279 				IP_REQUEST_EN, 1);
1280 
1281 		if (hws->funcs.dpp_pg_control)
1282 			hws->funcs.dpp_pg_control(hws, dpp->inst, false);
1283 
1284 		if (hws->funcs.hubp_pg_control)
1285 			hws->funcs.hubp_pg_control(hws, hubp->inst, false);
1286 
1287 		hubp->funcs->hubp_reset(hubp);
1288 		dpp->funcs->dpp_reset(dpp);
1289 
1290 		REG_SET(DC_IP_REQUEST_CNTL, 0,
1291 				IP_REQUEST_EN, 0);
1292 		DC_LOG_DEBUG(
1293 				"Power gated front end %d\n", hubp->inst);
1294 	}
1295 
1296 	if (hws->funcs.dpp_root_clock_control)
1297 		hws->funcs.dpp_root_clock_control(hws, dpp->inst, false);
1298 }
1299 
1300 /* disable HW used by plane.
1301  * note:  cannot disable until disconnect is complete
1302  */
dcn10_plane_atomic_disable(struct dc * dc,struct pipe_ctx * pipe_ctx)1303 void dcn10_plane_atomic_disable(struct dc *dc, struct pipe_ctx *pipe_ctx)
1304 {
1305 	struct dce_hwseq *hws = dc->hwseq;
1306 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
1307 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
1308 	int opp_id = hubp->opp_id;
1309 
1310 	dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe_ctx);
1311 
1312 	hubp->funcs->hubp_clk_cntl(hubp, false);
1313 
1314 	dpp->funcs->dpp_dppclk_control(dpp, false, false);
1315 
1316 	if (opp_id != 0xf && pipe_ctx->stream_res.opp->mpc_tree_params.opp_list == NULL)
1317 		pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
1318 				pipe_ctx->stream_res.opp,
1319 				false);
1320 
1321 	hubp->power_gated = true;
1322 	dc->optimized_required = false; /* We're powering off, no need to optimize */
1323 
1324 	hws->funcs.plane_atomic_power_down(dc,
1325 			pipe_ctx->plane_res.dpp,
1326 			pipe_ctx->plane_res.hubp);
1327 
1328 	pipe_ctx->stream = NULL;
1329 	memset(&pipe_ctx->stream_res, 0, sizeof(pipe_ctx->stream_res));
1330 	memset(&pipe_ctx->plane_res, 0, sizeof(pipe_ctx->plane_res));
1331 	pipe_ctx->top_pipe = NULL;
1332 	pipe_ctx->bottom_pipe = NULL;
1333 	pipe_ctx->plane_state = NULL;
1334 }
1335 
dcn10_disable_plane(struct dc * dc,struct dc_state * state,struct pipe_ctx * pipe_ctx)1336 void dcn10_disable_plane(struct dc *dc, struct dc_state *state, struct pipe_ctx *pipe_ctx)
1337 {
1338 	struct dce_hwseq *hws = dc->hwseq;
1339 	DC_LOGGER_INIT(dc->ctx->logger);
1340 
1341 	if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated)
1342 		return;
1343 
1344 	hws->funcs.plane_atomic_disable(dc, pipe_ctx);
1345 
1346 	apply_DEGVIDCN10_253_wa(dc);
1347 
1348 	DC_LOG_DC("Power down front end %d\n",
1349 					pipe_ctx->pipe_idx);
1350 }
1351 
dcn10_init_pipes(struct dc * dc,struct dc_state * context)1352 void dcn10_init_pipes(struct dc *dc, struct dc_state *context)
1353 {
1354 	int i;
1355 	struct dce_hwseq *hws = dc->hwseq;
1356 	struct hubbub *hubbub = dc->res_pool->hubbub;
1357 	bool can_apply_seamless_boot = false;
1358 	bool tg_enabled[MAX_PIPES] = {false};
1359 
1360 	for (i = 0; i < context->stream_count; i++) {
1361 		if (context->streams[i]->apply_seamless_boot_optimization) {
1362 			can_apply_seamless_boot = true;
1363 			break;
1364 		}
1365 	}
1366 
1367 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1368 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
1369 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1370 
1371 		/* There is assumption that pipe_ctx is not mapping irregularly
1372 		 * to non-preferred front end. If pipe_ctx->stream is not NULL,
1373 		 * we will use the pipe, so don't disable
1374 		 */
1375 		if (pipe_ctx->stream != NULL && can_apply_seamless_boot)
1376 			continue;
1377 
1378 		/* Blank controller using driver code instead of
1379 		 * command table.
1380 		 */
1381 		if (tg->funcs->is_tg_enabled(tg)) {
1382 			if (hws->funcs.init_blank != NULL) {
1383 				hws->funcs.init_blank(dc, tg);
1384 				tg->funcs->lock(tg);
1385 			} else {
1386 				tg->funcs->lock(tg);
1387 				tg->funcs->set_blank(tg, true);
1388 				hwss_wait_for_blank_complete(tg);
1389 			}
1390 		}
1391 	}
1392 
1393 	/* Reset det size */
1394 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1395 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1396 		struct hubp *hubp = dc->res_pool->hubps[i];
1397 
1398 		/* Do not need to reset for seamless boot */
1399 		if (pipe_ctx->stream != NULL && can_apply_seamless_boot)
1400 			continue;
1401 
1402 		if (hubbub && hubp) {
1403 			if (hubbub->funcs->program_det_size)
1404 				hubbub->funcs->program_det_size(hubbub, hubp->inst, 0);
1405 			if (hubbub->funcs->program_det_segments)
1406 				hubbub->funcs->program_det_segments(hubbub, hubp->inst, 0);
1407 		}
1408 	}
1409 
1410 	/* num_opp will be equal to number of mpcc */
1411 	for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
1412 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1413 
1414 		/* Cannot reset the MPC mux if seamless boot */
1415 		if (pipe_ctx->stream != NULL && can_apply_seamless_boot)
1416 			continue;
1417 
1418 		dc->res_pool->mpc->funcs->mpc_init_single_inst(
1419 				dc->res_pool->mpc, i);
1420 	}
1421 
1422 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1423 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
1424 		struct hubp *hubp = dc->res_pool->hubps[i];
1425 		struct dpp *dpp = dc->res_pool->dpps[i];
1426 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1427 
1428 		/* There is assumption that pipe_ctx is not mapping irregularly
1429 		 * to non-preferred front end. If pipe_ctx->stream is not NULL,
1430 		 * we will use the pipe, so don't disable
1431 		 */
1432 		if (can_apply_seamless_boot &&
1433 			pipe_ctx->stream != NULL &&
1434 			pipe_ctx->stream_res.tg->funcs->is_tg_enabled(
1435 				pipe_ctx->stream_res.tg)) {
1436 			// Enable double buffering for OTG_BLANK no matter if
1437 			// seamless boot is enabled or not to suppress global sync
1438 			// signals when OTG blanked. This is to prevent pipe from
1439 			// requesting data while in PSR.
1440 			tg->funcs->tg_init(tg);
1441 			hubp->power_gated = true;
1442 			tg_enabled[i] = true;
1443 			continue;
1444 		}
1445 
1446 		/* Disable on the current state so the new one isn't cleared. */
1447 		pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1448 
1449 		hubp->funcs->hubp_reset(hubp);
1450 		dpp->funcs->dpp_reset(dpp);
1451 
1452 		pipe_ctx->stream_res.tg = tg;
1453 		pipe_ctx->pipe_idx = i;
1454 
1455 		pipe_ctx->plane_res.hubp = hubp;
1456 		pipe_ctx->plane_res.dpp = dpp;
1457 		pipe_ctx->plane_res.mpcc_inst = dpp->inst;
1458 		hubp->mpcc_id = dpp->inst;
1459 		hubp->opp_id = OPP_ID_INVALID;
1460 		hubp->power_gated = false;
1461 
1462 		dc->res_pool->opps[i]->mpc_tree_params.opp_id = dc->res_pool->opps[i]->inst;
1463 		dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
1464 		dc->res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
1465 		pipe_ctx->stream_res.opp = dc->res_pool->opps[i];
1466 
1467 		hws->funcs.plane_atomic_disconnect(dc, context, pipe_ctx);
1468 
1469 		if (tg->funcs->is_tg_enabled(tg))
1470 			tg->funcs->unlock(tg);
1471 
1472 		dc->hwss.disable_plane(dc, context, pipe_ctx);
1473 
1474 		pipe_ctx->stream_res.tg = NULL;
1475 		pipe_ctx->plane_res.hubp = NULL;
1476 
1477 		if (tg->funcs->is_tg_enabled(tg)) {
1478 			if (tg->funcs->init_odm)
1479 				tg->funcs->init_odm(tg);
1480 		}
1481 
1482 		tg->funcs->tg_init(tg);
1483 	}
1484 
1485 	/* Clean up MPC tree */
1486 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1487 		if (tg_enabled[i]) {
1488 			if (dc->res_pool->opps[i]->mpc_tree_params.opp_list) {
1489 				if (dc->res_pool->opps[i]->mpc_tree_params.opp_list->mpcc_bot) {
1490 					int bot_id = dc->res_pool->opps[i]->mpc_tree_params.opp_list->mpcc_bot->mpcc_id;
1491 
1492 					if ((bot_id < MAX_MPCC) && (bot_id < MAX_PIPES) && (!tg_enabled[bot_id]))
1493 						dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
1494 				}
1495 			}
1496 		}
1497 	}
1498 
1499 	/* Power gate DSCs */
1500 	if (hws->funcs.dsc_pg_control != NULL) {
1501 		uint32_t num_opps = 0;
1502 		uint32_t opp_id_src0 = OPP_ID_INVALID;
1503 		uint32_t opp_id_src1 = OPP_ID_INVALID;
1504 
1505 		// Step 1: To find out which OPTC is running & OPTC DSC is ON
1506 		// We can't use res_pool->res_cap->num_timing_generator to check
1507 		// Because it records display pipes default setting built in driver,
1508 		// not display pipes of the current chip.
1509 		// Some ASICs would be fused display pipes less than the default setting.
1510 		// In dcnxx_resource_construct function, driver would obatin real information.
1511 		for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1512 			uint32_t optc_dsc_state = 0;
1513 			struct timing_generator *tg = dc->res_pool->timing_generators[i];
1514 
1515 			if (tg->funcs->is_tg_enabled(tg)) {
1516 				if (tg->funcs->get_dsc_status)
1517 					tg->funcs->get_dsc_status(tg, &optc_dsc_state);
1518 				// Only one OPTC with DSC is ON, so if we got one result, we would exit this block.
1519 				// non-zero value is DSC enabled
1520 				if (optc_dsc_state != 0) {
1521 					tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
1522 					break;
1523 				}
1524 			}
1525 		}
1526 
1527 		// Step 2: To power down DSC but skip DSC  of running OPTC
1528 		for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) {
1529 			struct dcn_dsc_state s  = {0};
1530 
1531 			dc->res_pool->dscs[i]->funcs->dsc_read_state(dc->res_pool->dscs[i], &s);
1532 
1533 			if ((s.dsc_opp_source == opp_id_src0 || s.dsc_opp_source == opp_id_src1) &&
1534 				s.dsc_clock_en && s.dsc_fw_en)
1535 				continue;
1536 
1537 			hws->funcs.dsc_pg_control(hws, dc->res_pool->dscs[i]->inst, false);
1538 		}
1539 	}
1540 }
1541 
dcn10_init_hw(struct dc * dc)1542 void dcn10_init_hw(struct dc *dc)
1543 {
1544 	int i;
1545 	struct abm *abm = dc->res_pool->abm;
1546 	struct dmcu *dmcu = dc->res_pool->dmcu;
1547 	struct dce_hwseq *hws = dc->hwseq;
1548 	struct dc_bios *dcb = dc->ctx->dc_bios;
1549 	struct resource_pool *res_pool = dc->res_pool;
1550 	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
1551 	uint32_t user_level = MAX_BACKLIGHT_LEVEL;
1552 	bool   is_optimized_init_done = false;
1553 
1554 	if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
1555 		dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
1556 
1557 	/* Align bw context with hw config when system resume. */
1558 	if (dc->clk_mgr && dc->clk_mgr->clks.dispclk_khz != 0 && dc->clk_mgr->clks.dppclk_khz != 0) {
1559 		dc->current_state->bw_ctx.bw.dcn.clk.dispclk_khz = dc->clk_mgr->clks.dispclk_khz;
1560 		dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz = dc->clk_mgr->clks.dppclk_khz;
1561 	}
1562 
1563 	// Initialize the dccg
1564 	if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->dccg_init)
1565 		dc->res_pool->dccg->funcs->dccg_init(res_pool->dccg);
1566 
1567 	if (!dcb->funcs->is_accelerated_mode(dcb))
1568 		hws->funcs.disable_vga(dc->hwseq);
1569 
1570 	if (!dc_dmub_srv_optimized_init_done(dc->ctx->dmub_srv))
1571 		hws->funcs.bios_golden_init(dc);
1572 
1573 
1574 	if (dc->ctx->dc_bios->fw_info_valid) {
1575 		res_pool->ref_clocks.xtalin_clock_inKhz =
1576 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
1577 
1578 		if (res_pool->dccg && res_pool->hubbub) {
1579 
1580 			(res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg,
1581 					dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency,
1582 					&res_pool->ref_clocks.dccg_ref_clock_inKhz);
1583 
1584 			(res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub,
1585 					res_pool->ref_clocks.dccg_ref_clock_inKhz,
1586 					&res_pool->ref_clocks.dchub_ref_clock_inKhz);
1587 		} else {
1588 			// Not all ASICs have DCCG sw component
1589 			res_pool->ref_clocks.dccg_ref_clock_inKhz =
1590 					res_pool->ref_clocks.xtalin_clock_inKhz;
1591 			res_pool->ref_clocks.dchub_ref_clock_inKhz =
1592 					res_pool->ref_clocks.xtalin_clock_inKhz;
1593 		}
1594 	} else
1595 		ASSERT_CRITICAL(false);
1596 
1597 	for (i = 0; i < dc->link_count; i++) {
1598 		/* Power up AND update implementation according to the
1599 		 * required signal (which may be different from the
1600 		 * default signal on connector).
1601 		 */
1602 		struct dc_link *link = dc->links[i];
1603 
1604 		if (!is_optimized_init_done)
1605 			link->link_enc->funcs->hw_init(link->link_enc);
1606 
1607 		/* Check for enabled DIG to identify enabled display */
1608 		if (link->link_enc->funcs->is_dig_enabled &&
1609 			link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1610 			link->link_status.link_active = true;
1611 			if (link->link_enc->funcs->fec_is_active &&
1612 					link->link_enc->funcs->fec_is_active(link->link_enc))
1613 				link->fec_state = dc_link_fec_enabled;
1614 		}
1615 	}
1616 
1617 	/* we want to turn off all dp displays before doing detection */
1618 	dc->link_srv->blank_all_dp_displays(dc);
1619 
1620 	if (hws->funcs.enable_power_gating_plane)
1621 		hws->funcs.enable_power_gating_plane(dc->hwseq, true);
1622 
1623 	/* If taking control over from VBIOS, we may want to optimize our first
1624 	 * mode set, so we need to skip powering down pipes until we know which
1625 	 * pipes we want to use.
1626 	 * Otherwise, if taking control is not possible, we need to power
1627 	 * everything down.
1628 	 */
1629 	if (dcb->funcs->is_accelerated_mode(dcb) || !dc->config.seamless_boot_edp_requested) {
1630 		if (!is_optimized_init_done) {
1631 			hws->funcs.init_pipes(dc, dc->current_state);
1632 			if (dc->res_pool->hubbub->funcs->allow_self_refresh_control)
1633 				dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub,
1634 						!dc->res_pool->hubbub->ctx->dc->debug.disable_stutter);
1635 		}
1636 	}
1637 
1638 	if (!is_optimized_init_done) {
1639 
1640 		for (i = 0; i < res_pool->audio_count; i++) {
1641 			struct audio *audio = res_pool->audios[i];
1642 
1643 			audio->funcs->hw_init(audio);
1644 		}
1645 
1646 		for (i = 0; i < dc->link_count; i++) {
1647 			struct dc_link *link = dc->links[i];
1648 
1649 			if (link->panel_cntl) {
1650 				backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
1651 				user_level = link->panel_cntl->stored_backlight_registers.USER_LEVEL;
1652 			}
1653 		}
1654 
1655 		if (abm != NULL)
1656 			abm->funcs->abm_init(abm, backlight, user_level);
1657 
1658 		if (dmcu != NULL && !dmcu->auto_load_dmcu)
1659 			dmcu->funcs->dmcu_init(dmcu);
1660 	}
1661 
1662 	if (abm != NULL && dmcu != NULL)
1663 		abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
1664 
1665 	/* power AFMT HDMI memory TODO: may move to dis/en output save power*/
1666 	if (!is_optimized_init_done)
1667 		REG_WRITE(DIO_MEM_PWR_CTRL, 0);
1668 
1669 	if (!dc->debug.disable_clock_gate) {
1670 		/* enable all DCN clock gating */
1671 		REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);
1672 
1673 		REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);
1674 
1675 		REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
1676 	}
1677 
1678 	if (dc->clk_mgr && dc->clk_mgr->funcs->notify_wm_ranges)
1679 		dc->clk_mgr->funcs->notify_wm_ranges(dc->clk_mgr);
1680 }
1681 
1682 /* In headless boot cases, DIG may be turned
1683  * on which causes HW/SW discrepancies.
1684  * To avoid this, power down hardware on boot
1685  * if DIG is turned on
1686  */
dcn10_power_down_on_boot(struct dc * dc)1687 void dcn10_power_down_on_boot(struct dc *dc)
1688 {
1689 	struct dc_link *edp_links[MAX_NUM_EDP];
1690 	struct dc_link *edp_link = NULL;
1691 	int edp_num;
1692 	int i = 0;
1693 
1694 	dc_get_edp_links(dc, edp_links, &edp_num);
1695 	if (edp_num)
1696 		edp_link = edp_links[0];
1697 
1698 	if (edp_link && edp_link->link_enc->funcs->is_dig_enabled &&
1699 			edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
1700 			dc->hwseq->funcs.edp_backlight_control &&
1701 			dc->hwseq->funcs.power_down &&
1702 			dc->hwss.edp_power_control) {
1703 		dc->hwseq->funcs.edp_backlight_control(edp_link, false);
1704 		dc->hwseq->funcs.power_down(dc);
1705 		dc->hwss.edp_power_control(edp_link, false);
1706 	} else {
1707 		for (i = 0; i < dc->link_count; i++) {
1708 			struct dc_link *link = dc->links[i];
1709 
1710 			if (link->link_enc && link->link_enc->funcs->is_dig_enabled &&
1711 					link->link_enc->funcs->is_dig_enabled(link->link_enc) &&
1712 					dc->hwseq->funcs.power_down) {
1713 				dc->hwseq->funcs.power_down(dc);
1714 				break;
1715 			}
1716 
1717 		}
1718 	}
1719 
1720 	/*
1721 	 * Call update_clocks with empty context
1722 	 * to send DISPLAY_OFF
1723 	 * Otherwise DISPLAY_OFF may not be asserted
1724 	 */
1725 	if (dc->clk_mgr->funcs->set_low_power_state)
1726 		dc->clk_mgr->funcs->set_low_power_state(dc->clk_mgr);
1727 }
1728 
dcn10_reset_hw_ctx_wrap(struct dc * dc,struct dc_state * context)1729 void dcn10_reset_hw_ctx_wrap(
1730 		struct dc *dc,
1731 		struct dc_state *context)
1732 {
1733 	int i;
1734 	struct dce_hwseq *hws = dc->hwseq;
1735 
1736 	/* Reset Back End*/
1737 	for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) {
1738 		struct pipe_ctx *pipe_ctx_old =
1739 			&dc->current_state->res_ctx.pipe_ctx[i];
1740 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1741 
1742 		if (!pipe_ctx_old->stream)
1743 			continue;
1744 
1745 		if (pipe_ctx_old->top_pipe)
1746 			continue;
1747 
1748 		if (!pipe_ctx->stream ||
1749 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
1750 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
1751 
1752 			dcn10_reset_back_end_for_pipe(dc, pipe_ctx_old, dc->current_state);
1753 			if (hws->funcs.enable_stream_gating)
1754 				hws->funcs.enable_stream_gating(dc, pipe_ctx_old);
1755 			if (old_clk)
1756 				old_clk->funcs->cs_power_down(old_clk);
1757 		}
1758 	}
1759 }
1760 
patch_address_for_sbs_tb_stereo(struct pipe_ctx * pipe_ctx,PHYSICAL_ADDRESS_LOC * addr)1761 static bool patch_address_for_sbs_tb_stereo(
1762 		struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr)
1763 {
1764 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1765 	bool sec_split = pipe_ctx->top_pipe &&
1766 			pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;
1767 	if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
1768 		(pipe_ctx->stream->timing.timing_3d_format ==
1769 		 TIMING_3D_FORMAT_SIDE_BY_SIDE ||
1770 		 pipe_ctx->stream->timing.timing_3d_format ==
1771 		 TIMING_3D_FORMAT_TOP_AND_BOTTOM)) {
1772 		*addr = plane_state->address.grph_stereo.left_addr;
1773 		plane_state->address.grph_stereo.left_addr =
1774 		plane_state->address.grph_stereo.right_addr;
1775 		return true;
1776 	} else {
1777 		if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE &&
1778 			plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) {
1779 			plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO;
1780 			plane_state->address.grph_stereo.right_addr =
1781 			plane_state->address.grph_stereo.left_addr;
1782 			plane_state->address.grph_stereo.right_meta_addr =
1783 			plane_state->address.grph_stereo.left_meta_addr;
1784 		}
1785 	}
1786 	return false;
1787 }
1788 
dcn10_update_plane_addr(const struct dc * dc,struct pipe_ctx * pipe_ctx)1789 void dcn10_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx)
1790 {
1791 	bool addr_patched = false;
1792 	PHYSICAL_ADDRESS_LOC addr;
1793 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1794 
1795 	if (plane_state == NULL)
1796 		return;
1797 
1798 	addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr);
1799 
1800 	pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr(
1801 			pipe_ctx->plane_res.hubp,
1802 			&plane_state->address,
1803 			plane_state->flip_immediate);
1804 
1805 	plane_state->status.requested_address = plane_state->address;
1806 
1807 	if (plane_state->flip_immediate)
1808 		plane_state->status.current_address = plane_state->address;
1809 
1810 	if (addr_patched)
1811 		pipe_ctx->plane_state->address.grph_stereo.left_addr = addr;
1812 }
1813 
dcn10_set_input_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_plane_state * plane_state)1814 bool dcn10_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
1815 			const struct dc_plane_state *plane_state)
1816 {
1817 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
1818 	const struct dc_transfer_func *tf = NULL;
1819 	bool result = true;
1820 
1821 	if (dpp_base == NULL)
1822 		return false;
1823 
1824 	tf = &plane_state->in_transfer_func;
1825 
1826 	if (!dpp_base->ctx->dc->debug.always_use_regamma
1827 		&& !plane_state->gamma_correction.is_identity
1828 			&& dce_use_lut(plane_state->format))
1829 		dpp_base->funcs->dpp_program_input_lut(dpp_base, &plane_state->gamma_correction);
1830 
1831 	if (tf->type == TF_TYPE_PREDEFINED) {
1832 		switch (tf->tf) {
1833 		case TRANSFER_FUNCTION_SRGB:
1834 			dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_HW_sRGB);
1835 			break;
1836 		case TRANSFER_FUNCTION_BT709:
1837 			dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_HW_xvYCC);
1838 			break;
1839 		case TRANSFER_FUNCTION_LINEAR:
1840 			dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS);
1841 			break;
1842 		case TRANSFER_FUNCTION_PQ:
1843 			dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_USER_PWL);
1844 			cm_helper_translate_curve_to_degamma_hw_format(tf, &dpp_base->degamma_params);
1845 			dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, &dpp_base->degamma_params);
1846 			result = true;
1847 			break;
1848 		default:
1849 			result = false;
1850 			break;
1851 		}
1852 	} else if (tf->type == TF_TYPE_BYPASS) {
1853 		dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS);
1854 	} else {
1855 		cm_helper_translate_curve_to_degamma_hw_format(tf,
1856 					&dpp_base->degamma_params);
1857 		dpp_base->funcs->dpp_program_degamma_pwl(dpp_base,
1858 				&dpp_base->degamma_params);
1859 		result = true;
1860 	}
1861 
1862 	return result;
1863 }
1864 
1865 #define MAX_NUM_HW_POINTS 0x200
1866 
log_tf(struct dc_context * ctx,const struct dc_transfer_func * tf,uint32_t hw_points_num)1867 static void log_tf(struct dc_context *ctx,
1868 				const struct dc_transfer_func *tf, uint32_t hw_points_num)
1869 {
1870 	// DC_LOG_GAMMA is default logging of all hw points
1871 	// DC_LOG_ALL_GAMMA logs all points, not only hw points
1872 	// DC_LOG_ALL_TF_POINTS logs all channels of the tf
1873 	int i = 0;
1874 
1875 	DC_LOG_GAMMA("Gamma Correction TF");
1876 	DC_LOG_ALL_GAMMA("Logging all tf points...");
1877 	DC_LOG_ALL_TF_CHANNELS("Logging all channels...");
1878 
1879 	for (i = 0; i < hw_points_num; i++) {
1880 		DC_LOG_GAMMA("R\t%d\t%llu", i, tf->tf_pts.red[i].value);
1881 		DC_LOG_ALL_TF_CHANNELS("G\t%d\t%llu", i, tf->tf_pts.green[i].value);
1882 		DC_LOG_ALL_TF_CHANNELS("B\t%d\t%llu", i, tf->tf_pts.blue[i].value);
1883 	}
1884 
1885 	for (i = hw_points_num; i < MAX_NUM_HW_POINTS; i++) {
1886 		DC_LOG_ALL_GAMMA("R\t%d\t%llu", i, tf->tf_pts.red[i].value);
1887 		DC_LOG_ALL_TF_CHANNELS("G\t%d\t%llu", i, tf->tf_pts.green[i].value);
1888 		DC_LOG_ALL_TF_CHANNELS("B\t%d\t%llu", i, tf->tf_pts.blue[i].value);
1889 	}
1890 }
1891 
dcn10_set_output_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_stream_state * stream)1892 bool dcn10_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
1893 				const struct dc_stream_state *stream)
1894 {
1895 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
1896 
1897 	if (!stream)
1898 		return false;
1899 
1900 	if (dpp == NULL)
1901 		return false;
1902 
1903 	dpp->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
1904 
1905 	if (stream->out_transfer_func.type == TF_TYPE_PREDEFINED &&
1906 	    stream->out_transfer_func.tf == TRANSFER_FUNCTION_SRGB)
1907 		dpp->funcs->dpp_program_regamma_pwl(dpp, NULL, OPP_REGAMMA_SRGB);
1908 
1909 	/* dcn10_translate_regamma_to_hw_format takes 750us, only do it when full
1910 	 * update.
1911 	 */
1912 	else if (cm_helper_translate_curve_to_hw_format(dc->ctx,
1913 			&stream->out_transfer_func,
1914 			&dpp->regamma_params, false)) {
1915 		dpp->funcs->dpp_program_regamma_pwl(
1916 				dpp,
1917 				&dpp->regamma_params, OPP_REGAMMA_USER);
1918 	} else
1919 		dpp->funcs->dpp_program_regamma_pwl(dpp, NULL, OPP_REGAMMA_BYPASS);
1920 
1921 	if (stream->ctx) {
1922 		log_tf(stream->ctx,
1923 				&stream->out_transfer_func,
1924 				dpp->regamma_params.hw_points_num);
1925 	}
1926 
1927 	return true;
1928 }
1929 
dcn10_pipe_control_lock(struct dc * dc,struct pipe_ctx * pipe,bool lock)1930 void dcn10_pipe_control_lock(
1931 	struct dc *dc,
1932 	struct pipe_ctx *pipe,
1933 	bool lock)
1934 {
1935 	struct dce_hwseq *hws = dc->hwseq;
1936 
1937 	/* use TG master update lock to lock everything on the TG
1938 	 * therefore only top pipe need to lock
1939 	 */
1940 	if (!pipe || pipe->top_pipe)
1941 		return;
1942 
1943 	if (dc->debug.sanity_checks)
1944 		hws->funcs.verify_allow_pstate_change_high(dc);
1945 
1946 	if (lock)
1947 		pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg);
1948 	else
1949 		pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg);
1950 
1951 	if (dc->debug.sanity_checks)
1952 		hws->funcs.verify_allow_pstate_change_high(dc);
1953 }
1954 
1955 /**
1956  * delay_cursor_until_vupdate() - Delay cursor update if too close to VUPDATE.
1957  *
1958  * Software keepout workaround to prevent cursor update locking from stalling
1959  * out cursor updates indefinitely or from old values from being retained in
1960  * the case where the viewport changes in the same frame as the cursor.
1961  *
1962  * The idea is to calculate the remaining time from VPOS to VUPDATE. If it's
1963  * too close to VUPDATE, then stall out until VUPDATE finishes.
1964  *
1965  * TODO: Optimize cursor programming to be once per frame before VUPDATE
1966  *       to avoid the need for this workaround.
1967  *
1968  * @dc: Current DC state
1969  * @pipe_ctx: Pipe_ctx pointer for delayed cursor update
1970  *
1971  * Return: void
1972  */
delay_cursor_until_vupdate(struct dc * dc,struct pipe_ctx * pipe_ctx)1973 static void delay_cursor_until_vupdate(struct dc *dc, struct pipe_ctx *pipe_ctx)
1974 {
1975 	struct dc_stream_state *stream = pipe_ctx->stream;
1976 	struct crtc_position position;
1977 	uint32_t vupdate_start, vupdate_end;
1978 	unsigned int lines_to_vupdate, us_to_vupdate, vpos;
1979 	unsigned int us_per_line, us_vupdate;
1980 
1981 	if (!dc->hwss.calc_vupdate_position || !dc->hwss.get_position)
1982 		return;
1983 
1984 	if (!pipe_ctx->stream_res.stream_enc || !pipe_ctx->stream_res.tg)
1985 		return;
1986 
1987 	dc->hwss.calc_vupdate_position(dc, pipe_ctx, &vupdate_start,
1988 				       &vupdate_end);
1989 
1990 	dc->hwss.get_position(&pipe_ctx, 1, &position);
1991 	vpos = position.vertical_count;
1992 
1993 	if (vpos <= vupdate_start) {
1994 		/* VPOS is in VACTIVE or back porch. */
1995 		lines_to_vupdate = vupdate_start - vpos;
1996 	} else {
1997 		lines_to_vupdate = stream->timing.v_total - vpos + vupdate_start;
1998 	}
1999 
2000 	/* Calculate time until VUPDATE in microseconds. */
2001 	us_per_line =
2002 		stream->timing.h_total * 10000u / stream->timing.pix_clk_100hz;
2003 	us_to_vupdate = lines_to_vupdate * us_per_line;
2004 
2005 	/* Stall out until the cursor update completes. */
2006 	if (vupdate_end < vupdate_start)
2007 		vupdate_end += stream->timing.v_total;
2008 
2009 	/* Position is in the range of vupdate start and end*/
2010 	if (lines_to_vupdate > stream->timing.v_total - vupdate_end + vupdate_start)
2011 		us_to_vupdate = 0;
2012 
2013 	/* 70 us is a conservative estimate of cursor update time*/
2014 	if (us_to_vupdate > 70)
2015 		return;
2016 
2017 	us_vupdate = (vupdate_end - vupdate_start + 1) * us_per_line;
2018 	udelay(us_to_vupdate + us_vupdate);
2019 }
2020 
dcn10_cursor_lock(struct dc * dc,struct pipe_ctx * pipe,bool lock)2021 void dcn10_cursor_lock(struct dc *dc, struct pipe_ctx *pipe, bool lock)
2022 {
2023 	/* cursor lock is per MPCC tree, so only need to lock one pipe per stream */
2024 	if (!pipe || pipe->top_pipe)
2025 		return;
2026 
2027 	/* Prevent cursor lock from stalling out cursor updates. */
2028 	if (lock)
2029 		delay_cursor_until_vupdate(dc, pipe);
2030 
2031 	if (pipe->stream && should_use_dmub_lock(pipe->stream->link)) {
2032 		union dmub_hw_lock_flags hw_locks = { 0 };
2033 		struct dmub_hw_lock_inst_flags inst_flags = { 0 };
2034 
2035 		hw_locks.bits.lock_cursor = 1;
2036 		inst_flags.opp_inst = pipe->stream_res.opp->inst;
2037 
2038 		dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
2039 					lock,
2040 					&hw_locks,
2041 					&inst_flags);
2042 	} else
2043 		dc->res_pool->mpc->funcs->cursor_lock(dc->res_pool->mpc,
2044 				pipe->stream_res.opp->inst, lock);
2045 }
2046 
wait_for_reset_trigger_to_occur(struct dc_context * dc_ctx,struct timing_generator * tg)2047 static bool wait_for_reset_trigger_to_occur(
2048 	struct dc_context *dc_ctx,
2049 	struct timing_generator *tg)
2050 {
2051 	bool rc = false;
2052 
2053 	DC_LOGGER_INIT(dc_ctx->logger);
2054 
2055 	/* To avoid endless loop we wait at most
2056 	 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2057 	const uint32_t frames_to_wait_on_triggered_reset = 10;
2058 	int i;
2059 
2060 	for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2061 
2062 		if (!tg->funcs->is_counter_moving(tg)) {
2063 			DC_ERROR("TG counter is not moving!\n");
2064 			break;
2065 		}
2066 
2067 		if (tg->funcs->did_triggered_reset_occur(tg)) {
2068 			rc = true;
2069 			/* usually occurs at i=1 */
2070 			DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2071 					i);
2072 			break;
2073 		}
2074 
2075 		/* Wait for one frame. */
2076 		tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2077 		tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2078 	}
2079 
2080 	if (false == rc)
2081 		DC_ERROR("GSL: Timeout on reset trigger!\n");
2082 
2083 	return rc;
2084 }
2085 
reduceSizeAndFraction(uint64_t * numerator,uint64_t * denominator,bool checkUint32Bounary)2086 static uint64_t reduceSizeAndFraction(uint64_t *numerator,
2087 				      uint64_t *denominator,
2088 				      bool checkUint32Bounary)
2089 {
2090 	int i;
2091 	bool ret = checkUint32Bounary == false;
2092 	uint64_t max_int32 = 0xffffffff;
2093 	uint64_t num, denom;
2094 	static const uint16_t prime_numbers[] = {
2095 		2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
2096 		47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103,
2097 		107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163,
2098 		167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
2099 		229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281,
2100 		283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353,
2101 		359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421,
2102 		431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487,
2103 		491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569,
2104 		571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631,
2105 		641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701,
2106 		709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773,
2107 		787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857,
2108 		859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937,
2109 		941, 947, 953, 967, 971, 977, 983, 991, 997};
2110 	int count = ARRAY_SIZE(prime_numbers);
2111 
2112 	num = *numerator;
2113 	denom = *denominator;
2114 	for (i = 0; i < count; i++) {
2115 		uint32_t num_remainder, denom_remainder;
2116 		uint64_t num_result, denom_result;
2117 		if (checkUint32Bounary &&
2118 			num <= max_int32 && denom <= max_int32) {
2119 			ret = true;
2120 			break;
2121 		}
2122 		do {
2123 			num_result = div_u64_rem(num, prime_numbers[i], &num_remainder);
2124 			denom_result = div_u64_rem(denom, prime_numbers[i], &denom_remainder);
2125 			if (num_remainder == 0 && denom_remainder == 0) {
2126 				num = num_result;
2127 				denom = denom_result;
2128 			}
2129 		} while (num_remainder == 0 && denom_remainder == 0);
2130 	}
2131 	*numerator = num;
2132 	*denominator = denom;
2133 	return ret;
2134 }
2135 
is_low_refresh_rate(struct pipe_ctx * pipe)2136 static bool is_low_refresh_rate(struct pipe_ctx *pipe)
2137 {
2138 	uint32_t master_pipe_refresh_rate =
2139 		pipe->stream->timing.pix_clk_100hz * 100 /
2140 		pipe->stream->timing.h_total /
2141 		pipe->stream->timing.v_total;
2142 	return master_pipe_refresh_rate <= 30;
2143 }
2144 
get_clock_divider(struct pipe_ctx * pipe,bool account_low_refresh_rate)2145 static uint8_t get_clock_divider(struct pipe_ctx *pipe,
2146 				 bool account_low_refresh_rate)
2147 {
2148 	uint32_t clock_divider = 1;
2149 	uint32_t numpipes = 1;
2150 
2151 	if (account_low_refresh_rate && is_low_refresh_rate(pipe))
2152 		clock_divider *= 2;
2153 
2154 	if (pipe->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420)
2155 		clock_divider *= 2;
2156 
2157 	while (pipe->next_odm_pipe) {
2158 		pipe = pipe->next_odm_pipe;
2159 		numpipes++;
2160 	}
2161 	clock_divider *= numpipes;
2162 
2163 	return clock_divider;
2164 }
2165 
dcn10_align_pixel_clocks(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2166 static int dcn10_align_pixel_clocks(struct dc *dc, int group_size,
2167 				    struct pipe_ctx *grouped_pipes[])
2168 {
2169 	struct dc_context *dc_ctx = dc->ctx;
2170 	int i, master = -1, embedded = -1;
2171 	struct dc_crtc_timing *hw_crtc_timing;
2172 	uint64_t phase[MAX_PIPES];
2173 	uint64_t modulo[MAX_PIPES];
2174 	unsigned int pclk = 0;
2175 
2176 	uint32_t embedded_pix_clk_100hz;
2177 	uint16_t embedded_h_total;
2178 	uint16_t embedded_v_total;
2179 	uint32_t dp_ref_clk_100hz =
2180 		dc->res_pool->dp_clock_source->ctx->dc->clk_mgr->dprefclk_khz*10;
2181 
2182 	DC_LOGGER_INIT(dc_ctx->logger);
2183 
2184 	hw_crtc_timing = kcalloc(MAX_PIPES, sizeof(*hw_crtc_timing), GFP_KERNEL);
2185 	if (!hw_crtc_timing)
2186 		return master;
2187 
2188 	if (dc->config.vblank_alignment_dto_params &&
2189 		dc->res_pool->dp_clock_source->funcs->override_dp_pix_clk) {
2190 		embedded_h_total =
2191 			(dc->config.vblank_alignment_dto_params >> 32) & 0x7FFF;
2192 		embedded_v_total =
2193 			(dc->config.vblank_alignment_dto_params >> 48) & 0x7FFF;
2194 		embedded_pix_clk_100hz =
2195 			dc->config.vblank_alignment_dto_params & 0xFFFFFFFF;
2196 
2197 		for (i = 0; i < group_size; i++) {
2198 			grouped_pipes[i]->stream_res.tg->funcs->get_hw_timing(
2199 					grouped_pipes[i]->stream_res.tg,
2200 					&hw_crtc_timing[i]);
2201 			dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
2202 				dc->res_pool->dp_clock_source,
2203 				grouped_pipes[i]->stream_res.tg->inst,
2204 				&pclk);
2205 			hw_crtc_timing[i].pix_clk_100hz = pclk;
2206 			if (dc_is_embedded_signal(
2207 					grouped_pipes[i]->stream->signal)) {
2208 				embedded = i;
2209 				master = i;
2210 				phase[i] = embedded_pix_clk_100hz*(uint64_t)100;
2211 				modulo[i] = dp_ref_clk_100hz*100;
2212 			} else {
2213 
2214 				phase[i] = (uint64_t)embedded_pix_clk_100hz*
2215 					hw_crtc_timing[i].h_total*
2216 					hw_crtc_timing[i].v_total;
2217 				phase[i] = div_u64(phase[i], get_clock_divider(grouped_pipes[i], true));
2218 				modulo[i] = (uint64_t)dp_ref_clk_100hz*
2219 					embedded_h_total*
2220 					embedded_v_total;
2221 
2222 				if (reduceSizeAndFraction(&phase[i],
2223 						&modulo[i], true) == false) {
2224 					/*
2225 					 * this will help to stop reporting
2226 					 * this timing synchronizable
2227 					 */
2228 					DC_SYNC_INFO("Failed to reduce DTO parameters\n");
2229 					grouped_pipes[i]->stream->has_non_synchronizable_pclk = true;
2230 				}
2231 			}
2232 		}
2233 
2234 		for (i = 0; i < group_size; i++) {
2235 			if (i != embedded && !grouped_pipes[i]->stream->has_non_synchronizable_pclk) {
2236 				dc->res_pool->dp_clock_source->funcs->override_dp_pix_clk(
2237 					dc->res_pool->dp_clock_source,
2238 					grouped_pipes[i]->stream_res.tg->inst,
2239 					phase[i], modulo[i]);
2240 				dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
2241 					dc->res_pool->dp_clock_source,
2242 					grouped_pipes[i]->stream_res.tg->inst, &pclk);
2243 				grouped_pipes[i]->stream->timing.pix_clk_100hz =
2244 					pclk*get_clock_divider(grouped_pipes[i], false);
2245 				if (master == -1)
2246 					master = i;
2247 			}
2248 		}
2249 
2250 	}
2251 
2252 	kfree(hw_crtc_timing);
2253 	return master;
2254 }
2255 
dcn10_enable_vblanks_synchronization(struct dc * dc,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2256 void dcn10_enable_vblanks_synchronization(
2257 	struct dc *dc,
2258 	int group_index,
2259 	int group_size,
2260 	struct pipe_ctx *grouped_pipes[])
2261 {
2262 	struct dc_context *dc_ctx = dc->ctx;
2263 	struct output_pixel_processor *opp;
2264 	struct timing_generator *tg;
2265 	int i, width = 0, height = 0, master;
2266 
2267 	DC_LOGGER_INIT(dc_ctx->logger);
2268 
2269 	for (i = 1; i < group_size; i++) {
2270 		opp = grouped_pipes[i]->stream_res.opp;
2271 		tg = grouped_pipes[i]->stream_res.tg;
2272 		tg->funcs->get_otg_active_size(tg, &width, &height);
2273 
2274 		if (!tg->funcs->is_tg_enabled(tg)) {
2275 			DC_SYNC_INFO("Skipping timing sync on disabled OTG\n");
2276 			return;
2277 		}
2278 
2279 		if (opp->funcs->opp_program_dpg_dimensions)
2280 			opp->funcs->opp_program_dpg_dimensions(opp, width, 2*(height) + 1);
2281 	}
2282 
2283 	for (i = 0; i < group_size; i++) {
2284 		if (grouped_pipes[i]->stream == NULL)
2285 			continue;
2286 		grouped_pipes[i]->stream->vblank_synchronized = false;
2287 		grouped_pipes[i]->stream->has_non_synchronizable_pclk = false;
2288 	}
2289 
2290 	DC_SYNC_INFO("Aligning DP DTOs\n");
2291 
2292 	master = dcn10_align_pixel_clocks(dc, group_size, grouped_pipes);
2293 
2294 	DC_SYNC_INFO("Synchronizing VBlanks\n");
2295 
2296 	if (master >= 0) {
2297 		for (i = 0; i < group_size; i++) {
2298 			if (i != master && !grouped_pipes[i]->stream->has_non_synchronizable_pclk)
2299 				grouped_pipes[i]->stream_res.tg->funcs->align_vblanks(
2300 					grouped_pipes[master]->stream_res.tg,
2301 					grouped_pipes[i]->stream_res.tg,
2302 					grouped_pipes[master]->stream->timing.pix_clk_100hz,
2303 					grouped_pipes[i]->stream->timing.pix_clk_100hz,
2304 					get_clock_divider(grouped_pipes[master], false),
2305 					get_clock_divider(grouped_pipes[i], false));
2306 			grouped_pipes[i]->stream->vblank_synchronized = true;
2307 		}
2308 		grouped_pipes[master]->stream->vblank_synchronized = true;
2309 		DC_SYNC_INFO("Sync complete\n");
2310 	}
2311 
2312 	for (i = 1; i < group_size; i++) {
2313 		opp = grouped_pipes[i]->stream_res.opp;
2314 		tg = grouped_pipes[i]->stream_res.tg;
2315 		tg->funcs->get_otg_active_size(tg, &width, &height);
2316 		if (opp->funcs->opp_program_dpg_dimensions)
2317 			opp->funcs->opp_program_dpg_dimensions(opp, width, height);
2318 	}
2319 }
2320 
dcn10_enable_timing_synchronization(struct dc * dc,struct dc_state * state,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2321 void dcn10_enable_timing_synchronization(
2322 	struct dc *dc,
2323 	struct dc_state *state,
2324 	int group_index,
2325 	int group_size,
2326 	struct pipe_ctx *grouped_pipes[])
2327 {
2328 	struct dc_context *dc_ctx = dc->ctx;
2329 	struct output_pixel_processor *opp;
2330 	struct timing_generator *tg;
2331 	int i, width = 0, height = 0;
2332 
2333 	DC_LOGGER_INIT(dc_ctx->logger);
2334 
2335 	DC_SYNC_INFO("Setting up OTG reset trigger\n");
2336 
2337 	for (i = 1; i < group_size; i++) {
2338 		if (grouped_pipes[i]->stream && dc_state_get_pipe_subvp_type(state, grouped_pipes[i]) == SUBVP_PHANTOM)
2339 			continue;
2340 
2341 		opp = grouped_pipes[i]->stream_res.opp;
2342 		tg = grouped_pipes[i]->stream_res.tg;
2343 		tg->funcs->get_otg_active_size(tg, &width, &height);
2344 
2345 		if (!tg->funcs->is_tg_enabled(tg)) {
2346 			DC_SYNC_INFO("Skipping timing sync on disabled OTG\n");
2347 			return;
2348 		}
2349 
2350 		if (opp->funcs->opp_program_dpg_dimensions)
2351 			opp->funcs->opp_program_dpg_dimensions(opp, width, 2*(height) + 1);
2352 	}
2353 
2354 	for (i = 0; i < group_size; i++) {
2355 		if (grouped_pipes[i]->stream == NULL)
2356 			continue;
2357 
2358 		if (grouped_pipes[i]->stream && dc_state_get_pipe_subvp_type(state, grouped_pipes[i]) == SUBVP_PHANTOM)
2359 			continue;
2360 
2361 		grouped_pipes[i]->stream->vblank_synchronized = false;
2362 	}
2363 
2364 	for (i = 1; i < group_size; i++) {
2365 		if (grouped_pipes[i]->stream && dc_state_get_pipe_subvp_type(state, grouped_pipes[i]) == SUBVP_PHANTOM)
2366 			continue;
2367 
2368 		grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2369 				grouped_pipes[i]->stream_res.tg,
2370 				grouped_pipes[0]->stream_res.tg->inst);
2371 	}
2372 
2373 	DC_SYNC_INFO("Waiting for trigger\n");
2374 
2375 	/* Need to get only check 1 pipe for having reset as all the others are
2376 	 * synchronized. Look at last pipe programmed to reset.
2377 	 */
2378 
2379 	if (grouped_pipes[1]->stream && dc_state_get_pipe_subvp_type(state, grouped_pipes[1]) != SUBVP_PHANTOM)
2380 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[1]->stream_res.tg);
2381 
2382 	for (i = 1; i < group_size; i++) {
2383 		if (grouped_pipes[i]->stream && dc_state_get_pipe_subvp_type(state, grouped_pipes[i]) == SUBVP_PHANTOM)
2384 			continue;
2385 
2386 		grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2387 				grouped_pipes[i]->stream_res.tg);
2388 	}
2389 
2390 	for (i = 1; i < group_size; i++) {
2391 		if (dc_state_get_pipe_subvp_type(state, grouped_pipes[i]) == SUBVP_PHANTOM)
2392 			continue;
2393 
2394 		opp = grouped_pipes[i]->stream_res.opp;
2395 		tg = grouped_pipes[i]->stream_res.tg;
2396 		tg->funcs->get_otg_active_size(tg, &width, &height);
2397 		if (opp->funcs->opp_program_dpg_dimensions)
2398 			opp->funcs->opp_program_dpg_dimensions(opp, width, height);
2399 	}
2400 
2401 	DC_SYNC_INFO("Sync complete\n");
2402 }
2403 
dcn10_enable_per_frame_crtc_position_reset(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2404 void dcn10_enable_per_frame_crtc_position_reset(
2405 	struct dc *dc,
2406 	int group_size,
2407 	struct pipe_ctx *grouped_pipes[])
2408 {
2409 	struct dc_context *dc_ctx = dc->ctx;
2410 	int i;
2411 
2412 	DC_LOGGER_INIT(dc_ctx->logger);
2413 
2414 	DC_SYNC_INFO("Setting up\n");
2415 	for (i = 0; i < group_size; i++)
2416 		if (grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset)
2417 			grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2418 					grouped_pipes[i]->stream_res.tg,
2419 					0,
2420 					&grouped_pipes[i]->stream->triggered_crtc_reset);
2421 
2422 	DC_SYNC_INFO("Waiting for trigger\n");
2423 
2424 	for (i = 0; i < group_size; i++)
2425 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2426 
2427 	DC_SYNC_INFO("Multi-display sync is complete\n");
2428 }
2429 
mmhub_read_vm_system_aperture_settings(struct dcn10_hubp * hubp1,struct vm_system_aperture_param * apt,struct dce_hwseq * hws)2430 static void mmhub_read_vm_system_aperture_settings(struct dcn10_hubp *hubp1,
2431 		struct vm_system_aperture_param *apt,
2432 		struct dce_hwseq *hws)
2433 {
2434 	PHYSICAL_ADDRESS_LOC physical_page_number;
2435 	uint32_t logical_addr_low;
2436 	uint32_t logical_addr_high;
2437 
2438 	REG_GET(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB,
2439 			PHYSICAL_PAGE_NUMBER_MSB, &physical_page_number.high_part);
2440 	REG_GET(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB,
2441 			PHYSICAL_PAGE_NUMBER_LSB, &physical_page_number.low_part);
2442 
2443 	REG_GET(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
2444 			LOGICAL_ADDR, &logical_addr_low);
2445 
2446 	REG_GET(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
2447 			LOGICAL_ADDR, &logical_addr_high);
2448 
2449 	apt->sys_default.quad_part =  physical_page_number.quad_part << 12;
2450 	apt->sys_low.quad_part =  (int64_t)logical_addr_low << 18;
2451 	apt->sys_high.quad_part =  (int64_t)logical_addr_high << 18;
2452 }
2453 
2454 /* Temporary read settings, future will get values from kmd directly */
mmhub_read_vm_context0_settings(struct dcn10_hubp * hubp1,struct vm_context0_param * vm0,struct dce_hwseq * hws)2455 static void mmhub_read_vm_context0_settings(struct dcn10_hubp *hubp1,
2456 		struct vm_context0_param *vm0,
2457 		struct dce_hwseq *hws)
2458 {
2459 	PHYSICAL_ADDRESS_LOC fb_base;
2460 	PHYSICAL_ADDRESS_LOC fb_offset;
2461 	uint32_t fb_base_value;
2462 	uint32_t fb_offset_value;
2463 
2464 	REG_GET(DCHUBBUB_SDPIF_FB_BASE, SDPIF_FB_BASE, &fb_base_value);
2465 	REG_GET(DCHUBBUB_SDPIF_FB_OFFSET, SDPIF_FB_OFFSET, &fb_offset_value);
2466 
2467 	REG_GET(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_HI32,
2468 			PAGE_DIRECTORY_ENTRY_HI32, &vm0->pte_base.high_part);
2469 	REG_GET(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LO32,
2470 			PAGE_DIRECTORY_ENTRY_LO32, &vm0->pte_base.low_part);
2471 
2472 	REG_GET(VM_CONTEXT0_PAGE_TABLE_START_ADDR_HI32,
2473 			LOGICAL_PAGE_NUMBER_HI4, &vm0->pte_start.high_part);
2474 	REG_GET(VM_CONTEXT0_PAGE_TABLE_START_ADDR_LO32,
2475 			LOGICAL_PAGE_NUMBER_LO32, &vm0->pte_start.low_part);
2476 
2477 	REG_GET(VM_CONTEXT0_PAGE_TABLE_END_ADDR_HI32,
2478 			LOGICAL_PAGE_NUMBER_HI4, &vm0->pte_end.high_part);
2479 	REG_GET(VM_CONTEXT0_PAGE_TABLE_END_ADDR_LO32,
2480 			LOGICAL_PAGE_NUMBER_LO32, &vm0->pte_end.low_part);
2481 
2482 	REG_GET(VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_HI32,
2483 			PHYSICAL_PAGE_ADDR_HI4, &vm0->fault_default.high_part);
2484 	REG_GET(VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_LO32,
2485 			PHYSICAL_PAGE_ADDR_LO32, &vm0->fault_default.low_part);
2486 
2487 	/*
2488 	 * The values in VM_CONTEXT0_PAGE_TABLE_BASE_ADDR is in UMA space.
2489 	 * Therefore we need to do
2490 	 * DCN_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR = VM_CONTEXT0_PAGE_TABLE_BASE_ADDR
2491 	 * - DCHUBBUB_SDPIF_FB_OFFSET + DCHUBBUB_SDPIF_FB_BASE
2492 	 */
2493 	fb_base.quad_part = (uint64_t)fb_base_value << 24;
2494 	fb_offset.quad_part = (uint64_t)fb_offset_value << 24;
2495 	vm0->pte_base.quad_part += fb_base.quad_part;
2496 	vm0->pte_base.quad_part -= fb_offset.quad_part;
2497 }
2498 
2499 
dcn10_program_pte_vm(struct dce_hwseq * hws,struct hubp * hubp)2500 static void dcn10_program_pte_vm(struct dce_hwseq *hws, struct hubp *hubp)
2501 {
2502 	struct dcn10_hubp *hubp1 = TO_DCN10_HUBP(hubp);
2503 	struct vm_system_aperture_param apt = {0};
2504 	struct vm_context0_param vm0 = {0};
2505 
2506 	mmhub_read_vm_system_aperture_settings(hubp1, &apt, hws);
2507 	mmhub_read_vm_context0_settings(hubp1, &vm0, hws);
2508 
2509 	hubp->funcs->hubp_set_vm_system_aperture_settings(hubp, &apt);
2510 	hubp->funcs->hubp_set_vm_context0_settings(hubp, &vm0);
2511 }
2512 
dcn10_enable_plane(struct dc * dc,struct pipe_ctx * pipe_ctx,struct dc_state * context)2513 static void dcn10_enable_plane(
2514 	struct dc *dc,
2515 	struct pipe_ctx *pipe_ctx,
2516 	struct dc_state *context)
2517 {
2518 	struct dce_hwseq *hws = dc->hwseq;
2519 
2520 	if (dc->debug.sanity_checks) {
2521 		hws->funcs.verify_allow_pstate_change_high(dc);
2522 	}
2523 
2524 	undo_DEGVIDCN10_253_wa(dc);
2525 
2526 	power_on_plane_resources(dc->hwseq,
2527 		pipe_ctx->plane_res.hubp->inst);
2528 
2529 	/* enable DCFCLK current DCHUB */
2530 	pipe_ctx->plane_res.hubp->funcs->hubp_clk_cntl(pipe_ctx->plane_res.hubp, true);
2531 
2532 	/* make sure OPP_PIPE_CLOCK_EN = 1 */
2533 	pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
2534 			pipe_ctx->stream_res.opp,
2535 			true);
2536 
2537 	if (dc->config.gpu_vm_support)
2538 		dcn10_program_pte_vm(hws, pipe_ctx->plane_res.hubp);
2539 
2540 	if (dc->debug.sanity_checks) {
2541 		hws->funcs.verify_allow_pstate_change_high(dc);
2542 	}
2543 
2544 	if (!pipe_ctx->top_pipe
2545 		&& pipe_ctx->plane_state
2546 		&& pipe_ctx->plane_state->flip_int_enabled
2547 		&& pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int)
2548 			pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int(pipe_ctx->plane_res.hubp);
2549 
2550 }
2551 
dcn10_program_gamut_remap(struct pipe_ctx * pipe_ctx)2552 void dcn10_program_gamut_remap(struct pipe_ctx *pipe_ctx)
2553 {
2554 	int i = 0;
2555 	struct dpp_grph_csc_adjustment adjust;
2556 	memset(&adjust, 0, sizeof(adjust));
2557 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2558 
2559 
2560 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2561 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2562 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2563 			adjust.temperature_matrix[i] =
2564 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2565 	} else if (pipe_ctx->plane_state &&
2566 		   pipe_ctx->plane_state->gamut_remap_matrix.enable_remap == true) {
2567 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2568 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2569 			adjust.temperature_matrix[i] =
2570 				pipe_ctx->plane_state->gamut_remap_matrix.matrix[i];
2571 	}
2572 
2573 	pipe_ctx->plane_res.dpp->funcs->dpp_set_gamut_remap(pipe_ctx->plane_res.dpp, &adjust);
2574 }
2575 
2576 
dcn10_is_rear_mpo_fix_required(struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace)2577 static bool dcn10_is_rear_mpo_fix_required(struct pipe_ctx *pipe_ctx, enum dc_color_space colorspace)
2578 {
2579 	if (pipe_ctx->plane_state && pipe_ctx->plane_state->layer_index > 0 && is_rgb_cspace(colorspace)) {
2580 		if (pipe_ctx->top_pipe) {
2581 			struct pipe_ctx *top = pipe_ctx->top_pipe;
2582 
2583 			while (top->top_pipe)
2584 				top = top->top_pipe; // Traverse to top pipe_ctx
2585 			if (top->plane_state && top->plane_state->layer_index == 0 && !top->plane_state->global_alpha)
2586 				// Global alpha used by top plane for PIP overlay
2587 				// Pre-multiplied/per-pixel alpha used by MPO
2588 				// Check top plane's global alpha to ensure layer_index > 0 not caused by PIP
2589 				return true; // MPO in use and front plane not hidden
2590 		}
2591 	}
2592 	return false;
2593 }
2594 
dcn10_set_csc_adjustment_rgb_mpo_fix(struct pipe_ctx * pipe_ctx,uint16_t * matrix)2595 static void dcn10_set_csc_adjustment_rgb_mpo_fix(struct pipe_ctx *pipe_ctx, uint16_t *matrix)
2596 {
2597 	// Override rear plane RGB bias to fix MPO brightness
2598 	uint16_t rgb_bias = matrix[3];
2599 
2600 	matrix[3] = 0;
2601 	matrix[7] = 0;
2602 	matrix[11] = 0;
2603 	pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_adjustment(pipe_ctx->plane_res.dpp, matrix);
2604 	matrix[3] = rgb_bias;
2605 	matrix[7] = rgb_bias;
2606 	matrix[11] = rgb_bias;
2607 }
2608 
dcn10_program_output_csc(struct dc * dc,struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace,uint16_t * matrix,int opp_id)2609 void dcn10_program_output_csc(struct dc *dc,
2610 		struct pipe_ctx *pipe_ctx,
2611 		enum dc_color_space colorspace,
2612 		uint16_t *matrix,
2613 		int opp_id)
2614 {
2615 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2616 		if (pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_adjustment != NULL) {
2617 
2618 			/* MPO is broken with RGB colorspaces when OCSC matrix
2619 			 * brightness offset >= 0 on DCN1 due to OCSC before MPC
2620 			 * Blending adds offsets from front + rear to rear plane
2621 			 *
2622 			 * Fix is to set RGB bias to 0 on rear plane, top plane
2623 			 * black value pixels add offset instead of rear + front
2624 			 */
2625 
2626 			int16_t rgb_bias = matrix[3];
2627 			// matrix[3/7/11] are all the same offset value
2628 
2629 			if (rgb_bias > 0 && dcn10_is_rear_mpo_fix_required(pipe_ctx, colorspace)) {
2630 				dcn10_set_csc_adjustment_rgb_mpo_fix(pipe_ctx, matrix);
2631 			} else {
2632 				pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_adjustment(pipe_ctx->plane_res.dpp, matrix);
2633 			}
2634 		}
2635 	} else {
2636 		if (pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_default != NULL)
2637 			pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_default(pipe_ctx->plane_res.dpp, colorspace);
2638 	}
2639 }
2640 
dcn10_update_dpp(struct dpp * dpp,struct dc_plane_state * plane_state)2641 static void dcn10_update_dpp(struct dpp *dpp, struct dc_plane_state *plane_state)
2642 {
2643 	struct dc_bias_and_scale bns_params = {0};
2644 
2645 	// program the input csc
2646 	dpp->funcs->dpp_setup(dpp,
2647 			plane_state->format,
2648 			EXPANSION_MODE_ZERO,
2649 			plane_state->input_csc_color_matrix,
2650 			plane_state->color_space,
2651 			NULL);
2652 
2653 	//set scale and bias registers
2654 	build_prescale_params(&bns_params, plane_state);
2655 	if (dpp->funcs->dpp_program_bias_and_scale)
2656 		dpp->funcs->dpp_program_bias_and_scale(dpp, &bns_params);
2657 }
2658 
dcn10_update_visual_confirm_color(struct dc * dc,struct pipe_ctx * pipe_ctx,int mpcc_id)2659 void dcn10_update_visual_confirm_color(struct dc *dc,
2660 		struct pipe_ctx *pipe_ctx,
2661 		int mpcc_id)
2662 {
2663 	struct mpc *mpc = dc->res_pool->mpc;
2664 
2665 	if (mpc->funcs->set_bg_color) {
2666 		memcpy(&pipe_ctx->plane_state->visual_confirm_color, &(pipe_ctx->visual_confirm_color), sizeof(struct tg_color));
2667 		mpc->funcs->set_bg_color(mpc, &(pipe_ctx->visual_confirm_color), mpcc_id);
2668 	}
2669 }
2670 
dcn10_update_mpcc(struct dc * dc,struct pipe_ctx * pipe_ctx)2671 void dcn10_update_mpcc(struct dc *dc, struct pipe_ctx *pipe_ctx)
2672 {
2673 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
2674 	struct mpcc_blnd_cfg blnd_cfg = {0};
2675 	bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha && pipe_ctx->bottom_pipe;
2676 	int mpcc_id;
2677 	struct mpcc *new_mpcc;
2678 	struct mpc *mpc = dc->res_pool->mpc;
2679 	struct mpc_tree *mpc_tree_params = &(pipe_ctx->stream_res.opp->mpc_tree_params);
2680 
2681 	blnd_cfg.overlap_only = false;
2682 	blnd_cfg.global_gain = 0xff;
2683 
2684 	if (per_pixel_alpha) {
2685 		/* DCN1.0 has output CM before MPC which seems to screw with
2686 		 * pre-multiplied alpha.
2687 		 */
2688 		blnd_cfg.pre_multiplied_alpha = (is_rgb_cspace(
2689 				pipe_ctx->stream->output_color_space)
2690 						&& pipe_ctx->plane_state->pre_multiplied_alpha);
2691 		if (pipe_ctx->plane_state->global_alpha) {
2692 			blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA_COMBINED_GLOBAL_GAIN;
2693 			blnd_cfg.global_gain = pipe_ctx->plane_state->global_alpha_value;
2694 		} else {
2695 			blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA;
2696 		}
2697 	} else {
2698 		blnd_cfg.pre_multiplied_alpha = false;
2699 		blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_GLOBAL_ALPHA;
2700 	}
2701 
2702 	if (pipe_ctx->plane_state->global_alpha)
2703 		blnd_cfg.global_alpha = pipe_ctx->plane_state->global_alpha_value;
2704 	else
2705 		blnd_cfg.global_alpha = 0xff;
2706 
2707 	/*
2708 	 * TODO: remove hack
2709 	 * Note: currently there is a bug in init_hw such that
2710 	 * on resume from hibernate, BIOS sets up MPCC0, and
2711 	 * we do mpcc_remove but the mpcc cannot go to idle
2712 	 * after remove. This cause us to pick mpcc1 here,
2713 	 * which causes a pstate hang for yet unknown reason.
2714 	 */
2715 	mpcc_id = hubp->inst;
2716 
2717 	/* If there is no full update, don't need to touch MPC tree*/
2718 	if (!pipe_ctx->plane_state->update_flags.bits.full_update) {
2719 		mpc->funcs->update_blending(mpc, &blnd_cfg, mpcc_id);
2720 		dc->hwss.update_visual_confirm_color(dc, pipe_ctx, mpcc_id);
2721 		return;
2722 	}
2723 
2724 	/* check if this MPCC is already being used */
2725 	new_mpcc = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, mpcc_id);
2726 	/* remove MPCC if being used */
2727 	if (new_mpcc != NULL)
2728 		mpc->funcs->remove_mpcc(mpc, mpc_tree_params, new_mpcc);
2729 	else
2730 		if (dc->debug.sanity_checks)
2731 			mpc->funcs->assert_mpcc_idle_before_connect(
2732 					dc->res_pool->mpc, mpcc_id);
2733 
2734 	/* Call MPC to insert new plane */
2735 	new_mpcc = mpc->funcs->insert_plane(dc->res_pool->mpc,
2736 			mpc_tree_params,
2737 			&blnd_cfg,
2738 			NULL,
2739 			NULL,
2740 			hubp->inst,
2741 			mpcc_id);
2742 	dc->hwss.update_visual_confirm_color(dc, pipe_ctx, mpcc_id);
2743 
2744 	ASSERT(new_mpcc != NULL);
2745 	hubp->opp_id = pipe_ctx->stream_res.opp->inst;
2746 	hubp->mpcc_id = mpcc_id;
2747 }
2748 
update_scaler(struct pipe_ctx * pipe_ctx)2749 static void update_scaler(struct pipe_ctx *pipe_ctx)
2750 {
2751 	bool per_pixel_alpha =
2752 			pipe_ctx->plane_state->per_pixel_alpha && pipe_ctx->bottom_pipe;
2753 
2754 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = per_pixel_alpha;
2755 	pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
2756 	/* scaler configuration */
2757 	pipe_ctx->plane_res.dpp->funcs->dpp_set_scaler(
2758 			pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data);
2759 }
2760 
dcn10_update_dchubp_dpp(struct dc * dc,struct pipe_ctx * pipe_ctx,struct dc_state * context)2761 static void dcn10_update_dchubp_dpp(
2762 	struct dc *dc,
2763 	struct pipe_ctx *pipe_ctx,
2764 	struct dc_state *context)
2765 {
2766 	struct dce_hwseq *hws = dc->hwseq;
2767 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
2768 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
2769 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2770 	struct plane_size size = plane_state->plane_size;
2771 	unsigned int compat_level = 0;
2772 	bool should_divided_by_2 = false;
2773 
2774 	/* depends on DML calculation, DPP clock value may change dynamically */
2775 	/* If request max dpp clk is lower than current dispclk, no need to
2776 	 * divided by 2
2777 	 */
2778 	if (plane_state->update_flags.bits.full_update) {
2779 
2780 		/* new calculated dispclk, dppclk are stored in
2781 		 * context->bw_ctx.bw.dcn.clk.dispclk_khz / dppclk_khz. current
2782 		 * dispclk, dppclk are from dc->clk_mgr->clks.dispclk_khz.
2783 		 * dcn10_validate_bandwidth compute new dispclk, dppclk.
2784 		 * dispclk will put in use after optimize_bandwidth when
2785 		 * ramp_up_dispclk_with_dpp is called.
2786 		 * there are two places for dppclk be put in use. One location
2787 		 * is the same as the location as dispclk. Another is within
2788 		 * update_dchubp_dpp which happens between pre_bandwidth and
2789 		 * optimize_bandwidth.
2790 		 * dppclk updated within update_dchubp_dpp will cause new
2791 		 * clock values of dispclk and dppclk not be in use at the same
2792 		 * time. when clocks are decreased, this may cause dppclk is
2793 		 * lower than previous configuration and let pipe stuck.
2794 		 * for example, eDP + external dp,  change resolution of DP from
2795 		 * 1920x1080x144hz to 1280x960x60hz.
2796 		 * before change: dispclk = 337889 dppclk = 337889
2797 		 * change mode, dcn10_validate_bandwidth calculate
2798 		 *                dispclk = 143122 dppclk = 143122
2799 		 * update_dchubp_dpp be executed before dispclk be updated,
2800 		 * dispclk = 337889, but dppclk use new value dispclk /2 =
2801 		 * 168944. this will cause pipe pstate warning issue.
2802 		 * solution: between pre_bandwidth and optimize_bandwidth, while
2803 		 * dispclk is going to be decreased, keep dppclk = dispclk
2804 		 **/
2805 		if (context->bw_ctx.bw.dcn.clk.dispclk_khz <
2806 				dc->clk_mgr->clks.dispclk_khz)
2807 			should_divided_by_2 = false;
2808 		else
2809 			should_divided_by_2 =
2810 					context->bw_ctx.bw.dcn.clk.dppclk_khz <=
2811 					dc->clk_mgr->clks.dispclk_khz / 2;
2812 
2813 		dpp->funcs->dpp_dppclk_control(
2814 				dpp,
2815 				should_divided_by_2,
2816 				true);
2817 
2818 		if (dc->res_pool->dccg)
2819 			dc->res_pool->dccg->funcs->update_dpp_dto(
2820 					dc->res_pool->dccg,
2821 					dpp->inst,
2822 					pipe_ctx->plane_res.bw.dppclk_khz);
2823 		else
2824 			dc->clk_mgr->clks.dppclk_khz = should_divided_by_2 ?
2825 						dc->clk_mgr->clks.dispclk_khz / 2 :
2826 							dc->clk_mgr->clks.dispclk_khz;
2827 	}
2828 
2829 	/* TODO: Need input parameter to tell current DCHUB pipe tie to which OTG
2830 	 * VTG is within DCHUBBUB which is commond block share by each pipe HUBP.
2831 	 * VTG is 1:1 mapping with OTG. Each pipe HUBP will select which VTG
2832 	 */
2833 	if (plane_state->update_flags.bits.full_update) {
2834 		hubp->funcs->hubp_vtg_sel(hubp, pipe_ctx->stream_res.tg->inst);
2835 
2836 		hubp->funcs->hubp_setup(
2837 			hubp,
2838 			&pipe_ctx->dlg_regs,
2839 			&pipe_ctx->ttu_regs,
2840 			&pipe_ctx->rq_regs,
2841 			&pipe_ctx->pipe_dlg_param);
2842 		hubp->funcs->hubp_setup_interdependent(
2843 			hubp,
2844 			&pipe_ctx->dlg_regs,
2845 			&pipe_ctx->ttu_regs);
2846 	}
2847 
2848 	size.surface_size = pipe_ctx->plane_res.scl_data.viewport;
2849 
2850 	if (plane_state->update_flags.bits.full_update ||
2851 		plane_state->update_flags.bits.bpp_change)
2852 		dcn10_update_dpp(dpp, plane_state);
2853 
2854 	if (plane_state->update_flags.bits.full_update ||
2855 		plane_state->update_flags.bits.per_pixel_alpha_change ||
2856 		plane_state->update_flags.bits.global_alpha_change)
2857 		hws->funcs.update_mpcc(dc, pipe_ctx);
2858 
2859 	if (plane_state->update_flags.bits.full_update ||
2860 		plane_state->update_flags.bits.per_pixel_alpha_change ||
2861 		plane_state->update_flags.bits.global_alpha_change ||
2862 		plane_state->update_flags.bits.scaling_change ||
2863 		plane_state->update_flags.bits.position_change) {
2864 		update_scaler(pipe_ctx);
2865 	}
2866 
2867 	if (plane_state->update_flags.bits.full_update ||
2868 		plane_state->update_flags.bits.scaling_change ||
2869 		plane_state->update_flags.bits.position_change) {
2870 		hubp->funcs->mem_program_viewport(
2871 			hubp,
2872 			&pipe_ctx->plane_res.scl_data.viewport,
2873 			&pipe_ctx->plane_res.scl_data.viewport_c);
2874 	}
2875 
2876 	if (pipe_ctx->stream->cursor_attributes.address.quad_part != 0) {
2877 		dc->hwss.set_cursor_attribute(pipe_ctx);
2878 		dc->hwss.set_cursor_position(pipe_ctx);
2879 
2880 		if (dc->hwss.set_cursor_sdr_white_level)
2881 			dc->hwss.set_cursor_sdr_white_level(pipe_ctx);
2882 	}
2883 
2884 	if (plane_state->update_flags.bits.full_update) {
2885 		/*gamut remap*/
2886 		dc->hwss.program_gamut_remap(pipe_ctx);
2887 
2888 		dc->hwss.program_output_csc(dc,
2889 				pipe_ctx,
2890 				pipe_ctx->stream->output_color_space,
2891 				pipe_ctx->stream->csc_color_matrix.matrix,
2892 				pipe_ctx->stream_res.opp->inst);
2893 	}
2894 
2895 	if (plane_state->update_flags.bits.full_update ||
2896 		plane_state->update_flags.bits.pixel_format_change ||
2897 		plane_state->update_flags.bits.horizontal_mirror_change ||
2898 		plane_state->update_flags.bits.rotation_change ||
2899 		plane_state->update_flags.bits.swizzle_change ||
2900 		plane_state->update_flags.bits.dcc_change ||
2901 		plane_state->update_flags.bits.bpp_change ||
2902 		plane_state->update_flags.bits.scaling_change ||
2903 		plane_state->update_flags.bits.plane_size_change) {
2904 		hubp->funcs->hubp_program_surface_config(
2905 			hubp,
2906 			plane_state->format,
2907 			&plane_state->tiling_info,
2908 			&size,
2909 			plane_state->rotation,
2910 			&plane_state->dcc,
2911 			plane_state->horizontal_mirror,
2912 			compat_level);
2913 	}
2914 
2915 	hubp->power_gated = false;
2916 
2917 	dc->hwss.update_plane_addr(dc, pipe_ctx);
2918 
2919 	if (is_pipe_tree_visible(pipe_ctx))
2920 		hubp->funcs->set_blank(hubp, false);
2921 }
2922 
dcn10_blank_pixel_data(struct dc * dc,struct pipe_ctx * pipe_ctx,bool blank)2923 void dcn10_blank_pixel_data(
2924 		struct dc *dc,
2925 		struct pipe_ctx *pipe_ctx,
2926 		bool blank)
2927 {
2928 	enum dc_color_space color_space;
2929 	struct tg_color black_color = {0};
2930 	struct stream_resource *stream_res = &pipe_ctx->stream_res;
2931 	struct dc_stream_state *stream = pipe_ctx->stream;
2932 
2933 	/* program otg blank color */
2934 	color_space = stream->output_color_space;
2935 	color_space_to_black_color(dc, color_space, &black_color);
2936 
2937 	/*
2938 	 * The way 420 is packed, 2 channels carry Y component, 1 channel
2939 	 * alternate between Cb and Cr, so both channels need the pixel
2940 	 * value for Y
2941 	 */
2942 	if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
2943 		black_color.color_r_cr = black_color.color_g_y;
2944 
2945 
2946 	if (stream_res->tg->funcs->set_blank_color)
2947 		stream_res->tg->funcs->set_blank_color(
2948 				stream_res->tg,
2949 				&black_color);
2950 
2951 	if (!blank) {
2952 		if (stream_res->tg->funcs->set_blank)
2953 			stream_res->tg->funcs->set_blank(stream_res->tg, blank);
2954 		if (stream_res->abm) {
2955 			dc->hwss.set_pipe(pipe_ctx);
2956 			stream_res->abm->funcs->set_abm_level(stream_res->abm, stream->abm_level);
2957 		}
2958 	} else {
2959 		dc->hwss.set_abm_immediate_disable(pipe_ctx);
2960 		if (stream_res->tg->funcs->set_blank) {
2961 			stream_res->tg->funcs->wait_for_state(stream_res->tg, CRTC_STATE_VBLANK);
2962 			stream_res->tg->funcs->set_blank(stream_res->tg, blank);
2963 		}
2964 	}
2965 }
2966 
dcn10_set_hdr_multiplier(struct pipe_ctx * pipe_ctx)2967 void dcn10_set_hdr_multiplier(struct pipe_ctx *pipe_ctx)
2968 {
2969 	struct fixed31_32 multiplier = pipe_ctx->plane_state->hdr_mult;
2970 	uint32_t hw_mult = 0x1f000; // 1.0 default multiplier
2971 	struct custom_float_format fmt;
2972 
2973 	fmt.exponenta_bits = 6;
2974 	fmt.mantissa_bits = 12;
2975 	fmt.sign = true;
2976 
2977 
2978 	if (!dc_fixpt_eq(multiplier, dc_fixpt_from_int(0))) // check != 0
2979 		convert_to_custom_float_format(multiplier, &fmt, &hw_mult);
2980 
2981 	pipe_ctx->plane_res.dpp->funcs->dpp_set_hdr_multiplier(
2982 			pipe_ctx->plane_res.dpp, hw_mult);
2983 }
2984 
dcn10_program_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx,struct dc_state * context)2985 void dcn10_program_pipe(
2986 		struct dc *dc,
2987 		struct pipe_ctx *pipe_ctx,
2988 		struct dc_state *context)
2989 {
2990 	struct dce_hwseq *hws = dc->hwseq;
2991 
2992 	if (pipe_ctx->top_pipe == NULL) {
2993 		bool blank = !is_pipe_tree_visible(pipe_ctx);
2994 
2995 		pipe_ctx->stream_res.tg->funcs->program_global_sync(
2996 				pipe_ctx->stream_res.tg,
2997 				calculate_vready_offset_for_group(pipe_ctx),
2998 				pipe_ctx->pipe_dlg_param.vstartup_start,
2999 				pipe_ctx->pipe_dlg_param.vupdate_offset,
3000 				pipe_ctx->pipe_dlg_param.vupdate_width,
3001 				pipe_ctx->pipe_dlg_param.pstate_keepout);
3002 
3003 		pipe_ctx->stream_res.tg->funcs->set_vtg_params(
3004 				pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing, true);
3005 
3006 		if (hws->funcs.setup_vupdate_interrupt)
3007 			hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
3008 
3009 		hws->funcs.blank_pixel_data(dc, pipe_ctx, blank);
3010 	}
3011 
3012 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
3013 		dcn10_enable_plane(dc, pipe_ctx, context);
3014 
3015 	dcn10_update_dchubp_dpp(dc, pipe_ctx, context);
3016 
3017 	hws->funcs.set_hdr_multiplier(pipe_ctx);
3018 
3019 	if (pipe_ctx->plane_state->update_flags.bits.full_update ||
3020 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
3021 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
3022 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
3023 
3024 	/* dcn10_translate_regamma_to_hw_format takes 750us to finish
3025 	 * only do gamma programming for full update.
3026 	 * TODO: This can be further optimized/cleaned up
3027 	 * Always call this for now since it does memcmp inside before
3028 	 * doing heavy calculation and programming
3029 	 */
3030 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
3031 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
3032 }
3033 
dcn10_wait_for_pending_cleared(struct dc * dc,struct dc_state * context)3034 void dcn10_wait_for_pending_cleared(struct dc *dc,
3035 		struct dc_state *context)
3036 {
3037 		struct pipe_ctx *pipe_ctx;
3038 		struct timing_generator *tg;
3039 		int i;
3040 
3041 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
3042 			pipe_ctx = &context->res_ctx.pipe_ctx[i];
3043 			tg = pipe_ctx->stream_res.tg;
3044 
3045 			/*
3046 			 * Only wait for top pipe's tg penindg bit
3047 			 * Also skip if pipe is disabled.
3048 			 */
3049 			if (pipe_ctx->top_pipe ||
3050 			    !pipe_ctx->stream || !pipe_ctx->plane_state ||
3051 			    !tg->funcs->is_tg_enabled(tg))
3052 				continue;
3053 
3054 			/*
3055 			 * Wait for VBLANK then VACTIVE to ensure we get VUPDATE.
3056 			 * For some reason waiting for OTG_UPDATE_PENDING cleared
3057 			 * seems to not trigger the update right away, and if we
3058 			 * lock again before VUPDATE then we don't get a separated
3059 			 * operation.
3060 			 */
3061 			pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VBLANK);
3062 			pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VACTIVE);
3063 		}
3064 }
3065 
dcn10_post_unlock_program_front_end(struct dc * dc,struct dc_state * context)3066 void dcn10_post_unlock_program_front_end(
3067 		struct dc *dc,
3068 		struct dc_state *context)
3069 {
3070 	int i;
3071 
3072 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3073 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3074 
3075 		if (!pipe_ctx->top_pipe &&
3076 			!pipe_ctx->prev_odm_pipe &&
3077 			pipe_ctx->stream) {
3078 			struct timing_generator *tg = pipe_ctx->stream_res.tg;
3079 
3080 			if (context->stream_status[i].plane_count == 0)
3081 				false_optc_underflow_wa(dc, pipe_ctx->stream, tg);
3082 		}
3083 	}
3084 
3085 	for (i = 0; i < dc->res_pool->pipe_count; i++)
3086 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable)
3087 			dc->hwss.disable_plane(dc, dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i]);
3088 
3089 	for (i = 0; i < dc->res_pool->pipe_count; i++)
3090 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable) {
3091 			dc->hwss.optimize_bandwidth(dc, context);
3092 			break;
3093 		}
3094 
3095 	if (dc->hwseq->wa.DEGVIDCN10_254)
3096 		hubbub1_wm_change_req_wa(dc->res_pool->hubbub);
3097 }
3098 
dcn10_stereo_hw_frame_pack_wa(struct dc * dc,struct dc_state * context)3099 static void dcn10_stereo_hw_frame_pack_wa(struct dc *dc, struct dc_state *context)
3100 {
3101 	uint8_t i;
3102 
3103 	for (i = 0; i < context->stream_count; i++) {
3104 		if (context->streams[i]->timing.timing_3d_format
3105 				== TIMING_3D_FORMAT_HW_FRAME_PACKING) {
3106 			/*
3107 			 * Disable stutter
3108 			 */
3109 			hubbub1_allow_self_refresh_control(dc->res_pool->hubbub, false);
3110 			break;
3111 		}
3112 	}
3113 }
3114 
dcn10_prepare_bandwidth(struct dc * dc,struct dc_state * context)3115 void dcn10_prepare_bandwidth(
3116 		struct dc *dc,
3117 		struct dc_state *context)
3118 {
3119 	struct dce_hwseq *hws = dc->hwseq;
3120 	struct hubbub *hubbub = dc->res_pool->hubbub;
3121 	int min_fclk_khz, min_dcfclk_khz, socclk_khz;
3122 
3123 	if (dc->debug.sanity_checks)
3124 		hws->funcs.verify_allow_pstate_change_high(dc);
3125 
3126 	if (context->stream_count == 0)
3127 		context->bw_ctx.bw.dcn.clk.phyclk_khz = 0;
3128 
3129 	dc->clk_mgr->funcs->update_clocks(
3130 			dc->clk_mgr,
3131 			context,
3132 			false);
3133 
3134 	dc->wm_optimized_required = hubbub->funcs->program_watermarks(hubbub,
3135 			&context->bw_ctx.bw.dcn.watermarks,
3136 			dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
3137 			true);
3138 	dcn10_stereo_hw_frame_pack_wa(dc, context);
3139 
3140 	if (dc->debug.pplib_wm_report_mode == WM_REPORT_OVERRIDE) {
3141 		DC_FP_START();
3142 		dcn_get_soc_clks(
3143 			dc, &min_fclk_khz, &min_dcfclk_khz, &socclk_khz);
3144 		DC_FP_END();
3145 		dcn_bw_notify_pplib_of_wm_ranges(
3146 			dc, min_fclk_khz, min_dcfclk_khz, socclk_khz);
3147 	}
3148 
3149 	if (dc->debug.sanity_checks)
3150 		hws->funcs.verify_allow_pstate_change_high(dc);
3151 }
3152 
dcn10_optimize_bandwidth(struct dc * dc,struct dc_state * context)3153 void dcn10_optimize_bandwidth(
3154 		struct dc *dc,
3155 		struct dc_state *context)
3156 {
3157 	struct dce_hwseq *hws = dc->hwseq;
3158 	struct hubbub *hubbub = dc->res_pool->hubbub;
3159 	int min_fclk_khz, min_dcfclk_khz, socclk_khz;
3160 
3161 	if (dc->debug.sanity_checks)
3162 		hws->funcs.verify_allow_pstate_change_high(dc);
3163 
3164 	if (context->stream_count == 0)
3165 		context->bw_ctx.bw.dcn.clk.phyclk_khz = 0;
3166 
3167 	dc->clk_mgr->funcs->update_clocks(
3168 			dc->clk_mgr,
3169 			context,
3170 			true);
3171 
3172 	hubbub->funcs->program_watermarks(hubbub,
3173 			&context->bw_ctx.bw.dcn.watermarks,
3174 			dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
3175 			true);
3176 
3177 	dcn10_stereo_hw_frame_pack_wa(dc, context);
3178 
3179 	if (dc->debug.pplib_wm_report_mode == WM_REPORT_OVERRIDE) {
3180 		DC_FP_START();
3181 		dcn_get_soc_clks(
3182 			dc, &min_fclk_khz, &min_dcfclk_khz, &socclk_khz);
3183 		DC_FP_END();
3184 		dcn_bw_notify_pplib_of_wm_ranges(
3185 			dc, min_fclk_khz, min_dcfclk_khz, socclk_khz);
3186 	}
3187 
3188 	if (dc->debug.sanity_checks)
3189 		hws->funcs.verify_allow_pstate_change_high(dc);
3190 }
3191 
dcn10_set_drr(struct pipe_ctx ** pipe_ctx,int num_pipes,struct dc_crtc_timing_adjust adjust)3192 void dcn10_set_drr(struct pipe_ctx **pipe_ctx,
3193 		int num_pipes, struct dc_crtc_timing_adjust adjust)
3194 {
3195 	int i = 0;
3196 	struct drr_params params = {0};
3197 	// DRR set trigger event mapped to OTG_TRIG_A (bit 11) for manual control flow
3198 	unsigned int event_triggers = 0x800;
3199 	// Note DRR trigger events are generated regardless of whether num frames met.
3200 	unsigned int num_frames = 2;
3201 
3202 	params.vertical_total_max = adjust.v_total_max;
3203 	params.vertical_total_min = adjust.v_total_min;
3204 	params.vertical_total_mid = adjust.v_total_mid;
3205 	params.vertical_total_mid_frame_num = adjust.v_total_mid_frame_num;
3206 	/* TODO: If multiple pipes are to be supported, you need
3207 	 * some GSL stuff. Static screen triggers may be programmed differently
3208 	 * as well.
3209 	 */
3210 	for (i = 0; i < num_pipes; i++) {
3211 		/* dc_state_destruct() might null the stream resources, so fetch tg
3212 		 * here first to avoid a race condition. The lifetime of the pointee
3213 		 * itself (the timing_generator object) is not a problem here.
3214 		 */
3215 		struct timing_generator *tg = pipe_ctx[i]->stream_res.tg;
3216 
3217 		if ((tg != NULL) && tg->funcs) {
3218 			set_drr_and_clear_adjust_pending(pipe_ctx[i], pipe_ctx[i]->stream, &params);
3219 			if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
3220 				if (tg->funcs->set_static_screen_control)
3221 					tg->funcs->set_static_screen_control(
3222 						tg, event_triggers, num_frames);
3223 		}
3224 	}
3225 }
3226 
dcn10_get_position(struct pipe_ctx ** pipe_ctx,int num_pipes,struct crtc_position * position)3227 void dcn10_get_position(struct pipe_ctx **pipe_ctx,
3228 		int num_pipes,
3229 		struct crtc_position *position)
3230 {
3231 	int i = 0;
3232 
3233 	/* TODO: handle pipes > 1
3234 	 */
3235 	for (i = 0; i < num_pipes; i++)
3236 		pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
3237 }
3238 
dcn10_set_static_screen_control(struct pipe_ctx ** pipe_ctx,int num_pipes,const struct dc_static_screen_params * params)3239 void dcn10_set_static_screen_control(struct pipe_ctx **pipe_ctx,
3240 		int num_pipes, const struct dc_static_screen_params *params)
3241 {
3242 	unsigned int i;
3243 	unsigned int triggers = 0;
3244 
3245 	if (params->triggers.surface_update)
3246 		triggers |= 0x80;
3247 	if (params->triggers.cursor_update)
3248 		triggers |= 0x2;
3249 	if (params->triggers.force_trigger)
3250 		triggers |= 0x1;
3251 
3252 	for (i = 0; i < num_pipes; i++)
3253 		pipe_ctx[i]->stream_res.tg->funcs->
3254 			set_static_screen_control(pipe_ctx[i]->stream_res.tg,
3255 					triggers, params->num_frames);
3256 }
3257 
dcn10_config_stereo_parameters(struct dc_stream_state * stream,struct crtc_stereo_flags * flags)3258 static void dcn10_config_stereo_parameters(
3259 		struct dc_stream_state *stream, struct crtc_stereo_flags *flags)
3260 {
3261 	enum view_3d_format view_format = stream->view_format;
3262 	enum dc_timing_3d_format timing_3d_format =\
3263 			stream->timing.timing_3d_format;
3264 	bool non_stereo_timing = false;
3265 
3266 	if (timing_3d_format == TIMING_3D_FORMAT_NONE ||
3267 		timing_3d_format == TIMING_3D_FORMAT_SIDE_BY_SIDE ||
3268 		timing_3d_format == TIMING_3D_FORMAT_TOP_AND_BOTTOM)
3269 		non_stereo_timing = true;
3270 
3271 	if (non_stereo_timing == false &&
3272 		view_format == VIEW_3D_FORMAT_FRAME_SEQUENTIAL) {
3273 
3274 		flags->PROGRAM_STEREO         = 1;
3275 		flags->PROGRAM_POLARITY       = 1;
3276 		if (timing_3d_format == TIMING_3D_FORMAT_FRAME_ALTERNATE ||
3277 			timing_3d_format == TIMING_3D_FORMAT_INBAND_FA ||
3278 			timing_3d_format == TIMING_3D_FORMAT_DP_HDMI_INBAND_FA ||
3279 			timing_3d_format == TIMING_3D_FORMAT_SIDEBAND_FA) {
3280 
3281 			if (stream->link && stream->link->ddc) {
3282 				enum display_dongle_type dongle = \
3283 						stream->link->ddc->dongle_type;
3284 
3285 				if (dongle == DISPLAY_DONGLE_DP_VGA_CONVERTER ||
3286 					dongle == DISPLAY_DONGLE_DP_DVI_CONVERTER ||
3287 					dongle == DISPLAY_DONGLE_DP_HDMI_CONVERTER)
3288 					flags->DISABLE_STEREO_DP_SYNC = 1;
3289 			}
3290 		}
3291 		flags->RIGHT_EYE_POLARITY =\
3292 				stream->timing.flags.RIGHT_EYE_3D_POLARITY;
3293 		if (timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
3294 			flags->FRAME_PACKED = 1;
3295 	}
3296 
3297 	return;
3298 }
3299 
dcn10_setup_stereo(struct pipe_ctx * pipe_ctx,struct dc * dc)3300 void dcn10_setup_stereo(struct pipe_ctx *pipe_ctx, struct dc *dc)
3301 {
3302 	struct crtc_stereo_flags flags = { 0 };
3303 	struct dc_stream_state *stream = pipe_ctx->stream;
3304 
3305 	dcn10_config_stereo_parameters(stream, &flags);
3306 
3307 	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_SIDEBAND_FA) {
3308 		if (!dc_set_generic_gpio_for_stereo(true, dc->ctx->gpio_service))
3309 			dc_set_generic_gpio_for_stereo(false, dc->ctx->gpio_service);
3310 	} else {
3311 		dc_set_generic_gpio_for_stereo(false, dc->ctx->gpio_service);
3312 	}
3313 
3314 	pipe_ctx->stream_res.opp->funcs->opp_program_stereo(
3315 		pipe_ctx->stream_res.opp,
3316 		flags.PROGRAM_STEREO == 1,
3317 		&stream->timing);
3318 
3319 	pipe_ctx->stream_res.tg->funcs->program_stereo(
3320 		pipe_ctx->stream_res.tg,
3321 		&stream->timing,
3322 		&flags);
3323 
3324 	return;
3325 }
3326 
get_hubp_by_inst(struct resource_pool * res_pool,int mpcc_inst)3327 static struct hubp *get_hubp_by_inst(struct resource_pool *res_pool, int mpcc_inst)
3328 {
3329 	int i;
3330 
3331 	for (i = 0; i < res_pool->pipe_count; i++) {
3332 		if (res_pool->hubps[i]->inst == mpcc_inst)
3333 			return res_pool->hubps[i];
3334 	}
3335 	ASSERT(false);
3336 	return NULL;
3337 }
3338 
dcn10_wait_for_mpcc_disconnect(struct dc * dc,struct resource_pool * res_pool,struct pipe_ctx * pipe_ctx)3339 void dcn10_wait_for_mpcc_disconnect(
3340 		struct dc *dc,
3341 		struct resource_pool *res_pool,
3342 		struct pipe_ctx *pipe_ctx)
3343 {
3344 	struct dce_hwseq *hws = dc->hwseq;
3345 	int mpcc_inst;
3346 
3347 	if (dc->debug.sanity_checks) {
3348 		hws->funcs.verify_allow_pstate_change_high(dc);
3349 	}
3350 
3351 	if (!pipe_ctx->stream_res.opp)
3352 		return;
3353 
3354 	for (mpcc_inst = 0; mpcc_inst < MAX_PIPES; mpcc_inst++) {
3355 		if (pipe_ctx->stream_res.opp->mpcc_disconnect_pending[mpcc_inst]) {
3356 			struct hubp *hubp = get_hubp_by_inst(res_pool, mpcc_inst);
3357 
3358 			if (pipe_ctx->stream_res.tg &&
3359 				pipe_ctx->stream_res.tg->funcs->is_tg_enabled(pipe_ctx->stream_res.tg))
3360 				res_pool->mpc->funcs->wait_for_idle(res_pool->mpc, mpcc_inst);
3361 			pipe_ctx->stream_res.opp->mpcc_disconnect_pending[mpcc_inst] = false;
3362 			hubp->funcs->set_blank(hubp, true);
3363 		}
3364 	}
3365 
3366 	if (dc->debug.sanity_checks) {
3367 		hws->funcs.verify_allow_pstate_change_high(dc);
3368 	}
3369 
3370 }
3371 
dcn10_dummy_display_power_gating(struct dc * dc,uint8_t controller_id,struct dc_bios * dcb,enum pipe_gating_control power_gating)3372 bool dcn10_dummy_display_power_gating(
3373 	struct dc *dc,
3374 	uint8_t controller_id,
3375 	struct dc_bios *dcb,
3376 	enum pipe_gating_control power_gating)
3377 {
3378 	return true;
3379 }
3380 
dcn10_update_pending_status(struct pipe_ctx * pipe_ctx)3381 void dcn10_update_pending_status(struct pipe_ctx *pipe_ctx)
3382 {
3383 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
3384 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
3385 	bool flip_pending;
3386 	struct dc *dc = pipe_ctx->stream->ctx->dc;
3387 
3388 	if (plane_state == NULL)
3389 		return;
3390 
3391 	flip_pending = pipe_ctx->plane_res.hubp->funcs->hubp_is_flip_pending(
3392 					pipe_ctx->plane_res.hubp);
3393 
3394 	plane_state->status.is_flip_pending = plane_state->status.is_flip_pending || flip_pending;
3395 
3396 	if (!flip_pending)
3397 		plane_state->status.current_address = plane_state->status.requested_address;
3398 
3399 	if (plane_state->status.current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
3400 			tg->funcs->is_stereo_left_eye) {
3401 		plane_state->status.is_right_eye =
3402 				!tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
3403 	}
3404 
3405 	if (dc->hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied) {
3406 		struct dce_hwseq *hwseq = dc->hwseq;
3407 		struct timing_generator *tg = dc->res_pool->timing_generators[0];
3408 		unsigned int cur_frame = tg->funcs->get_frame_count(tg);
3409 
3410 		if (cur_frame != hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied_on_frame) {
3411 			struct hubbub *hubbub = dc->res_pool->hubbub;
3412 
3413 			hubbub->funcs->allow_self_refresh_control(hubbub, !dc->debug.disable_stutter);
3414 			hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied = false;
3415 		}
3416 	}
3417 }
3418 
dcn10_update_dchub(struct dce_hwseq * hws,struct dchub_init_data * dh_data)3419 void dcn10_update_dchub(struct dce_hwseq *hws, struct dchub_init_data *dh_data)
3420 {
3421 	struct hubbub *hubbub = hws->ctx->dc->res_pool->hubbub;
3422 
3423 	/* In DCN, this programming sequence is owned by the hubbub */
3424 	hubbub->funcs->update_dchub(hubbub, dh_data);
3425 }
3426 
dcn10_can_pipe_disable_cursor(struct pipe_ctx * pipe_ctx)3427 static bool dcn10_can_pipe_disable_cursor(struct pipe_ctx *pipe_ctx)
3428 {
3429 	struct pipe_ctx *test_pipe, *split_pipe;
3430 	const struct scaler_data *scl_data = &pipe_ctx->plane_res.scl_data;
3431 	struct rect r1 = scl_data->recout, r2, r2_half;
3432 	int r1_r = r1.x + r1.width, r1_b = r1.y + r1.height, r2_r, r2_b;
3433 	int cur_layer = pipe_ctx->plane_state->layer_index;
3434 
3435 	/**
3436 	 * Disable the cursor if there's another pipe above this with a
3437 	 * plane that contains this pipe's viewport to prevent double cursor
3438 	 * and incorrect scaling artifacts.
3439 	 */
3440 	for (test_pipe = pipe_ctx->top_pipe; test_pipe;
3441 	     test_pipe = test_pipe->top_pipe) {
3442 		// Skip invisible layer and pipe-split plane on same layer
3443 		if (!test_pipe->plane_state ||
3444 		    !test_pipe->plane_state->visible ||
3445 		    test_pipe->plane_state->layer_index == cur_layer)
3446 			continue;
3447 
3448 		r2 = test_pipe->plane_res.scl_data.recout;
3449 		r2_r = r2.x + r2.width;
3450 		r2_b = r2.y + r2.height;
3451 		split_pipe = test_pipe;
3452 
3453 		/**
3454 		 * There is another half plane on same layer because of
3455 		 * pipe-split, merge together per same height.
3456 		 */
3457 		for (split_pipe = pipe_ctx->top_pipe; split_pipe;
3458 		     split_pipe = split_pipe->top_pipe)
3459 			if (split_pipe->plane_state->layer_index == test_pipe->plane_state->layer_index) {
3460 				r2_half = split_pipe->plane_res.scl_data.recout;
3461 				r2.x = (r2_half.x < r2.x) ? r2_half.x : r2.x;
3462 				r2.width = r2.width + r2_half.width;
3463 				r2_r = r2.x + r2.width;
3464 				break;
3465 			}
3466 
3467 		if (r1.x >= r2.x && r1.y >= r2.y && r1_r <= r2_r && r1_b <= r2_b)
3468 			return true;
3469 	}
3470 
3471 	return false;
3472 }
3473 
dcn10_set_cursor_position(struct pipe_ctx * pipe_ctx)3474 void dcn10_set_cursor_position(struct pipe_ctx *pipe_ctx)
3475 {
3476 	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
3477 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
3478 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
3479 	struct dc_cursor_mi_param param = {
3480 		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
3481 		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.dchub_ref_clock_inKhz,
3482 		.viewport = pipe_ctx->plane_res.scl_data.viewport,
3483 		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
3484 		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
3485 		.rotation = pipe_ctx->plane_state->rotation,
3486 		.mirror = pipe_ctx->plane_state->horizontal_mirror,
3487 		.stream = pipe_ctx->stream,
3488 	};
3489 	bool pipe_split_on = false;
3490 	bool odm_combine_on = (pipe_ctx->next_odm_pipe != NULL) ||
3491 		(pipe_ctx->prev_odm_pipe != NULL);
3492 
3493 	int x_plane = pipe_ctx->plane_state->dst_rect.x;
3494 	int y_plane = pipe_ctx->plane_state->dst_rect.y;
3495 	int x_pos = pos_cpy.x;
3496 	int y_pos = pos_cpy.y;
3497 
3498 	if ((pipe_ctx->top_pipe != NULL) || (pipe_ctx->bottom_pipe != NULL)) {
3499 		if ((pipe_ctx->plane_state->src_rect.width != pipe_ctx->plane_res.scl_data.viewport.width) ||
3500 			(pipe_ctx->plane_state->src_rect.height != pipe_ctx->plane_res.scl_data.viewport.height)) {
3501 			pipe_split_on = true;
3502 		}
3503 	}
3504 
3505 	/**
3506 	 * DC cursor is stream space, HW cursor is plane space and drawn
3507 	 * as part of the framebuffer.
3508 	 *
3509 	 * Cursor position can't be negative, but hotspot can be used to
3510 	 * shift cursor out of the plane bounds. Hotspot must be smaller
3511 	 * than the cursor size.
3512 	 */
3513 
3514 	/**
3515 	 * Translate cursor from stream space to plane space.
3516 	 *
3517 	 * If the cursor is scaled then we need to scale the position
3518 	 * to be in the approximately correct place. We can't do anything
3519 	 * about the actual size being incorrect, that's a limitation of
3520 	 * the hardware.
3521 	 */
3522 	if (param.rotation == ROTATION_ANGLE_90 || param.rotation == ROTATION_ANGLE_270) {
3523 		x_pos = (x_pos - x_plane) * pipe_ctx->plane_state->src_rect.height /
3524 				pipe_ctx->plane_state->dst_rect.width;
3525 		y_pos = (y_pos - y_plane) * pipe_ctx->plane_state->src_rect.width /
3526 				pipe_ctx->plane_state->dst_rect.height;
3527 	} else {
3528 		x_pos = (x_pos - x_plane) * pipe_ctx->plane_state->src_rect.width /
3529 				pipe_ctx->plane_state->dst_rect.width;
3530 		y_pos = (y_pos - y_plane) * pipe_ctx->plane_state->src_rect.height /
3531 				pipe_ctx->plane_state->dst_rect.height;
3532 	}
3533 
3534 	/**
3535 	 * If the cursor's source viewport is clipped then we need to
3536 	 * translate the cursor to appear in the correct position on
3537 	 * the screen.
3538 	 *
3539 	 * This translation isn't affected by scaling so it needs to be
3540 	 * done *after* we adjust the position for the scale factor.
3541 	 *
3542 	 * This is only done by opt-in for now since there are still
3543 	 * some usecases like tiled display that might enable the
3544 	 * cursor on both streams while expecting dc to clip it.
3545 	 */
3546 	if (pos_cpy.translate_by_source) {
3547 		x_pos += pipe_ctx->plane_state->src_rect.x;
3548 		y_pos += pipe_ctx->plane_state->src_rect.y;
3549 	}
3550 
3551 	/**
3552 	 * If the position is negative then we need to add to the hotspot
3553 	 * to shift the cursor outside the plane.
3554 	 */
3555 
3556 	if (x_pos < 0) {
3557 		pos_cpy.x_hotspot -= x_pos;
3558 		x_pos = 0;
3559 	}
3560 
3561 	if (y_pos < 0) {
3562 		pos_cpy.y_hotspot -= y_pos;
3563 		y_pos = 0;
3564 	}
3565 
3566 	pos_cpy.x = (uint32_t)x_pos;
3567 	pos_cpy.y = (uint32_t)y_pos;
3568 
3569 	if (pipe_ctx->plane_state->address.type
3570 			== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
3571 		pos_cpy.enable = false;
3572 
3573 	if (pos_cpy.enable && dcn10_can_pipe_disable_cursor(pipe_ctx))
3574 		pos_cpy.enable = false;
3575 
3576 
3577 	if (param.rotation == ROTATION_ANGLE_0) {
3578 		int viewport_width =
3579 			pipe_ctx->plane_res.scl_data.viewport.width;
3580 		int viewport_x =
3581 			pipe_ctx->plane_res.scl_data.viewport.x;
3582 
3583 		if (param.mirror) {
3584 			if (pipe_split_on || odm_combine_on) {
3585 				if (pos_cpy.x >= viewport_width + viewport_x) {
3586 					pos_cpy.x = 2 * viewport_width
3587 							- pos_cpy.x + 2 * viewport_x;
3588 				} else {
3589 					uint32_t temp_x = pos_cpy.x;
3590 
3591 					pos_cpy.x = 2 * viewport_x - pos_cpy.x;
3592 					if (temp_x >= viewport_x +
3593 						(int)hubp->curs_attr.width || pos_cpy.x
3594 						<= (int)hubp->curs_attr.width +
3595 						pipe_ctx->plane_state->src_rect.x) {
3596 						pos_cpy.x = 2 * viewport_width - temp_x;
3597 					}
3598 				}
3599 			} else {
3600 				pos_cpy.x = viewport_width - pos_cpy.x + 2 * viewport_x;
3601 			}
3602 		}
3603 	}
3604 	// Swap axis and mirror horizontally
3605 	else if (param.rotation == ROTATION_ANGLE_90) {
3606 		uint32_t temp_x = pos_cpy.x;
3607 
3608 		pos_cpy.x = pipe_ctx->plane_res.scl_data.viewport.width -
3609 				(pos_cpy.y - pipe_ctx->plane_res.scl_data.viewport.x) + pipe_ctx->plane_res.scl_data.viewport.x;
3610 		pos_cpy.y = temp_x;
3611 	}
3612 	// Swap axis and mirror vertically
3613 	else if (param.rotation == ROTATION_ANGLE_270) {
3614 		uint32_t temp_y = pos_cpy.y;
3615 		int viewport_height =
3616 			pipe_ctx->plane_res.scl_data.viewport.height;
3617 		int viewport_y =
3618 			pipe_ctx->plane_res.scl_data.viewport.y;
3619 
3620 		/**
3621 		 * Display groups that are 1xnY, have pos_cpy.x > 2 * viewport.height
3622 		 * For pipe split cases:
3623 		 * - apply offset of viewport.y to normalize pos_cpy.x
3624 		 * - calculate the pos_cpy.y as before
3625 		 * - shift pos_cpy.y back by same offset to get final value
3626 		 * - since we iterate through both pipes, use the lower
3627 		 *   viewport.y for offset
3628 		 * For non pipe split cases, use the same calculation for
3629 		 *  pos_cpy.y as the 180 degree rotation case below,
3630 		 *  but use pos_cpy.x as our input because we are rotating
3631 		 *  270 degrees
3632 		 */
3633 		if (pipe_split_on || odm_combine_on) {
3634 			int pos_cpy_x_offset;
3635 			int other_pipe_viewport_y;
3636 
3637 			if (pipe_split_on) {
3638 				if (pipe_ctx->bottom_pipe) {
3639 					other_pipe_viewport_y =
3640 						pipe_ctx->bottom_pipe->plane_res.scl_data.viewport.y;
3641 				} else {
3642 					other_pipe_viewport_y =
3643 						pipe_ctx->top_pipe->plane_res.scl_data.viewport.y;
3644 				}
3645 			} else {
3646 				if (pipe_ctx->next_odm_pipe) {
3647 					other_pipe_viewport_y =
3648 						pipe_ctx->next_odm_pipe->plane_res.scl_data.viewport.y;
3649 				} else {
3650 					other_pipe_viewport_y =
3651 						pipe_ctx->prev_odm_pipe->plane_res.scl_data.viewport.y;
3652 				}
3653 			}
3654 			pos_cpy_x_offset = (viewport_y > other_pipe_viewport_y) ?
3655 				other_pipe_viewport_y : viewport_y;
3656 			pos_cpy.x -= pos_cpy_x_offset;
3657 			if (pos_cpy.x > viewport_height) {
3658 				pos_cpy.x = pos_cpy.x - viewport_height;
3659 				pos_cpy.y = viewport_height - pos_cpy.x;
3660 			} else {
3661 				pos_cpy.y = 2 * viewport_height - pos_cpy.x;
3662 			}
3663 			pos_cpy.y += pos_cpy_x_offset;
3664 		} else {
3665 			pos_cpy.y = (2 * viewport_y) + viewport_height - pos_cpy.x;
3666 		}
3667 		pos_cpy.x = temp_y;
3668 	}
3669 	// Mirror horizontally and vertically
3670 	else if (param.rotation == ROTATION_ANGLE_180) {
3671 		int viewport_width =
3672 			pipe_ctx->plane_res.scl_data.viewport.width;
3673 		int viewport_x =
3674 			pipe_ctx->plane_res.scl_data.viewport.x;
3675 
3676 		if (!param.mirror) {
3677 			if (pipe_split_on || odm_combine_on) {
3678 				if (pos_cpy.x >= viewport_width + viewport_x) {
3679 					pos_cpy.x = 2 * viewport_width
3680 							- pos_cpy.x + 2 * viewport_x;
3681 				} else {
3682 					uint32_t temp_x = pos_cpy.x;
3683 
3684 					pos_cpy.x = 2 * viewport_x - pos_cpy.x;
3685 					if (temp_x >= viewport_x +
3686 						(int)hubp->curs_attr.width || pos_cpy.x
3687 						<= (int)hubp->curs_attr.width +
3688 						pipe_ctx->plane_state->src_rect.x) {
3689 						pos_cpy.x = temp_x + viewport_width;
3690 					}
3691 				}
3692 			} else {
3693 				pos_cpy.x = viewport_width - pos_cpy.x + 2 * viewport_x;
3694 			}
3695 		}
3696 
3697 		/**
3698 		 * Display groups that are 1xnY, have pos_cpy.y > viewport.height
3699 		 * Calculation:
3700 		 *   delta_from_bottom = viewport.y + viewport.height - pos_cpy.y
3701 		 *   pos_cpy.y_new = viewport.y + delta_from_bottom
3702 		 * Simplify it as:
3703 		 *   pos_cpy.y = viewport.y * 2 + viewport.height - pos_cpy.y
3704 		 */
3705 		pos_cpy.y = (2 * pipe_ctx->plane_res.scl_data.viewport.y) +
3706 			pipe_ctx->plane_res.scl_data.viewport.height - pos_cpy.y;
3707 	}
3708 
3709 	hubp->funcs->set_cursor_position(hubp, &pos_cpy, &param);
3710 	dpp->funcs->set_cursor_position(dpp, &pos_cpy, &param, hubp->curs_attr.width, hubp->curs_attr.height);
3711 }
3712 
dcn10_set_cursor_attribute(struct pipe_ctx * pipe_ctx)3713 void dcn10_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
3714 {
3715 	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
3716 
3717 	pipe_ctx->plane_res.hubp->funcs->set_cursor_attributes(
3718 			pipe_ctx->plane_res.hubp, attributes);
3719 	pipe_ctx->plane_res.dpp->funcs->set_cursor_attributes(
3720 		pipe_ctx->plane_res.dpp, attributes);
3721 }
3722 
dcn10_set_cursor_sdr_white_level(struct pipe_ctx * pipe_ctx)3723 void dcn10_set_cursor_sdr_white_level(struct pipe_ctx *pipe_ctx)
3724 {
3725 	uint32_t sdr_white_level = pipe_ctx->stream->cursor_attributes.sdr_white_level;
3726 	struct fixed31_32 multiplier;
3727 	struct dpp_cursor_attributes opt_attr = { 0 };
3728 	uint32_t hw_scale = 0x3c00; // 1.0 default multiplier
3729 	struct custom_float_format fmt;
3730 
3731 	if (!pipe_ctx->plane_res.dpp->funcs->set_optional_cursor_attributes)
3732 		return;
3733 
3734 	fmt.exponenta_bits = 5;
3735 	fmt.mantissa_bits = 10;
3736 	fmt.sign = true;
3737 
3738 	if (sdr_white_level > 80) {
3739 		multiplier = dc_fixpt_from_fraction(sdr_white_level, 80);
3740 		convert_to_custom_float_format(multiplier, &fmt, &hw_scale);
3741 	}
3742 
3743 	opt_attr.scale = hw_scale;
3744 	opt_attr.bias = 0;
3745 
3746 	pipe_ctx->plane_res.dpp->funcs->set_optional_cursor_attributes(
3747 			pipe_ctx->plane_res.dpp, &opt_attr);
3748 }
3749 
3750 /*
3751  * apply_front_porch_workaround  TODO FPGA still need?
3752  *
3753  * This is a workaround for a bug that has existed since R5xx and has not been
3754  * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
3755  */
apply_front_porch_workaround(struct dc_crtc_timing * timing)3756 static void apply_front_porch_workaround(
3757 	struct dc_crtc_timing *timing)
3758 {
3759 	if (timing->flags.INTERLACE == 1) {
3760 		if (timing->v_front_porch < 2)
3761 			timing->v_front_porch = 2;
3762 	} else {
3763 		if (timing->v_front_porch < 1)
3764 			timing->v_front_porch = 1;
3765 	}
3766 }
3767 
dcn10_get_vupdate_offset_from_vsync(struct pipe_ctx * pipe_ctx)3768 int dcn10_get_vupdate_offset_from_vsync(struct pipe_ctx *pipe_ctx)
3769 {
3770 	const struct dc_crtc_timing *dc_crtc_timing = &pipe_ctx->stream->timing;
3771 	struct dc_crtc_timing patched_crtc_timing;
3772 	int vesa_sync_start;
3773 	int asic_blank_end;
3774 	int interlace_factor;
3775 
3776 	patched_crtc_timing = *dc_crtc_timing;
3777 	apply_front_porch_workaround(&patched_crtc_timing);
3778 
3779 	interlace_factor = patched_crtc_timing.flags.INTERLACE ? 2 : 1;
3780 
3781 	vesa_sync_start = patched_crtc_timing.v_addressable +
3782 			patched_crtc_timing.v_border_bottom +
3783 			patched_crtc_timing.v_front_porch;
3784 
3785 	asic_blank_end = (patched_crtc_timing.v_total -
3786 			vesa_sync_start -
3787 			patched_crtc_timing.v_border_top)
3788 			* interlace_factor;
3789 
3790 	return asic_blank_end -
3791 			pipe_ctx->pipe_dlg_param.vstartup_start + 1;
3792 }
3793 
dcn10_calc_vupdate_position(struct dc * dc,struct pipe_ctx * pipe_ctx,uint32_t * start_line,uint32_t * end_line)3794 void dcn10_calc_vupdate_position(
3795 		struct dc *dc,
3796 		struct pipe_ctx *pipe_ctx,
3797 		uint32_t *start_line,
3798 		uint32_t *end_line)
3799 {
3800 	const struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
3801 	int vupdate_pos = dc->hwss.get_vupdate_offset_from_vsync(pipe_ctx);
3802 
3803 	if (vupdate_pos >= 0)
3804 		*start_line = vupdate_pos - ((vupdate_pos / timing->v_total) * timing->v_total);
3805 	else
3806 		*start_line = vupdate_pos + ((-vupdate_pos / timing->v_total) + 1) * timing->v_total - 1;
3807 	*end_line = (*start_line + 2) % timing->v_total;
3808 }
3809 
dcn10_cal_vline_position(struct dc * dc,struct pipe_ctx * pipe_ctx,uint32_t * start_line,uint32_t * end_line)3810 static void dcn10_cal_vline_position(
3811 		struct dc *dc,
3812 		struct pipe_ctx *pipe_ctx,
3813 		uint32_t *start_line,
3814 		uint32_t *end_line)
3815 {
3816 	const struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
3817 	int vline_pos = pipe_ctx->stream->periodic_interrupt.lines_offset;
3818 
3819 	if (pipe_ctx->stream->periodic_interrupt.ref_point == START_V_UPDATE) {
3820 		if (vline_pos > 0)
3821 			vline_pos--;
3822 		else if (vline_pos < 0)
3823 			vline_pos++;
3824 
3825 		vline_pos += dc->hwss.get_vupdate_offset_from_vsync(pipe_ctx);
3826 		if (vline_pos >= 0)
3827 			*start_line = vline_pos - ((vline_pos / timing->v_total) * timing->v_total);
3828 		else
3829 			*start_line = vline_pos + ((-vline_pos / timing->v_total) + 1) * timing->v_total - 1;
3830 		*end_line = (*start_line + 2) % timing->v_total;
3831 	} else if (pipe_ctx->stream->periodic_interrupt.ref_point == START_V_SYNC) {
3832 		// vsync is line 0 so start_line is just the requested line offset
3833 		*start_line = vline_pos;
3834 		*end_line = (*start_line + 2) % timing->v_total;
3835 	} else
3836 		ASSERT(0);
3837 }
3838 
dcn10_setup_periodic_interrupt(struct dc * dc,struct pipe_ctx * pipe_ctx)3839 void dcn10_setup_periodic_interrupt(
3840 		struct dc *dc,
3841 		struct pipe_ctx *pipe_ctx)
3842 {
3843 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
3844 	uint32_t start_line = 0;
3845 	uint32_t end_line = 0;
3846 
3847 	dcn10_cal_vline_position(dc, pipe_ctx, &start_line, &end_line);
3848 
3849 	tg->funcs->setup_vertical_interrupt0(tg, start_line, end_line);
3850 }
3851 
dcn10_setup_vupdate_interrupt(struct dc * dc,struct pipe_ctx * pipe_ctx)3852 void dcn10_setup_vupdate_interrupt(struct dc *dc, struct pipe_ctx *pipe_ctx)
3853 {
3854 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
3855 	int start_line = dc->hwss.get_vupdate_offset_from_vsync(pipe_ctx);
3856 
3857 	if (start_line < 0) {
3858 		ASSERT(0);
3859 		start_line = 0;
3860 	}
3861 
3862 	if (tg->funcs->setup_vertical_interrupt2)
3863 		tg->funcs->setup_vertical_interrupt2(tg, start_line);
3864 }
3865 
dcn10_unblank_stream(struct pipe_ctx * pipe_ctx,struct dc_link_settings * link_settings)3866 void dcn10_unblank_stream(struct pipe_ctx *pipe_ctx,
3867 		struct dc_link_settings *link_settings)
3868 {
3869 	struct encoder_unblank_param params = {0};
3870 	struct dc_stream_state *stream = pipe_ctx->stream;
3871 	struct dc_link *link = stream->link;
3872 	struct dce_hwseq *hws = link->dc->hwseq;
3873 
3874 	/* only 3 items below are used by unblank */
3875 	params.timing = pipe_ctx->stream->timing;
3876 
3877 	params.link_settings.link_rate = link_settings->link_rate;
3878 
3879 	if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
3880 		if (params.timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
3881 			params.timing.pix_clk_100hz /= 2;
3882 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
3883 	}
3884 
3885 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
3886 		hws->funcs.edp_backlight_control(link, true);
3887 	}
3888 }
3889 
dcn10_send_immediate_sdp_message(struct pipe_ctx * pipe_ctx,const uint8_t * custom_sdp_message,unsigned int sdp_message_size)3890 void dcn10_send_immediate_sdp_message(struct pipe_ctx *pipe_ctx,
3891 				const uint8_t *custom_sdp_message,
3892 				unsigned int sdp_message_size)
3893 {
3894 	if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
3895 		pipe_ctx->stream_res.stream_enc->funcs->send_immediate_sdp_message(
3896 				pipe_ctx->stream_res.stream_enc,
3897 				custom_sdp_message,
3898 				sdp_message_size);
3899 	}
3900 }
dcn10_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)3901 enum dc_status dcn10_set_clock(struct dc *dc,
3902 			enum dc_clock_type clock_type,
3903 			uint32_t clk_khz,
3904 			uint32_t stepping)
3905 {
3906 	struct dc_state *context = dc->current_state;
3907 	struct dc_clock_config clock_cfg = {0};
3908 	struct dc_clocks *current_clocks = &context->bw_ctx.bw.dcn.clk;
3909 
3910 	if (!dc->clk_mgr || !dc->clk_mgr->funcs->get_clock)
3911 		return DC_FAIL_UNSUPPORTED_1;
3912 
3913 	dc->clk_mgr->funcs->get_clock(dc->clk_mgr,
3914 		context, clock_type, &clock_cfg);
3915 
3916 	if (clk_khz > clock_cfg.max_clock_khz)
3917 		return DC_FAIL_CLK_EXCEED_MAX;
3918 
3919 	if (clk_khz < clock_cfg.min_clock_khz)
3920 		return DC_FAIL_CLK_BELOW_MIN;
3921 
3922 	if (clk_khz < clock_cfg.bw_requirequired_clock_khz)
3923 		return DC_FAIL_CLK_BELOW_CFG_REQUIRED;
3924 
3925 	/*update internal request clock for update clock use*/
3926 	if (clock_type == DC_CLOCK_TYPE_DISPCLK)
3927 		current_clocks->dispclk_khz = clk_khz;
3928 	else if (clock_type == DC_CLOCK_TYPE_DPPCLK)
3929 		current_clocks->dppclk_khz = clk_khz;
3930 	else
3931 		return DC_ERROR_UNEXPECTED;
3932 
3933 	if (dc->clk_mgr->funcs->update_clocks)
3934 				dc->clk_mgr->funcs->update_clocks(dc->clk_mgr,
3935 				context, true);
3936 	return DC_OK;
3937 
3938 }
3939 
dcn10_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)3940 void dcn10_get_clock(struct dc *dc,
3941 			enum dc_clock_type clock_type,
3942 			struct dc_clock_config *clock_cfg)
3943 {
3944 	struct dc_state *context = dc->current_state;
3945 
3946 	if (dc->clk_mgr && dc->clk_mgr->funcs->get_clock)
3947 				dc->clk_mgr->funcs->get_clock(dc->clk_mgr, context, clock_type, clock_cfg);
3948 
3949 }
3950 
dcn10_get_dcc_en_bits(struct dc * dc,int * dcc_en_bits)3951 void dcn10_get_dcc_en_bits(struct dc *dc, int *dcc_en_bits)
3952 {
3953 	struct resource_pool *pool = dc->res_pool;
3954 	int i;
3955 
3956 	for (i = 0; i < pool->pipe_count; i++) {
3957 		struct hubp *hubp = pool->hubps[i];
3958 		struct dcn_hubp_state *s = &(TO_DCN10_HUBP(hubp)->state);
3959 
3960 		hubp->funcs->hubp_read_state(hubp);
3961 
3962 		if (!s->blank_en)
3963 			dcc_en_bits[i] = s->dcc_en ? 1 : 0;
3964 	}
3965 }
3966