1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24 #include "cgroup-internal.h"
25 #include "cpuset-internal.h"
26
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/kernel.h>
30 #include <linux/mempolicy.h>
31 #include <linux/mm.h>
32 #include <linux/memory.h>
33 #include <linux/export.h>
34 #include <linux/rcupdate.h>
35 #include <linux/sched.h>
36 #include <linux/sched/deadline.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/task.h>
39 #include <linux/security.h>
40 #include <linux/oom.h>
41 #include <linux/sched/isolation.h>
42 #include <linux/wait.h>
43 #include <linux/workqueue.h>
44 #include <trace/hooks/sched.h>
45
46 #include <trace/hooks/cgroup.h>
47
48 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
49 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
50
51 /*
52 * There could be abnormal cpuset configurations for cpu or memory
53 * node binding, add this key to provide a quick low-cost judgment
54 * of the situation.
55 */
56 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
57
58 static const char * const perr_strings[] = {
59 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive",
60 [PERR_INVPARENT] = "Parent is an invalid partition root",
61 [PERR_NOTPART] = "Parent is not a partition root",
62 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive",
63 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream",
64 [PERR_HOTPLUG] = "No cpu available due to hotplug",
65 [PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty",
66 [PERR_HKEEPING] = "partition config conflicts with housekeeping setup",
67 [PERR_ACCESS] = "Enable partition not permitted",
68 [PERR_REMOTE] = "Have remote partition underneath",
69 };
70
71 /*
72 * Exclusive CPUs distributed out to sub-partitions of top_cpuset
73 */
74 static cpumask_var_t subpartitions_cpus;
75
76 /*
77 * Exclusive CPUs in isolated partitions
78 */
79 static cpumask_var_t isolated_cpus;
80
81 /*
82 * Housekeeping (HK_TYPE_DOMAIN) CPUs at boot
83 */
84 static cpumask_var_t boot_hk_cpus;
85 static bool have_boot_isolcpus;
86
87 /* List of remote partition root children */
88 static struct list_head remote_children;
89
90 /*
91 * A flag to force sched domain rebuild at the end of an operation.
92 * It can be set in
93 * - update_partition_sd_lb()
94 * - remote_partition_check()
95 * - update_cpumasks_hier()
96 * - cpuset_update_flag()
97 * - cpuset_hotplug_update_tasks()
98 * - cpuset_handle_hotplug()
99 *
100 * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock.
101 *
102 * Note that update_relax_domain_level() in cpuset-v1.c can still call
103 * rebuild_sched_domains_locked() directly without using this flag.
104 */
105 static bool force_sd_rebuild;
106
107 /*
108 * Partition root states:
109 *
110 * 0 - member (not a partition root)
111 * 1 - partition root
112 * 2 - partition root without load balancing (isolated)
113 * -1 - invalid partition root
114 * -2 - invalid isolated partition root
115 *
116 * There are 2 types of partitions - local or remote. Local partitions are
117 * those whose parents are partition root themselves. Setting of
118 * cpuset.cpus.exclusive are optional in setting up local partitions.
119 * Remote partitions are those whose parents are not partition roots. Passing
120 * down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor
121 * nodes are mandatory in creating a remote partition.
122 *
123 * For simplicity, a local partition can be created under a local or remote
124 * partition but a remote partition cannot have any partition root in its
125 * ancestor chain except the cgroup root.
126 */
127 #define PRS_MEMBER 0
128 #define PRS_ROOT 1
129 #define PRS_ISOLATED 2
130 #define PRS_INVALID_ROOT -1
131 #define PRS_INVALID_ISOLATED -2
132
is_prs_invalid(int prs_state)133 static inline bool is_prs_invalid(int prs_state)
134 {
135 return prs_state < 0;
136 }
137
138 /*
139 * Temporary cpumasks for working with partitions that are passed among
140 * functions to avoid memory allocation in inner functions.
141 */
142 struct tmpmasks {
143 cpumask_var_t addmask, delmask; /* For partition root */
144 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
145 };
146
inc_dl_tasks_cs(struct task_struct * p)147 void inc_dl_tasks_cs(struct task_struct *p)
148 {
149 struct cpuset *cs = task_cs(p);
150
151 cs->nr_deadline_tasks++;
152 }
153
dec_dl_tasks_cs(struct task_struct * p)154 void dec_dl_tasks_cs(struct task_struct *p)
155 {
156 struct cpuset *cs = task_cs(p);
157
158 cs->nr_deadline_tasks--;
159 }
160
is_partition_valid(const struct cpuset * cs)161 static inline int is_partition_valid(const struct cpuset *cs)
162 {
163 return cs->partition_root_state > 0;
164 }
165
is_partition_invalid(const struct cpuset * cs)166 static inline int is_partition_invalid(const struct cpuset *cs)
167 {
168 return cs->partition_root_state < 0;
169 }
170
171 /*
172 * Callers should hold callback_lock to modify partition_root_state.
173 */
make_partition_invalid(struct cpuset * cs)174 static inline void make_partition_invalid(struct cpuset *cs)
175 {
176 if (cs->partition_root_state > 0)
177 cs->partition_root_state = -cs->partition_root_state;
178 }
179
180 /*
181 * Send notification event of whenever partition_root_state changes.
182 */
notify_partition_change(struct cpuset * cs,int old_prs)183 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
184 {
185 if (old_prs == cs->partition_root_state)
186 return;
187 cgroup_file_notify(&cs->partition_file);
188
189 /* Reset prs_err if not invalid */
190 if (is_partition_valid(cs))
191 WRITE_ONCE(cs->prs_err, PERR_NONE);
192 }
193
194 static struct cpuset top_cpuset = {
195 .flags = BIT(CS_ONLINE) | BIT(CS_CPU_EXCLUSIVE) |
196 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE),
197 .partition_root_state = PRS_ROOT,
198 .relax_domain_level = -1,
199 .remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling),
200 };
201
202 /*
203 * There are two global locks guarding cpuset structures - cpuset_mutex and
204 * callback_lock. We also require taking task_lock() when dereferencing a
205 * task's cpuset pointer. See "The task_lock() exception", at the end of this
206 * comment. The cpuset code uses only cpuset_mutex. Other kernel subsystems
207 * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
208 * structures. Note that cpuset_mutex needs to be a mutex as it is used in
209 * paths that rely on priority inheritance (e.g. scheduler - on RT) for
210 * correctness.
211 *
212 * A task must hold both locks to modify cpusets. If a task holds
213 * cpuset_mutex, it blocks others, ensuring that it is the only task able to
214 * also acquire callback_lock and be able to modify cpusets. It can perform
215 * various checks on the cpuset structure first, knowing nothing will change.
216 * It can also allocate memory while just holding cpuset_mutex. While it is
217 * performing these checks, various callback routines can briefly acquire
218 * callback_lock to query cpusets. Once it is ready to make the changes, it
219 * takes callback_lock, blocking everyone else.
220 *
221 * Calls to the kernel memory allocator can not be made while holding
222 * callback_lock, as that would risk double tripping on callback_lock
223 * from one of the callbacks into the cpuset code from within
224 * __alloc_pages().
225 *
226 * If a task is only holding callback_lock, then it has read-only
227 * access to cpusets.
228 *
229 * Now, the task_struct fields mems_allowed and mempolicy may be changed
230 * by other task, we use alloc_lock in the task_struct fields to protect
231 * them.
232 *
233 * The cpuset_common_seq_show() handlers only hold callback_lock across
234 * small pieces of code, such as when reading out possibly multi-word
235 * cpumasks and nodemasks.
236 *
237 * Accessing a task's cpuset should be done in accordance with the
238 * guidelines for accessing subsystem state in kernel/cgroup.c
239 */
240
241 static DEFINE_MUTEX(cpuset_mutex);
242
cpuset_lock(void)243 void cpuset_lock(void)
244 {
245 mutex_lock(&cpuset_mutex);
246 }
247
cpuset_unlock(void)248 void cpuset_unlock(void)
249 {
250 mutex_unlock(&cpuset_mutex);
251 }
252
253 static DEFINE_SPINLOCK(callback_lock);
254
cpuset_callback_lock_irq(void)255 void cpuset_callback_lock_irq(void)
256 {
257 spin_lock_irq(&callback_lock);
258 }
259
cpuset_callback_unlock_irq(void)260 void cpuset_callback_unlock_irq(void)
261 {
262 spin_unlock_irq(&callback_lock);
263 }
264
265 static struct workqueue_struct *cpuset_migrate_mm_wq;
266
267 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
268
check_insane_mems_config(nodemask_t * nodes)269 static inline void check_insane_mems_config(nodemask_t *nodes)
270 {
271 if (!cpusets_insane_config() &&
272 movable_only_nodes(nodes)) {
273 static_branch_enable_cpuslocked(&cpusets_insane_config_key);
274 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
275 "Cpuset allocations might fail even with a lot of memory available.\n",
276 nodemask_pr_args(nodes));
277 }
278 }
279
280 /*
281 * decrease cs->attach_in_progress.
282 * wake_up cpuset_attach_wq if cs->attach_in_progress==0.
283 */
dec_attach_in_progress_locked(struct cpuset * cs)284 static inline void dec_attach_in_progress_locked(struct cpuset *cs)
285 {
286 lockdep_assert_held(&cpuset_mutex);
287
288 cs->attach_in_progress--;
289 if (!cs->attach_in_progress)
290 wake_up(&cpuset_attach_wq);
291 }
292
dec_attach_in_progress(struct cpuset * cs)293 static inline void dec_attach_in_progress(struct cpuset *cs)
294 {
295 mutex_lock(&cpuset_mutex);
296 dec_attach_in_progress_locked(cs);
297 mutex_unlock(&cpuset_mutex);
298 }
299
cpuset_v2(void)300 static inline bool cpuset_v2(void)
301 {
302 return !IS_ENABLED(CONFIG_CPUSETS_V1) ||
303 cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
304 }
305
306 /*
307 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
308 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
309 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
310 * With v2 behavior, "cpus" and "mems" are always what the users have
311 * requested and won't be changed by hotplug events. Only the effective
312 * cpus or mems will be affected.
313 */
is_in_v2_mode(void)314 static inline bool is_in_v2_mode(void)
315 {
316 return cpuset_v2() ||
317 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
318 }
319
320 /**
321 * partition_is_populated - check if partition has tasks
322 * @cs: partition root to be checked
323 * @excluded_child: a child cpuset to be excluded in task checking
324 * Return: true if there are tasks, false otherwise
325 *
326 * It is assumed that @cs is a valid partition root. @excluded_child should
327 * be non-NULL when this cpuset is going to become a partition itself.
328 */
partition_is_populated(struct cpuset * cs,struct cpuset * excluded_child)329 static inline bool partition_is_populated(struct cpuset *cs,
330 struct cpuset *excluded_child)
331 {
332 struct cgroup_subsys_state *css;
333 struct cpuset *child;
334
335 if (cs->css.cgroup->nr_populated_csets)
336 return true;
337 if (!excluded_child && !cs->nr_subparts)
338 return cgroup_is_populated(cs->css.cgroup);
339
340 rcu_read_lock();
341 cpuset_for_each_child(child, css, cs) {
342 if (child == excluded_child)
343 continue;
344 if (is_partition_valid(child))
345 continue;
346 if (cgroup_is_populated(child->css.cgroup)) {
347 rcu_read_unlock();
348 return true;
349 }
350 }
351 rcu_read_unlock();
352 return false;
353 }
354
355 /*
356 * Return in pmask the portion of a task's cpusets's cpus_allowed that
357 * are online and are capable of running the task. If none are found,
358 * walk up the cpuset hierarchy until we find one that does have some
359 * appropriate cpus.
360 *
361 * One way or another, we guarantee to return some non-empty subset
362 * of cpu_online_mask.
363 *
364 * Call with callback_lock or cpuset_mutex held.
365 */
guarantee_online_cpus(struct task_struct * tsk,struct cpumask * pmask)366 static void guarantee_online_cpus(struct task_struct *tsk,
367 struct cpumask *pmask)
368 {
369 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
370 struct cpuset *cs;
371
372 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
373 cpumask_copy(pmask, cpu_online_mask);
374
375 rcu_read_lock();
376 cs = task_cs(tsk);
377
378 while (!cpumask_intersects(cs->effective_cpus, pmask))
379 cs = parent_cs(cs);
380
381 cpumask_and(pmask, pmask, cs->effective_cpus);
382 rcu_read_unlock();
383 }
384
385 /*
386 * Return in *pmask the portion of a cpusets's mems_allowed that
387 * are online, with memory. If none are online with memory, walk
388 * up the cpuset hierarchy until we find one that does have some
389 * online mems. The top cpuset always has some mems online.
390 *
391 * One way or another, we guarantee to return some non-empty subset
392 * of node_states[N_MEMORY].
393 *
394 * Call with callback_lock or cpuset_mutex held.
395 */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)396 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
397 {
398 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
399 cs = parent_cs(cs);
400 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
401 }
402
403 /**
404 * alloc_cpumasks - allocate three cpumasks for cpuset
405 * @cs: the cpuset that have cpumasks to be allocated.
406 * @tmp: the tmpmasks structure pointer
407 * Return: 0 if successful, -ENOMEM otherwise.
408 *
409 * Only one of the two input arguments should be non-NULL.
410 */
alloc_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)411 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
412 {
413 cpumask_var_t *pmask1, *pmask2, *pmask3, *pmask4;
414
415 if (cs) {
416 pmask1 = &cs->cpus_allowed;
417 pmask2 = &cs->effective_cpus;
418 pmask3 = &cs->effective_xcpus;
419 pmask4 = &cs->exclusive_cpus;
420 } else {
421 pmask1 = &tmp->new_cpus;
422 pmask2 = &tmp->addmask;
423 pmask3 = &tmp->delmask;
424 pmask4 = NULL;
425 }
426
427 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
428 return -ENOMEM;
429
430 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
431 goto free_one;
432
433 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
434 goto free_two;
435
436 if (pmask4 && !zalloc_cpumask_var(pmask4, GFP_KERNEL))
437 goto free_three;
438
439
440 return 0;
441
442 free_three:
443 free_cpumask_var(*pmask3);
444 free_two:
445 free_cpumask_var(*pmask2);
446 free_one:
447 free_cpumask_var(*pmask1);
448 return -ENOMEM;
449 }
450
451 /**
452 * free_cpumasks - free cpumasks in a tmpmasks structure
453 * @cs: the cpuset that have cpumasks to be free.
454 * @tmp: the tmpmasks structure pointer
455 */
free_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)456 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
457 {
458 if (cs) {
459 free_cpumask_var(cs->cpus_allowed);
460 free_cpumask_var(cs->effective_cpus);
461 free_cpumask_var(cs->effective_xcpus);
462 free_cpumask_var(cs->exclusive_cpus);
463 }
464 if (tmp) {
465 free_cpumask_var(tmp->new_cpus);
466 free_cpumask_var(tmp->addmask);
467 free_cpumask_var(tmp->delmask);
468 }
469 }
470
471 /**
472 * alloc_trial_cpuset - allocate a trial cpuset
473 * @cs: the cpuset that the trial cpuset duplicates
474 */
alloc_trial_cpuset(struct cpuset * cs)475 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
476 {
477 struct cpuset *trial;
478
479 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
480 if (!trial)
481 return NULL;
482
483 if (alloc_cpumasks(trial, NULL)) {
484 kfree(trial);
485 return NULL;
486 }
487
488 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
489 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
490 cpumask_copy(trial->effective_xcpus, cs->effective_xcpus);
491 cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus);
492 return trial;
493 }
494
495 /**
496 * free_cpuset - free the cpuset
497 * @cs: the cpuset to be freed
498 */
free_cpuset(struct cpuset * cs)499 static inline void free_cpuset(struct cpuset *cs)
500 {
501 free_cpumasks(cs, NULL);
502 kfree(cs);
503 }
504
505 /* Return user specified exclusive CPUs */
user_xcpus(struct cpuset * cs)506 static inline struct cpumask *user_xcpus(struct cpuset *cs)
507 {
508 return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed
509 : cs->exclusive_cpus;
510 }
511
xcpus_empty(struct cpuset * cs)512 static inline bool xcpus_empty(struct cpuset *cs)
513 {
514 return cpumask_empty(cs->cpus_allowed) &&
515 cpumask_empty(cs->exclusive_cpus);
516 }
517
518 /*
519 * cpusets_are_exclusive() - check if two cpusets are exclusive
520 *
521 * Return true if exclusive, false if not
522 */
cpusets_are_exclusive(struct cpuset * cs1,struct cpuset * cs2)523 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2)
524 {
525 struct cpumask *xcpus1 = user_xcpus(cs1);
526 struct cpumask *xcpus2 = user_xcpus(cs2);
527
528 if (cpumask_intersects(xcpus1, xcpus2))
529 return false;
530 return true;
531 }
532
533 /*
534 * validate_change() - Used to validate that any proposed cpuset change
535 * follows the structural rules for cpusets.
536 *
537 * If we replaced the flag and mask values of the current cpuset
538 * (cur) with those values in the trial cpuset (trial), would
539 * our various subset and exclusive rules still be valid? Presumes
540 * cpuset_mutex held.
541 *
542 * 'cur' is the address of an actual, in-use cpuset. Operations
543 * such as list traversal that depend on the actual address of the
544 * cpuset in the list must use cur below, not trial.
545 *
546 * 'trial' is the address of bulk structure copy of cur, with
547 * perhaps one or more of the fields cpus_allowed, mems_allowed,
548 * or flags changed to new, trial values.
549 *
550 * Return 0 if valid, -errno if not.
551 */
552
validate_change(struct cpuset * cur,struct cpuset * trial)553 static int validate_change(struct cpuset *cur, struct cpuset *trial)
554 {
555 struct cgroup_subsys_state *css;
556 struct cpuset *c, *par;
557 int ret = 0;
558
559 rcu_read_lock();
560
561 if (!is_in_v2_mode())
562 ret = cpuset1_validate_change(cur, trial);
563 if (ret)
564 goto out;
565
566 /* Remaining checks don't apply to root cpuset */
567 if (cur == &top_cpuset)
568 goto out;
569
570 par = parent_cs(cur);
571
572 /*
573 * Cpusets with tasks - existing or newly being attached - can't
574 * be changed to have empty cpus_allowed or mems_allowed.
575 */
576 ret = -ENOSPC;
577 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
578 if (!cpumask_empty(cur->cpus_allowed) &&
579 cpumask_empty(trial->cpus_allowed))
580 goto out;
581 if (!nodes_empty(cur->mems_allowed) &&
582 nodes_empty(trial->mems_allowed))
583 goto out;
584 }
585
586 /*
587 * We can't shrink if we won't have enough room for SCHED_DEADLINE
588 * tasks.
589 */
590 ret = -EBUSY;
591 if (is_cpu_exclusive(cur) &&
592 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
593 trial->cpus_allowed))
594 goto out;
595
596 /*
597 * If either I or some sibling (!= me) is exclusive, we can't
598 * overlap. exclusive_cpus cannot overlap with each other if set.
599 */
600 ret = -EINVAL;
601 cpuset_for_each_child(c, css, par) {
602 bool txset, cxset; /* Are exclusive_cpus set? */
603
604 if (c == cur)
605 continue;
606
607 txset = !cpumask_empty(trial->exclusive_cpus);
608 cxset = !cpumask_empty(c->exclusive_cpus);
609 if (is_cpu_exclusive(trial) || is_cpu_exclusive(c) ||
610 (txset && cxset)) {
611 if (!cpusets_are_exclusive(trial, c))
612 goto out;
613 } else if (txset || cxset) {
614 struct cpumask *xcpus, *acpus;
615
616 /*
617 * When just one of the exclusive_cpus's is set,
618 * cpus_allowed of the other cpuset, if set, cannot be
619 * a subset of it or none of those CPUs will be
620 * available if these exclusive CPUs are activated.
621 */
622 if (txset) {
623 xcpus = trial->exclusive_cpus;
624 acpus = c->cpus_allowed;
625 } else {
626 xcpus = c->exclusive_cpus;
627 acpus = trial->cpus_allowed;
628 }
629 if (!cpumask_empty(acpus) && cpumask_subset(acpus, xcpus))
630 goto out;
631 }
632 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
633 nodes_intersects(trial->mems_allowed, c->mems_allowed))
634 goto out;
635 }
636
637 ret = 0;
638 out:
639 rcu_read_unlock();
640 return ret;
641 }
642
643 #ifdef CONFIG_SMP
644 /*
645 * Helper routine for generate_sched_domains().
646 * Do cpusets a, b have overlapping effective cpus_allowed masks?
647 */
cpusets_overlap(struct cpuset * a,struct cpuset * b)648 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
649 {
650 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
651 }
652
653 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)654 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
655 {
656 if (dattr->relax_domain_level < c->relax_domain_level)
657 dattr->relax_domain_level = c->relax_domain_level;
658 return;
659 }
660
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)661 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
662 struct cpuset *root_cs)
663 {
664 struct cpuset *cp;
665 struct cgroup_subsys_state *pos_css;
666
667 rcu_read_lock();
668 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
669 /* skip the whole subtree if @cp doesn't have any CPU */
670 if (cpumask_empty(cp->cpus_allowed)) {
671 pos_css = css_rightmost_descendant(pos_css);
672 continue;
673 }
674
675 if (is_sched_load_balance(cp))
676 update_domain_attr(dattr, cp);
677 }
678 rcu_read_unlock();
679 }
680
681 /* Must be called with cpuset_mutex held. */
nr_cpusets(void)682 static inline int nr_cpusets(void)
683 {
684 /* jump label reference count + the top-level cpuset */
685 return static_key_count(&cpusets_enabled_key.key) + 1;
686 }
687
688 /*
689 * generate_sched_domains()
690 *
691 * This function builds a partial partition of the systems CPUs
692 * A 'partial partition' is a set of non-overlapping subsets whose
693 * union is a subset of that set.
694 * The output of this function needs to be passed to kernel/sched/core.c
695 * partition_sched_domains() routine, which will rebuild the scheduler's
696 * load balancing domains (sched domains) as specified by that partial
697 * partition.
698 *
699 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
700 * for a background explanation of this.
701 *
702 * Does not return errors, on the theory that the callers of this
703 * routine would rather not worry about failures to rebuild sched
704 * domains when operating in the severe memory shortage situations
705 * that could cause allocation failures below.
706 *
707 * Must be called with cpuset_mutex held.
708 *
709 * The three key local variables below are:
710 * cp - cpuset pointer, used (together with pos_css) to perform a
711 * top-down scan of all cpusets. For our purposes, rebuilding
712 * the schedulers sched domains, we can ignore !is_sched_load_
713 * balance cpusets.
714 * csa - (for CpuSet Array) Array of pointers to all the cpusets
715 * that need to be load balanced, for convenient iterative
716 * access by the subsequent code that finds the best partition,
717 * i.e the set of domains (subsets) of CPUs such that the
718 * cpus_allowed of every cpuset marked is_sched_load_balance
719 * is a subset of one of these domains, while there are as
720 * many such domains as possible, each as small as possible.
721 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
722 * the kernel/sched/core.c routine partition_sched_domains() in a
723 * convenient format, that can be easily compared to the prior
724 * value to determine what partition elements (sched domains)
725 * were changed (added or removed.)
726 *
727 * Finding the best partition (set of domains):
728 * The double nested loops below over i, j scan over the load
729 * balanced cpusets (using the array of cpuset pointers in csa[])
730 * looking for pairs of cpusets that have overlapping cpus_allowed
731 * and merging them using a union-find algorithm.
732 *
733 * The union of the cpus_allowed masks from the set of all cpusets
734 * having the same root then form the one element of the partition
735 * (one sched domain) to be passed to partition_sched_domains().
736 *
737 */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)738 static int generate_sched_domains(cpumask_var_t **domains,
739 struct sched_domain_attr **attributes)
740 {
741 struct cpuset *cp; /* top-down scan of cpusets */
742 struct cpuset **csa; /* array of all cpuset ptrs */
743 int csn; /* how many cpuset ptrs in csa so far */
744 int i, j; /* indices for partition finding loops */
745 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
746 struct sched_domain_attr *dattr; /* attributes for custom domains */
747 int ndoms = 0; /* number of sched domains in result */
748 int nslot; /* next empty doms[] struct cpumask slot */
749 struct cgroup_subsys_state *pos_css;
750 bool root_load_balance = is_sched_load_balance(&top_cpuset);
751 bool cgrpv2 = cpuset_v2();
752 int nslot_update;
753
754 doms = NULL;
755 dattr = NULL;
756 csa = NULL;
757
758 /* Special case for the 99% of systems with one, full, sched domain */
759 if (root_load_balance && cpumask_empty(subpartitions_cpus)) {
760 single_root_domain:
761 ndoms = 1;
762 doms = alloc_sched_domains(ndoms);
763 if (!doms)
764 goto done;
765
766 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
767 if (dattr) {
768 *dattr = SD_ATTR_INIT;
769 update_domain_attr_tree(dattr, &top_cpuset);
770 }
771 cpumask_and(doms[0], top_cpuset.effective_cpus,
772 housekeeping_cpumask(HK_TYPE_DOMAIN));
773
774 goto done;
775 }
776
777 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
778 if (!csa)
779 goto done;
780 csn = 0;
781
782 rcu_read_lock();
783 if (root_load_balance)
784 csa[csn++] = &top_cpuset;
785 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
786 if (cp == &top_cpuset)
787 continue;
788
789 if (cgrpv2)
790 goto v2;
791
792 /*
793 * v1:
794 * Continue traversing beyond @cp iff @cp has some CPUs and
795 * isn't load balancing. The former is obvious. The
796 * latter: All child cpusets contain a subset of the
797 * parent's cpus, so just skip them, and then we call
798 * update_domain_attr_tree() to calc relax_domain_level of
799 * the corresponding sched domain.
800 */
801 if (!cpumask_empty(cp->cpus_allowed) &&
802 !(is_sched_load_balance(cp) &&
803 cpumask_intersects(cp->cpus_allowed,
804 housekeeping_cpumask(HK_TYPE_DOMAIN))))
805 continue;
806
807 if (is_sched_load_balance(cp) &&
808 !cpumask_empty(cp->effective_cpus))
809 csa[csn++] = cp;
810
811 /* skip @cp's subtree */
812 pos_css = css_rightmost_descendant(pos_css);
813 continue;
814
815 v2:
816 /*
817 * Only valid partition roots that are not isolated and with
818 * non-empty effective_cpus will be saved into csn[].
819 */
820 if ((cp->partition_root_state == PRS_ROOT) &&
821 !cpumask_empty(cp->effective_cpus))
822 csa[csn++] = cp;
823
824 /*
825 * Skip @cp's subtree if not a partition root and has no
826 * exclusive CPUs to be granted to child cpusets.
827 */
828 if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus))
829 pos_css = css_rightmost_descendant(pos_css);
830 }
831 rcu_read_unlock();
832
833 /*
834 * If there are only isolated partitions underneath the cgroup root,
835 * we can optimize out unneeded sched domains scanning.
836 */
837 if (root_load_balance && (csn == 1))
838 goto single_root_domain;
839
840 for (i = 0; i < csn; i++)
841 uf_node_init(&csa[i]->node);
842
843 /* Merge overlapping cpusets */
844 for (i = 0; i < csn; i++) {
845 for (j = i + 1; j < csn; j++) {
846 if (cpusets_overlap(csa[i], csa[j])) {
847 /*
848 * Cgroup v2 shouldn't pass down overlapping
849 * partition root cpusets.
850 */
851 WARN_ON_ONCE(cgrpv2);
852 uf_union(&csa[i]->node, &csa[j]->node);
853 }
854 }
855 }
856
857 /* Count the total number of domains */
858 for (i = 0; i < csn; i++) {
859 if (uf_find(&csa[i]->node) == &csa[i]->node)
860 ndoms++;
861 }
862
863 /*
864 * Now we know how many domains to create.
865 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
866 */
867 doms = alloc_sched_domains(ndoms);
868 if (!doms)
869 goto done;
870
871 /*
872 * The rest of the code, including the scheduler, can deal with
873 * dattr==NULL case. No need to abort if alloc fails.
874 */
875 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
876 GFP_KERNEL);
877
878 /*
879 * Cgroup v2 doesn't support domain attributes, just set all of them
880 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a
881 * subset of HK_TYPE_DOMAIN housekeeping CPUs.
882 */
883 if (cgrpv2) {
884 for (i = 0; i < ndoms; i++) {
885 /*
886 * The top cpuset may contain some boot time isolated
887 * CPUs that need to be excluded from the sched domain.
888 */
889 if (csa[i] == &top_cpuset)
890 cpumask_and(doms[i], csa[i]->effective_cpus,
891 housekeeping_cpumask(HK_TYPE_DOMAIN));
892 else
893 cpumask_copy(doms[i], csa[i]->effective_cpus);
894 if (dattr)
895 dattr[i] = SD_ATTR_INIT;
896 }
897 goto done;
898 }
899
900 for (nslot = 0, i = 0; i < csn; i++) {
901 nslot_update = 0;
902 for (j = i; j < csn; j++) {
903 if (uf_find(&csa[j]->node) == &csa[i]->node) {
904 struct cpumask *dp = doms[nslot];
905
906 if (i == j) {
907 nslot_update = 1;
908 cpumask_clear(dp);
909 if (dattr)
910 *(dattr + nslot) = SD_ATTR_INIT;
911 }
912 cpumask_or(dp, dp, csa[j]->effective_cpus);
913 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
914 if (dattr)
915 update_domain_attr_tree(dattr + nslot, csa[j]);
916 }
917 }
918 if (nslot_update)
919 nslot++;
920 }
921 BUG_ON(nslot != ndoms);
922
923 done:
924 kfree(csa);
925
926 /*
927 * Fallback to the default domain if kmalloc() failed.
928 * See comments in partition_sched_domains().
929 */
930 if (doms == NULL)
931 ndoms = 1;
932
933 *domains = doms;
934 *attributes = dattr;
935 return ndoms;
936 }
937
dl_update_tasks_root_domain(struct cpuset * cs)938 static void dl_update_tasks_root_domain(struct cpuset *cs)
939 {
940 struct css_task_iter it;
941 struct task_struct *task;
942
943 if (cs->nr_deadline_tasks == 0)
944 return;
945
946 css_task_iter_start(&cs->css, 0, &it);
947
948 while ((task = css_task_iter_next(&it)))
949 dl_add_task_root_domain(task);
950
951 css_task_iter_end(&it);
952 }
953
dl_rebuild_rd_accounting(void)954 static void dl_rebuild_rd_accounting(void)
955 {
956 struct cpuset *cs = NULL;
957 struct cgroup_subsys_state *pos_css;
958
959 lockdep_assert_held(&cpuset_mutex);
960 lockdep_assert_cpus_held();
961 lockdep_assert_held(&sched_domains_mutex);
962
963 rcu_read_lock();
964
965 /*
966 * Clear default root domain DL accounting, it will be computed again
967 * if a task belongs to it.
968 */
969 dl_clear_root_domain(&def_root_domain);
970
971 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
972
973 if (cpumask_empty(cs->effective_cpus)) {
974 pos_css = css_rightmost_descendant(pos_css);
975 continue;
976 }
977
978 css_get(&cs->css);
979
980 rcu_read_unlock();
981
982 dl_update_tasks_root_domain(cs);
983
984 rcu_read_lock();
985 css_put(&cs->css);
986 }
987 rcu_read_unlock();
988 }
989
990 static void
partition_and_rebuild_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)991 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
992 struct sched_domain_attr *dattr_new)
993 {
994 mutex_lock(&sched_domains_mutex);
995 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
996 dl_rebuild_rd_accounting();
997 mutex_unlock(&sched_domains_mutex);
998 }
999
1000 /*
1001 * Rebuild scheduler domains.
1002 *
1003 * If the flag 'sched_load_balance' of any cpuset with non-empty
1004 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1005 * which has that flag enabled, or if any cpuset with a non-empty
1006 * 'cpus' is removed, then call this routine to rebuild the
1007 * scheduler's dynamic sched domains.
1008 *
1009 * Call with cpuset_mutex held. Takes cpus_read_lock().
1010 */
rebuild_sched_domains_locked(void)1011 void rebuild_sched_domains_locked(void)
1012 {
1013 struct cgroup_subsys_state *pos_css;
1014 struct sched_domain_attr *attr;
1015 cpumask_var_t *doms;
1016 struct cpuset *cs;
1017 int ndoms;
1018
1019 lockdep_assert_cpus_held();
1020 lockdep_assert_held(&cpuset_mutex);
1021 force_sd_rebuild = false;
1022
1023 /*
1024 * If we have raced with CPU hotplug, return early to avoid
1025 * passing doms with offlined cpu to partition_sched_domains().
1026 * Anyways, cpuset_handle_hotplug() will rebuild sched domains.
1027 *
1028 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1029 * should be the same as the active CPUs, so checking only top_cpuset
1030 * is enough to detect racing CPU offlines.
1031 */
1032 if (cpumask_empty(subpartitions_cpus) &&
1033 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1034 return;
1035
1036 /*
1037 * With subpartition CPUs, however, the effective CPUs of a partition
1038 * root should be only a subset of the active CPUs. Since a CPU in any
1039 * partition root could be offlined, all must be checked.
1040 */
1041 if (!cpumask_empty(subpartitions_cpus)) {
1042 rcu_read_lock();
1043 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1044 if (!is_partition_valid(cs)) {
1045 pos_css = css_rightmost_descendant(pos_css);
1046 continue;
1047 }
1048 if (!cpumask_subset(cs->effective_cpus,
1049 cpu_active_mask)) {
1050 rcu_read_unlock();
1051 return;
1052 }
1053 }
1054 rcu_read_unlock();
1055 }
1056
1057 /* Generate domain masks and attrs */
1058 ndoms = generate_sched_domains(&doms, &attr);
1059
1060 /* Have scheduler rebuild the domains */
1061 partition_and_rebuild_sched_domains(ndoms, doms, attr);
1062 }
1063 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)1064 void rebuild_sched_domains_locked(void)
1065 {
1066 }
1067 #endif /* CONFIG_SMP */
1068
rebuild_sched_domains_cpuslocked(void)1069 static void rebuild_sched_domains_cpuslocked(void)
1070 {
1071 mutex_lock(&cpuset_mutex);
1072 rebuild_sched_domains_locked();
1073 mutex_unlock(&cpuset_mutex);
1074 }
1075
rebuild_sched_domains(void)1076 void rebuild_sched_domains(void)
1077 {
1078 cpus_read_lock();
1079 rebuild_sched_domains_cpuslocked();
1080 cpus_read_unlock();
1081 }
1082 EXPORT_SYMBOL_GPL(rebuild_sched_domains);
1083
update_cpus_allowed(struct cpuset * cs,struct task_struct * p,const struct cpumask * new_mask)1084 static int update_cpus_allowed(struct cpuset *cs, struct task_struct *p,
1085 const struct cpumask *new_mask)
1086 {
1087 int ret = -EINVAL;
1088
1089 trace_android_rvh_update_cpus_allowed(p, cs, new_mask, &ret);
1090 if (!ret)
1091 return ret;
1092
1093 return set_cpus_allowed_ptr(p, new_mask);
1094 }
1095
1096 /**
1097 * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1098 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1099 * @new_cpus: the temp variable for the new effective_cpus mask
1100 *
1101 * Iterate through each task of @cs updating its cpus_allowed to the
1102 * effective cpuset's. As this function is called with cpuset_mutex held,
1103 * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask()
1104 * is used instead of effective_cpus to make sure all offline CPUs are also
1105 * included as hotplug code won't update cpumasks for tasks in top_cpuset.
1106 */
cpuset_update_tasks_cpumask(struct cpuset * cs,struct cpumask * new_cpus)1107 void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1108 {
1109 struct css_task_iter it;
1110 struct task_struct *task;
1111 bool top_cs = cs == &top_cpuset;
1112
1113 css_task_iter_start(&cs->css, 0, &it);
1114 while ((task = css_task_iter_next(&it))) {
1115 const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1116
1117 if (top_cs) {
1118 /*
1119 * PF_NO_SETAFFINITY tasks are ignored.
1120 * All per cpu kthreads should have PF_NO_SETAFFINITY
1121 * flag set, see kthread_set_per_cpu().
1122 */
1123 if (task->flags & PF_NO_SETAFFINITY)
1124 continue;
1125 cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus);
1126 } else {
1127 cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1128 }
1129 update_cpus_allowed(cs, task, new_cpus);
1130 }
1131 css_task_iter_end(&it);
1132 }
1133
1134 /**
1135 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1136 * @new_cpus: the temp variable for the new effective_cpus mask
1137 * @cs: the cpuset the need to recompute the new effective_cpus mask
1138 * @parent: the parent cpuset
1139 *
1140 * The result is valid only if the given cpuset isn't a partition root.
1141 */
compute_effective_cpumask(struct cpumask * new_cpus,struct cpuset * cs,struct cpuset * parent)1142 static void compute_effective_cpumask(struct cpumask *new_cpus,
1143 struct cpuset *cs, struct cpuset *parent)
1144 {
1145 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1146 }
1147
1148 /*
1149 * Commands for update_parent_effective_cpumask
1150 */
1151 enum partition_cmd {
1152 partcmd_enable, /* Enable partition root */
1153 partcmd_enablei, /* Enable isolated partition root */
1154 partcmd_disable, /* Disable partition root */
1155 partcmd_update, /* Update parent's effective_cpus */
1156 partcmd_invalidate, /* Make partition invalid */
1157 };
1158
1159 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1160 struct tmpmasks *tmp);
1161
1162 /*
1163 * Update partition exclusive flag
1164 *
1165 * Return: 0 if successful, an error code otherwise
1166 */
update_partition_exclusive(struct cpuset * cs,int new_prs)1167 static int update_partition_exclusive(struct cpuset *cs, int new_prs)
1168 {
1169 bool exclusive = (new_prs > PRS_MEMBER);
1170
1171 if (exclusive && !is_cpu_exclusive(cs)) {
1172 if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1))
1173 return PERR_NOTEXCL;
1174 } else if (!exclusive && is_cpu_exclusive(cs)) {
1175 /* Turning off CS_CPU_EXCLUSIVE will not return error */
1176 cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1177 }
1178 return 0;
1179 }
1180
1181 /*
1182 * Update partition load balance flag and/or rebuild sched domain
1183 *
1184 * Changing load balance flag will automatically call
1185 * rebuild_sched_domains_locked().
1186 * This function is for cgroup v2 only.
1187 */
update_partition_sd_lb(struct cpuset * cs,int old_prs)1188 static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
1189 {
1190 int new_prs = cs->partition_root_state;
1191 bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
1192 bool new_lb;
1193
1194 /*
1195 * If cs is not a valid partition root, the load balance state
1196 * will follow its parent.
1197 */
1198 if (new_prs > 0) {
1199 new_lb = (new_prs != PRS_ISOLATED);
1200 } else {
1201 new_lb = is_sched_load_balance(parent_cs(cs));
1202 }
1203 if (new_lb != !!is_sched_load_balance(cs)) {
1204 rebuild_domains = true;
1205 if (new_lb)
1206 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1207 else
1208 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1209 }
1210
1211 if (rebuild_domains)
1212 cpuset_force_rebuild();
1213 }
1214
1215 /*
1216 * tasks_nocpu_error - Return true if tasks will have no effective_cpus
1217 */
tasks_nocpu_error(struct cpuset * parent,struct cpuset * cs,struct cpumask * xcpus)1218 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs,
1219 struct cpumask *xcpus)
1220 {
1221 /*
1222 * A populated partition (cs or parent) can't have empty effective_cpus
1223 */
1224 return (cpumask_subset(parent->effective_cpus, xcpus) &&
1225 partition_is_populated(parent, cs)) ||
1226 (!cpumask_intersects(xcpus, cpu_active_mask) &&
1227 partition_is_populated(cs, NULL));
1228 }
1229
reset_partition_data(struct cpuset * cs)1230 static void reset_partition_data(struct cpuset *cs)
1231 {
1232 struct cpuset *parent = parent_cs(cs);
1233
1234 if (!cpuset_v2())
1235 return;
1236
1237 lockdep_assert_held(&callback_lock);
1238
1239 cs->nr_subparts = 0;
1240 if (cpumask_empty(cs->exclusive_cpus)) {
1241 cpumask_clear(cs->effective_xcpus);
1242 if (is_cpu_exclusive(cs))
1243 clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1244 }
1245 if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed))
1246 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1247 }
1248
1249 /*
1250 * partition_xcpus_newstate - Exclusive CPUs state change
1251 * @old_prs: old partition_root_state
1252 * @new_prs: new partition_root_state
1253 * @xcpus: exclusive CPUs with state change
1254 */
partition_xcpus_newstate(int old_prs,int new_prs,struct cpumask * xcpus)1255 static void partition_xcpus_newstate(int old_prs, int new_prs, struct cpumask *xcpus)
1256 {
1257 WARN_ON_ONCE(old_prs == new_prs);
1258 if (new_prs == PRS_ISOLATED)
1259 cpumask_or(isolated_cpus, isolated_cpus, xcpus);
1260 else
1261 cpumask_andnot(isolated_cpus, isolated_cpus, xcpus);
1262 }
1263
1264 /*
1265 * partition_xcpus_add - Add new exclusive CPUs to partition
1266 * @new_prs: new partition_root_state
1267 * @parent: parent cpuset
1268 * @xcpus: exclusive CPUs to be added
1269 * Return: true if isolated_cpus modified, false otherwise
1270 *
1271 * Remote partition if parent == NULL
1272 */
partition_xcpus_add(int new_prs,struct cpuset * parent,struct cpumask * xcpus)1273 static bool partition_xcpus_add(int new_prs, struct cpuset *parent,
1274 struct cpumask *xcpus)
1275 {
1276 bool isolcpus_updated;
1277
1278 WARN_ON_ONCE(new_prs < 0);
1279 lockdep_assert_held(&callback_lock);
1280 if (!parent)
1281 parent = &top_cpuset;
1282
1283
1284 if (parent == &top_cpuset)
1285 cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus);
1286
1287 isolcpus_updated = (new_prs != parent->partition_root_state);
1288 if (isolcpus_updated)
1289 partition_xcpus_newstate(parent->partition_root_state, new_prs,
1290 xcpus);
1291
1292 cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus);
1293 return isolcpus_updated;
1294 }
1295
1296 /*
1297 * partition_xcpus_del - Remove exclusive CPUs from partition
1298 * @old_prs: old partition_root_state
1299 * @parent: parent cpuset
1300 * @xcpus: exclusive CPUs to be removed
1301 * Return: true if isolated_cpus modified, false otherwise
1302 *
1303 * Remote partition if parent == NULL
1304 */
partition_xcpus_del(int old_prs,struct cpuset * parent,struct cpumask * xcpus)1305 static bool partition_xcpus_del(int old_prs, struct cpuset *parent,
1306 struct cpumask *xcpus)
1307 {
1308 bool isolcpus_updated;
1309
1310 WARN_ON_ONCE(old_prs < 0);
1311 lockdep_assert_held(&callback_lock);
1312 if (!parent)
1313 parent = &top_cpuset;
1314
1315 if (parent == &top_cpuset)
1316 cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus);
1317
1318 isolcpus_updated = (old_prs != parent->partition_root_state);
1319 if (isolcpus_updated)
1320 partition_xcpus_newstate(old_prs, parent->partition_root_state,
1321 xcpus);
1322
1323 cpumask_and(xcpus, xcpus, cpu_active_mask);
1324 cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus);
1325 return isolcpus_updated;
1326 }
1327
update_unbound_workqueue_cpumask(bool isolcpus_updated)1328 static void update_unbound_workqueue_cpumask(bool isolcpus_updated)
1329 {
1330 int ret;
1331
1332 lockdep_assert_cpus_held();
1333
1334 if (!isolcpus_updated)
1335 return;
1336
1337 ret = workqueue_unbound_exclude_cpumask(isolated_cpus);
1338 WARN_ON_ONCE(ret < 0);
1339 }
1340
1341 /**
1342 * cpuset_cpu_is_isolated - Check if the given CPU is isolated
1343 * @cpu: the CPU number to be checked
1344 * Return: true if CPU is used in an isolated partition, false otherwise
1345 */
cpuset_cpu_is_isolated(int cpu)1346 bool cpuset_cpu_is_isolated(int cpu)
1347 {
1348 return cpumask_test_cpu(cpu, isolated_cpus);
1349 }
1350 EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated);
1351
1352 /*
1353 * compute_effective_exclusive_cpumask - compute effective exclusive CPUs
1354 * @cs: cpuset
1355 * @xcpus: effective exclusive CPUs value to be set
1356 * Return: true if xcpus is not empty, false otherwise.
1357 *
1358 * Starting with exclusive_cpus (cpus_allowed if exclusive_cpus is not set),
1359 * it must be a subset of parent's effective_xcpus.
1360 */
compute_effective_exclusive_cpumask(struct cpuset * cs,struct cpumask * xcpus)1361 static bool compute_effective_exclusive_cpumask(struct cpuset *cs,
1362 struct cpumask *xcpus)
1363 {
1364 struct cpuset *parent = parent_cs(cs);
1365
1366 if (!xcpus)
1367 xcpus = cs->effective_xcpus;
1368
1369 return cpumask_and(xcpus, user_xcpus(cs), parent->effective_xcpus);
1370 }
1371
is_remote_partition(struct cpuset * cs)1372 static inline bool is_remote_partition(struct cpuset *cs)
1373 {
1374 return !list_empty(&cs->remote_sibling);
1375 }
1376
is_local_partition(struct cpuset * cs)1377 static inline bool is_local_partition(struct cpuset *cs)
1378 {
1379 return is_partition_valid(cs) && !is_remote_partition(cs);
1380 }
1381
1382 /*
1383 * remote_partition_enable - Enable current cpuset as a remote partition root
1384 * @cs: the cpuset to update
1385 * @new_prs: new partition_root_state
1386 * @tmp: temparary masks
1387 * Return: 0 if successful, errcode if error
1388 *
1389 * Enable the current cpuset to become a remote partition root taking CPUs
1390 * directly from the top cpuset. cpuset_mutex must be held by the caller.
1391 */
remote_partition_enable(struct cpuset * cs,int new_prs,struct tmpmasks * tmp)1392 static int remote_partition_enable(struct cpuset *cs, int new_prs,
1393 struct tmpmasks *tmp)
1394 {
1395 bool isolcpus_updated;
1396
1397 /*
1398 * The user must have sysadmin privilege.
1399 */
1400 if (!capable(CAP_SYS_ADMIN))
1401 return PERR_ACCESS;
1402
1403 /*
1404 * The requested exclusive_cpus must not be allocated to other
1405 * partitions and it can't use up all the root's effective_cpus.
1406 *
1407 * Note that if there is any local partition root above it or
1408 * remote partition root underneath it, its exclusive_cpus must
1409 * have overlapped with subpartitions_cpus.
1410 */
1411 compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
1412 if (cpumask_empty(tmp->new_cpus) ||
1413 cpumask_intersects(tmp->new_cpus, subpartitions_cpus) ||
1414 cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus))
1415 return PERR_INVCPUS;
1416
1417 spin_lock_irq(&callback_lock);
1418 isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus);
1419 list_add(&cs->remote_sibling, &remote_children);
1420 spin_unlock_irq(&callback_lock);
1421 update_unbound_workqueue_cpumask(isolcpus_updated);
1422 cs->prs_err = 0;
1423
1424 /*
1425 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
1426 */
1427 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1428 update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1429 return 0;
1430 }
1431
1432 /*
1433 * remote_partition_disable - Remove current cpuset from remote partition list
1434 * @cs: the cpuset to update
1435 * @tmp: temparary masks
1436 *
1437 * The effective_cpus is also updated.
1438 *
1439 * cpuset_mutex must be held by the caller.
1440 */
remote_partition_disable(struct cpuset * cs,struct tmpmasks * tmp)1441 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
1442 {
1443 bool isolcpus_updated;
1444
1445 compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
1446 WARN_ON_ONCE(!is_remote_partition(cs));
1447 WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, subpartitions_cpus));
1448
1449 spin_lock_irq(&callback_lock);
1450 list_del_init(&cs->remote_sibling);
1451 isolcpus_updated = partition_xcpus_del(cs->partition_root_state,
1452 NULL, tmp->new_cpus);
1453 if (cs->prs_err)
1454 cs->partition_root_state = -cs->partition_root_state;
1455 else
1456 cs->partition_root_state = PRS_MEMBER;
1457
1458 reset_partition_data(cs);
1459 spin_unlock_irq(&callback_lock);
1460 update_unbound_workqueue_cpumask(isolcpus_updated);
1461
1462 /*
1463 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
1464 */
1465 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1466 update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1467 }
1468
1469 /*
1470 * remote_cpus_update - cpus_exclusive change of remote partition
1471 * @cs: the cpuset to be updated
1472 * @newmask: the new effective_xcpus mask
1473 * @tmp: temparary masks
1474 *
1475 * top_cpuset and subpartitions_cpus will be updated or partition can be
1476 * invalidated.
1477 */
remote_cpus_update(struct cpuset * cs,struct cpumask * newmask,struct tmpmasks * tmp)1478 static void remote_cpus_update(struct cpuset *cs, struct cpumask *newmask,
1479 struct tmpmasks *tmp)
1480 {
1481 bool adding, deleting;
1482 int prs = cs->partition_root_state;
1483 int isolcpus_updated = 0;
1484
1485 if (WARN_ON_ONCE(!is_remote_partition(cs)))
1486 return;
1487
1488 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
1489
1490 if (cpumask_empty(newmask)) {
1491 cs->prs_err = PERR_CPUSEMPTY;
1492 goto invalidate;
1493 }
1494
1495 adding = cpumask_andnot(tmp->addmask, newmask, cs->effective_xcpus);
1496 deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, newmask);
1497
1498 /*
1499 * Additions of remote CPUs is only allowed if those CPUs are
1500 * not allocated to other partitions and there are effective_cpus
1501 * left in the top cpuset.
1502 */
1503 if (adding) {
1504 if (!capable(CAP_SYS_ADMIN))
1505 cs->prs_err = PERR_ACCESS;
1506 else if (cpumask_intersects(tmp->addmask, subpartitions_cpus) ||
1507 cpumask_subset(top_cpuset.effective_cpus, tmp->addmask))
1508 cs->prs_err = PERR_NOCPUS;
1509 if (cs->prs_err)
1510 goto invalidate;
1511 }
1512
1513 spin_lock_irq(&callback_lock);
1514 if (adding)
1515 isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask);
1516 if (deleting)
1517 isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask);
1518 spin_unlock_irq(&callback_lock);
1519 update_unbound_workqueue_cpumask(isolcpus_updated);
1520
1521 /*
1522 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
1523 */
1524 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1525 update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1526 return;
1527
1528 invalidate:
1529 remote_partition_disable(cs, tmp);
1530 }
1531
1532 /*
1533 * remote_partition_check - check if a child remote partition needs update
1534 * @cs: the cpuset to be updated
1535 * @newmask: the new effective_xcpus mask
1536 * @delmask: temporary mask for deletion (not in tmp)
1537 * @tmp: temparary masks
1538 *
1539 * This should be called before the given cs has updated its cpus_allowed
1540 * and/or effective_xcpus.
1541 */
remote_partition_check(struct cpuset * cs,struct cpumask * newmask,struct cpumask * delmask,struct tmpmasks * tmp)1542 static void remote_partition_check(struct cpuset *cs, struct cpumask *newmask,
1543 struct cpumask *delmask, struct tmpmasks *tmp)
1544 {
1545 struct cpuset *child, *next;
1546 int disable_cnt = 0;
1547
1548 /*
1549 * Compute the effective exclusive CPUs that will be deleted.
1550 */
1551 if (!cpumask_andnot(delmask, cs->effective_xcpus, newmask) ||
1552 !cpumask_intersects(delmask, subpartitions_cpus))
1553 return; /* No deletion of exclusive CPUs in partitions */
1554
1555 /*
1556 * Searching the remote children list to look for those that will
1557 * be impacted by the deletion of exclusive CPUs.
1558 *
1559 * Since a cpuset must be removed from the remote children list
1560 * before it can go offline and holding cpuset_mutex will prevent
1561 * any change in cpuset status. RCU read lock isn't needed.
1562 */
1563 lockdep_assert_held(&cpuset_mutex);
1564 list_for_each_entry_safe(child, next, &remote_children, remote_sibling)
1565 if (cpumask_intersects(child->effective_cpus, delmask)) {
1566 remote_partition_disable(child, tmp);
1567 disable_cnt++;
1568 }
1569 if (disable_cnt)
1570 cpuset_force_rebuild();
1571 }
1572
1573 /*
1574 * prstate_housekeeping_conflict - check for partition & housekeeping conflicts
1575 * @prstate: partition root state to be checked
1576 * @new_cpus: cpu mask
1577 * Return: true if there is conflict, false otherwise
1578 *
1579 * CPUs outside of boot_hk_cpus, if defined, can only be used in an
1580 * isolated partition.
1581 */
prstate_housekeeping_conflict(int prstate,struct cpumask * new_cpus)1582 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
1583 {
1584 if (!have_boot_isolcpus)
1585 return false;
1586
1587 if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus))
1588 return true;
1589
1590 return false;
1591 }
1592
1593 /**
1594 * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset
1595 * @cs: The cpuset that requests change in partition root state
1596 * @cmd: Partition root state change command
1597 * @newmask: Optional new cpumask for partcmd_update
1598 * @tmp: Temporary addmask and delmask
1599 * Return: 0 or a partition root state error code
1600 *
1601 * For partcmd_enable*, the cpuset is being transformed from a non-partition
1602 * root to a partition root. The effective_xcpus (cpus_allowed if
1603 * effective_xcpus not set) mask of the given cpuset will be taken away from
1604 * parent's effective_cpus. The function will return 0 if all the CPUs listed
1605 * in effective_xcpus can be granted or an error code will be returned.
1606 *
1607 * For partcmd_disable, the cpuset is being transformed from a partition
1608 * root back to a non-partition root. Any CPUs in effective_xcpus will be
1609 * given back to parent's effective_cpus. 0 will always be returned.
1610 *
1611 * For partcmd_update, if the optional newmask is specified, the cpu list is
1612 * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is
1613 * assumed to remain the same. The cpuset should either be a valid or invalid
1614 * partition root. The partition root state may change from valid to invalid
1615 * or vice versa. An error code will be returned if transitioning from
1616 * invalid to valid violates the exclusivity rule.
1617 *
1618 * For partcmd_invalidate, the current partition will be made invalid.
1619 *
1620 * The partcmd_enable* and partcmd_disable commands are used by
1621 * update_prstate(). An error code may be returned and the caller will check
1622 * for error.
1623 *
1624 * The partcmd_update command is used by update_cpumasks_hier() with newmask
1625 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1626 * by update_cpumask() with NULL newmask. In both cases, the callers won't
1627 * check for error and so partition_root_state and prs_err will be updated
1628 * directly.
1629 */
update_parent_effective_cpumask(struct cpuset * cs,int cmd,struct cpumask * newmask,struct tmpmasks * tmp)1630 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd,
1631 struct cpumask *newmask,
1632 struct tmpmasks *tmp)
1633 {
1634 struct cpuset *parent = parent_cs(cs);
1635 int adding; /* Adding cpus to parent's effective_cpus */
1636 int deleting; /* Deleting cpus from parent's effective_cpus */
1637 int old_prs, new_prs;
1638 int part_error = PERR_NONE; /* Partition error? */
1639 int subparts_delta = 0;
1640 struct cpumask *xcpus; /* cs effective_xcpus */
1641 int isolcpus_updated = 0;
1642 bool nocpu;
1643
1644 lockdep_assert_held(&cpuset_mutex);
1645
1646 /*
1647 * new_prs will only be changed for the partcmd_update and
1648 * partcmd_invalidate commands.
1649 */
1650 adding = deleting = false;
1651 old_prs = new_prs = cs->partition_root_state;
1652 xcpus = user_xcpus(cs);
1653
1654 if (cmd == partcmd_invalidate) {
1655 if (is_prs_invalid(old_prs))
1656 return 0;
1657
1658 /*
1659 * Make the current partition invalid.
1660 */
1661 if (is_partition_valid(parent))
1662 adding = cpumask_and(tmp->addmask,
1663 xcpus, parent->effective_xcpus);
1664 if (old_prs > 0) {
1665 new_prs = -old_prs;
1666 subparts_delta--;
1667 }
1668 goto write_error;
1669 }
1670
1671 /*
1672 * The parent must be a partition root.
1673 * The new cpumask, if present, or the current cpus_allowed must
1674 * not be empty.
1675 */
1676 if (!is_partition_valid(parent)) {
1677 return is_partition_invalid(parent)
1678 ? PERR_INVPARENT : PERR_NOTPART;
1679 }
1680 if (!newmask && xcpus_empty(cs))
1681 return PERR_CPUSEMPTY;
1682
1683 nocpu = tasks_nocpu_error(parent, cs, xcpus);
1684
1685 if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) {
1686 /*
1687 * Enabling partition root is not allowed if its
1688 * effective_xcpus is empty or doesn't overlap with
1689 * parent's effective_xcpus.
1690 */
1691 if (cpumask_empty(xcpus) ||
1692 !cpumask_intersects(xcpus, parent->effective_xcpus))
1693 return PERR_INVCPUS;
1694
1695 if (prstate_housekeeping_conflict(new_prs, xcpus))
1696 return PERR_HKEEPING;
1697
1698 /*
1699 * A parent can be left with no CPU as long as there is no
1700 * task directly associated with the parent partition.
1701 */
1702 if (nocpu)
1703 return PERR_NOCPUS;
1704
1705 deleting = cpumask_and(tmp->delmask, xcpus, parent->effective_xcpus);
1706 if (deleting)
1707 subparts_delta++;
1708 new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED;
1709 } else if (cmd == partcmd_disable) {
1710 /*
1711 * May need to add cpus to parent's effective_cpus for
1712 * valid partition root.
1713 */
1714 adding = !is_prs_invalid(old_prs) &&
1715 cpumask_and(tmp->addmask, xcpus, parent->effective_xcpus);
1716 if (adding)
1717 subparts_delta--;
1718 new_prs = PRS_MEMBER;
1719 } else if (newmask) {
1720 /*
1721 * Empty cpumask is not allowed
1722 */
1723 if (cpumask_empty(newmask)) {
1724 part_error = PERR_CPUSEMPTY;
1725 goto write_error;
1726 }
1727 /* Check newmask again, whether cpus are available for parent/cs */
1728 nocpu |= tasks_nocpu_error(parent, cs, newmask);
1729
1730 /*
1731 * partcmd_update with newmask:
1732 *
1733 * Compute add/delete mask to/from effective_cpus
1734 *
1735 * For valid partition:
1736 * addmask = exclusive_cpus & ~newmask
1737 * & parent->effective_xcpus
1738 * delmask = newmask & ~exclusive_cpus
1739 * & parent->effective_xcpus
1740 *
1741 * For invalid partition:
1742 * delmask = newmask & parent->effective_xcpus
1743 */
1744 if (is_prs_invalid(old_prs)) {
1745 adding = false;
1746 deleting = cpumask_and(tmp->delmask,
1747 newmask, parent->effective_xcpus);
1748 } else {
1749 cpumask_andnot(tmp->addmask, xcpus, newmask);
1750 adding = cpumask_and(tmp->addmask, tmp->addmask,
1751 parent->effective_xcpus);
1752
1753 cpumask_andnot(tmp->delmask, newmask, xcpus);
1754 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1755 parent->effective_xcpus);
1756 }
1757 /*
1758 * Make partition invalid if parent's effective_cpus could
1759 * become empty and there are tasks in the parent.
1760 */
1761 if (nocpu && (!adding ||
1762 !cpumask_intersects(tmp->addmask, cpu_active_mask))) {
1763 part_error = PERR_NOCPUS;
1764 deleting = false;
1765 adding = cpumask_and(tmp->addmask,
1766 xcpus, parent->effective_xcpus);
1767 }
1768 } else {
1769 /*
1770 * partcmd_update w/o newmask
1771 *
1772 * delmask = effective_xcpus & parent->effective_cpus
1773 *
1774 * This can be called from:
1775 * 1) update_cpumasks_hier()
1776 * 2) cpuset_hotplug_update_tasks()
1777 *
1778 * Check to see if it can be transitioned from valid to
1779 * invalid partition or vice versa.
1780 *
1781 * A partition error happens when parent has tasks and all
1782 * its effective CPUs will have to be distributed out.
1783 */
1784 WARN_ON_ONCE(!is_partition_valid(parent));
1785 if (nocpu) {
1786 part_error = PERR_NOCPUS;
1787 if (is_partition_valid(cs))
1788 adding = cpumask_and(tmp->addmask,
1789 xcpus, parent->effective_xcpus);
1790 } else if (is_partition_invalid(cs) && !cpumask_empty(xcpus) &&
1791 cpumask_subset(xcpus, parent->effective_xcpus)) {
1792 struct cgroup_subsys_state *css;
1793 struct cpuset *child;
1794 bool exclusive = true;
1795
1796 /*
1797 * Convert invalid partition to valid has to
1798 * pass the cpu exclusivity test.
1799 */
1800 rcu_read_lock();
1801 cpuset_for_each_child(child, css, parent) {
1802 if (child == cs)
1803 continue;
1804 if (!cpusets_are_exclusive(cs, child)) {
1805 exclusive = false;
1806 break;
1807 }
1808 }
1809 rcu_read_unlock();
1810 if (exclusive)
1811 deleting = cpumask_and(tmp->delmask,
1812 xcpus, parent->effective_cpus);
1813 else
1814 part_error = PERR_NOTEXCL;
1815 }
1816 }
1817
1818 write_error:
1819 if (part_error)
1820 WRITE_ONCE(cs->prs_err, part_error);
1821
1822 if (cmd == partcmd_update) {
1823 /*
1824 * Check for possible transition between valid and invalid
1825 * partition root.
1826 */
1827 switch (cs->partition_root_state) {
1828 case PRS_ROOT:
1829 case PRS_ISOLATED:
1830 if (part_error) {
1831 new_prs = -old_prs;
1832 subparts_delta--;
1833 }
1834 break;
1835 case PRS_INVALID_ROOT:
1836 case PRS_INVALID_ISOLATED:
1837 if (!part_error) {
1838 new_prs = -old_prs;
1839 subparts_delta++;
1840 }
1841 break;
1842 }
1843 }
1844
1845 if (!adding && !deleting && (new_prs == old_prs))
1846 return 0;
1847
1848 /*
1849 * Transitioning between invalid to valid or vice versa may require
1850 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update,
1851 * validate_change() has already been successfully called and
1852 * CPU lists in cs haven't been updated yet. So defer it to later.
1853 */
1854 if ((old_prs != new_prs) && (cmd != partcmd_update)) {
1855 int err = update_partition_exclusive(cs, new_prs);
1856
1857 if (err)
1858 return err;
1859 }
1860
1861 /*
1862 * Change the parent's effective_cpus & effective_xcpus (top cpuset
1863 * only).
1864 *
1865 * Newly added CPUs will be removed from effective_cpus and
1866 * newly deleted ones will be added back to effective_cpus.
1867 */
1868 spin_lock_irq(&callback_lock);
1869 if (old_prs != new_prs) {
1870 cs->partition_root_state = new_prs;
1871 if (new_prs <= 0)
1872 cs->nr_subparts = 0;
1873 }
1874 /*
1875 * Adding to parent's effective_cpus means deletion CPUs from cs
1876 * and vice versa.
1877 */
1878 if (adding)
1879 isolcpus_updated += partition_xcpus_del(old_prs, parent,
1880 tmp->addmask);
1881 if (deleting)
1882 isolcpus_updated += partition_xcpus_add(new_prs, parent,
1883 tmp->delmask);
1884
1885 if (is_partition_valid(parent)) {
1886 parent->nr_subparts += subparts_delta;
1887 WARN_ON_ONCE(parent->nr_subparts < 0);
1888 }
1889 spin_unlock_irq(&callback_lock);
1890 update_unbound_workqueue_cpumask(isolcpus_updated);
1891
1892 if ((old_prs != new_prs) && (cmd == partcmd_update))
1893 update_partition_exclusive(cs, new_prs);
1894
1895 if (adding || deleting) {
1896 cpuset_update_tasks_cpumask(parent, tmp->addmask);
1897 update_sibling_cpumasks(parent, cs, tmp);
1898 }
1899
1900 /*
1901 * For partcmd_update without newmask, it is being called from
1902 * cpuset_handle_hotplug(). Update the load balance flag and
1903 * scheduling domain accordingly.
1904 */
1905 if ((cmd == partcmd_update) && !newmask)
1906 update_partition_sd_lb(cs, old_prs);
1907
1908 notify_partition_change(cs, old_prs);
1909 return 0;
1910 }
1911
1912 /**
1913 * compute_partition_effective_cpumask - compute effective_cpus for partition
1914 * @cs: partition root cpuset
1915 * @new_ecpus: previously computed effective_cpus to be updated
1916 *
1917 * Compute the effective_cpus of a partition root by scanning effective_xcpus
1918 * of child partition roots and excluding their effective_xcpus.
1919 *
1920 * This has the side effect of invalidating valid child partition roots,
1921 * if necessary. Since it is called from either cpuset_hotplug_update_tasks()
1922 * or update_cpumasks_hier() where parent and children are modified
1923 * successively, we don't need to call update_parent_effective_cpumask()
1924 * and the child's effective_cpus will be updated in later iterations.
1925 *
1926 * Note that rcu_read_lock() is assumed to be held.
1927 */
compute_partition_effective_cpumask(struct cpuset * cs,struct cpumask * new_ecpus)1928 static void compute_partition_effective_cpumask(struct cpuset *cs,
1929 struct cpumask *new_ecpus)
1930 {
1931 struct cgroup_subsys_state *css;
1932 struct cpuset *child;
1933 bool populated = partition_is_populated(cs, NULL);
1934
1935 /*
1936 * Check child partition roots to see if they should be
1937 * invalidated when
1938 * 1) child effective_xcpus not a subset of new
1939 * excluisve_cpus
1940 * 2) All the effective_cpus will be used up and cp
1941 * has tasks
1942 */
1943 compute_effective_exclusive_cpumask(cs, new_ecpus);
1944 cpumask_and(new_ecpus, new_ecpus, cpu_active_mask);
1945
1946 rcu_read_lock();
1947 cpuset_for_each_child(child, css, cs) {
1948 if (!is_partition_valid(child))
1949 continue;
1950
1951 child->prs_err = 0;
1952 if (!cpumask_subset(child->effective_xcpus,
1953 cs->effective_xcpus))
1954 child->prs_err = PERR_INVCPUS;
1955 else if (populated &&
1956 cpumask_subset(new_ecpus, child->effective_xcpus))
1957 child->prs_err = PERR_NOCPUS;
1958
1959 if (child->prs_err) {
1960 int old_prs = child->partition_root_state;
1961
1962 /*
1963 * Invalidate child partition
1964 */
1965 spin_lock_irq(&callback_lock);
1966 make_partition_invalid(child);
1967 cs->nr_subparts--;
1968 child->nr_subparts = 0;
1969 spin_unlock_irq(&callback_lock);
1970 notify_partition_change(child, old_prs);
1971 continue;
1972 }
1973 cpumask_andnot(new_ecpus, new_ecpus,
1974 child->effective_xcpus);
1975 }
1976 rcu_read_unlock();
1977 }
1978
1979 /*
1980 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1981 * @cs: the cpuset to consider
1982 * @tmp: temp variables for calculating effective_cpus & partition setup
1983 * @force: don't skip any descendant cpusets if set
1984 *
1985 * When configured cpumask is changed, the effective cpumasks of this cpuset
1986 * and all its descendants need to be updated.
1987 *
1988 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1989 *
1990 * Called with cpuset_mutex held
1991 */
update_cpumasks_hier(struct cpuset * cs,struct tmpmasks * tmp,bool force)1992 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
1993 bool force)
1994 {
1995 struct cpuset *cp;
1996 struct cgroup_subsys_state *pos_css;
1997 bool need_rebuild_sched_domains = false;
1998 int old_prs, new_prs;
1999
2000 rcu_read_lock();
2001 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2002 struct cpuset *parent = parent_cs(cp);
2003 bool remote = is_remote_partition(cp);
2004 bool update_parent = false;
2005
2006 /*
2007 * Skip descendent remote partition that acquires CPUs
2008 * directly from top cpuset unless it is cs.
2009 */
2010 if (remote && (cp != cs)) {
2011 pos_css = css_rightmost_descendant(pos_css);
2012 continue;
2013 }
2014
2015 /*
2016 * Update effective_xcpus if exclusive_cpus set.
2017 * The case when exclusive_cpus isn't set is handled later.
2018 */
2019 if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) {
2020 spin_lock_irq(&callback_lock);
2021 compute_effective_exclusive_cpumask(cp, NULL);
2022 spin_unlock_irq(&callback_lock);
2023 }
2024
2025 old_prs = new_prs = cp->partition_root_state;
2026 if (remote || (is_partition_valid(parent) &&
2027 is_partition_valid(cp)))
2028 compute_partition_effective_cpumask(cp, tmp->new_cpus);
2029 else
2030 compute_effective_cpumask(tmp->new_cpus, cp, parent);
2031
2032 /*
2033 * A partition with no effective_cpus is allowed as long as
2034 * there is no task associated with it. Call
2035 * update_parent_effective_cpumask() to check it.
2036 */
2037 if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) {
2038 update_parent = true;
2039 goto update_parent_effective;
2040 }
2041
2042 /*
2043 * If it becomes empty, inherit the effective mask of the
2044 * parent, which is guaranteed to have some CPUs unless
2045 * it is a partition root that has explicitly distributed
2046 * out all its CPUs.
2047 */
2048 if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus))
2049 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
2050
2051 if (remote)
2052 goto get_css;
2053
2054 /*
2055 * Skip the whole subtree if
2056 * 1) the cpumask remains the same,
2057 * 2) has no partition root state,
2058 * 3) force flag not set, and
2059 * 4) for v2 load balance state same as its parent.
2060 */
2061 if (!cp->partition_root_state && !force &&
2062 cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
2063 (!cpuset_v2() ||
2064 (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
2065 pos_css = css_rightmost_descendant(pos_css);
2066 continue;
2067 }
2068
2069 update_parent_effective:
2070 /*
2071 * update_parent_effective_cpumask() should have been called
2072 * for cs already in update_cpumask(). We should also call
2073 * cpuset_update_tasks_cpumask() again for tasks in the parent
2074 * cpuset if the parent's effective_cpus changes.
2075 */
2076 if ((cp != cs) && old_prs) {
2077 switch (parent->partition_root_state) {
2078 case PRS_ROOT:
2079 case PRS_ISOLATED:
2080 update_parent = true;
2081 break;
2082
2083 default:
2084 /*
2085 * When parent is not a partition root or is
2086 * invalid, child partition roots become
2087 * invalid too.
2088 */
2089 if (is_partition_valid(cp))
2090 new_prs = -cp->partition_root_state;
2091 WRITE_ONCE(cp->prs_err,
2092 is_partition_invalid(parent)
2093 ? PERR_INVPARENT : PERR_NOTPART);
2094 break;
2095 }
2096 }
2097 get_css:
2098 if (!css_tryget_online(&cp->css))
2099 continue;
2100 rcu_read_unlock();
2101
2102 if (update_parent) {
2103 update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp);
2104 /*
2105 * The cpuset partition_root_state may become
2106 * invalid. Capture it.
2107 */
2108 new_prs = cp->partition_root_state;
2109 }
2110
2111 spin_lock_irq(&callback_lock);
2112 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
2113 cp->partition_root_state = new_prs;
2114 /*
2115 * Make sure effective_xcpus is properly set for a valid
2116 * partition root.
2117 */
2118 if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus))
2119 cpumask_and(cp->effective_xcpus,
2120 cp->cpus_allowed, parent->effective_xcpus);
2121 else if (new_prs < 0)
2122 reset_partition_data(cp);
2123 spin_unlock_irq(&callback_lock);
2124
2125 notify_partition_change(cp, old_prs);
2126
2127 WARN_ON(!is_in_v2_mode() &&
2128 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
2129
2130 cpuset_update_tasks_cpumask(cp, cp->effective_cpus);
2131
2132 /*
2133 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
2134 * from parent if current cpuset isn't a valid partition root
2135 * and their load balance states differ.
2136 */
2137 if (cpuset_v2() && !is_partition_valid(cp) &&
2138 (is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
2139 if (is_sched_load_balance(parent))
2140 set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2141 else
2142 clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2143 }
2144
2145 /*
2146 * On legacy hierarchy, if the effective cpumask of any non-
2147 * empty cpuset is changed, we need to rebuild sched domains.
2148 * On default hierarchy, the cpuset needs to be a partition
2149 * root as well.
2150 */
2151 if (!cpumask_empty(cp->cpus_allowed) &&
2152 is_sched_load_balance(cp) &&
2153 (!cpuset_v2() || is_partition_valid(cp)))
2154 need_rebuild_sched_domains = true;
2155
2156 rcu_read_lock();
2157 css_put(&cp->css);
2158 }
2159 rcu_read_unlock();
2160
2161 if (need_rebuild_sched_domains)
2162 cpuset_force_rebuild();
2163 }
2164
2165 /**
2166 * update_sibling_cpumasks - Update siblings cpumasks
2167 * @parent: Parent cpuset
2168 * @cs: Current cpuset
2169 * @tmp: Temp variables
2170 */
update_sibling_cpumasks(struct cpuset * parent,struct cpuset * cs,struct tmpmasks * tmp)2171 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
2172 struct tmpmasks *tmp)
2173 {
2174 struct cpuset *sibling;
2175 struct cgroup_subsys_state *pos_css;
2176
2177 lockdep_assert_held(&cpuset_mutex);
2178
2179 /*
2180 * Check all its siblings and call update_cpumasks_hier()
2181 * if their effective_cpus will need to be changed.
2182 *
2183 * It is possible a change in parent's effective_cpus
2184 * due to a change in a child partition's effective_xcpus will impact
2185 * its siblings even if they do not inherit parent's effective_cpus
2186 * directly.
2187 *
2188 * The update_cpumasks_hier() function may sleep. So we have to
2189 * release the RCU read lock before calling it.
2190 */
2191 rcu_read_lock();
2192 cpuset_for_each_child(sibling, pos_css, parent) {
2193 if (sibling == cs)
2194 continue;
2195 if (!is_partition_valid(sibling)) {
2196 compute_effective_cpumask(tmp->new_cpus, sibling,
2197 parent);
2198 if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus))
2199 continue;
2200 }
2201 if (!css_tryget_online(&sibling->css))
2202 continue;
2203
2204 rcu_read_unlock();
2205 update_cpumasks_hier(sibling, tmp, false);
2206 rcu_read_lock();
2207 css_put(&sibling->css);
2208 }
2209 rcu_read_unlock();
2210 }
2211
2212 /**
2213 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
2214 * @cs: the cpuset to consider
2215 * @trialcs: trial cpuset
2216 * @buf: buffer of cpu numbers written to this cpuset
2217 */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)2218 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2219 const char *buf)
2220 {
2221 int retval;
2222 struct tmpmasks tmp;
2223 struct cpuset *parent = parent_cs(cs);
2224 bool invalidate = false;
2225 bool force = false;
2226 int old_prs = cs->partition_root_state;
2227
2228 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
2229 if (cs == &top_cpuset)
2230 return -EACCES;
2231
2232 /*
2233 * An empty cpus_allowed is ok only if the cpuset has no tasks.
2234 * Since cpulist_parse() fails on an empty mask, we special case
2235 * that parsing. The validate_change() call ensures that cpusets
2236 * with tasks have cpus.
2237 */
2238 if (!*buf) {
2239 cpumask_clear(trialcs->cpus_allowed);
2240 if (cpumask_empty(trialcs->exclusive_cpus))
2241 cpumask_clear(trialcs->effective_xcpus);
2242 } else {
2243 retval = cpulist_parse(buf, trialcs->cpus_allowed);
2244 if (retval < 0)
2245 return retval;
2246
2247 if (!cpumask_subset(trialcs->cpus_allowed,
2248 top_cpuset.cpus_allowed))
2249 return -EINVAL;
2250
2251 /*
2252 * When exclusive_cpus isn't explicitly set, it is constrainted
2253 * by cpus_allowed and parent's effective_xcpus. Otherwise,
2254 * trialcs->effective_xcpus is used as a temporary cpumask
2255 * for checking validity of the partition root.
2256 */
2257 if (!cpumask_empty(trialcs->exclusive_cpus) || is_partition_valid(cs))
2258 compute_effective_exclusive_cpumask(trialcs, NULL);
2259 }
2260
2261 /* Nothing to do if the cpus didn't change */
2262 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
2263 return 0;
2264
2265 if (alloc_cpumasks(NULL, &tmp))
2266 return -ENOMEM;
2267
2268 if (old_prs) {
2269 if (is_partition_valid(cs) &&
2270 cpumask_empty(trialcs->effective_xcpus)) {
2271 invalidate = true;
2272 cs->prs_err = PERR_INVCPUS;
2273 } else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
2274 invalidate = true;
2275 cs->prs_err = PERR_HKEEPING;
2276 } else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
2277 invalidate = true;
2278 cs->prs_err = PERR_NOCPUS;
2279 }
2280 }
2281
2282 /*
2283 * Check all the descendants in update_cpumasks_hier() if
2284 * effective_xcpus is to be changed.
2285 */
2286 force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2287
2288 retval = validate_change(cs, trialcs);
2289
2290 if ((retval == -EINVAL) && cpuset_v2()) {
2291 struct cgroup_subsys_state *css;
2292 struct cpuset *cp;
2293
2294 /*
2295 * The -EINVAL error code indicates that partition sibling
2296 * CPU exclusivity rule has been violated. We still allow
2297 * the cpumask change to proceed while invalidating the
2298 * partition. However, any conflicting sibling partitions
2299 * have to be marked as invalid too.
2300 */
2301 invalidate = true;
2302 rcu_read_lock();
2303 cpuset_for_each_child(cp, css, parent) {
2304 struct cpumask *xcpus = user_xcpus(trialcs);
2305
2306 if (is_partition_valid(cp) &&
2307 cpumask_intersects(xcpus, cp->effective_xcpus)) {
2308 rcu_read_unlock();
2309 update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, &tmp);
2310 rcu_read_lock();
2311 }
2312 }
2313 rcu_read_unlock();
2314 retval = 0;
2315 }
2316
2317 if (retval < 0)
2318 goto out_free;
2319
2320 if (is_partition_valid(cs) ||
2321 (is_partition_invalid(cs) && !invalidate)) {
2322 struct cpumask *xcpus = trialcs->effective_xcpus;
2323
2324 if (cpumask_empty(xcpus) && is_partition_invalid(cs))
2325 xcpus = trialcs->cpus_allowed;
2326
2327 /*
2328 * Call remote_cpus_update() to handle valid remote partition
2329 */
2330 if (is_remote_partition(cs))
2331 remote_cpus_update(cs, xcpus, &tmp);
2332 else if (invalidate)
2333 update_parent_effective_cpumask(cs, partcmd_invalidate,
2334 NULL, &tmp);
2335 else
2336 update_parent_effective_cpumask(cs, partcmd_update,
2337 xcpus, &tmp);
2338 } else if (!cpumask_empty(cs->exclusive_cpus)) {
2339 /*
2340 * Use trialcs->effective_cpus as a temp cpumask
2341 */
2342 remote_partition_check(cs, trialcs->effective_xcpus,
2343 trialcs->effective_cpus, &tmp);
2344 }
2345
2346 spin_lock_irq(&callback_lock);
2347 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
2348 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2349 if ((old_prs > 0) && !is_partition_valid(cs))
2350 reset_partition_data(cs);
2351 spin_unlock_irq(&callback_lock);
2352
2353 /* effective_cpus/effective_xcpus will be updated here */
2354 update_cpumasks_hier(cs, &tmp, force);
2355
2356 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2357 if (cs->partition_root_state)
2358 update_partition_sd_lb(cs, old_prs);
2359 out_free:
2360 free_cpumasks(NULL, &tmp);
2361 return retval;
2362 }
2363
2364 /**
2365 * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset
2366 * @cs: the cpuset to consider
2367 * @trialcs: trial cpuset
2368 * @buf: buffer of cpu numbers written to this cpuset
2369 *
2370 * The tasks' cpumask will be updated if cs is a valid partition root.
2371 */
update_exclusive_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)2372 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2373 const char *buf)
2374 {
2375 int retval;
2376 struct tmpmasks tmp;
2377 struct cpuset *parent = parent_cs(cs);
2378 bool invalidate = false;
2379 bool force = false;
2380 int old_prs = cs->partition_root_state;
2381
2382 if (!*buf) {
2383 cpumask_clear(trialcs->exclusive_cpus);
2384 cpumask_clear(trialcs->effective_xcpus);
2385 } else {
2386 retval = cpulist_parse(buf, trialcs->exclusive_cpus);
2387 if (retval < 0)
2388 return retval;
2389 }
2390
2391 /* Nothing to do if the CPUs didn't change */
2392 if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
2393 return 0;
2394
2395 if (*buf)
2396 compute_effective_exclusive_cpumask(trialcs, NULL);
2397
2398 /*
2399 * Check all the descendants in update_cpumasks_hier() if
2400 * effective_xcpus is to be changed.
2401 */
2402 force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2403
2404 retval = validate_change(cs, trialcs);
2405 if (retval)
2406 return retval;
2407
2408 if (alloc_cpumasks(NULL, &tmp))
2409 return -ENOMEM;
2410
2411 if (old_prs) {
2412 if (cpumask_empty(trialcs->effective_xcpus)) {
2413 invalidate = true;
2414 cs->prs_err = PERR_INVCPUS;
2415 } else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
2416 invalidate = true;
2417 cs->prs_err = PERR_HKEEPING;
2418 } else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
2419 invalidate = true;
2420 cs->prs_err = PERR_NOCPUS;
2421 }
2422
2423 if (is_remote_partition(cs)) {
2424 if (invalidate)
2425 remote_partition_disable(cs, &tmp);
2426 else
2427 remote_cpus_update(cs, trialcs->effective_xcpus,
2428 &tmp);
2429 } else if (invalidate) {
2430 update_parent_effective_cpumask(cs, partcmd_invalidate,
2431 NULL, &tmp);
2432 } else {
2433 update_parent_effective_cpumask(cs, partcmd_update,
2434 trialcs->effective_xcpus, &tmp);
2435 }
2436 } else if (!cpumask_empty(trialcs->exclusive_cpus)) {
2437 /*
2438 * Use trialcs->effective_cpus as a temp cpumask
2439 */
2440 remote_partition_check(cs, trialcs->effective_xcpus,
2441 trialcs->effective_cpus, &tmp);
2442 }
2443 spin_lock_irq(&callback_lock);
2444 cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus);
2445 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2446 if ((old_prs > 0) && !is_partition_valid(cs))
2447 reset_partition_data(cs);
2448 spin_unlock_irq(&callback_lock);
2449
2450 /*
2451 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus
2452 * of the subtree when it is a valid partition root or effective_xcpus
2453 * is updated.
2454 */
2455 if (is_partition_valid(cs) || force)
2456 update_cpumasks_hier(cs, &tmp, force);
2457
2458 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2459 if (cs->partition_root_state)
2460 update_partition_sd_lb(cs, old_prs);
2461
2462 free_cpumasks(NULL, &tmp);
2463 return 0;
2464 }
2465
2466 /*
2467 * Migrate memory region from one set of nodes to another. This is
2468 * performed asynchronously as it can be called from process migration path
2469 * holding locks involved in process management. All mm migrations are
2470 * performed in the queued order and can be waited for by flushing
2471 * cpuset_migrate_mm_wq.
2472 */
2473
2474 struct cpuset_migrate_mm_work {
2475 struct work_struct work;
2476 struct mm_struct *mm;
2477 nodemask_t from;
2478 nodemask_t to;
2479 };
2480
cpuset_migrate_mm_workfn(struct work_struct * work)2481 static void cpuset_migrate_mm_workfn(struct work_struct *work)
2482 {
2483 struct cpuset_migrate_mm_work *mwork =
2484 container_of(work, struct cpuset_migrate_mm_work, work);
2485
2486 /* on a wq worker, no need to worry about %current's mems_allowed */
2487 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
2488 mmput(mwork->mm);
2489 kfree(mwork);
2490 }
2491
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)2492 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
2493 const nodemask_t *to)
2494 {
2495 struct cpuset_migrate_mm_work *mwork;
2496
2497 if (nodes_equal(*from, *to)) {
2498 mmput(mm);
2499 return;
2500 }
2501
2502 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
2503 if (mwork) {
2504 mwork->mm = mm;
2505 mwork->from = *from;
2506 mwork->to = *to;
2507 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
2508 queue_work(cpuset_migrate_mm_wq, &mwork->work);
2509 } else {
2510 mmput(mm);
2511 }
2512 }
2513
cpuset_post_attach(void)2514 static void cpuset_post_attach(void)
2515 {
2516 flush_workqueue(cpuset_migrate_mm_wq);
2517 }
2518
2519 /*
2520 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
2521 * @tsk: the task to change
2522 * @newmems: new nodes that the task will be set
2523 *
2524 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
2525 * and rebind an eventual tasks' mempolicy. If the task is allocating in
2526 * parallel, it might temporarily see an empty intersection, which results in
2527 * a seqlock check and retry before OOM or allocation failure.
2528 */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)2529 static void cpuset_change_task_nodemask(struct task_struct *tsk,
2530 nodemask_t *newmems)
2531 {
2532 task_lock(tsk);
2533
2534 local_irq_disable();
2535 write_seqcount_begin(&tsk->mems_allowed_seq);
2536
2537 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
2538 mpol_rebind_task(tsk, newmems);
2539 tsk->mems_allowed = *newmems;
2540
2541 write_seqcount_end(&tsk->mems_allowed_seq);
2542 local_irq_enable();
2543
2544 task_unlock(tsk);
2545 }
2546
2547 static void *cpuset_being_rebound;
2548
2549 /**
2550 * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
2551 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
2552 *
2553 * Iterate through each task of @cs updating its mems_allowed to the
2554 * effective cpuset's. As this function is called with cpuset_mutex held,
2555 * cpuset membership stays stable.
2556 */
cpuset_update_tasks_nodemask(struct cpuset * cs)2557 void cpuset_update_tasks_nodemask(struct cpuset *cs)
2558 {
2559 static nodemask_t newmems; /* protected by cpuset_mutex */
2560 struct css_task_iter it;
2561 struct task_struct *task;
2562
2563 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
2564
2565 guarantee_online_mems(cs, &newmems);
2566
2567 /*
2568 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
2569 * take while holding tasklist_lock. Forks can happen - the
2570 * mpol_dup() cpuset_being_rebound check will catch such forks,
2571 * and rebind their vma mempolicies too. Because we still hold
2572 * the global cpuset_mutex, we know that no other rebind effort
2573 * will be contending for the global variable cpuset_being_rebound.
2574 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
2575 * is idempotent. Also migrate pages in each mm to new nodes.
2576 */
2577 css_task_iter_start(&cs->css, 0, &it);
2578 while ((task = css_task_iter_next(&it))) {
2579 struct mm_struct *mm;
2580 bool migrate;
2581
2582 cpuset_change_task_nodemask(task, &newmems);
2583
2584 mm = get_task_mm(task);
2585 if (!mm)
2586 continue;
2587
2588 migrate = is_memory_migrate(cs);
2589
2590 mpol_rebind_mm(mm, &cs->mems_allowed);
2591 if (migrate)
2592 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
2593 else
2594 mmput(mm);
2595 }
2596 css_task_iter_end(&it);
2597
2598 /*
2599 * All the tasks' nodemasks have been updated, update
2600 * cs->old_mems_allowed.
2601 */
2602 cs->old_mems_allowed = newmems;
2603
2604 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
2605 cpuset_being_rebound = NULL;
2606 }
2607
2608 /*
2609 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2610 * @cs: the cpuset to consider
2611 * @new_mems: a temp variable for calculating new effective_mems
2612 *
2613 * When configured nodemask is changed, the effective nodemasks of this cpuset
2614 * and all its descendants need to be updated.
2615 *
2616 * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2617 *
2618 * Called with cpuset_mutex held
2619 */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)2620 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2621 {
2622 struct cpuset *cp;
2623 struct cgroup_subsys_state *pos_css;
2624
2625 rcu_read_lock();
2626 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2627 struct cpuset *parent = parent_cs(cp);
2628
2629 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2630
2631 /*
2632 * If it becomes empty, inherit the effective mask of the
2633 * parent, which is guaranteed to have some MEMs.
2634 */
2635 if (is_in_v2_mode() && nodes_empty(*new_mems))
2636 *new_mems = parent->effective_mems;
2637
2638 /* Skip the whole subtree if the nodemask remains the same. */
2639 if (nodes_equal(*new_mems, cp->effective_mems)) {
2640 pos_css = css_rightmost_descendant(pos_css);
2641 continue;
2642 }
2643
2644 if (!css_tryget_online(&cp->css))
2645 continue;
2646 rcu_read_unlock();
2647
2648 spin_lock_irq(&callback_lock);
2649 cp->effective_mems = *new_mems;
2650 spin_unlock_irq(&callback_lock);
2651
2652 WARN_ON(!is_in_v2_mode() &&
2653 !nodes_equal(cp->mems_allowed, cp->effective_mems));
2654
2655 cpuset_update_tasks_nodemask(cp);
2656
2657 rcu_read_lock();
2658 css_put(&cp->css);
2659 }
2660 rcu_read_unlock();
2661 }
2662
2663 /*
2664 * Handle user request to change the 'mems' memory placement
2665 * of a cpuset. Needs to validate the request, update the
2666 * cpusets mems_allowed, and for each task in the cpuset,
2667 * update mems_allowed and rebind task's mempolicy and any vma
2668 * mempolicies and if the cpuset is marked 'memory_migrate',
2669 * migrate the tasks pages to the new memory.
2670 *
2671 * Call with cpuset_mutex held. May take callback_lock during call.
2672 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2673 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2674 * their mempolicies to the cpusets new mems_allowed.
2675 */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)2676 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2677 const char *buf)
2678 {
2679 int retval;
2680
2681 /*
2682 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
2683 * it's read-only
2684 */
2685 if (cs == &top_cpuset) {
2686 retval = -EACCES;
2687 goto done;
2688 }
2689
2690 /*
2691 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2692 * Since nodelist_parse() fails on an empty mask, we special case
2693 * that parsing. The validate_change() call ensures that cpusets
2694 * with tasks have memory.
2695 */
2696 if (!*buf) {
2697 nodes_clear(trialcs->mems_allowed);
2698 } else {
2699 retval = nodelist_parse(buf, trialcs->mems_allowed);
2700 if (retval < 0)
2701 goto done;
2702
2703 if (!nodes_subset(trialcs->mems_allowed,
2704 top_cpuset.mems_allowed)) {
2705 retval = -EINVAL;
2706 goto done;
2707 }
2708 }
2709
2710 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
2711 retval = 0; /* Too easy - nothing to do */
2712 goto done;
2713 }
2714 retval = validate_change(cs, trialcs);
2715 if (retval < 0)
2716 goto done;
2717
2718 check_insane_mems_config(&trialcs->mems_allowed);
2719
2720 spin_lock_irq(&callback_lock);
2721 cs->mems_allowed = trialcs->mems_allowed;
2722 spin_unlock_irq(&callback_lock);
2723
2724 /* use trialcs->mems_allowed as a temp variable */
2725 update_nodemasks_hier(cs, &trialcs->mems_allowed);
2726 done:
2727 return retval;
2728 }
2729
current_cpuset_is_being_rebound(void)2730 bool current_cpuset_is_being_rebound(void)
2731 {
2732 bool ret;
2733
2734 rcu_read_lock();
2735 ret = task_cs(current) == cpuset_being_rebound;
2736 rcu_read_unlock();
2737
2738 return ret;
2739 }
2740
2741 /*
2742 * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag
2743 * bit: the bit to update (see cpuset_flagbits_t)
2744 * cs: the cpuset to update
2745 * turning_on: whether the flag is being set or cleared
2746 *
2747 * Call with cpuset_mutex held.
2748 */
2749
cpuset_update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)2750 int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2751 int turning_on)
2752 {
2753 struct cpuset *trialcs;
2754 int balance_flag_changed;
2755 int spread_flag_changed;
2756 int err;
2757
2758 trialcs = alloc_trial_cpuset(cs);
2759 if (!trialcs)
2760 return -ENOMEM;
2761
2762 if (turning_on)
2763 set_bit(bit, &trialcs->flags);
2764 else
2765 clear_bit(bit, &trialcs->flags);
2766
2767 err = validate_change(cs, trialcs);
2768 if (err < 0)
2769 goto out;
2770
2771 balance_flag_changed = (is_sched_load_balance(cs) !=
2772 is_sched_load_balance(trialcs));
2773
2774 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2775 || (is_spread_page(cs) != is_spread_page(trialcs)));
2776
2777 spin_lock_irq(&callback_lock);
2778 cs->flags = trialcs->flags;
2779 spin_unlock_irq(&callback_lock);
2780
2781 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) {
2782 if (cpuset_v2())
2783 cpuset_force_rebuild();
2784 else
2785 rebuild_sched_domains_locked();
2786 }
2787
2788 if (spread_flag_changed)
2789 cpuset1_update_tasks_flags(cs);
2790 out:
2791 free_cpuset(trialcs);
2792 return err;
2793 }
2794
2795 /**
2796 * update_prstate - update partition_root_state
2797 * @cs: the cpuset to update
2798 * @new_prs: new partition root state
2799 * Return: 0 if successful, != 0 if error
2800 *
2801 * Call with cpuset_mutex held.
2802 */
update_prstate(struct cpuset * cs,int new_prs)2803 static int update_prstate(struct cpuset *cs, int new_prs)
2804 {
2805 int err = PERR_NONE, old_prs = cs->partition_root_state;
2806 struct cpuset *parent = parent_cs(cs);
2807 struct tmpmasks tmpmask;
2808 bool new_xcpus_state = false;
2809
2810 if (old_prs == new_prs)
2811 return 0;
2812
2813 /*
2814 * Treat a previously invalid partition root as if it is a "member".
2815 */
2816 if (new_prs && is_prs_invalid(old_prs))
2817 old_prs = PRS_MEMBER;
2818
2819 if (alloc_cpumasks(NULL, &tmpmask))
2820 return -ENOMEM;
2821
2822 /*
2823 * Setup effective_xcpus if not properly set yet, it will be cleared
2824 * later if partition becomes invalid.
2825 */
2826 if ((new_prs > 0) && cpumask_empty(cs->exclusive_cpus)) {
2827 spin_lock_irq(&callback_lock);
2828 cpumask_and(cs->effective_xcpus,
2829 cs->cpus_allowed, parent->effective_xcpus);
2830 spin_unlock_irq(&callback_lock);
2831 }
2832
2833 err = update_partition_exclusive(cs, new_prs);
2834 if (err)
2835 goto out;
2836
2837 if (!old_prs) {
2838 /*
2839 * cpus_allowed and exclusive_cpus cannot be both empty.
2840 */
2841 if (xcpus_empty(cs)) {
2842 err = PERR_CPUSEMPTY;
2843 goto out;
2844 }
2845
2846 /*
2847 * We don't support the creation of a new local partition with
2848 * a remote partition underneath it. This unsupported
2849 * setting can happen only if parent is the top_cpuset because
2850 * a remote partition cannot be created underneath an existing
2851 * local or remote partition.
2852 */
2853 if ((parent == &top_cpuset) &&
2854 cpumask_intersects(cs->exclusive_cpus, subpartitions_cpus)) {
2855 err = PERR_REMOTE;
2856 goto out;
2857 }
2858
2859 /*
2860 * If parent is valid partition, enable local partiion.
2861 * Otherwise, enable a remote partition.
2862 */
2863 if (is_partition_valid(parent)) {
2864 enum partition_cmd cmd = (new_prs == PRS_ROOT)
2865 ? partcmd_enable : partcmd_enablei;
2866
2867 err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask);
2868 } else {
2869 err = remote_partition_enable(cs, new_prs, &tmpmask);
2870 }
2871 } else if (old_prs && new_prs) {
2872 /*
2873 * A change in load balance state only, no change in cpumasks.
2874 */
2875 new_xcpus_state = true;
2876 } else {
2877 /*
2878 * Switching back to member is always allowed even if it
2879 * disables child partitions.
2880 */
2881 if (is_remote_partition(cs))
2882 remote_partition_disable(cs, &tmpmask);
2883 else
2884 update_parent_effective_cpumask(cs, partcmd_disable,
2885 NULL, &tmpmask);
2886
2887 /*
2888 * Invalidation of child partitions will be done in
2889 * update_cpumasks_hier().
2890 */
2891 }
2892 out:
2893 /*
2894 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
2895 * happens.
2896 */
2897 if (err) {
2898 new_prs = -new_prs;
2899 update_partition_exclusive(cs, new_prs);
2900 }
2901
2902 spin_lock_irq(&callback_lock);
2903 cs->partition_root_state = new_prs;
2904 WRITE_ONCE(cs->prs_err, err);
2905 if (!is_partition_valid(cs))
2906 reset_partition_data(cs);
2907 else if (new_xcpus_state)
2908 partition_xcpus_newstate(old_prs, new_prs, cs->effective_xcpus);
2909 spin_unlock_irq(&callback_lock);
2910 update_unbound_workqueue_cpumask(new_xcpus_state);
2911
2912 /* Force update if switching back to member */
2913 update_cpumasks_hier(cs, &tmpmask, !new_prs);
2914
2915 /* Update sched domains and load balance flag */
2916 update_partition_sd_lb(cs, old_prs);
2917
2918 notify_partition_change(cs, old_prs);
2919 if (force_sd_rebuild)
2920 rebuild_sched_domains_locked();
2921 free_cpumasks(NULL, &tmpmask);
2922 return 0;
2923 }
2924
2925 static struct cpuset *cpuset_attach_old_cs;
2926
2927 /*
2928 * Check to see if a cpuset can accept a new task
2929 * For v1, cpus_allowed and mems_allowed can't be empty.
2930 * For v2, effective_cpus can't be empty.
2931 * Note that in v1, effective_cpus = cpus_allowed.
2932 */
cpuset_can_attach_check(struct cpuset * cs)2933 static int cpuset_can_attach_check(struct cpuset *cs)
2934 {
2935 if (cpumask_empty(cs->effective_cpus) ||
2936 (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
2937 return -ENOSPC;
2938 return 0;
2939 }
2940
reset_migrate_dl_data(struct cpuset * cs)2941 static void reset_migrate_dl_data(struct cpuset *cs)
2942 {
2943 cs->nr_migrate_dl_tasks = 0;
2944 cs->sum_migrate_dl_bw = 0;
2945 }
2946
2947 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_taskset * tset)2948 static int cpuset_can_attach(struct cgroup_taskset *tset)
2949 {
2950 struct cgroup_subsys_state *css;
2951 struct cpuset *cs, *oldcs;
2952 struct task_struct *task;
2953 bool cpus_updated, mems_updated;
2954 int ret;
2955
2956 /* used later by cpuset_attach() */
2957 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2958 oldcs = cpuset_attach_old_cs;
2959 cs = css_cs(css);
2960
2961 mutex_lock(&cpuset_mutex);
2962
2963 /* Check to see if task is allowed in the cpuset */
2964 ret = cpuset_can_attach_check(cs);
2965 if (ret)
2966 goto out_unlock;
2967
2968 cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
2969 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
2970
2971 cgroup_taskset_for_each(task, css, tset) {
2972 ret = task_can_attach(task);
2973 if (ret)
2974 goto out_unlock;
2975
2976 /*
2977 * Skip rights over task check in v2 when nothing changes,
2978 * migration permission derives from hierarchy ownership in
2979 * cgroup_procs_write_permission()).
2980 */
2981 if (!cpuset_v2() || (cpus_updated || mems_updated)) {
2982 ret = security_task_setscheduler(task);
2983 if (ret)
2984 goto out_unlock;
2985 }
2986
2987 if (dl_task(task)) {
2988 cs->nr_migrate_dl_tasks++;
2989 cs->sum_migrate_dl_bw += task->dl.dl_bw;
2990 }
2991 }
2992
2993 if (!cs->nr_migrate_dl_tasks)
2994 goto out_success;
2995
2996 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
2997 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
2998
2999 if (unlikely(cpu >= nr_cpu_ids)) {
3000 reset_migrate_dl_data(cs);
3001 ret = -EINVAL;
3002 goto out_unlock;
3003 }
3004
3005 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
3006 if (ret) {
3007 reset_migrate_dl_data(cs);
3008 goto out_unlock;
3009 }
3010 }
3011
3012 out_success:
3013 /*
3014 * Mark attach is in progress. This makes validate_change() fail
3015 * changes which zero cpus/mems_allowed.
3016 */
3017 cs->attach_in_progress++;
3018 out_unlock:
3019 mutex_unlock(&cpuset_mutex);
3020 return ret;
3021 }
3022
cpuset_cancel_attach(struct cgroup_taskset * tset)3023 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
3024 {
3025 struct cgroup_subsys_state *css;
3026 struct cpuset *cs;
3027
3028 cgroup_taskset_first(tset, &css);
3029 cs = css_cs(css);
3030
3031 mutex_lock(&cpuset_mutex);
3032 dec_attach_in_progress_locked(cs);
3033
3034 if (cs->nr_migrate_dl_tasks) {
3035 int cpu = cpumask_any(cs->effective_cpus);
3036
3037 dl_bw_free(cpu, cs->sum_migrate_dl_bw);
3038 reset_migrate_dl_data(cs);
3039 }
3040
3041 mutex_unlock(&cpuset_mutex);
3042 }
3043
3044 /*
3045 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
3046 * but we can't allocate it dynamically there. Define it global and
3047 * allocate from cpuset_init().
3048 */
3049 static cpumask_var_t cpus_attach;
3050 static nodemask_t cpuset_attach_nodemask_to;
3051
cpuset_attach_task(struct cpuset * cs,struct task_struct * task)3052 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
3053 {
3054 lockdep_assert_held(&cpuset_mutex);
3055
3056 if (cs != &top_cpuset)
3057 guarantee_online_cpus(task, cpus_attach);
3058 else
3059 cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
3060 subpartitions_cpus);
3061 /*
3062 * can_attach beforehand should guarantee that this doesn't
3063 * fail. TODO: have a better way to handle failure here
3064 */
3065 WARN_ON_ONCE(update_cpus_allowed(cs, task, cpus_attach));
3066
3067 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
3068 cpuset1_update_task_spread_flags(cs, task);
3069 }
3070
cpuset_attach(struct cgroup_taskset * tset)3071 static void cpuset_attach(struct cgroup_taskset *tset)
3072 {
3073 struct task_struct *task;
3074 struct task_struct *leader;
3075 struct cgroup_subsys_state *css;
3076 struct cpuset *cs;
3077 struct cpuset *oldcs = cpuset_attach_old_cs;
3078 bool cpus_updated, mems_updated;
3079
3080 cgroup_taskset_first(tset, &css);
3081 cs = css_cs(css);
3082
3083 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */
3084 mutex_lock(&cpuset_mutex);
3085 cpus_updated = !cpumask_equal(cs->effective_cpus,
3086 oldcs->effective_cpus);
3087 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3088
3089 /*
3090 * In the default hierarchy, enabling cpuset in the child cgroups
3091 * will trigger a number of cpuset_attach() calls with no change
3092 * in effective cpus and mems. In that case, we can optimize out
3093 * by skipping the task iteration and update.
3094 */
3095 if (cpuset_v2() && !cpus_updated && !mems_updated) {
3096 cpuset_attach_nodemask_to = cs->effective_mems;
3097 goto out;
3098 }
3099
3100 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3101
3102 cgroup_taskset_for_each(task, css, tset)
3103 cpuset_attach_task(cs, task);
3104
3105 /*
3106 * Change mm for all threadgroup leaders. This is expensive and may
3107 * sleep and should be moved outside migration path proper. Skip it
3108 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
3109 * not set.
3110 */
3111 cpuset_attach_nodemask_to = cs->effective_mems;
3112 if (!is_memory_migrate(cs) && !mems_updated)
3113 goto out;
3114
3115 cgroup_taskset_for_each_leader(leader, css, tset) {
3116 struct mm_struct *mm = get_task_mm(leader);
3117
3118 if (mm) {
3119 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
3120
3121 /*
3122 * old_mems_allowed is the same with mems_allowed
3123 * here, except if this task is being moved
3124 * automatically due to hotplug. In that case
3125 * @mems_allowed has been updated and is empty, so
3126 * @old_mems_allowed is the right nodesets that we
3127 * migrate mm from.
3128 */
3129 if (is_memory_migrate(cs))
3130 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
3131 &cpuset_attach_nodemask_to);
3132 else
3133 mmput(mm);
3134 }
3135 }
3136
3137 out:
3138 cs->old_mems_allowed = cpuset_attach_nodemask_to;
3139
3140 if (cs->nr_migrate_dl_tasks) {
3141 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
3142 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
3143 reset_migrate_dl_data(cs);
3144 }
3145
3146 dec_attach_in_progress_locked(cs);
3147
3148 mutex_unlock(&cpuset_mutex);
3149 }
3150
3151 /*
3152 * Common handling for a write to a "cpus" or "mems" file.
3153 */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3154 ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
3155 char *buf, size_t nbytes, loff_t off)
3156 {
3157 struct cpuset *cs = css_cs(of_css(of));
3158 struct cpuset *trialcs;
3159 int retval = -ENODEV;
3160
3161 buf = strstrip(buf);
3162 cpus_read_lock();
3163 mutex_lock(&cpuset_mutex);
3164 if (!is_cpuset_online(cs))
3165 goto out_unlock;
3166
3167 trialcs = alloc_trial_cpuset(cs);
3168 if (!trialcs) {
3169 retval = -ENOMEM;
3170 goto out_unlock;
3171 }
3172
3173 switch (of_cft(of)->private) {
3174 case FILE_CPULIST:
3175 retval = update_cpumask(cs, trialcs, buf);
3176 break;
3177 case FILE_EXCLUSIVE_CPULIST:
3178 retval = update_exclusive_cpumask(cs, trialcs, buf);
3179 break;
3180 case FILE_MEMLIST:
3181 retval = update_nodemask(cs, trialcs, buf);
3182 break;
3183 default:
3184 retval = -EINVAL;
3185 break;
3186 }
3187
3188 free_cpuset(trialcs);
3189 if (force_sd_rebuild)
3190 rebuild_sched_domains_locked();
3191 out_unlock:
3192 mutex_unlock(&cpuset_mutex);
3193 cpus_read_unlock();
3194 flush_workqueue(cpuset_migrate_mm_wq);
3195 return retval ?: nbytes;
3196 }
3197
3198 /*
3199 * These ascii lists should be read in a single call, by using a user
3200 * buffer large enough to hold the entire map. If read in smaller
3201 * chunks, there is no guarantee of atomicity. Since the display format
3202 * used, list of ranges of sequential numbers, is variable length,
3203 * and since these maps can change value dynamically, one could read
3204 * gibberish by doing partial reads while a list was changing.
3205 */
cpuset_common_seq_show(struct seq_file * sf,void * v)3206 int cpuset_common_seq_show(struct seq_file *sf, void *v)
3207 {
3208 struct cpuset *cs = css_cs(seq_css(sf));
3209 cpuset_filetype_t type = seq_cft(sf)->private;
3210 int ret = 0;
3211
3212 spin_lock_irq(&callback_lock);
3213
3214 switch (type) {
3215 case FILE_CPULIST:
3216 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
3217 break;
3218 case FILE_MEMLIST:
3219 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
3220 break;
3221 case FILE_EFFECTIVE_CPULIST:
3222 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
3223 break;
3224 case FILE_EFFECTIVE_MEMLIST:
3225 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
3226 break;
3227 case FILE_EXCLUSIVE_CPULIST:
3228 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus));
3229 break;
3230 case FILE_EFFECTIVE_XCPULIST:
3231 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus));
3232 break;
3233 case FILE_SUBPARTS_CPULIST:
3234 seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus));
3235 break;
3236 case FILE_ISOLATED_CPULIST:
3237 seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus));
3238 break;
3239 default:
3240 ret = -EINVAL;
3241 }
3242
3243 spin_unlock_irq(&callback_lock);
3244 return ret;
3245 }
3246
sched_partition_show(struct seq_file * seq,void * v)3247 static int sched_partition_show(struct seq_file *seq, void *v)
3248 {
3249 struct cpuset *cs = css_cs(seq_css(seq));
3250 const char *err, *type = NULL;
3251
3252 switch (cs->partition_root_state) {
3253 case PRS_ROOT:
3254 seq_puts(seq, "root\n");
3255 break;
3256 case PRS_ISOLATED:
3257 seq_puts(seq, "isolated\n");
3258 break;
3259 case PRS_MEMBER:
3260 seq_puts(seq, "member\n");
3261 break;
3262 case PRS_INVALID_ROOT:
3263 type = "root";
3264 fallthrough;
3265 case PRS_INVALID_ISOLATED:
3266 if (!type)
3267 type = "isolated";
3268 err = perr_strings[READ_ONCE(cs->prs_err)];
3269 if (err)
3270 seq_printf(seq, "%s invalid (%s)\n", type, err);
3271 else
3272 seq_printf(seq, "%s invalid\n", type);
3273 break;
3274 }
3275 return 0;
3276 }
3277
sched_partition_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3278 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
3279 size_t nbytes, loff_t off)
3280 {
3281 struct cpuset *cs = css_cs(of_css(of));
3282 int val;
3283 int retval = -ENODEV;
3284
3285 buf = strstrip(buf);
3286
3287 if (!strcmp(buf, "root"))
3288 val = PRS_ROOT;
3289 else if (!strcmp(buf, "member"))
3290 val = PRS_MEMBER;
3291 else if (!strcmp(buf, "isolated"))
3292 val = PRS_ISOLATED;
3293 else
3294 return -EINVAL;
3295
3296 css_get(&cs->css);
3297 cpus_read_lock();
3298 mutex_lock(&cpuset_mutex);
3299 if (!is_cpuset_online(cs))
3300 goto out_unlock;
3301
3302 retval = update_prstate(cs, val);
3303 out_unlock:
3304 mutex_unlock(&cpuset_mutex);
3305 cpus_read_unlock();
3306 css_put(&cs->css);
3307 return retval ?: nbytes;
3308 }
3309
3310 /*
3311 * This is currently a minimal set for the default hierarchy. It can be
3312 * expanded later on by migrating more features and control files from v1.
3313 */
3314 static struct cftype dfl_files[] = {
3315 {
3316 .name = "cpus",
3317 .seq_show = cpuset_common_seq_show,
3318 .write = cpuset_write_resmask,
3319 .max_write_len = (100U + 6 * NR_CPUS),
3320 .private = FILE_CPULIST,
3321 .flags = CFTYPE_NOT_ON_ROOT,
3322 },
3323
3324 {
3325 .name = "mems",
3326 .seq_show = cpuset_common_seq_show,
3327 .write = cpuset_write_resmask,
3328 .max_write_len = (100U + 6 * MAX_NUMNODES),
3329 .private = FILE_MEMLIST,
3330 .flags = CFTYPE_NOT_ON_ROOT,
3331 },
3332
3333 {
3334 .name = "cpus.effective",
3335 .seq_show = cpuset_common_seq_show,
3336 .private = FILE_EFFECTIVE_CPULIST,
3337 },
3338
3339 {
3340 .name = "mems.effective",
3341 .seq_show = cpuset_common_seq_show,
3342 .private = FILE_EFFECTIVE_MEMLIST,
3343 },
3344
3345 {
3346 .name = "cpus.partition",
3347 .seq_show = sched_partition_show,
3348 .write = sched_partition_write,
3349 .private = FILE_PARTITION_ROOT,
3350 .flags = CFTYPE_NOT_ON_ROOT,
3351 .file_offset = offsetof(struct cpuset, partition_file),
3352 },
3353
3354 {
3355 .name = "cpus.exclusive",
3356 .seq_show = cpuset_common_seq_show,
3357 .write = cpuset_write_resmask,
3358 .max_write_len = (100U + 6 * NR_CPUS),
3359 .private = FILE_EXCLUSIVE_CPULIST,
3360 .flags = CFTYPE_NOT_ON_ROOT,
3361 },
3362
3363 {
3364 .name = "cpus.exclusive.effective",
3365 .seq_show = cpuset_common_seq_show,
3366 .private = FILE_EFFECTIVE_XCPULIST,
3367 .flags = CFTYPE_NOT_ON_ROOT,
3368 },
3369
3370 {
3371 .name = "cpus.subpartitions",
3372 .seq_show = cpuset_common_seq_show,
3373 .private = FILE_SUBPARTS_CPULIST,
3374 .flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG,
3375 },
3376
3377 {
3378 .name = "cpus.isolated",
3379 .seq_show = cpuset_common_seq_show,
3380 .private = FILE_ISOLATED_CPULIST,
3381 .flags = CFTYPE_ONLY_ON_ROOT,
3382 },
3383
3384 { } /* terminate */
3385 };
3386
3387
3388 /**
3389 * cpuset_css_alloc - Allocate a cpuset css
3390 * @parent_css: Parent css of the control group that the new cpuset will be
3391 * part of
3392 * Return: cpuset css on success, -ENOMEM on failure.
3393 *
3394 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3395 * top cpuset css otherwise.
3396 */
3397 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)3398 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3399 {
3400 struct cpuset *cs;
3401
3402 if (!parent_css)
3403 return &top_cpuset.css;
3404
3405 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
3406 if (!cs)
3407 return ERR_PTR(-ENOMEM);
3408
3409 if (alloc_cpumasks(cs, NULL)) {
3410 kfree(cs);
3411 return ERR_PTR(-ENOMEM);
3412 }
3413
3414 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3415 fmeter_init(&cs->fmeter);
3416 cs->relax_domain_level = -1;
3417 INIT_LIST_HEAD(&cs->remote_sibling);
3418
3419 /* Set CS_MEMORY_MIGRATE for default hierarchy */
3420 if (cpuset_v2())
3421 __set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3422
3423 return &cs->css;
3424 }
3425
cpuset_css_online(struct cgroup_subsys_state * css)3426 static int cpuset_css_online(struct cgroup_subsys_state *css)
3427 {
3428 struct cpuset *cs = css_cs(css);
3429 struct cpuset *parent = parent_cs(cs);
3430 struct cpuset *tmp_cs;
3431 struct cgroup_subsys_state *pos_css;
3432
3433 if (!parent)
3434 return 0;
3435
3436 cpus_read_lock();
3437 mutex_lock(&cpuset_mutex);
3438
3439 set_bit(CS_ONLINE, &cs->flags);
3440 if (is_spread_page(parent))
3441 set_bit(CS_SPREAD_PAGE, &cs->flags);
3442 if (is_spread_slab(parent))
3443 set_bit(CS_SPREAD_SLAB, &cs->flags);
3444 /*
3445 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
3446 */
3447 if (cpuset_v2() && !is_sched_load_balance(parent))
3448 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3449
3450 cpuset_inc();
3451
3452 spin_lock_irq(&callback_lock);
3453 if (is_in_v2_mode()) {
3454 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3455 cs->effective_mems = parent->effective_mems;
3456 }
3457 spin_unlock_irq(&callback_lock);
3458
3459 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3460 goto out_unlock;
3461
3462 /*
3463 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3464 * set. This flag handling is implemented in cgroup core for
3465 * historical reasons - the flag may be specified during mount.
3466 *
3467 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3468 * refuse to clone the configuration - thereby refusing the task to
3469 * be entered, and as a result refusing the sys_unshare() or
3470 * clone() which initiated it. If this becomes a problem for some
3471 * users who wish to allow that scenario, then this could be
3472 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3473 * (and likewise for mems) to the new cgroup.
3474 */
3475 rcu_read_lock();
3476 cpuset_for_each_child(tmp_cs, pos_css, parent) {
3477 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3478 rcu_read_unlock();
3479 goto out_unlock;
3480 }
3481 }
3482 rcu_read_unlock();
3483
3484 spin_lock_irq(&callback_lock);
3485 cs->mems_allowed = parent->mems_allowed;
3486 cs->effective_mems = parent->mems_allowed;
3487 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3488 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3489 spin_unlock_irq(&callback_lock);
3490 out_unlock:
3491 mutex_unlock(&cpuset_mutex);
3492 cpus_read_unlock();
3493 return 0;
3494 }
3495
3496 /*
3497 * If the cpuset being removed has its flag 'sched_load_balance'
3498 * enabled, then simulate turning sched_load_balance off, which
3499 * will call rebuild_sched_domains_locked(). That is not needed
3500 * in the default hierarchy where only changes in partition
3501 * will cause repartitioning.
3502 *
3503 * If the cpuset has the 'sched.partition' flag enabled, simulate
3504 * turning 'sched.partition" off.
3505 */
3506
cpuset_css_offline(struct cgroup_subsys_state * css)3507 static void cpuset_css_offline(struct cgroup_subsys_state *css)
3508 {
3509 struct cpuset *cs = css_cs(css);
3510
3511 cpus_read_lock();
3512 mutex_lock(&cpuset_mutex);
3513
3514 if (is_partition_valid(cs))
3515 update_prstate(cs, 0);
3516
3517 if (!cpuset_v2() && is_sched_load_balance(cs))
3518 cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3519
3520 cpuset_dec();
3521 clear_bit(CS_ONLINE, &cs->flags);
3522
3523 mutex_unlock(&cpuset_mutex);
3524 cpus_read_unlock();
3525 }
3526
cpuset_css_free(struct cgroup_subsys_state * css)3527 static void cpuset_css_free(struct cgroup_subsys_state *css)
3528 {
3529 struct cpuset *cs = css_cs(css);
3530
3531 free_cpuset(cs);
3532 }
3533
cpuset_bind(struct cgroup_subsys_state * root_css)3534 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3535 {
3536 mutex_lock(&cpuset_mutex);
3537 spin_lock_irq(&callback_lock);
3538
3539 if (is_in_v2_mode()) {
3540 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3541 cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask);
3542 top_cpuset.mems_allowed = node_possible_map;
3543 } else {
3544 cpumask_copy(top_cpuset.cpus_allowed,
3545 top_cpuset.effective_cpus);
3546 top_cpuset.mems_allowed = top_cpuset.effective_mems;
3547 }
3548
3549 spin_unlock_irq(&callback_lock);
3550 mutex_unlock(&cpuset_mutex);
3551 }
3552
3553 /*
3554 * In case the child is cloned into a cpuset different from its parent,
3555 * additional checks are done to see if the move is allowed.
3556 */
cpuset_can_fork(struct task_struct * task,struct css_set * cset)3557 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
3558 {
3559 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3560 bool same_cs;
3561 int ret;
3562
3563 rcu_read_lock();
3564 same_cs = (cs == task_cs(current));
3565 rcu_read_unlock();
3566
3567 if (same_cs)
3568 return 0;
3569
3570 lockdep_assert_held(&cgroup_mutex);
3571 mutex_lock(&cpuset_mutex);
3572
3573 /* Check to see if task is allowed in the cpuset */
3574 ret = cpuset_can_attach_check(cs);
3575 if (ret)
3576 goto out_unlock;
3577
3578 ret = task_can_attach(task);
3579 if (ret)
3580 goto out_unlock;
3581
3582 ret = security_task_setscheduler(task);
3583 if (ret)
3584 goto out_unlock;
3585
3586 /*
3587 * Mark attach is in progress. This makes validate_change() fail
3588 * changes which zero cpus/mems_allowed.
3589 */
3590 cs->attach_in_progress++;
3591 out_unlock:
3592 mutex_unlock(&cpuset_mutex);
3593 return ret;
3594 }
3595
cpuset_cancel_fork(struct task_struct * task,struct css_set * cset)3596 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
3597 {
3598 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3599 bool same_cs;
3600
3601 rcu_read_lock();
3602 same_cs = (cs == task_cs(current));
3603 rcu_read_unlock();
3604
3605 if (same_cs)
3606 return;
3607
3608 dec_attach_in_progress(cs);
3609 }
3610
3611 /*
3612 * Make sure the new task conform to the current state of its parent,
3613 * which could have been changed by cpuset just after it inherits the
3614 * state from the parent and before it sits on the cgroup's task list.
3615 */
cpuset_fork(struct task_struct * task)3616 static void cpuset_fork(struct task_struct *task)
3617 {
3618 struct cpuset *cs;
3619 bool same_cs, inherit_cpus = false;
3620
3621 rcu_read_lock();
3622 cs = task_cs(task);
3623 same_cs = (cs == task_cs(current));
3624 rcu_read_unlock();
3625 if (same_cs) {
3626 if (cs == &top_cpuset)
3627 return;
3628 trace_android_rvh_cpuset_fork(task, &inherit_cpus);
3629 if (!inherit_cpus)
3630 set_cpus_allowed_ptr(task, current->cpus_ptr);
3631 task->mems_allowed = current->mems_allowed;
3632 return;
3633 }
3634
3635 /* CLONE_INTO_CGROUP */
3636 mutex_lock(&cpuset_mutex);
3637 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3638 cpuset_attach_task(cs, task);
3639
3640 dec_attach_in_progress_locked(cs);
3641 mutex_unlock(&cpuset_mutex);
3642 }
3643
3644 struct cgroup_subsys cpuset_cgrp_subsys = {
3645 .css_alloc = cpuset_css_alloc,
3646 .css_online = cpuset_css_online,
3647 .css_offline = cpuset_css_offline,
3648 .css_free = cpuset_css_free,
3649 .can_attach = cpuset_can_attach,
3650 .cancel_attach = cpuset_cancel_attach,
3651 .attach = cpuset_attach,
3652 .post_attach = cpuset_post_attach,
3653 .bind = cpuset_bind,
3654 .can_fork = cpuset_can_fork,
3655 .cancel_fork = cpuset_cancel_fork,
3656 .fork = cpuset_fork,
3657 #ifdef CONFIG_CPUSETS_V1
3658 .legacy_cftypes = cpuset1_files,
3659 #endif
3660 .dfl_cftypes = dfl_files,
3661 .early_init = true,
3662 .threaded = true,
3663 };
3664
3665 /**
3666 * cpuset_init - initialize cpusets at system boot
3667 *
3668 * Description: Initialize top_cpuset
3669 **/
3670
cpuset_init(void)3671 int __init cpuset_init(void)
3672 {
3673 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3674 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3675 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL));
3676 BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
3677 BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
3678 BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
3679
3680 cpumask_setall(top_cpuset.cpus_allowed);
3681 nodes_setall(top_cpuset.mems_allowed);
3682 cpumask_setall(top_cpuset.effective_cpus);
3683 cpumask_setall(top_cpuset.effective_xcpus);
3684 cpumask_setall(top_cpuset.exclusive_cpus);
3685 nodes_setall(top_cpuset.effective_mems);
3686
3687 fmeter_init(&top_cpuset.fmeter);
3688 INIT_LIST_HEAD(&remote_children);
3689
3690 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3691
3692 have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN);
3693 if (have_boot_isolcpus) {
3694 BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL));
3695 cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN));
3696 cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus);
3697 }
3698
3699 return 0;
3700 }
3701
3702 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3703 hotplug_update_tasks(struct cpuset *cs,
3704 struct cpumask *new_cpus, nodemask_t *new_mems,
3705 bool cpus_updated, bool mems_updated)
3706 {
3707 /* A partition root is allowed to have empty effective cpus */
3708 if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3709 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3710 if (nodes_empty(*new_mems))
3711 *new_mems = parent_cs(cs)->effective_mems;
3712
3713 spin_lock_irq(&callback_lock);
3714 cpumask_copy(cs->effective_cpus, new_cpus);
3715 cs->effective_mems = *new_mems;
3716 spin_unlock_irq(&callback_lock);
3717
3718 if (cpus_updated)
3719 cpuset_update_tasks_cpumask(cs, new_cpus);
3720 if (mems_updated)
3721 cpuset_update_tasks_nodemask(cs);
3722 }
3723
cpuset_force_rebuild(void)3724 void cpuset_force_rebuild(void)
3725 {
3726 force_sd_rebuild = true;
3727 }
3728
3729 /**
3730 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3731 * @cs: cpuset in interest
3732 * @tmp: the tmpmasks structure pointer
3733 *
3734 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3735 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
3736 * all its tasks are moved to the nearest ancestor with both resources.
3737 */
cpuset_hotplug_update_tasks(struct cpuset * cs,struct tmpmasks * tmp)3738 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3739 {
3740 static cpumask_t new_cpus;
3741 static nodemask_t new_mems;
3742 bool cpus_updated;
3743 bool mems_updated;
3744 bool remote;
3745 int partcmd = -1;
3746 struct cpuset *parent;
3747 retry:
3748 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3749
3750 mutex_lock(&cpuset_mutex);
3751
3752 /*
3753 * We have raced with task attaching. We wait until attaching
3754 * is finished, so we won't attach a task to an empty cpuset.
3755 */
3756 if (cs->attach_in_progress) {
3757 mutex_unlock(&cpuset_mutex);
3758 goto retry;
3759 }
3760
3761 parent = parent_cs(cs);
3762 compute_effective_cpumask(&new_cpus, cs, parent);
3763 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3764
3765 if (!tmp || !cs->partition_root_state)
3766 goto update_tasks;
3767
3768 /*
3769 * Compute effective_cpus for valid partition root, may invalidate
3770 * child partition roots if necessary.
3771 */
3772 remote = is_remote_partition(cs);
3773 if (remote || (is_partition_valid(cs) && is_partition_valid(parent)))
3774 compute_partition_effective_cpumask(cs, &new_cpus);
3775
3776 if (remote && cpumask_empty(&new_cpus) &&
3777 partition_is_populated(cs, NULL)) {
3778 cs->prs_err = PERR_HOTPLUG;
3779 remote_partition_disable(cs, tmp);
3780 compute_effective_cpumask(&new_cpus, cs, parent);
3781 remote = false;
3782 cpuset_force_rebuild();
3783 }
3784
3785 /*
3786 * Force the partition to become invalid if either one of
3787 * the following conditions hold:
3788 * 1) empty effective cpus but not valid empty partition.
3789 * 2) parent is invalid or doesn't grant any cpus to child
3790 * partitions.
3791 */
3792 if (is_local_partition(cs) && (!is_partition_valid(parent) ||
3793 tasks_nocpu_error(parent, cs, &new_cpus)))
3794 partcmd = partcmd_invalidate;
3795 /*
3796 * On the other hand, an invalid partition root may be transitioned
3797 * back to a regular one with a non-empty effective xcpus.
3798 */
3799 else if (is_partition_valid(parent) && is_partition_invalid(cs) &&
3800 !cpumask_empty(cs->effective_xcpus))
3801 partcmd = partcmd_update;
3802
3803 if (partcmd >= 0) {
3804 update_parent_effective_cpumask(cs, partcmd, NULL, tmp);
3805 if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) {
3806 compute_partition_effective_cpumask(cs, &new_cpus);
3807 cpuset_force_rebuild();
3808 }
3809 }
3810
3811 update_tasks:
3812 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3813 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3814 if (!cpus_updated && !mems_updated)
3815 goto unlock; /* Hotplug doesn't affect this cpuset */
3816
3817 if (mems_updated)
3818 check_insane_mems_config(&new_mems);
3819
3820 if (is_in_v2_mode())
3821 hotplug_update_tasks(cs, &new_cpus, &new_mems,
3822 cpus_updated, mems_updated);
3823 else
3824 cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems,
3825 cpus_updated, mems_updated);
3826
3827 unlock:
3828 mutex_unlock(&cpuset_mutex);
3829 }
3830
3831 /**
3832 * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset
3833 *
3834 * This function is called after either CPU or memory configuration has
3835 * changed and updates cpuset accordingly. The top_cpuset is always
3836 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3837 * order to make cpusets transparent (of no affect) on systems that are
3838 * actively using CPU hotplug but making no active use of cpusets.
3839 *
3840 * Non-root cpusets are only affected by offlining. If any CPUs or memory
3841 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3842 * all descendants.
3843 *
3844 * Note that CPU offlining during suspend is ignored. We don't modify
3845 * cpusets across suspend/resume cycles at all.
3846 *
3847 * CPU / memory hotplug is handled synchronously.
3848 */
cpuset_handle_hotplug(void)3849 static void cpuset_handle_hotplug(void)
3850 {
3851 static cpumask_t new_cpus;
3852 static nodemask_t new_mems;
3853 bool cpus_updated, mems_updated;
3854 bool on_dfl = is_in_v2_mode();
3855 struct tmpmasks tmp, *ptmp = NULL;
3856
3857 if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3858 ptmp = &tmp;
3859
3860 lockdep_assert_cpus_held();
3861 mutex_lock(&cpuset_mutex);
3862
3863 /* fetch the available cpus/mems and find out which changed how */
3864 cpumask_copy(&new_cpus, cpu_active_mask);
3865 new_mems = node_states[N_MEMORY];
3866
3867 /*
3868 * If subpartitions_cpus is populated, it is likely that the check
3869 * below will produce a false positive on cpus_updated when the cpu
3870 * list isn't changed. It is extra work, but it is better to be safe.
3871 */
3872 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) ||
3873 !cpumask_empty(subpartitions_cpus);
3874 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3875
3876 /* For v1, synchronize cpus_allowed to cpu_active_mask */
3877 if (cpus_updated) {
3878 cpuset_force_rebuild();
3879 spin_lock_irq(&callback_lock);
3880 if (!on_dfl)
3881 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3882 /*
3883 * Make sure that CPUs allocated to child partitions
3884 * do not show up in effective_cpus. If no CPU is left,
3885 * we clear the subpartitions_cpus & let the child partitions
3886 * fight for the CPUs again.
3887 */
3888 if (!cpumask_empty(subpartitions_cpus)) {
3889 if (cpumask_subset(&new_cpus, subpartitions_cpus)) {
3890 top_cpuset.nr_subparts = 0;
3891 cpumask_clear(subpartitions_cpus);
3892 } else {
3893 cpumask_andnot(&new_cpus, &new_cpus,
3894 subpartitions_cpus);
3895 }
3896 }
3897 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3898 spin_unlock_irq(&callback_lock);
3899 /* we don't mess with cpumasks of tasks in top_cpuset */
3900 }
3901
3902 /* synchronize mems_allowed to N_MEMORY */
3903 if (mems_updated) {
3904 spin_lock_irq(&callback_lock);
3905 if (!on_dfl)
3906 top_cpuset.mems_allowed = new_mems;
3907 top_cpuset.effective_mems = new_mems;
3908 spin_unlock_irq(&callback_lock);
3909 cpuset_update_tasks_nodemask(&top_cpuset);
3910 }
3911
3912 mutex_unlock(&cpuset_mutex);
3913
3914 /* if cpus or mems changed, we need to propagate to descendants */
3915 if (cpus_updated || mems_updated) {
3916 struct cpuset *cs;
3917 struct cgroup_subsys_state *pos_css;
3918
3919 rcu_read_lock();
3920 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3921 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3922 continue;
3923 rcu_read_unlock();
3924
3925 cpuset_hotplug_update_tasks(cs, ptmp);
3926
3927 rcu_read_lock();
3928 css_put(&cs->css);
3929 }
3930 rcu_read_unlock();
3931 }
3932
3933 /* rebuild sched domains if necessary */
3934 if (force_sd_rebuild)
3935 rebuild_sched_domains_cpuslocked();
3936
3937 free_cpumasks(NULL, ptmp);
3938 }
3939
cpuset_update_active_cpus(void)3940 void cpuset_update_active_cpus(void)
3941 {
3942 /*
3943 * We're inside cpu hotplug critical region which usually nests
3944 * inside cgroup synchronization. Bounce actual hotplug processing
3945 * to a work item to avoid reverse locking order.
3946 */
3947 cpuset_handle_hotplug();
3948 }
3949
3950 /*
3951 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3952 * Call this routine anytime after node_states[N_MEMORY] changes.
3953 * See cpuset_update_active_cpus() for CPU hotplug handling.
3954 */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)3955 static int cpuset_track_online_nodes(struct notifier_block *self,
3956 unsigned long action, void *arg)
3957 {
3958 cpuset_handle_hotplug();
3959 return NOTIFY_OK;
3960 }
3961
3962 /**
3963 * cpuset_init_smp - initialize cpus_allowed
3964 *
3965 * Description: Finish top cpuset after cpu, node maps are initialized
3966 */
cpuset_init_smp(void)3967 void __init cpuset_init_smp(void)
3968 {
3969 /*
3970 * cpus_allowd/mems_allowed set to v2 values in the initial
3971 * cpuset_bind() call will be reset to v1 values in another
3972 * cpuset_bind() call when v1 cpuset is mounted.
3973 */
3974 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3975
3976 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3977 top_cpuset.effective_mems = node_states[N_MEMORY];
3978
3979 hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
3980
3981 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3982 BUG_ON(!cpuset_migrate_mm_wq);
3983 }
3984
3985 /**
3986 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3987 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3988 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3989 *
3990 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3991 * attached to the specified @tsk. Guaranteed to return some non-empty
3992 * subset of cpu_online_mask, even if this means going outside the
3993 * tasks cpuset, except when the task is in the top cpuset.
3994 **/
3995
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)3996 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3997 {
3998 unsigned long flags;
3999 struct cpuset *cs;
4000
4001 spin_lock_irqsave(&callback_lock, flags);
4002 rcu_read_lock();
4003
4004 cs = task_cs(tsk);
4005 if (cs != &top_cpuset)
4006 guarantee_online_cpus(tsk, pmask);
4007 /*
4008 * Tasks in the top cpuset won't get update to their cpumasks
4009 * when a hotplug online/offline event happens. So we include all
4010 * offline cpus in the allowed cpu list.
4011 */
4012 if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
4013 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4014
4015 /*
4016 * We first exclude cpus allocated to partitions. If there is no
4017 * allowable online cpu left, we fall back to all possible cpus.
4018 */
4019 cpumask_andnot(pmask, possible_mask, subpartitions_cpus);
4020 if (!cpumask_intersects(pmask, cpu_online_mask))
4021 cpumask_copy(pmask, possible_mask);
4022 }
4023
4024 rcu_read_unlock();
4025 spin_unlock_irqrestore(&callback_lock, flags);
4026 }
4027 EXPORT_SYMBOL_GPL(cpuset_cpus_allowed);
4028
4029 /**
4030 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
4031 * @tsk: pointer to task_struct with which the scheduler is struggling
4032 *
4033 * Description: In the case that the scheduler cannot find an allowed cpu in
4034 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
4035 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
4036 * which will not contain a sane cpumask during cases such as cpu hotplugging.
4037 * This is the absolute last resort for the scheduler and it is only used if
4038 * _every_ other avenue has been traveled.
4039 *
4040 * Returns true if the affinity of @tsk was changed, false otherwise.
4041 **/
4042
cpuset_cpus_allowed_fallback(struct task_struct * tsk)4043 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
4044 {
4045 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4046 const struct cpumask *cs_mask;
4047 bool changed = false;
4048
4049 rcu_read_lock();
4050 cs_mask = task_cs(tsk)->cpus_allowed;
4051 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
4052 do_set_cpus_allowed(tsk, cs_mask);
4053 changed = true;
4054 }
4055 rcu_read_unlock();
4056
4057 /*
4058 * We own tsk->cpus_allowed, nobody can change it under us.
4059 *
4060 * But we used cs && cs->cpus_allowed lockless and thus can
4061 * race with cgroup_attach_task() or update_cpumask() and get
4062 * the wrong tsk->cpus_allowed. However, both cases imply the
4063 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
4064 * which takes task_rq_lock().
4065 *
4066 * If we are called after it dropped the lock we must see all
4067 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
4068 * set any mask even if it is not right from task_cs() pov,
4069 * the pending set_cpus_allowed_ptr() will fix things.
4070 *
4071 * select_fallback_rq() will fix things ups and set cpu_possible_mask
4072 * if required.
4073 */
4074 return changed;
4075 }
4076
cpuset_init_current_mems_allowed(void)4077 void __init cpuset_init_current_mems_allowed(void)
4078 {
4079 nodes_setall(current->mems_allowed);
4080 }
4081
4082 /**
4083 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
4084 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
4085 *
4086 * Description: Returns the nodemask_t mems_allowed of the cpuset
4087 * attached to the specified @tsk. Guaranteed to return some non-empty
4088 * subset of node_states[N_MEMORY], even if this means going outside the
4089 * tasks cpuset.
4090 **/
4091
cpuset_mems_allowed(struct task_struct * tsk)4092 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
4093 {
4094 nodemask_t mask;
4095 unsigned long flags;
4096
4097 spin_lock_irqsave(&callback_lock, flags);
4098 rcu_read_lock();
4099 guarantee_online_mems(task_cs(tsk), &mask);
4100 rcu_read_unlock();
4101 spin_unlock_irqrestore(&callback_lock, flags);
4102
4103 return mask;
4104 }
4105
4106 /**
4107 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
4108 * @nodemask: the nodemask to be checked
4109 *
4110 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
4111 */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)4112 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
4113 {
4114 return nodes_intersects(*nodemask, current->mems_allowed);
4115 }
4116
4117 /*
4118 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
4119 * mem_hardwall ancestor to the specified cpuset. Call holding
4120 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
4121 * (an unusual configuration), then returns the root cpuset.
4122 */
nearest_hardwall_ancestor(struct cpuset * cs)4123 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
4124 {
4125 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
4126 cs = parent_cs(cs);
4127 return cs;
4128 }
4129
4130 /*
4131 * cpuset_node_allowed - Can we allocate on a memory node?
4132 * @node: is this an allowed node?
4133 * @gfp_mask: memory allocation flags
4134 *
4135 * If we're in interrupt, yes, we can always allocate. If @node is set in
4136 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
4137 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
4138 * yes. If current has access to memory reserves as an oom victim, yes.
4139 * Otherwise, no.
4140 *
4141 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
4142 * and do not allow allocations outside the current tasks cpuset
4143 * unless the task has been OOM killed.
4144 * GFP_KERNEL allocations are not so marked, so can escape to the
4145 * nearest enclosing hardwalled ancestor cpuset.
4146 *
4147 * Scanning up parent cpusets requires callback_lock. The
4148 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
4149 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
4150 * current tasks mems_allowed came up empty on the first pass over
4151 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
4152 * cpuset are short of memory, might require taking the callback_lock.
4153 *
4154 * The first call here from mm/page_alloc:get_page_from_freelist()
4155 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
4156 * so no allocation on a node outside the cpuset is allowed (unless
4157 * in interrupt, of course).
4158 *
4159 * The second pass through get_page_from_freelist() doesn't even call
4160 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
4161 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
4162 * in alloc_flags. That logic and the checks below have the combined
4163 * affect that:
4164 * in_interrupt - any node ok (current task context irrelevant)
4165 * GFP_ATOMIC - any node ok
4166 * tsk_is_oom_victim - any node ok
4167 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
4168 * GFP_USER - only nodes in current tasks mems allowed ok.
4169 */
cpuset_node_allowed(int node,gfp_t gfp_mask)4170 bool cpuset_node_allowed(int node, gfp_t gfp_mask)
4171 {
4172 struct cpuset *cs; /* current cpuset ancestors */
4173 bool allowed; /* is allocation in zone z allowed? */
4174 unsigned long flags;
4175
4176 if (in_interrupt())
4177 return true;
4178 if (node_isset(node, current->mems_allowed))
4179 return true;
4180 /*
4181 * Allow tasks that have access to memory reserves because they have
4182 * been OOM killed to get memory anywhere.
4183 */
4184 if (unlikely(tsk_is_oom_victim(current)))
4185 return true;
4186 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
4187 return false;
4188
4189 if (current->flags & PF_EXITING) /* Let dying task have memory */
4190 return true;
4191
4192 /* Not hardwall and node outside mems_allowed: scan up cpusets */
4193 spin_lock_irqsave(&callback_lock, flags);
4194
4195 rcu_read_lock();
4196 cs = nearest_hardwall_ancestor(task_cs(current));
4197 allowed = node_isset(node, cs->mems_allowed);
4198 rcu_read_unlock();
4199
4200 spin_unlock_irqrestore(&callback_lock, flags);
4201 return allowed;
4202 }
4203
4204 /**
4205 * cpuset_spread_node() - On which node to begin search for a page
4206 * @rotor: round robin rotor
4207 *
4208 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4209 * tasks in a cpuset with is_spread_page or is_spread_slab set),
4210 * and if the memory allocation used cpuset_mem_spread_node()
4211 * to determine on which node to start looking, as it will for
4212 * certain page cache or slab cache pages such as used for file
4213 * system buffers and inode caches, then instead of starting on the
4214 * local node to look for a free page, rather spread the starting
4215 * node around the tasks mems_allowed nodes.
4216 *
4217 * We don't have to worry about the returned node being offline
4218 * because "it can't happen", and even if it did, it would be ok.
4219 *
4220 * The routines calling guarantee_online_mems() are careful to
4221 * only set nodes in task->mems_allowed that are online. So it
4222 * should not be possible for the following code to return an
4223 * offline node. But if it did, that would be ok, as this routine
4224 * is not returning the node where the allocation must be, only
4225 * the node where the search should start. The zonelist passed to
4226 * __alloc_pages() will include all nodes. If the slab allocator
4227 * is passed an offline node, it will fall back to the local node.
4228 * See kmem_cache_alloc_node().
4229 */
cpuset_spread_node(int * rotor)4230 static int cpuset_spread_node(int *rotor)
4231 {
4232 return *rotor = next_node_in(*rotor, current->mems_allowed);
4233 }
4234
4235 /**
4236 * cpuset_mem_spread_node() - On which node to begin search for a file page
4237 */
cpuset_mem_spread_node(void)4238 int cpuset_mem_spread_node(void)
4239 {
4240 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4241 current->cpuset_mem_spread_rotor =
4242 node_random(¤t->mems_allowed);
4243
4244 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
4245 }
4246
4247 /**
4248 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
4249 * @tsk1: pointer to task_struct of some task.
4250 * @tsk2: pointer to task_struct of some other task.
4251 *
4252 * Description: Return true if @tsk1's mems_allowed intersects the
4253 * mems_allowed of @tsk2. Used by the OOM killer to determine if
4254 * one of the task's memory usage might impact the memory available
4255 * to the other.
4256 **/
4257
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)4258 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
4259 const struct task_struct *tsk2)
4260 {
4261 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
4262 }
4263
4264 /**
4265 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
4266 *
4267 * Description: Prints current's name, cpuset name, and cached copy of its
4268 * mems_allowed to the kernel log.
4269 */
cpuset_print_current_mems_allowed(void)4270 void cpuset_print_current_mems_allowed(void)
4271 {
4272 struct cgroup *cgrp;
4273
4274 rcu_read_lock();
4275
4276 cgrp = task_cs(current)->css.cgroup;
4277 pr_cont(",cpuset=");
4278 pr_cont_cgroup_name(cgrp);
4279 pr_cont(",mems_allowed=%*pbl",
4280 nodemask_pr_args(¤t->mems_allowed));
4281
4282 rcu_read_unlock();
4283 }
4284
4285 #ifdef CONFIG_PROC_PID_CPUSET
4286 /*
4287 * proc_cpuset_show()
4288 * - Print tasks cpuset path into seq_file.
4289 * - Used for /proc/<pid>/cpuset.
4290 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
4291 * doesn't really matter if tsk->cpuset changes after we read it,
4292 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
4293 * anyway.
4294 */
proc_cpuset_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)4295 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
4296 struct pid *pid, struct task_struct *tsk)
4297 {
4298 char *buf;
4299 struct cgroup_subsys_state *css;
4300 int retval;
4301
4302 retval = -ENOMEM;
4303 buf = kmalloc(PATH_MAX, GFP_KERNEL);
4304 if (!buf)
4305 goto out;
4306
4307 rcu_read_lock();
4308 spin_lock_irq(&css_set_lock);
4309 css = task_css(tsk, cpuset_cgrp_id);
4310 retval = cgroup_path_ns_locked(css->cgroup, buf, PATH_MAX,
4311 current->nsproxy->cgroup_ns);
4312 spin_unlock_irq(&css_set_lock);
4313 rcu_read_unlock();
4314
4315 if (retval == -E2BIG)
4316 retval = -ENAMETOOLONG;
4317 if (retval < 0)
4318 goto out_free;
4319 seq_puts(m, buf);
4320 seq_putc(m, '\n');
4321 retval = 0;
4322 out_free:
4323 kfree(buf);
4324 out:
4325 return retval;
4326 }
4327 #endif /* CONFIG_PROC_PID_CPUSET */
4328
4329 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)4330 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4331 {
4332 seq_printf(m, "Mems_allowed:\t%*pb\n",
4333 nodemask_pr_args(&task->mems_allowed));
4334 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4335 nodemask_pr_args(&task->mems_allowed));
4336 }
4337