• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <linux/unaligned.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 #ifdef LOG_DEVICE
regmap_should_log(struct regmap * map)36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
regmap_should_log(struct regmap * map)41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43 
44 
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 			       unsigned int mask, unsigned int val,
47 			       bool *change, bool force_write);
48 
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 				unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 			    unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 				       unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 				 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 				 unsigned int val);
59 
regmap_reg_in_ranges(unsigned int reg,const struct regmap_range * ranges,unsigned int nranges)60 bool regmap_reg_in_ranges(unsigned int reg,
61 			  const struct regmap_range *ranges,
62 			  unsigned int nranges)
63 {
64 	const struct regmap_range *r;
65 	int i;
66 
67 	for (i = 0, r = ranges; i < nranges; i++, r++)
68 		if (regmap_reg_in_range(reg, r))
69 			return true;
70 	return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 
regmap_check_range_table(struct regmap * map,unsigned int reg,const struct regmap_access_table * table)74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 			      const struct regmap_access_table *table)
76 {
77 	/* Check "no ranges" first */
78 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 		return false;
80 
81 	/* In case zero "yes ranges" are supplied, any reg is OK */
82 	if (!table->n_yes_ranges)
83 		return true;
84 
85 	return regmap_reg_in_ranges(reg, table->yes_ranges,
86 				    table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 
regmap_writeable(struct regmap * map,unsigned int reg)90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 	if (map->max_register_is_set && reg > map->max_register)
93 		return false;
94 
95 	if (map->writeable_reg)
96 		return map->writeable_reg(map->dev, reg);
97 
98 	if (map->wr_table)
99 		return regmap_check_range_table(map, reg, map->wr_table);
100 
101 	return true;
102 }
103 
regmap_cached(struct regmap * map,unsigned int reg)104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 	int ret;
107 	unsigned int val;
108 
109 	if (map->cache_type == REGCACHE_NONE)
110 		return false;
111 
112 	if (!map->cache_ops)
113 		return false;
114 
115 	if (map->max_register_is_set && reg > map->max_register)
116 		return false;
117 
118 	map->lock(map->lock_arg);
119 	ret = regcache_read(map, reg, &val);
120 	map->unlock(map->lock_arg);
121 	if (ret)
122 		return false;
123 
124 	return true;
125 }
126 
regmap_readable(struct regmap * map,unsigned int reg)127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 	if (!map->reg_read)
130 		return false;
131 
132 	if (map->max_register_is_set && reg > map->max_register)
133 		return false;
134 
135 	if (map->format.format_write)
136 		return false;
137 
138 	if (map->readable_reg)
139 		return map->readable_reg(map->dev, reg);
140 
141 	if (map->rd_table)
142 		return regmap_check_range_table(map, reg, map->rd_table);
143 
144 	return true;
145 }
146 
regmap_volatile(struct regmap * map,unsigned int reg)147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 	if (!map->format.format_write && !regmap_readable(map, reg))
150 		return false;
151 
152 	if (map->volatile_reg)
153 		return map->volatile_reg(map->dev, reg);
154 
155 	if (map->volatile_table)
156 		return regmap_check_range_table(map, reg, map->volatile_table);
157 
158 	if (map->cache_ops)
159 		return false;
160 	else
161 		return true;
162 }
163 
regmap_precious(struct regmap * map,unsigned int reg)164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 	if (!regmap_readable(map, reg))
167 		return false;
168 
169 	if (map->precious_reg)
170 		return map->precious_reg(map->dev, reg);
171 
172 	if (map->precious_table)
173 		return regmap_check_range_table(map, reg, map->precious_table);
174 
175 	return false;
176 }
177 
regmap_writeable_noinc(struct regmap * map,unsigned int reg)178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 	if (map->writeable_noinc_reg)
181 		return map->writeable_noinc_reg(map->dev, reg);
182 
183 	if (map->wr_noinc_table)
184 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185 
186 	return true;
187 }
188 
regmap_readable_noinc(struct regmap * map,unsigned int reg)189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 	if (map->readable_noinc_reg)
192 		return map->readable_noinc_reg(map->dev, reg);
193 
194 	if (map->rd_noinc_table)
195 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196 
197 	return true;
198 }
199 
regmap_volatile_range(struct regmap * map,unsigned int reg,size_t num)200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 	size_t num)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num; i++)
206 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 			return false;
208 
209 	return true;
210 }
211 
regmap_format_12_20_write(struct regmap * map,unsigned int reg,unsigned int val)212 static void regmap_format_12_20_write(struct regmap *map,
213 				     unsigned int reg, unsigned int val)
214 {
215 	u8 *out = map->work_buf;
216 
217 	out[0] = reg >> 4;
218 	out[1] = (reg << 4) | (val >> 16);
219 	out[2] = val >> 8;
220 	out[3] = val;
221 }
222 
223 
regmap_format_2_6_write(struct regmap * map,unsigned int reg,unsigned int val)224 static void regmap_format_2_6_write(struct regmap *map,
225 				     unsigned int reg, unsigned int val)
226 {
227 	u8 *out = map->work_buf;
228 
229 	*out = (reg << 6) | val;
230 }
231 
regmap_format_4_12_write(struct regmap * map,unsigned int reg,unsigned int val)232 static void regmap_format_4_12_write(struct regmap *map,
233 				     unsigned int reg, unsigned int val)
234 {
235 	__be16 *out = map->work_buf;
236 	*out = cpu_to_be16((reg << 12) | val);
237 }
238 
regmap_format_7_9_write(struct regmap * map,unsigned int reg,unsigned int val)239 static void regmap_format_7_9_write(struct regmap *map,
240 				    unsigned int reg, unsigned int val)
241 {
242 	__be16 *out = map->work_buf;
243 	*out = cpu_to_be16((reg << 9) | val);
244 }
245 
regmap_format_7_17_write(struct regmap * map,unsigned int reg,unsigned int val)246 static void regmap_format_7_17_write(struct regmap *map,
247 				    unsigned int reg, unsigned int val)
248 {
249 	u8 *out = map->work_buf;
250 
251 	out[2] = val;
252 	out[1] = val >> 8;
253 	out[0] = (val >> 16) | (reg << 1);
254 }
255 
regmap_format_10_14_write(struct regmap * map,unsigned int reg,unsigned int val)256 static void regmap_format_10_14_write(struct regmap *map,
257 				    unsigned int reg, unsigned int val)
258 {
259 	u8 *out = map->work_buf;
260 
261 	out[2] = val;
262 	out[1] = (val >> 8) | (reg << 6);
263 	out[0] = reg >> 2;
264 }
265 
regmap_format_8(void * buf,unsigned int val,unsigned int shift)266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 	u8 *b = buf;
269 
270 	b[0] = val << shift;
271 }
272 
regmap_format_16_be(void * buf,unsigned int val,unsigned int shift)273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 	put_unaligned_be16(val << shift, buf);
276 }
277 
regmap_format_16_le(void * buf,unsigned int val,unsigned int shift)278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 	put_unaligned_le16(val << shift, buf);
281 }
282 
regmap_format_16_native(void * buf,unsigned int val,unsigned int shift)283 static void regmap_format_16_native(void *buf, unsigned int val,
284 				    unsigned int shift)
285 {
286 	u16 v = val << shift;
287 
288 	memcpy(buf, &v, sizeof(v));
289 }
290 
regmap_format_24_be(void * buf,unsigned int val,unsigned int shift)291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292 {
293 	put_unaligned_be24(val << shift, buf);
294 }
295 
regmap_format_32_be(void * buf,unsigned int val,unsigned int shift)296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297 {
298 	put_unaligned_be32(val << shift, buf);
299 }
300 
regmap_format_32_le(void * buf,unsigned int val,unsigned int shift)301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302 {
303 	put_unaligned_le32(val << shift, buf);
304 }
305 
regmap_format_32_native(void * buf,unsigned int val,unsigned int shift)306 static void regmap_format_32_native(void *buf, unsigned int val,
307 				    unsigned int shift)
308 {
309 	u32 v = val << shift;
310 
311 	memcpy(buf, &v, sizeof(v));
312 }
313 
regmap_parse_inplace_noop(void * buf)314 static void regmap_parse_inplace_noop(void *buf)
315 {
316 }
317 
regmap_parse_8(const void * buf)318 static unsigned int regmap_parse_8(const void *buf)
319 {
320 	const u8 *b = buf;
321 
322 	return b[0];
323 }
324 
regmap_parse_16_be(const void * buf)325 static unsigned int regmap_parse_16_be(const void *buf)
326 {
327 	return get_unaligned_be16(buf);
328 }
329 
regmap_parse_16_le(const void * buf)330 static unsigned int regmap_parse_16_le(const void *buf)
331 {
332 	return get_unaligned_le16(buf);
333 }
334 
regmap_parse_16_be_inplace(void * buf)335 static void regmap_parse_16_be_inplace(void *buf)
336 {
337 	u16 v = get_unaligned_be16(buf);
338 
339 	memcpy(buf, &v, sizeof(v));
340 }
341 
regmap_parse_16_le_inplace(void * buf)342 static void regmap_parse_16_le_inplace(void *buf)
343 {
344 	u16 v = get_unaligned_le16(buf);
345 
346 	memcpy(buf, &v, sizeof(v));
347 }
348 
regmap_parse_16_native(const void * buf)349 static unsigned int regmap_parse_16_native(const void *buf)
350 {
351 	u16 v;
352 
353 	memcpy(&v, buf, sizeof(v));
354 	return v;
355 }
356 
regmap_parse_24_be(const void * buf)357 static unsigned int regmap_parse_24_be(const void *buf)
358 {
359 	return get_unaligned_be24(buf);
360 }
361 
regmap_parse_32_be(const void * buf)362 static unsigned int regmap_parse_32_be(const void *buf)
363 {
364 	return get_unaligned_be32(buf);
365 }
366 
regmap_parse_32_le(const void * buf)367 static unsigned int regmap_parse_32_le(const void *buf)
368 {
369 	return get_unaligned_le32(buf);
370 }
371 
regmap_parse_32_be_inplace(void * buf)372 static void regmap_parse_32_be_inplace(void *buf)
373 {
374 	u32 v = get_unaligned_be32(buf);
375 
376 	memcpy(buf, &v, sizeof(v));
377 }
378 
regmap_parse_32_le_inplace(void * buf)379 static void regmap_parse_32_le_inplace(void *buf)
380 {
381 	u32 v = get_unaligned_le32(buf);
382 
383 	memcpy(buf, &v, sizeof(v));
384 }
385 
regmap_parse_32_native(const void * buf)386 static unsigned int regmap_parse_32_native(const void *buf)
387 {
388 	u32 v;
389 
390 	memcpy(&v, buf, sizeof(v));
391 	return v;
392 }
393 
regmap_lock_hwlock(void * __map)394 static void regmap_lock_hwlock(void *__map)
395 {
396 	struct regmap *map = __map;
397 
398 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
399 }
400 
regmap_lock_hwlock_irq(void * __map)401 static void regmap_lock_hwlock_irq(void *__map)
402 {
403 	struct regmap *map = __map;
404 
405 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
406 }
407 
regmap_lock_hwlock_irqsave(void * __map)408 static void regmap_lock_hwlock_irqsave(void *__map)
409 {
410 	struct regmap *map = __map;
411 
412 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
413 				    &map->spinlock_flags);
414 }
415 
regmap_unlock_hwlock(void * __map)416 static void regmap_unlock_hwlock(void *__map)
417 {
418 	struct regmap *map = __map;
419 
420 	hwspin_unlock(map->hwlock);
421 }
422 
regmap_unlock_hwlock_irq(void * __map)423 static void regmap_unlock_hwlock_irq(void *__map)
424 {
425 	struct regmap *map = __map;
426 
427 	hwspin_unlock_irq(map->hwlock);
428 }
429 
regmap_unlock_hwlock_irqrestore(void * __map)430 static void regmap_unlock_hwlock_irqrestore(void *__map)
431 {
432 	struct regmap *map = __map;
433 
434 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
435 }
436 
regmap_lock_unlock_none(void * __map)437 static void regmap_lock_unlock_none(void *__map)
438 {
439 
440 }
441 
regmap_lock_mutex(void * __map)442 static void regmap_lock_mutex(void *__map)
443 {
444 	struct regmap *map = __map;
445 	mutex_lock(&map->mutex);
446 }
447 
regmap_unlock_mutex(void * __map)448 static void regmap_unlock_mutex(void *__map)
449 {
450 	struct regmap *map = __map;
451 	mutex_unlock(&map->mutex);
452 }
453 
regmap_lock_spinlock(void * __map)454 static void regmap_lock_spinlock(void *__map)
455 __acquires(&map->spinlock)
456 {
457 	struct regmap *map = __map;
458 	unsigned long flags;
459 
460 	spin_lock_irqsave(&map->spinlock, flags);
461 	map->spinlock_flags = flags;
462 }
463 
regmap_unlock_spinlock(void * __map)464 static void regmap_unlock_spinlock(void *__map)
465 __releases(&map->spinlock)
466 {
467 	struct regmap *map = __map;
468 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
469 }
470 
regmap_lock_raw_spinlock(void * __map)471 static void regmap_lock_raw_spinlock(void *__map)
472 __acquires(&map->raw_spinlock)
473 {
474 	struct regmap *map = __map;
475 	unsigned long flags;
476 
477 	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
478 	map->raw_spinlock_flags = flags;
479 }
480 
regmap_unlock_raw_spinlock(void * __map)481 static void regmap_unlock_raw_spinlock(void *__map)
482 __releases(&map->raw_spinlock)
483 {
484 	struct regmap *map = __map;
485 	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
486 }
487 
dev_get_regmap_release(struct device * dev,void * res)488 static void dev_get_regmap_release(struct device *dev, void *res)
489 {
490 	/*
491 	 * We don't actually have anything to do here; the goal here
492 	 * is not to manage the regmap but to provide a simple way to
493 	 * get the regmap back given a struct device.
494 	 */
495 }
496 
_regmap_range_add(struct regmap * map,struct regmap_range_node * data)497 static bool _regmap_range_add(struct regmap *map,
498 			      struct regmap_range_node *data)
499 {
500 	struct rb_root *root = &map->range_tree;
501 	struct rb_node **new = &(root->rb_node), *parent = NULL;
502 
503 	while (*new) {
504 		struct regmap_range_node *this =
505 			rb_entry(*new, struct regmap_range_node, node);
506 
507 		parent = *new;
508 		if (data->range_max < this->range_min)
509 			new = &((*new)->rb_left);
510 		else if (data->range_min > this->range_max)
511 			new = &((*new)->rb_right);
512 		else
513 			return false;
514 	}
515 
516 	rb_link_node(&data->node, parent, new);
517 	rb_insert_color(&data->node, root);
518 
519 	return true;
520 }
521 
_regmap_range_lookup(struct regmap * map,unsigned int reg)522 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
523 						      unsigned int reg)
524 {
525 	struct rb_node *node = map->range_tree.rb_node;
526 
527 	while (node) {
528 		struct regmap_range_node *this =
529 			rb_entry(node, struct regmap_range_node, node);
530 
531 		if (reg < this->range_min)
532 			node = node->rb_left;
533 		else if (reg > this->range_max)
534 			node = node->rb_right;
535 		else
536 			return this;
537 	}
538 
539 	return NULL;
540 }
541 
regmap_range_exit(struct regmap * map)542 static void regmap_range_exit(struct regmap *map)
543 {
544 	struct rb_node *next;
545 	struct regmap_range_node *range_node;
546 
547 	next = rb_first(&map->range_tree);
548 	while (next) {
549 		range_node = rb_entry(next, struct regmap_range_node, node);
550 		next = rb_next(&range_node->node);
551 		rb_erase(&range_node->node, &map->range_tree);
552 		kfree(range_node);
553 	}
554 
555 	kfree(map->selector_work_buf);
556 }
557 
regmap_set_name(struct regmap * map,const struct regmap_config * config)558 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
559 {
560 	if (config->name) {
561 		const char *name = kstrdup_const(config->name, GFP_KERNEL);
562 
563 		if (!name)
564 			return -ENOMEM;
565 
566 		kfree_const(map->name);
567 		map->name = name;
568 	}
569 
570 	return 0;
571 }
572 
regmap_attach_dev(struct device * dev,struct regmap * map,const struct regmap_config * config)573 int regmap_attach_dev(struct device *dev, struct regmap *map,
574 		      const struct regmap_config *config)
575 {
576 	struct regmap **m;
577 	int ret;
578 
579 	map->dev = dev;
580 
581 	ret = regmap_set_name(map, config);
582 	if (ret)
583 		return ret;
584 
585 	regmap_debugfs_exit(map);
586 	regmap_debugfs_init(map);
587 
588 	/* Add a devres resource for dev_get_regmap() */
589 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
590 	if (!m) {
591 		regmap_debugfs_exit(map);
592 		return -ENOMEM;
593 	}
594 	*m = map;
595 	devres_add(dev, m);
596 
597 	return 0;
598 }
599 EXPORT_SYMBOL_GPL(regmap_attach_dev);
600 
601 static int dev_get_regmap_match(struct device *dev, void *res, void *data);
602 
regmap_detach_dev(struct device * dev,struct regmap * map)603 static int regmap_detach_dev(struct device *dev, struct regmap *map)
604 {
605 	if (!dev)
606 		return 0;
607 
608 	return devres_release(dev, dev_get_regmap_release,
609 			      dev_get_regmap_match, (void *)map->name);
610 }
611 
regmap_get_reg_endian(const struct regmap_bus * bus,const struct regmap_config * config)612 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
613 					const struct regmap_config *config)
614 {
615 	enum regmap_endian endian;
616 
617 	/* Retrieve the endianness specification from the regmap config */
618 	endian = config->reg_format_endian;
619 
620 	/* If the regmap config specified a non-default value, use that */
621 	if (endian != REGMAP_ENDIAN_DEFAULT)
622 		return endian;
623 
624 	/* Retrieve the endianness specification from the bus config */
625 	if (bus && bus->reg_format_endian_default)
626 		endian = bus->reg_format_endian_default;
627 
628 	/* If the bus specified a non-default value, use that */
629 	if (endian != REGMAP_ENDIAN_DEFAULT)
630 		return endian;
631 
632 	/* Use this if no other value was found */
633 	return REGMAP_ENDIAN_BIG;
634 }
635 
regmap_get_val_endian(struct device * dev,const struct regmap_bus * bus,const struct regmap_config * config)636 enum regmap_endian regmap_get_val_endian(struct device *dev,
637 					 const struct regmap_bus *bus,
638 					 const struct regmap_config *config)
639 {
640 	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
641 	enum regmap_endian endian;
642 
643 	/* Retrieve the endianness specification from the regmap config */
644 	endian = config->val_format_endian;
645 
646 	/* If the regmap config specified a non-default value, use that */
647 	if (endian != REGMAP_ENDIAN_DEFAULT)
648 		return endian;
649 
650 	/* If the firmware node exist try to get endianness from it */
651 	if (fwnode_property_read_bool(fwnode, "big-endian"))
652 		endian = REGMAP_ENDIAN_BIG;
653 	else if (fwnode_property_read_bool(fwnode, "little-endian"))
654 		endian = REGMAP_ENDIAN_LITTLE;
655 	else if (fwnode_property_read_bool(fwnode, "native-endian"))
656 		endian = REGMAP_ENDIAN_NATIVE;
657 
658 	/* If the endianness was specified in fwnode, use that */
659 	if (endian != REGMAP_ENDIAN_DEFAULT)
660 		return endian;
661 
662 	/* Retrieve the endianness specification from the bus config */
663 	if (bus && bus->val_format_endian_default)
664 		endian = bus->val_format_endian_default;
665 
666 	/* If the bus specified a non-default value, use that */
667 	if (endian != REGMAP_ENDIAN_DEFAULT)
668 		return endian;
669 
670 	/* Use this if no other value was found */
671 	return REGMAP_ENDIAN_BIG;
672 }
673 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
674 
__regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)675 struct regmap *__regmap_init(struct device *dev,
676 			     const struct regmap_bus *bus,
677 			     void *bus_context,
678 			     const struct regmap_config *config,
679 			     struct lock_class_key *lock_key,
680 			     const char *lock_name)
681 {
682 	struct regmap *map;
683 	int ret = -EINVAL;
684 	enum regmap_endian reg_endian, val_endian;
685 	int i, j;
686 
687 	if (!config)
688 		goto err;
689 
690 	map = kzalloc(sizeof(*map), GFP_KERNEL);
691 	if (map == NULL) {
692 		ret = -ENOMEM;
693 		goto err;
694 	}
695 
696 	ret = regmap_set_name(map, config);
697 	if (ret)
698 		goto err_map;
699 
700 	ret = -EINVAL; /* Later error paths rely on this */
701 
702 	if (config->disable_locking) {
703 		map->lock = map->unlock = regmap_lock_unlock_none;
704 		map->can_sleep = config->can_sleep;
705 		regmap_debugfs_disable(map);
706 	} else if (config->lock && config->unlock) {
707 		map->lock = config->lock;
708 		map->unlock = config->unlock;
709 		map->lock_arg = config->lock_arg;
710 		map->can_sleep = config->can_sleep;
711 	} else if (config->use_hwlock) {
712 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
713 		if (!map->hwlock) {
714 			ret = -ENXIO;
715 			goto err_name;
716 		}
717 
718 		switch (config->hwlock_mode) {
719 		case HWLOCK_IRQSTATE:
720 			map->lock = regmap_lock_hwlock_irqsave;
721 			map->unlock = regmap_unlock_hwlock_irqrestore;
722 			break;
723 		case HWLOCK_IRQ:
724 			map->lock = regmap_lock_hwlock_irq;
725 			map->unlock = regmap_unlock_hwlock_irq;
726 			break;
727 		default:
728 			map->lock = regmap_lock_hwlock;
729 			map->unlock = regmap_unlock_hwlock;
730 			break;
731 		}
732 
733 		map->lock_arg = map;
734 	} else {
735 		if ((bus && bus->fast_io) ||
736 		    config->fast_io) {
737 			if (config->use_raw_spinlock) {
738 				raw_spin_lock_init(&map->raw_spinlock);
739 				map->lock = regmap_lock_raw_spinlock;
740 				map->unlock = regmap_unlock_raw_spinlock;
741 				lockdep_set_class_and_name(&map->raw_spinlock,
742 							   lock_key, lock_name);
743 			} else {
744 				spin_lock_init(&map->spinlock);
745 				map->lock = regmap_lock_spinlock;
746 				map->unlock = regmap_unlock_spinlock;
747 				lockdep_set_class_and_name(&map->spinlock,
748 							   lock_key, lock_name);
749 			}
750 		} else {
751 			mutex_init(&map->mutex);
752 			map->lock = regmap_lock_mutex;
753 			map->unlock = regmap_unlock_mutex;
754 			map->can_sleep = true;
755 			lockdep_set_class_and_name(&map->mutex,
756 						   lock_key, lock_name);
757 		}
758 		map->lock_arg = map;
759 		map->lock_key = lock_key;
760 	}
761 
762 	/*
763 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
764 	 * scratch buffers with sleeping allocations.
765 	 */
766 	if ((bus && bus->fast_io) || config->fast_io)
767 		map->alloc_flags = GFP_ATOMIC;
768 	else
769 		map->alloc_flags = GFP_KERNEL;
770 
771 	map->reg_base = config->reg_base;
772 
773 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
774 	map->format.pad_bytes = config->pad_bits / 8;
775 	map->format.reg_shift = config->reg_shift;
776 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
777 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
778 			config->val_bits + config->pad_bits, 8);
779 	map->reg_shift = config->pad_bits % 8;
780 	if (config->reg_stride)
781 		map->reg_stride = config->reg_stride;
782 	else
783 		map->reg_stride = 1;
784 	if (is_power_of_2(map->reg_stride))
785 		map->reg_stride_order = ilog2(map->reg_stride);
786 	else
787 		map->reg_stride_order = -1;
788 	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
789 	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
790 	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
791 	if (bus) {
792 		map->max_raw_read = bus->max_raw_read;
793 		map->max_raw_write = bus->max_raw_write;
794 	} else if (config->max_raw_read && config->max_raw_write) {
795 		map->max_raw_read = config->max_raw_read;
796 		map->max_raw_write = config->max_raw_write;
797 	}
798 	map->dev = dev;
799 	map->bus = bus;
800 	map->bus_context = bus_context;
801 	map->max_register = config->max_register;
802 	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
803 	map->wr_table = config->wr_table;
804 	map->rd_table = config->rd_table;
805 	map->volatile_table = config->volatile_table;
806 	map->precious_table = config->precious_table;
807 	map->wr_noinc_table = config->wr_noinc_table;
808 	map->rd_noinc_table = config->rd_noinc_table;
809 	map->writeable_reg = config->writeable_reg;
810 	map->readable_reg = config->readable_reg;
811 	map->volatile_reg = config->volatile_reg;
812 	map->precious_reg = config->precious_reg;
813 	map->writeable_noinc_reg = config->writeable_noinc_reg;
814 	map->readable_noinc_reg = config->readable_noinc_reg;
815 	map->cache_type = config->cache_type;
816 
817 	spin_lock_init(&map->async_lock);
818 	INIT_LIST_HEAD(&map->async_list);
819 	INIT_LIST_HEAD(&map->async_free);
820 	init_waitqueue_head(&map->async_waitq);
821 
822 	if (config->read_flag_mask ||
823 	    config->write_flag_mask ||
824 	    config->zero_flag_mask) {
825 		map->read_flag_mask = config->read_flag_mask;
826 		map->write_flag_mask = config->write_flag_mask;
827 	} else if (bus) {
828 		map->read_flag_mask = bus->read_flag_mask;
829 	}
830 
831 	if (config && config->read && config->write) {
832 		map->reg_read  = _regmap_bus_read;
833 		if (config->reg_update_bits)
834 			map->reg_update_bits = config->reg_update_bits;
835 
836 		/* Bulk read/write */
837 		map->read = config->read;
838 		map->write = config->write;
839 
840 		reg_endian = REGMAP_ENDIAN_NATIVE;
841 		val_endian = REGMAP_ENDIAN_NATIVE;
842 	} else if (!bus) {
843 		map->reg_read  = config->reg_read;
844 		map->reg_write = config->reg_write;
845 		map->reg_update_bits = config->reg_update_bits;
846 
847 		map->defer_caching = false;
848 		goto skip_format_initialization;
849 	} else if (!bus->read || !bus->write) {
850 		map->reg_read = _regmap_bus_reg_read;
851 		map->reg_write = _regmap_bus_reg_write;
852 		map->reg_update_bits = bus->reg_update_bits;
853 
854 		map->defer_caching = false;
855 		goto skip_format_initialization;
856 	} else {
857 		map->reg_read  = _regmap_bus_read;
858 		map->reg_update_bits = bus->reg_update_bits;
859 		/* Bulk read/write */
860 		map->read = bus->read;
861 		map->write = bus->write;
862 
863 		reg_endian = regmap_get_reg_endian(bus, config);
864 		val_endian = regmap_get_val_endian(dev, bus, config);
865 	}
866 
867 	switch (config->reg_bits + map->reg_shift) {
868 	case 2:
869 		switch (config->val_bits) {
870 		case 6:
871 			map->format.format_write = regmap_format_2_6_write;
872 			break;
873 		default:
874 			goto err_hwlock;
875 		}
876 		break;
877 
878 	case 4:
879 		switch (config->val_bits) {
880 		case 12:
881 			map->format.format_write = regmap_format_4_12_write;
882 			break;
883 		default:
884 			goto err_hwlock;
885 		}
886 		break;
887 
888 	case 7:
889 		switch (config->val_bits) {
890 		case 9:
891 			map->format.format_write = regmap_format_7_9_write;
892 			break;
893 		case 17:
894 			map->format.format_write = regmap_format_7_17_write;
895 			break;
896 		default:
897 			goto err_hwlock;
898 		}
899 		break;
900 
901 	case 10:
902 		switch (config->val_bits) {
903 		case 14:
904 			map->format.format_write = regmap_format_10_14_write;
905 			break;
906 		default:
907 			goto err_hwlock;
908 		}
909 		break;
910 
911 	case 12:
912 		switch (config->val_bits) {
913 		case 20:
914 			map->format.format_write = regmap_format_12_20_write;
915 			break;
916 		default:
917 			goto err_hwlock;
918 		}
919 		break;
920 
921 	case 8:
922 		map->format.format_reg = regmap_format_8;
923 		break;
924 
925 	case 16:
926 		switch (reg_endian) {
927 		case REGMAP_ENDIAN_BIG:
928 			map->format.format_reg = regmap_format_16_be;
929 			break;
930 		case REGMAP_ENDIAN_LITTLE:
931 			map->format.format_reg = regmap_format_16_le;
932 			break;
933 		case REGMAP_ENDIAN_NATIVE:
934 			map->format.format_reg = regmap_format_16_native;
935 			break;
936 		default:
937 			goto err_hwlock;
938 		}
939 		break;
940 
941 	case 24:
942 		switch (reg_endian) {
943 		case REGMAP_ENDIAN_BIG:
944 			map->format.format_reg = regmap_format_24_be;
945 			break;
946 		default:
947 			goto err_hwlock;
948 		}
949 		break;
950 
951 	case 32:
952 		switch (reg_endian) {
953 		case REGMAP_ENDIAN_BIG:
954 			map->format.format_reg = regmap_format_32_be;
955 			break;
956 		case REGMAP_ENDIAN_LITTLE:
957 			map->format.format_reg = regmap_format_32_le;
958 			break;
959 		case REGMAP_ENDIAN_NATIVE:
960 			map->format.format_reg = regmap_format_32_native;
961 			break;
962 		default:
963 			goto err_hwlock;
964 		}
965 		break;
966 
967 	default:
968 		goto err_hwlock;
969 	}
970 
971 	if (val_endian == REGMAP_ENDIAN_NATIVE)
972 		map->format.parse_inplace = regmap_parse_inplace_noop;
973 
974 	switch (config->val_bits) {
975 	case 8:
976 		map->format.format_val = regmap_format_8;
977 		map->format.parse_val = regmap_parse_8;
978 		map->format.parse_inplace = regmap_parse_inplace_noop;
979 		break;
980 	case 16:
981 		switch (val_endian) {
982 		case REGMAP_ENDIAN_BIG:
983 			map->format.format_val = regmap_format_16_be;
984 			map->format.parse_val = regmap_parse_16_be;
985 			map->format.parse_inplace = regmap_parse_16_be_inplace;
986 			break;
987 		case REGMAP_ENDIAN_LITTLE:
988 			map->format.format_val = regmap_format_16_le;
989 			map->format.parse_val = regmap_parse_16_le;
990 			map->format.parse_inplace = regmap_parse_16_le_inplace;
991 			break;
992 		case REGMAP_ENDIAN_NATIVE:
993 			map->format.format_val = regmap_format_16_native;
994 			map->format.parse_val = regmap_parse_16_native;
995 			break;
996 		default:
997 			goto err_hwlock;
998 		}
999 		break;
1000 	case 24:
1001 		switch (val_endian) {
1002 		case REGMAP_ENDIAN_BIG:
1003 			map->format.format_val = regmap_format_24_be;
1004 			map->format.parse_val = regmap_parse_24_be;
1005 			break;
1006 		default:
1007 			goto err_hwlock;
1008 		}
1009 		break;
1010 	case 32:
1011 		switch (val_endian) {
1012 		case REGMAP_ENDIAN_BIG:
1013 			map->format.format_val = regmap_format_32_be;
1014 			map->format.parse_val = regmap_parse_32_be;
1015 			map->format.parse_inplace = regmap_parse_32_be_inplace;
1016 			break;
1017 		case REGMAP_ENDIAN_LITTLE:
1018 			map->format.format_val = regmap_format_32_le;
1019 			map->format.parse_val = regmap_parse_32_le;
1020 			map->format.parse_inplace = regmap_parse_32_le_inplace;
1021 			break;
1022 		case REGMAP_ENDIAN_NATIVE:
1023 			map->format.format_val = regmap_format_32_native;
1024 			map->format.parse_val = regmap_parse_32_native;
1025 			break;
1026 		default:
1027 			goto err_hwlock;
1028 		}
1029 		break;
1030 	}
1031 
1032 	if (map->format.format_write) {
1033 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1034 		    (val_endian != REGMAP_ENDIAN_BIG))
1035 			goto err_hwlock;
1036 		map->use_single_write = true;
1037 	}
1038 
1039 	if (!map->format.format_write &&
1040 	    !(map->format.format_reg && map->format.format_val))
1041 		goto err_hwlock;
1042 
1043 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1044 	if (map->work_buf == NULL) {
1045 		ret = -ENOMEM;
1046 		goto err_hwlock;
1047 	}
1048 
1049 	if (map->format.format_write) {
1050 		map->defer_caching = false;
1051 		map->reg_write = _regmap_bus_formatted_write;
1052 	} else if (map->format.format_val) {
1053 		map->defer_caching = true;
1054 		map->reg_write = _regmap_bus_raw_write;
1055 	}
1056 
1057 skip_format_initialization:
1058 
1059 	map->range_tree = RB_ROOT;
1060 	for (i = 0; i < config->num_ranges; i++) {
1061 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1062 		struct regmap_range_node *new;
1063 
1064 		/* Sanity check */
1065 		if (range_cfg->range_max < range_cfg->range_min) {
1066 			dev_err(map->dev, "Invalid range %d: %u < %u\n", i,
1067 				range_cfg->range_max, range_cfg->range_min);
1068 			goto err_range;
1069 		}
1070 
1071 		if (range_cfg->range_max > map->max_register) {
1072 			dev_err(map->dev, "Invalid range %d: %u > %u\n", i,
1073 				range_cfg->range_max, map->max_register);
1074 			goto err_range;
1075 		}
1076 
1077 		if (range_cfg->selector_reg > map->max_register) {
1078 			dev_err(map->dev,
1079 				"Invalid range %d: selector out of map\n", i);
1080 			goto err_range;
1081 		}
1082 
1083 		if (range_cfg->window_len == 0) {
1084 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1085 				i);
1086 			goto err_range;
1087 		}
1088 
1089 		/* Make sure, that this register range has no selector
1090 		   or data window within its boundary */
1091 		for (j = 0; j < config->num_ranges; j++) {
1092 			unsigned int sel_reg = config->ranges[j].selector_reg;
1093 			unsigned int win_min = config->ranges[j].window_start;
1094 			unsigned int win_max = win_min +
1095 					       config->ranges[j].window_len - 1;
1096 
1097 			/* Allow data window inside its own virtual range */
1098 			if (j == i)
1099 				continue;
1100 
1101 			if (range_cfg->range_min <= sel_reg &&
1102 			    sel_reg <= range_cfg->range_max) {
1103 				dev_err(map->dev,
1104 					"Range %d: selector for %d in window\n",
1105 					i, j);
1106 				goto err_range;
1107 			}
1108 
1109 			if (!(win_max < range_cfg->range_min ||
1110 			      win_min > range_cfg->range_max)) {
1111 				dev_err(map->dev,
1112 					"Range %d: window for %d in window\n",
1113 					i, j);
1114 				goto err_range;
1115 			}
1116 		}
1117 
1118 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1119 		if (new == NULL) {
1120 			ret = -ENOMEM;
1121 			goto err_range;
1122 		}
1123 
1124 		new->map = map;
1125 		new->name = range_cfg->name;
1126 		new->range_min = range_cfg->range_min;
1127 		new->range_max = range_cfg->range_max;
1128 		new->selector_reg = range_cfg->selector_reg;
1129 		new->selector_mask = range_cfg->selector_mask;
1130 		new->selector_shift = range_cfg->selector_shift;
1131 		new->window_start = range_cfg->window_start;
1132 		new->window_len = range_cfg->window_len;
1133 
1134 		if (!_regmap_range_add(map, new)) {
1135 			dev_err(map->dev, "Failed to add range %d\n", i);
1136 			kfree(new);
1137 			goto err_range;
1138 		}
1139 
1140 		if (map->selector_work_buf == NULL) {
1141 			map->selector_work_buf =
1142 				kzalloc(map->format.buf_size, GFP_KERNEL);
1143 			if (map->selector_work_buf == NULL) {
1144 				ret = -ENOMEM;
1145 				goto err_range;
1146 			}
1147 		}
1148 	}
1149 
1150 	ret = regcache_init(map, config);
1151 	if (ret != 0)
1152 		goto err_range;
1153 
1154 	if (dev) {
1155 		ret = regmap_attach_dev(dev, map, config);
1156 		if (ret != 0)
1157 			goto err_regcache;
1158 	} else {
1159 		regmap_debugfs_init(map);
1160 	}
1161 
1162 	return map;
1163 
1164 err_regcache:
1165 	regcache_exit(map);
1166 err_range:
1167 	regmap_range_exit(map);
1168 	kfree(map->work_buf);
1169 err_hwlock:
1170 	if (map->hwlock)
1171 		hwspin_lock_free(map->hwlock);
1172 err_name:
1173 	kfree_const(map->name);
1174 err_map:
1175 	kfree(map);
1176 err:
1177 	if (bus && bus->free_on_exit)
1178 		kfree(bus);
1179 	return ERR_PTR(ret);
1180 }
1181 EXPORT_SYMBOL_GPL(__regmap_init);
1182 
devm_regmap_release(struct device * dev,void * res)1183 static void devm_regmap_release(struct device *dev, void *res)
1184 {
1185 	regmap_exit(*(struct regmap **)res);
1186 }
1187 
__devm_regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)1188 struct regmap *__devm_regmap_init(struct device *dev,
1189 				  const struct regmap_bus *bus,
1190 				  void *bus_context,
1191 				  const struct regmap_config *config,
1192 				  struct lock_class_key *lock_key,
1193 				  const char *lock_name)
1194 {
1195 	struct regmap **ptr, *regmap;
1196 
1197 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1198 	if (!ptr)
1199 		return ERR_PTR(-ENOMEM);
1200 
1201 	regmap = __regmap_init(dev, bus, bus_context, config,
1202 			       lock_key, lock_name);
1203 	if (!IS_ERR(regmap)) {
1204 		*ptr = regmap;
1205 		devres_add(dev, ptr);
1206 	} else {
1207 		devres_free(ptr);
1208 	}
1209 
1210 	return regmap;
1211 }
1212 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1213 
regmap_field_init(struct regmap_field * rm_field,struct regmap * regmap,struct reg_field reg_field)1214 static void regmap_field_init(struct regmap_field *rm_field,
1215 	struct regmap *regmap, struct reg_field reg_field)
1216 {
1217 	rm_field->regmap = regmap;
1218 	rm_field->reg = reg_field.reg;
1219 	rm_field->shift = reg_field.lsb;
1220 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1221 
1222 	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1223 
1224 	rm_field->id_size = reg_field.id_size;
1225 	rm_field->id_offset = reg_field.id_offset;
1226 }
1227 
1228 /**
1229  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1230  *
1231  * @dev: Device that will be interacted with
1232  * @regmap: regmap bank in which this register field is located.
1233  * @reg_field: Register field with in the bank.
1234  *
1235  * The return value will be an ERR_PTR() on error or a valid pointer
1236  * to a struct regmap_field. The regmap_field will be automatically freed
1237  * by the device management code.
1238  */
devm_regmap_field_alloc(struct device * dev,struct regmap * regmap,struct reg_field reg_field)1239 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1240 		struct regmap *regmap, struct reg_field reg_field)
1241 {
1242 	struct regmap_field *rm_field = devm_kzalloc(dev,
1243 					sizeof(*rm_field), GFP_KERNEL);
1244 	if (!rm_field)
1245 		return ERR_PTR(-ENOMEM);
1246 
1247 	regmap_field_init(rm_field, regmap, reg_field);
1248 
1249 	return rm_field;
1250 
1251 }
1252 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1253 
1254 
1255 /**
1256  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1257  *
1258  * @regmap: regmap bank in which this register field is located.
1259  * @rm_field: regmap register fields within the bank.
1260  * @reg_field: Register fields within the bank.
1261  * @num_fields: Number of register fields.
1262  *
1263  * The return value will be an -ENOMEM on error or zero for success.
1264  * Newly allocated regmap_fields should be freed by calling
1265  * regmap_field_bulk_free()
1266  */
regmap_field_bulk_alloc(struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1267 int regmap_field_bulk_alloc(struct regmap *regmap,
1268 			    struct regmap_field **rm_field,
1269 			    const struct reg_field *reg_field,
1270 			    int num_fields)
1271 {
1272 	struct regmap_field *rf;
1273 	int i;
1274 
1275 	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1276 	if (!rf)
1277 		return -ENOMEM;
1278 
1279 	for (i = 0; i < num_fields; i++) {
1280 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1281 		rm_field[i] = &rf[i];
1282 	}
1283 
1284 	return 0;
1285 }
1286 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1287 
1288 /**
1289  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1290  * fields.
1291  *
1292  * @dev: Device that will be interacted with
1293  * @regmap: regmap bank in which this register field is located.
1294  * @rm_field: regmap register fields within the bank.
1295  * @reg_field: Register fields within the bank.
1296  * @num_fields: Number of register fields.
1297  *
1298  * The return value will be an -ENOMEM on error or zero for success.
1299  * Newly allocated regmap_fields will be automatically freed by the
1300  * device management code.
1301  */
devm_regmap_field_bulk_alloc(struct device * dev,struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1302 int devm_regmap_field_bulk_alloc(struct device *dev,
1303 				 struct regmap *regmap,
1304 				 struct regmap_field **rm_field,
1305 				 const struct reg_field *reg_field,
1306 				 int num_fields)
1307 {
1308 	struct regmap_field *rf;
1309 	int i;
1310 
1311 	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1312 	if (!rf)
1313 		return -ENOMEM;
1314 
1315 	for (i = 0; i < num_fields; i++) {
1316 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1317 		rm_field[i] = &rf[i];
1318 	}
1319 
1320 	return 0;
1321 }
1322 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1323 
1324 /**
1325  * regmap_field_bulk_free() - Free register field allocated using
1326  *                       regmap_field_bulk_alloc.
1327  *
1328  * @field: regmap fields which should be freed.
1329  */
regmap_field_bulk_free(struct regmap_field * field)1330 void regmap_field_bulk_free(struct regmap_field *field)
1331 {
1332 	kfree(field);
1333 }
1334 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1335 
1336 /**
1337  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1338  *                            devm_regmap_field_bulk_alloc.
1339  *
1340  * @dev: Device that will be interacted with
1341  * @field: regmap field which should be freed.
1342  *
1343  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1344  * drivers need not call this function, as the memory allocated via devm
1345  * will be freed as per device-driver life-cycle.
1346  */
devm_regmap_field_bulk_free(struct device * dev,struct regmap_field * field)1347 void devm_regmap_field_bulk_free(struct device *dev,
1348 				 struct regmap_field *field)
1349 {
1350 	devm_kfree(dev, field);
1351 }
1352 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1353 
1354 /**
1355  * devm_regmap_field_free() - Free a register field allocated using
1356  *                            devm_regmap_field_alloc.
1357  *
1358  * @dev: Device that will be interacted with
1359  * @field: regmap field which should be freed.
1360  *
1361  * Free register field allocated using devm_regmap_field_alloc(). Usually
1362  * drivers need not call this function, as the memory allocated via devm
1363  * will be freed as per device-driver life-cyle.
1364  */
devm_regmap_field_free(struct device * dev,struct regmap_field * field)1365 void devm_regmap_field_free(struct device *dev,
1366 	struct regmap_field *field)
1367 {
1368 	devm_kfree(dev, field);
1369 }
1370 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1371 
1372 /**
1373  * regmap_field_alloc() - Allocate and initialise a register field.
1374  *
1375  * @regmap: regmap bank in which this register field is located.
1376  * @reg_field: Register field with in the bank.
1377  *
1378  * The return value will be an ERR_PTR() on error or a valid pointer
1379  * to a struct regmap_field. The regmap_field should be freed by the
1380  * user once its finished working with it using regmap_field_free().
1381  */
regmap_field_alloc(struct regmap * regmap,struct reg_field reg_field)1382 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1383 		struct reg_field reg_field)
1384 {
1385 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1386 
1387 	if (!rm_field)
1388 		return ERR_PTR(-ENOMEM);
1389 
1390 	regmap_field_init(rm_field, regmap, reg_field);
1391 
1392 	return rm_field;
1393 }
1394 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1395 
1396 /**
1397  * regmap_field_free() - Free register field allocated using
1398  *                       regmap_field_alloc.
1399  *
1400  * @field: regmap field which should be freed.
1401  */
regmap_field_free(struct regmap_field * field)1402 void regmap_field_free(struct regmap_field *field)
1403 {
1404 	kfree(field);
1405 }
1406 EXPORT_SYMBOL_GPL(regmap_field_free);
1407 
1408 /**
1409  * regmap_reinit_cache() - Reinitialise the current register cache
1410  *
1411  * @map: Register map to operate on.
1412  * @config: New configuration.  Only the cache data will be used.
1413  *
1414  * Discard any existing register cache for the map and initialize a
1415  * new cache.  This can be used to restore the cache to defaults or to
1416  * update the cache configuration to reflect runtime discovery of the
1417  * hardware.
1418  *
1419  * No explicit locking is done here, the user needs to ensure that
1420  * this function will not race with other calls to regmap.
1421  */
regmap_reinit_cache(struct regmap * map,const struct regmap_config * config)1422 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1423 {
1424 	int ret;
1425 
1426 	regcache_exit(map);
1427 	regmap_debugfs_exit(map);
1428 
1429 	map->max_register = config->max_register;
1430 	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
1431 	map->writeable_reg = config->writeable_reg;
1432 	map->readable_reg = config->readable_reg;
1433 	map->volatile_reg = config->volatile_reg;
1434 	map->precious_reg = config->precious_reg;
1435 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1436 	map->readable_noinc_reg = config->readable_noinc_reg;
1437 	map->cache_type = config->cache_type;
1438 
1439 	ret = regmap_set_name(map, config);
1440 	if (ret)
1441 		return ret;
1442 
1443 	regmap_debugfs_init(map);
1444 
1445 	map->cache_bypass = false;
1446 	map->cache_only = false;
1447 
1448 	return regcache_init(map, config);
1449 }
1450 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1451 
1452 /**
1453  * regmap_exit() - Free a previously allocated register map
1454  *
1455  * @map: Register map to operate on.
1456  */
regmap_exit(struct regmap * map)1457 void regmap_exit(struct regmap *map)
1458 {
1459 	struct regmap_async *async;
1460 
1461 	regmap_detach_dev(map->dev, map);
1462 	regcache_exit(map);
1463 
1464 	regmap_debugfs_exit(map);
1465 	regmap_range_exit(map);
1466 	if (map->bus && map->bus->free_context)
1467 		map->bus->free_context(map->bus_context);
1468 	kfree(map->work_buf);
1469 	while (!list_empty(&map->async_free)) {
1470 		async = list_first_entry_or_null(&map->async_free,
1471 						 struct regmap_async,
1472 						 list);
1473 		list_del(&async->list);
1474 		kfree(async->work_buf);
1475 		kfree(async);
1476 	}
1477 	if (map->hwlock)
1478 		hwspin_lock_free(map->hwlock);
1479 	if (map->lock == regmap_lock_mutex)
1480 		mutex_destroy(&map->mutex);
1481 	kfree_const(map->name);
1482 	kfree(map->patch);
1483 	if (map->bus && map->bus->free_on_exit)
1484 		kfree(map->bus);
1485 	kfree(map);
1486 }
1487 EXPORT_SYMBOL_GPL(regmap_exit);
1488 
dev_get_regmap_match(struct device * dev,void * res,void * data)1489 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1490 {
1491 	struct regmap **r = res;
1492 	if (!r || !*r) {
1493 		WARN_ON(!r || !*r);
1494 		return 0;
1495 	}
1496 
1497 	/* If the user didn't specify a name match any */
1498 	if (data)
1499 		return (*r)->name && !strcmp((*r)->name, data);
1500 	else
1501 		return 1;
1502 }
1503 
1504 /**
1505  * dev_get_regmap() - Obtain the regmap (if any) for a device
1506  *
1507  * @dev: Device to retrieve the map for
1508  * @name: Optional name for the register map, usually NULL.
1509  *
1510  * Returns the regmap for the device if one is present, or NULL.  If
1511  * name is specified then it must match the name specified when
1512  * registering the device, if it is NULL then the first regmap found
1513  * will be used.  Devices with multiple register maps are very rare,
1514  * generic code should normally not need to specify a name.
1515  */
dev_get_regmap(struct device * dev,const char * name)1516 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1517 {
1518 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1519 					dev_get_regmap_match, (void *)name);
1520 
1521 	if (!r)
1522 		return NULL;
1523 	return *r;
1524 }
1525 EXPORT_SYMBOL_GPL(dev_get_regmap);
1526 
1527 /**
1528  * regmap_get_device() - Obtain the device from a regmap
1529  *
1530  * @map: Register map to operate on.
1531  *
1532  * Returns the underlying device that the regmap has been created for.
1533  */
regmap_get_device(struct regmap * map)1534 struct device *regmap_get_device(struct regmap *map)
1535 {
1536 	return map->dev;
1537 }
1538 EXPORT_SYMBOL_GPL(regmap_get_device);
1539 
_regmap_select_page(struct regmap * map,unsigned int * reg,struct regmap_range_node * range,unsigned int val_num)1540 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1541 			       struct regmap_range_node *range,
1542 			       unsigned int val_num)
1543 {
1544 	void *orig_work_buf;
1545 	unsigned int win_offset;
1546 	unsigned int win_page;
1547 	bool page_chg;
1548 	int ret;
1549 
1550 	win_offset = (*reg - range->range_min) % range->window_len;
1551 	win_page = (*reg - range->range_min) / range->window_len;
1552 
1553 	if (val_num > 1) {
1554 		/* Bulk write shouldn't cross range boundary */
1555 		if (*reg + val_num - 1 > range->range_max)
1556 			return -EINVAL;
1557 
1558 		/* ... or single page boundary */
1559 		if (val_num > range->window_len - win_offset)
1560 			return -EINVAL;
1561 	}
1562 
1563 	/* It is possible to have selector register inside data window.
1564 	   In that case, selector register is located on every page and
1565 	   it needs no page switching, when accessed alone. */
1566 	if (val_num > 1 ||
1567 	    range->window_start + win_offset != range->selector_reg) {
1568 		/* Use separate work_buf during page switching */
1569 		orig_work_buf = map->work_buf;
1570 		map->work_buf = map->selector_work_buf;
1571 
1572 		ret = _regmap_update_bits(map, range->selector_reg,
1573 					  range->selector_mask,
1574 					  win_page << range->selector_shift,
1575 					  &page_chg, false);
1576 
1577 		map->work_buf = orig_work_buf;
1578 
1579 		if (ret != 0)
1580 			return ret;
1581 	}
1582 
1583 	*reg = range->window_start + win_offset;
1584 
1585 	return 0;
1586 }
1587 
regmap_set_work_buf_flag_mask(struct regmap * map,int max_bytes,unsigned long mask)1588 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1589 					  unsigned long mask)
1590 {
1591 	u8 *buf;
1592 	int i;
1593 
1594 	if (!mask || !map->work_buf)
1595 		return;
1596 
1597 	buf = map->work_buf;
1598 
1599 	for (i = 0; i < max_bytes; i++)
1600 		buf[i] |= (mask >> (8 * i)) & 0xff;
1601 }
1602 
regmap_reg_addr(struct regmap * map,unsigned int reg)1603 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1604 {
1605 	reg += map->reg_base;
1606 
1607 	if (map->format.reg_shift > 0)
1608 		reg >>= map->format.reg_shift;
1609 	else if (map->format.reg_shift < 0)
1610 		reg <<= -(map->format.reg_shift);
1611 
1612 	return reg;
1613 }
1614 
_regmap_raw_write_impl(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1615 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1616 				  const void *val, size_t val_len, bool noinc)
1617 {
1618 	struct regmap_range_node *range;
1619 	unsigned long flags;
1620 	void *work_val = map->work_buf + map->format.reg_bytes +
1621 		map->format.pad_bytes;
1622 	void *buf;
1623 	int ret = -ENOTSUPP;
1624 	size_t len;
1625 	int i;
1626 
1627 	/* Check for unwritable or noinc registers in range
1628 	 * before we start
1629 	 */
1630 	if (!regmap_writeable_noinc(map, reg)) {
1631 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1632 			unsigned int element =
1633 				reg + regmap_get_offset(map, i);
1634 			if (!regmap_writeable(map, element) ||
1635 				regmap_writeable_noinc(map, element))
1636 				return -EINVAL;
1637 		}
1638 	}
1639 
1640 	if (!map->cache_bypass && map->format.parse_val) {
1641 		unsigned int ival, offset;
1642 		int val_bytes = map->format.val_bytes;
1643 
1644 		/* Cache the last written value for noinc writes */
1645 		i = noinc ? val_len - val_bytes : 0;
1646 		for (; i < val_len; i += val_bytes) {
1647 			ival = map->format.parse_val(val + i);
1648 			offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1649 			ret = regcache_write(map, reg + offset, ival);
1650 			if (ret) {
1651 				dev_err(map->dev,
1652 					"Error in caching of register: %x ret: %d\n",
1653 					reg + offset, ret);
1654 				return ret;
1655 			}
1656 		}
1657 		if (map->cache_only) {
1658 			map->cache_dirty = true;
1659 			return 0;
1660 		}
1661 	}
1662 
1663 	range = _regmap_range_lookup(map, reg);
1664 	if (range) {
1665 		int val_num = val_len / map->format.val_bytes;
1666 		int win_offset = (reg - range->range_min) % range->window_len;
1667 		int win_residue = range->window_len - win_offset;
1668 
1669 		/* If the write goes beyond the end of the window split it */
1670 		while (val_num > win_residue) {
1671 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1672 				win_residue, val_len / map->format.val_bytes);
1673 			ret = _regmap_raw_write_impl(map, reg, val,
1674 						     win_residue *
1675 						     map->format.val_bytes, noinc);
1676 			if (ret != 0)
1677 				return ret;
1678 
1679 			reg += win_residue;
1680 			val_num -= win_residue;
1681 			val += win_residue * map->format.val_bytes;
1682 			val_len -= win_residue * map->format.val_bytes;
1683 
1684 			win_offset = (reg - range->range_min) %
1685 				range->window_len;
1686 			win_residue = range->window_len - win_offset;
1687 		}
1688 
1689 		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1690 		if (ret != 0)
1691 			return ret;
1692 	}
1693 
1694 	reg = regmap_reg_addr(map, reg);
1695 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1696 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1697 				      map->write_flag_mask);
1698 
1699 	/*
1700 	 * Essentially all I/O mechanisms will be faster with a single
1701 	 * buffer to write.  Since register syncs often generate raw
1702 	 * writes of single registers optimise that case.
1703 	 */
1704 	if (val != work_val && val_len == map->format.val_bytes) {
1705 		memcpy(work_val, val, map->format.val_bytes);
1706 		val = work_val;
1707 	}
1708 
1709 	if (map->async && map->bus && map->bus->async_write) {
1710 		struct regmap_async *async;
1711 
1712 		trace_regmap_async_write_start(map, reg, val_len);
1713 
1714 		spin_lock_irqsave(&map->async_lock, flags);
1715 		async = list_first_entry_or_null(&map->async_free,
1716 						 struct regmap_async,
1717 						 list);
1718 		if (async)
1719 			list_del(&async->list);
1720 		spin_unlock_irqrestore(&map->async_lock, flags);
1721 
1722 		if (!async) {
1723 			async = map->bus->async_alloc();
1724 			if (!async)
1725 				return -ENOMEM;
1726 
1727 			async->work_buf = kzalloc(map->format.buf_size,
1728 						  GFP_KERNEL | GFP_DMA);
1729 			if (!async->work_buf) {
1730 				kfree(async);
1731 				return -ENOMEM;
1732 			}
1733 		}
1734 
1735 		async->map = map;
1736 
1737 		/* If the caller supplied the value we can use it safely. */
1738 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1739 		       map->format.reg_bytes + map->format.val_bytes);
1740 
1741 		spin_lock_irqsave(&map->async_lock, flags);
1742 		list_add_tail(&async->list, &map->async_list);
1743 		spin_unlock_irqrestore(&map->async_lock, flags);
1744 
1745 		if (val != work_val)
1746 			ret = map->bus->async_write(map->bus_context,
1747 						    async->work_buf,
1748 						    map->format.reg_bytes +
1749 						    map->format.pad_bytes,
1750 						    val, val_len, async);
1751 		else
1752 			ret = map->bus->async_write(map->bus_context,
1753 						    async->work_buf,
1754 						    map->format.reg_bytes +
1755 						    map->format.pad_bytes +
1756 						    val_len, NULL, 0, async);
1757 
1758 		if (ret != 0) {
1759 			dev_err(map->dev, "Failed to schedule write: %d\n",
1760 				ret);
1761 
1762 			spin_lock_irqsave(&map->async_lock, flags);
1763 			list_move(&async->list, &map->async_free);
1764 			spin_unlock_irqrestore(&map->async_lock, flags);
1765 		}
1766 
1767 		return ret;
1768 	}
1769 
1770 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1771 
1772 	/* If we're doing a single register write we can probably just
1773 	 * send the work_buf directly, otherwise try to do a gather
1774 	 * write.
1775 	 */
1776 	if (val == work_val)
1777 		ret = map->write(map->bus_context, map->work_buf,
1778 				 map->format.reg_bytes +
1779 				 map->format.pad_bytes +
1780 				 val_len);
1781 	else if (map->bus && map->bus->gather_write)
1782 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1783 					     map->format.reg_bytes +
1784 					     map->format.pad_bytes,
1785 					     val, val_len);
1786 	else
1787 		ret = -ENOTSUPP;
1788 
1789 	/* If that didn't work fall back on linearising by hand. */
1790 	if (ret == -ENOTSUPP) {
1791 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1792 		buf = kzalloc(len, GFP_KERNEL);
1793 		if (!buf)
1794 			return -ENOMEM;
1795 
1796 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1797 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1798 		       val, val_len);
1799 		ret = map->write(map->bus_context, buf, len);
1800 
1801 		kfree(buf);
1802 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1803 		/* regcache_drop_region() takes lock that we already have,
1804 		 * thus call map->cache_ops->drop() directly
1805 		 */
1806 		if (map->cache_ops && map->cache_ops->drop)
1807 			map->cache_ops->drop(map, reg, reg + 1);
1808 	}
1809 
1810 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1811 
1812 	return ret;
1813 }
1814 
1815 /**
1816  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1817  *
1818  * @map: Map to check.
1819  */
regmap_can_raw_write(struct regmap * map)1820 bool regmap_can_raw_write(struct regmap *map)
1821 {
1822 	return map->write && map->format.format_val && map->format.format_reg;
1823 }
1824 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1825 
1826 /**
1827  * regmap_get_raw_read_max - Get the maximum size we can read
1828  *
1829  * @map: Map to check.
1830  */
regmap_get_raw_read_max(struct regmap * map)1831 size_t regmap_get_raw_read_max(struct regmap *map)
1832 {
1833 	return map->max_raw_read;
1834 }
1835 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1836 
1837 /**
1838  * regmap_get_raw_write_max - Get the maximum size we can read
1839  *
1840  * @map: Map to check.
1841  */
regmap_get_raw_write_max(struct regmap * map)1842 size_t regmap_get_raw_write_max(struct regmap *map)
1843 {
1844 	return map->max_raw_write;
1845 }
1846 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1847 
_regmap_bus_formatted_write(void * context,unsigned int reg,unsigned int val)1848 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1849 				       unsigned int val)
1850 {
1851 	int ret;
1852 	struct regmap_range_node *range;
1853 	struct regmap *map = context;
1854 
1855 	WARN_ON(!map->format.format_write);
1856 
1857 	range = _regmap_range_lookup(map, reg);
1858 	if (range) {
1859 		ret = _regmap_select_page(map, &reg, range, 1);
1860 		if (ret != 0)
1861 			return ret;
1862 	}
1863 
1864 	reg = regmap_reg_addr(map, reg);
1865 	map->format.format_write(map, reg, val);
1866 
1867 	trace_regmap_hw_write_start(map, reg, 1);
1868 
1869 	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1870 
1871 	trace_regmap_hw_write_done(map, reg, 1);
1872 
1873 	return ret;
1874 }
1875 
_regmap_bus_reg_write(void * context,unsigned int reg,unsigned int val)1876 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1877 				 unsigned int val)
1878 {
1879 	struct regmap *map = context;
1880 	struct regmap_range_node *range;
1881 	int ret;
1882 
1883 	range = _regmap_range_lookup(map, reg);
1884 	if (range) {
1885 		ret = _regmap_select_page(map, &reg, range, 1);
1886 		if (ret != 0)
1887 			return ret;
1888 	}
1889 
1890 	reg = regmap_reg_addr(map, reg);
1891 	return map->bus->reg_write(map->bus_context, reg, val);
1892 }
1893 
_regmap_bus_raw_write(void * context,unsigned int reg,unsigned int val)1894 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1895 				 unsigned int val)
1896 {
1897 	struct regmap *map = context;
1898 
1899 	WARN_ON(!map->format.format_val);
1900 
1901 	map->format.format_val(map->work_buf + map->format.reg_bytes
1902 			       + map->format.pad_bytes, val, 0);
1903 	return _regmap_raw_write_impl(map, reg,
1904 				      map->work_buf +
1905 				      map->format.reg_bytes +
1906 				      map->format.pad_bytes,
1907 				      map->format.val_bytes,
1908 				      false);
1909 }
1910 
_regmap_map_get_context(struct regmap * map)1911 static inline void *_regmap_map_get_context(struct regmap *map)
1912 {
1913 	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1914 }
1915 
_regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1916 int _regmap_write(struct regmap *map, unsigned int reg,
1917 		  unsigned int val)
1918 {
1919 	int ret;
1920 	void *context = _regmap_map_get_context(map);
1921 
1922 	if (!regmap_writeable(map, reg))
1923 		return -EIO;
1924 
1925 	if (!map->cache_bypass && !map->defer_caching) {
1926 		ret = regcache_write(map, reg, val);
1927 		if (ret != 0)
1928 			return ret;
1929 		if (map->cache_only) {
1930 			map->cache_dirty = true;
1931 			return 0;
1932 		}
1933 	}
1934 
1935 	ret = map->reg_write(context, reg, val);
1936 	if (ret == 0) {
1937 		if (regmap_should_log(map))
1938 			dev_info(map->dev, "%x <= %x\n", reg, val);
1939 
1940 		trace_regmap_reg_write(map, reg, val);
1941 	}
1942 
1943 	return ret;
1944 }
1945 
1946 /**
1947  * regmap_write() - Write a value to a single register
1948  *
1949  * @map: Register map to write to
1950  * @reg: Register to write to
1951  * @val: Value to be written
1952  *
1953  * A value of zero will be returned on success, a negative errno will
1954  * be returned in error cases.
1955  */
regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1956 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1957 {
1958 	int ret;
1959 
1960 	if (!IS_ALIGNED(reg, map->reg_stride))
1961 		return -EINVAL;
1962 
1963 	map->lock(map->lock_arg);
1964 
1965 	ret = _regmap_write(map, reg, val);
1966 
1967 	map->unlock(map->lock_arg);
1968 
1969 	return ret;
1970 }
1971 EXPORT_SYMBOL_GPL(regmap_write);
1972 
1973 /**
1974  * regmap_write_async() - Write a value to a single register asynchronously
1975  *
1976  * @map: Register map to write to
1977  * @reg: Register to write to
1978  * @val: Value to be written
1979  *
1980  * A value of zero will be returned on success, a negative errno will
1981  * be returned in error cases.
1982  */
regmap_write_async(struct regmap * map,unsigned int reg,unsigned int val)1983 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1984 {
1985 	int ret;
1986 
1987 	if (!IS_ALIGNED(reg, map->reg_stride))
1988 		return -EINVAL;
1989 
1990 	map->lock(map->lock_arg);
1991 
1992 	map->async = true;
1993 
1994 	ret = _regmap_write(map, reg, val);
1995 
1996 	map->async = false;
1997 
1998 	map->unlock(map->lock_arg);
1999 
2000 	return ret;
2001 }
2002 EXPORT_SYMBOL_GPL(regmap_write_async);
2003 
_regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)2004 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2005 		      const void *val, size_t val_len, bool noinc)
2006 {
2007 	size_t val_bytes = map->format.val_bytes;
2008 	size_t val_count = val_len / val_bytes;
2009 	size_t chunk_count, chunk_bytes;
2010 	size_t chunk_regs = val_count;
2011 	int ret, i;
2012 
2013 	if (!val_count)
2014 		return -EINVAL;
2015 
2016 	if (map->use_single_write)
2017 		chunk_regs = 1;
2018 	else if (map->max_raw_write && val_len > map->max_raw_write)
2019 		chunk_regs = map->max_raw_write / val_bytes;
2020 
2021 	chunk_count = val_count / chunk_regs;
2022 	chunk_bytes = chunk_regs * val_bytes;
2023 
2024 	/* Write as many bytes as possible with chunk_size */
2025 	for (i = 0; i < chunk_count; i++) {
2026 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2027 		if (ret)
2028 			return ret;
2029 
2030 		reg += regmap_get_offset(map, chunk_regs);
2031 		val += chunk_bytes;
2032 		val_len -= chunk_bytes;
2033 	}
2034 
2035 	/* Write remaining bytes */
2036 	if (val_len)
2037 		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2038 
2039 	return ret;
2040 }
2041 
2042 /**
2043  * regmap_raw_write() - Write raw values to one or more registers
2044  *
2045  * @map: Register map to write to
2046  * @reg: Initial register to write to
2047  * @val: Block of data to be written, laid out for direct transmission to the
2048  *       device
2049  * @val_len: Length of data pointed to by val.
2050  *
2051  * This function is intended to be used for things like firmware
2052  * download where a large block of data needs to be transferred to the
2053  * device.  No formatting will be done on the data provided.
2054  *
2055  * A value of zero will be returned on success, a negative errno will
2056  * be returned in error cases.
2057  */
regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2058 int regmap_raw_write(struct regmap *map, unsigned int reg,
2059 		     const void *val, size_t val_len)
2060 {
2061 	int ret;
2062 
2063 	if (!regmap_can_raw_write(map))
2064 		return -EINVAL;
2065 	if (val_len % map->format.val_bytes)
2066 		return -EINVAL;
2067 
2068 	map->lock(map->lock_arg);
2069 
2070 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2071 
2072 	map->unlock(map->lock_arg);
2073 
2074 	return ret;
2075 }
2076 EXPORT_SYMBOL_GPL(regmap_raw_write);
2077 
regmap_noinc_readwrite(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool write)2078 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2079 				  void *val, unsigned int val_len, bool write)
2080 {
2081 	size_t val_bytes = map->format.val_bytes;
2082 	size_t val_count = val_len / val_bytes;
2083 	unsigned int lastval;
2084 	u8 *u8p;
2085 	u16 *u16p;
2086 	u32 *u32p;
2087 	int ret;
2088 	int i;
2089 
2090 	switch (val_bytes) {
2091 	case 1:
2092 		u8p = val;
2093 		if (write)
2094 			lastval = (unsigned int)u8p[val_count - 1];
2095 		break;
2096 	case 2:
2097 		u16p = val;
2098 		if (write)
2099 			lastval = (unsigned int)u16p[val_count - 1];
2100 		break;
2101 	case 4:
2102 		u32p = val;
2103 		if (write)
2104 			lastval = (unsigned int)u32p[val_count - 1];
2105 		break;
2106 	default:
2107 		return -EINVAL;
2108 	}
2109 
2110 	/*
2111 	 * Update the cache with the last value we write, the rest is just
2112 	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2113 	 * sure a single read from the cache will work.
2114 	 */
2115 	if (write) {
2116 		if (!map->cache_bypass && !map->defer_caching) {
2117 			ret = regcache_write(map, reg, lastval);
2118 			if (ret != 0)
2119 				return ret;
2120 			if (map->cache_only) {
2121 				map->cache_dirty = true;
2122 				return 0;
2123 			}
2124 		}
2125 		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2126 	} else {
2127 		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2128 	}
2129 
2130 	if (!ret && regmap_should_log(map)) {
2131 		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2132 		for (i = 0; i < val_count; i++) {
2133 			switch (val_bytes) {
2134 			case 1:
2135 				pr_cont("%x", u8p[i]);
2136 				break;
2137 			case 2:
2138 				pr_cont("%x", u16p[i]);
2139 				break;
2140 			case 4:
2141 				pr_cont("%x", u32p[i]);
2142 				break;
2143 			default:
2144 				break;
2145 			}
2146 			if (i == (val_count - 1))
2147 				pr_cont("]\n");
2148 			else
2149 				pr_cont(",");
2150 		}
2151 	}
2152 
2153 	return 0;
2154 }
2155 
2156 /**
2157  * regmap_noinc_write(): Write data to a register without incrementing the
2158  *			register number
2159  *
2160  * @map: Register map to write to
2161  * @reg: Register to write to
2162  * @val: Pointer to data buffer
2163  * @val_len: Length of output buffer in bytes.
2164  *
2165  * The regmap API usually assumes that bulk bus write operations will write a
2166  * range of registers. Some devices have certain registers for which a write
2167  * operation can write to an internal FIFO.
2168  *
2169  * The target register must be volatile but registers after it can be
2170  * completely unrelated cacheable registers.
2171  *
2172  * This will attempt multiple writes as required to write val_len bytes.
2173  *
2174  * A value of zero will be returned on success, a negative errno will be
2175  * returned in error cases.
2176  */
regmap_noinc_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2177 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2178 		      const void *val, size_t val_len)
2179 {
2180 	size_t write_len;
2181 	int ret;
2182 
2183 	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2184 		return -EINVAL;
2185 	if (val_len % map->format.val_bytes)
2186 		return -EINVAL;
2187 	if (!IS_ALIGNED(reg, map->reg_stride))
2188 		return -EINVAL;
2189 	if (val_len == 0)
2190 		return -EINVAL;
2191 
2192 	map->lock(map->lock_arg);
2193 
2194 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2195 		ret = -EINVAL;
2196 		goto out_unlock;
2197 	}
2198 
2199 	/*
2200 	 * Use the accelerated operation if we can. The val drops the const
2201 	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2202 	 */
2203 	if (map->bus->reg_noinc_write) {
2204 		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2205 		goto out_unlock;
2206 	}
2207 
2208 	while (val_len) {
2209 		if (map->max_raw_write && map->max_raw_write < val_len)
2210 			write_len = map->max_raw_write;
2211 		else
2212 			write_len = val_len;
2213 		ret = _regmap_raw_write(map, reg, val, write_len, true);
2214 		if (ret)
2215 			goto out_unlock;
2216 		val = ((u8 *)val) + write_len;
2217 		val_len -= write_len;
2218 	}
2219 
2220 out_unlock:
2221 	map->unlock(map->lock_arg);
2222 	return ret;
2223 }
2224 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2225 
2226 /**
2227  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2228  *                                   register field.
2229  *
2230  * @field: Register field to write to
2231  * @mask: Bitmask to change
2232  * @val: Value to be written
2233  * @change: Boolean indicating if a write was done
2234  * @async: Boolean indicating asynchronously
2235  * @force: Boolean indicating use force update
2236  *
2237  * Perform a read/modify/write cycle on the register field with change,
2238  * async, force option.
2239  *
2240  * A value of zero will be returned on success, a negative errno will
2241  * be returned in error cases.
2242  */
regmap_field_update_bits_base(struct regmap_field * field,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2243 int regmap_field_update_bits_base(struct regmap_field *field,
2244 				  unsigned int mask, unsigned int val,
2245 				  bool *change, bool async, bool force)
2246 {
2247 	mask = (mask << field->shift) & field->mask;
2248 
2249 	return regmap_update_bits_base(field->regmap, field->reg,
2250 				       mask, val << field->shift,
2251 				       change, async, force);
2252 }
2253 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2254 
2255 /**
2256  * regmap_field_test_bits() - Check if all specified bits are set in a
2257  *                            register field.
2258  *
2259  * @field: Register field to operate on
2260  * @bits: Bits to test
2261  *
2262  * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2263  * tested bits is not set and 1 if all tested bits are set.
2264  */
regmap_field_test_bits(struct regmap_field * field,unsigned int bits)2265 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2266 {
2267 	unsigned int val, ret;
2268 
2269 	ret = regmap_field_read(field, &val);
2270 	if (ret)
2271 		return ret;
2272 
2273 	return (val & bits) == bits;
2274 }
2275 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2276 
2277 /**
2278  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2279  *                                    register field with port ID
2280  *
2281  * @field: Register field to write to
2282  * @id: port ID
2283  * @mask: Bitmask to change
2284  * @val: Value to be written
2285  * @change: Boolean indicating if a write was done
2286  * @async: Boolean indicating asynchronously
2287  * @force: Boolean indicating use force update
2288  *
2289  * A value of zero will be returned on success, a negative errno will
2290  * be returned in error cases.
2291  */
regmap_fields_update_bits_base(struct regmap_field * field,unsigned int id,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2292 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2293 				   unsigned int mask, unsigned int val,
2294 				   bool *change, bool async, bool force)
2295 {
2296 	if (id >= field->id_size)
2297 		return -EINVAL;
2298 
2299 	mask = (mask << field->shift) & field->mask;
2300 
2301 	return regmap_update_bits_base(field->regmap,
2302 				       field->reg + (field->id_offset * id),
2303 				       mask, val << field->shift,
2304 				       change, async, force);
2305 }
2306 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2307 
2308 /**
2309  * regmap_bulk_write() - Write multiple registers to the device
2310  *
2311  * @map: Register map to write to
2312  * @reg: First register to be write from
2313  * @val: Block of data to be written, in native register size for device
2314  * @val_count: Number of registers to write
2315  *
2316  * This function is intended to be used for writing a large block of
2317  * data to the device either in single transfer or multiple transfer.
2318  *
2319  * A value of zero will be returned on success, a negative errno will
2320  * be returned in error cases.
2321  */
regmap_bulk_write(struct regmap * map,unsigned int reg,const void * val,size_t val_count)2322 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2323 		     size_t val_count)
2324 {
2325 	int ret = 0, i;
2326 	size_t val_bytes = map->format.val_bytes;
2327 
2328 	if (!IS_ALIGNED(reg, map->reg_stride))
2329 		return -EINVAL;
2330 
2331 	/*
2332 	 * Some devices don't support bulk write, for them we have a series of
2333 	 * single write operations.
2334 	 */
2335 	if (!map->write || !map->format.parse_inplace) {
2336 		map->lock(map->lock_arg);
2337 		for (i = 0; i < val_count; i++) {
2338 			unsigned int ival;
2339 
2340 			switch (val_bytes) {
2341 			case 1:
2342 				ival = *(u8 *)(val + (i * val_bytes));
2343 				break;
2344 			case 2:
2345 				ival = *(u16 *)(val + (i * val_bytes));
2346 				break;
2347 			case 4:
2348 				ival = *(u32 *)(val + (i * val_bytes));
2349 				break;
2350 			default:
2351 				ret = -EINVAL;
2352 				goto out;
2353 			}
2354 
2355 			ret = _regmap_write(map,
2356 					    reg + regmap_get_offset(map, i),
2357 					    ival);
2358 			if (ret != 0)
2359 				goto out;
2360 		}
2361 out:
2362 		map->unlock(map->lock_arg);
2363 	} else {
2364 		void *wval;
2365 
2366 		wval = kmemdup_array(val, val_count, val_bytes, map->alloc_flags);
2367 		if (!wval)
2368 			return -ENOMEM;
2369 
2370 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2371 			map->format.parse_inplace(wval + i);
2372 
2373 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2374 
2375 		kfree(wval);
2376 	}
2377 
2378 	if (!ret)
2379 		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2380 
2381 	return ret;
2382 }
2383 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2384 
2385 /*
2386  * _regmap_raw_multi_reg_write()
2387  *
2388  * the (register,newvalue) pairs in regs have not been formatted, but
2389  * they are all in the same page and have been changed to being page
2390  * relative. The page register has been written if that was necessary.
2391  */
_regmap_raw_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2392 static int _regmap_raw_multi_reg_write(struct regmap *map,
2393 				       const struct reg_sequence *regs,
2394 				       size_t num_regs)
2395 {
2396 	int ret;
2397 	void *buf;
2398 	int i;
2399 	u8 *u8;
2400 	size_t val_bytes = map->format.val_bytes;
2401 	size_t reg_bytes = map->format.reg_bytes;
2402 	size_t pad_bytes = map->format.pad_bytes;
2403 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2404 	size_t len = pair_size * num_regs;
2405 
2406 	if (!len)
2407 		return -EINVAL;
2408 
2409 	buf = kzalloc(len, GFP_KERNEL);
2410 	if (!buf)
2411 		return -ENOMEM;
2412 
2413 	/* We have to linearise by hand. */
2414 
2415 	u8 = buf;
2416 
2417 	for (i = 0; i < num_regs; i++) {
2418 		unsigned int reg = regs[i].reg;
2419 		unsigned int val = regs[i].def;
2420 		trace_regmap_hw_write_start(map, reg, 1);
2421 		reg = regmap_reg_addr(map, reg);
2422 		map->format.format_reg(u8, reg, map->reg_shift);
2423 		u8 += reg_bytes + pad_bytes;
2424 		map->format.format_val(u8, val, 0);
2425 		u8 += val_bytes;
2426 	}
2427 	u8 = buf;
2428 	*u8 |= map->write_flag_mask;
2429 
2430 	ret = map->write(map->bus_context, buf, len);
2431 
2432 	kfree(buf);
2433 
2434 	for (i = 0; i < num_regs; i++) {
2435 		int reg = regs[i].reg;
2436 		trace_regmap_hw_write_done(map, reg, 1);
2437 	}
2438 	return ret;
2439 }
2440 
_regmap_register_page(struct regmap * map,unsigned int reg,struct regmap_range_node * range)2441 static unsigned int _regmap_register_page(struct regmap *map,
2442 					  unsigned int reg,
2443 					  struct regmap_range_node *range)
2444 {
2445 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2446 
2447 	return win_page;
2448 }
2449 
_regmap_range_multi_paged_reg_write(struct regmap * map,struct reg_sequence * regs,size_t num_regs)2450 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2451 					       struct reg_sequence *regs,
2452 					       size_t num_regs)
2453 {
2454 	int ret;
2455 	int i, n;
2456 	struct reg_sequence *base;
2457 	unsigned int this_page = 0;
2458 	unsigned int page_change = 0;
2459 	/*
2460 	 * the set of registers are not neccessarily in order, but
2461 	 * since the order of write must be preserved this algorithm
2462 	 * chops the set each time the page changes. This also applies
2463 	 * if there is a delay required at any point in the sequence.
2464 	 */
2465 	base = regs;
2466 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2467 		unsigned int reg = regs[i].reg;
2468 		struct regmap_range_node *range;
2469 
2470 		range = _regmap_range_lookup(map, reg);
2471 		if (range) {
2472 			unsigned int win_page = _regmap_register_page(map, reg,
2473 								      range);
2474 
2475 			if (i == 0)
2476 				this_page = win_page;
2477 			if (win_page != this_page) {
2478 				this_page = win_page;
2479 				page_change = 1;
2480 			}
2481 		}
2482 
2483 		/* If we have both a page change and a delay make sure to
2484 		 * write the regs and apply the delay before we change the
2485 		 * page.
2486 		 */
2487 
2488 		if (page_change || regs[i].delay_us) {
2489 
2490 				/* For situations where the first write requires
2491 				 * a delay we need to make sure we don't call
2492 				 * raw_multi_reg_write with n=0
2493 				 * This can't occur with page breaks as we
2494 				 * never write on the first iteration
2495 				 */
2496 				if (regs[i].delay_us && i == 0)
2497 					n = 1;
2498 
2499 				ret = _regmap_raw_multi_reg_write(map, base, n);
2500 				if (ret != 0)
2501 					return ret;
2502 
2503 				if (regs[i].delay_us) {
2504 					if (map->can_sleep)
2505 						fsleep(regs[i].delay_us);
2506 					else
2507 						udelay(regs[i].delay_us);
2508 				}
2509 
2510 				base += n;
2511 				n = 0;
2512 
2513 				if (page_change) {
2514 					ret = _regmap_select_page(map,
2515 								  &base[n].reg,
2516 								  range, 1);
2517 					if (ret != 0)
2518 						return ret;
2519 
2520 					page_change = 0;
2521 				}
2522 
2523 		}
2524 
2525 	}
2526 	if (n > 0)
2527 		return _regmap_raw_multi_reg_write(map, base, n);
2528 	return 0;
2529 }
2530 
_regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2531 static int _regmap_multi_reg_write(struct regmap *map,
2532 				   const struct reg_sequence *regs,
2533 				   size_t num_regs)
2534 {
2535 	int i;
2536 	int ret;
2537 
2538 	if (!map->can_multi_write) {
2539 		for (i = 0; i < num_regs; i++) {
2540 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2541 			if (ret != 0)
2542 				return ret;
2543 
2544 			if (regs[i].delay_us) {
2545 				if (map->can_sleep)
2546 					fsleep(regs[i].delay_us);
2547 				else
2548 					udelay(regs[i].delay_us);
2549 			}
2550 		}
2551 		return 0;
2552 	}
2553 
2554 	if (!map->format.parse_inplace)
2555 		return -EINVAL;
2556 
2557 	if (map->writeable_reg)
2558 		for (i = 0; i < num_regs; i++) {
2559 			int reg = regs[i].reg;
2560 			if (!map->writeable_reg(map->dev, reg))
2561 				return -EINVAL;
2562 			if (!IS_ALIGNED(reg, map->reg_stride))
2563 				return -EINVAL;
2564 		}
2565 
2566 	if (!map->cache_bypass) {
2567 		for (i = 0; i < num_regs; i++) {
2568 			unsigned int val = regs[i].def;
2569 			unsigned int reg = regs[i].reg;
2570 			ret = regcache_write(map, reg, val);
2571 			if (ret) {
2572 				dev_err(map->dev,
2573 				"Error in caching of register: %x ret: %d\n",
2574 								reg, ret);
2575 				return ret;
2576 			}
2577 		}
2578 		if (map->cache_only) {
2579 			map->cache_dirty = true;
2580 			return 0;
2581 		}
2582 	}
2583 
2584 	WARN_ON(!map->bus);
2585 
2586 	for (i = 0; i < num_regs; i++) {
2587 		unsigned int reg = regs[i].reg;
2588 		struct regmap_range_node *range;
2589 
2590 		/* Coalesce all the writes between a page break or a delay
2591 		 * in a sequence
2592 		 */
2593 		range = _regmap_range_lookup(map, reg);
2594 		if (range || regs[i].delay_us) {
2595 			size_t len = sizeof(struct reg_sequence)*num_regs;
2596 			struct reg_sequence *base = kmemdup(regs, len,
2597 							   GFP_KERNEL);
2598 			if (!base)
2599 				return -ENOMEM;
2600 			ret = _regmap_range_multi_paged_reg_write(map, base,
2601 								  num_regs);
2602 			kfree(base);
2603 
2604 			return ret;
2605 		}
2606 	}
2607 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2608 }
2609 
2610 /**
2611  * regmap_multi_reg_write() - Write multiple registers to the device
2612  *
2613  * @map: Register map to write to
2614  * @regs: Array of structures containing register,value to be written
2615  * @num_regs: Number of registers to write
2616  *
2617  * Write multiple registers to the device where the set of register, value
2618  * pairs are supplied in any order, possibly not all in a single range.
2619  *
2620  * The 'normal' block write mode will send ultimately send data on the
2621  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2622  * addressed. However, this alternative block multi write mode will send
2623  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2624  * must of course support the mode.
2625  *
2626  * A value of zero will be returned on success, a negative errno will be
2627  * returned in error cases.
2628  */
regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,int num_regs)2629 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2630 			   int num_regs)
2631 {
2632 	int ret;
2633 
2634 	map->lock(map->lock_arg);
2635 
2636 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2637 
2638 	map->unlock(map->lock_arg);
2639 
2640 	return ret;
2641 }
2642 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2643 
2644 /**
2645  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2646  *                                     device but not the cache
2647  *
2648  * @map: Register map to write to
2649  * @regs: Array of structures containing register,value to be written
2650  * @num_regs: Number of registers to write
2651  *
2652  * Write multiple registers to the device but not the cache where the set
2653  * of register are supplied in any order.
2654  *
2655  * This function is intended to be used for writing a large block of data
2656  * atomically to the device in single transfer for those I2C client devices
2657  * that implement this alternative block write mode.
2658  *
2659  * A value of zero will be returned on success, a negative errno will
2660  * be returned in error cases.
2661  */
regmap_multi_reg_write_bypassed(struct regmap * map,const struct reg_sequence * regs,int num_regs)2662 int regmap_multi_reg_write_bypassed(struct regmap *map,
2663 				    const struct reg_sequence *regs,
2664 				    int num_regs)
2665 {
2666 	int ret;
2667 	bool bypass;
2668 
2669 	map->lock(map->lock_arg);
2670 
2671 	bypass = map->cache_bypass;
2672 	map->cache_bypass = true;
2673 
2674 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2675 
2676 	map->cache_bypass = bypass;
2677 
2678 	map->unlock(map->lock_arg);
2679 
2680 	return ret;
2681 }
2682 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2683 
2684 /**
2685  * regmap_raw_write_async() - Write raw values to one or more registers
2686  *                            asynchronously
2687  *
2688  * @map: Register map to write to
2689  * @reg: Initial register to write to
2690  * @val: Block of data to be written, laid out for direct transmission to the
2691  *       device.  Must be valid until regmap_async_complete() is called.
2692  * @val_len: Length of data pointed to by val.
2693  *
2694  * This function is intended to be used for things like firmware
2695  * download where a large block of data needs to be transferred to the
2696  * device.  No formatting will be done on the data provided.
2697  *
2698  * If supported by the underlying bus the write will be scheduled
2699  * asynchronously, helping maximise I/O speed on higher speed buses
2700  * like SPI.  regmap_async_complete() can be called to ensure that all
2701  * asynchrnous writes have been completed.
2702  *
2703  * A value of zero will be returned on success, a negative errno will
2704  * be returned in error cases.
2705  */
regmap_raw_write_async(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2706 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2707 			   const void *val, size_t val_len)
2708 {
2709 	int ret;
2710 
2711 	if (val_len % map->format.val_bytes)
2712 		return -EINVAL;
2713 	if (!IS_ALIGNED(reg, map->reg_stride))
2714 		return -EINVAL;
2715 
2716 	map->lock(map->lock_arg);
2717 
2718 	map->async = true;
2719 
2720 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2721 
2722 	map->async = false;
2723 
2724 	map->unlock(map->lock_arg);
2725 
2726 	return ret;
2727 }
2728 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2729 
_regmap_raw_read(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool noinc)2730 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2731 			    unsigned int val_len, bool noinc)
2732 {
2733 	struct regmap_range_node *range;
2734 	int ret;
2735 
2736 	if (!map->read)
2737 		return -EINVAL;
2738 
2739 	range = _regmap_range_lookup(map, reg);
2740 	if (range) {
2741 		ret = _regmap_select_page(map, &reg, range,
2742 					  noinc ? 1 : val_len / map->format.val_bytes);
2743 		if (ret != 0)
2744 			return ret;
2745 	}
2746 
2747 	reg = regmap_reg_addr(map, reg);
2748 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2749 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2750 				      map->read_flag_mask);
2751 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2752 
2753 	ret = map->read(map->bus_context, map->work_buf,
2754 			map->format.reg_bytes + map->format.pad_bytes,
2755 			val, val_len);
2756 
2757 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2758 
2759 	return ret;
2760 }
2761 
_regmap_bus_reg_read(void * context,unsigned int reg,unsigned int * val)2762 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2763 				unsigned int *val)
2764 {
2765 	struct regmap *map = context;
2766 	struct regmap_range_node *range;
2767 	int ret;
2768 
2769 	range = _regmap_range_lookup(map, reg);
2770 	if (range) {
2771 		ret = _regmap_select_page(map, &reg, range, 1);
2772 		if (ret != 0)
2773 			return ret;
2774 	}
2775 
2776 	reg = regmap_reg_addr(map, reg);
2777 	return map->bus->reg_read(map->bus_context, reg, val);
2778 }
2779 
_regmap_bus_read(void * context,unsigned int reg,unsigned int * val)2780 static int _regmap_bus_read(void *context, unsigned int reg,
2781 			    unsigned int *val)
2782 {
2783 	int ret;
2784 	struct regmap *map = context;
2785 	void *work_val = map->work_buf + map->format.reg_bytes +
2786 		map->format.pad_bytes;
2787 
2788 	if (!map->format.parse_val)
2789 		return -EINVAL;
2790 
2791 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2792 	if (ret == 0)
2793 		*val = map->format.parse_val(work_val);
2794 
2795 	return ret;
2796 }
2797 
_regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2798 static int _regmap_read(struct regmap *map, unsigned int reg,
2799 			unsigned int *val)
2800 {
2801 	int ret;
2802 	void *context = _regmap_map_get_context(map);
2803 
2804 	if (!map->cache_bypass) {
2805 		ret = regcache_read(map, reg, val);
2806 		if (ret == 0)
2807 			return 0;
2808 	}
2809 
2810 	if (map->cache_only)
2811 		return -EBUSY;
2812 
2813 	if (!regmap_readable(map, reg))
2814 		return -EIO;
2815 
2816 	ret = map->reg_read(context, reg, val);
2817 	if (ret == 0) {
2818 		if (regmap_should_log(map))
2819 			dev_info(map->dev, "%x => %x\n", reg, *val);
2820 
2821 		trace_regmap_reg_read(map, reg, *val);
2822 
2823 		if (!map->cache_bypass)
2824 			regcache_write(map, reg, *val);
2825 	}
2826 
2827 	return ret;
2828 }
2829 
2830 /**
2831  * regmap_read() - Read a value from a single register
2832  *
2833  * @map: Register map to read from
2834  * @reg: Register to be read from
2835  * @val: Pointer to store read value
2836  *
2837  * A value of zero will be returned on success, a negative errno will
2838  * be returned in error cases.
2839  */
regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2840 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2841 {
2842 	int ret;
2843 
2844 	if (!IS_ALIGNED(reg, map->reg_stride))
2845 		return -EINVAL;
2846 
2847 	map->lock(map->lock_arg);
2848 
2849 	ret = _regmap_read(map, reg, val);
2850 
2851 	map->unlock(map->lock_arg);
2852 
2853 	return ret;
2854 }
2855 EXPORT_SYMBOL_GPL(regmap_read);
2856 
2857 /**
2858  * regmap_read_bypassed() - Read a value from a single register direct
2859  *			    from the device, bypassing the cache
2860  *
2861  * @map: Register map to read from
2862  * @reg: Register to be read from
2863  * @val: Pointer to store read value
2864  *
2865  * A value of zero will be returned on success, a negative errno will
2866  * be returned in error cases.
2867  */
regmap_read_bypassed(struct regmap * map,unsigned int reg,unsigned int * val)2868 int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val)
2869 {
2870 	int ret;
2871 	bool bypass, cache_only;
2872 
2873 	if (!IS_ALIGNED(reg, map->reg_stride))
2874 		return -EINVAL;
2875 
2876 	map->lock(map->lock_arg);
2877 
2878 	bypass = map->cache_bypass;
2879 	cache_only = map->cache_only;
2880 	map->cache_bypass = true;
2881 	map->cache_only = false;
2882 
2883 	ret = _regmap_read(map, reg, val);
2884 
2885 	map->cache_bypass = bypass;
2886 	map->cache_only = cache_only;
2887 
2888 	map->unlock(map->lock_arg);
2889 
2890 	return ret;
2891 }
2892 EXPORT_SYMBOL_GPL(regmap_read_bypassed);
2893 
2894 /**
2895  * regmap_raw_read() - Read raw data from the device
2896  *
2897  * @map: Register map to read from
2898  * @reg: First register to be read from
2899  * @val: Pointer to store read value
2900  * @val_len: Size of data to read
2901  *
2902  * A value of zero will be returned on success, a negative errno will
2903  * be returned in error cases.
2904  */
regmap_raw_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2905 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2906 		    size_t val_len)
2907 {
2908 	size_t val_bytes = map->format.val_bytes;
2909 	size_t val_count = val_len / val_bytes;
2910 	unsigned int v;
2911 	int ret, i;
2912 
2913 	if (val_len % map->format.val_bytes)
2914 		return -EINVAL;
2915 	if (!IS_ALIGNED(reg, map->reg_stride))
2916 		return -EINVAL;
2917 	if (val_count == 0)
2918 		return -EINVAL;
2919 
2920 	map->lock(map->lock_arg);
2921 
2922 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2923 	    map->cache_type == REGCACHE_NONE) {
2924 		size_t chunk_count, chunk_bytes;
2925 		size_t chunk_regs = val_count;
2926 
2927 		if (!map->cache_bypass && map->cache_only) {
2928 			ret = -EBUSY;
2929 			goto out;
2930 		}
2931 
2932 		if (!map->read) {
2933 			ret = -ENOTSUPP;
2934 			goto out;
2935 		}
2936 
2937 		if (map->use_single_read)
2938 			chunk_regs = 1;
2939 		else if (map->max_raw_read && val_len > map->max_raw_read)
2940 			chunk_regs = map->max_raw_read / val_bytes;
2941 
2942 		chunk_count = val_count / chunk_regs;
2943 		chunk_bytes = chunk_regs * val_bytes;
2944 
2945 		/* Read bytes that fit into whole chunks */
2946 		for (i = 0; i < chunk_count; i++) {
2947 			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2948 			if (ret != 0)
2949 				goto out;
2950 
2951 			reg += regmap_get_offset(map, chunk_regs);
2952 			val += chunk_bytes;
2953 			val_len -= chunk_bytes;
2954 		}
2955 
2956 		/* Read remaining bytes */
2957 		if (val_len) {
2958 			ret = _regmap_raw_read(map, reg, val, val_len, false);
2959 			if (ret != 0)
2960 				goto out;
2961 		}
2962 	} else {
2963 		/* Otherwise go word by word for the cache; should be low
2964 		 * cost as we expect to hit the cache.
2965 		 */
2966 		for (i = 0; i < val_count; i++) {
2967 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2968 					   &v);
2969 			if (ret != 0)
2970 				goto out;
2971 
2972 			map->format.format_val(val + (i * val_bytes), v, 0);
2973 		}
2974 	}
2975 
2976  out:
2977 	map->unlock(map->lock_arg);
2978 
2979 	return ret;
2980 }
2981 EXPORT_SYMBOL_GPL(regmap_raw_read);
2982 
2983 /**
2984  * regmap_noinc_read(): Read data from a register without incrementing the
2985  *			register number
2986  *
2987  * @map: Register map to read from
2988  * @reg: Register to read from
2989  * @val: Pointer to data buffer
2990  * @val_len: Length of output buffer in bytes.
2991  *
2992  * The regmap API usually assumes that bulk read operations will read a
2993  * range of registers. Some devices have certain registers for which a read
2994  * operation read will read from an internal FIFO.
2995  *
2996  * The target register must be volatile but registers after it can be
2997  * completely unrelated cacheable registers.
2998  *
2999  * This will attempt multiple reads as required to read val_len bytes.
3000  *
3001  * A value of zero will be returned on success, a negative errno will be
3002  * returned in error cases.
3003  */
regmap_noinc_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)3004 int regmap_noinc_read(struct regmap *map, unsigned int reg,
3005 		      void *val, size_t val_len)
3006 {
3007 	size_t read_len;
3008 	int ret;
3009 
3010 	if (!map->read)
3011 		return -ENOTSUPP;
3012 
3013 	if (val_len % map->format.val_bytes)
3014 		return -EINVAL;
3015 	if (!IS_ALIGNED(reg, map->reg_stride))
3016 		return -EINVAL;
3017 	if (val_len == 0)
3018 		return -EINVAL;
3019 
3020 	map->lock(map->lock_arg);
3021 
3022 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3023 		ret = -EINVAL;
3024 		goto out_unlock;
3025 	}
3026 
3027 	/*
3028 	 * We have not defined the FIFO semantics for cache, as the
3029 	 * cache is just one value deep. Should we return the last
3030 	 * written value? Just avoid this by always reading the FIFO
3031 	 * even when using cache. Cache only will not work.
3032 	 */
3033 	if (!map->cache_bypass && map->cache_only) {
3034 		ret = -EBUSY;
3035 		goto out_unlock;
3036 	}
3037 
3038 	/* Use the accelerated operation if we can */
3039 	if (map->bus->reg_noinc_read) {
3040 		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3041 		goto out_unlock;
3042 	}
3043 
3044 	while (val_len) {
3045 		if (map->max_raw_read && map->max_raw_read < val_len)
3046 			read_len = map->max_raw_read;
3047 		else
3048 			read_len = val_len;
3049 		ret = _regmap_raw_read(map, reg, val, read_len, true);
3050 		if (ret)
3051 			goto out_unlock;
3052 		val = ((u8 *)val) + read_len;
3053 		val_len -= read_len;
3054 	}
3055 
3056 out_unlock:
3057 	map->unlock(map->lock_arg);
3058 	return ret;
3059 }
3060 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3061 
3062 /**
3063  * regmap_field_read(): Read a value to a single register field
3064  *
3065  * @field: Register field to read from
3066  * @val: Pointer to store read value
3067  *
3068  * A value of zero will be returned on success, a negative errno will
3069  * be returned in error cases.
3070  */
regmap_field_read(struct regmap_field * field,unsigned int * val)3071 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3072 {
3073 	int ret;
3074 	unsigned int reg_val;
3075 	ret = regmap_read(field->regmap, field->reg, &reg_val);
3076 	if (ret != 0)
3077 		return ret;
3078 
3079 	reg_val &= field->mask;
3080 	reg_val >>= field->shift;
3081 	*val = reg_val;
3082 
3083 	return ret;
3084 }
3085 EXPORT_SYMBOL_GPL(regmap_field_read);
3086 
3087 /**
3088  * regmap_fields_read() - Read a value to a single register field with port ID
3089  *
3090  * @field: Register field to read from
3091  * @id: port ID
3092  * @val: Pointer to store read value
3093  *
3094  * A value of zero will be returned on success, a negative errno will
3095  * be returned in error cases.
3096  */
regmap_fields_read(struct regmap_field * field,unsigned int id,unsigned int * val)3097 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3098 		       unsigned int *val)
3099 {
3100 	int ret;
3101 	unsigned int reg_val;
3102 
3103 	if (id >= field->id_size)
3104 		return -EINVAL;
3105 
3106 	ret = regmap_read(field->regmap,
3107 			  field->reg + (field->id_offset * id),
3108 			  &reg_val);
3109 	if (ret != 0)
3110 		return ret;
3111 
3112 	reg_val &= field->mask;
3113 	reg_val >>= field->shift;
3114 	*val = reg_val;
3115 
3116 	return ret;
3117 }
3118 EXPORT_SYMBOL_GPL(regmap_fields_read);
3119 
_regmap_bulk_read(struct regmap * map,unsigned int reg,unsigned int * regs,void * val,size_t val_count)3120 static int _regmap_bulk_read(struct regmap *map, unsigned int reg,
3121 			     unsigned int *regs, void *val, size_t val_count)
3122 {
3123 	u32 *u32 = val;
3124 	u16 *u16 = val;
3125 	u8 *u8 = val;
3126 	int ret, i;
3127 
3128 	map->lock(map->lock_arg);
3129 
3130 	for (i = 0; i < val_count; i++) {
3131 		unsigned int ival;
3132 
3133 		if (regs) {
3134 			if (!IS_ALIGNED(regs[i], map->reg_stride)) {
3135 				ret = -EINVAL;
3136 				goto out;
3137 			}
3138 			ret = _regmap_read(map, regs[i], &ival);
3139 		} else {
3140 			ret = _regmap_read(map, reg + regmap_get_offset(map, i), &ival);
3141 		}
3142 		if (ret != 0)
3143 			goto out;
3144 
3145 		switch (map->format.val_bytes) {
3146 		case 4:
3147 			u32[i] = ival;
3148 			break;
3149 		case 2:
3150 			u16[i] = ival;
3151 			break;
3152 		case 1:
3153 			u8[i] = ival;
3154 			break;
3155 		default:
3156 			ret = -EINVAL;
3157 			goto out;
3158 		}
3159 	}
3160 out:
3161 	map->unlock(map->lock_arg);
3162 	return ret;
3163 }
3164 
3165 /**
3166  * regmap_bulk_read() - Read multiple sequential registers from the device
3167  *
3168  * @map: Register map to read from
3169  * @reg: First register to be read from
3170  * @val: Pointer to store read value, in native register size for device
3171  * @val_count: Number of registers to read
3172  *
3173  * A value of zero will be returned on success, a negative errno will
3174  * be returned in error cases.
3175  */
regmap_bulk_read(struct regmap * map,unsigned int reg,void * val,size_t val_count)3176 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3177 		     size_t val_count)
3178 {
3179 	int ret, i;
3180 	size_t val_bytes = map->format.val_bytes;
3181 	bool vol = regmap_volatile_range(map, reg, val_count);
3182 
3183 	if (!IS_ALIGNED(reg, map->reg_stride))
3184 		return -EINVAL;
3185 	if (val_count == 0)
3186 		return -EINVAL;
3187 
3188 	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3189 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3190 		if (ret != 0)
3191 			return ret;
3192 
3193 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3194 			map->format.parse_inplace(val + i);
3195 	} else {
3196 		ret = _regmap_bulk_read(map, reg, NULL, val, val_count);
3197 	}
3198 	if (!ret)
3199 		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3200 	return ret;
3201 }
3202 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3203 
3204 /**
3205  * regmap_multi_reg_read() - Read multiple non-sequential registers from the device
3206  *
3207  * @map: Register map to read from
3208  * @regs: Array of registers to read from
3209  * @val: Pointer to store read value, in native register size for device
3210  * @val_count: Number of registers to read
3211  *
3212  * A value of zero will be returned on success, a negative errno will
3213  * be returned in error cases.
3214  */
regmap_multi_reg_read(struct regmap * map,unsigned int * regs,void * val,size_t val_count)3215 int regmap_multi_reg_read(struct regmap *map, unsigned int *regs, void *val,
3216 			  size_t val_count)
3217 {
3218 	if (val_count == 0)
3219 		return -EINVAL;
3220 
3221 	return _regmap_bulk_read(map, 0, regs, val, val_count);
3222 }
3223 EXPORT_SYMBOL_GPL(regmap_multi_reg_read);
3224 
_regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool force_write)3225 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3226 			       unsigned int mask, unsigned int val,
3227 			       bool *change, bool force_write)
3228 {
3229 	int ret;
3230 	unsigned int tmp, orig;
3231 
3232 	if (change)
3233 		*change = false;
3234 
3235 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3236 		reg = regmap_reg_addr(map, reg);
3237 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3238 		if (ret == 0 && change)
3239 			*change = true;
3240 	} else {
3241 		ret = _regmap_read(map, reg, &orig);
3242 		if (ret != 0)
3243 			return ret;
3244 
3245 		tmp = orig & ~mask;
3246 		tmp |= val & mask;
3247 
3248 		if (force_write || (tmp != orig) || map->force_write_field) {
3249 			ret = _regmap_write(map, reg, tmp);
3250 			if (ret == 0 && change)
3251 				*change = true;
3252 		}
3253 	}
3254 
3255 	return ret;
3256 }
3257 
3258 /**
3259  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3260  *
3261  * @map: Register map to update
3262  * @reg: Register to update
3263  * @mask: Bitmask to change
3264  * @val: New value for bitmask
3265  * @change: Boolean indicating if a write was done
3266  * @async: Boolean indicating asynchronously
3267  * @force: Boolean indicating use force update
3268  *
3269  * Perform a read/modify/write cycle on a register map with change, async, force
3270  * options.
3271  *
3272  * If async is true:
3273  *
3274  * With most buses the read must be done synchronously so this is most useful
3275  * for devices with a cache which do not need to interact with the hardware to
3276  * determine the current register value.
3277  *
3278  * Returns zero for success, a negative number on error.
3279  */
regmap_update_bits_base(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool async,bool force)3280 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3281 			    unsigned int mask, unsigned int val,
3282 			    bool *change, bool async, bool force)
3283 {
3284 	int ret;
3285 
3286 	map->lock(map->lock_arg);
3287 
3288 	map->async = async;
3289 
3290 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3291 
3292 	map->async = false;
3293 
3294 	map->unlock(map->lock_arg);
3295 
3296 	return ret;
3297 }
3298 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3299 
3300 /**
3301  * regmap_test_bits() - Check if all specified bits are set in a register.
3302  *
3303  * @map: Register map to operate on
3304  * @reg: Register to read from
3305  * @bits: Bits to test
3306  *
3307  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3308  * bits are set and a negative error number if the underlying regmap_read()
3309  * fails.
3310  */
regmap_test_bits(struct regmap * map,unsigned int reg,unsigned int bits)3311 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3312 {
3313 	unsigned int val, ret;
3314 
3315 	ret = regmap_read(map, reg, &val);
3316 	if (ret)
3317 		return ret;
3318 
3319 	return (val & bits) == bits;
3320 }
3321 EXPORT_SYMBOL_GPL(regmap_test_bits);
3322 
regmap_async_complete_cb(struct regmap_async * async,int ret)3323 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3324 {
3325 	struct regmap *map = async->map;
3326 	bool wake;
3327 
3328 	trace_regmap_async_io_complete(map);
3329 
3330 	spin_lock(&map->async_lock);
3331 	list_move(&async->list, &map->async_free);
3332 	wake = list_empty(&map->async_list);
3333 
3334 	if (ret != 0)
3335 		map->async_ret = ret;
3336 
3337 	spin_unlock(&map->async_lock);
3338 
3339 	if (wake)
3340 		wake_up(&map->async_waitq);
3341 }
3342 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3343 
regmap_async_is_done(struct regmap * map)3344 static int regmap_async_is_done(struct regmap *map)
3345 {
3346 	unsigned long flags;
3347 	int ret;
3348 
3349 	spin_lock_irqsave(&map->async_lock, flags);
3350 	ret = list_empty(&map->async_list);
3351 	spin_unlock_irqrestore(&map->async_lock, flags);
3352 
3353 	return ret;
3354 }
3355 
3356 /**
3357  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3358  *
3359  * @map: Map to operate on.
3360  *
3361  * Blocks until any pending asynchronous I/O has completed.  Returns
3362  * an error code for any failed I/O operations.
3363  */
regmap_async_complete(struct regmap * map)3364 int regmap_async_complete(struct regmap *map)
3365 {
3366 	unsigned long flags;
3367 	int ret;
3368 
3369 	/* Nothing to do with no async support */
3370 	if (!map->bus || !map->bus->async_write)
3371 		return 0;
3372 
3373 	trace_regmap_async_complete_start(map);
3374 
3375 	wait_event(map->async_waitq, regmap_async_is_done(map));
3376 
3377 	spin_lock_irqsave(&map->async_lock, flags);
3378 	ret = map->async_ret;
3379 	map->async_ret = 0;
3380 	spin_unlock_irqrestore(&map->async_lock, flags);
3381 
3382 	trace_regmap_async_complete_done(map);
3383 
3384 	return ret;
3385 }
3386 EXPORT_SYMBOL_GPL(regmap_async_complete);
3387 
3388 /**
3389  * regmap_register_patch - Register and apply register updates to be applied
3390  *                         on device initialistion
3391  *
3392  * @map: Register map to apply updates to.
3393  * @regs: Values to update.
3394  * @num_regs: Number of entries in regs.
3395  *
3396  * Register a set of register updates to be applied to the device
3397  * whenever the device registers are synchronised with the cache and
3398  * apply them immediately.  Typically this is used to apply
3399  * corrections to be applied to the device defaults on startup, such
3400  * as the updates some vendors provide to undocumented registers.
3401  *
3402  * The caller must ensure that this function cannot be called
3403  * concurrently with either itself or regcache_sync().
3404  */
regmap_register_patch(struct regmap * map,const struct reg_sequence * regs,int num_regs)3405 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3406 			  int num_regs)
3407 {
3408 	struct reg_sequence *p;
3409 	int ret;
3410 	bool bypass;
3411 
3412 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3413 	    num_regs))
3414 		return 0;
3415 
3416 	p = krealloc(map->patch,
3417 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3418 		     GFP_KERNEL);
3419 	if (p) {
3420 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3421 		map->patch = p;
3422 		map->patch_regs += num_regs;
3423 	} else {
3424 		return -ENOMEM;
3425 	}
3426 
3427 	map->lock(map->lock_arg);
3428 
3429 	bypass = map->cache_bypass;
3430 
3431 	map->cache_bypass = true;
3432 	map->async = true;
3433 
3434 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3435 
3436 	map->async = false;
3437 	map->cache_bypass = bypass;
3438 
3439 	map->unlock(map->lock_arg);
3440 
3441 	regmap_async_complete(map);
3442 
3443 	return ret;
3444 }
3445 EXPORT_SYMBOL_GPL(regmap_register_patch);
3446 
3447 /**
3448  * regmap_get_val_bytes() - Report the size of a register value
3449  *
3450  * @map: Register map to operate on.
3451  *
3452  * Report the size of a register value, mainly intended to for use by
3453  * generic infrastructure built on top of regmap.
3454  */
regmap_get_val_bytes(struct regmap * map)3455 int regmap_get_val_bytes(struct regmap *map)
3456 {
3457 	if (map->format.format_write)
3458 		return -EINVAL;
3459 
3460 	return map->format.val_bytes;
3461 }
3462 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3463 
3464 /**
3465  * regmap_get_max_register() - Report the max register value
3466  *
3467  * @map: Register map to operate on.
3468  *
3469  * Report the max register value, mainly intended to for use by
3470  * generic infrastructure built on top of regmap.
3471  */
regmap_get_max_register(struct regmap * map)3472 int regmap_get_max_register(struct regmap *map)
3473 {
3474 	return map->max_register_is_set ? map->max_register : -EINVAL;
3475 }
3476 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3477 
3478 /**
3479  * regmap_get_reg_stride() - Report the register address stride
3480  *
3481  * @map: Register map to operate on.
3482  *
3483  * Report the register address stride, mainly intended to for use by
3484  * generic infrastructure built on top of regmap.
3485  */
regmap_get_reg_stride(struct regmap * map)3486 int regmap_get_reg_stride(struct regmap *map)
3487 {
3488 	return map->reg_stride;
3489 }
3490 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3491 
3492 /**
3493  * regmap_might_sleep() - Returns whether a regmap access might sleep.
3494  *
3495  * @map: Register map to operate on.
3496  *
3497  * Returns true if an access to the register might sleep, else false.
3498  */
regmap_might_sleep(struct regmap * map)3499 bool regmap_might_sleep(struct regmap *map)
3500 {
3501 	return map->can_sleep;
3502 }
3503 EXPORT_SYMBOL_GPL(regmap_might_sleep);
3504 
regmap_parse_val(struct regmap * map,const void * buf,unsigned int * val)3505 int regmap_parse_val(struct regmap *map, const void *buf,
3506 			unsigned int *val)
3507 {
3508 	if (!map->format.parse_val)
3509 		return -EINVAL;
3510 
3511 	*val = map->format.parse_val(buf);
3512 
3513 	return 0;
3514 }
3515 EXPORT_SYMBOL_GPL(regmap_parse_val);
3516 
regmap_initcall(void)3517 static int __init regmap_initcall(void)
3518 {
3519 	regmap_debugfs_initcall();
3520 
3521 	return 0;
3522 }
3523 postcore_initcall(regmap_initcall);
3524