1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Generic pwmlib implementation
4 *
5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6 * Copyright (C) 2011-2012 Avionic Design GmbH
7 */
8
9 #define DEFAULT_SYMBOL_NAMESPACE "PWM"
10
11 #include <linux/acpi.h>
12 #include <linux/module.h>
13 #include <linux/idr.h>
14 #include <linux/of.h>
15 #include <linux/pwm.h>
16 #include <linux/list.h>
17 #include <linux/mutex.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23
24 #include <dt-bindings/pwm/pwm.h>
25
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/pwm.h>
28
29 /* protects access to pwm_chips */
30 static DEFINE_MUTEX(pwm_lock);
31
32 static DEFINE_IDR(pwm_chips);
33
pwm_apply_debug(struct pwm_device * pwm,const struct pwm_state * state)34 static void pwm_apply_debug(struct pwm_device *pwm,
35 const struct pwm_state *state)
36 {
37 struct pwm_state *last = &pwm->last;
38 struct pwm_chip *chip = pwm->chip;
39 struct pwm_state s1 = { 0 }, s2 = { 0 };
40 int err;
41
42 if (!IS_ENABLED(CONFIG_PWM_DEBUG))
43 return;
44
45 /* No reasonable diagnosis possible without .get_state() */
46 if (!chip->ops->get_state)
47 return;
48
49 /*
50 * *state was just applied. Read out the hardware state and do some
51 * checks.
52 */
53
54 err = chip->ops->get_state(chip, pwm, &s1);
55 trace_pwm_get(pwm, &s1, err);
56 if (err)
57 /* If that failed there isn't much to debug */
58 return;
59
60 /*
61 * The lowlevel driver either ignored .polarity (which is a bug) or as
62 * best effort inverted .polarity and fixed .duty_cycle respectively.
63 * Undo this inversion and fixup for further tests.
64 */
65 if (s1.enabled && s1.polarity != state->polarity) {
66 s2.polarity = state->polarity;
67 s2.duty_cycle = s1.period - s1.duty_cycle;
68 s2.period = s1.period;
69 s2.enabled = s1.enabled;
70 } else {
71 s2 = s1;
72 }
73
74 if (s2.polarity != state->polarity &&
75 state->duty_cycle < state->period)
76 dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n");
77
78 if (state->enabled && s2.enabled &&
79 last->polarity == state->polarity &&
80 last->period > s2.period &&
81 last->period <= state->period)
82 dev_warn(pwmchip_parent(chip),
83 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
84 state->period, s2.period, last->period);
85
86 /*
87 * Rounding period up is fine only if duty_cycle is 0 then, because a
88 * flat line doesn't have a characteristic period.
89 */
90 if (state->enabled && s2.enabled && state->period < s2.period && s2.duty_cycle)
91 dev_warn(pwmchip_parent(chip),
92 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
93 state->period, s2.period);
94
95 if (state->enabled &&
96 last->polarity == state->polarity &&
97 last->period == s2.period &&
98 last->duty_cycle > s2.duty_cycle &&
99 last->duty_cycle <= state->duty_cycle)
100 dev_warn(pwmchip_parent(chip),
101 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
102 state->duty_cycle, state->period,
103 s2.duty_cycle, s2.period,
104 last->duty_cycle, last->period);
105
106 if (state->enabled && s2.enabled && state->duty_cycle < s2.duty_cycle)
107 dev_warn(pwmchip_parent(chip),
108 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
109 state->duty_cycle, state->period,
110 s2.duty_cycle, s2.period);
111
112 if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
113 dev_warn(pwmchip_parent(chip),
114 "requested disabled, but yielded enabled with duty > 0\n");
115
116 /* reapply the state that the driver reported being configured. */
117 err = chip->ops->apply(chip, pwm, &s1);
118 trace_pwm_apply(pwm, &s1, err);
119 if (err) {
120 *last = s1;
121 dev_err(pwmchip_parent(chip), "failed to reapply current setting\n");
122 return;
123 }
124
125 *last = (struct pwm_state){ 0 };
126 err = chip->ops->get_state(chip, pwm, last);
127 trace_pwm_get(pwm, last, err);
128 if (err)
129 return;
130
131 /* reapplication of the current state should give an exact match */
132 if (s1.enabled != last->enabled ||
133 s1.polarity != last->polarity ||
134 (s1.enabled && s1.period != last->period) ||
135 (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
136 dev_err(pwmchip_parent(chip),
137 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
138 s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
139 last->enabled, last->polarity, last->duty_cycle,
140 last->period);
141 }
142 }
143
pwm_state_valid(const struct pwm_state * state)144 static bool pwm_state_valid(const struct pwm_state *state)
145 {
146 /*
147 * For a disabled state all other state description is irrelevant and
148 * and supposed to be ignored. So also ignore any strange values and
149 * consider the state ok.
150 */
151 if (!state->enabled)
152 return true;
153
154 if (!state->period)
155 return false;
156
157 if (state->duty_cycle > state->period)
158 return false;
159
160 return true;
161 }
162
163 /**
164 * __pwm_apply() - atomically apply a new state to a PWM device
165 * @pwm: PWM device
166 * @state: new state to apply
167 */
__pwm_apply(struct pwm_device * pwm,const struct pwm_state * state)168 static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
169 {
170 struct pwm_chip *chip;
171 int err;
172
173 if (!pwm || !state)
174 return -EINVAL;
175
176 if (!pwm_state_valid(state)) {
177 /*
178 * Allow to transition from one invalid state to another.
179 * This ensures that you can e.g. change the polarity while
180 * the period is zero. (This happens on stm32 when the hardware
181 * is in its poweron default state.) This greatly simplifies
182 * working with the sysfs API where you can only change one
183 * parameter at a time.
184 */
185 if (!pwm_state_valid(&pwm->state)) {
186 pwm->state = *state;
187 return 0;
188 }
189
190 return -EINVAL;
191 }
192
193 chip = pwm->chip;
194
195 if (state->period == pwm->state.period &&
196 state->duty_cycle == pwm->state.duty_cycle &&
197 state->polarity == pwm->state.polarity &&
198 state->enabled == pwm->state.enabled &&
199 state->usage_power == pwm->state.usage_power)
200 return 0;
201
202 err = chip->ops->apply(chip, pwm, state);
203 trace_pwm_apply(pwm, state, err);
204 if (err)
205 return err;
206
207 pwm->state = *state;
208
209 /*
210 * only do this after pwm->state was applied as some
211 * implementations of .get_state depend on this
212 */
213 pwm_apply_debug(pwm, state);
214
215 return 0;
216 }
217
218 /**
219 * pwm_apply_might_sleep() - atomically apply a new state to a PWM device
220 * Cannot be used in atomic context.
221 * @pwm: PWM device
222 * @state: new state to apply
223 */
pwm_apply_might_sleep(struct pwm_device * pwm,const struct pwm_state * state)224 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
225 {
226 int err;
227
228 /*
229 * Some lowlevel driver's implementations of .apply() make use of
230 * mutexes, also with some drivers only returning when the new
231 * configuration is active calling pwm_apply_might_sleep() from atomic context
232 * is a bad idea. So make it explicit that calling this function might
233 * sleep.
234 */
235 might_sleep();
236
237 if (IS_ENABLED(CONFIG_PWM_DEBUG) && pwm->chip->atomic) {
238 /*
239 * Catch any drivers that have been marked as atomic but
240 * that will sleep anyway.
241 */
242 non_block_start();
243 err = __pwm_apply(pwm, state);
244 non_block_end();
245 } else {
246 err = __pwm_apply(pwm, state);
247 }
248
249 return err;
250 }
251 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep);
252
253 /**
254 * pwm_apply_atomic() - apply a new state to a PWM device from atomic context
255 * Not all PWM devices support this function, check with pwm_might_sleep().
256 * @pwm: PWM device
257 * @state: new state to apply
258 */
pwm_apply_atomic(struct pwm_device * pwm,const struct pwm_state * state)259 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state)
260 {
261 WARN_ONCE(!pwm->chip->atomic,
262 "sleeping PWM driver used in atomic context\n");
263
264 return __pwm_apply(pwm, state);
265 }
266 EXPORT_SYMBOL_GPL(pwm_apply_atomic);
267
268 /**
269 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
270 * @pwm: PWM device
271 *
272 * This function will adjust the PWM config to the PWM arguments provided
273 * by the DT or PWM lookup table. This is particularly useful to adapt
274 * the bootloader config to the Linux one.
275 */
pwm_adjust_config(struct pwm_device * pwm)276 int pwm_adjust_config(struct pwm_device *pwm)
277 {
278 struct pwm_state state;
279 struct pwm_args pargs;
280
281 pwm_get_args(pwm, &pargs);
282 pwm_get_state(pwm, &state);
283
284 /*
285 * If the current period is zero it means that either the PWM driver
286 * does not support initial state retrieval or the PWM has not yet
287 * been configured.
288 *
289 * In either case, we setup the new period and polarity, and assign a
290 * duty cycle of 0.
291 */
292 if (!state.period) {
293 state.duty_cycle = 0;
294 state.period = pargs.period;
295 state.polarity = pargs.polarity;
296
297 return pwm_apply_might_sleep(pwm, &state);
298 }
299
300 /*
301 * Adjust the PWM duty cycle/period based on the period value provided
302 * in PWM args.
303 */
304 if (pargs.period != state.period) {
305 u64 dutycycle = (u64)state.duty_cycle * pargs.period;
306
307 do_div(dutycycle, state.period);
308 state.duty_cycle = dutycycle;
309 state.period = pargs.period;
310 }
311
312 /*
313 * If the polarity changed, we should also change the duty cycle.
314 */
315 if (pargs.polarity != state.polarity) {
316 state.polarity = pargs.polarity;
317 state.duty_cycle = state.period - state.duty_cycle;
318 }
319
320 return pwm_apply_might_sleep(pwm, &state);
321 }
322 EXPORT_SYMBOL_GPL(pwm_adjust_config);
323
324 /**
325 * pwm_capture() - capture and report a PWM signal
326 * @pwm: PWM device
327 * @result: structure to fill with capture result
328 * @timeout: time to wait, in milliseconds, before giving up on capture
329 *
330 * Returns: 0 on success or a negative error code on failure.
331 */
pwm_capture(struct pwm_device * pwm,struct pwm_capture * result,unsigned long timeout)332 static int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
333 unsigned long timeout)
334 {
335 struct pwm_chip *chip = pwm->chip;
336 const struct pwm_ops *ops = chip->ops;
337
338 if (!ops->capture)
339 return -ENOSYS;
340
341 guard(mutex)(&pwm_lock);
342
343 return ops->capture(chip, pwm, result, timeout);
344 }
345
pwmchip_find_by_name(const char * name)346 static struct pwm_chip *pwmchip_find_by_name(const char *name)
347 {
348 struct pwm_chip *chip;
349 unsigned long id, tmp;
350
351 if (!name)
352 return NULL;
353
354 guard(mutex)(&pwm_lock);
355
356 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) {
357 const char *chip_name = dev_name(pwmchip_parent(chip));
358
359 if (chip_name && strcmp(chip_name, name) == 0)
360 return chip;
361 }
362
363 return NULL;
364 }
365
pwm_device_request(struct pwm_device * pwm,const char * label)366 static int pwm_device_request(struct pwm_device *pwm, const char *label)
367 {
368 int err;
369 struct pwm_chip *chip = pwm->chip;
370 const struct pwm_ops *ops = chip->ops;
371
372 if (test_bit(PWMF_REQUESTED, &pwm->flags))
373 return -EBUSY;
374
375 if (!try_module_get(chip->owner))
376 return -ENODEV;
377
378 if (!get_device(&chip->dev)) {
379 err = -ENODEV;
380 goto err_get_device;
381 }
382
383 if (ops->request) {
384 err = ops->request(chip, pwm);
385 if (err) {
386 put_device(&chip->dev);
387 err_get_device:
388 module_put(chip->owner);
389 return err;
390 }
391 }
392
393 if (ops->get_state) {
394 /*
395 * Zero-initialize state because most drivers are unaware of
396 * .usage_power. The other members of state are supposed to be
397 * set by lowlevel drivers. We still initialize the whole
398 * structure for simplicity even though this might paper over
399 * faulty implementations of .get_state().
400 */
401 struct pwm_state state = { 0, };
402
403 err = ops->get_state(chip, pwm, &state);
404 trace_pwm_get(pwm, &state, err);
405
406 if (!err)
407 pwm->state = state;
408
409 if (IS_ENABLED(CONFIG_PWM_DEBUG))
410 pwm->last = pwm->state;
411 }
412
413 set_bit(PWMF_REQUESTED, &pwm->flags);
414 pwm->label = label;
415
416 return 0;
417 }
418
419 /**
420 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
421 * @chip: PWM chip
422 * @index: per-chip index of the PWM to request
423 * @label: a literal description string of this PWM
424 *
425 * Returns: A pointer to the PWM device at the given index of the given PWM
426 * chip. A negative error code is returned if the index is not valid for the
427 * specified PWM chip or if the PWM device cannot be requested.
428 */
pwm_request_from_chip(struct pwm_chip * chip,unsigned int index,const char * label)429 static struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
430 unsigned int index,
431 const char *label)
432 {
433 struct pwm_device *pwm;
434 int err;
435
436 if (!chip || index >= chip->npwm)
437 return ERR_PTR(-EINVAL);
438
439 guard(mutex)(&pwm_lock);
440
441 pwm = &chip->pwms[index];
442
443 err = pwm_device_request(pwm, label);
444 if (err < 0)
445 return ERR_PTR(err);
446
447 return pwm;
448 }
449
450 struct pwm_device *
of_pwm_xlate_with_flags(struct pwm_chip * chip,const struct of_phandle_args * args)451 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
452 {
453 struct pwm_device *pwm;
454
455 /* period in the second cell and flags in the third cell are optional */
456 if (args->args_count < 1)
457 return ERR_PTR(-EINVAL);
458
459 pwm = pwm_request_from_chip(chip, args->args[0], NULL);
460 if (IS_ERR(pwm))
461 return pwm;
462
463 if (args->args_count > 1)
464 pwm->args.period = args->args[1];
465
466 pwm->args.polarity = PWM_POLARITY_NORMAL;
467 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
468 pwm->args.polarity = PWM_POLARITY_INVERSED;
469
470 return pwm;
471 }
472 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
473
474 struct pwm_device *
of_pwm_single_xlate(struct pwm_chip * chip,const struct of_phandle_args * args)475 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
476 {
477 struct pwm_device *pwm;
478
479 pwm = pwm_request_from_chip(chip, 0, NULL);
480 if (IS_ERR(pwm))
481 return pwm;
482
483 if (args->args_count > 0)
484 pwm->args.period = args->args[0];
485
486 pwm->args.polarity = PWM_POLARITY_NORMAL;
487 if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED)
488 pwm->args.polarity = PWM_POLARITY_INVERSED;
489
490 return pwm;
491 }
492 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
493
494 struct pwm_export {
495 struct device pwm_dev;
496 struct pwm_device *pwm;
497 struct mutex lock;
498 struct pwm_state suspend;
499 };
500
pwmchip_from_dev(struct device * pwmchip_dev)501 static inline struct pwm_chip *pwmchip_from_dev(struct device *pwmchip_dev)
502 {
503 return container_of(pwmchip_dev, struct pwm_chip, dev);
504 }
505
pwmexport_from_dev(struct device * pwm_dev)506 static inline struct pwm_export *pwmexport_from_dev(struct device *pwm_dev)
507 {
508 return container_of(pwm_dev, struct pwm_export, pwm_dev);
509 }
510
pwm_from_dev(struct device * pwm_dev)511 static inline struct pwm_device *pwm_from_dev(struct device *pwm_dev)
512 {
513 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
514
515 return export->pwm;
516 }
517
period_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)518 static ssize_t period_show(struct device *pwm_dev,
519 struct device_attribute *attr,
520 char *buf)
521 {
522 const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
523 struct pwm_state state;
524
525 pwm_get_state(pwm, &state);
526
527 return sysfs_emit(buf, "%llu\n", state.period);
528 }
529
period_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)530 static ssize_t period_store(struct device *pwm_dev,
531 struct device_attribute *attr,
532 const char *buf, size_t size)
533 {
534 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
535 struct pwm_device *pwm = export->pwm;
536 struct pwm_state state;
537 u64 val;
538 int ret;
539
540 ret = kstrtou64(buf, 0, &val);
541 if (ret)
542 return ret;
543
544 guard(mutex)(&export->lock);
545
546 pwm_get_state(pwm, &state);
547 state.period = val;
548 ret = pwm_apply_might_sleep(pwm, &state);
549
550 return ret ? : size;
551 }
552
duty_cycle_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)553 static ssize_t duty_cycle_show(struct device *pwm_dev,
554 struct device_attribute *attr,
555 char *buf)
556 {
557 const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
558 struct pwm_state state;
559
560 pwm_get_state(pwm, &state);
561
562 return sysfs_emit(buf, "%llu\n", state.duty_cycle);
563 }
564
duty_cycle_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)565 static ssize_t duty_cycle_store(struct device *pwm_dev,
566 struct device_attribute *attr,
567 const char *buf, size_t size)
568 {
569 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
570 struct pwm_device *pwm = export->pwm;
571 struct pwm_state state;
572 u64 val;
573 int ret;
574
575 ret = kstrtou64(buf, 0, &val);
576 if (ret)
577 return ret;
578
579 guard(mutex)(&export->lock);
580
581 pwm_get_state(pwm, &state);
582 state.duty_cycle = val;
583 ret = pwm_apply_might_sleep(pwm, &state);
584
585 return ret ? : size;
586 }
587
enable_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)588 static ssize_t enable_show(struct device *pwm_dev,
589 struct device_attribute *attr,
590 char *buf)
591 {
592 const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
593 struct pwm_state state;
594
595 pwm_get_state(pwm, &state);
596
597 return sysfs_emit(buf, "%d\n", state.enabled);
598 }
599
enable_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)600 static ssize_t enable_store(struct device *pwm_dev,
601 struct device_attribute *attr,
602 const char *buf, size_t size)
603 {
604 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
605 struct pwm_device *pwm = export->pwm;
606 struct pwm_state state;
607 int val, ret;
608
609 ret = kstrtoint(buf, 0, &val);
610 if (ret)
611 return ret;
612
613 guard(mutex)(&export->lock);
614
615 pwm_get_state(pwm, &state);
616
617 switch (val) {
618 case 0:
619 state.enabled = false;
620 break;
621 case 1:
622 state.enabled = true;
623 break;
624 default:
625 return -EINVAL;
626 }
627
628 ret = pwm_apply_might_sleep(pwm, &state);
629
630 return ret ? : size;
631 }
632
polarity_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)633 static ssize_t polarity_show(struct device *pwm_dev,
634 struct device_attribute *attr,
635 char *buf)
636 {
637 const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
638 const char *polarity = "unknown";
639 struct pwm_state state;
640
641 pwm_get_state(pwm, &state);
642
643 switch (state.polarity) {
644 case PWM_POLARITY_NORMAL:
645 polarity = "normal";
646 break;
647
648 case PWM_POLARITY_INVERSED:
649 polarity = "inversed";
650 break;
651 }
652
653 return sysfs_emit(buf, "%s\n", polarity);
654 }
655
polarity_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)656 static ssize_t polarity_store(struct device *pwm_dev,
657 struct device_attribute *attr,
658 const char *buf, size_t size)
659 {
660 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
661 struct pwm_device *pwm = export->pwm;
662 enum pwm_polarity polarity;
663 struct pwm_state state;
664 int ret;
665
666 if (sysfs_streq(buf, "normal"))
667 polarity = PWM_POLARITY_NORMAL;
668 else if (sysfs_streq(buf, "inversed"))
669 polarity = PWM_POLARITY_INVERSED;
670 else
671 return -EINVAL;
672
673 guard(mutex)(&export->lock);
674
675 pwm_get_state(pwm, &state);
676 state.polarity = polarity;
677 ret = pwm_apply_might_sleep(pwm, &state);
678
679 return ret ? : size;
680 }
681
capture_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)682 static ssize_t capture_show(struct device *pwm_dev,
683 struct device_attribute *attr,
684 char *buf)
685 {
686 struct pwm_device *pwm = pwm_from_dev(pwm_dev);
687 struct pwm_capture result;
688 int ret;
689
690 ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ));
691 if (ret)
692 return ret;
693
694 return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle);
695 }
696
697 static DEVICE_ATTR_RW(period);
698 static DEVICE_ATTR_RW(duty_cycle);
699 static DEVICE_ATTR_RW(enable);
700 static DEVICE_ATTR_RW(polarity);
701 static DEVICE_ATTR_RO(capture);
702
703 static struct attribute *pwm_attrs[] = {
704 &dev_attr_period.attr,
705 &dev_attr_duty_cycle.attr,
706 &dev_attr_enable.attr,
707 &dev_attr_polarity.attr,
708 &dev_attr_capture.attr,
709 NULL
710 };
711 ATTRIBUTE_GROUPS(pwm);
712
pwm_export_release(struct device * pwm_dev)713 static void pwm_export_release(struct device *pwm_dev)
714 {
715 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
716
717 kfree(export);
718 }
719
pwm_export_child(struct device * pwmchip_dev,struct pwm_device * pwm)720 static int pwm_export_child(struct device *pwmchip_dev, struct pwm_device *pwm)
721 {
722 struct pwm_export *export;
723 char *pwm_prop[2];
724 int ret;
725
726 if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags))
727 return -EBUSY;
728
729 export = kzalloc(sizeof(*export), GFP_KERNEL);
730 if (!export) {
731 clear_bit(PWMF_EXPORTED, &pwm->flags);
732 return -ENOMEM;
733 }
734
735 export->pwm = pwm;
736 mutex_init(&export->lock);
737
738 export->pwm_dev.release = pwm_export_release;
739 export->pwm_dev.parent = pwmchip_dev;
740 export->pwm_dev.devt = MKDEV(0, 0);
741 export->pwm_dev.groups = pwm_groups;
742 dev_set_name(&export->pwm_dev, "pwm%u", pwm->hwpwm);
743
744 ret = device_register(&export->pwm_dev);
745 if (ret) {
746 clear_bit(PWMF_EXPORTED, &pwm->flags);
747 put_device(&export->pwm_dev);
748 export = NULL;
749 return ret;
750 }
751 pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm);
752 pwm_prop[1] = NULL;
753 kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
754 kfree(pwm_prop[0]);
755
756 return 0;
757 }
758
pwm_unexport_match(struct device * pwm_dev,void * data)759 static int pwm_unexport_match(struct device *pwm_dev, void *data)
760 {
761 return pwm_from_dev(pwm_dev) == data;
762 }
763
pwm_unexport_child(struct device * pwmchip_dev,struct pwm_device * pwm)764 static int pwm_unexport_child(struct device *pwmchip_dev, struct pwm_device *pwm)
765 {
766 struct device *pwm_dev;
767 char *pwm_prop[2];
768
769 if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags))
770 return -ENODEV;
771
772 pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
773 if (!pwm_dev)
774 return -ENODEV;
775
776 pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm);
777 pwm_prop[1] = NULL;
778 kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
779 kfree(pwm_prop[0]);
780
781 /* for device_find_child() */
782 put_device(pwm_dev);
783 device_unregister(pwm_dev);
784 pwm_put(pwm);
785
786 return 0;
787 }
788
export_store(struct device * pwmchip_dev,struct device_attribute * attr,const char * buf,size_t len)789 static ssize_t export_store(struct device *pwmchip_dev,
790 struct device_attribute *attr,
791 const char *buf, size_t len)
792 {
793 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
794 struct pwm_device *pwm;
795 unsigned int hwpwm;
796 int ret;
797
798 ret = kstrtouint(buf, 0, &hwpwm);
799 if (ret < 0)
800 return ret;
801
802 if (hwpwm >= chip->npwm)
803 return -ENODEV;
804
805 pwm = pwm_request_from_chip(chip, hwpwm, "sysfs");
806 if (IS_ERR(pwm))
807 return PTR_ERR(pwm);
808
809 ret = pwm_export_child(pwmchip_dev, pwm);
810 if (ret < 0)
811 pwm_put(pwm);
812
813 return ret ? : len;
814 }
815 static DEVICE_ATTR_WO(export);
816
unexport_store(struct device * pwmchip_dev,struct device_attribute * attr,const char * buf,size_t len)817 static ssize_t unexport_store(struct device *pwmchip_dev,
818 struct device_attribute *attr,
819 const char *buf, size_t len)
820 {
821 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
822 unsigned int hwpwm;
823 int ret;
824
825 ret = kstrtouint(buf, 0, &hwpwm);
826 if (ret < 0)
827 return ret;
828
829 if (hwpwm >= chip->npwm)
830 return -ENODEV;
831
832 ret = pwm_unexport_child(pwmchip_dev, &chip->pwms[hwpwm]);
833
834 return ret ? : len;
835 }
836 static DEVICE_ATTR_WO(unexport);
837
npwm_show(struct device * pwmchip_dev,struct device_attribute * attr,char * buf)838 static ssize_t npwm_show(struct device *pwmchip_dev, struct device_attribute *attr,
839 char *buf)
840 {
841 const struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
842
843 return sysfs_emit(buf, "%u\n", chip->npwm);
844 }
845 static DEVICE_ATTR_RO(npwm);
846
847 static struct attribute *pwm_chip_attrs[] = {
848 &dev_attr_export.attr,
849 &dev_attr_unexport.attr,
850 &dev_attr_npwm.attr,
851 NULL,
852 };
853 ATTRIBUTE_GROUPS(pwm_chip);
854
855 /* takes export->lock on success */
pwm_class_get_state(struct device * pwmchip_dev,struct pwm_device * pwm,struct pwm_state * state)856 static struct pwm_export *pwm_class_get_state(struct device *pwmchip_dev,
857 struct pwm_device *pwm,
858 struct pwm_state *state)
859 {
860 struct device *pwm_dev;
861 struct pwm_export *export;
862
863 if (!test_bit(PWMF_EXPORTED, &pwm->flags))
864 return NULL;
865
866 pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
867 if (!pwm_dev)
868 return NULL;
869
870 export = pwmexport_from_dev(pwm_dev);
871 put_device(pwm_dev); /* for device_find_child() */
872
873 mutex_lock(&export->lock);
874 pwm_get_state(pwm, state);
875
876 return export;
877 }
878
pwm_class_apply_state(struct pwm_export * export,struct pwm_device * pwm,struct pwm_state * state)879 static int pwm_class_apply_state(struct pwm_export *export,
880 struct pwm_device *pwm,
881 struct pwm_state *state)
882 {
883 int ret = pwm_apply_might_sleep(pwm, state);
884
885 /* release lock taken in pwm_class_get_state */
886 mutex_unlock(&export->lock);
887
888 return ret;
889 }
890
pwm_class_resume_npwm(struct device * pwmchip_dev,unsigned int npwm)891 static int pwm_class_resume_npwm(struct device *pwmchip_dev, unsigned int npwm)
892 {
893 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
894 unsigned int i;
895 int ret = 0;
896
897 for (i = 0; i < npwm; i++) {
898 struct pwm_device *pwm = &chip->pwms[i];
899 struct pwm_state state;
900 struct pwm_export *export;
901
902 export = pwm_class_get_state(pwmchip_dev, pwm, &state);
903 if (!export)
904 continue;
905
906 /* If pwmchip was not enabled before suspend, do nothing. */
907 if (!export->suspend.enabled) {
908 /* release lock taken in pwm_class_get_state */
909 mutex_unlock(&export->lock);
910 continue;
911 }
912
913 state.enabled = export->suspend.enabled;
914 ret = pwm_class_apply_state(export, pwm, &state);
915 if (ret < 0)
916 break;
917 }
918
919 return ret;
920 }
921
pwm_class_suspend(struct device * pwmchip_dev)922 static int pwm_class_suspend(struct device *pwmchip_dev)
923 {
924 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
925 unsigned int i;
926 int ret = 0;
927
928 for (i = 0; i < chip->npwm; i++) {
929 struct pwm_device *pwm = &chip->pwms[i];
930 struct pwm_state state;
931 struct pwm_export *export;
932
933 export = pwm_class_get_state(pwmchip_dev, pwm, &state);
934 if (!export)
935 continue;
936
937 /*
938 * If pwmchip was not enabled before suspend, save
939 * state for resume time and do nothing else.
940 */
941 export->suspend = state;
942 if (!state.enabled) {
943 /* release lock taken in pwm_class_get_state */
944 mutex_unlock(&export->lock);
945 continue;
946 }
947
948 state.enabled = false;
949 ret = pwm_class_apply_state(export, pwm, &state);
950 if (ret < 0) {
951 /*
952 * roll back the PWM devices that were disabled by
953 * this suspend function.
954 */
955 pwm_class_resume_npwm(pwmchip_dev, i);
956 break;
957 }
958 }
959
960 return ret;
961 }
962
pwm_class_resume(struct device * pwmchip_dev)963 static int pwm_class_resume(struct device *pwmchip_dev)
964 {
965 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
966
967 return pwm_class_resume_npwm(pwmchip_dev, chip->npwm);
968 }
969
970 static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume);
971
972 static struct class pwm_class = {
973 .name = "pwm",
974 .dev_groups = pwm_chip_groups,
975 .pm = pm_sleep_ptr(&pwm_class_pm_ops),
976 };
977
pwmchip_sysfs_unexport(struct pwm_chip * chip)978 static void pwmchip_sysfs_unexport(struct pwm_chip *chip)
979 {
980 unsigned int i;
981
982 for (i = 0; i < chip->npwm; i++) {
983 struct pwm_device *pwm = &chip->pwms[i];
984
985 if (test_bit(PWMF_EXPORTED, &pwm->flags))
986 pwm_unexport_child(&chip->dev, pwm);
987 }
988 }
989
990 #define PWMCHIP_ALIGN ARCH_DMA_MINALIGN
991
pwmchip_priv(struct pwm_chip * chip)992 static void *pwmchip_priv(struct pwm_chip *chip)
993 {
994 return (void *)chip + ALIGN(struct_size(chip, pwms, chip->npwm), PWMCHIP_ALIGN);
995 }
996
997 /* This is the counterpart to pwmchip_alloc() */
pwmchip_put(struct pwm_chip * chip)998 void pwmchip_put(struct pwm_chip *chip)
999 {
1000 put_device(&chip->dev);
1001 }
1002 EXPORT_SYMBOL_GPL(pwmchip_put);
1003
pwmchip_release(struct device * pwmchip_dev)1004 static void pwmchip_release(struct device *pwmchip_dev)
1005 {
1006 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1007
1008 kfree(chip);
1009 }
1010
pwmchip_alloc(struct device * parent,unsigned int npwm,size_t sizeof_priv)1011 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1012 {
1013 struct pwm_chip *chip;
1014 struct device *pwmchip_dev;
1015 size_t alloc_size;
1016 unsigned int i;
1017
1018 alloc_size = size_add(ALIGN(struct_size(chip, pwms, npwm), PWMCHIP_ALIGN),
1019 sizeof_priv);
1020
1021 chip = kzalloc(alloc_size, GFP_KERNEL);
1022 if (!chip)
1023 return ERR_PTR(-ENOMEM);
1024
1025 chip->npwm = npwm;
1026 chip->uses_pwmchip_alloc = true;
1027
1028 pwmchip_dev = &chip->dev;
1029 device_initialize(pwmchip_dev);
1030 pwmchip_dev->class = &pwm_class;
1031 pwmchip_dev->parent = parent;
1032 pwmchip_dev->release = pwmchip_release;
1033
1034 pwmchip_set_drvdata(chip, pwmchip_priv(chip));
1035
1036 for (i = 0; i < chip->npwm; i++) {
1037 struct pwm_device *pwm = &chip->pwms[i];
1038 pwm->chip = chip;
1039 pwm->hwpwm = i;
1040 }
1041
1042 return chip;
1043 }
1044 EXPORT_SYMBOL_GPL(pwmchip_alloc);
1045
devm_pwmchip_put(void * data)1046 static void devm_pwmchip_put(void *data)
1047 {
1048 struct pwm_chip *chip = data;
1049
1050 pwmchip_put(chip);
1051 }
1052
devm_pwmchip_alloc(struct device * parent,unsigned int npwm,size_t sizeof_priv)1053 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1054 {
1055 struct pwm_chip *chip;
1056 int ret;
1057
1058 chip = pwmchip_alloc(parent, npwm, sizeof_priv);
1059 if (IS_ERR(chip))
1060 return chip;
1061
1062 ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip);
1063 if (ret)
1064 return ERR_PTR(ret);
1065
1066 return chip;
1067 }
1068 EXPORT_SYMBOL_GPL(devm_pwmchip_alloc);
1069
of_pwmchip_add(struct pwm_chip * chip)1070 static void of_pwmchip_add(struct pwm_chip *chip)
1071 {
1072 if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node)
1073 return;
1074
1075 if (!chip->of_xlate)
1076 chip->of_xlate = of_pwm_xlate_with_flags;
1077
1078 of_node_get(pwmchip_parent(chip)->of_node);
1079 }
1080
of_pwmchip_remove(struct pwm_chip * chip)1081 static void of_pwmchip_remove(struct pwm_chip *chip)
1082 {
1083 if (pwmchip_parent(chip))
1084 of_node_put(pwmchip_parent(chip)->of_node);
1085 }
1086
pwm_ops_check(const struct pwm_chip * chip)1087 static bool pwm_ops_check(const struct pwm_chip *chip)
1088 {
1089 const struct pwm_ops *ops = chip->ops;
1090
1091 if (!ops->apply)
1092 return false;
1093
1094 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
1095 dev_warn(pwmchip_parent(chip),
1096 "Please implement the .get_state() callback\n");
1097
1098 return true;
1099 }
1100
1101 /**
1102 * __pwmchip_add() - register a new PWM chip
1103 * @chip: the PWM chip to add
1104 * @owner: reference to the module providing the chip.
1105 *
1106 * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the
1107 * pwmchip_add wrapper to do this right.
1108 *
1109 * Returns: 0 on success or a negative error code on failure.
1110 */
__pwmchip_add(struct pwm_chip * chip,struct module * owner)1111 int __pwmchip_add(struct pwm_chip *chip, struct module *owner)
1112 {
1113 int ret;
1114
1115 if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm)
1116 return -EINVAL;
1117
1118 /*
1119 * a struct pwm_chip must be allocated using (devm_)pwmchip_alloc,
1120 * otherwise the embedded struct device might disappear too early
1121 * resulting in memory corruption.
1122 * Catch drivers that were not converted appropriately.
1123 */
1124 if (!chip->uses_pwmchip_alloc)
1125 return -EINVAL;
1126
1127 if (!pwm_ops_check(chip))
1128 return -EINVAL;
1129
1130 chip->owner = owner;
1131
1132 guard(mutex)(&pwm_lock);
1133
1134 ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL);
1135 if (ret < 0)
1136 return ret;
1137
1138 chip->id = ret;
1139
1140 dev_set_name(&chip->dev, "pwmchip%u", chip->id);
1141
1142 if (IS_ENABLED(CONFIG_OF))
1143 of_pwmchip_add(chip);
1144
1145 ret = device_add(&chip->dev);
1146 if (ret)
1147 goto err_device_add;
1148
1149 return 0;
1150
1151 err_device_add:
1152 if (IS_ENABLED(CONFIG_OF))
1153 of_pwmchip_remove(chip);
1154
1155 idr_remove(&pwm_chips, chip->id);
1156
1157 return ret;
1158 }
1159 EXPORT_SYMBOL_GPL(__pwmchip_add);
1160
1161 /**
1162 * pwmchip_remove() - remove a PWM chip
1163 * @chip: the PWM chip to remove
1164 *
1165 * Removes a PWM chip.
1166 */
pwmchip_remove(struct pwm_chip * chip)1167 void pwmchip_remove(struct pwm_chip *chip)
1168 {
1169 pwmchip_sysfs_unexport(chip);
1170
1171 if (IS_ENABLED(CONFIG_OF))
1172 of_pwmchip_remove(chip);
1173
1174 scoped_guard(mutex, &pwm_lock)
1175 idr_remove(&pwm_chips, chip->id);
1176
1177 device_del(&chip->dev);
1178 }
1179 EXPORT_SYMBOL_GPL(pwmchip_remove);
1180
devm_pwmchip_remove(void * data)1181 static void devm_pwmchip_remove(void *data)
1182 {
1183 struct pwm_chip *chip = data;
1184
1185 pwmchip_remove(chip);
1186 }
1187
__devm_pwmchip_add(struct device * dev,struct pwm_chip * chip,struct module * owner)1188 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner)
1189 {
1190 int ret;
1191
1192 ret = __pwmchip_add(chip, owner);
1193 if (ret)
1194 return ret;
1195
1196 return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
1197 }
1198 EXPORT_SYMBOL_GPL(__devm_pwmchip_add);
1199
pwm_device_link_add(struct device * dev,struct pwm_device * pwm)1200 static struct device_link *pwm_device_link_add(struct device *dev,
1201 struct pwm_device *pwm)
1202 {
1203 struct device_link *dl;
1204
1205 if (!dev) {
1206 /*
1207 * No device for the PWM consumer has been provided. It may
1208 * impact the PM sequence ordering: the PWM supplier may get
1209 * suspended before the consumer.
1210 */
1211 dev_warn(pwmchip_parent(pwm->chip),
1212 "No consumer device specified to create a link to\n");
1213 return NULL;
1214 }
1215
1216 dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER);
1217 if (!dl) {
1218 dev_err(dev, "failed to create device link to %s\n",
1219 dev_name(pwmchip_parent(pwm->chip)));
1220 return ERR_PTR(-EINVAL);
1221 }
1222
1223 return dl;
1224 }
1225
fwnode_to_pwmchip(struct fwnode_handle * fwnode)1226 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
1227 {
1228 struct pwm_chip *chip;
1229 unsigned long id, tmp;
1230
1231 guard(mutex)(&pwm_lock);
1232
1233 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id)
1234 if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode))
1235 return chip;
1236
1237 return ERR_PTR(-EPROBE_DEFER);
1238 }
1239
1240 /**
1241 * of_pwm_get() - request a PWM via the PWM framework
1242 * @dev: device for PWM consumer
1243 * @np: device node to get the PWM from
1244 * @con_id: consumer name
1245 *
1246 * Returns the PWM device parsed from the phandle and index specified in the
1247 * "pwms" property of a device tree node or a negative error-code on failure.
1248 * Values parsed from the device tree are stored in the returned PWM device
1249 * object.
1250 *
1251 * If con_id is NULL, the first PWM device listed in the "pwms" property will
1252 * be requested. Otherwise the "pwm-names" property is used to do a reverse
1253 * lookup of the PWM index. This also means that the "pwm-names" property
1254 * becomes mandatory for devices that look up the PWM device via the con_id
1255 * parameter.
1256 *
1257 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1258 * error code on failure.
1259 */
of_pwm_get(struct device * dev,struct device_node * np,const char * con_id)1260 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
1261 const char *con_id)
1262 {
1263 struct pwm_device *pwm = NULL;
1264 struct of_phandle_args args;
1265 struct device_link *dl;
1266 struct pwm_chip *chip;
1267 int index = 0;
1268 int err;
1269
1270 if (con_id) {
1271 index = of_property_match_string(np, "pwm-names", con_id);
1272 if (index < 0)
1273 return ERR_PTR(index);
1274 }
1275
1276 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
1277 &args);
1278 if (err) {
1279 pr_err("%s(): can't parse \"pwms\" property\n", __func__);
1280 return ERR_PTR(err);
1281 }
1282
1283 chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
1284 if (IS_ERR(chip)) {
1285 if (PTR_ERR(chip) != -EPROBE_DEFER)
1286 pr_err("%s(): PWM chip not found\n", __func__);
1287
1288 pwm = ERR_CAST(chip);
1289 goto put;
1290 }
1291
1292 pwm = chip->of_xlate(chip, &args);
1293 if (IS_ERR(pwm))
1294 goto put;
1295
1296 dl = pwm_device_link_add(dev, pwm);
1297 if (IS_ERR(dl)) {
1298 /* of_xlate ended up calling pwm_request_from_chip() */
1299 pwm_put(pwm);
1300 pwm = ERR_CAST(dl);
1301 goto put;
1302 }
1303
1304 /*
1305 * If a consumer name was not given, try to look it up from the
1306 * "pwm-names" property if it exists. Otherwise use the name of
1307 * the user device node.
1308 */
1309 if (!con_id) {
1310 err = of_property_read_string_index(np, "pwm-names", index,
1311 &con_id);
1312 if (err < 0)
1313 con_id = np->name;
1314 }
1315
1316 pwm->label = con_id;
1317
1318 put:
1319 of_node_put(args.np);
1320
1321 return pwm;
1322 }
1323
1324 /**
1325 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
1326 * @fwnode: firmware node to get the "pwms" property from
1327 *
1328 * Returns the PWM device parsed from the fwnode and index specified in the
1329 * "pwms" property or a negative error-code on failure.
1330 * Values parsed from the device tree are stored in the returned PWM device
1331 * object.
1332 *
1333 * This is analogous to of_pwm_get() except con_id is not yet supported.
1334 * ACPI entries must look like
1335 * Package () {"pwms", Package ()
1336 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
1337 *
1338 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1339 * error code on failure.
1340 */
acpi_pwm_get(const struct fwnode_handle * fwnode)1341 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
1342 {
1343 struct pwm_device *pwm;
1344 struct fwnode_reference_args args;
1345 struct pwm_chip *chip;
1346 int ret;
1347
1348 memset(&args, 0, sizeof(args));
1349
1350 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
1351 if (ret < 0)
1352 return ERR_PTR(ret);
1353
1354 if (args.nargs < 2)
1355 return ERR_PTR(-EPROTO);
1356
1357 chip = fwnode_to_pwmchip(args.fwnode);
1358 if (IS_ERR(chip))
1359 return ERR_CAST(chip);
1360
1361 pwm = pwm_request_from_chip(chip, args.args[0], NULL);
1362 if (IS_ERR(pwm))
1363 return pwm;
1364
1365 pwm->args.period = args.args[1];
1366 pwm->args.polarity = PWM_POLARITY_NORMAL;
1367
1368 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
1369 pwm->args.polarity = PWM_POLARITY_INVERSED;
1370
1371 return pwm;
1372 }
1373
1374 static DEFINE_MUTEX(pwm_lookup_lock);
1375 static LIST_HEAD(pwm_lookup_list);
1376
1377 /**
1378 * pwm_add_table() - register PWM device consumers
1379 * @table: array of consumers to register
1380 * @num: number of consumers in table
1381 */
pwm_add_table(struct pwm_lookup * table,size_t num)1382 void pwm_add_table(struct pwm_lookup *table, size_t num)
1383 {
1384 guard(mutex)(&pwm_lookup_lock);
1385
1386 while (num--) {
1387 list_add_tail(&table->list, &pwm_lookup_list);
1388 table++;
1389 }
1390 }
1391
1392 /**
1393 * pwm_remove_table() - unregister PWM device consumers
1394 * @table: array of consumers to unregister
1395 * @num: number of consumers in table
1396 */
pwm_remove_table(struct pwm_lookup * table,size_t num)1397 void pwm_remove_table(struct pwm_lookup *table, size_t num)
1398 {
1399 guard(mutex)(&pwm_lookup_lock);
1400
1401 while (num--) {
1402 list_del(&table->list);
1403 table++;
1404 }
1405 }
1406
1407 /**
1408 * pwm_get() - look up and request a PWM device
1409 * @dev: device for PWM consumer
1410 * @con_id: consumer name
1411 *
1412 * Lookup is first attempted using DT. If the device was not instantiated from
1413 * a device tree, a PWM chip and a relative index is looked up via a table
1414 * supplied by board setup code (see pwm_add_table()).
1415 *
1416 * Once a PWM chip has been found the specified PWM device will be requested
1417 * and is ready to be used.
1418 *
1419 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1420 * error code on failure.
1421 */
pwm_get(struct device * dev,const char * con_id)1422 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
1423 {
1424 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
1425 const char *dev_id = dev ? dev_name(dev) : NULL;
1426 struct pwm_device *pwm;
1427 struct pwm_chip *chip;
1428 struct device_link *dl;
1429 unsigned int best = 0;
1430 struct pwm_lookup *p, *chosen = NULL;
1431 unsigned int match;
1432 int err;
1433
1434 /* look up via DT first */
1435 if (is_of_node(fwnode))
1436 return of_pwm_get(dev, to_of_node(fwnode), con_id);
1437
1438 /* then lookup via ACPI */
1439 if (is_acpi_node(fwnode)) {
1440 pwm = acpi_pwm_get(fwnode);
1441 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1442 return pwm;
1443 }
1444
1445 /*
1446 * We look up the provider in the static table typically provided by
1447 * board setup code. We first try to lookup the consumer device by
1448 * name. If the consumer device was passed in as NULL or if no match
1449 * was found, we try to find the consumer by directly looking it up
1450 * by name.
1451 *
1452 * If a match is found, the provider PWM chip is looked up by name
1453 * and a PWM device is requested using the PWM device per-chip index.
1454 *
1455 * The lookup algorithm was shamelessly taken from the clock
1456 * framework:
1457 *
1458 * We do slightly fuzzy matching here:
1459 * An entry with a NULL ID is assumed to be a wildcard.
1460 * If an entry has a device ID, it must match
1461 * If an entry has a connection ID, it must match
1462 * Then we take the most specific entry - with the following order
1463 * of precedence: dev+con > dev only > con only.
1464 */
1465 scoped_guard(mutex, &pwm_lookup_lock)
1466 list_for_each_entry(p, &pwm_lookup_list, list) {
1467 match = 0;
1468
1469 if (p->dev_id) {
1470 if (!dev_id || strcmp(p->dev_id, dev_id))
1471 continue;
1472
1473 match += 2;
1474 }
1475
1476 if (p->con_id) {
1477 if (!con_id || strcmp(p->con_id, con_id))
1478 continue;
1479
1480 match += 1;
1481 }
1482
1483 if (match > best) {
1484 chosen = p;
1485
1486 if (match != 3)
1487 best = match;
1488 else
1489 break;
1490 }
1491 }
1492
1493 if (!chosen)
1494 return ERR_PTR(-ENODEV);
1495
1496 chip = pwmchip_find_by_name(chosen->provider);
1497
1498 /*
1499 * If the lookup entry specifies a module, load the module and retry
1500 * the PWM chip lookup. This can be used to work around driver load
1501 * ordering issues if driver's can't be made to properly support the
1502 * deferred probe mechanism.
1503 */
1504 if (!chip && chosen->module) {
1505 err = request_module(chosen->module);
1506 if (err == 0)
1507 chip = pwmchip_find_by_name(chosen->provider);
1508 }
1509
1510 if (!chip)
1511 return ERR_PTR(-EPROBE_DEFER);
1512
1513 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1514 if (IS_ERR(pwm))
1515 return pwm;
1516
1517 dl = pwm_device_link_add(dev, pwm);
1518 if (IS_ERR(dl)) {
1519 pwm_put(pwm);
1520 return ERR_CAST(dl);
1521 }
1522
1523 pwm->args.period = chosen->period;
1524 pwm->args.polarity = chosen->polarity;
1525
1526 return pwm;
1527 }
1528 EXPORT_SYMBOL_GPL(pwm_get);
1529
1530 /**
1531 * pwm_put() - release a PWM device
1532 * @pwm: PWM device
1533 */
pwm_put(struct pwm_device * pwm)1534 void pwm_put(struct pwm_device *pwm)
1535 {
1536 struct pwm_chip *chip;
1537
1538 if (!pwm)
1539 return;
1540
1541 chip = pwm->chip;
1542
1543 guard(mutex)(&pwm_lock);
1544
1545 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1546 pr_warn("PWM device already freed\n");
1547 return;
1548 }
1549
1550 if (chip->ops->free)
1551 pwm->chip->ops->free(pwm->chip, pwm);
1552
1553 pwm->label = NULL;
1554
1555 put_device(&chip->dev);
1556
1557 module_put(chip->owner);
1558 }
1559 EXPORT_SYMBOL_GPL(pwm_put);
1560
devm_pwm_release(void * pwm)1561 static void devm_pwm_release(void *pwm)
1562 {
1563 pwm_put(pwm);
1564 }
1565
1566 /**
1567 * devm_pwm_get() - resource managed pwm_get()
1568 * @dev: device for PWM consumer
1569 * @con_id: consumer name
1570 *
1571 * This function performs like pwm_get() but the acquired PWM device will
1572 * automatically be released on driver detach.
1573 *
1574 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1575 * error code on failure.
1576 */
devm_pwm_get(struct device * dev,const char * con_id)1577 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1578 {
1579 struct pwm_device *pwm;
1580 int ret;
1581
1582 pwm = pwm_get(dev, con_id);
1583 if (IS_ERR(pwm))
1584 return pwm;
1585
1586 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1587 if (ret)
1588 return ERR_PTR(ret);
1589
1590 return pwm;
1591 }
1592 EXPORT_SYMBOL_GPL(devm_pwm_get);
1593
1594 /**
1595 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1596 * @dev: device for PWM consumer
1597 * @fwnode: firmware node to get the PWM from
1598 * @con_id: consumer name
1599 *
1600 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1601 * acpi_pwm_get() for a detailed description.
1602 *
1603 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1604 * error code on failure.
1605 */
devm_fwnode_pwm_get(struct device * dev,struct fwnode_handle * fwnode,const char * con_id)1606 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1607 struct fwnode_handle *fwnode,
1608 const char *con_id)
1609 {
1610 struct pwm_device *pwm = ERR_PTR(-ENODEV);
1611 int ret;
1612
1613 if (is_of_node(fwnode))
1614 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1615 else if (is_acpi_node(fwnode))
1616 pwm = acpi_pwm_get(fwnode);
1617 if (IS_ERR(pwm))
1618 return pwm;
1619
1620 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1621 if (ret)
1622 return ERR_PTR(ret);
1623
1624 return pwm;
1625 }
1626 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1627
pwm_dbg_show(struct pwm_chip * chip,struct seq_file * s)1628 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1629 {
1630 unsigned int i;
1631
1632 for (i = 0; i < chip->npwm; i++) {
1633 struct pwm_device *pwm = &chip->pwms[i];
1634 struct pwm_state state;
1635
1636 pwm_get_state(pwm, &state);
1637
1638 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1639
1640 if (test_bit(PWMF_REQUESTED, &pwm->flags))
1641 seq_puts(s, " requested");
1642
1643 if (state.enabled)
1644 seq_puts(s, " enabled");
1645
1646 seq_printf(s, " period: %llu ns", state.period);
1647 seq_printf(s, " duty: %llu ns", state.duty_cycle);
1648 seq_printf(s, " polarity: %s",
1649 state.polarity ? "inverse" : "normal");
1650
1651 if (state.usage_power)
1652 seq_puts(s, " usage_power");
1653
1654 seq_puts(s, "\n");
1655 }
1656 }
1657
pwm_seq_start(struct seq_file * s,loff_t * pos)1658 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1659 {
1660 unsigned long id = *pos;
1661 void *ret;
1662
1663 mutex_lock(&pwm_lock);
1664 s->private = "";
1665
1666 ret = idr_get_next_ul(&pwm_chips, &id);
1667 *pos = id;
1668 return ret;
1669 }
1670
pwm_seq_next(struct seq_file * s,void * v,loff_t * pos)1671 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1672 {
1673 unsigned long id = *pos + 1;
1674 void *ret;
1675
1676 s->private = "\n";
1677
1678 ret = idr_get_next_ul(&pwm_chips, &id);
1679 *pos = id;
1680 return ret;
1681 }
1682
pwm_seq_stop(struct seq_file * s,void * v)1683 static void pwm_seq_stop(struct seq_file *s, void *v)
1684 {
1685 mutex_unlock(&pwm_lock);
1686 }
1687
pwm_seq_show(struct seq_file * s,void * v)1688 static int pwm_seq_show(struct seq_file *s, void *v)
1689 {
1690 struct pwm_chip *chip = v;
1691
1692 seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n",
1693 (char *)s->private, chip->id,
1694 pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus",
1695 dev_name(pwmchip_parent(chip)), chip->npwm,
1696 (chip->npwm != 1) ? "s" : "");
1697
1698 pwm_dbg_show(chip, s);
1699
1700 return 0;
1701 }
1702
1703 static const struct seq_operations pwm_debugfs_sops = {
1704 .start = pwm_seq_start,
1705 .next = pwm_seq_next,
1706 .stop = pwm_seq_stop,
1707 .show = pwm_seq_show,
1708 };
1709
1710 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1711
pwm_init(void)1712 static int __init pwm_init(void)
1713 {
1714 int ret;
1715
1716 ret = class_register(&pwm_class);
1717 if (ret) {
1718 pr_err("Failed to initialize PWM class (%pe)\n", ERR_PTR(ret));
1719 return ret;
1720 }
1721
1722 if (IS_ENABLED(CONFIG_DEBUG_FS))
1723 debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
1724
1725 return 0;
1726 }
1727 subsys_initcall(pwm_init);
1728