1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18
19 #include <linux/cpuset.h>
20
21 /*
22 * Default limits for DL period; on the top end we guard against small util
23 * tasks still getting ridiculously long effective runtimes, on the bottom end we
24 * guard against timer DoS.
25 */
26 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
27 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */
28 #ifdef CONFIG_SYSCTL
29 static struct ctl_table sched_dl_sysctls[] = {
30 {
31 .procname = "sched_deadline_period_max_us",
32 .data = &sysctl_sched_dl_period_max,
33 .maxlen = sizeof(unsigned int),
34 .mode = 0644,
35 .proc_handler = proc_douintvec_minmax,
36 .extra1 = (void *)&sysctl_sched_dl_period_min,
37 },
38 {
39 .procname = "sched_deadline_period_min_us",
40 .data = &sysctl_sched_dl_period_min,
41 .maxlen = sizeof(unsigned int),
42 .mode = 0644,
43 .proc_handler = proc_douintvec_minmax,
44 .extra2 = (void *)&sysctl_sched_dl_period_max,
45 },
46 };
47
sched_dl_sysctl_init(void)48 static int __init sched_dl_sysctl_init(void)
49 {
50 register_sysctl_init("kernel", sched_dl_sysctls);
51 return 0;
52 }
53 late_initcall(sched_dl_sysctl_init);
54 #endif
55
dl_server(struct sched_dl_entity * dl_se)56 static bool dl_server(struct sched_dl_entity *dl_se)
57 {
58 return dl_se->dl_server;
59 }
60
dl_task_of(struct sched_dl_entity * dl_se)61 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
62 {
63 BUG_ON(dl_server(dl_se));
64 return container_of(dl_se, struct task_struct, dl);
65 }
66
rq_of_dl_rq(struct dl_rq * dl_rq)67 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
68 {
69 return container_of(dl_rq, struct rq, dl);
70 }
71
rq_of_dl_se(struct sched_dl_entity * dl_se)72 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
73 {
74 struct rq *rq = dl_se->rq;
75
76 if (!dl_server(dl_se))
77 rq = task_rq(dl_task_of(dl_se));
78
79 return rq;
80 }
81
dl_rq_of_se(struct sched_dl_entity * dl_se)82 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
83 {
84 return &rq_of_dl_se(dl_se)->dl;
85 }
86
on_dl_rq(struct sched_dl_entity * dl_se)87 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
88 {
89 return !RB_EMPTY_NODE(&dl_se->rb_node);
90 }
91
92 #ifdef CONFIG_RT_MUTEXES
pi_of(struct sched_dl_entity * dl_se)93 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
94 {
95 return dl_se->pi_se;
96 }
97
is_dl_boosted(struct sched_dl_entity * dl_se)98 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
99 {
100 return pi_of(dl_se) != dl_se;
101 }
102 #else
pi_of(struct sched_dl_entity * dl_se)103 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
104 {
105 return dl_se;
106 }
107
is_dl_boosted(struct sched_dl_entity * dl_se)108 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
109 {
110 return false;
111 }
112 #endif
113
114 #ifdef CONFIG_SMP
dl_bw_of(int i)115 static inline struct dl_bw *dl_bw_of(int i)
116 {
117 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
118 "sched RCU must be held");
119 return &cpu_rq(i)->rd->dl_bw;
120 }
121
dl_bw_cpus(int i)122 static inline int dl_bw_cpus(int i)
123 {
124 struct root_domain *rd = cpu_rq(i)->rd;
125 int cpus;
126
127 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
128 "sched RCU must be held");
129
130 if (cpumask_subset(rd->span, cpu_active_mask))
131 return cpumask_weight(rd->span);
132
133 cpus = 0;
134
135 for_each_cpu_and(i, rd->span, cpu_active_mask)
136 cpus++;
137
138 return cpus;
139 }
140
__dl_bw_capacity(const struct cpumask * mask)141 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
142 {
143 unsigned long cap = 0;
144 int i;
145
146 for_each_cpu_and(i, mask, cpu_active_mask)
147 cap += arch_scale_cpu_capacity(i);
148
149 return cap;
150 }
151
152 /*
153 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
154 * of the CPU the task is running on rather rd's \Sum CPU capacity.
155 */
dl_bw_capacity(int i)156 static inline unsigned long dl_bw_capacity(int i)
157 {
158 if (!sched_asym_cpucap_active() &&
159 arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
160 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
161 } else {
162 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
163 "sched RCU must be held");
164
165 return __dl_bw_capacity(cpu_rq(i)->rd->span);
166 }
167 }
168
dl_bw_visited(int cpu,u64 gen)169 static inline bool dl_bw_visited(int cpu, u64 gen)
170 {
171 struct root_domain *rd = cpu_rq(cpu)->rd;
172
173 if (rd->visit_gen == gen)
174 return true;
175
176 rd->visit_gen = gen;
177 return false;
178 }
179
180 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)181 void __dl_update(struct dl_bw *dl_b, s64 bw)
182 {
183 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
184 int i;
185
186 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
187 "sched RCU must be held");
188 for_each_cpu_and(i, rd->span, cpu_active_mask) {
189 struct rq *rq = cpu_rq(i);
190
191 rq->dl.extra_bw += bw;
192 }
193 }
194 #else
dl_bw_of(int i)195 static inline struct dl_bw *dl_bw_of(int i)
196 {
197 return &cpu_rq(i)->dl.dl_bw;
198 }
199
dl_bw_cpus(int i)200 static inline int dl_bw_cpus(int i)
201 {
202 return 1;
203 }
204
dl_bw_capacity(int i)205 static inline unsigned long dl_bw_capacity(int i)
206 {
207 return SCHED_CAPACITY_SCALE;
208 }
209
dl_bw_visited(int cpu,u64 gen)210 static inline bool dl_bw_visited(int cpu, u64 gen)
211 {
212 return false;
213 }
214
215 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)216 void __dl_update(struct dl_bw *dl_b, s64 bw)
217 {
218 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
219
220 dl->extra_bw += bw;
221 }
222 #endif
223
224 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)225 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
226 {
227 dl_b->total_bw -= tsk_bw;
228 __dl_update(dl_b, (s32)tsk_bw / cpus);
229 }
230
231 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)232 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
233 {
234 dl_b->total_bw += tsk_bw;
235 __dl_update(dl_b, -((s32)tsk_bw / cpus));
236 }
237
238 static inline bool
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)239 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
240 {
241 return dl_b->bw != -1 &&
242 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
243 }
244
245 static inline
__add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)246 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
247 {
248 u64 old = dl_rq->running_bw;
249
250 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
251 dl_rq->running_bw += dl_bw;
252 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
253 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
254 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
255 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
256 }
257
258 static inline
__sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)259 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
260 {
261 u64 old = dl_rq->running_bw;
262
263 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
264 dl_rq->running_bw -= dl_bw;
265 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
266 if (dl_rq->running_bw > old)
267 dl_rq->running_bw = 0;
268 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
269 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
270 }
271
272 static inline
__add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)273 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
274 {
275 u64 old = dl_rq->this_bw;
276
277 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
278 dl_rq->this_bw += dl_bw;
279 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
280 }
281
282 static inline
__sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)283 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
284 {
285 u64 old = dl_rq->this_bw;
286
287 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
288 dl_rq->this_bw -= dl_bw;
289 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
290 if (dl_rq->this_bw > old)
291 dl_rq->this_bw = 0;
292 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
293 }
294
295 static inline
add_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)296 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
297 {
298 if (!dl_entity_is_special(dl_se))
299 __add_rq_bw(dl_se->dl_bw, dl_rq);
300 }
301
302 static inline
sub_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)303 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
304 {
305 if (!dl_entity_is_special(dl_se))
306 __sub_rq_bw(dl_se->dl_bw, dl_rq);
307 }
308
309 static inline
add_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)310 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
311 {
312 if (!dl_entity_is_special(dl_se))
313 __add_running_bw(dl_se->dl_bw, dl_rq);
314 }
315
316 static inline
sub_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)317 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
318 {
319 if (!dl_entity_is_special(dl_se))
320 __sub_running_bw(dl_se->dl_bw, dl_rq);
321 }
322
dl_rq_change_utilization(struct rq * rq,struct sched_dl_entity * dl_se,u64 new_bw)323 static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw)
324 {
325 if (dl_se->dl_non_contending) {
326 sub_running_bw(dl_se, &rq->dl);
327 dl_se->dl_non_contending = 0;
328
329 /*
330 * If the timer handler is currently running and the
331 * timer cannot be canceled, inactive_task_timer()
332 * will see that dl_not_contending is not set, and
333 * will not touch the rq's active utilization,
334 * so we are still safe.
335 */
336 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
337 if (!dl_server(dl_se))
338 put_task_struct(dl_task_of(dl_se));
339 }
340 }
341 __sub_rq_bw(dl_se->dl_bw, &rq->dl);
342 __add_rq_bw(new_bw, &rq->dl);
343 }
344
dl_change_utilization(struct task_struct * p,u64 new_bw)345 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
346 {
347 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
348
349 if (task_on_rq_queued(p))
350 return;
351
352 dl_rq_change_utilization(task_rq(p), &p->dl, new_bw);
353 }
354
355 static void __dl_clear_params(struct sched_dl_entity *dl_se);
356
357 /*
358 * The utilization of a task cannot be immediately removed from
359 * the rq active utilization (running_bw) when the task blocks.
360 * Instead, we have to wait for the so called "0-lag time".
361 *
362 * If a task blocks before the "0-lag time", a timer (the inactive
363 * timer) is armed, and running_bw is decreased when the timer
364 * fires.
365 *
366 * If the task wakes up again before the inactive timer fires,
367 * the timer is canceled, whereas if the task wakes up after the
368 * inactive timer fired (and running_bw has been decreased) the
369 * task's utilization has to be added to running_bw again.
370 * A flag in the deadline scheduling entity (dl_non_contending)
371 * is used to avoid race conditions between the inactive timer handler
372 * and task wakeups.
373 *
374 * The following diagram shows how running_bw is updated. A task is
375 * "ACTIVE" when its utilization contributes to running_bw; an
376 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
377 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
378 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
379 * time already passed, which does not contribute to running_bw anymore.
380 * +------------------+
381 * wakeup | ACTIVE |
382 * +------------------>+ contending |
383 * | add_running_bw | |
384 * | +----+------+------+
385 * | | ^
386 * | dequeue | |
387 * +--------+-------+ | |
388 * | | t >= 0-lag | | wakeup
389 * | INACTIVE |<---------------+ |
390 * | | sub_running_bw | |
391 * +--------+-------+ | |
392 * ^ | |
393 * | t < 0-lag | |
394 * | | |
395 * | V |
396 * | +----+------+------+
397 * | sub_running_bw | ACTIVE |
398 * +-------------------+ |
399 * inactive timer | non contending |
400 * fired +------------------+
401 *
402 * The task_non_contending() function is invoked when a task
403 * blocks, and checks if the 0-lag time already passed or
404 * not (in the first case, it directly updates running_bw;
405 * in the second case, it arms the inactive timer).
406 *
407 * The task_contending() function is invoked when a task wakes
408 * up, and checks if the task is still in the "ACTIVE non contending"
409 * state or not (in the second case, it updates running_bw).
410 */
task_non_contending(struct sched_dl_entity * dl_se)411 static void task_non_contending(struct sched_dl_entity *dl_se)
412 {
413 struct hrtimer *timer = &dl_se->inactive_timer;
414 struct rq *rq = rq_of_dl_se(dl_se);
415 struct dl_rq *dl_rq = &rq->dl;
416 s64 zerolag_time;
417
418 /*
419 * If this is a non-deadline task that has been boosted,
420 * do nothing
421 */
422 if (dl_se->dl_runtime == 0)
423 return;
424
425 if (dl_entity_is_special(dl_se))
426 return;
427
428 WARN_ON(dl_se->dl_non_contending);
429
430 zerolag_time = dl_se->deadline -
431 div64_long((dl_se->runtime * dl_se->dl_period),
432 dl_se->dl_runtime);
433
434 /*
435 * Using relative times instead of the absolute "0-lag time"
436 * allows to simplify the code
437 */
438 zerolag_time -= rq_clock(rq);
439
440 /*
441 * If the "0-lag time" already passed, decrease the active
442 * utilization now, instead of starting a timer
443 */
444 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
445 if (dl_server(dl_se)) {
446 sub_running_bw(dl_se, dl_rq);
447 } else {
448 struct task_struct *p = dl_task_of(dl_se);
449
450 if (dl_task(p))
451 sub_running_bw(dl_se, dl_rq);
452
453 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
454 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
455
456 if (READ_ONCE(p->__state) == TASK_DEAD)
457 sub_rq_bw(dl_se, &rq->dl);
458 raw_spin_lock(&dl_b->lock);
459 __dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
460 raw_spin_unlock(&dl_b->lock);
461 __dl_clear_params(dl_se);
462 }
463 }
464
465 return;
466 }
467
468 dl_se->dl_non_contending = 1;
469 if (!dl_server(dl_se))
470 get_task_struct(dl_task_of(dl_se));
471
472 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
473 }
474
task_contending(struct sched_dl_entity * dl_se,int flags)475 static void task_contending(struct sched_dl_entity *dl_se, int flags)
476 {
477 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
478
479 /*
480 * If this is a non-deadline task that has been boosted,
481 * do nothing
482 */
483 if (dl_se->dl_runtime == 0)
484 return;
485
486 if (flags & ENQUEUE_MIGRATED)
487 add_rq_bw(dl_se, dl_rq);
488
489 if (dl_se->dl_non_contending) {
490 dl_se->dl_non_contending = 0;
491 /*
492 * If the timer handler is currently running and the
493 * timer cannot be canceled, inactive_task_timer()
494 * will see that dl_not_contending is not set, and
495 * will not touch the rq's active utilization,
496 * so we are still safe.
497 */
498 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
499 if (!dl_server(dl_se))
500 put_task_struct(dl_task_of(dl_se));
501 }
502 } else {
503 /*
504 * Since "dl_non_contending" is not set, the
505 * task's utilization has already been removed from
506 * active utilization (either when the task blocked,
507 * when the "inactive timer" fired).
508 * So, add it back.
509 */
510 add_running_bw(dl_se, dl_rq);
511 }
512 }
513
is_leftmost(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)514 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
515 {
516 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
517 }
518
519 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
520
init_dl_bw(struct dl_bw * dl_b)521 void init_dl_bw(struct dl_bw *dl_b)
522 {
523 raw_spin_lock_init(&dl_b->lock);
524 if (global_rt_runtime() == RUNTIME_INF)
525 dl_b->bw = -1;
526 else
527 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
528 dl_b->total_bw = 0;
529 }
530
init_dl_rq(struct dl_rq * dl_rq)531 void init_dl_rq(struct dl_rq *dl_rq)
532 {
533 dl_rq->root = RB_ROOT_CACHED;
534
535 #ifdef CONFIG_SMP
536 /* zero means no -deadline tasks */
537 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
538
539 dl_rq->overloaded = 0;
540 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
541 #else
542 init_dl_bw(&dl_rq->dl_bw);
543 #endif
544
545 dl_rq->running_bw = 0;
546 dl_rq->this_bw = 0;
547 init_dl_rq_bw_ratio(dl_rq);
548 }
549
550 #ifdef CONFIG_SMP
551
dl_overloaded(struct rq * rq)552 static inline int dl_overloaded(struct rq *rq)
553 {
554 return atomic_read(&rq->rd->dlo_count);
555 }
556
dl_set_overload(struct rq * rq)557 static inline void dl_set_overload(struct rq *rq)
558 {
559 if (!rq->online)
560 return;
561
562 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
563 /*
564 * Must be visible before the overload count is
565 * set (as in sched_rt.c).
566 *
567 * Matched by the barrier in pull_dl_task().
568 */
569 smp_wmb();
570 atomic_inc(&rq->rd->dlo_count);
571 }
572
dl_clear_overload(struct rq * rq)573 static inline void dl_clear_overload(struct rq *rq)
574 {
575 if (!rq->online)
576 return;
577
578 atomic_dec(&rq->rd->dlo_count);
579 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
580 }
581
582 #define __node_2_pdl(node) \
583 rb_entry((node), struct task_struct, pushable_dl_tasks)
584
__pushable_less(struct rb_node * a,const struct rb_node * b)585 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
586 {
587 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
588 }
589
has_pushable_dl_tasks(struct rq * rq)590 static inline int has_pushable_dl_tasks(struct rq *rq)
591 {
592 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
593 }
594
595 /*
596 * The list of pushable -deadline task is not a plist, like in
597 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
598 */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)599 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
600 {
601 struct rb_node *leftmost;
602
603 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
604
605 leftmost = rb_add_cached(&p->pushable_dl_tasks,
606 &rq->dl.pushable_dl_tasks_root,
607 __pushable_less);
608 if (leftmost)
609 rq->dl.earliest_dl.next = p->dl.deadline;
610
611 if (!rq->dl.overloaded) {
612 dl_set_overload(rq);
613 rq->dl.overloaded = 1;
614 }
615 }
616
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)617 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
618 {
619 struct dl_rq *dl_rq = &rq->dl;
620 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
621 struct rb_node *leftmost;
622
623 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
624 return;
625
626 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
627 if (leftmost)
628 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
629
630 RB_CLEAR_NODE(&p->pushable_dl_tasks);
631
632 if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
633 dl_clear_overload(rq);
634 rq->dl.overloaded = 0;
635 }
636 }
637
638 static int push_dl_task(struct rq *rq);
639
need_pull_dl_task(struct rq * rq,struct task_struct * prev)640 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
641 {
642 return rq->online && dl_task(prev);
643 }
644
645 static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
646 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
647
648 static void push_dl_tasks(struct rq *);
649 static void pull_dl_task(struct rq *);
650
deadline_queue_push_tasks(struct rq * rq)651 static inline void deadline_queue_push_tasks(struct rq *rq)
652 {
653 if (!has_pushable_dl_tasks(rq))
654 return;
655
656 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
657 }
658
deadline_queue_pull_task(struct rq * rq)659 static inline void deadline_queue_pull_task(struct rq *rq)
660 {
661 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
662 }
663
664 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
665
dl_task_offline_migration(struct rq * rq,struct task_struct * p)666 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
667 {
668 struct rq *later_rq = NULL;
669 struct dl_bw *dl_b;
670
671 later_rq = find_lock_later_rq(p, rq);
672 if (!later_rq) {
673 int cpu;
674
675 /*
676 * If we cannot preempt any rq, fall back to pick any
677 * online CPU:
678 */
679 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
680 if (cpu >= nr_cpu_ids) {
681 /*
682 * Failed to find any suitable CPU.
683 * The task will never come back!
684 */
685 WARN_ON_ONCE(dl_bandwidth_enabled());
686
687 /*
688 * If admission control is disabled we
689 * try a little harder to let the task
690 * run.
691 */
692 cpu = cpumask_any(cpu_active_mask);
693 }
694 later_rq = cpu_rq(cpu);
695 double_lock_balance(rq, later_rq);
696 }
697
698 if (p->dl.dl_non_contending || p->dl.dl_throttled) {
699 /*
700 * Inactive timer is armed (or callback is running, but
701 * waiting for us to release rq locks). In any case, when it
702 * will fire (or continue), it will see running_bw of this
703 * task migrated to later_rq (and correctly handle it).
704 */
705 sub_running_bw(&p->dl, &rq->dl);
706 sub_rq_bw(&p->dl, &rq->dl);
707
708 add_rq_bw(&p->dl, &later_rq->dl);
709 add_running_bw(&p->dl, &later_rq->dl);
710 } else {
711 sub_rq_bw(&p->dl, &rq->dl);
712 add_rq_bw(&p->dl, &later_rq->dl);
713 }
714
715 /*
716 * And we finally need to fix up root_domain(s) bandwidth accounting,
717 * since p is still hanging out in the old (now moved to default) root
718 * domain.
719 */
720 dl_b = &rq->rd->dl_bw;
721 raw_spin_lock(&dl_b->lock);
722 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
723 raw_spin_unlock(&dl_b->lock);
724
725 dl_b = &later_rq->rd->dl_bw;
726 raw_spin_lock(&dl_b->lock);
727 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
728 raw_spin_unlock(&dl_b->lock);
729
730 set_task_cpu(p, later_rq->cpu);
731 double_unlock_balance(later_rq, rq);
732
733 return later_rq;
734 }
735
736 #else
737
738 static inline
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)739 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
740 {
741 }
742
743 static inline
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)744 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
745 {
746 }
747
748 static inline
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)749 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
750 {
751 }
752
753 static inline
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)754 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
755 {
756 }
757
deadline_queue_push_tasks(struct rq * rq)758 static inline void deadline_queue_push_tasks(struct rq *rq)
759 {
760 }
761
deadline_queue_pull_task(struct rq * rq)762 static inline void deadline_queue_pull_task(struct rq *rq)
763 {
764 }
765 #endif /* CONFIG_SMP */
766
767 static void
768 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
769 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
770 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
771 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
772
replenish_dl_new_period(struct sched_dl_entity * dl_se,struct rq * rq)773 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
774 struct rq *rq)
775 {
776 /* for non-boosted task, pi_of(dl_se) == dl_se */
777 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
778 dl_se->runtime = pi_of(dl_se)->dl_runtime;
779
780 /*
781 * If it is a deferred reservation, and the server
782 * is not handling an starvation case, defer it.
783 */
784 if (dl_se->dl_defer && !dl_se->dl_defer_running) {
785 dl_se->dl_throttled = 1;
786 dl_se->dl_defer_armed = 1;
787 }
788 }
789
790 /*
791 * We are being explicitly informed that a new instance is starting,
792 * and this means that:
793 * - the absolute deadline of the entity has to be placed at
794 * current time + relative deadline;
795 * - the runtime of the entity has to be set to the maximum value.
796 *
797 * The capability of specifying such event is useful whenever a -deadline
798 * entity wants to (try to!) synchronize its behaviour with the scheduler's
799 * one, and to (try to!) reconcile itself with its own scheduling
800 * parameters.
801 */
setup_new_dl_entity(struct sched_dl_entity * dl_se)802 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
803 {
804 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
805 struct rq *rq = rq_of_dl_rq(dl_rq);
806
807 WARN_ON(is_dl_boosted(dl_se));
808 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
809
810 /*
811 * We are racing with the deadline timer. So, do nothing because
812 * the deadline timer handler will take care of properly recharging
813 * the runtime and postponing the deadline
814 */
815 if (dl_se->dl_throttled)
816 return;
817
818 /*
819 * We use the regular wall clock time to set deadlines in the
820 * future; in fact, we must consider execution overheads (time
821 * spent on hardirq context, etc.).
822 */
823 replenish_dl_new_period(dl_se, rq);
824 }
825
826 static int start_dl_timer(struct sched_dl_entity *dl_se);
827 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t);
828
829 /*
830 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
831 * possibility of a entity lasting more than what it declared, and thus
832 * exhausting its runtime.
833 *
834 * Here we are interested in making runtime overrun possible, but we do
835 * not want a entity which is misbehaving to affect the scheduling of all
836 * other entities.
837 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
838 * is used, in order to confine each entity within its own bandwidth.
839 *
840 * This function deals exactly with that, and ensures that when the runtime
841 * of a entity is replenished, its deadline is also postponed. That ensures
842 * the overrunning entity can't interfere with other entity in the system and
843 * can't make them miss their deadlines. Reasons why this kind of overruns
844 * could happen are, typically, a entity voluntarily trying to overcome its
845 * runtime, or it just underestimated it during sched_setattr().
846 */
replenish_dl_entity(struct sched_dl_entity * dl_se)847 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
848 {
849 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
850 struct rq *rq = rq_of_dl_rq(dl_rq);
851
852 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
853
854 /*
855 * This could be the case for a !-dl task that is boosted.
856 * Just go with full inherited parameters.
857 *
858 * Or, it could be the case of a deferred reservation that
859 * was not able to consume its runtime in background and
860 * reached this point with current u > U.
861 *
862 * In both cases, set a new period.
863 */
864 if (dl_se->dl_deadline == 0 ||
865 (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) {
866 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
867 dl_se->runtime = pi_of(dl_se)->dl_runtime;
868 }
869
870 if (dl_se->dl_yielded && dl_se->runtime > 0)
871 dl_se->runtime = 0;
872
873 /*
874 * We keep moving the deadline away until we get some
875 * available runtime for the entity. This ensures correct
876 * handling of situations where the runtime overrun is
877 * arbitrary large.
878 */
879 while (dl_se->runtime <= 0) {
880 dl_se->deadline += pi_of(dl_se)->dl_period;
881 dl_se->runtime += pi_of(dl_se)->dl_runtime;
882 }
883
884 /*
885 * At this point, the deadline really should be "in
886 * the future" with respect to rq->clock. If it's
887 * not, we are, for some reason, lagging too much!
888 * Anyway, after having warn userspace abut that,
889 * we still try to keep the things running by
890 * resetting the deadline and the budget of the
891 * entity.
892 */
893 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
894 printk_deferred_once("sched: DL replenish lagged too much\n");
895 replenish_dl_new_period(dl_se, rq);
896 }
897
898 if (dl_se->dl_yielded)
899 dl_se->dl_yielded = 0;
900 if (dl_se->dl_throttled)
901 dl_se->dl_throttled = 0;
902
903 /*
904 * If this is the replenishment of a deferred reservation,
905 * clear the flag and return.
906 */
907 if (dl_se->dl_defer_armed) {
908 dl_se->dl_defer_armed = 0;
909 return;
910 }
911
912 /*
913 * A this point, if the deferred server is not armed, and the deadline
914 * is in the future, if it is not running already, throttle the server
915 * and arm the defer timer.
916 */
917 if (dl_se->dl_defer && !dl_se->dl_defer_running &&
918 dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) {
919 if (!is_dl_boosted(dl_se)) {
920
921 /*
922 * Set dl_se->dl_defer_armed and dl_throttled variables to
923 * inform the start_dl_timer() that this is a deferred
924 * activation.
925 */
926 dl_se->dl_defer_armed = 1;
927 dl_se->dl_throttled = 1;
928 if (!start_dl_timer(dl_se)) {
929 /*
930 * If for whatever reason (delays), a previous timer was
931 * queued but not serviced, cancel it and clean the
932 * deferrable server variables intended for start_dl_timer().
933 */
934 hrtimer_try_to_cancel(&dl_se->dl_timer);
935 dl_se->dl_defer_armed = 0;
936 dl_se->dl_throttled = 0;
937 }
938 }
939 }
940 }
941
942 /*
943 * Here we check if --at time t-- an entity (which is probably being
944 * [re]activated or, in general, enqueued) can use its remaining runtime
945 * and its current deadline _without_ exceeding the bandwidth it is
946 * assigned (function returns true if it can't). We are in fact applying
947 * one of the CBS rules: when a task wakes up, if the residual runtime
948 * over residual deadline fits within the allocated bandwidth, then we
949 * can keep the current (absolute) deadline and residual budget without
950 * disrupting the schedulability of the system. Otherwise, we should
951 * refill the runtime and set the deadline a period in the future,
952 * because keeping the current (absolute) deadline of the task would
953 * result in breaking guarantees promised to other tasks (refer to
954 * Documentation/scheduler/sched-deadline.rst for more information).
955 *
956 * This function returns true if:
957 *
958 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
959 *
960 * IOW we can't recycle current parameters.
961 *
962 * Notice that the bandwidth check is done against the deadline. For
963 * task with deadline equal to period this is the same of using
964 * dl_period instead of dl_deadline in the equation above.
965 */
dl_entity_overflow(struct sched_dl_entity * dl_se,u64 t)966 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
967 {
968 u64 left, right;
969
970 /*
971 * left and right are the two sides of the equation above,
972 * after a bit of shuffling to use multiplications instead
973 * of divisions.
974 *
975 * Note that none of the time values involved in the two
976 * multiplications are absolute: dl_deadline and dl_runtime
977 * are the relative deadline and the maximum runtime of each
978 * instance, runtime is the runtime left for the last instance
979 * and (deadline - t), since t is rq->clock, is the time left
980 * to the (absolute) deadline. Even if overflowing the u64 type
981 * is very unlikely to occur in both cases, here we scale down
982 * as we want to avoid that risk at all. Scaling down by 10
983 * means that we reduce granularity to 1us. We are fine with it,
984 * since this is only a true/false check and, anyway, thinking
985 * of anything below microseconds resolution is actually fiction
986 * (but still we want to give the user that illusion >;).
987 */
988 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
989 right = ((dl_se->deadline - t) >> DL_SCALE) *
990 (pi_of(dl_se)->dl_runtime >> DL_SCALE);
991
992 return dl_time_before(right, left);
993 }
994
995 /*
996 * Revised wakeup rule [1]: For self-suspending tasks, rather then
997 * re-initializing task's runtime and deadline, the revised wakeup
998 * rule adjusts the task's runtime to avoid the task to overrun its
999 * density.
1000 *
1001 * Reasoning: a task may overrun the density if:
1002 * runtime / (deadline - t) > dl_runtime / dl_deadline
1003 *
1004 * Therefore, runtime can be adjusted to:
1005 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
1006 *
1007 * In such way that runtime will be equal to the maximum density
1008 * the task can use without breaking any rule.
1009 *
1010 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
1011 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
1012 */
1013 static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)1014 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
1015 {
1016 u64 laxity = dl_se->deadline - rq_clock(rq);
1017
1018 /*
1019 * If the task has deadline < period, and the deadline is in the past,
1020 * it should already be throttled before this check.
1021 *
1022 * See update_dl_entity() comments for further details.
1023 */
1024 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
1025
1026 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
1027 }
1028
1029 /*
1030 * Regarding the deadline, a task with implicit deadline has a relative
1031 * deadline == relative period. A task with constrained deadline has a
1032 * relative deadline <= relative period.
1033 *
1034 * We support constrained deadline tasks. However, there are some restrictions
1035 * applied only for tasks which do not have an implicit deadline. See
1036 * update_dl_entity() to know more about such restrictions.
1037 *
1038 * The dl_is_implicit() returns true if the task has an implicit deadline.
1039 */
dl_is_implicit(struct sched_dl_entity * dl_se)1040 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
1041 {
1042 return dl_se->dl_deadline == dl_se->dl_period;
1043 }
1044
1045 /*
1046 * When a deadline entity is placed in the runqueue, its runtime and deadline
1047 * might need to be updated. This is done by a CBS wake up rule. There are two
1048 * different rules: 1) the original CBS; and 2) the Revisited CBS.
1049 *
1050 * When the task is starting a new period, the Original CBS is used. In this
1051 * case, the runtime is replenished and a new absolute deadline is set.
1052 *
1053 * When a task is queued before the begin of the next period, using the
1054 * remaining runtime and deadline could make the entity to overflow, see
1055 * dl_entity_overflow() to find more about runtime overflow. When such case
1056 * is detected, the runtime and deadline need to be updated.
1057 *
1058 * If the task has an implicit deadline, i.e., deadline == period, the Original
1059 * CBS is applied. The runtime is replenished and a new absolute deadline is
1060 * set, as in the previous cases.
1061 *
1062 * However, the Original CBS does not work properly for tasks with
1063 * deadline < period, which are said to have a constrained deadline. By
1064 * applying the Original CBS, a constrained deadline task would be able to run
1065 * runtime/deadline in a period. With deadline < period, the task would
1066 * overrun the runtime/period allowed bandwidth, breaking the admission test.
1067 *
1068 * In order to prevent this misbehave, the Revisited CBS is used for
1069 * constrained deadline tasks when a runtime overflow is detected. In the
1070 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1071 * the remaining runtime of the task is reduced to avoid runtime overflow.
1072 * Please refer to the comments update_dl_revised_wakeup() function to find
1073 * more about the Revised CBS rule.
1074 */
update_dl_entity(struct sched_dl_entity * dl_se)1075 static void update_dl_entity(struct sched_dl_entity *dl_se)
1076 {
1077 struct rq *rq = rq_of_dl_se(dl_se);
1078
1079 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1080 dl_entity_overflow(dl_se, rq_clock(rq))) {
1081
1082 if (unlikely(!dl_is_implicit(dl_se) &&
1083 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1084 !is_dl_boosted(dl_se))) {
1085 update_dl_revised_wakeup(dl_se, rq);
1086 return;
1087 }
1088
1089 replenish_dl_new_period(dl_se, rq);
1090 } else if (dl_server(dl_se) && dl_se->dl_defer) {
1091 /*
1092 * The server can still use its previous deadline, so check if
1093 * it left the dl_defer_running state.
1094 */
1095 if (!dl_se->dl_defer_running) {
1096 dl_se->dl_defer_armed = 1;
1097 dl_se->dl_throttled = 1;
1098 }
1099 }
1100 }
1101
dl_next_period(struct sched_dl_entity * dl_se)1102 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1103 {
1104 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1105 }
1106
1107 /*
1108 * If the entity depleted all its runtime, and if we want it to sleep
1109 * while waiting for some new execution time to become available, we
1110 * set the bandwidth replenishment timer to the replenishment instant
1111 * and try to activate it.
1112 *
1113 * Notice that it is important for the caller to know if the timer
1114 * actually started or not (i.e., the replenishment instant is in
1115 * the future or in the past).
1116 */
start_dl_timer(struct sched_dl_entity * dl_se)1117 static int start_dl_timer(struct sched_dl_entity *dl_se)
1118 {
1119 struct hrtimer *timer = &dl_se->dl_timer;
1120 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1121 struct rq *rq = rq_of_dl_rq(dl_rq);
1122 ktime_t now, act;
1123 s64 delta;
1124
1125 lockdep_assert_rq_held(rq);
1126
1127 /*
1128 * We want the timer to fire at the deadline, but considering
1129 * that it is actually coming from rq->clock and not from
1130 * hrtimer's time base reading.
1131 *
1132 * The deferred reservation will have its timer set to
1133 * (deadline - runtime). At that point, the CBS rule will decide
1134 * if the current deadline can be used, or if a replenishment is
1135 * required to avoid add too much pressure on the system
1136 * (current u > U).
1137 */
1138 if (dl_se->dl_defer_armed) {
1139 WARN_ON_ONCE(!dl_se->dl_throttled);
1140 act = ns_to_ktime(dl_se->deadline - dl_se->runtime);
1141 } else {
1142 /* act = deadline - rel-deadline + period */
1143 act = ns_to_ktime(dl_next_period(dl_se));
1144 }
1145
1146 now = hrtimer_cb_get_time(timer);
1147 delta = ktime_to_ns(now) - rq_clock(rq);
1148 act = ktime_add_ns(act, delta);
1149
1150 /*
1151 * If the expiry time already passed, e.g., because the value
1152 * chosen as the deadline is too small, don't even try to
1153 * start the timer in the past!
1154 */
1155 if (ktime_us_delta(act, now) < 0)
1156 return 0;
1157
1158 /*
1159 * !enqueued will guarantee another callback; even if one is already in
1160 * progress. This ensures a balanced {get,put}_task_struct().
1161 *
1162 * The race against __run_timer() clearing the enqueued state is
1163 * harmless because we're holding task_rq()->lock, therefore the timer
1164 * expiring after we've done the check will wait on its task_rq_lock()
1165 * and observe our state.
1166 */
1167 if (!hrtimer_is_queued(timer)) {
1168 if (!dl_server(dl_se))
1169 get_task_struct(dl_task_of(dl_se));
1170 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1171 }
1172
1173 return 1;
1174 }
1175
__push_dl_task(struct rq * rq,struct rq_flags * rf)1176 static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1177 {
1178 #ifdef CONFIG_SMP
1179 /*
1180 * Queueing this task back might have overloaded rq, check if we need
1181 * to kick someone away.
1182 */
1183 if (has_pushable_dl_tasks(rq)) {
1184 /*
1185 * Nothing relies on rq->lock after this, so its safe to drop
1186 * rq->lock.
1187 */
1188 rq_unpin_lock(rq, rf);
1189 push_dl_task(rq);
1190 rq_repin_lock(rq, rf);
1191 }
1192 #endif
1193 }
1194
1195 /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
1196 static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC;
1197
dl_server_timer(struct hrtimer * timer,struct sched_dl_entity * dl_se)1198 static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se)
1199 {
1200 struct rq *rq = rq_of_dl_se(dl_se);
1201 u64 fw;
1202
1203 scoped_guard (rq_lock, rq) {
1204 struct rq_flags *rf = &scope.rf;
1205
1206 if (!dl_se->dl_throttled || !dl_se->dl_runtime)
1207 return HRTIMER_NORESTART;
1208
1209 sched_clock_tick();
1210 update_rq_clock(rq);
1211
1212 if (!dl_se->dl_runtime)
1213 return HRTIMER_NORESTART;
1214
1215 if (dl_se->dl_defer_armed) {
1216 /*
1217 * First check if the server could consume runtime in background.
1218 * If so, it is possible to push the defer timer for this amount
1219 * of time. The dl_server_min_res serves as a limit to avoid
1220 * forwarding the timer for a too small amount of time.
1221 */
1222 if (dl_time_before(rq_clock(dl_se->rq),
1223 (dl_se->deadline - dl_se->runtime - dl_server_min_res))) {
1224
1225 /* reset the defer timer */
1226 fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime;
1227
1228 hrtimer_forward_now(timer, ns_to_ktime(fw));
1229 return HRTIMER_RESTART;
1230 }
1231
1232 dl_se->dl_defer_running = 1;
1233 }
1234
1235 enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1236
1237 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl))
1238 resched_curr(rq);
1239
1240 __push_dl_task(rq, rf);
1241 }
1242
1243 return HRTIMER_NORESTART;
1244 }
1245
1246 /*
1247 * This is the bandwidth enforcement timer callback. If here, we know
1248 * a task is not on its dl_rq, since the fact that the timer was running
1249 * means the task is throttled and needs a runtime replenishment.
1250 *
1251 * However, what we actually do depends on the fact the task is active,
1252 * (it is on its rq) or has been removed from there by a call to
1253 * dequeue_task_dl(). In the former case we must issue the runtime
1254 * replenishment and add the task back to the dl_rq; in the latter, we just
1255 * do nothing but clearing dl_throttled, so that runtime and deadline
1256 * updating (and the queueing back to dl_rq) will be done by the
1257 * next call to enqueue_task_dl().
1258 */
dl_task_timer(struct hrtimer * timer)1259 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1260 {
1261 struct sched_dl_entity *dl_se = container_of(timer,
1262 struct sched_dl_entity,
1263 dl_timer);
1264 struct task_struct *p;
1265 struct rq_flags rf;
1266 struct rq *rq;
1267
1268 if (dl_server(dl_se))
1269 return dl_server_timer(timer, dl_se);
1270
1271 p = dl_task_of(dl_se);
1272 rq = task_rq_lock(p, &rf);
1273
1274 /*
1275 * The task might have changed its scheduling policy to something
1276 * different than SCHED_DEADLINE (through switched_from_dl()).
1277 */
1278 if (!dl_task(p))
1279 goto unlock;
1280
1281 /*
1282 * The task might have been boosted by someone else and might be in the
1283 * boosting/deboosting path, its not throttled.
1284 */
1285 if (is_dl_boosted(dl_se))
1286 goto unlock;
1287
1288 /*
1289 * Spurious timer due to start_dl_timer() race; or we already received
1290 * a replenishment from rt_mutex_setprio().
1291 */
1292 if (!dl_se->dl_throttled)
1293 goto unlock;
1294
1295 sched_clock_tick();
1296 update_rq_clock(rq);
1297
1298 /*
1299 * If the throttle happened during sched-out; like:
1300 *
1301 * schedule()
1302 * deactivate_task()
1303 * dequeue_task_dl()
1304 * update_curr_dl()
1305 * start_dl_timer()
1306 * __dequeue_task_dl()
1307 * prev->on_rq = 0;
1308 *
1309 * We can be both throttled and !queued. Replenish the counter
1310 * but do not enqueue -- wait for our wakeup to do that.
1311 */
1312 if (!task_on_rq_queued(p)) {
1313 replenish_dl_entity(dl_se);
1314 goto unlock;
1315 }
1316
1317 #ifdef CONFIG_SMP
1318 if (unlikely(!rq->online)) {
1319 /*
1320 * If the runqueue is no longer available, migrate the
1321 * task elsewhere. This necessarily changes rq.
1322 */
1323 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1324 rq = dl_task_offline_migration(rq, p);
1325 rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1326 update_rq_clock(rq);
1327
1328 /*
1329 * Now that the task has been migrated to the new RQ and we
1330 * have that locked, proceed as normal and enqueue the task
1331 * there.
1332 */
1333 }
1334 #endif
1335
1336 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1337 if (dl_task(rq->donor))
1338 wakeup_preempt_dl(rq, p, 0);
1339 else
1340 resched_curr(rq);
1341
1342 __push_dl_task(rq, &rf);
1343
1344 unlock:
1345 task_rq_unlock(rq, p, &rf);
1346
1347 /*
1348 * This can free the task_struct, including this hrtimer, do not touch
1349 * anything related to that after this.
1350 */
1351 put_task_struct(p);
1352
1353 return HRTIMER_NORESTART;
1354 }
1355
init_dl_task_timer(struct sched_dl_entity * dl_se)1356 static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1357 {
1358 struct hrtimer *timer = &dl_se->dl_timer;
1359
1360 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1361 timer->function = dl_task_timer;
1362 }
1363
1364 /*
1365 * During the activation, CBS checks if it can reuse the current task's
1366 * runtime and period. If the deadline of the task is in the past, CBS
1367 * cannot use the runtime, and so it replenishes the task. This rule
1368 * works fine for implicit deadline tasks (deadline == period), and the
1369 * CBS was designed for implicit deadline tasks. However, a task with
1370 * constrained deadline (deadline < period) might be awakened after the
1371 * deadline, but before the next period. In this case, replenishing the
1372 * task would allow it to run for runtime / deadline. As in this case
1373 * deadline < period, CBS enables a task to run for more than the
1374 * runtime / period. In a very loaded system, this can cause a domino
1375 * effect, making other tasks miss their deadlines.
1376 *
1377 * To avoid this problem, in the activation of a constrained deadline
1378 * task after the deadline but before the next period, throttle the
1379 * task and set the replenishing timer to the begin of the next period,
1380 * unless it is boosted.
1381 */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1382 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1383 {
1384 struct rq *rq = rq_of_dl_se(dl_se);
1385
1386 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1387 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1388 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1389 return;
1390 dl_se->dl_throttled = 1;
1391 if (dl_se->runtime > 0)
1392 dl_se->runtime = 0;
1393 }
1394 }
1395
1396 static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1397 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1398 {
1399 return (dl_se->runtime <= 0);
1400 }
1401
1402 /*
1403 * This function implements the GRUB accounting rule. According to the
1404 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1405 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1406 * where u is the utilization of the task, Umax is the maximum reclaimable
1407 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1408 * as the difference between the "total runqueue utilization" and the
1409 * "runqueue active utilization", and Uextra is the (per runqueue) extra
1410 * reclaimable utilization.
1411 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1412 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1413 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1414 * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1415 * Since delta is a 64 bit variable, to have an overflow its value should be
1416 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1417 * not an issue here.
1418 */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1419 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1420 {
1421 u64 u_act;
1422 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1423
1424 /*
1425 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1426 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1427 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1428 * negative leading to wrong results.
1429 */
1430 if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1431 u_act = dl_se->dl_bw;
1432 else
1433 u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1434
1435 u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1436 return (delta * u_act) >> BW_SHIFT;
1437 }
1438
dl_scaled_delta_exec(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1439 s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1440 {
1441 s64 scaled_delta_exec;
1442
1443 /*
1444 * For tasks that participate in GRUB, we implement GRUB-PA: the
1445 * spare reclaimed bandwidth is used to clock down frequency.
1446 *
1447 * For the others, we still need to scale reservation parameters
1448 * according to current frequency and CPU maximum capacity.
1449 */
1450 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1451 scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
1452 } else {
1453 int cpu = cpu_of(rq);
1454 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1455 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1456
1457 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1458 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1459 }
1460
1461 return scaled_delta_exec;
1462 }
1463
1464 static inline void
1465 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1466 int flags);
update_curr_dl_se(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1467 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1468 {
1469 s64 scaled_delta_exec;
1470
1471 if (unlikely(delta_exec <= 0)) {
1472 if (unlikely(dl_se->dl_yielded))
1473 goto throttle;
1474 return;
1475 }
1476
1477 if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer)
1478 return;
1479
1480 if (dl_entity_is_special(dl_se))
1481 return;
1482
1483 scaled_delta_exec = delta_exec;
1484 if (!dl_server(dl_se))
1485 scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
1486
1487 dl_se->runtime -= scaled_delta_exec;
1488
1489 /*
1490 * The fair server can consume its runtime while throttled (not queued/
1491 * running as regular CFS).
1492 *
1493 * If the server consumes its entire runtime in this state. The server
1494 * is not required for the current period. Thus, reset the server by
1495 * starting a new period, pushing the activation.
1496 */
1497 if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) {
1498 /*
1499 * If the server was previously activated - the starving condition
1500 * took place, it this point it went away because the fair scheduler
1501 * was able to get runtime in background. So return to the initial
1502 * state.
1503 */
1504 dl_se->dl_defer_running = 0;
1505
1506 hrtimer_try_to_cancel(&dl_se->dl_timer);
1507
1508 replenish_dl_new_period(dl_se, dl_se->rq);
1509
1510 /*
1511 * Not being able to start the timer seems problematic. If it could not
1512 * be started for whatever reason, we need to "unthrottle" the DL server
1513 * and queue right away. Otherwise nothing might queue it. That's similar
1514 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn.
1515 */
1516 WARN_ON_ONCE(!start_dl_timer(dl_se));
1517
1518 return;
1519 }
1520
1521 throttle:
1522 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1523 dl_se->dl_throttled = 1;
1524
1525 /* If requested, inform the user about runtime overruns. */
1526 if (dl_runtime_exceeded(dl_se) &&
1527 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1528 dl_se->dl_overrun = 1;
1529
1530 dequeue_dl_entity(dl_se, 0);
1531 if (!dl_server(dl_se)) {
1532 update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1533 dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1534 }
1535
1536 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1537 if (dl_server(dl_se)) {
1538 replenish_dl_new_period(dl_se, rq);
1539 start_dl_timer(dl_se);
1540 } else {
1541 enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1542 }
1543 }
1544
1545 if (!is_leftmost(dl_se, &rq->dl))
1546 resched_curr(rq);
1547 }
1548
1549 /*
1550 * The fair server (sole dl_server) does not account for real-time
1551 * workload because it is running fair work.
1552 */
1553 if (dl_se == &rq->fair_server)
1554 return;
1555
1556 #ifdef CONFIG_RT_GROUP_SCHED
1557 /*
1558 * Because -- for now -- we share the rt bandwidth, we need to
1559 * account our runtime there too, otherwise actual rt tasks
1560 * would be able to exceed the shared quota.
1561 *
1562 * Account to the root rt group for now.
1563 *
1564 * The solution we're working towards is having the RT groups scheduled
1565 * using deadline servers -- however there's a few nasties to figure
1566 * out before that can happen.
1567 */
1568 if (rt_bandwidth_enabled()) {
1569 struct rt_rq *rt_rq = &rq->rt;
1570
1571 raw_spin_lock(&rt_rq->rt_runtime_lock);
1572 /*
1573 * We'll let actual RT tasks worry about the overflow here, we
1574 * have our own CBS to keep us inline; only account when RT
1575 * bandwidth is relevant.
1576 */
1577 if (sched_rt_bandwidth_account(rt_rq))
1578 rt_rq->rt_time += delta_exec;
1579 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1580 }
1581 #endif
1582 }
1583
1584 /*
1585 * In the non-defer mode, the idle time is not accounted, as the
1586 * server provides a guarantee.
1587 *
1588 * If the dl_server is in defer mode, the idle time is also considered
1589 * as time available for the fair server, avoiding a penalty for the
1590 * rt scheduler that did not consumed that time.
1591 */
dl_server_update_idle_time(struct rq * rq,struct task_struct * p)1592 void dl_server_update_idle_time(struct rq *rq, struct task_struct *p)
1593 {
1594 s64 delta_exec;
1595
1596 if (!rq->fair_server.dl_defer)
1597 return;
1598
1599 /* no need to discount more */
1600 if (rq->fair_server.runtime < 0)
1601 return;
1602
1603 delta_exec = rq_clock_task(rq) - p->se.exec_start;
1604 if (delta_exec < 0)
1605 return;
1606
1607 rq->fair_server.runtime -= delta_exec;
1608
1609 if (rq->fair_server.runtime < 0) {
1610 rq->fair_server.dl_defer_running = 0;
1611 rq->fair_server.runtime = 0;
1612 }
1613
1614 p->se.exec_start = rq_clock_task(rq);
1615 }
1616
dl_server_update(struct sched_dl_entity * dl_se,s64 delta_exec)1617 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1618 {
1619 /* 0 runtime = fair server disabled */
1620 if (dl_se->dl_runtime)
1621 update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1622 }
1623
dl_server_start(struct sched_dl_entity * dl_se)1624 void dl_server_start(struct sched_dl_entity *dl_se)
1625 {
1626 struct rq *rq = dl_se->rq;
1627
1628 /*
1629 * XXX: the apply do not work fine at the init phase for the
1630 * fair server because things are not yet set. We need to improve
1631 * this before getting generic.
1632 */
1633 if (!dl_server(dl_se)) {
1634 u64 runtime = 50 * NSEC_PER_MSEC;
1635 u64 period = 1000 * NSEC_PER_MSEC;
1636
1637 dl_server_apply_params(dl_se, runtime, period, 1);
1638
1639 dl_se->dl_server = 1;
1640 dl_se->dl_defer = 1;
1641 setup_new_dl_entity(dl_se);
1642 }
1643
1644 if (!dl_se->dl_runtime || dl_se->dl_server_active)
1645 return;
1646
1647 dl_se->dl_server_active = 1;
1648 enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1649 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl))
1650 resched_curr(dl_se->rq);
1651 }
1652
dl_server_stop(struct sched_dl_entity * dl_se)1653 void dl_server_stop(struct sched_dl_entity *dl_se)
1654 {
1655 if (!dl_se->dl_runtime)
1656 return;
1657
1658 dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1659 hrtimer_try_to_cancel(&dl_se->dl_timer);
1660 dl_se->dl_defer_armed = 0;
1661 dl_se->dl_throttled = 0;
1662 dl_se->dl_server_active = 0;
1663 }
1664
dl_server_init(struct sched_dl_entity * dl_se,struct rq * rq,dl_server_pick_f pick_task)1665 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1666 dl_server_pick_f pick_task)
1667 {
1668 dl_se->rq = rq;
1669 dl_se->server_pick_task = pick_task;
1670 }
1671
__dl_server_attach_root(struct sched_dl_entity * dl_se,struct rq * rq)1672 void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq)
1673 {
1674 u64 new_bw = dl_se->dl_bw;
1675 int cpu = cpu_of(rq);
1676 struct dl_bw *dl_b;
1677
1678 dl_b = dl_bw_of(cpu_of(rq));
1679 guard(raw_spinlock)(&dl_b->lock);
1680
1681 if (!dl_bw_cpus(cpu))
1682 return;
1683
1684 __dl_add(dl_b, new_bw, dl_bw_cpus(cpu));
1685 }
1686
dl_server_apply_params(struct sched_dl_entity * dl_se,u64 runtime,u64 period,bool init)1687 int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init)
1688 {
1689 u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1690 u64 new_bw = to_ratio(period, runtime);
1691 struct rq *rq = dl_se->rq;
1692 int cpu = cpu_of(rq);
1693 struct dl_bw *dl_b;
1694 unsigned long cap;
1695 int retval = 0;
1696 int cpus;
1697
1698 dl_b = dl_bw_of(cpu);
1699 guard(raw_spinlock)(&dl_b->lock);
1700
1701 cpus = dl_bw_cpus(cpu);
1702 cap = dl_bw_capacity(cpu);
1703
1704 if (__dl_overflow(dl_b, cap, old_bw, new_bw))
1705 return -EBUSY;
1706
1707 if (init) {
1708 __add_rq_bw(new_bw, &rq->dl);
1709 __dl_add(dl_b, new_bw, cpus);
1710 } else {
1711 __dl_sub(dl_b, dl_se->dl_bw, cpus);
1712 __dl_add(dl_b, new_bw, cpus);
1713
1714 dl_rq_change_utilization(rq, dl_se, new_bw);
1715 }
1716
1717 dl_se->dl_runtime = runtime;
1718 dl_se->dl_deadline = period;
1719 dl_se->dl_period = period;
1720
1721 dl_se->runtime = 0;
1722 dl_se->deadline = 0;
1723
1724 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1725 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
1726
1727 return retval;
1728 }
1729
1730 /*
1731 * Update the current task's runtime statistics (provided it is still
1732 * a -deadline task and has not been removed from the dl_rq).
1733 */
update_curr_dl(struct rq * rq)1734 static void update_curr_dl(struct rq *rq)
1735 {
1736 struct task_struct *donor = rq->donor;
1737 struct sched_dl_entity *dl_se = &donor->dl;
1738 s64 delta_exec;
1739
1740 if (!dl_task(donor) || !on_dl_rq(dl_se))
1741 return;
1742
1743 /*
1744 * Consumed budget is computed considering the time as
1745 * observed by schedulable tasks (excluding time spent
1746 * in hardirq context, etc.). Deadlines are instead
1747 * computed using hard walltime. This seems to be the more
1748 * natural solution, but the full ramifications of this
1749 * approach need further study.
1750 */
1751 delta_exec = update_curr_common(rq);
1752 update_curr_dl_se(rq, dl_se, delta_exec);
1753 }
1754
inactive_task_timer(struct hrtimer * timer)1755 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1756 {
1757 struct sched_dl_entity *dl_se = container_of(timer,
1758 struct sched_dl_entity,
1759 inactive_timer);
1760 struct task_struct *p = NULL;
1761 struct rq_flags rf;
1762 struct rq *rq;
1763
1764 if (!dl_server(dl_se)) {
1765 p = dl_task_of(dl_se);
1766 rq = task_rq_lock(p, &rf);
1767 } else {
1768 rq = dl_se->rq;
1769 rq_lock(rq, &rf);
1770 }
1771
1772 sched_clock_tick();
1773 update_rq_clock(rq);
1774
1775 if (dl_server(dl_se))
1776 goto no_task;
1777
1778 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1779 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1780
1781 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1782 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1783 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1784 dl_se->dl_non_contending = 0;
1785 }
1786
1787 raw_spin_lock(&dl_b->lock);
1788 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1789 raw_spin_unlock(&dl_b->lock);
1790 __dl_clear_params(dl_se);
1791
1792 goto unlock;
1793 }
1794
1795 no_task:
1796 if (dl_se->dl_non_contending == 0)
1797 goto unlock;
1798
1799 sub_running_bw(dl_se, &rq->dl);
1800 dl_se->dl_non_contending = 0;
1801 unlock:
1802
1803 if (!dl_server(dl_se)) {
1804 task_rq_unlock(rq, p, &rf);
1805 put_task_struct(p);
1806 } else {
1807 rq_unlock(rq, &rf);
1808 }
1809
1810 return HRTIMER_NORESTART;
1811 }
1812
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1813 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1814 {
1815 struct hrtimer *timer = &dl_se->inactive_timer;
1816
1817 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1818 timer->function = inactive_task_timer;
1819 }
1820
1821 #define __node_2_dle(node) \
1822 rb_entry((node), struct sched_dl_entity, rb_node)
1823
1824 #ifdef CONFIG_SMP
1825
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1826 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1827 {
1828 struct rq *rq = rq_of_dl_rq(dl_rq);
1829
1830 if (dl_rq->earliest_dl.curr == 0 ||
1831 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1832 if (dl_rq->earliest_dl.curr == 0)
1833 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1834 dl_rq->earliest_dl.curr = deadline;
1835 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1836 }
1837 }
1838
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1839 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1840 {
1841 struct rq *rq = rq_of_dl_rq(dl_rq);
1842
1843 /*
1844 * Since we may have removed our earliest (and/or next earliest)
1845 * task we must recompute them.
1846 */
1847 if (!dl_rq->dl_nr_running) {
1848 dl_rq->earliest_dl.curr = 0;
1849 dl_rq->earliest_dl.next = 0;
1850 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1851 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1852 } else {
1853 struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1854 struct sched_dl_entity *entry = __node_2_dle(leftmost);
1855
1856 dl_rq->earliest_dl.curr = entry->deadline;
1857 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1858 }
1859 }
1860
1861 #else
1862
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1863 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1864 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1865
1866 #endif /* CONFIG_SMP */
1867
1868 static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1869 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1870 {
1871 u64 deadline = dl_se->deadline;
1872
1873 dl_rq->dl_nr_running++;
1874 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1875
1876 inc_dl_deadline(dl_rq, deadline);
1877 }
1878
1879 static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1880 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1881 {
1882 WARN_ON(!dl_rq->dl_nr_running);
1883 dl_rq->dl_nr_running--;
1884 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1885
1886 dec_dl_deadline(dl_rq, dl_se->deadline);
1887 }
1888
__dl_less(struct rb_node * a,const struct rb_node * b)1889 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1890 {
1891 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1892 }
1893
1894 static __always_inline struct sched_statistics *
__schedstats_from_dl_se(struct sched_dl_entity * dl_se)1895 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1896 {
1897 if (!schedstat_enabled())
1898 return NULL;
1899
1900 if (dl_server(dl_se))
1901 return NULL;
1902
1903 return &dl_task_of(dl_se)->stats;
1904 }
1905
1906 static inline void
update_stats_wait_start_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1907 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1908 {
1909 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1910 if (stats)
1911 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1912 }
1913
1914 static inline void
update_stats_wait_end_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1915 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1916 {
1917 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1918 if (stats)
1919 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1920 }
1921
1922 static inline void
update_stats_enqueue_sleeper_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1923 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1924 {
1925 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1926 if (stats)
1927 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1928 }
1929
1930 static inline void
update_stats_enqueue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1931 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1932 int flags)
1933 {
1934 if (!schedstat_enabled())
1935 return;
1936
1937 if (flags & ENQUEUE_WAKEUP)
1938 update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1939 }
1940
1941 static inline void
update_stats_dequeue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1942 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1943 int flags)
1944 {
1945 struct task_struct *p = dl_task_of(dl_se);
1946
1947 if (!schedstat_enabled())
1948 return;
1949
1950 if ((flags & DEQUEUE_SLEEP)) {
1951 unsigned int state;
1952
1953 state = READ_ONCE(p->__state);
1954 if (state & TASK_INTERRUPTIBLE)
1955 __schedstat_set(p->stats.sleep_start,
1956 rq_clock(rq_of_dl_rq(dl_rq)));
1957
1958 if (state & TASK_UNINTERRUPTIBLE)
1959 __schedstat_set(p->stats.block_start,
1960 rq_clock(rq_of_dl_rq(dl_rq)));
1961 }
1962 }
1963
__enqueue_dl_entity(struct sched_dl_entity * dl_se)1964 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1965 {
1966 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1967
1968 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1969
1970 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1971
1972 inc_dl_tasks(dl_se, dl_rq);
1973 }
1974
__dequeue_dl_entity(struct sched_dl_entity * dl_se)1975 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1976 {
1977 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1978
1979 if (RB_EMPTY_NODE(&dl_se->rb_node))
1980 return;
1981
1982 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1983
1984 RB_CLEAR_NODE(&dl_se->rb_node);
1985
1986 dec_dl_tasks(dl_se, dl_rq);
1987 }
1988
1989 static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,int flags)1990 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1991 {
1992 WARN_ON_ONCE(on_dl_rq(dl_se));
1993
1994 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1995
1996 /*
1997 * Check if a constrained deadline task was activated
1998 * after the deadline but before the next period.
1999 * If that is the case, the task will be throttled and
2000 * the replenishment timer will be set to the next period.
2001 */
2002 if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
2003 dl_check_constrained_dl(dl_se);
2004
2005 if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
2006 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2007
2008 add_rq_bw(dl_se, dl_rq);
2009 add_running_bw(dl_se, dl_rq);
2010 }
2011
2012 /*
2013 * If p is throttled, we do not enqueue it. In fact, if it exhausted
2014 * its budget it needs a replenishment and, since it now is on
2015 * its rq, the bandwidth timer callback (which clearly has not
2016 * run yet) will take care of this.
2017 * However, the active utilization does not depend on the fact
2018 * that the task is on the runqueue or not (but depends on the
2019 * task's state - in GRUB parlance, "inactive" vs "active contending").
2020 * In other words, even if a task is throttled its utilization must
2021 * be counted in the active utilization; hence, we need to call
2022 * add_running_bw().
2023 */
2024 if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
2025 if (flags & ENQUEUE_WAKEUP)
2026 task_contending(dl_se, flags);
2027
2028 return;
2029 }
2030
2031 /*
2032 * If this is a wakeup or a new instance, the scheduling
2033 * parameters of the task might need updating. Otherwise,
2034 * we want a replenishment of its runtime.
2035 */
2036 if (flags & ENQUEUE_WAKEUP) {
2037 task_contending(dl_se, flags);
2038 update_dl_entity(dl_se);
2039 } else if (flags & ENQUEUE_REPLENISH) {
2040 replenish_dl_entity(dl_se);
2041 } else if ((flags & ENQUEUE_RESTORE) &&
2042 !is_dl_boosted(dl_se) &&
2043 dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
2044 setup_new_dl_entity(dl_se);
2045 }
2046
2047 /*
2048 * If the reservation is still throttled, e.g., it got replenished but is a
2049 * deferred task and still got to wait, don't enqueue.
2050 */
2051 if (dl_se->dl_throttled && start_dl_timer(dl_se))
2052 return;
2053
2054 /*
2055 * We're about to enqueue, make sure we're not ->dl_throttled!
2056 * In case the timer was not started, say because the defer time
2057 * has passed, mark as not throttled and mark unarmed.
2058 * Also cancel earlier timers, since letting those run is pointless.
2059 */
2060 if (dl_se->dl_throttled) {
2061 hrtimer_try_to_cancel(&dl_se->dl_timer);
2062 dl_se->dl_defer_armed = 0;
2063 dl_se->dl_throttled = 0;
2064 }
2065
2066 __enqueue_dl_entity(dl_se);
2067 }
2068
dequeue_dl_entity(struct sched_dl_entity * dl_se,int flags)2069 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2070 {
2071 __dequeue_dl_entity(dl_se);
2072
2073 if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
2074 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2075
2076 sub_running_bw(dl_se, dl_rq);
2077 sub_rq_bw(dl_se, dl_rq);
2078 }
2079
2080 /*
2081 * This check allows to start the inactive timer (or to immediately
2082 * decrease the active utilization, if needed) in two cases:
2083 * when the task blocks and when it is terminating
2084 * (p->state == TASK_DEAD). We can handle the two cases in the same
2085 * way, because from GRUB's point of view the same thing is happening
2086 * (the task moves from "active contending" to "active non contending"
2087 * or "inactive")
2088 */
2089 if (flags & DEQUEUE_SLEEP)
2090 task_non_contending(dl_se);
2091 }
2092
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)2093 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2094 {
2095 if (is_dl_boosted(&p->dl)) {
2096 /*
2097 * Because of delays in the detection of the overrun of a
2098 * thread's runtime, it might be the case that a thread
2099 * goes to sleep in a rt mutex with negative runtime. As
2100 * a consequence, the thread will be throttled.
2101 *
2102 * While waiting for the mutex, this thread can also be
2103 * boosted via PI, resulting in a thread that is throttled
2104 * and boosted at the same time.
2105 *
2106 * In this case, the boost overrides the throttle.
2107 */
2108 if (p->dl.dl_throttled) {
2109 /*
2110 * The replenish timer needs to be canceled. No
2111 * problem if it fires concurrently: boosted threads
2112 * are ignored in dl_task_timer().
2113 *
2114 * If the timer callback was running (hrtimer_try_to_cancel == -1),
2115 * it will eventually call put_task_struct().
2116 */
2117 if (hrtimer_try_to_cancel(&p->dl.dl_timer) == 1 &&
2118 !dl_server(&p->dl))
2119 put_task_struct(p);
2120 p->dl.dl_throttled = 0;
2121 }
2122 } else if (!dl_prio(p->normal_prio)) {
2123 /*
2124 * Special case in which we have a !SCHED_DEADLINE task that is going
2125 * to be deboosted, but exceeds its runtime while doing so. No point in
2126 * replenishing it, as it's going to return back to its original
2127 * scheduling class after this. If it has been throttled, we need to
2128 * clear the flag, otherwise the task may wake up as throttled after
2129 * being boosted again with no means to replenish the runtime and clear
2130 * the throttle.
2131 */
2132 p->dl.dl_throttled = 0;
2133 if (!(flags & ENQUEUE_REPLENISH))
2134 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
2135 task_pid_nr(p));
2136
2137 return;
2138 }
2139
2140 check_schedstat_required();
2141 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
2142
2143 if (p->on_rq == TASK_ON_RQ_MIGRATING)
2144 flags |= ENQUEUE_MIGRATING;
2145
2146 enqueue_dl_entity(&p->dl, flags);
2147
2148 if (dl_server(&p->dl))
2149 return;
2150
2151 if (task_is_blocked(p))
2152 return;
2153
2154 if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
2155 enqueue_pushable_dl_task(rq, p);
2156 }
2157
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)2158 static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2159 {
2160 update_curr_dl(rq);
2161
2162 if (p->on_rq == TASK_ON_RQ_MIGRATING)
2163 flags |= DEQUEUE_MIGRATING;
2164
2165 dequeue_dl_entity(&p->dl, flags);
2166 if (!p->dl.dl_throttled && !dl_server(&p->dl))
2167 dequeue_pushable_dl_task(rq, p);
2168
2169 return true;
2170 }
2171
2172 /*
2173 * Yield task semantic for -deadline tasks is:
2174 *
2175 * get off from the CPU until our next instance, with
2176 * a new runtime. This is of little use now, since we
2177 * don't have a bandwidth reclaiming mechanism. Anyway,
2178 * bandwidth reclaiming is planned for the future, and
2179 * yield_task_dl will indicate that some spare budget
2180 * is available for other task instances to use it.
2181 */
yield_task_dl(struct rq * rq)2182 static void yield_task_dl(struct rq *rq)
2183 {
2184 /*
2185 * We make the task go to sleep until its current deadline by
2186 * forcing its runtime to zero. This way, update_curr_dl() stops
2187 * it and the bandwidth timer will wake it up and will give it
2188 * new scheduling parameters (thanks to dl_yielded=1).
2189 */
2190 rq->curr->dl.dl_yielded = 1;
2191
2192 update_rq_clock(rq);
2193 update_curr_dl(rq);
2194 /*
2195 * Tell update_rq_clock() that we've just updated,
2196 * so we don't do microscopic update in schedule()
2197 * and double the fastpath cost.
2198 */
2199 rq_clock_skip_update(rq);
2200 }
2201
2202 #ifdef CONFIG_SMP
2203
dl_task_is_earliest_deadline(struct task_struct * p,struct rq * rq)2204 static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
2205 struct rq *rq)
2206 {
2207 return (!rq->dl.dl_nr_running ||
2208 dl_time_before(p->dl.deadline,
2209 rq->dl.earliest_dl.curr));
2210 }
2211
2212 static int find_later_rq(struct task_struct *sched_ctx, struct task_struct *exec_ctx);
2213
2214 static int
select_task_rq_dl(struct task_struct * p,int cpu,int flags)2215 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
2216 {
2217 struct task_struct *curr, *donor;
2218 bool select_rq;
2219 struct rq *rq;
2220 int target_cpu = -1;
2221
2222 trace_android_rvh_select_task_rq_dl(p, cpu, flags & 0xF,
2223 flags, &target_cpu);
2224 if (target_cpu >= 0)
2225 return target_cpu;
2226
2227 if (!(flags & WF_TTWU))
2228 goto out;
2229
2230 rq = cpu_rq(cpu);
2231
2232 rcu_read_lock();
2233 curr = READ_ONCE(rq->curr); /* unlocked access */
2234 donor = READ_ONCE(rq->donor);
2235
2236 /*
2237 * If we are dealing with a -deadline task, we must
2238 * decide where to wake it up.
2239 * If it has a later deadline and the current task
2240 * on this rq can't move (provided the waking task
2241 * can!) we prefer to send it somewhere else. On the
2242 * other hand, if it has a shorter deadline, we
2243 * try to make it stay here, it might be important.
2244 */
2245 select_rq = unlikely(dl_task(donor)) &&
2246 (curr->nr_cpus_allowed < 2 ||
2247 !dl_entity_preempt(&p->dl, &donor->dl)) &&
2248 p->nr_cpus_allowed > 1;
2249
2250 /*
2251 * Take the capacity of the CPU into account to
2252 * ensure it fits the requirement of the task.
2253 */
2254 if (sched_asym_cpucap_active())
2255 select_rq |= !dl_task_fits_capacity(p, cpu);
2256
2257 if (select_rq) {
2258 int target = find_later_rq(p, p);
2259
2260 if (target != -1 &&
2261 dl_task_is_earliest_deadline(p, cpu_rq(target)))
2262 cpu = target;
2263 }
2264 rcu_read_unlock();
2265
2266 out:
2267 return cpu;
2268 }
2269
migrate_task_rq_dl(struct task_struct * p,int new_cpu __maybe_unused)2270 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
2271 {
2272 struct rq_flags rf;
2273 struct rq *rq;
2274
2275 if (READ_ONCE(p->__state) != TASK_WAKING)
2276 return;
2277
2278 rq = task_rq(p);
2279 /*
2280 * Since p->state == TASK_WAKING, set_task_cpu() has been called
2281 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
2282 * rq->lock is not... So, lock it
2283 */
2284 rq_lock(rq, &rf);
2285 if (p->dl.dl_non_contending) {
2286 update_rq_clock(rq);
2287 sub_running_bw(&p->dl, &rq->dl);
2288 p->dl.dl_non_contending = 0;
2289 /*
2290 * If the timer handler is currently running and the
2291 * timer cannot be canceled, inactive_task_timer()
2292 * will see that dl_not_contending is not set, and
2293 * will not touch the rq's active utilization,
2294 * so we are still safe.
2295 */
2296 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2297 put_task_struct(p);
2298 }
2299 sub_rq_bw(&p->dl, &rq->dl);
2300 rq_unlock(rq, &rf);
2301 }
2302
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)2303 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
2304 {
2305 struct task_struct *exec_ctx;
2306
2307 /*
2308 * Current can't be migrated, useless to reschedule,
2309 * let's hope p can move out.
2310 */
2311 if (rq->curr->nr_cpus_allowed == 1 ||
2312 !cpudl_find(&rq->rd->cpudl, rq->donor, rq->curr, NULL))
2313 return;
2314
2315 exec_ctx = find_exec_ctx(rq, p);
2316 if (task_current(rq, exec_ctx))
2317 return;
2318
2319 /*
2320 * p is migratable, so let's not schedule it and
2321 * see if it is pushed or pulled somewhere else.
2322 */
2323 if (p->nr_cpus_allowed != 1 &&
2324 cpudl_find(&rq->rd->cpudl, p, exec_ctx, NULL))
2325 return;
2326
2327 resched_curr(rq);
2328 }
2329
balance_dl(struct rq * rq,struct task_struct * p,struct rq_flags * rf)2330 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2331 {
2332 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2333 /*
2334 * This is OK, because current is on_cpu, which avoids it being
2335 * picked for load-balance and preemption/IRQs are still
2336 * disabled avoiding further scheduler activity on it and we've
2337 * not yet started the picking loop.
2338 */
2339 rq_unpin_lock(rq, rf);
2340 pull_dl_task(rq);
2341 rq_repin_lock(rq, rf);
2342 }
2343
2344 return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2345 }
2346 #endif /* CONFIG_SMP */
2347
2348 /*
2349 * Only called when both the current and waking task are -deadline
2350 * tasks.
2351 */
wakeup_preempt_dl(struct rq * rq,struct task_struct * p,int flags)2352 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2353 int flags)
2354 {
2355 if (dl_entity_preempt(&p->dl, &rq->donor->dl)) {
2356 resched_curr(rq);
2357 return;
2358 }
2359
2360 #ifdef CONFIG_SMP
2361 /*
2362 * In the unlikely case current and p have the same deadline
2363 * let us try to decide what's the best thing to do...
2364 */
2365 if ((p->dl.deadline == rq->donor->dl.deadline) &&
2366 !test_tsk_need_resched(rq->curr))
2367 check_preempt_equal_dl(rq, p);
2368 #endif /* CONFIG_SMP */
2369 }
2370
2371 #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2372 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2373 {
2374 hrtick_start(rq, dl_se->runtime);
2375 }
2376 #else /* !CONFIG_SCHED_HRTICK */
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2377 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2378 {
2379 }
2380 #endif
2381
set_next_task_dl(struct rq * rq,struct task_struct * p,bool first)2382 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2383 {
2384 struct sched_dl_entity *dl_se = &p->dl;
2385 struct dl_rq *dl_rq = &rq->dl;
2386
2387 p->se.exec_start = rq_clock_task(rq);
2388 if (on_dl_rq(&p->dl))
2389 update_stats_wait_end_dl(dl_rq, dl_se);
2390
2391 /* You can't push away the running task */
2392 dequeue_pushable_dl_task(rq, p);
2393
2394 if (!first)
2395 return;
2396
2397 if (rq->donor->sched_class != &dl_sched_class)
2398 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2399
2400 deadline_queue_push_tasks(rq);
2401
2402 if (hrtick_enabled_dl(rq))
2403 start_hrtick_dl(rq, &p->dl);
2404 }
2405
pick_next_dl_entity(struct dl_rq * dl_rq)2406 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2407 {
2408 struct rb_node *left = rb_first_cached(&dl_rq->root);
2409
2410 if (!left)
2411 return NULL;
2412
2413 return __node_2_dle(left);
2414 }
2415
2416 /*
2417 * __pick_next_task_dl - Helper to pick the next -deadline task to run.
2418 * @rq: The runqueue to pick the next task from.
2419 */
__pick_task_dl(struct rq * rq)2420 static struct task_struct *__pick_task_dl(struct rq *rq)
2421 {
2422 struct sched_dl_entity *dl_se;
2423 struct dl_rq *dl_rq = &rq->dl;
2424 struct task_struct *p;
2425
2426 again:
2427 if (!sched_dl_runnable(rq))
2428 return NULL;
2429
2430 dl_se = pick_next_dl_entity(dl_rq);
2431 WARN_ON_ONCE(!dl_se);
2432
2433 if (dl_server(dl_se)) {
2434 p = dl_se->server_pick_task(dl_se);
2435 if (!p) {
2436 dl_server_stop(dl_se);
2437 goto again;
2438 }
2439 rq->dl_server = dl_se;
2440 trace_android_vh_dump_dl_server(dl_se, p);
2441 } else {
2442 p = dl_task_of(dl_se);
2443 }
2444
2445 return p;
2446 }
2447
pick_task_dl(struct rq * rq)2448 static struct task_struct *pick_task_dl(struct rq *rq)
2449 {
2450 return __pick_task_dl(rq);
2451 }
2452
put_prev_task_dl(struct rq * rq,struct task_struct * p,struct task_struct * next)2453 static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next)
2454 {
2455 struct sched_dl_entity *dl_se = &p->dl;
2456 struct dl_rq *dl_rq = &rq->dl;
2457
2458 if (on_dl_rq(&p->dl))
2459 update_stats_wait_start_dl(dl_rq, dl_se);
2460
2461 update_curr_dl(rq);
2462
2463 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2464
2465 if (task_is_blocked(p))
2466 return;
2467
2468 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2469 enqueue_pushable_dl_task(rq, p);
2470 }
2471
2472 /*
2473 * scheduler tick hitting a task of our scheduling class.
2474 *
2475 * NOTE: This function can be called remotely by the tick offload that
2476 * goes along full dynticks. Therefore no local assumption can be made
2477 * and everything must be accessed through the @rq and @curr passed in
2478 * parameters.
2479 */
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)2480 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2481 {
2482 update_curr_dl(rq);
2483
2484 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2485 /*
2486 * Even when we have runtime, update_curr_dl() might have resulted in us
2487 * not being the leftmost task anymore. In that case NEED_RESCHED will
2488 * be set and schedule() will start a new hrtick for the next task.
2489 */
2490 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2491 is_leftmost(&p->dl, &rq->dl))
2492 start_hrtick_dl(rq, &p->dl);
2493 }
2494
task_fork_dl(struct task_struct * p)2495 static void task_fork_dl(struct task_struct *p)
2496 {
2497 /*
2498 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2499 * sched_fork()
2500 */
2501 }
2502
2503 #ifdef CONFIG_SMP
2504
2505 /* Only try algorithms three times */
2506 #define DL_MAX_TRIES 3
2507
2508 /*
2509 * Return the earliest pushable rq's task, which is suitable to be executed
2510 * on the CPU, NULL otherwise:
2511 */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)2512 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2513 {
2514 struct task_struct *p = NULL;
2515 struct rb_node *next_node;
2516
2517 if (!has_pushable_dl_tasks(rq))
2518 return NULL;
2519
2520 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2521
2522 next_node:
2523 if (next_node) {
2524 p = __node_2_pdl(next_node);
2525
2526 if (task_is_pushable(rq, p, cpu) == 1)
2527 return p;
2528
2529 next_node = rb_next(next_node);
2530 goto next_node;
2531 }
2532
2533 return NULL;
2534 }
2535
2536 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2537
find_later_rq(struct task_struct * sched_ctx,struct task_struct * exec_ctx)2538 static int find_later_rq(struct task_struct *sched_ctx, struct task_struct *exec_ctx)
2539 {
2540 struct sched_domain *sd;
2541 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2542 int this_cpu = smp_processor_id();
2543 int cpu = task_cpu(sched_ctx);
2544
2545 /* Make sure the mask is initialized first */
2546 if (unlikely(!later_mask))
2547 return -1;
2548
2549 if (exec_ctx && exec_ctx->nr_cpus_allowed == 1)
2550 return -1;
2551
2552 /*
2553 * We have to consider system topology and task affinity
2554 * first, then we can look for a suitable CPU.
2555 */
2556 if (!cpudl_find(&task_rq(exec_ctx)->rd->cpudl, sched_ctx, exec_ctx, later_mask))
2557 return -1;
2558
2559 /*
2560 * If we are here, some targets have been found, including
2561 * the most suitable which is, among the runqueues where the
2562 * current tasks have later deadlines than the task's one, the
2563 * rq with the latest possible one.
2564 *
2565 * Now we check how well this matches with task's
2566 * affinity and system topology.
2567 *
2568 * The last CPU where the task run is our first
2569 * guess, since it is most likely cache-hot there.
2570 */
2571 if (cpumask_test_cpu(cpu, later_mask))
2572 return cpu;
2573 /*
2574 * Check if this_cpu is to be skipped (i.e., it is
2575 * not in the mask) or not.
2576 */
2577 if (!cpumask_test_cpu(this_cpu, later_mask))
2578 this_cpu = -1;
2579
2580 rcu_read_lock();
2581 for_each_domain(cpu, sd) {
2582 if (sd->flags & SD_WAKE_AFFINE) {
2583 int best_cpu;
2584
2585 /*
2586 * If possible, preempting this_cpu is
2587 * cheaper than migrating.
2588 */
2589 if (this_cpu != -1 &&
2590 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2591 rcu_read_unlock();
2592 return this_cpu;
2593 }
2594
2595 best_cpu = cpumask_any_and_distribute(later_mask,
2596 sched_domain_span(sd));
2597 /*
2598 * Last chance: if a CPU being in both later_mask
2599 * and current sd span is valid, that becomes our
2600 * choice. Of course, the latest possible CPU is
2601 * already under consideration through later_mask.
2602 */
2603 if (best_cpu < nr_cpu_ids) {
2604 rcu_read_unlock();
2605 return best_cpu;
2606 }
2607 }
2608 }
2609 rcu_read_unlock();
2610
2611 /*
2612 * At this point, all our guesses failed, we just return
2613 * 'something', and let the caller sort the things out.
2614 */
2615 if (this_cpu != -1)
2616 return this_cpu;
2617
2618 cpu = cpumask_any_distribute(later_mask);
2619 if (cpu < nr_cpu_ids)
2620 return cpu;
2621
2622 return -1;
2623 }
2624
pick_next_pushable_dl_task(struct rq * rq)2625 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2626 {
2627 struct task_struct *p = NULL;
2628 struct rb_node *next_node;
2629
2630 if (!has_pushable_dl_tasks(rq))
2631 return NULL;
2632
2633 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2634 while (next_node) {
2635 p = __node_2_pdl(next_node);
2636 /*
2637 * cpu argument doesn't matter because we treat a -1 result
2638 * (pushable but can't go to cpu0) the same as a 1 result
2639 * (pushable to cpu0). All we care about here is general
2640 * pushability.
2641 */
2642 if (task_is_pushable(rq, p, 0))
2643 break;
2644
2645 next_node = rb_next(next_node);
2646 }
2647
2648 if (!p)
2649 return NULL;
2650
2651 WARN_ON_ONCE(rq->cpu != task_cpu(p));
2652 WARN_ON_ONCE(task_current(rq, p));
2653 WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2654
2655 WARN_ON_ONCE(!task_on_rq_queued(p));
2656 WARN_ON_ONCE(!dl_task(p));
2657
2658 return p;
2659 }
2660
__dl_revalidate_rq_state(struct task_struct * task,struct rq * rq,struct rq * later)2661 static inline bool __dl_revalidate_rq_state(struct task_struct *task, struct rq *rq,
2662 struct rq *later)
2663 {
2664 if (!dl_task(task))
2665 return false;
2666 return __revalidate_rq_state(task, rq, later);
2667 }
2668
dl_revalidate_rq_state(struct task_struct * task,struct rq * rq,struct rq * later,bool * retry)2669 static inline bool dl_revalidate_rq_state(struct task_struct *task, struct rq *rq,
2670 struct rq *later, bool *retry)
2671 {
2672 if (!sched_proxy_exec())
2673 return __dl_revalidate_rq_state(task, rq, later);
2674
2675 if (!dl_task(task) || is_migration_disabled(task))
2676 return false;
2677
2678 if (rq != this_rq()) {
2679 struct task_struct *next_task = pick_next_pushable_dl_task(rq);
2680 struct task_struct *exec_ctx;
2681
2682 if (next_task != task)
2683 return false;
2684
2685 exec_ctx = find_exec_ctx(rq, next_task);
2686 *retry = (exec_ctx && !cpumask_test_cpu(later->cpu,
2687 &exec_ctx->cpus_mask));
2688 } else {
2689 int pushable = task_is_pushable(rq, task, later->cpu);
2690
2691 *retry = (pushable == -1);
2692 if (!pushable)
2693 return false;
2694 }
2695 return true;
2696 }
2697
2698 /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)2699 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2700 {
2701 struct task_struct *exec_ctx;
2702 struct rq *later_rq = NULL;
2703 bool retry;
2704 int tries;
2705 int cpu;
2706
2707 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2708 retry = false;
2709 exec_ctx = find_exec_ctx(rq, task);
2710 if (!exec_ctx)
2711 break;
2712 cpu = find_later_rq(task, exec_ctx);
2713
2714 if ((cpu == -1) || (cpu == rq->cpu))
2715 break;
2716
2717 later_rq = cpu_rq(cpu);
2718
2719 if (!dl_task_is_earliest_deadline(task, later_rq)) {
2720 /*
2721 * Target rq has tasks of equal or earlier deadline,
2722 * retrying does not release any lock and is unlikely
2723 * to yield a different result.
2724 */
2725 later_rq = NULL;
2726 break;
2727 }
2728
2729 /* Retry if something changed. */
2730 if (double_lock_balance(rq, later_rq)) {
2731 if (unlikely(!dl_revalidate_rq_state(task, rq, later_rq, &retry))) {
2732 double_unlock_balance(rq, later_rq);
2733 later_rq = NULL;
2734 break;
2735 }
2736 }
2737
2738 /*
2739 * If the rq we found has no -deadline task, or
2740 * its earliest one has a later deadline than our
2741 * task, the rq is a good one.
2742 */
2743 if (!retry && dl_task_is_earliest_deadline(task, later_rq))
2744 break;
2745
2746 /* Otherwise we try again. */
2747 double_unlock_balance(rq, later_rq);
2748 later_rq = NULL;
2749 }
2750
2751 return later_rq;
2752 }
2753
2754 /*
2755 * See if the non running -deadline tasks on this rq
2756 * can be sent to some other CPU where they can preempt
2757 * and start executing.
2758 */
push_dl_task(struct rq * rq)2759 static int push_dl_task(struct rq *rq)
2760 {
2761 struct task_struct *next_task;
2762 struct rq *later_rq;
2763 int ret = 0;
2764
2765 next_task = pick_next_pushable_dl_task(rq);
2766 if (!next_task)
2767 return 0;
2768
2769 retry:
2770 /*
2771 * If next_task preempts rq->curr, and rq->curr
2772 * can move away, it makes sense to just reschedule
2773 * without going further in pushing next_task.
2774 */
2775 if (dl_task(rq->donor) &&
2776 dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) &&
2777 rq->curr->nr_cpus_allowed > 1) {
2778 resched_curr(rq);
2779 return 0;
2780 }
2781
2782 if (is_migration_disabled(next_task))
2783 return 0;
2784
2785 if (WARN_ON(next_task == rq->curr))
2786 return 0;
2787
2788 /* We might release rq lock */
2789 get_task_struct(next_task);
2790
2791 /* Will lock the rq it'll find */
2792 later_rq = find_lock_later_rq(next_task, rq);
2793 if (!later_rq) {
2794 struct task_struct *task;
2795
2796 /*
2797 * We must check all this again, since
2798 * find_lock_later_rq releases rq->lock and it is
2799 * then possible that next_task has migrated.
2800 */
2801 task = pick_next_pushable_dl_task(rq);
2802 if (task == next_task) {
2803 /*
2804 * The task is still there. We don't try
2805 * again, some other CPU will pull it when ready.
2806 */
2807 goto out;
2808 }
2809
2810 if (!task)
2811 /* No more tasks */
2812 goto out;
2813
2814 put_task_struct(next_task);
2815 next_task = task;
2816 goto retry;
2817 }
2818
2819 move_queued_task_locked(rq, later_rq, next_task);
2820 ret = 1;
2821
2822 resched_curr(later_rq);
2823
2824 double_unlock_balance(rq, later_rq);
2825
2826 out:
2827 put_task_struct(next_task);
2828
2829 return ret;
2830 }
2831
push_dl_tasks(struct rq * rq)2832 static void push_dl_tasks(struct rq *rq)
2833 {
2834 /* push_dl_task() will return true if it moved a -deadline task */
2835 while (push_dl_task(rq))
2836 ;
2837 }
2838
pull_dl_task(struct rq * this_rq)2839 static void pull_dl_task(struct rq *this_rq)
2840 {
2841 int this_cpu = this_rq->cpu, cpu;
2842 struct task_struct *p, *push_task;
2843 bool resched = false;
2844 struct rq *src_rq;
2845 u64 dmin = LONG_MAX;
2846
2847 if (likely(!dl_overloaded(this_rq)))
2848 return;
2849
2850 /*
2851 * Match the barrier from dl_set_overloaded; this guarantees that if we
2852 * see overloaded we must also see the dlo_mask bit.
2853 */
2854 smp_rmb();
2855
2856 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2857 if (this_cpu == cpu)
2858 continue;
2859
2860 src_rq = cpu_rq(cpu);
2861
2862 /*
2863 * It looks racy, and it is! However, as in sched_rt.c,
2864 * we are fine with this.
2865 */
2866 if (this_rq->dl.dl_nr_running &&
2867 dl_time_before(this_rq->dl.earliest_dl.curr,
2868 src_rq->dl.earliest_dl.next))
2869 continue;
2870
2871 /* Might drop this_rq->lock */
2872 push_task = NULL;
2873 double_lock_balance(this_rq, src_rq);
2874
2875 /*
2876 * If there are no more pullable tasks on the
2877 * rq, we're done with it.
2878 */
2879 if (src_rq->dl.dl_nr_running <= 1)
2880 goto skip;
2881
2882 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2883
2884 /*
2885 * We found a task to be pulled if:
2886 * - it preempts our current (if there's one),
2887 * - it will preempt the last one we pulled (if any).
2888 */
2889 if (p && dl_time_before(p->dl.deadline, dmin) &&
2890 dl_task_is_earliest_deadline(p, this_rq)) {
2891 WARN_ON(p == src_rq->curr);
2892 WARN_ON(!task_on_rq_queued(p));
2893
2894 /*
2895 * Then we pull iff p has actually an earlier
2896 * deadline than the current task of its runqueue.
2897 */
2898 if (dl_time_before(p->dl.deadline,
2899 src_rq->donor->dl.deadline))
2900 goto skip;
2901
2902 if (is_migration_disabled(p)) {
2903 push_task = get_push_task(src_rq);
2904 } else {
2905 move_queued_task_locked(src_rq, this_rq, p);
2906 dmin = p->dl.deadline;
2907 resched = true;
2908 }
2909
2910 /* Is there any other task even earlier? */
2911 }
2912 skip:
2913 double_unlock_balance(this_rq, src_rq);
2914
2915 if (push_task) {
2916 preempt_disable();
2917 raw_spin_rq_unlock(this_rq);
2918 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2919 push_task, &src_rq->push_work);
2920 preempt_enable();
2921 raw_spin_rq_lock(this_rq);
2922 }
2923 }
2924
2925 if (resched)
2926 resched_curr(this_rq);
2927 }
2928
2929 /*
2930 * Since the task is not running and a reschedule is not going to happen
2931 * anytime soon on its runqueue, we try pushing it away now.
2932 */
task_woken_dl(struct rq * rq,struct task_struct * p)2933 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2934 {
2935 if (!task_on_cpu(rq, p) &&
2936 !test_tsk_need_resched(rq->curr) &&
2937 p->nr_cpus_allowed > 1 &&
2938 dl_task(rq->donor) &&
2939 (rq->curr->nr_cpus_allowed < 2 ||
2940 !dl_entity_preempt(&p->dl, &rq->donor->dl))) {
2941 push_dl_tasks(rq);
2942 }
2943 }
2944
set_cpus_allowed_dl(struct task_struct * p,struct affinity_context * ctx)2945 static void set_cpus_allowed_dl(struct task_struct *p,
2946 struct affinity_context *ctx)
2947 {
2948 struct root_domain *src_rd;
2949 struct rq *rq;
2950
2951 WARN_ON_ONCE(!dl_task(p));
2952
2953 rq = task_rq(p);
2954 src_rd = rq->rd;
2955 /*
2956 * Migrating a SCHED_DEADLINE task between exclusive
2957 * cpusets (different root_domains) entails a bandwidth
2958 * update. We already made space for us in the destination
2959 * domain (see cpuset_can_attach()).
2960 */
2961 if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2962 struct dl_bw *src_dl_b;
2963
2964 src_dl_b = dl_bw_of(cpu_of(rq));
2965 /*
2966 * We now free resources of the root_domain we are migrating
2967 * off. In the worst case, sched_setattr() may temporary fail
2968 * until we complete the update.
2969 */
2970 raw_spin_lock(&src_dl_b->lock);
2971 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2972 raw_spin_unlock(&src_dl_b->lock);
2973 }
2974
2975 set_cpus_allowed_common(p, ctx);
2976 }
2977
2978 /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)2979 static void rq_online_dl(struct rq *rq)
2980 {
2981 if (rq->dl.overloaded)
2982 dl_set_overload(rq);
2983
2984 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2985 if (rq->dl.dl_nr_running > 0)
2986 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2987 }
2988
2989 /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)2990 static void rq_offline_dl(struct rq *rq)
2991 {
2992 if (rq->dl.overloaded)
2993 dl_clear_overload(rq);
2994
2995 cpudl_clear(&rq->rd->cpudl, rq->cpu);
2996 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2997 }
2998
init_sched_dl_class(void)2999 void __init init_sched_dl_class(void)
3000 {
3001 unsigned int i;
3002
3003 for_each_possible_cpu(i)
3004 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
3005 GFP_KERNEL, cpu_to_node(i));
3006 }
3007
dl_add_task_root_domain(struct task_struct * p)3008 void dl_add_task_root_domain(struct task_struct *p)
3009 {
3010 struct rq_flags rf;
3011 struct rq *rq;
3012 struct dl_bw *dl_b;
3013
3014 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3015 if (!dl_task(p)) {
3016 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3017 return;
3018 }
3019
3020 rq = __task_rq_lock(p, &rf);
3021
3022 dl_b = &rq->rd->dl_bw;
3023 raw_spin_lock(&dl_b->lock);
3024
3025 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
3026
3027 raw_spin_unlock(&dl_b->lock);
3028
3029 task_rq_unlock(rq, p, &rf);
3030 }
3031
dl_clear_root_domain(struct root_domain * rd)3032 void dl_clear_root_domain(struct root_domain *rd)
3033 {
3034 unsigned long flags;
3035
3036 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
3037 rd->dl_bw.total_bw = 0;
3038 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
3039 }
3040
3041 #endif /* CONFIG_SMP */
3042
switched_from_dl(struct rq * rq,struct task_struct * p)3043 static void switched_from_dl(struct rq *rq, struct task_struct *p)
3044 {
3045 /*
3046 * task_non_contending() can start the "inactive timer" (if the 0-lag
3047 * time is in the future). If the task switches back to dl before
3048 * the "inactive timer" fires, it can continue to consume its current
3049 * runtime using its current deadline. If it stays outside of
3050 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
3051 * will reset the task parameters.
3052 */
3053 if (task_on_rq_queued(p) && p->dl.dl_runtime)
3054 task_non_contending(&p->dl);
3055
3056 /*
3057 * In case a task is setscheduled out from SCHED_DEADLINE we need to
3058 * keep track of that on its cpuset (for correct bandwidth tracking).
3059 */
3060 dec_dl_tasks_cs(p);
3061
3062 if (!task_on_rq_queued(p)) {
3063 /*
3064 * Inactive timer is armed. However, p is leaving DEADLINE and
3065 * might migrate away from this rq while continuing to run on
3066 * some other class. We need to remove its contribution from
3067 * this rq running_bw now, or sub_rq_bw (below) will complain.
3068 */
3069 if (p->dl.dl_non_contending)
3070 sub_running_bw(&p->dl, &rq->dl);
3071 sub_rq_bw(&p->dl, &rq->dl);
3072 }
3073
3074 /*
3075 * We cannot use inactive_task_timer() to invoke sub_running_bw()
3076 * at the 0-lag time, because the task could have been migrated
3077 * while SCHED_OTHER in the meanwhile.
3078 */
3079 if (p->dl.dl_non_contending)
3080 p->dl.dl_non_contending = 0;
3081
3082 /*
3083 * Since this might be the only -deadline task on the rq,
3084 * this is the right place to try to pull some other one
3085 * from an overloaded CPU, if any.
3086 */
3087 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
3088 return;
3089
3090 deadline_queue_pull_task(rq);
3091 }
3092
3093 /*
3094 * When switching to -deadline, we may overload the rq, then
3095 * we try to push someone off, if possible.
3096 */
switched_to_dl(struct rq * rq,struct task_struct * p)3097 static void switched_to_dl(struct rq *rq, struct task_struct *p)
3098 {
3099 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
3100 put_task_struct(p);
3101
3102 /*
3103 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
3104 * track of that on its cpuset (for correct bandwidth tracking).
3105 */
3106 inc_dl_tasks_cs(p);
3107
3108 /* If p is not queued we will update its parameters at next wakeup. */
3109 if (!task_on_rq_queued(p)) {
3110 add_rq_bw(&p->dl, &rq->dl);
3111
3112 return;
3113 }
3114
3115 if (rq->donor != p) {
3116 #ifdef CONFIG_SMP
3117 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
3118 deadline_queue_push_tasks(rq);
3119 #endif
3120 if (dl_task(rq->donor))
3121 wakeup_preempt_dl(rq, p, 0);
3122 else
3123 resched_curr(rq);
3124 } else {
3125 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
3126 }
3127 }
3128
3129 /*
3130 * If the scheduling parameters of a -deadline task changed,
3131 * a push or pull operation might be needed.
3132 */
prio_changed_dl(struct rq * rq,struct task_struct * p,int oldprio)3133 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
3134 int oldprio)
3135 {
3136 if (!task_on_rq_queued(p))
3137 return;
3138
3139 #ifdef CONFIG_SMP
3140 /*
3141 * This might be too much, but unfortunately
3142 * we don't have the old deadline value, and
3143 * we can't argue if the task is increasing
3144 * or lowering its prio, so...
3145 */
3146 if (!rq->dl.overloaded)
3147 deadline_queue_pull_task(rq);
3148
3149 if (task_current_donor(rq, p)) {
3150 /*
3151 * If we now have a earlier deadline task than p,
3152 * then reschedule, provided p is still on this
3153 * runqueue.
3154 */
3155 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
3156 resched_curr(rq);
3157 } else {
3158 /*
3159 * Current may not be deadline in case p was throttled but we
3160 * have just replenished it (e.g. rt_mutex_setprio()).
3161 *
3162 * Otherwise, if p was given an earlier deadline, reschedule.
3163 */
3164 if (!dl_task(rq->curr) ||
3165 dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
3166 resched_curr(rq);
3167 }
3168 #else
3169 /*
3170 * We don't know if p has a earlier or later deadline, so let's blindly
3171 * set a (maybe not needed) rescheduling point.
3172 */
3173 resched_curr(rq);
3174 #endif
3175 }
3176
3177 #ifdef CONFIG_SCHED_CORE
task_is_throttled_dl(struct task_struct * p,int cpu)3178 static int task_is_throttled_dl(struct task_struct *p, int cpu)
3179 {
3180 return p->dl.dl_throttled;
3181 }
3182 #endif
3183
3184 DEFINE_SCHED_CLASS(dl) = {
3185
3186 .enqueue_task = enqueue_task_dl,
3187 .dequeue_task = dequeue_task_dl,
3188 .yield_task = yield_task_dl,
3189
3190 .wakeup_preempt = wakeup_preempt_dl,
3191
3192 .pick_task = pick_task_dl,
3193 .put_prev_task = put_prev_task_dl,
3194 .set_next_task = set_next_task_dl,
3195
3196 #ifdef CONFIG_SMP
3197 .balance = balance_dl,
3198 .select_task_rq = select_task_rq_dl,
3199 .migrate_task_rq = migrate_task_rq_dl,
3200 .set_cpus_allowed = set_cpus_allowed_dl,
3201 .rq_online = rq_online_dl,
3202 .rq_offline = rq_offline_dl,
3203 .task_woken = task_woken_dl,
3204 .find_lock_rq = find_lock_later_rq,
3205 #endif
3206
3207 .task_tick = task_tick_dl,
3208 .task_fork = task_fork_dl,
3209
3210 .prio_changed = prio_changed_dl,
3211 .switched_from = switched_from_dl,
3212 .switched_to = switched_to_dl,
3213
3214 .update_curr = update_curr_dl,
3215 #ifdef CONFIG_SCHED_CORE
3216 .task_is_throttled = task_is_throttled_dl,
3217 #endif
3218 };
3219
3220 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
3221 static u64 dl_generation;
3222
sched_dl_global_validate(void)3223 int sched_dl_global_validate(void)
3224 {
3225 u64 runtime = global_rt_runtime();
3226 u64 period = global_rt_period();
3227 u64 new_bw = to_ratio(period, runtime);
3228 u64 gen = ++dl_generation;
3229 struct dl_bw *dl_b;
3230 int cpu, cpus, ret = 0;
3231 unsigned long flags;
3232
3233 /*
3234 * Here we want to check the bandwidth not being set to some
3235 * value smaller than the currently allocated bandwidth in
3236 * any of the root_domains.
3237 */
3238 for_each_online_cpu(cpu) {
3239 rcu_read_lock_sched();
3240
3241 if (dl_bw_visited(cpu, gen))
3242 goto next;
3243
3244 dl_b = dl_bw_of(cpu);
3245 cpus = dl_bw_cpus(cpu);
3246
3247 raw_spin_lock_irqsave(&dl_b->lock, flags);
3248 if (new_bw * cpus < dl_b->total_bw)
3249 ret = -EBUSY;
3250 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3251
3252 next:
3253 rcu_read_unlock_sched();
3254
3255 if (ret)
3256 break;
3257 }
3258
3259 return ret;
3260 }
3261
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)3262 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
3263 {
3264 if (global_rt_runtime() == RUNTIME_INF) {
3265 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
3266 dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
3267 } else {
3268 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
3269 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
3270 dl_rq->max_bw = dl_rq->extra_bw =
3271 to_ratio(global_rt_period(), global_rt_runtime());
3272 }
3273 }
3274
sched_dl_do_global(void)3275 void sched_dl_do_global(void)
3276 {
3277 u64 new_bw = -1;
3278 u64 gen = ++dl_generation;
3279 struct dl_bw *dl_b;
3280 int cpu;
3281 unsigned long flags;
3282
3283 if (global_rt_runtime() != RUNTIME_INF)
3284 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
3285
3286 for_each_possible_cpu(cpu)
3287 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
3288
3289 for_each_possible_cpu(cpu) {
3290 rcu_read_lock_sched();
3291
3292 if (dl_bw_visited(cpu, gen)) {
3293 rcu_read_unlock_sched();
3294 continue;
3295 }
3296
3297 dl_b = dl_bw_of(cpu);
3298
3299 raw_spin_lock_irqsave(&dl_b->lock, flags);
3300 dl_b->bw = new_bw;
3301 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3302
3303 rcu_read_unlock_sched();
3304 }
3305 }
3306
3307 /*
3308 * We must be sure that accepting a new task (or allowing changing the
3309 * parameters of an existing one) is consistent with the bandwidth
3310 * constraints. If yes, this function also accordingly updates the currently
3311 * allocated bandwidth to reflect the new situation.
3312 *
3313 * This function is called while holding p's rq->lock.
3314 */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)3315 int sched_dl_overflow(struct task_struct *p, int policy,
3316 const struct sched_attr *attr)
3317 {
3318 u64 period = attr->sched_period ?: attr->sched_deadline;
3319 u64 runtime = attr->sched_runtime;
3320 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
3321 int cpus, err = -1, cpu = task_cpu(p);
3322 struct dl_bw *dl_b = dl_bw_of(cpu);
3323 unsigned long cap;
3324
3325 if (attr->sched_flags & SCHED_FLAG_SUGOV)
3326 return 0;
3327
3328 /* !deadline task may carry old deadline bandwidth */
3329 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
3330 return 0;
3331
3332 /*
3333 * Either if a task, enters, leave, or stays -deadline but changes
3334 * its parameters, we may need to update accordingly the total
3335 * allocated bandwidth of the container.
3336 */
3337 raw_spin_lock(&dl_b->lock);
3338 cpus = dl_bw_cpus(cpu);
3339 cap = dl_bw_capacity(cpu);
3340
3341 if (dl_policy(policy) && !task_has_dl_policy(p) &&
3342 !__dl_overflow(dl_b, cap, 0, new_bw)) {
3343 if (hrtimer_active(&p->dl.inactive_timer))
3344 __dl_sub(dl_b, p->dl.dl_bw, cpus);
3345 __dl_add(dl_b, new_bw, cpus);
3346 err = 0;
3347 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
3348 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
3349 /*
3350 * XXX this is slightly incorrect: when the task
3351 * utilization decreases, we should delay the total
3352 * utilization change until the task's 0-lag point.
3353 * But this would require to set the task's "inactive
3354 * timer" when the task is not inactive.
3355 */
3356 __dl_sub(dl_b, p->dl.dl_bw, cpus);
3357 __dl_add(dl_b, new_bw, cpus);
3358 dl_change_utilization(p, new_bw);
3359 err = 0;
3360 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
3361 /*
3362 * Do not decrease the total deadline utilization here,
3363 * switched_from_dl() will take care to do it at the correct
3364 * (0-lag) time.
3365 */
3366 err = 0;
3367 }
3368 raw_spin_unlock(&dl_b->lock);
3369
3370 return err;
3371 }
3372
3373 /*
3374 * This function initializes the sched_dl_entity of a newly becoming
3375 * SCHED_DEADLINE task.
3376 *
3377 * Only the static values are considered here, the actual runtime and the
3378 * absolute deadline will be properly calculated when the task is enqueued
3379 * for the first time with its new policy.
3380 */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)3381 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3382 {
3383 struct sched_dl_entity *dl_se = &p->dl;
3384
3385 dl_se->dl_runtime = attr->sched_runtime;
3386 dl_se->dl_deadline = attr->sched_deadline;
3387 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3388 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3389 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3390 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3391 }
3392
__getparam_dl(struct task_struct * p,struct sched_attr * attr)3393 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3394 {
3395 struct sched_dl_entity *dl_se = &p->dl;
3396
3397 attr->sched_priority = p->rt_priority;
3398 attr->sched_runtime = dl_se->dl_runtime;
3399 attr->sched_deadline = dl_se->dl_deadline;
3400 attr->sched_period = dl_se->dl_period;
3401 attr->sched_flags &= ~SCHED_DL_FLAGS;
3402 attr->sched_flags |= dl_se->flags;
3403 }
3404
3405 /*
3406 * This function validates the new parameters of a -deadline task.
3407 * We ask for the deadline not being zero, and greater or equal
3408 * than the runtime, as well as the period of being zero or
3409 * greater than deadline. Furthermore, we have to be sure that
3410 * user parameters are above the internal resolution of 1us (we
3411 * check sched_runtime only since it is always the smaller one) and
3412 * below 2^63 ns (we have to check both sched_deadline and
3413 * sched_period, as the latter can be zero).
3414 */
__checkparam_dl(const struct sched_attr * attr)3415 bool __checkparam_dl(const struct sched_attr *attr)
3416 {
3417 u64 period, max, min;
3418
3419 /* special dl tasks don't actually use any parameter */
3420 if (attr->sched_flags & SCHED_FLAG_SUGOV)
3421 return true;
3422
3423 /* deadline != 0 */
3424 if (attr->sched_deadline == 0)
3425 return false;
3426
3427 /*
3428 * Since we truncate DL_SCALE bits, make sure we're at least
3429 * that big.
3430 */
3431 if (attr->sched_runtime < (1ULL << DL_SCALE))
3432 return false;
3433
3434 /*
3435 * Since we use the MSB for wrap-around and sign issues, make
3436 * sure it's not set (mind that period can be equal to zero).
3437 */
3438 if (attr->sched_deadline & (1ULL << 63) ||
3439 attr->sched_period & (1ULL << 63))
3440 return false;
3441
3442 period = attr->sched_period;
3443 if (!period)
3444 period = attr->sched_deadline;
3445
3446 /* runtime <= deadline <= period (if period != 0) */
3447 if (period < attr->sched_deadline ||
3448 attr->sched_deadline < attr->sched_runtime)
3449 return false;
3450
3451 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3452 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3453
3454 if (period < min || period > max)
3455 return false;
3456
3457 return true;
3458 }
3459
3460 /*
3461 * This function clears the sched_dl_entity static params.
3462 */
__dl_clear_params(struct sched_dl_entity * dl_se)3463 static void __dl_clear_params(struct sched_dl_entity *dl_se)
3464 {
3465 dl_se->dl_runtime = 0;
3466 dl_se->dl_deadline = 0;
3467 dl_se->dl_period = 0;
3468 dl_se->flags = 0;
3469 dl_se->dl_bw = 0;
3470 dl_se->dl_density = 0;
3471
3472 dl_se->dl_throttled = 0;
3473 dl_se->dl_yielded = 0;
3474 dl_se->dl_non_contending = 0;
3475 dl_se->dl_overrun = 0;
3476 dl_se->dl_server = 0;
3477
3478 #ifdef CONFIG_RT_MUTEXES
3479 dl_se->pi_se = dl_se;
3480 #endif
3481 }
3482
init_dl_entity(struct sched_dl_entity * dl_se)3483 void init_dl_entity(struct sched_dl_entity *dl_se)
3484 {
3485 RB_CLEAR_NODE(&dl_se->rb_node);
3486 init_dl_task_timer(dl_se);
3487 init_dl_inactive_task_timer(dl_se);
3488 __dl_clear_params(dl_se);
3489 }
3490
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)3491 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3492 {
3493 struct sched_dl_entity *dl_se = &p->dl;
3494
3495 if (dl_se->dl_runtime != attr->sched_runtime ||
3496 dl_se->dl_deadline != attr->sched_deadline ||
3497 dl_se->dl_period != attr->sched_period ||
3498 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3499 return true;
3500
3501 return false;
3502 }
3503
3504 #ifdef CONFIG_SMP
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)3505 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3506 const struct cpumask *trial)
3507 {
3508 unsigned long flags, cap;
3509 struct dl_bw *cur_dl_b;
3510 int ret = 1;
3511
3512 rcu_read_lock_sched();
3513 cur_dl_b = dl_bw_of(cpumask_any(cur));
3514 cap = __dl_bw_capacity(trial);
3515 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3516 if (__dl_overflow(cur_dl_b, cap, 0, 0))
3517 ret = 0;
3518 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3519 rcu_read_unlock_sched();
3520
3521 return ret;
3522 }
3523
3524 enum dl_bw_request {
3525 dl_bw_req_check_overflow = 0,
3526 dl_bw_req_alloc,
3527 dl_bw_req_free
3528 };
3529
dl_bw_manage(enum dl_bw_request req,int cpu,u64 dl_bw)3530 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3531 {
3532 unsigned long flags;
3533 struct dl_bw *dl_b;
3534 bool overflow = 0;
3535
3536 rcu_read_lock_sched();
3537 dl_b = dl_bw_of(cpu);
3538 raw_spin_lock_irqsave(&dl_b->lock, flags);
3539
3540 if (req == dl_bw_req_free) {
3541 __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3542 } else {
3543 unsigned long cap = dl_bw_capacity(cpu);
3544
3545 overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3546
3547 if (req == dl_bw_req_alloc && !overflow) {
3548 /*
3549 * We reserve space in the destination
3550 * root_domain, as we can't fail after this point.
3551 * We will free resources in the source root_domain
3552 * later on (see set_cpus_allowed_dl()).
3553 */
3554 __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3555 }
3556 }
3557
3558 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3559 rcu_read_unlock_sched();
3560
3561 return overflow ? -EBUSY : 0;
3562 }
3563
dl_bw_check_overflow(int cpu)3564 int dl_bw_check_overflow(int cpu)
3565 {
3566 return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
3567 }
3568
dl_bw_alloc(int cpu,u64 dl_bw)3569 int dl_bw_alloc(int cpu, u64 dl_bw)
3570 {
3571 return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3572 }
3573
dl_bw_free(int cpu,u64 dl_bw)3574 void dl_bw_free(int cpu, u64 dl_bw)
3575 {
3576 dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3577 }
3578 #endif
3579
3580 #ifdef CONFIG_SCHED_DEBUG
print_dl_stats(struct seq_file * m,int cpu)3581 void print_dl_stats(struct seq_file *m, int cpu)
3582 {
3583 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3584 }
3585 #endif /* CONFIG_SCHED_DEBUG */
3586