1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2018-2020 Christoph Hellwig.
4 *
5 * DMA operations that map physical memory directly without using an IOMMU.
6 */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include <linux/pci-p2pdma.h>
17 #include "direct.h"
18
19 /*
20 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
21 * it for entirely different regions. In that case the arch code needs to
22 * override the variable below for dma-direct to work properly.
23 */
24 u64 zone_dma_limit __ro_after_init = DMA_BIT_MASK(24);
25
phys_to_dma_direct(struct device * dev,phys_addr_t phys)26 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
27 phys_addr_t phys)
28 {
29 if (force_dma_unencrypted(dev))
30 return phys_to_dma_unencrypted(dev, phys);
31 return phys_to_dma(dev, phys);
32 }
33
dma_direct_to_page(struct device * dev,dma_addr_t dma_addr)34 static inline struct page *dma_direct_to_page(struct device *dev,
35 dma_addr_t dma_addr)
36 {
37 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
38 }
39
dma_direct_get_required_mask(struct device * dev)40 u64 dma_direct_get_required_mask(struct device *dev)
41 {
42 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
43 u64 max_dma = phys_to_dma_direct(dev, phys);
44
45 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
46 }
47
dma_direct_optimal_gfp_mask(struct device * dev,u64 * phys_limit)48 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit)
49 {
50 u64 dma_limit = min_not_zero(
51 dev->coherent_dma_mask,
52 dev->bus_dma_limit);
53
54 /*
55 * Optimistically try the zone that the physical address mask falls
56 * into first. If that returns memory that isn't actually addressable
57 * we will fallback to the next lower zone and try again.
58 *
59 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
60 * zones.
61 */
62 *phys_limit = dma_to_phys(dev, dma_limit);
63 if (*phys_limit <= zone_dma_limit)
64 return GFP_DMA;
65 if (*phys_limit <= DMA_BIT_MASK(32) &&
66 !zone_dma32_are_empty())
67 return GFP_DMA32;
68 return 0;
69 }
70
dma_coherent_ok(struct device * dev,phys_addr_t phys,size_t size)71 bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
72 {
73 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
74
75 if (dma_addr == DMA_MAPPING_ERROR)
76 return false;
77 return dma_addr + size - 1 <=
78 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
79 }
80
dma_set_decrypted(struct device * dev,void * vaddr,size_t size)81 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
82 {
83 if (!force_dma_unencrypted(dev))
84 return 0;
85 return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
86 }
87
dma_set_encrypted(struct device * dev,void * vaddr,size_t size)88 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
89 {
90 int ret;
91
92 if (!force_dma_unencrypted(dev))
93 return 0;
94 ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
95 if (ret)
96 pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
97 return ret;
98 }
99
__dma_direct_free_pages(struct device * dev,struct page * page,size_t size)100 static void __dma_direct_free_pages(struct device *dev, struct page *page,
101 size_t size)
102 {
103 if (swiotlb_free(dev, page, size))
104 return;
105 dma_free_contiguous(dev, page, size);
106 }
107
dma_direct_alloc_swiotlb(struct device * dev,size_t size)108 static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
109 {
110 struct page *page = swiotlb_alloc(dev, size);
111
112 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
113 swiotlb_free(dev, page, size);
114 return NULL;
115 }
116
117 return page;
118 }
119
__dma_direct_alloc_pages(struct device * dev,size_t size,gfp_t gfp,bool allow_highmem)120 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
121 gfp_t gfp, bool allow_highmem)
122 {
123 int node = dev_to_node(dev);
124 struct page *page = NULL;
125 u64 phys_limit;
126
127 WARN_ON_ONCE(!PAGE_ALIGNED(size));
128
129 if (is_swiotlb_for_alloc(dev))
130 return dma_direct_alloc_swiotlb(dev, size);
131
132 gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
133 page = dma_alloc_contiguous(dev, size, gfp);
134 if (page) {
135 if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
136 (!allow_highmem && PageHighMem(page))) {
137 dma_free_contiguous(dev, page, size);
138 page = NULL;
139 }
140 }
141 again:
142 if (!page)
143 page = alloc_pages_node(node, gfp, get_order(size));
144 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
145 __free_pages(page, get_order(size));
146 page = NULL;
147
148 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
149 phys_limit < DMA_BIT_MASK(64) &&
150 !(gfp & (GFP_DMA32 | GFP_DMA)) &&
151 !zone_dma32_are_empty()) {
152 gfp |= GFP_DMA32;
153 goto again;
154 }
155
156 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
157 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
158 goto again;
159 }
160 }
161
162 return page;
163 }
164
165 /*
166 * Check if a potentially blocking operations needs to dip into the atomic
167 * pools for the given device/gfp.
168 */
dma_direct_use_pool(struct device * dev,gfp_t gfp)169 static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
170 {
171 return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
172 }
173
dma_direct_alloc_from_pool(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)174 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
175 dma_addr_t *dma_handle, gfp_t gfp)
176 {
177 struct page *page;
178 u64 phys_limit;
179 void *ret;
180
181 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
182 return NULL;
183
184 gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
185 page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
186 if (!page)
187 return NULL;
188 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
189 return ret;
190 }
191
dma_direct_alloc_no_mapping(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)192 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
193 dma_addr_t *dma_handle, gfp_t gfp)
194 {
195 struct page *page;
196
197 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
198 if (!page)
199 return NULL;
200
201 /* remove any dirty cache lines on the kernel alias */
202 if (!PageHighMem(page))
203 arch_dma_prep_coherent(page, size);
204
205 /* return the page pointer as the opaque cookie */
206 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
207 return page;
208 }
209
dma_direct_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)210 void *dma_direct_alloc(struct device *dev, size_t size,
211 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
212 {
213 bool remap = false, set_uncached = false;
214 struct page *page;
215 void *ret;
216
217 size = PAGE_ALIGN(size);
218 if (attrs & DMA_ATTR_NO_WARN)
219 gfp |= __GFP_NOWARN;
220
221 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
222 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
223 return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
224
225 if (!dev_is_dma_coherent(dev)) {
226 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
227 !is_swiotlb_for_alloc(dev))
228 return arch_dma_alloc(dev, size, dma_handle, gfp,
229 attrs);
230
231 /*
232 * If there is a global pool, always allocate from it for
233 * non-coherent devices.
234 */
235 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
236 return dma_alloc_from_global_coherent(dev, size,
237 dma_handle);
238
239 /*
240 * Otherwise we require the architecture to either be able to
241 * mark arbitrary parts of the kernel direct mapping uncached,
242 * or remapped it uncached.
243 */
244 set_uncached = IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED);
245 remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
246 if (!set_uncached && !remap) {
247 pr_warn_once("coherent DMA allocations not supported on this platform.\n");
248 return NULL;
249 }
250 }
251
252 /*
253 * Remapping or decrypting memory may block, allocate the memory from
254 * the atomic pools instead if we aren't allowed block.
255 */
256 if ((remap || force_dma_unencrypted(dev)) &&
257 dma_direct_use_pool(dev, gfp))
258 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
259
260 /* we always manually zero the memory once we are done */
261 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
262 if (!page)
263 return NULL;
264
265 /*
266 * dma_alloc_contiguous can return highmem pages depending on a
267 * combination the cma= arguments and per-arch setup. These need to be
268 * remapped to return a kernel virtual address.
269 */
270 if (PageHighMem(page)) {
271 remap = true;
272 set_uncached = false;
273 }
274
275 if (remap) {
276 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
277
278 if (force_dma_unencrypted(dev))
279 prot = pgprot_decrypted(prot);
280
281 /* remove any dirty cache lines on the kernel alias */
282 arch_dma_prep_coherent(page, size);
283
284 /* create a coherent mapping */
285 ret = dma_common_contiguous_remap(page, size, prot,
286 __builtin_return_address(0));
287 if (!ret)
288 goto out_free_pages;
289 } else {
290 ret = page_address(page);
291 if (dma_set_decrypted(dev, ret, size))
292 goto out_leak_pages;
293 }
294
295 memset(ret, 0, size);
296
297 if (set_uncached) {
298 arch_dma_prep_coherent(page, size);
299 ret = arch_dma_set_uncached(ret, size);
300 if (IS_ERR(ret))
301 goto out_encrypt_pages;
302 }
303
304 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
305 return ret;
306
307 out_encrypt_pages:
308 if (dma_set_encrypted(dev, page_address(page), size))
309 return NULL;
310 out_free_pages:
311 __dma_direct_free_pages(dev, page, size);
312 return NULL;
313 out_leak_pages:
314 return NULL;
315 }
316 EXPORT_SYMBOL_GPL(dma_direct_alloc);
317
dma_direct_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_addr,unsigned long attrs)318 void dma_direct_free(struct device *dev, size_t size,
319 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
320 {
321 unsigned int page_order = get_order(size);
322
323 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
324 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
325 /* cpu_addr is a struct page cookie, not a kernel address */
326 dma_free_contiguous(dev, cpu_addr, size);
327 return;
328 }
329
330 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
331 !dev_is_dma_coherent(dev) &&
332 !is_swiotlb_for_alloc(dev)) {
333 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
334 return;
335 }
336
337 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
338 !dev_is_dma_coherent(dev)) {
339 if (!dma_release_from_global_coherent(page_order, cpu_addr))
340 WARN_ON_ONCE(1);
341 return;
342 }
343
344 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
345 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
346 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
347 return;
348
349 if (is_vmalloc_addr(cpu_addr)) {
350 vunmap(cpu_addr);
351 } else {
352 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
353 arch_dma_clear_uncached(cpu_addr, size);
354 if (dma_set_encrypted(dev, cpu_addr, size))
355 return;
356 }
357
358 __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
359 }
360 EXPORT_SYMBOL_GPL(dma_direct_free);
361
dma_direct_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)362 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
363 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
364 {
365 struct page *page;
366 void *ret;
367
368 if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
369 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
370
371 page = __dma_direct_alloc_pages(dev, size, gfp, false);
372 if (!page)
373 return NULL;
374
375 ret = page_address(page);
376 if (dma_set_decrypted(dev, ret, size))
377 goto out_leak_pages;
378 memset(ret, 0, size);
379 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
380 return page;
381 out_leak_pages:
382 return NULL;
383 }
384
dma_direct_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_addr,enum dma_data_direction dir)385 void dma_direct_free_pages(struct device *dev, size_t size,
386 struct page *page, dma_addr_t dma_addr,
387 enum dma_data_direction dir)
388 {
389 void *vaddr = page_address(page);
390
391 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
392 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
393 dma_free_from_pool(dev, vaddr, size))
394 return;
395
396 if (dma_set_encrypted(dev, vaddr, size))
397 return;
398 __dma_direct_free_pages(dev, page, size);
399 }
400
401 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
402 defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)403 void dma_direct_sync_sg_for_device(struct device *dev,
404 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
405 {
406 struct scatterlist *sg;
407 int i;
408
409 for_each_sg(sgl, sg, nents, i) {
410 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
411
412 swiotlb_sync_single_for_device(dev, paddr, sg->length, dir);
413
414 if (!dev_is_dma_coherent(dev))
415 arch_sync_dma_for_device(paddr, sg->length,
416 dir);
417 }
418 }
419 #endif
420
421 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
422 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
423 defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)424 void dma_direct_sync_sg_for_cpu(struct device *dev,
425 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
426 {
427 struct scatterlist *sg;
428 int i;
429
430 for_each_sg(sgl, sg, nents, i) {
431 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
432
433 if (!dev_is_dma_coherent(dev))
434 arch_sync_dma_for_cpu(paddr, sg->length, dir);
435
436 swiotlb_sync_single_for_cpu(dev, paddr, sg->length, dir);
437
438 if (dir == DMA_FROM_DEVICE)
439 arch_dma_mark_clean(paddr, sg->length);
440 }
441
442 if (!dev_is_dma_coherent(dev))
443 arch_sync_dma_for_cpu_all();
444 }
445
446 /*
447 * Unmaps segments, except for ones marked as pci_p2pdma which do not
448 * require any further action as they contain a bus address.
449 */
dma_direct_unmap_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)450 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
451 int nents, enum dma_data_direction dir, unsigned long attrs)
452 {
453 struct scatterlist *sg;
454 int i;
455
456 for_each_sg(sgl, sg, nents, i) {
457 if (sg_dma_is_bus_address(sg))
458 sg_dma_unmark_bus_address(sg);
459 else
460 dma_direct_unmap_page(dev, sg->dma_address,
461 sg_dma_len(sg), dir, attrs);
462 }
463 }
464 #endif
465
dma_direct_map_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)466 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
467 enum dma_data_direction dir, unsigned long attrs)
468 {
469 struct pci_p2pdma_map_state p2pdma_state = {};
470 struct scatterlist *sg;
471 int i, ret;
472
473 for_each_sg(sgl, sg, nents, i) {
474 switch (pci_p2pdma_state(&p2pdma_state, dev, sg_page(sg))) {
475 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
476 /*
477 * Any P2P mapping that traverses the PCI host bridge
478 * must be mapped with CPU physical address and not PCI
479 * bus addresses.
480 */
481 break;
482 case PCI_P2PDMA_MAP_NONE:
483 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
484 sg->offset, sg->length, dir, attrs);
485 if (sg->dma_address == DMA_MAPPING_ERROR) {
486 ret = -EIO;
487 goto out_unmap;
488 }
489 break;
490 case PCI_P2PDMA_MAP_BUS_ADDR:
491 sg->dma_address = pci_p2pdma_bus_addr_map(&p2pdma_state,
492 sg_phys(sg));
493 sg_dma_mark_bus_address(sg);
494 continue;
495 default:
496 ret = -EREMOTEIO;
497 goto out_unmap;
498 }
499 sg_dma_len(sg) = sg->length;
500 }
501
502 return nents;
503
504 out_unmap:
505 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
506 return ret;
507 }
508
dma_direct_map_resource(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir,unsigned long attrs)509 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
510 size_t size, enum dma_data_direction dir, unsigned long attrs)
511 {
512 dma_addr_t dma_addr = paddr;
513
514 if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
515 dev_err_once(dev,
516 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
517 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
518 WARN_ON_ONCE(1);
519 return DMA_MAPPING_ERROR;
520 }
521
522 return dma_addr;
523 }
524
dma_direct_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)525 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
526 void *cpu_addr, dma_addr_t dma_addr, size_t size,
527 unsigned long attrs)
528 {
529 struct page *page = dma_direct_to_page(dev, dma_addr);
530 int ret;
531
532 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
533 if (!ret)
534 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
535 return ret;
536 }
537
dma_direct_can_mmap(struct device * dev)538 bool dma_direct_can_mmap(struct device *dev)
539 {
540 return dev_is_dma_coherent(dev) ||
541 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
542 }
543
dma_direct_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)544 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
545 void *cpu_addr, dma_addr_t dma_addr, size_t size,
546 unsigned long attrs)
547 {
548 unsigned long user_count = vma_pages(vma);
549 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
550 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
551 int ret = -ENXIO;
552
553 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
554 if (force_dma_unencrypted(dev))
555 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
556
557 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
558 return ret;
559 if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
560 return ret;
561
562 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
563 return -ENXIO;
564 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
565 user_count << PAGE_SHIFT, vma->vm_page_prot);
566 }
567
dma_direct_supported(struct device * dev,u64 mask)568 int dma_direct_supported(struct device *dev, u64 mask)
569 {
570 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
571
572 /*
573 * Because 32-bit DMA masks are so common we expect every architecture
574 * to be able to satisfy them - either by not supporting more physical
575 * memory, or by providing a ZONE_DMA32. If neither is the case, the
576 * architecture needs to use an IOMMU instead of the direct mapping.
577 */
578 if (mask >= DMA_BIT_MASK(32))
579 return 1;
580
581 /*
582 * This check needs to be against the actual bit mask value, so use
583 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
584 * part of the check.
585 */
586 if (IS_ENABLED(CONFIG_ZONE_DMA))
587 min_mask = min_t(u64, min_mask, zone_dma_limit);
588 return mask >= phys_to_dma_unencrypted(dev, min_mask);
589 }
590
dma_find_range(struct device * dev,unsigned long start_pfn)591 static const struct bus_dma_region *dma_find_range(struct device *dev,
592 unsigned long start_pfn)
593 {
594 const struct bus_dma_region *m;
595
596 for (m = dev->dma_range_map; PFN_DOWN(m->size); m++) {
597 unsigned long cpu_start_pfn = PFN_DOWN(m->cpu_start);
598
599 if (start_pfn >= cpu_start_pfn &&
600 start_pfn - cpu_start_pfn < PFN_DOWN(m->size))
601 return m;
602 }
603
604 return NULL;
605 }
606
607 /*
608 * To check whether all ram resource ranges are covered by dma range map
609 * Returns 0 when further check is needed
610 * Returns 1 if there is some RAM range can't be covered by dma_range_map
611 */
check_ram_in_range_map(unsigned long start_pfn,unsigned long nr_pages,void * data)612 static int check_ram_in_range_map(unsigned long start_pfn,
613 unsigned long nr_pages, void *data)
614 {
615 unsigned long end_pfn = start_pfn + nr_pages;
616 struct device *dev = data;
617
618 while (start_pfn < end_pfn) {
619 const struct bus_dma_region *bdr;
620
621 bdr = dma_find_range(dev, start_pfn);
622 if (!bdr)
623 return 1;
624
625 start_pfn = PFN_DOWN(bdr->cpu_start) + PFN_DOWN(bdr->size);
626 }
627
628 return 0;
629 }
630
dma_direct_all_ram_mapped(struct device * dev)631 bool dma_direct_all_ram_mapped(struct device *dev)
632 {
633 if (!dev->dma_range_map)
634 return true;
635 return !walk_system_ram_range(0, PFN_DOWN(ULONG_MAX) + 1, dev,
636 check_ram_in_range_map);
637 }
638
dma_direct_max_mapping_size(struct device * dev)639 size_t dma_direct_max_mapping_size(struct device *dev)
640 {
641 /* If SWIOTLB is active, use its maximum mapping size */
642 if (is_swiotlb_active(dev) &&
643 (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
644 return swiotlb_max_mapping_size(dev);
645 return SIZE_MAX;
646 }
647
dma_direct_need_sync(struct device * dev,dma_addr_t dma_addr)648 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
649 {
650 return !dev_is_dma_coherent(dev) ||
651 swiotlb_find_pool(dev, dma_to_phys(dev, dma_addr));
652 }
653
654 /**
655 * dma_direct_set_offset - Assign scalar offset for a single DMA range.
656 * @dev: device pointer; needed to "own" the alloced memory.
657 * @cpu_start: beginning of memory region covered by this offset.
658 * @dma_start: beginning of DMA/PCI region covered by this offset.
659 * @size: size of the region.
660 *
661 * This is for the simple case of a uniform offset which cannot
662 * be discovered by "dma-ranges".
663 *
664 * It returns -ENOMEM if out of memory, -EINVAL if a map
665 * already exists, 0 otherwise.
666 *
667 * Note: any call to this from a driver is a bug. The mapping needs
668 * to be described by the device tree or other firmware interfaces.
669 */
dma_direct_set_offset(struct device * dev,phys_addr_t cpu_start,dma_addr_t dma_start,u64 size)670 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
671 dma_addr_t dma_start, u64 size)
672 {
673 struct bus_dma_region *map;
674 u64 offset = (u64)cpu_start - (u64)dma_start;
675
676 if (dev->dma_range_map) {
677 dev_err(dev, "attempt to add DMA range to existing map\n");
678 return -EINVAL;
679 }
680
681 if (!offset)
682 return 0;
683
684 map = kcalloc(2, sizeof(*map), GFP_KERNEL);
685 if (!map)
686 return -ENOMEM;
687 map[0].cpu_start = cpu_start;
688 map[0].dma_start = dma_start;
689 map[0].size = size;
690 dev->dma_range_map = map;
691 return 0;
692 }
693