1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
280
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <trace/events/tcp.h>
286 #include <net/rps.h>
287 #include <trace/hooks/net.h>
288
289 #include "../core/devmem.h"
290
291 /* Track pending CMSGs. */
292 enum {
293 TCP_CMSG_INQ = 1,
294 TCP_CMSG_TS = 2
295 };
296
297 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
299
300 DEFINE_PER_CPU(u32, tcp_tw_isn);
301 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
302
303 long sysctl_tcp_mem[3] __read_mostly;
304 EXPORT_SYMBOL(sysctl_tcp_mem);
305
306 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */
307 EXPORT_SYMBOL(tcp_memory_allocated);
308 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
309 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
310
311 #if IS_ENABLED(CONFIG_SMC)
312 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
313 EXPORT_SYMBOL(tcp_have_smc);
314 #endif
315
316 /*
317 * Current number of TCP sockets.
318 */
319 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
320 EXPORT_SYMBOL(tcp_sockets_allocated);
321
322 /*
323 * TCP splice context
324 */
325 struct tcp_splice_state {
326 struct pipe_inode_info *pipe;
327 size_t len;
328 unsigned int flags;
329 };
330
331 /*
332 * Pressure flag: try to collapse.
333 * Technical note: it is used by multiple contexts non atomically.
334 * All the __sk_mem_schedule() is of this nature: accounting
335 * is strict, actions are advisory and have some latency.
336 */
337 unsigned long tcp_memory_pressure __read_mostly;
338 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
339
tcp_enter_memory_pressure(struct sock * sk)340 void tcp_enter_memory_pressure(struct sock *sk)
341 {
342 unsigned long val;
343
344 if (READ_ONCE(tcp_memory_pressure))
345 return;
346 val = jiffies;
347
348 if (!val)
349 val--;
350 if (!cmpxchg(&tcp_memory_pressure, 0, val))
351 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
352 }
353 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
354
tcp_leave_memory_pressure(struct sock * sk)355 void tcp_leave_memory_pressure(struct sock *sk)
356 {
357 unsigned long val;
358
359 if (!READ_ONCE(tcp_memory_pressure))
360 return;
361 val = xchg(&tcp_memory_pressure, 0);
362 if (val)
363 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
364 jiffies_to_msecs(jiffies - val));
365 }
366 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
367
368 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)369 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
370 {
371 u8 res = 0;
372
373 if (seconds > 0) {
374 int period = timeout;
375
376 res = 1;
377 while (seconds > period && res < 255) {
378 res++;
379 timeout <<= 1;
380 if (timeout > rto_max)
381 timeout = rto_max;
382 period += timeout;
383 }
384 }
385 return res;
386 }
387
388 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)389 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
390 {
391 int period = 0;
392
393 if (retrans > 0) {
394 period = timeout;
395 while (--retrans) {
396 timeout <<= 1;
397 if (timeout > rto_max)
398 timeout = rto_max;
399 period += timeout;
400 }
401 }
402 return period;
403 }
404
tcp_compute_delivery_rate(const struct tcp_sock * tp)405 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
406 {
407 u32 rate = READ_ONCE(tp->rate_delivered);
408 u32 intv = READ_ONCE(tp->rate_interval_us);
409 u64 rate64 = 0;
410
411 if (rate && intv) {
412 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
413 do_div(rate64, intv);
414 }
415 return rate64;
416 }
417
418 /* Address-family independent initialization for a tcp_sock.
419 *
420 * NOTE: A lot of things set to zero explicitly by call to
421 * sk_alloc() so need not be done here.
422 */
tcp_init_sock(struct sock * sk)423 void tcp_init_sock(struct sock *sk)
424 {
425 struct inet_connection_sock *icsk = inet_csk(sk);
426 struct tcp_sock *tp = tcp_sk(sk);
427 int rto_min_us;
428
429 tp->out_of_order_queue = RB_ROOT;
430 sk->tcp_rtx_queue = RB_ROOT;
431 tcp_init_xmit_timers(sk);
432 INIT_LIST_HEAD(&tp->tsq_node);
433 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
434
435 icsk->icsk_rto = TCP_TIMEOUT_INIT;
436 rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
437 icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
438 icsk->icsk_delack_max = TCP_DELACK_MAX;
439 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
440 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
441
442 /* So many TCP implementations out there (incorrectly) count the
443 * initial SYN frame in their delayed-ACK and congestion control
444 * algorithms that we must have the following bandaid to talk
445 * efficiently to them. -DaveM
446 */
447 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
448
449 /* There's a bubble in the pipe until at least the first ACK. */
450 tp->app_limited = ~0U;
451 tp->rate_app_limited = 1;
452
453 /* See draft-stevens-tcpca-spec-01 for discussion of the
454 * initialization of these values.
455 */
456 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
457 tp->snd_cwnd_clamp = ~0;
458 tp->mss_cache = TCP_MSS_DEFAULT;
459
460 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
461 tcp_assign_congestion_control(sk);
462
463 tp->tsoffset = 0;
464 tp->rack.reo_wnd_steps = 1;
465
466 sk->sk_write_space = sk_stream_write_space;
467 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
468
469 icsk->icsk_sync_mss = tcp_sync_mss;
470
471 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
472 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
473 tcp_scaling_ratio_init(sk);
474
475 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
476 sk_sockets_allocated_inc(sk);
477 xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
478 }
479 EXPORT_SYMBOL(tcp_init_sock);
480
tcp_tx_timestamp(struct sock * sk,u16 tsflags)481 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
482 {
483 struct sk_buff *skb = tcp_write_queue_tail(sk);
484
485 if (tsflags && skb) {
486 struct skb_shared_info *shinfo = skb_shinfo(skb);
487 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
488
489 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
490 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
491 tcb->txstamp_ack = 1;
492 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
493 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
494 }
495 }
496
tcp_stream_is_readable(struct sock * sk,int target)497 static bool tcp_stream_is_readable(struct sock *sk, int target)
498 {
499 if (tcp_epollin_ready(sk, target))
500 return true;
501 return sk_is_readable(sk);
502 }
503
504 /*
505 * Wait for a TCP event.
506 *
507 * Note that we don't need to lock the socket, as the upper poll layers
508 * take care of normal races (between the test and the event) and we don't
509 * go look at any of the socket buffers directly.
510 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)511 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
512 {
513 __poll_t mask;
514 struct sock *sk = sock->sk;
515 const struct tcp_sock *tp = tcp_sk(sk);
516 u8 shutdown;
517 int state;
518
519 sock_poll_wait(file, sock, wait);
520
521 state = inet_sk_state_load(sk);
522 if (state == TCP_LISTEN)
523 return inet_csk_listen_poll(sk);
524
525 /* Socket is not locked. We are protected from async events
526 * by poll logic and correct handling of state changes
527 * made by other threads is impossible in any case.
528 */
529
530 mask = 0;
531
532 /*
533 * EPOLLHUP is certainly not done right. But poll() doesn't
534 * have a notion of HUP in just one direction, and for a
535 * socket the read side is more interesting.
536 *
537 * Some poll() documentation says that EPOLLHUP is incompatible
538 * with the EPOLLOUT/POLLWR flags, so somebody should check this
539 * all. But careful, it tends to be safer to return too many
540 * bits than too few, and you can easily break real applications
541 * if you don't tell them that something has hung up!
542 *
543 * Check-me.
544 *
545 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
546 * our fs/select.c). It means that after we received EOF,
547 * poll always returns immediately, making impossible poll() on write()
548 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
549 * if and only if shutdown has been made in both directions.
550 * Actually, it is interesting to look how Solaris and DUX
551 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
552 * then we could set it on SND_SHUTDOWN. BTW examples given
553 * in Stevens' books assume exactly this behaviour, it explains
554 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
555 *
556 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
557 * blocking on fresh not-connected or disconnected socket. --ANK
558 */
559 shutdown = READ_ONCE(sk->sk_shutdown);
560 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
561 mask |= EPOLLHUP;
562 if (shutdown & RCV_SHUTDOWN)
563 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
564
565 /* Connected or passive Fast Open socket? */
566 if (state != TCP_SYN_SENT &&
567 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
568 int target = sock_rcvlowat(sk, 0, INT_MAX);
569 u16 urg_data = READ_ONCE(tp->urg_data);
570
571 if (unlikely(urg_data) &&
572 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
573 !sock_flag(sk, SOCK_URGINLINE))
574 target++;
575
576 if (tcp_stream_is_readable(sk, target))
577 mask |= EPOLLIN | EPOLLRDNORM;
578
579 if (!(shutdown & SEND_SHUTDOWN)) {
580 if (__sk_stream_is_writeable(sk, 1)) {
581 mask |= EPOLLOUT | EPOLLWRNORM;
582 } else { /* send SIGIO later */
583 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
584 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
585
586 /* Race breaker. If space is freed after
587 * wspace test but before the flags are set,
588 * IO signal will be lost. Memory barrier
589 * pairs with the input side.
590 */
591 smp_mb__after_atomic();
592 if (__sk_stream_is_writeable(sk, 1))
593 mask |= EPOLLOUT | EPOLLWRNORM;
594 }
595 } else
596 mask |= EPOLLOUT | EPOLLWRNORM;
597
598 if (urg_data & TCP_URG_VALID)
599 mask |= EPOLLPRI;
600 } else if (state == TCP_SYN_SENT &&
601 inet_test_bit(DEFER_CONNECT, sk)) {
602 /* Active TCP fastopen socket with defer_connect
603 * Return EPOLLOUT so application can call write()
604 * in order for kernel to generate SYN+data
605 */
606 mask |= EPOLLOUT | EPOLLWRNORM;
607 }
608 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
609 smp_rmb();
610 if (READ_ONCE(sk->sk_err) ||
611 !skb_queue_empty_lockless(&sk->sk_error_queue))
612 mask |= EPOLLERR;
613
614 return mask;
615 }
616 EXPORT_SYMBOL(tcp_poll);
617
tcp_ioctl(struct sock * sk,int cmd,int * karg)618 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
619 {
620 struct tcp_sock *tp = tcp_sk(sk);
621 int answ;
622 bool slow;
623
624 switch (cmd) {
625 case SIOCINQ:
626 if (sk->sk_state == TCP_LISTEN)
627 return -EINVAL;
628
629 slow = lock_sock_fast(sk);
630 answ = tcp_inq(sk);
631 unlock_sock_fast(sk, slow);
632 break;
633 case SIOCATMARK:
634 answ = READ_ONCE(tp->urg_data) &&
635 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
636 break;
637 case SIOCOUTQ:
638 if (sk->sk_state == TCP_LISTEN)
639 return -EINVAL;
640
641 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
642 answ = 0;
643 else
644 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
645 break;
646 case SIOCOUTQNSD:
647 if (sk->sk_state == TCP_LISTEN)
648 return -EINVAL;
649
650 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
651 answ = 0;
652 else
653 answ = READ_ONCE(tp->write_seq) -
654 READ_ONCE(tp->snd_nxt);
655 break;
656 default:
657 return -ENOIOCTLCMD;
658 }
659
660 *karg = answ;
661 return 0;
662 }
663 EXPORT_SYMBOL(tcp_ioctl);
664
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)665 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
666 {
667 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
668 tp->pushed_seq = tp->write_seq;
669 }
670
forced_push(const struct tcp_sock * tp)671 static inline bool forced_push(const struct tcp_sock *tp)
672 {
673 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
674 }
675
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)676 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
677 {
678 struct tcp_sock *tp = tcp_sk(sk);
679 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
680
681 tcb->seq = tcb->end_seq = tp->write_seq;
682 tcb->tcp_flags = TCPHDR_ACK;
683 __skb_header_release(skb);
684 tcp_add_write_queue_tail(sk, skb);
685 sk_wmem_queued_add(sk, skb->truesize);
686 sk_mem_charge(sk, skb->truesize);
687 if (tp->nonagle & TCP_NAGLE_PUSH)
688 tp->nonagle &= ~TCP_NAGLE_PUSH;
689
690 tcp_slow_start_after_idle_check(sk);
691 }
692
tcp_mark_urg(struct tcp_sock * tp,int flags)693 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
694 {
695 if (flags & MSG_OOB)
696 tp->snd_up = tp->write_seq;
697 }
698
699 /* If a not yet filled skb is pushed, do not send it if
700 * we have data packets in Qdisc or NIC queues :
701 * Because TX completion will happen shortly, it gives a chance
702 * to coalesce future sendmsg() payload into this skb, without
703 * need for a timer, and with no latency trade off.
704 * As packets containing data payload have a bigger truesize
705 * than pure acks (dataless) packets, the last checks prevent
706 * autocorking if we only have an ACK in Qdisc/NIC queues,
707 * or if TX completion was delayed after we processed ACK packet.
708 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)709 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
710 int size_goal)
711 {
712 return skb->len < size_goal &&
713 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
714 !tcp_rtx_queue_empty(sk) &&
715 refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
716 tcp_skb_can_collapse_to(skb);
717 }
718
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)719 void tcp_push(struct sock *sk, int flags, int mss_now,
720 int nonagle, int size_goal)
721 {
722 struct tcp_sock *tp = tcp_sk(sk);
723 struct sk_buff *skb;
724
725 skb = tcp_write_queue_tail(sk);
726 if (!skb)
727 return;
728 if (!(flags & MSG_MORE) || forced_push(tp))
729 tcp_mark_push(tp, skb);
730
731 tcp_mark_urg(tp, flags);
732
733 if (tcp_should_autocork(sk, skb, size_goal)) {
734
735 /* avoid atomic op if TSQ_THROTTLED bit is already set */
736 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
737 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
738 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
739 smp_mb__after_atomic();
740 }
741 /* It is possible TX completion already happened
742 * before we set TSQ_THROTTLED.
743 */
744 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
745 return;
746 }
747
748 if (flags & MSG_MORE)
749 nonagle = TCP_NAGLE_CORK;
750
751 __tcp_push_pending_frames(sk, mss_now, nonagle);
752 }
753
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)754 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
755 unsigned int offset, size_t len)
756 {
757 struct tcp_splice_state *tss = rd_desc->arg.data;
758 int ret;
759
760 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
761 min(rd_desc->count, len), tss->flags);
762 if (ret > 0)
763 rd_desc->count -= ret;
764 return ret;
765 }
766
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)767 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
768 {
769 /* Store TCP splice context information in read_descriptor_t. */
770 read_descriptor_t rd_desc = {
771 .arg.data = tss,
772 .count = tss->len,
773 };
774
775 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
776 }
777
778 /**
779 * tcp_splice_read - splice data from TCP socket to a pipe
780 * @sock: socket to splice from
781 * @ppos: position (not valid)
782 * @pipe: pipe to splice to
783 * @len: number of bytes to splice
784 * @flags: splice modifier flags
785 *
786 * Description:
787 * Will read pages from given socket and fill them into a pipe.
788 *
789 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)790 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
791 struct pipe_inode_info *pipe, size_t len,
792 unsigned int flags)
793 {
794 struct sock *sk = sock->sk;
795 struct tcp_splice_state tss = {
796 .pipe = pipe,
797 .len = len,
798 .flags = flags,
799 };
800 long timeo;
801 ssize_t spliced;
802 int ret;
803
804 sock_rps_record_flow(sk);
805 /*
806 * We can't seek on a socket input
807 */
808 if (unlikely(*ppos))
809 return -ESPIPE;
810
811 ret = spliced = 0;
812
813 lock_sock(sk);
814
815 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
816 while (tss.len) {
817 ret = __tcp_splice_read(sk, &tss);
818 if (ret < 0)
819 break;
820 else if (!ret) {
821 if (spliced)
822 break;
823 if (sock_flag(sk, SOCK_DONE))
824 break;
825 if (sk->sk_err) {
826 ret = sock_error(sk);
827 break;
828 }
829 if (sk->sk_shutdown & RCV_SHUTDOWN)
830 break;
831 if (sk->sk_state == TCP_CLOSE) {
832 /*
833 * This occurs when user tries to read
834 * from never connected socket.
835 */
836 ret = -ENOTCONN;
837 break;
838 }
839 if (!timeo) {
840 ret = -EAGAIN;
841 break;
842 }
843 /* if __tcp_splice_read() got nothing while we have
844 * an skb in receive queue, we do not want to loop.
845 * This might happen with URG data.
846 */
847 if (!skb_queue_empty(&sk->sk_receive_queue))
848 break;
849 ret = sk_wait_data(sk, &timeo, NULL);
850 if (ret < 0)
851 break;
852 if (signal_pending(current)) {
853 ret = sock_intr_errno(timeo);
854 break;
855 }
856 continue;
857 }
858 tss.len -= ret;
859 spliced += ret;
860
861 if (!tss.len || !timeo)
862 break;
863 release_sock(sk);
864 lock_sock(sk);
865
866 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
867 (sk->sk_shutdown & RCV_SHUTDOWN) ||
868 signal_pending(current))
869 break;
870 }
871
872 release_sock(sk);
873
874 if (spliced)
875 return spliced;
876
877 return ret;
878 }
879 EXPORT_SYMBOL(tcp_splice_read);
880
tcp_stream_alloc_skb(struct sock * sk,gfp_t gfp,bool force_schedule)881 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
882 bool force_schedule)
883 {
884 struct sk_buff *skb;
885
886 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
887 if (likely(skb)) {
888 bool mem_scheduled;
889
890 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
891 if (force_schedule) {
892 mem_scheduled = true;
893 sk_forced_mem_schedule(sk, skb->truesize);
894 } else {
895 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
896 }
897 if (likely(mem_scheduled)) {
898 skb_reserve(skb, MAX_TCP_HEADER);
899 skb->ip_summed = CHECKSUM_PARTIAL;
900 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
901 return skb;
902 }
903 __kfree_skb(skb);
904 } else {
905 sk->sk_prot->enter_memory_pressure(sk);
906 sk_stream_moderate_sndbuf(sk);
907 }
908 return NULL;
909 }
910
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)911 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
912 int large_allowed)
913 {
914 struct tcp_sock *tp = tcp_sk(sk);
915 u32 new_size_goal, size_goal;
916
917 if (!large_allowed)
918 return mss_now;
919
920 /* Note : tcp_tso_autosize() will eventually split this later */
921 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
922
923 /* We try hard to avoid divides here */
924 size_goal = tp->gso_segs * mss_now;
925 if (unlikely(new_size_goal < size_goal ||
926 new_size_goal >= size_goal + mss_now)) {
927 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
928 sk->sk_gso_max_segs);
929 size_goal = tp->gso_segs * mss_now;
930 }
931
932 return max(size_goal, mss_now);
933 }
934
tcp_send_mss(struct sock * sk,int * size_goal,int flags)935 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
936 {
937 int mss_now;
938
939 mss_now = tcp_current_mss(sk);
940 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
941
942 return mss_now;
943 }
944
945 /* In some cases, sendmsg() could have added an skb to the write queue,
946 * but failed adding payload on it. We need to remove it to consume less
947 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
948 * epoll() users. Another reason is that tcp_write_xmit() does not like
949 * finding an empty skb in the write queue.
950 */
tcp_remove_empty_skb(struct sock * sk)951 void tcp_remove_empty_skb(struct sock *sk)
952 {
953 struct sk_buff *skb = tcp_write_queue_tail(sk);
954
955 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
956 tcp_unlink_write_queue(skb, sk);
957 if (tcp_write_queue_empty(sk))
958 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
959 tcp_wmem_free_skb(sk, skb);
960 }
961 }
962
963 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)964 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
965 {
966 if (unlikely(skb_zcopy_pure(skb))) {
967 u32 extra = skb->truesize -
968 SKB_TRUESIZE(skb_end_offset(skb));
969
970 if (!sk_wmem_schedule(sk, extra))
971 return -ENOMEM;
972
973 sk_mem_charge(sk, extra);
974 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
975 }
976 return 0;
977 }
978
979
tcp_wmem_schedule(struct sock * sk,int copy)980 int tcp_wmem_schedule(struct sock *sk, int copy)
981 {
982 int left;
983
984 if (likely(sk_wmem_schedule(sk, copy)))
985 return copy;
986
987 /* We could be in trouble if we have nothing queued.
988 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
989 * to guarantee some progress.
990 */
991 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
992 if (left > 0)
993 sk_forced_mem_schedule(sk, min(left, copy));
994 return min(copy, sk->sk_forward_alloc);
995 }
996
tcp_free_fastopen_req(struct tcp_sock * tp)997 void tcp_free_fastopen_req(struct tcp_sock *tp)
998 {
999 if (tp->fastopen_req) {
1000 kfree(tp->fastopen_req);
1001 tp->fastopen_req = NULL;
1002 }
1003 }
1004
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1005 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1006 size_t size, struct ubuf_info *uarg)
1007 {
1008 struct tcp_sock *tp = tcp_sk(sk);
1009 struct inet_sock *inet = inet_sk(sk);
1010 struct sockaddr *uaddr = msg->msg_name;
1011 int err, flags;
1012
1013 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1014 TFO_CLIENT_ENABLE) ||
1015 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1016 uaddr->sa_family == AF_UNSPEC))
1017 return -EOPNOTSUPP;
1018 if (tp->fastopen_req)
1019 return -EALREADY; /* Another Fast Open is in progress */
1020
1021 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1022 sk->sk_allocation);
1023 if (unlikely(!tp->fastopen_req))
1024 return -ENOBUFS;
1025 tp->fastopen_req->data = msg;
1026 tp->fastopen_req->size = size;
1027 tp->fastopen_req->uarg = uarg;
1028
1029 if (inet_test_bit(DEFER_CONNECT, sk)) {
1030 err = tcp_connect(sk);
1031 /* Same failure procedure as in tcp_v4/6_connect */
1032 if (err) {
1033 tcp_set_state(sk, TCP_CLOSE);
1034 inet->inet_dport = 0;
1035 sk->sk_route_caps = 0;
1036 }
1037 }
1038 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1039 err = __inet_stream_connect(sk->sk_socket, uaddr,
1040 msg->msg_namelen, flags, 1);
1041 /* fastopen_req could already be freed in __inet_stream_connect
1042 * if the connection times out or gets rst
1043 */
1044 if (tp->fastopen_req) {
1045 *copied = tp->fastopen_req->copied;
1046 tcp_free_fastopen_req(tp);
1047 inet_clear_bit(DEFER_CONNECT, sk);
1048 }
1049 return err;
1050 }
1051
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1052 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1053 {
1054 struct tcp_sock *tp = tcp_sk(sk);
1055 struct ubuf_info *uarg = NULL;
1056 struct sk_buff *skb;
1057 struct sockcm_cookie sockc;
1058 int flags, err, copied = 0;
1059 int mss_now = 0, size_goal, copied_syn = 0;
1060 int process_backlog = 0;
1061 int zc = 0;
1062 long timeo;
1063
1064 flags = msg->msg_flags;
1065
1066 if ((flags & MSG_ZEROCOPY) && size) {
1067 if (msg->msg_ubuf) {
1068 uarg = msg->msg_ubuf;
1069 if (sk->sk_route_caps & NETIF_F_SG)
1070 zc = MSG_ZEROCOPY;
1071 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1072 skb = tcp_write_queue_tail(sk);
1073 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1074 if (!uarg) {
1075 err = -ENOBUFS;
1076 goto out_err;
1077 }
1078 if (sk->sk_route_caps & NETIF_F_SG)
1079 zc = MSG_ZEROCOPY;
1080 else
1081 uarg_to_msgzc(uarg)->zerocopy = 0;
1082 }
1083 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1084 if (sk->sk_route_caps & NETIF_F_SG)
1085 zc = MSG_SPLICE_PAGES;
1086 }
1087
1088 if (unlikely(flags & MSG_FASTOPEN ||
1089 inet_test_bit(DEFER_CONNECT, sk)) &&
1090 !tp->repair) {
1091 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1092 if (err == -EINPROGRESS && copied_syn > 0)
1093 goto out;
1094 else if (err)
1095 goto out_err;
1096 }
1097
1098 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1099
1100 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1101
1102 /* Wait for a connection to finish. One exception is TCP Fast Open
1103 * (passive side) where data is allowed to be sent before a connection
1104 * is fully established.
1105 */
1106 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1107 !tcp_passive_fastopen(sk)) {
1108 err = sk_stream_wait_connect(sk, &timeo);
1109 if (err != 0)
1110 goto do_error;
1111 }
1112
1113 if (unlikely(tp->repair)) {
1114 if (tp->repair_queue == TCP_RECV_QUEUE) {
1115 copied = tcp_send_rcvq(sk, msg, size);
1116 goto out_nopush;
1117 }
1118
1119 err = -EINVAL;
1120 if (tp->repair_queue == TCP_NO_QUEUE)
1121 goto out_err;
1122
1123 /* 'common' sending to sendq */
1124 }
1125
1126 sockcm_init(&sockc, sk);
1127 if (msg->msg_controllen) {
1128 err = sock_cmsg_send(sk, msg, &sockc);
1129 if (unlikely(err)) {
1130 err = -EINVAL;
1131 goto out_err;
1132 }
1133 }
1134
1135 trace_android_vh_uplink_send_msg(sk);
1136
1137 /* This should be in poll */
1138 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1139
1140 /* Ok commence sending. */
1141 copied = 0;
1142
1143 restart:
1144 mss_now = tcp_send_mss(sk, &size_goal, flags);
1145
1146 err = -EPIPE;
1147 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1148 goto do_error;
1149
1150 while (msg_data_left(msg)) {
1151 int copy = 0;
1152
1153 skb = tcp_write_queue_tail(sk);
1154 if (skb)
1155 copy = size_goal - skb->len;
1156
1157 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1158 bool first_skb;
1159
1160 new_segment:
1161 if (!sk_stream_memory_free(sk))
1162 goto wait_for_space;
1163
1164 if (unlikely(process_backlog >= 16)) {
1165 process_backlog = 0;
1166 if (sk_flush_backlog(sk))
1167 goto restart;
1168 }
1169 first_skb = tcp_rtx_and_write_queues_empty(sk);
1170 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1171 first_skb);
1172 if (!skb)
1173 goto wait_for_space;
1174
1175 process_backlog++;
1176
1177 #ifdef CONFIG_SKB_DECRYPTED
1178 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1179 #endif
1180 tcp_skb_entail(sk, skb);
1181 copy = size_goal;
1182
1183 /* All packets are restored as if they have
1184 * already been sent. skb_mstamp_ns isn't set to
1185 * avoid wrong rtt estimation.
1186 */
1187 if (tp->repair)
1188 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1189 }
1190
1191 /* Try to append data to the end of skb. */
1192 if (copy > msg_data_left(msg))
1193 copy = msg_data_left(msg);
1194
1195 if (zc == 0) {
1196 bool merge = true;
1197 int i = skb_shinfo(skb)->nr_frags;
1198 struct page_frag *pfrag = sk_page_frag(sk);
1199
1200 if (!sk_page_frag_refill(sk, pfrag))
1201 goto wait_for_space;
1202
1203 if (!skb_can_coalesce(skb, i, pfrag->page,
1204 pfrag->offset)) {
1205 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1206 tcp_mark_push(tp, skb);
1207 goto new_segment;
1208 }
1209 merge = false;
1210 }
1211
1212 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1213
1214 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1215 if (tcp_downgrade_zcopy_pure(sk, skb))
1216 goto wait_for_space;
1217 skb_zcopy_downgrade_managed(skb);
1218 }
1219
1220 copy = tcp_wmem_schedule(sk, copy);
1221 if (!copy)
1222 goto wait_for_space;
1223
1224 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1225 pfrag->page,
1226 pfrag->offset,
1227 copy);
1228 if (err)
1229 goto do_error;
1230
1231 /* Update the skb. */
1232 if (merge) {
1233 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1234 } else {
1235 skb_fill_page_desc(skb, i, pfrag->page,
1236 pfrag->offset, copy);
1237 page_ref_inc(pfrag->page);
1238 }
1239 pfrag->offset += copy;
1240 } else if (zc == MSG_ZEROCOPY) {
1241 /* First append to a fragless skb builds initial
1242 * pure zerocopy skb
1243 */
1244 if (!skb->len)
1245 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1246
1247 if (!skb_zcopy_pure(skb)) {
1248 copy = tcp_wmem_schedule(sk, copy);
1249 if (!copy)
1250 goto wait_for_space;
1251 }
1252
1253 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1254 if (err == -EMSGSIZE || err == -EEXIST) {
1255 tcp_mark_push(tp, skb);
1256 goto new_segment;
1257 }
1258 if (err < 0)
1259 goto do_error;
1260 copy = err;
1261 } else if (zc == MSG_SPLICE_PAGES) {
1262 /* Splice in data if we can; copy if we can't. */
1263 if (tcp_downgrade_zcopy_pure(sk, skb))
1264 goto wait_for_space;
1265 copy = tcp_wmem_schedule(sk, copy);
1266 if (!copy)
1267 goto wait_for_space;
1268
1269 err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1270 sk->sk_allocation);
1271 if (err < 0) {
1272 if (err == -EMSGSIZE) {
1273 tcp_mark_push(tp, skb);
1274 goto new_segment;
1275 }
1276 goto do_error;
1277 }
1278 copy = err;
1279
1280 if (!(flags & MSG_NO_SHARED_FRAGS))
1281 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1282
1283 sk_wmem_queued_add(sk, copy);
1284 sk_mem_charge(sk, copy);
1285 }
1286
1287 if (!copied)
1288 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1289
1290 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1291 TCP_SKB_CB(skb)->end_seq += copy;
1292 tcp_skb_pcount_set(skb, 0);
1293
1294 copied += copy;
1295 if (!msg_data_left(msg)) {
1296 if (unlikely(flags & MSG_EOR))
1297 TCP_SKB_CB(skb)->eor = 1;
1298 goto out;
1299 }
1300
1301 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1302 continue;
1303
1304 if (forced_push(tp)) {
1305 tcp_mark_push(tp, skb);
1306 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1307 } else if (skb == tcp_send_head(sk))
1308 tcp_push_one(sk, mss_now);
1309 continue;
1310
1311 wait_for_space:
1312 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1313 tcp_remove_empty_skb(sk);
1314 if (copied)
1315 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1316 TCP_NAGLE_PUSH, size_goal);
1317
1318 err = sk_stream_wait_memory(sk, &timeo);
1319 if (err != 0)
1320 goto do_error;
1321
1322 mss_now = tcp_send_mss(sk, &size_goal, flags);
1323 }
1324
1325 out:
1326 if (copied) {
1327 tcp_tx_timestamp(sk, sockc.tsflags);
1328 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1329 }
1330 out_nopush:
1331 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1332 if (uarg && !msg->msg_ubuf)
1333 net_zcopy_put(uarg);
1334 return copied + copied_syn;
1335
1336 do_error:
1337 tcp_remove_empty_skb(sk);
1338
1339 if (copied + copied_syn)
1340 goto out;
1341 out_err:
1342 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1343 if (uarg && !msg->msg_ubuf)
1344 net_zcopy_put_abort(uarg, true);
1345 err = sk_stream_error(sk, flags, err);
1346 /* make sure we wake any epoll edge trigger waiter */
1347 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1348 sk->sk_write_space(sk);
1349 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1350 }
1351 return err;
1352 }
1353 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1354
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1355 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1356 {
1357 int ret;
1358
1359 trace_android_rvh_tcp_sendmsg(sk, msg, size);
1360 lock_sock(sk);
1361 ret = tcp_sendmsg_locked(sk, msg, size);
1362 release_sock(sk);
1363
1364 return ret;
1365 }
1366 EXPORT_SYMBOL(tcp_sendmsg);
1367
tcp_splice_eof(struct socket * sock)1368 void tcp_splice_eof(struct socket *sock)
1369 {
1370 struct sock *sk = sock->sk;
1371 struct tcp_sock *tp = tcp_sk(sk);
1372 int mss_now, size_goal;
1373
1374 if (!tcp_write_queue_tail(sk))
1375 return;
1376
1377 lock_sock(sk);
1378 mss_now = tcp_send_mss(sk, &size_goal, 0);
1379 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1380 release_sock(sk);
1381 }
1382 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1383
1384 /*
1385 * Handle reading urgent data. BSD has very simple semantics for
1386 * this, no blocking and very strange errors 8)
1387 */
1388
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1389 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1390 {
1391 struct tcp_sock *tp = tcp_sk(sk);
1392
1393 /* No URG data to read. */
1394 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1395 tp->urg_data == TCP_URG_READ)
1396 return -EINVAL; /* Yes this is right ! */
1397
1398 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1399 return -ENOTCONN;
1400
1401 if (tp->urg_data & TCP_URG_VALID) {
1402 int err = 0;
1403 char c = tp->urg_data;
1404
1405 if (!(flags & MSG_PEEK))
1406 WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1407
1408 /* Read urgent data. */
1409 msg->msg_flags |= MSG_OOB;
1410
1411 if (len > 0) {
1412 if (!(flags & MSG_TRUNC))
1413 err = memcpy_to_msg(msg, &c, 1);
1414 len = 1;
1415 } else
1416 msg->msg_flags |= MSG_TRUNC;
1417
1418 return err ? -EFAULT : len;
1419 }
1420
1421 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1422 return 0;
1423
1424 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1425 * the available implementations agree in this case:
1426 * this call should never block, independent of the
1427 * blocking state of the socket.
1428 * Mike <pall@rz.uni-karlsruhe.de>
1429 */
1430 return -EAGAIN;
1431 }
1432
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1433 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1434 {
1435 struct sk_buff *skb;
1436 int copied = 0, err = 0;
1437
1438 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1439 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1440 if (err)
1441 return err;
1442 copied += skb->len;
1443 }
1444
1445 skb_queue_walk(&sk->sk_write_queue, skb) {
1446 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1447 if (err)
1448 break;
1449
1450 copied += skb->len;
1451 }
1452
1453 return err ?: copied;
1454 }
1455
1456 /* Clean up the receive buffer for full frames taken by the user,
1457 * then send an ACK if necessary. COPIED is the number of bytes
1458 * tcp_recvmsg has given to the user so far, it speeds up the
1459 * calculation of whether or not we must ACK for the sake of
1460 * a window update.
1461 */
__tcp_cleanup_rbuf(struct sock * sk,int copied)1462 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1463 {
1464 struct tcp_sock *tp = tcp_sk(sk);
1465 bool time_to_ack = false;
1466
1467 if (inet_csk_ack_scheduled(sk)) {
1468 const struct inet_connection_sock *icsk = inet_csk(sk);
1469
1470 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1471 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1472 /*
1473 * If this read emptied read buffer, we send ACK, if
1474 * connection is not bidirectional, user drained
1475 * receive buffer and there was a small segment
1476 * in queue.
1477 */
1478 (copied > 0 &&
1479 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1480 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1481 !inet_csk_in_pingpong_mode(sk))) &&
1482 !atomic_read(&sk->sk_rmem_alloc)))
1483 time_to_ack = true;
1484 }
1485
1486 /* We send an ACK if we can now advertise a non-zero window
1487 * which has been raised "significantly".
1488 *
1489 * Even if window raised up to infinity, do not send window open ACK
1490 * in states, where we will not receive more. It is useless.
1491 */
1492 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1493 __u32 rcv_window_now = tcp_receive_window(tp);
1494
1495 /* Optimize, __tcp_select_window() is not cheap. */
1496 if (2*rcv_window_now <= tp->window_clamp) {
1497 __u32 new_window = __tcp_select_window(sk);
1498
1499 /* Send ACK now, if this read freed lots of space
1500 * in our buffer. Certainly, new_window is new window.
1501 * We can advertise it now, if it is not less than current one.
1502 * "Lots" means "at least twice" here.
1503 */
1504 if (new_window && new_window >= 2 * rcv_window_now)
1505 time_to_ack = true;
1506 }
1507 }
1508 if (time_to_ack)
1509 tcp_send_ack(sk);
1510 }
1511
tcp_cleanup_rbuf(struct sock * sk,int copied)1512 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1513 {
1514 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1515 struct tcp_sock *tp = tcp_sk(sk);
1516
1517 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1518 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1519 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1520 __tcp_cleanup_rbuf(sk, copied);
1521 }
1522
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1523 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1524 {
1525 __skb_unlink(skb, &sk->sk_receive_queue);
1526 if (likely(skb->destructor == sock_rfree)) {
1527 sock_rfree(skb);
1528 skb->destructor = NULL;
1529 skb->sk = NULL;
1530 return skb_attempt_defer_free(skb);
1531 }
1532 __kfree_skb(skb);
1533 }
1534
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1535 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1536 {
1537 struct sk_buff *skb;
1538 u32 offset;
1539
1540 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1541 offset = seq - TCP_SKB_CB(skb)->seq;
1542 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1543 pr_err_once("%s: found a SYN, please report !\n", __func__);
1544 offset--;
1545 }
1546 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1547 *off = offset;
1548 return skb;
1549 }
1550 /* This looks weird, but this can happen if TCP collapsing
1551 * splitted a fat GRO packet, while we released socket lock
1552 * in skb_splice_bits()
1553 */
1554 tcp_eat_recv_skb(sk, skb);
1555 }
1556 return NULL;
1557 }
1558 EXPORT_SYMBOL(tcp_recv_skb);
1559
1560 /*
1561 * This routine provides an alternative to tcp_recvmsg() for routines
1562 * that would like to handle copying from skbuffs directly in 'sendfile'
1563 * fashion.
1564 * Note:
1565 * - It is assumed that the socket was locked by the caller.
1566 * - The routine does not block.
1567 * - At present, there is no support for reading OOB data
1568 * or for 'peeking' the socket using this routine
1569 * (although both would be easy to implement).
1570 */
__tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor,bool noack,u32 * copied_seq)1571 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1572 sk_read_actor_t recv_actor, bool noack,
1573 u32 *copied_seq)
1574 {
1575 struct sk_buff *skb;
1576 struct tcp_sock *tp = tcp_sk(sk);
1577 u32 seq = *copied_seq;
1578 u32 offset;
1579 int copied = 0;
1580
1581 if (sk->sk_state == TCP_LISTEN)
1582 return -ENOTCONN;
1583 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1584 if (offset < skb->len) {
1585 int used;
1586 size_t len;
1587
1588 len = skb->len - offset;
1589 /* Stop reading if we hit a patch of urgent data */
1590 if (unlikely(tp->urg_data)) {
1591 u32 urg_offset = tp->urg_seq - seq;
1592 if (urg_offset < len)
1593 len = urg_offset;
1594 if (!len)
1595 break;
1596 }
1597 used = recv_actor(desc, skb, offset, len);
1598 if (used <= 0) {
1599 if (!copied)
1600 copied = used;
1601 break;
1602 }
1603 if (WARN_ON_ONCE(used > len))
1604 used = len;
1605 seq += used;
1606 copied += used;
1607 offset += used;
1608
1609 /* If recv_actor drops the lock (e.g. TCP splice
1610 * receive) the skb pointer might be invalid when
1611 * getting here: tcp_collapse might have deleted it
1612 * while aggregating skbs from the socket queue.
1613 */
1614 skb = tcp_recv_skb(sk, seq - 1, &offset);
1615 if (!skb)
1616 break;
1617 /* TCP coalescing might have appended data to the skb.
1618 * Try to splice more frags
1619 */
1620 if (offset + 1 != skb->len)
1621 continue;
1622 }
1623 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1624 tcp_eat_recv_skb(sk, skb);
1625 ++seq;
1626 break;
1627 }
1628 tcp_eat_recv_skb(sk, skb);
1629 if (!desc->count)
1630 break;
1631 WRITE_ONCE(*copied_seq, seq);
1632 }
1633 WRITE_ONCE(*copied_seq, seq);
1634
1635 if (noack)
1636 goto out;
1637
1638 tcp_rcv_space_adjust(sk);
1639
1640 /* Clean up data we have read: This will do ACK frames. */
1641 if (copied > 0) {
1642 tcp_recv_skb(sk, seq, &offset);
1643 tcp_cleanup_rbuf(sk, copied);
1644 }
1645 out:
1646 return copied;
1647 }
1648
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1649 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1650 sk_read_actor_t recv_actor)
1651 {
1652 return __tcp_read_sock(sk, desc, recv_actor, false,
1653 &tcp_sk(sk)->copied_seq);
1654 }
1655 EXPORT_SYMBOL(tcp_read_sock);
1656
tcp_read_sock_noack(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor,bool noack,u32 * copied_seq)1657 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
1658 sk_read_actor_t recv_actor, bool noack,
1659 u32 *copied_seq)
1660 {
1661 return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq);
1662 }
1663
tcp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1664 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1665 {
1666 struct sk_buff *skb;
1667 int copied = 0;
1668
1669 if (sk->sk_state == TCP_LISTEN)
1670 return -ENOTCONN;
1671
1672 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1673 u8 tcp_flags;
1674 int used;
1675
1676 __skb_unlink(skb, &sk->sk_receive_queue);
1677 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1678 tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1679 used = recv_actor(sk, skb);
1680 if (used < 0) {
1681 if (!copied)
1682 copied = used;
1683 break;
1684 }
1685 copied += used;
1686
1687 if (tcp_flags & TCPHDR_FIN)
1688 break;
1689 }
1690 return copied;
1691 }
1692 EXPORT_SYMBOL(tcp_read_skb);
1693
tcp_read_done(struct sock * sk,size_t len)1694 void tcp_read_done(struct sock *sk, size_t len)
1695 {
1696 struct tcp_sock *tp = tcp_sk(sk);
1697 u32 seq = tp->copied_seq;
1698 struct sk_buff *skb;
1699 size_t left;
1700 u32 offset;
1701
1702 if (sk->sk_state == TCP_LISTEN)
1703 return;
1704
1705 left = len;
1706 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1707 int used;
1708
1709 used = min_t(size_t, skb->len - offset, left);
1710 seq += used;
1711 left -= used;
1712
1713 if (skb->len > offset + used)
1714 break;
1715
1716 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1717 tcp_eat_recv_skb(sk, skb);
1718 ++seq;
1719 break;
1720 }
1721 tcp_eat_recv_skb(sk, skb);
1722 }
1723 WRITE_ONCE(tp->copied_seq, seq);
1724
1725 tcp_rcv_space_adjust(sk);
1726
1727 /* Clean up data we have read: This will do ACK frames. */
1728 if (left != len)
1729 tcp_cleanup_rbuf(sk, len - left);
1730 }
1731 EXPORT_SYMBOL(tcp_read_done);
1732
tcp_peek_len(struct socket * sock)1733 int tcp_peek_len(struct socket *sock)
1734 {
1735 return tcp_inq(sock->sk);
1736 }
1737 EXPORT_SYMBOL(tcp_peek_len);
1738
1739 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1740 int tcp_set_rcvlowat(struct sock *sk, int val)
1741 {
1742 int space, cap;
1743
1744 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1745 cap = sk->sk_rcvbuf >> 1;
1746 else
1747 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1748 val = min(val, cap);
1749 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1750
1751 /* Check if we need to signal EPOLLIN right now */
1752 tcp_data_ready(sk);
1753
1754 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1755 return 0;
1756
1757 space = tcp_space_from_win(sk, val);
1758 if (space > sk->sk_rcvbuf) {
1759 WRITE_ONCE(sk->sk_rcvbuf, space);
1760 WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1761 }
1762 return 0;
1763 }
1764 EXPORT_SYMBOL(tcp_set_rcvlowat);
1765
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1766 void tcp_update_recv_tstamps(struct sk_buff *skb,
1767 struct scm_timestamping_internal *tss)
1768 {
1769 if (skb->tstamp)
1770 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1771 else
1772 tss->ts[0] = (struct timespec64) {0};
1773
1774 if (skb_hwtstamps(skb)->hwtstamp)
1775 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1776 else
1777 tss->ts[2] = (struct timespec64) {0};
1778 }
1779
1780 #ifdef CONFIG_MMU
1781 static const struct vm_operations_struct tcp_vm_ops = {
1782 };
1783
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1784 int tcp_mmap(struct file *file, struct socket *sock,
1785 struct vm_area_struct *vma)
1786 {
1787 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1788 return -EPERM;
1789 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1790
1791 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1792 vm_flags_set(vma, VM_MIXEDMAP);
1793
1794 vma->vm_ops = &tcp_vm_ops;
1795 return 0;
1796 }
1797 EXPORT_SYMBOL(tcp_mmap);
1798
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1799 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1800 u32 *offset_frag)
1801 {
1802 skb_frag_t *frag;
1803
1804 if (unlikely(offset_skb >= skb->len))
1805 return NULL;
1806
1807 offset_skb -= skb_headlen(skb);
1808 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1809 return NULL;
1810
1811 frag = skb_shinfo(skb)->frags;
1812 while (offset_skb) {
1813 if (skb_frag_size(frag) > offset_skb) {
1814 *offset_frag = offset_skb;
1815 return frag;
1816 }
1817 offset_skb -= skb_frag_size(frag);
1818 ++frag;
1819 }
1820 *offset_frag = 0;
1821 return frag;
1822 }
1823
can_map_frag(const skb_frag_t * frag)1824 static bool can_map_frag(const skb_frag_t *frag)
1825 {
1826 struct page *page;
1827
1828 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1829 return false;
1830
1831 page = skb_frag_page(frag);
1832
1833 if (PageCompound(page) || page->mapping)
1834 return false;
1835
1836 return true;
1837 }
1838
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1839 static int find_next_mappable_frag(const skb_frag_t *frag,
1840 int remaining_in_skb)
1841 {
1842 int offset = 0;
1843
1844 if (likely(can_map_frag(frag)))
1845 return 0;
1846
1847 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1848 offset += skb_frag_size(frag);
1849 ++frag;
1850 }
1851 return offset;
1852 }
1853
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1854 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1855 struct tcp_zerocopy_receive *zc,
1856 struct sk_buff *skb, u32 offset)
1857 {
1858 u32 frag_offset, partial_frag_remainder = 0;
1859 int mappable_offset;
1860 skb_frag_t *frag;
1861
1862 /* worst case: skip to next skb. try to improve on this case below */
1863 zc->recv_skip_hint = skb->len - offset;
1864
1865 /* Find the frag containing this offset (and how far into that frag) */
1866 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1867 if (!frag)
1868 return;
1869
1870 if (frag_offset) {
1871 struct skb_shared_info *info = skb_shinfo(skb);
1872
1873 /* We read part of the last frag, must recvmsg() rest of skb. */
1874 if (frag == &info->frags[info->nr_frags - 1])
1875 return;
1876
1877 /* Else, we must at least read the remainder in this frag. */
1878 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1879 zc->recv_skip_hint -= partial_frag_remainder;
1880 ++frag;
1881 }
1882
1883 /* partial_frag_remainder: If part way through a frag, must read rest.
1884 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1885 * in partial_frag_remainder.
1886 */
1887 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1888 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1889 }
1890
1891 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1892 int flags, struct scm_timestamping_internal *tss,
1893 int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1894 static int receive_fallback_to_copy(struct sock *sk,
1895 struct tcp_zerocopy_receive *zc, int inq,
1896 struct scm_timestamping_internal *tss)
1897 {
1898 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1899 struct msghdr msg = {};
1900 int err;
1901
1902 zc->length = 0;
1903 zc->recv_skip_hint = 0;
1904
1905 if (copy_address != zc->copybuf_address)
1906 return -EINVAL;
1907
1908 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1909 &msg.msg_iter);
1910 if (err)
1911 return err;
1912
1913 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1914 tss, &zc->msg_flags);
1915 if (err < 0)
1916 return err;
1917
1918 zc->copybuf_len = err;
1919 if (likely(zc->copybuf_len)) {
1920 struct sk_buff *skb;
1921 u32 offset;
1922
1923 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1924 if (skb)
1925 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1926 }
1927 return 0;
1928 }
1929
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1930 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1931 struct sk_buff *skb, u32 copylen,
1932 u32 *offset, u32 *seq)
1933 {
1934 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1935 struct msghdr msg = {};
1936 int err;
1937
1938 if (copy_address != zc->copybuf_address)
1939 return -EINVAL;
1940
1941 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1942 &msg.msg_iter);
1943 if (err)
1944 return err;
1945 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1946 if (err)
1947 return err;
1948 zc->recv_skip_hint -= copylen;
1949 *offset += copylen;
1950 *seq += copylen;
1951 return (__s32)copylen;
1952 }
1953
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1954 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1955 struct sock *sk,
1956 struct sk_buff *skb,
1957 u32 *seq,
1958 s32 copybuf_len,
1959 struct scm_timestamping_internal *tss)
1960 {
1961 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1962
1963 if (!copylen)
1964 return 0;
1965 /* skb is null if inq < PAGE_SIZE. */
1966 if (skb) {
1967 offset = *seq - TCP_SKB_CB(skb)->seq;
1968 } else {
1969 skb = tcp_recv_skb(sk, *seq, &offset);
1970 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1971 tcp_update_recv_tstamps(skb, tss);
1972 zc->msg_flags |= TCP_CMSG_TS;
1973 }
1974 }
1975
1976 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1977 seq);
1978 return zc->copybuf_len < 0 ? 0 : copylen;
1979 }
1980
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)1981 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1982 struct page **pending_pages,
1983 unsigned long pages_remaining,
1984 unsigned long *address,
1985 u32 *length,
1986 u32 *seq,
1987 struct tcp_zerocopy_receive *zc,
1988 u32 total_bytes_to_map,
1989 int err)
1990 {
1991 /* At least one page did not map. Try zapping if we skipped earlier. */
1992 if (err == -EBUSY &&
1993 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1994 u32 maybe_zap_len;
1995
1996 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
1997 *length + /* Mapped or pending */
1998 (pages_remaining * PAGE_SIZE); /* Failed map. */
1999 zap_page_range_single(vma, *address, maybe_zap_len, NULL);
2000 err = 0;
2001 }
2002
2003 if (!err) {
2004 unsigned long leftover_pages = pages_remaining;
2005 int bytes_mapped;
2006
2007 /* We called zap_page_range_single, try to reinsert. */
2008 err = vm_insert_pages(vma, *address,
2009 pending_pages,
2010 &pages_remaining);
2011 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2012 *seq += bytes_mapped;
2013 *address += bytes_mapped;
2014 }
2015 if (err) {
2016 /* Either we were unable to zap, OR we zapped, retried an
2017 * insert, and still had an issue. Either ways, pages_remaining
2018 * is the number of pages we were unable to map, and we unroll
2019 * some state we speculatively touched before.
2020 */
2021 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2022
2023 *length -= bytes_not_mapped;
2024 zc->recv_skip_hint += bytes_not_mapped;
2025 }
2026 return err;
2027 }
2028
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2029 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2030 struct page **pages,
2031 unsigned int pages_to_map,
2032 unsigned long *address,
2033 u32 *length,
2034 u32 *seq,
2035 struct tcp_zerocopy_receive *zc,
2036 u32 total_bytes_to_map)
2037 {
2038 unsigned long pages_remaining = pages_to_map;
2039 unsigned int pages_mapped;
2040 unsigned int bytes_mapped;
2041 int err;
2042
2043 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2044 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2045 bytes_mapped = PAGE_SIZE * pages_mapped;
2046 /* Even if vm_insert_pages fails, it may have partially succeeded in
2047 * mapping (some but not all of the pages).
2048 */
2049 *seq += bytes_mapped;
2050 *address += bytes_mapped;
2051
2052 if (likely(!err))
2053 return 0;
2054
2055 /* Error: maybe zap and retry + rollback state for failed inserts. */
2056 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2057 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2058 err);
2059 }
2060
2061 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2062 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2063 struct tcp_zerocopy_receive *zc,
2064 struct scm_timestamping_internal *tss)
2065 {
2066 unsigned long msg_control_addr;
2067 struct msghdr cmsg_dummy;
2068
2069 msg_control_addr = (unsigned long)zc->msg_control;
2070 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2071 cmsg_dummy.msg_controllen =
2072 (__kernel_size_t)zc->msg_controllen;
2073 cmsg_dummy.msg_flags = in_compat_syscall()
2074 ? MSG_CMSG_COMPAT : 0;
2075 cmsg_dummy.msg_control_is_user = true;
2076 zc->msg_flags = 0;
2077 if (zc->msg_control == msg_control_addr &&
2078 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2079 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2080 zc->msg_control = (__u64)
2081 ((uintptr_t)cmsg_dummy.msg_control_user);
2082 zc->msg_controllen =
2083 (__u64)cmsg_dummy.msg_controllen;
2084 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2085 }
2086 }
2087
find_tcp_vma(struct mm_struct * mm,unsigned long address,bool * mmap_locked)2088 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2089 unsigned long address,
2090 bool *mmap_locked)
2091 {
2092 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2093
2094 if (vma) {
2095 if (vma->vm_ops != &tcp_vm_ops) {
2096 vma_end_read(vma);
2097 return NULL;
2098 }
2099 *mmap_locked = false;
2100 return vma;
2101 }
2102
2103 mmap_read_lock(mm);
2104 vma = vma_lookup(mm, address);
2105 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2106 mmap_read_unlock(mm);
2107 return NULL;
2108 }
2109 *mmap_locked = true;
2110 return vma;
2111 }
2112
2113 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2114 static int tcp_zerocopy_receive(struct sock *sk,
2115 struct tcp_zerocopy_receive *zc,
2116 struct scm_timestamping_internal *tss)
2117 {
2118 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2119 unsigned long address = (unsigned long)zc->address;
2120 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2121 s32 copybuf_len = zc->copybuf_len;
2122 struct tcp_sock *tp = tcp_sk(sk);
2123 const skb_frag_t *frags = NULL;
2124 unsigned int pages_to_map = 0;
2125 struct vm_area_struct *vma;
2126 struct sk_buff *skb = NULL;
2127 u32 seq = tp->copied_seq;
2128 u32 total_bytes_to_map;
2129 int inq = tcp_inq(sk);
2130 bool mmap_locked;
2131 int ret;
2132
2133 zc->copybuf_len = 0;
2134 zc->msg_flags = 0;
2135
2136 if (address & (PAGE_SIZE - 1) || address != zc->address)
2137 return -EINVAL;
2138
2139 if (sk->sk_state == TCP_LISTEN)
2140 return -ENOTCONN;
2141
2142 sock_rps_record_flow(sk);
2143
2144 if (inq && inq <= copybuf_len)
2145 return receive_fallback_to_copy(sk, zc, inq, tss);
2146
2147 if (inq < PAGE_SIZE) {
2148 zc->length = 0;
2149 zc->recv_skip_hint = inq;
2150 if (!inq && sock_flag(sk, SOCK_DONE))
2151 return -EIO;
2152 return 0;
2153 }
2154
2155 vma = find_tcp_vma(current->mm, address, &mmap_locked);
2156 if (!vma)
2157 return -EINVAL;
2158
2159 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2160 avail_len = min_t(u32, vma_len, inq);
2161 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2162 if (total_bytes_to_map) {
2163 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2164 zap_page_range_single(vma, address, total_bytes_to_map,
2165 NULL);
2166 zc->length = total_bytes_to_map;
2167 zc->recv_skip_hint = 0;
2168 } else {
2169 zc->length = avail_len;
2170 zc->recv_skip_hint = avail_len;
2171 }
2172 ret = 0;
2173 while (length + PAGE_SIZE <= zc->length) {
2174 int mappable_offset;
2175 struct page *page;
2176
2177 if (zc->recv_skip_hint < PAGE_SIZE) {
2178 u32 offset_frag;
2179
2180 if (skb) {
2181 if (zc->recv_skip_hint > 0)
2182 break;
2183 skb = skb->next;
2184 offset = seq - TCP_SKB_CB(skb)->seq;
2185 } else {
2186 skb = tcp_recv_skb(sk, seq, &offset);
2187 }
2188
2189 if (!skb_frags_readable(skb))
2190 break;
2191
2192 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2193 tcp_update_recv_tstamps(skb, tss);
2194 zc->msg_flags |= TCP_CMSG_TS;
2195 }
2196 zc->recv_skip_hint = skb->len - offset;
2197 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2198 if (!frags || offset_frag)
2199 break;
2200 }
2201
2202 mappable_offset = find_next_mappable_frag(frags,
2203 zc->recv_skip_hint);
2204 if (mappable_offset) {
2205 zc->recv_skip_hint = mappable_offset;
2206 break;
2207 }
2208 page = skb_frag_page(frags);
2209 if (WARN_ON_ONCE(!page))
2210 break;
2211
2212 prefetchw(page);
2213 pages[pages_to_map++] = page;
2214 length += PAGE_SIZE;
2215 zc->recv_skip_hint -= PAGE_SIZE;
2216 frags++;
2217 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2218 zc->recv_skip_hint < PAGE_SIZE) {
2219 /* Either full batch, or we're about to go to next skb
2220 * (and we cannot unroll failed ops across skbs).
2221 */
2222 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2223 pages_to_map,
2224 &address, &length,
2225 &seq, zc,
2226 total_bytes_to_map);
2227 if (ret)
2228 goto out;
2229 pages_to_map = 0;
2230 }
2231 }
2232 if (pages_to_map) {
2233 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2234 &address, &length, &seq,
2235 zc, total_bytes_to_map);
2236 }
2237 out:
2238 if (mmap_locked)
2239 mmap_read_unlock(current->mm);
2240 else
2241 vma_end_read(vma);
2242 /* Try to copy straggler data. */
2243 if (!ret)
2244 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2245
2246 if (length + copylen) {
2247 WRITE_ONCE(tp->copied_seq, seq);
2248 tcp_rcv_space_adjust(sk);
2249
2250 /* Clean up data we have read: This will do ACK frames. */
2251 tcp_recv_skb(sk, seq, &offset);
2252 tcp_cleanup_rbuf(sk, length + copylen);
2253 ret = 0;
2254 if (length == zc->length)
2255 zc->recv_skip_hint = 0;
2256 } else {
2257 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2258 ret = -EIO;
2259 }
2260 zc->length = length;
2261 return ret;
2262 }
2263 #endif
2264
2265 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2266 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2267 struct scm_timestamping_internal *tss)
2268 {
2269 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2270 u32 tsflags = READ_ONCE(sk->sk_tsflags);
2271 bool has_timestamping = false;
2272
2273 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2274 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2275 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2276 if (new_tstamp) {
2277 struct __kernel_timespec kts = {
2278 .tv_sec = tss->ts[0].tv_sec,
2279 .tv_nsec = tss->ts[0].tv_nsec,
2280 };
2281 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2282 sizeof(kts), &kts);
2283 } else {
2284 struct __kernel_old_timespec ts_old = {
2285 .tv_sec = tss->ts[0].tv_sec,
2286 .tv_nsec = tss->ts[0].tv_nsec,
2287 };
2288 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2289 sizeof(ts_old), &ts_old);
2290 }
2291 } else {
2292 if (new_tstamp) {
2293 struct __kernel_sock_timeval stv = {
2294 .tv_sec = tss->ts[0].tv_sec,
2295 .tv_usec = tss->ts[0].tv_nsec / 1000,
2296 };
2297 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2298 sizeof(stv), &stv);
2299 } else {
2300 struct __kernel_old_timeval tv = {
2301 .tv_sec = tss->ts[0].tv_sec,
2302 .tv_usec = tss->ts[0].tv_nsec / 1000,
2303 };
2304 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2305 sizeof(tv), &tv);
2306 }
2307 }
2308 }
2309
2310 if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2311 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2312 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2313 has_timestamping = true;
2314 else
2315 tss->ts[0] = (struct timespec64) {0};
2316 }
2317
2318 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2319 if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2320 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2321 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2322 has_timestamping = true;
2323 else
2324 tss->ts[2] = (struct timespec64) {0};
2325 }
2326
2327 if (has_timestamping) {
2328 tss->ts[1] = (struct timespec64) {0};
2329 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2330 put_cmsg_scm_timestamping64(msg, tss);
2331 else
2332 put_cmsg_scm_timestamping(msg, tss);
2333 }
2334 }
2335
tcp_inq_hint(struct sock * sk)2336 static int tcp_inq_hint(struct sock *sk)
2337 {
2338 const struct tcp_sock *tp = tcp_sk(sk);
2339 u32 copied_seq = READ_ONCE(tp->copied_seq);
2340 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2341 int inq;
2342
2343 inq = rcv_nxt - copied_seq;
2344 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2345 lock_sock(sk);
2346 inq = tp->rcv_nxt - tp->copied_seq;
2347 release_sock(sk);
2348 }
2349 /* After receiving a FIN, tell the user-space to continue reading
2350 * by returning a non-zero inq.
2351 */
2352 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2353 inq = 1;
2354 return inq;
2355 }
2356
2357 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2358 struct tcp_xa_pool {
2359 u8 max; /* max <= MAX_SKB_FRAGS */
2360 u8 idx; /* idx <= max */
2361 __u32 tokens[MAX_SKB_FRAGS];
2362 netmem_ref netmems[MAX_SKB_FRAGS];
2363 };
2364
tcp_xa_pool_commit_locked(struct sock * sk,struct tcp_xa_pool * p)2365 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2366 {
2367 int i;
2368
2369 /* Commit part that has been copied to user space. */
2370 for (i = 0; i < p->idx; i++)
2371 __xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2372 (__force void *)p->netmems[i], GFP_KERNEL);
2373 /* Rollback what has been pre-allocated and is no longer needed. */
2374 for (; i < p->max; i++)
2375 __xa_erase(&sk->sk_user_frags, p->tokens[i]);
2376
2377 p->max = 0;
2378 p->idx = 0;
2379 }
2380
tcp_xa_pool_commit(struct sock * sk,struct tcp_xa_pool * p)2381 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2382 {
2383 if (!p->max)
2384 return;
2385
2386 xa_lock_bh(&sk->sk_user_frags);
2387
2388 tcp_xa_pool_commit_locked(sk, p);
2389
2390 xa_unlock_bh(&sk->sk_user_frags);
2391 }
2392
tcp_xa_pool_refill(struct sock * sk,struct tcp_xa_pool * p,unsigned int max_frags)2393 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2394 unsigned int max_frags)
2395 {
2396 int err, k;
2397
2398 if (p->idx < p->max)
2399 return 0;
2400
2401 xa_lock_bh(&sk->sk_user_frags);
2402
2403 tcp_xa_pool_commit_locked(sk, p);
2404
2405 for (k = 0; k < max_frags; k++) {
2406 err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2407 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2408 if (err)
2409 break;
2410 }
2411
2412 xa_unlock_bh(&sk->sk_user_frags);
2413
2414 p->max = k;
2415 p->idx = 0;
2416 return k ? 0 : err;
2417 }
2418
2419 /* On error, returns the -errno. On success, returns number of bytes sent to the
2420 * user. May not consume all of @remaining_len.
2421 */
tcp_recvmsg_dmabuf(struct sock * sk,const struct sk_buff * skb,unsigned int offset,struct msghdr * msg,int remaining_len)2422 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2423 unsigned int offset, struct msghdr *msg,
2424 int remaining_len)
2425 {
2426 struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2427 struct tcp_xa_pool tcp_xa_pool;
2428 unsigned int start;
2429 int i, copy, n;
2430 int sent = 0;
2431 int err = 0;
2432
2433 tcp_xa_pool.max = 0;
2434 tcp_xa_pool.idx = 0;
2435 do {
2436 start = skb_headlen(skb);
2437
2438 if (skb_frags_readable(skb)) {
2439 err = -ENODEV;
2440 goto out;
2441 }
2442
2443 /* Copy header. */
2444 copy = start - offset;
2445 if (copy > 0) {
2446 copy = min(copy, remaining_len);
2447
2448 n = copy_to_iter(skb->data + offset, copy,
2449 &msg->msg_iter);
2450 if (n != copy) {
2451 err = -EFAULT;
2452 goto out;
2453 }
2454
2455 offset += copy;
2456 remaining_len -= copy;
2457
2458 /* First a dmabuf_cmsg for # bytes copied to user
2459 * buffer.
2460 */
2461 memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2462 dmabuf_cmsg.frag_size = copy;
2463 err = put_cmsg_notrunc(msg, SOL_SOCKET,
2464 SO_DEVMEM_LINEAR,
2465 sizeof(dmabuf_cmsg),
2466 &dmabuf_cmsg);
2467 if (err)
2468 goto out;
2469
2470 sent += copy;
2471
2472 if (remaining_len == 0)
2473 goto out;
2474 }
2475
2476 /* after that, send information of dmabuf pages through a
2477 * sequence of cmsg
2478 */
2479 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2480 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2481 struct net_iov *niov;
2482 u64 frag_offset;
2483 int end;
2484
2485 /* !skb_frags_readable() should indicate that ALL the
2486 * frags in this skb are dmabuf net_iovs. We're checking
2487 * for that flag above, but also check individual frags
2488 * here. If the tcp stack is not setting
2489 * skb_frags_readable() correctly, we still don't want
2490 * to crash here.
2491 */
2492 if (!skb_frag_net_iov(frag)) {
2493 net_err_ratelimited("Found non-dmabuf skb with net_iov");
2494 err = -ENODEV;
2495 goto out;
2496 }
2497
2498 niov = skb_frag_net_iov(frag);
2499 end = start + skb_frag_size(frag);
2500 copy = end - offset;
2501
2502 if (copy > 0) {
2503 copy = min(copy, remaining_len);
2504
2505 frag_offset = net_iov_virtual_addr(niov) +
2506 skb_frag_off(frag) + offset -
2507 start;
2508 dmabuf_cmsg.frag_offset = frag_offset;
2509 dmabuf_cmsg.frag_size = copy;
2510 err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2511 skb_shinfo(skb)->nr_frags - i);
2512 if (err)
2513 goto out;
2514
2515 /* Will perform the exchange later */
2516 dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2517 dmabuf_cmsg.dmabuf_id = net_iov_binding_id(niov);
2518
2519 offset += copy;
2520 remaining_len -= copy;
2521
2522 err = put_cmsg_notrunc(msg, SOL_SOCKET,
2523 SO_DEVMEM_DMABUF,
2524 sizeof(dmabuf_cmsg),
2525 &dmabuf_cmsg);
2526 if (err)
2527 goto out;
2528
2529 atomic_long_inc(&niov->pp_ref_count);
2530 tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2531
2532 sent += copy;
2533
2534 if (remaining_len == 0)
2535 goto out;
2536 }
2537 start = end;
2538 }
2539
2540 tcp_xa_pool_commit(sk, &tcp_xa_pool);
2541 if (!remaining_len)
2542 goto out;
2543
2544 /* if remaining_len is not satisfied yet, we need to go to the
2545 * next frag in the frag_list to satisfy remaining_len.
2546 */
2547 skb = skb_shinfo(skb)->frag_list ?: skb->next;
2548
2549 offset = offset - start;
2550 } while (skb);
2551
2552 if (remaining_len) {
2553 err = -EFAULT;
2554 goto out;
2555 }
2556
2557 out:
2558 tcp_xa_pool_commit(sk, &tcp_xa_pool);
2559 if (!sent)
2560 sent = err;
2561
2562 return sent;
2563 }
2564
2565 /*
2566 * This routine copies from a sock struct into the user buffer.
2567 *
2568 * Technical note: in 2.3 we work on _locked_ socket, so that
2569 * tricks with *seq access order and skb->users are not required.
2570 * Probably, code can be easily improved even more.
2571 */
2572
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2573 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2574 int flags, struct scm_timestamping_internal *tss,
2575 int *cmsg_flags)
2576 {
2577 struct tcp_sock *tp = tcp_sk(sk);
2578 int last_copied_dmabuf = -1; /* uninitialized */
2579 int copied = 0;
2580 u32 peek_seq;
2581 u32 *seq;
2582 unsigned long used;
2583 int err;
2584 int target; /* Read at least this many bytes */
2585 long timeo;
2586 struct sk_buff *skb, *last;
2587 u32 peek_offset = 0;
2588 u32 urg_hole = 0;
2589
2590 err = -ENOTCONN;
2591 if (sk->sk_state == TCP_LISTEN)
2592 goto out;
2593
2594 if (tp->recvmsg_inq) {
2595 *cmsg_flags = TCP_CMSG_INQ;
2596 msg->msg_get_inq = 1;
2597 }
2598 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2599
2600 /* Urgent data needs to be handled specially. */
2601 if (flags & MSG_OOB)
2602 goto recv_urg;
2603
2604 if (unlikely(tp->repair)) {
2605 err = -EPERM;
2606 if (!(flags & MSG_PEEK))
2607 goto out;
2608
2609 if (tp->repair_queue == TCP_SEND_QUEUE)
2610 goto recv_sndq;
2611
2612 err = -EINVAL;
2613 if (tp->repair_queue == TCP_NO_QUEUE)
2614 goto out;
2615
2616 /* 'common' recv queue MSG_PEEK-ing */
2617 }
2618
2619 seq = &tp->copied_seq;
2620 if (flags & MSG_PEEK) {
2621 peek_offset = max(sk_peek_offset(sk, flags), 0);
2622 peek_seq = tp->copied_seq + peek_offset;
2623 seq = &peek_seq;
2624 }
2625
2626 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2627
2628 do {
2629 u32 offset;
2630
2631 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2632 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2633 if (copied)
2634 break;
2635 if (signal_pending(current)) {
2636 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2637 break;
2638 }
2639 }
2640
2641 /* Next get a buffer. */
2642
2643 last = skb_peek_tail(&sk->sk_receive_queue);
2644 skb_queue_walk(&sk->sk_receive_queue, skb) {
2645 last = skb;
2646 /* Now that we have two receive queues this
2647 * shouldn't happen.
2648 */
2649 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2650 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2651 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2652 flags))
2653 break;
2654
2655 offset = *seq - TCP_SKB_CB(skb)->seq;
2656 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2657 pr_err_once("%s: found a SYN, please report !\n", __func__);
2658 offset--;
2659 }
2660 if (offset < skb->len)
2661 goto found_ok_skb;
2662 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2663 goto found_fin_ok;
2664 WARN(!(flags & MSG_PEEK),
2665 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2666 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2667 }
2668
2669 /* Well, if we have backlog, try to process it now yet. */
2670
2671 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2672 break;
2673
2674 if (copied) {
2675 if (!timeo ||
2676 sk->sk_err ||
2677 sk->sk_state == TCP_CLOSE ||
2678 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2679 signal_pending(current))
2680 break;
2681 } else {
2682 if (sock_flag(sk, SOCK_DONE))
2683 break;
2684
2685 if (sk->sk_err) {
2686 copied = sock_error(sk);
2687 break;
2688 }
2689
2690 if (sk->sk_shutdown & RCV_SHUTDOWN)
2691 break;
2692
2693 if (sk->sk_state == TCP_CLOSE) {
2694 /* This occurs when user tries to read
2695 * from never connected socket.
2696 */
2697 copied = -ENOTCONN;
2698 break;
2699 }
2700
2701 if (!timeo) {
2702 copied = -EAGAIN;
2703 break;
2704 }
2705
2706 if (signal_pending(current)) {
2707 copied = sock_intr_errno(timeo);
2708 break;
2709 }
2710 }
2711
2712 if (copied >= target) {
2713 /* Do not sleep, just process backlog. */
2714 __sk_flush_backlog(sk);
2715 } else {
2716 tcp_cleanup_rbuf(sk, copied);
2717 err = sk_wait_data(sk, &timeo, last);
2718 if (err < 0) {
2719 err = copied ? : err;
2720 goto out;
2721 }
2722 }
2723
2724 if ((flags & MSG_PEEK) &&
2725 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2726 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2727 current->comm,
2728 task_pid_nr(current));
2729 peek_seq = tp->copied_seq + peek_offset;
2730 }
2731 continue;
2732
2733 found_ok_skb:
2734 /* Ok so how much can we use? */
2735 used = skb->len - offset;
2736 if (len < used)
2737 used = len;
2738
2739 /* Do we have urgent data here? */
2740 if (unlikely(tp->urg_data)) {
2741 u32 urg_offset = tp->urg_seq - *seq;
2742 if (urg_offset < used) {
2743 if (!urg_offset) {
2744 if (!sock_flag(sk, SOCK_URGINLINE)) {
2745 WRITE_ONCE(*seq, *seq + 1);
2746 urg_hole++;
2747 offset++;
2748 used--;
2749 if (!used)
2750 goto skip_copy;
2751 }
2752 } else
2753 used = urg_offset;
2754 }
2755 }
2756
2757 if (!(flags & MSG_TRUNC)) {
2758 if (last_copied_dmabuf != -1 &&
2759 last_copied_dmabuf != !skb_frags_readable(skb))
2760 break;
2761
2762 if (skb_frags_readable(skb)) {
2763 err = skb_copy_datagram_msg(skb, offset, msg,
2764 used);
2765 if (err) {
2766 /* Exception. Bailout! */
2767 if (!copied)
2768 copied = -EFAULT;
2769 break;
2770 }
2771 } else {
2772 if (!(flags & MSG_SOCK_DEVMEM)) {
2773 /* dmabuf skbs can only be received
2774 * with the MSG_SOCK_DEVMEM flag.
2775 */
2776 if (!copied)
2777 copied = -EFAULT;
2778
2779 break;
2780 }
2781
2782 err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2783 used);
2784 if (err <= 0) {
2785 if (!copied)
2786 copied = -EFAULT;
2787
2788 break;
2789 }
2790 used = err;
2791 }
2792 }
2793
2794 last_copied_dmabuf = !skb_frags_readable(skb);
2795
2796 WRITE_ONCE(*seq, *seq + used);
2797 copied += used;
2798 len -= used;
2799 if (flags & MSG_PEEK)
2800 sk_peek_offset_fwd(sk, used);
2801 else
2802 sk_peek_offset_bwd(sk, used);
2803 tcp_rcv_space_adjust(sk);
2804
2805 skip_copy:
2806 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2807 WRITE_ONCE(tp->urg_data, 0);
2808 tcp_fast_path_check(sk);
2809 }
2810
2811 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2812 tcp_update_recv_tstamps(skb, tss);
2813 *cmsg_flags |= TCP_CMSG_TS;
2814 }
2815
2816 if (used + offset < skb->len)
2817 continue;
2818
2819 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2820 goto found_fin_ok;
2821 if (!(flags & MSG_PEEK))
2822 tcp_eat_recv_skb(sk, skb);
2823 continue;
2824
2825 found_fin_ok:
2826 /* Process the FIN. */
2827 WRITE_ONCE(*seq, *seq + 1);
2828 if (!(flags & MSG_PEEK))
2829 tcp_eat_recv_skb(sk, skb);
2830 break;
2831 } while (len > 0);
2832
2833 /* According to UNIX98, msg_name/msg_namelen are ignored
2834 * on connected socket. I was just happy when found this 8) --ANK
2835 */
2836
2837 /* Clean up data we have read: This will do ACK frames. */
2838 tcp_cleanup_rbuf(sk, copied);
2839 return copied;
2840
2841 out:
2842 return err;
2843
2844 recv_urg:
2845 err = tcp_recv_urg(sk, msg, len, flags);
2846 goto out;
2847
2848 recv_sndq:
2849 err = tcp_peek_sndq(sk, msg, len);
2850 goto out;
2851 }
2852
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2853 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2854 int *addr_len)
2855 {
2856 int cmsg_flags = 0, ret;
2857 struct scm_timestamping_internal tss;
2858
2859 if (unlikely(flags & MSG_ERRQUEUE))
2860 return inet_recv_error(sk, msg, len, addr_len);
2861
2862 if (sk_can_busy_loop(sk) &&
2863 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2864 sk->sk_state == TCP_ESTABLISHED)
2865 sk_busy_loop(sk, flags & MSG_DONTWAIT);
2866
2867 lock_sock(sk);
2868 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2869 release_sock(sk);
2870
2871 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2872 if (cmsg_flags & TCP_CMSG_TS)
2873 tcp_recv_timestamp(msg, sk, &tss);
2874 if (msg->msg_get_inq) {
2875 msg->msg_inq = tcp_inq_hint(sk);
2876 if (cmsg_flags & TCP_CMSG_INQ)
2877 put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2878 sizeof(msg->msg_inq), &msg->msg_inq);
2879 }
2880 }
2881
2882 trace_android_rvh_tcp_recvmsg(sk, msg, len, flags, addr_len);
2883
2884 return ret;
2885 }
2886 EXPORT_SYMBOL(tcp_recvmsg);
2887
tcp_set_state(struct sock * sk,int state)2888 void tcp_set_state(struct sock *sk, int state)
2889 {
2890 int oldstate = sk->sk_state;
2891
2892 trace_android_vh_tcp_state_change(sk, TCP_STATE_CHANGE_REASON_NORMAL, state);
2893
2894 /* We defined a new enum for TCP states that are exported in BPF
2895 * so as not force the internal TCP states to be frozen. The
2896 * following checks will detect if an internal state value ever
2897 * differs from the BPF value. If this ever happens, then we will
2898 * need to remap the internal value to the BPF value before calling
2899 * tcp_call_bpf_2arg.
2900 */
2901 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2902 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2903 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2904 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2905 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2906 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2907 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2908 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2909 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2910 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2911 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2912 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2913 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2914 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2915
2916 /* bpf uapi header bpf.h defines an anonymous enum with values
2917 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2918 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2919 * But clang built vmlinux does not have this enum in DWARF
2920 * since clang removes the above code before generating IR/debuginfo.
2921 * Let us explicitly emit the type debuginfo to ensure the
2922 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2923 * regardless of which compiler is used.
2924 */
2925 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2926
2927 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2928 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2929
2930 switch (state) {
2931 case TCP_ESTABLISHED:
2932 if (oldstate != TCP_ESTABLISHED)
2933 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2934 break;
2935 case TCP_CLOSE_WAIT:
2936 if (oldstate == TCP_SYN_RECV)
2937 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2938 break;
2939
2940 case TCP_CLOSE:
2941 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2942 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2943
2944 sk->sk_prot->unhash(sk);
2945 if (inet_csk(sk)->icsk_bind_hash &&
2946 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2947 inet_put_port(sk);
2948 fallthrough;
2949 default:
2950 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2951 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2952 }
2953
2954 /* Change state AFTER socket is unhashed to avoid closed
2955 * socket sitting in hash tables.
2956 */
2957 inet_sk_state_store(sk, state);
2958 }
2959 EXPORT_SYMBOL_GPL(tcp_set_state);
2960
2961 /*
2962 * State processing on a close. This implements the state shift for
2963 * sending our FIN frame. Note that we only send a FIN for some
2964 * states. A shutdown() may have already sent the FIN, or we may be
2965 * closed.
2966 */
2967
2968 static const unsigned char new_state[16] = {
2969 /* current state: new state: action: */
2970 [0 /* (Invalid) */] = TCP_CLOSE,
2971 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2972 [TCP_SYN_SENT] = TCP_CLOSE,
2973 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2974 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2975 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2976 [TCP_TIME_WAIT] = TCP_CLOSE,
2977 [TCP_CLOSE] = TCP_CLOSE,
2978 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2979 [TCP_LAST_ACK] = TCP_LAST_ACK,
2980 [TCP_LISTEN] = TCP_CLOSE,
2981 [TCP_CLOSING] = TCP_CLOSING,
2982 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2983 };
2984
tcp_close_state(struct sock * sk)2985 static int tcp_close_state(struct sock *sk)
2986 {
2987 int next = (int)new_state[sk->sk_state];
2988 int ns = next & TCP_STATE_MASK;
2989
2990 tcp_set_state(sk, ns);
2991
2992 return next & TCP_ACTION_FIN;
2993 }
2994
2995 /*
2996 * Shutdown the sending side of a connection. Much like close except
2997 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2998 */
2999
tcp_shutdown(struct sock * sk,int how)3000 void tcp_shutdown(struct sock *sk, int how)
3001 {
3002 /* We need to grab some memory, and put together a FIN,
3003 * and then put it into the queue to be sent.
3004 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
3005 */
3006 if (!(how & SEND_SHUTDOWN))
3007 return;
3008
3009 /* If we've already sent a FIN, or it's a closed state, skip this. */
3010 if ((1 << sk->sk_state) &
3011 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
3012 TCPF_CLOSE_WAIT)) {
3013 /* Clear out any half completed packets. FIN if needed. */
3014 if (tcp_close_state(sk))
3015 tcp_send_fin(sk);
3016 }
3017 }
3018 EXPORT_SYMBOL(tcp_shutdown);
3019
tcp_orphan_count_sum(void)3020 int tcp_orphan_count_sum(void)
3021 {
3022 int i, total = 0;
3023
3024 for_each_possible_cpu(i)
3025 total += per_cpu(tcp_orphan_count, i);
3026
3027 return max(total, 0);
3028 }
3029
3030 static int tcp_orphan_cache;
3031 static struct timer_list tcp_orphan_timer;
3032 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3033
tcp_orphan_update(struct timer_list * unused)3034 static void tcp_orphan_update(struct timer_list *unused)
3035 {
3036 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3037 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3038 }
3039
tcp_too_many_orphans(int shift)3040 static bool tcp_too_many_orphans(int shift)
3041 {
3042 return READ_ONCE(tcp_orphan_cache) << shift >
3043 READ_ONCE(sysctl_tcp_max_orphans);
3044 }
3045
tcp_out_of_memory(const struct sock * sk)3046 static bool tcp_out_of_memory(const struct sock *sk)
3047 {
3048 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3049 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3050 return true;
3051 return false;
3052 }
3053
tcp_check_oom(const struct sock * sk,int shift)3054 bool tcp_check_oom(const struct sock *sk, int shift)
3055 {
3056 bool too_many_orphans, out_of_socket_memory;
3057
3058 too_many_orphans = tcp_too_many_orphans(shift);
3059 out_of_socket_memory = tcp_out_of_memory(sk);
3060
3061 if (too_many_orphans)
3062 net_info_ratelimited("too many orphaned sockets\n");
3063 if (out_of_socket_memory)
3064 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3065 return too_many_orphans || out_of_socket_memory;
3066 }
3067
__tcp_close(struct sock * sk,long timeout)3068 void __tcp_close(struct sock *sk, long timeout)
3069 {
3070 struct sk_buff *skb;
3071 int data_was_unread = 0;
3072 int state;
3073
3074 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3075
3076 if (sk->sk_state == TCP_LISTEN) {
3077 tcp_set_state(sk, TCP_CLOSE);
3078
3079 /* Special case. */
3080 inet_csk_listen_stop(sk);
3081
3082 goto adjudge_to_death;
3083 }
3084
3085 /* We need to flush the recv. buffs. We do this only on the
3086 * descriptor close, not protocol-sourced closes, because the
3087 * reader process may not have drained the data yet!
3088 */
3089 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
3090 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
3091
3092 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3093 len--;
3094 data_was_unread += len;
3095 __kfree_skb(skb);
3096 }
3097
3098 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3099 if (sk->sk_state == TCP_CLOSE)
3100 goto adjudge_to_death;
3101
3102 /* As outlined in RFC 2525, section 2.17, we send a RST here because
3103 * data was lost. To witness the awful effects of the old behavior of
3104 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3105 * GET in an FTP client, suspend the process, wait for the client to
3106 * advertise a zero window, then kill -9 the FTP client, wheee...
3107 * Note: timeout is always zero in such a case.
3108 */
3109 if (unlikely(tcp_sk(sk)->repair)) {
3110 sk->sk_prot->disconnect(sk, 0);
3111 } else if (data_was_unread) {
3112 /* Unread data was tossed, zap the connection. */
3113 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3114 tcp_set_state(sk, TCP_CLOSE);
3115 tcp_send_active_reset(sk, sk->sk_allocation,
3116 SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3117 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3118 /* Check zero linger _after_ checking for unread data. */
3119 sk->sk_prot->disconnect(sk, 0);
3120 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3121 } else if (tcp_close_state(sk)) {
3122 /* We FIN if the application ate all the data before
3123 * zapping the connection.
3124 */
3125
3126 /* RED-PEN. Formally speaking, we have broken TCP state
3127 * machine. State transitions:
3128 *
3129 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3130 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult)
3131 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3132 *
3133 * are legal only when FIN has been sent (i.e. in window),
3134 * rather than queued out of window. Purists blame.
3135 *
3136 * F.e. "RFC state" is ESTABLISHED,
3137 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3138 *
3139 * The visible declinations are that sometimes
3140 * we enter time-wait state, when it is not required really
3141 * (harmless), do not send active resets, when they are
3142 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3143 * they look as CLOSING or LAST_ACK for Linux)
3144 * Probably, I missed some more holelets.
3145 * --ANK
3146 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3147 * in a single packet! (May consider it later but will
3148 * probably need API support or TCP_CORK SYN-ACK until
3149 * data is written and socket is closed.)
3150 */
3151 tcp_send_fin(sk);
3152 }
3153
3154 sk_stream_wait_close(sk, timeout);
3155
3156 adjudge_to_death:
3157 state = sk->sk_state;
3158 sock_hold(sk);
3159 sock_orphan(sk);
3160
3161 local_bh_disable();
3162 bh_lock_sock(sk);
3163 /* remove backlog if any, without releasing ownership. */
3164 __release_sock(sk);
3165
3166 this_cpu_inc(tcp_orphan_count);
3167
3168 /* Have we already been destroyed by a softirq or backlog? */
3169 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3170 goto out;
3171
3172 /* This is a (useful) BSD violating of the RFC. There is a
3173 * problem with TCP as specified in that the other end could
3174 * keep a socket open forever with no application left this end.
3175 * We use a 1 minute timeout (about the same as BSD) then kill
3176 * our end. If they send after that then tough - BUT: long enough
3177 * that we won't make the old 4*rto = almost no time - whoops
3178 * reset mistake.
3179 *
3180 * Nope, it was not mistake. It is really desired behaviour
3181 * f.e. on http servers, when such sockets are useless, but
3182 * consume significant resources. Let's do it with special
3183 * linger2 option. --ANK
3184 */
3185
3186 if (sk->sk_state == TCP_FIN_WAIT2) {
3187 struct tcp_sock *tp = tcp_sk(sk);
3188 if (READ_ONCE(tp->linger2) < 0) {
3189 tcp_set_state(sk, TCP_CLOSE);
3190 tcp_send_active_reset(sk, GFP_ATOMIC,
3191 SK_RST_REASON_TCP_ABORT_ON_LINGER);
3192 __NET_INC_STATS(sock_net(sk),
3193 LINUX_MIB_TCPABORTONLINGER);
3194 } else {
3195 const int tmo = tcp_fin_time(sk);
3196
3197 if (tmo > TCP_TIMEWAIT_LEN) {
3198 inet_csk_reset_keepalive_timer(sk,
3199 tmo - TCP_TIMEWAIT_LEN);
3200 } else {
3201 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3202 goto out;
3203 }
3204 }
3205 }
3206 if (sk->sk_state != TCP_CLOSE) {
3207 if (tcp_check_oom(sk, 0)) {
3208 tcp_set_state(sk, TCP_CLOSE);
3209 tcp_send_active_reset(sk, GFP_ATOMIC,
3210 SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3211 __NET_INC_STATS(sock_net(sk),
3212 LINUX_MIB_TCPABORTONMEMORY);
3213 } else if (!check_net(sock_net(sk))) {
3214 /* Not possible to send reset; just close */
3215 tcp_set_state(sk, TCP_CLOSE);
3216 }
3217 }
3218
3219 if (sk->sk_state == TCP_CLOSE) {
3220 struct request_sock *req;
3221
3222 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3223 lockdep_sock_is_held(sk));
3224 /* We could get here with a non-NULL req if the socket is
3225 * aborted (e.g., closed with unread data) before 3WHS
3226 * finishes.
3227 */
3228 if (req)
3229 reqsk_fastopen_remove(sk, req, false);
3230 inet_csk_destroy_sock(sk);
3231 }
3232 /* Otherwise, socket is reprieved until protocol close. */
3233
3234 out:
3235 bh_unlock_sock(sk);
3236 local_bh_enable();
3237 }
3238
tcp_close(struct sock * sk,long timeout)3239 void tcp_close(struct sock *sk, long timeout)
3240 {
3241 lock_sock(sk);
3242 __tcp_close(sk, timeout);
3243 release_sock(sk);
3244 if (!sk->sk_net_refcnt)
3245 inet_csk_clear_xmit_timers_sync(sk);
3246 sock_put(sk);
3247 }
3248 EXPORT_SYMBOL(tcp_close);
3249
3250 /* These states need RST on ABORT according to RFC793 */
3251
tcp_need_reset(int state)3252 static inline bool tcp_need_reset(int state)
3253 {
3254 return (1 << state) &
3255 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3256 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3257 }
3258
tcp_rtx_queue_purge(struct sock * sk)3259 static void tcp_rtx_queue_purge(struct sock *sk)
3260 {
3261 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3262
3263 tcp_sk(sk)->highest_sack = NULL;
3264 while (p) {
3265 struct sk_buff *skb = rb_to_skb(p);
3266
3267 p = rb_next(p);
3268 /* Since we are deleting whole queue, no need to
3269 * list_del(&skb->tcp_tsorted_anchor)
3270 */
3271 tcp_rtx_queue_unlink(skb, sk);
3272 tcp_wmem_free_skb(sk, skb);
3273 }
3274 }
3275
tcp_write_queue_purge(struct sock * sk)3276 void tcp_write_queue_purge(struct sock *sk)
3277 {
3278 struct sk_buff *skb;
3279
3280 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3281 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3282 tcp_skb_tsorted_anchor_cleanup(skb);
3283 tcp_wmem_free_skb(sk, skb);
3284 }
3285 tcp_rtx_queue_purge(sk);
3286 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3287 tcp_clear_all_retrans_hints(tcp_sk(sk));
3288 tcp_sk(sk)->packets_out = 0;
3289 inet_csk(sk)->icsk_backoff = 0;
3290 }
3291
tcp_disconnect(struct sock * sk,int flags)3292 int tcp_disconnect(struct sock *sk, int flags)
3293 {
3294 struct inet_sock *inet = inet_sk(sk);
3295 struct inet_connection_sock *icsk = inet_csk(sk);
3296 struct tcp_sock *tp = tcp_sk(sk);
3297 int old_state = sk->sk_state;
3298 struct request_sock *req;
3299 u32 seq;
3300
3301 if (old_state != TCP_CLOSE)
3302 tcp_set_state(sk, TCP_CLOSE);
3303
3304 /* ABORT function of RFC793 */
3305 if (old_state == TCP_LISTEN) {
3306 inet_csk_listen_stop(sk);
3307 } else if (unlikely(tp->repair)) {
3308 WRITE_ONCE(sk->sk_err, ECONNABORTED);
3309 } else if (tcp_need_reset(old_state)) {
3310 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3311 WRITE_ONCE(sk->sk_err, ECONNRESET);
3312 } else if (tp->snd_nxt != tp->write_seq &&
3313 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3314 /* The last check adjusts for discrepancy of Linux wrt. RFC
3315 * states
3316 */
3317 tcp_send_active_reset(sk, gfp_any(),
3318 SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3319 WRITE_ONCE(sk->sk_err, ECONNRESET);
3320 } else if (old_state == TCP_SYN_SENT)
3321 WRITE_ONCE(sk->sk_err, ECONNRESET);
3322
3323 tcp_clear_xmit_timers(sk);
3324 __skb_queue_purge(&sk->sk_receive_queue);
3325 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3326 WRITE_ONCE(tp->urg_data, 0);
3327 sk_set_peek_off(sk, -1);
3328 tcp_write_queue_purge(sk);
3329 tcp_fastopen_active_disable_ofo_check(sk);
3330 skb_rbtree_purge(&tp->out_of_order_queue);
3331
3332 inet->inet_dport = 0;
3333
3334 inet_bhash2_reset_saddr(sk);
3335
3336 WRITE_ONCE(sk->sk_shutdown, 0);
3337 sock_reset_flag(sk, SOCK_DONE);
3338 tp->srtt_us = 0;
3339 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3340 tp->rcv_rtt_last_tsecr = 0;
3341
3342 seq = tp->write_seq + tp->max_window + 2;
3343 if (!seq)
3344 seq = 1;
3345 WRITE_ONCE(tp->write_seq, seq);
3346
3347 icsk->icsk_backoff = 0;
3348 icsk->icsk_probes_out = 0;
3349 icsk->icsk_probes_tstamp = 0;
3350 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3351 icsk->icsk_rto_min = TCP_RTO_MIN;
3352 icsk->icsk_delack_max = TCP_DELACK_MAX;
3353 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3354 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3355 tp->snd_cwnd_cnt = 0;
3356 tp->is_cwnd_limited = 0;
3357 tp->max_packets_out = 0;
3358 tp->window_clamp = 0;
3359 tp->delivered = 0;
3360 tp->delivered_ce = 0;
3361 if (icsk->icsk_ca_ops->release)
3362 icsk->icsk_ca_ops->release(sk);
3363 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3364 icsk->icsk_ca_initialized = 0;
3365 tcp_set_ca_state(sk, TCP_CA_Open);
3366 tp->is_sack_reneg = 0;
3367 tcp_clear_retrans(tp);
3368 tp->total_retrans = 0;
3369 inet_csk_delack_init(sk);
3370 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3371 * issue in __tcp_select_window()
3372 */
3373 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3374 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3375 __sk_dst_reset(sk);
3376 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3377 tcp_saved_syn_free(tp);
3378 tp->compressed_ack = 0;
3379 tp->segs_in = 0;
3380 tp->segs_out = 0;
3381 tp->bytes_sent = 0;
3382 tp->bytes_acked = 0;
3383 tp->bytes_received = 0;
3384 tp->bytes_retrans = 0;
3385 tp->data_segs_in = 0;
3386 tp->data_segs_out = 0;
3387 tp->duplicate_sack[0].start_seq = 0;
3388 tp->duplicate_sack[0].end_seq = 0;
3389 tp->dsack_dups = 0;
3390 tp->reord_seen = 0;
3391 tp->retrans_out = 0;
3392 tp->sacked_out = 0;
3393 tp->tlp_high_seq = 0;
3394 tp->last_oow_ack_time = 0;
3395 tp->plb_rehash = 0;
3396 /* There's a bubble in the pipe until at least the first ACK. */
3397 tp->app_limited = ~0U;
3398 tp->rate_app_limited = 1;
3399 tp->rack.mstamp = 0;
3400 tp->rack.advanced = 0;
3401 tp->rack.reo_wnd_steps = 1;
3402 tp->rack.last_delivered = 0;
3403 tp->rack.reo_wnd_persist = 0;
3404 tp->rack.dsack_seen = 0;
3405 tp->syn_data_acked = 0;
3406 tp->rx_opt.saw_tstamp = 0;
3407 tp->rx_opt.dsack = 0;
3408 tp->rx_opt.num_sacks = 0;
3409 tp->rcv_ooopack = 0;
3410
3411
3412 /* Clean up fastopen related fields */
3413 req = rcu_dereference_protected(tp->fastopen_rsk,
3414 lockdep_sock_is_held(sk));
3415 if (req)
3416 reqsk_fastopen_remove(sk, req, false);
3417 tcp_free_fastopen_req(tp);
3418 inet_clear_bit(DEFER_CONNECT, sk);
3419 tp->fastopen_client_fail = 0;
3420
3421 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3422
3423 if (sk->sk_frag.page) {
3424 put_page(sk->sk_frag.page);
3425 sk->sk_frag.page = NULL;
3426 sk->sk_frag.offset = 0;
3427 }
3428 sk_error_report(sk);
3429 return 0;
3430 }
3431 EXPORT_SYMBOL(tcp_disconnect);
3432
tcp_can_repair_sock(const struct sock * sk)3433 static inline bool tcp_can_repair_sock(const struct sock *sk)
3434 {
3435 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3436 (sk->sk_state != TCP_LISTEN);
3437 }
3438
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3439 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3440 {
3441 struct tcp_repair_window opt;
3442
3443 if (!tp->repair)
3444 return -EPERM;
3445
3446 if (len != sizeof(opt))
3447 return -EINVAL;
3448
3449 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3450 return -EFAULT;
3451
3452 if (opt.max_window < opt.snd_wnd)
3453 return -EINVAL;
3454
3455 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3456 return -EINVAL;
3457
3458 if (after(opt.rcv_wup, tp->rcv_nxt))
3459 return -EINVAL;
3460
3461 tp->snd_wl1 = opt.snd_wl1;
3462 tp->snd_wnd = opt.snd_wnd;
3463 tp->max_window = opt.max_window;
3464
3465 tp->rcv_wnd = opt.rcv_wnd;
3466 tp->rcv_wup = opt.rcv_wup;
3467
3468 return 0;
3469 }
3470
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3471 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3472 unsigned int len)
3473 {
3474 struct tcp_sock *tp = tcp_sk(sk);
3475 struct tcp_repair_opt opt;
3476 size_t offset = 0;
3477
3478 while (len >= sizeof(opt)) {
3479 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3480 return -EFAULT;
3481
3482 offset += sizeof(opt);
3483 len -= sizeof(opt);
3484
3485 switch (opt.opt_code) {
3486 case TCPOPT_MSS:
3487 tp->rx_opt.mss_clamp = opt.opt_val;
3488 tcp_mtup_init(sk);
3489 break;
3490 case TCPOPT_WINDOW:
3491 {
3492 u16 snd_wscale = opt.opt_val & 0xFFFF;
3493 u16 rcv_wscale = opt.opt_val >> 16;
3494
3495 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3496 return -EFBIG;
3497
3498 tp->rx_opt.snd_wscale = snd_wscale;
3499 tp->rx_opt.rcv_wscale = rcv_wscale;
3500 tp->rx_opt.wscale_ok = 1;
3501 }
3502 break;
3503 case TCPOPT_SACK_PERM:
3504 if (opt.opt_val != 0)
3505 return -EINVAL;
3506
3507 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3508 break;
3509 case TCPOPT_TIMESTAMP:
3510 if (opt.opt_val != 0)
3511 return -EINVAL;
3512
3513 tp->rx_opt.tstamp_ok = 1;
3514 break;
3515 }
3516 }
3517
3518 return 0;
3519 }
3520
3521 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3522 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3523
tcp_enable_tx_delay(void)3524 static void tcp_enable_tx_delay(void)
3525 {
3526 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3527 static int __tcp_tx_delay_enabled = 0;
3528
3529 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3530 static_branch_enable(&tcp_tx_delay_enabled);
3531 pr_info("TCP_TX_DELAY enabled\n");
3532 }
3533 }
3534 }
3535
3536 /* When set indicates to always queue non-full frames. Later the user clears
3537 * this option and we transmit any pending partial frames in the queue. This is
3538 * meant to be used alongside sendfile() to get properly filled frames when the
3539 * user (for example) must write out headers with a write() call first and then
3540 * use sendfile to send out the data parts.
3541 *
3542 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3543 * TCP_NODELAY.
3544 */
__tcp_sock_set_cork(struct sock * sk,bool on)3545 void __tcp_sock_set_cork(struct sock *sk, bool on)
3546 {
3547 struct tcp_sock *tp = tcp_sk(sk);
3548
3549 if (on) {
3550 tp->nonagle |= TCP_NAGLE_CORK;
3551 } else {
3552 tp->nonagle &= ~TCP_NAGLE_CORK;
3553 if (tp->nonagle & TCP_NAGLE_OFF)
3554 tp->nonagle |= TCP_NAGLE_PUSH;
3555 tcp_push_pending_frames(sk);
3556 }
3557 }
3558
tcp_sock_set_cork(struct sock * sk,bool on)3559 void tcp_sock_set_cork(struct sock *sk, bool on)
3560 {
3561 lock_sock(sk);
3562 __tcp_sock_set_cork(sk, on);
3563 release_sock(sk);
3564 }
3565 EXPORT_SYMBOL(tcp_sock_set_cork);
3566
3567 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3568 * remembered, but it is not activated until cork is cleared.
3569 *
3570 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3571 * even TCP_CORK for currently queued segments.
3572 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3573 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3574 {
3575 if (on) {
3576 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3577 tcp_push_pending_frames(sk);
3578 } else {
3579 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3580 }
3581 }
3582
tcp_sock_set_nodelay(struct sock * sk)3583 void tcp_sock_set_nodelay(struct sock *sk)
3584 {
3585 lock_sock(sk);
3586 __tcp_sock_set_nodelay(sk, true);
3587 release_sock(sk);
3588 }
3589 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3590
__tcp_sock_set_quickack(struct sock * sk,int val)3591 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3592 {
3593 if (!val) {
3594 inet_csk_enter_pingpong_mode(sk);
3595 return;
3596 }
3597
3598 inet_csk_exit_pingpong_mode(sk);
3599 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3600 inet_csk_ack_scheduled(sk)) {
3601 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3602 tcp_cleanup_rbuf(sk, 1);
3603 if (!(val & 1))
3604 inet_csk_enter_pingpong_mode(sk);
3605 }
3606 }
3607
tcp_sock_set_quickack(struct sock * sk,int val)3608 void tcp_sock_set_quickack(struct sock *sk, int val)
3609 {
3610 lock_sock(sk);
3611 __tcp_sock_set_quickack(sk, val);
3612 release_sock(sk);
3613 }
3614 EXPORT_SYMBOL(tcp_sock_set_quickack);
3615
tcp_sock_set_syncnt(struct sock * sk,int val)3616 int tcp_sock_set_syncnt(struct sock *sk, int val)
3617 {
3618 if (val < 1 || val > MAX_TCP_SYNCNT)
3619 return -EINVAL;
3620
3621 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3622 return 0;
3623 }
3624 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3625
tcp_sock_set_user_timeout(struct sock * sk,int val)3626 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3627 {
3628 /* Cap the max time in ms TCP will retry or probe the window
3629 * before giving up and aborting (ETIMEDOUT) a connection.
3630 */
3631 if (val < 0)
3632 return -EINVAL;
3633
3634 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3635 return 0;
3636 }
3637 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3638
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3639 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3640 {
3641 struct tcp_sock *tp = tcp_sk(sk);
3642
3643 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3644 return -EINVAL;
3645
3646 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3647 WRITE_ONCE(tp->keepalive_time, val * HZ);
3648 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3649 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3650 u32 elapsed = keepalive_time_elapsed(tp);
3651
3652 if (tp->keepalive_time > elapsed)
3653 elapsed = tp->keepalive_time - elapsed;
3654 else
3655 elapsed = 0;
3656 inet_csk_reset_keepalive_timer(sk, elapsed);
3657 }
3658
3659 return 0;
3660 }
3661
tcp_sock_set_keepidle(struct sock * sk,int val)3662 int tcp_sock_set_keepidle(struct sock *sk, int val)
3663 {
3664 int err;
3665
3666 lock_sock(sk);
3667 err = tcp_sock_set_keepidle_locked(sk, val);
3668 release_sock(sk);
3669 return err;
3670 }
3671 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3672
tcp_sock_set_keepintvl(struct sock * sk,int val)3673 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3674 {
3675 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3676 return -EINVAL;
3677
3678 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3679 return 0;
3680 }
3681 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3682
tcp_sock_set_keepcnt(struct sock * sk,int val)3683 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3684 {
3685 if (val < 1 || val > MAX_TCP_KEEPCNT)
3686 return -EINVAL;
3687
3688 /* Paired with READ_ONCE() in keepalive_probes() */
3689 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3690 return 0;
3691 }
3692 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3693
tcp_set_window_clamp(struct sock * sk,int val)3694 int tcp_set_window_clamp(struct sock *sk, int val)
3695 {
3696 struct tcp_sock *tp = tcp_sk(sk);
3697
3698 if (!val) {
3699 if (sk->sk_state != TCP_CLOSE)
3700 return -EINVAL;
3701 WRITE_ONCE(tp->window_clamp, 0);
3702 } else {
3703 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3704 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3705 SOCK_MIN_RCVBUF / 2 : val;
3706
3707 if (new_window_clamp == old_window_clamp)
3708 return 0;
3709
3710 WRITE_ONCE(tp->window_clamp, new_window_clamp);
3711 if (new_window_clamp < old_window_clamp) {
3712 /* need to apply the reserved mem provisioning only
3713 * when shrinking the window clamp
3714 */
3715 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3716
3717 } else {
3718 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3719 tp->rcv_ssthresh = max(new_rcv_ssthresh,
3720 tp->rcv_ssthresh);
3721 }
3722 }
3723 return 0;
3724 }
3725
3726 /*
3727 * Socket option code for TCP.
3728 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3729 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3730 sockptr_t optval, unsigned int optlen)
3731 {
3732 struct tcp_sock *tp = tcp_sk(sk);
3733 struct inet_connection_sock *icsk = inet_csk(sk);
3734 struct net *net = sock_net(sk);
3735 int val;
3736 int err = 0;
3737
3738 /* These are data/string values, all the others are ints */
3739 switch (optname) {
3740 case TCP_CONGESTION: {
3741 char name[TCP_CA_NAME_MAX];
3742
3743 if (optlen < 1)
3744 return -EINVAL;
3745
3746 val = strncpy_from_sockptr(name, optval,
3747 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3748 if (val < 0)
3749 return -EFAULT;
3750 name[val] = 0;
3751
3752 sockopt_lock_sock(sk);
3753 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3754 sockopt_ns_capable(sock_net(sk)->user_ns,
3755 CAP_NET_ADMIN));
3756 sockopt_release_sock(sk);
3757 return err;
3758 }
3759 case TCP_ULP: {
3760 char name[TCP_ULP_NAME_MAX];
3761
3762 if (optlen < 1)
3763 return -EINVAL;
3764
3765 val = strncpy_from_sockptr(name, optval,
3766 min_t(long, TCP_ULP_NAME_MAX - 1,
3767 optlen));
3768 if (val < 0)
3769 return -EFAULT;
3770 name[val] = 0;
3771
3772 sockopt_lock_sock(sk);
3773 err = tcp_set_ulp(sk, name);
3774 sockopt_release_sock(sk);
3775 return err;
3776 }
3777 case TCP_FASTOPEN_KEY: {
3778 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3779 __u8 *backup_key = NULL;
3780
3781 /* Allow a backup key as well to facilitate key rotation
3782 * First key is the active one.
3783 */
3784 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3785 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3786 return -EINVAL;
3787
3788 if (copy_from_sockptr(key, optval, optlen))
3789 return -EFAULT;
3790
3791 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3792 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3793
3794 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3795 }
3796 default:
3797 /* fallthru */
3798 break;
3799 }
3800
3801 if (optlen < sizeof(int))
3802 return -EINVAL;
3803
3804 if (copy_from_sockptr(&val, optval, sizeof(val)))
3805 return -EFAULT;
3806
3807 /* Handle options that can be set without locking the socket. */
3808 switch (optname) {
3809 case TCP_SYNCNT:
3810 return tcp_sock_set_syncnt(sk, val);
3811 case TCP_USER_TIMEOUT:
3812 return tcp_sock_set_user_timeout(sk, val);
3813 case TCP_KEEPINTVL:
3814 return tcp_sock_set_keepintvl(sk, val);
3815 case TCP_KEEPCNT:
3816 return tcp_sock_set_keepcnt(sk, val);
3817 case TCP_LINGER2:
3818 if (val < 0)
3819 WRITE_ONCE(tp->linger2, -1);
3820 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3821 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3822 else
3823 WRITE_ONCE(tp->linger2, val * HZ);
3824 return 0;
3825 case TCP_DEFER_ACCEPT:
3826 /* Translate value in seconds to number of retransmits */
3827 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3828 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3829 TCP_RTO_MAX / HZ));
3830 return 0;
3831 }
3832
3833 sockopt_lock_sock(sk);
3834
3835 switch (optname) {
3836 case TCP_MAXSEG:
3837 /* Values greater than interface MTU won't take effect. However
3838 * at the point when this call is done we typically don't yet
3839 * know which interface is going to be used
3840 */
3841 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3842 err = -EINVAL;
3843 break;
3844 }
3845 tp->rx_opt.user_mss = val;
3846 break;
3847
3848 case TCP_NODELAY:
3849 __tcp_sock_set_nodelay(sk, val);
3850 break;
3851
3852 case TCP_THIN_LINEAR_TIMEOUTS:
3853 if (val < 0 || val > 1)
3854 err = -EINVAL;
3855 else
3856 tp->thin_lto = val;
3857 break;
3858
3859 case TCP_THIN_DUPACK:
3860 if (val < 0 || val > 1)
3861 err = -EINVAL;
3862 break;
3863
3864 case TCP_REPAIR:
3865 if (!tcp_can_repair_sock(sk))
3866 err = -EPERM;
3867 else if (val == TCP_REPAIR_ON) {
3868 tp->repair = 1;
3869 sk->sk_reuse = SK_FORCE_REUSE;
3870 tp->repair_queue = TCP_NO_QUEUE;
3871 } else if (val == TCP_REPAIR_OFF) {
3872 tp->repair = 0;
3873 sk->sk_reuse = SK_NO_REUSE;
3874 tcp_send_window_probe(sk);
3875 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3876 tp->repair = 0;
3877 sk->sk_reuse = SK_NO_REUSE;
3878 } else
3879 err = -EINVAL;
3880
3881 break;
3882
3883 case TCP_REPAIR_QUEUE:
3884 if (!tp->repair)
3885 err = -EPERM;
3886 else if ((unsigned int)val < TCP_QUEUES_NR)
3887 tp->repair_queue = val;
3888 else
3889 err = -EINVAL;
3890 break;
3891
3892 case TCP_QUEUE_SEQ:
3893 if (sk->sk_state != TCP_CLOSE) {
3894 err = -EPERM;
3895 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3896 if (!tcp_rtx_queue_empty(sk))
3897 err = -EPERM;
3898 else
3899 WRITE_ONCE(tp->write_seq, val);
3900 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3901 if (tp->rcv_nxt != tp->copied_seq) {
3902 err = -EPERM;
3903 } else {
3904 WRITE_ONCE(tp->rcv_nxt, val);
3905 WRITE_ONCE(tp->copied_seq, val);
3906 }
3907 } else {
3908 err = -EINVAL;
3909 }
3910 break;
3911
3912 case TCP_REPAIR_OPTIONS:
3913 if (!tp->repair)
3914 err = -EINVAL;
3915 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3916 err = tcp_repair_options_est(sk, optval, optlen);
3917 else
3918 err = -EPERM;
3919 break;
3920
3921 case TCP_CORK:
3922 __tcp_sock_set_cork(sk, val);
3923 break;
3924
3925 case TCP_KEEPIDLE:
3926 err = tcp_sock_set_keepidle_locked(sk, val);
3927 break;
3928 case TCP_SAVE_SYN:
3929 /* 0: disable, 1: enable, 2: start from ether_header */
3930 if (val < 0 || val > 2)
3931 err = -EINVAL;
3932 else
3933 tp->save_syn = val;
3934 break;
3935
3936 case TCP_WINDOW_CLAMP:
3937 err = tcp_set_window_clamp(sk, val);
3938 break;
3939
3940 case TCP_QUICKACK:
3941 __tcp_sock_set_quickack(sk, val);
3942 break;
3943
3944 case TCP_AO_REPAIR:
3945 if (!tcp_can_repair_sock(sk)) {
3946 err = -EPERM;
3947 break;
3948 }
3949 err = tcp_ao_set_repair(sk, optval, optlen);
3950 break;
3951 #ifdef CONFIG_TCP_AO
3952 case TCP_AO_ADD_KEY:
3953 case TCP_AO_DEL_KEY:
3954 case TCP_AO_INFO: {
3955 /* If this is the first TCP-AO setsockopt() on the socket,
3956 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3957 * in any state.
3958 */
3959 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3960 goto ao_parse;
3961 if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3962 lockdep_sock_is_held(sk)))
3963 goto ao_parse;
3964 if (tp->repair)
3965 goto ao_parse;
3966 err = -EISCONN;
3967 break;
3968 ao_parse:
3969 err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3970 break;
3971 }
3972 #endif
3973 #ifdef CONFIG_TCP_MD5SIG
3974 case TCP_MD5SIG:
3975 case TCP_MD5SIG_EXT:
3976 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3977 break;
3978 #endif
3979 case TCP_FASTOPEN:
3980 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3981 TCPF_LISTEN))) {
3982 tcp_fastopen_init_key_once(net);
3983
3984 fastopen_queue_tune(sk, val);
3985 } else {
3986 err = -EINVAL;
3987 }
3988 break;
3989 case TCP_FASTOPEN_CONNECT:
3990 if (val > 1 || val < 0) {
3991 err = -EINVAL;
3992 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3993 TFO_CLIENT_ENABLE) {
3994 if (sk->sk_state == TCP_CLOSE)
3995 tp->fastopen_connect = val;
3996 else
3997 err = -EINVAL;
3998 } else {
3999 err = -EOPNOTSUPP;
4000 }
4001 break;
4002 case TCP_FASTOPEN_NO_COOKIE:
4003 if (val > 1 || val < 0)
4004 err = -EINVAL;
4005 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4006 err = -EINVAL;
4007 else
4008 tp->fastopen_no_cookie = val;
4009 break;
4010 case TCP_TIMESTAMP:
4011 if (!tp->repair) {
4012 err = -EPERM;
4013 break;
4014 }
4015 /* val is an opaque field,
4016 * and low order bit contains usec_ts enable bit.
4017 * Its a best effort, and we do not care if user makes an error.
4018 */
4019 tp->tcp_usec_ts = val & 1;
4020 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
4021 break;
4022 case TCP_REPAIR_WINDOW:
4023 err = tcp_repair_set_window(tp, optval, optlen);
4024 break;
4025 case TCP_NOTSENT_LOWAT:
4026 WRITE_ONCE(tp->notsent_lowat, val);
4027 sk->sk_write_space(sk);
4028 break;
4029 case TCP_INQ:
4030 if (val > 1 || val < 0)
4031 err = -EINVAL;
4032 else
4033 tp->recvmsg_inq = val;
4034 break;
4035 case TCP_TX_DELAY:
4036 if (val)
4037 tcp_enable_tx_delay();
4038 WRITE_ONCE(tp->tcp_tx_delay, val);
4039 break;
4040 default:
4041 err = -ENOPROTOOPT;
4042 break;
4043 }
4044
4045 sockopt_release_sock(sk);
4046 return err;
4047 }
4048
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)4049 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4050 unsigned int optlen)
4051 {
4052 const struct inet_connection_sock *icsk = inet_csk(sk);
4053
4054 if (level != SOL_TCP)
4055 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4056 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4057 optval, optlen);
4058 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4059 }
4060 EXPORT_SYMBOL(tcp_setsockopt);
4061
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)4062 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4063 struct tcp_info *info)
4064 {
4065 u64 stats[__TCP_CHRONO_MAX], total = 0;
4066 enum tcp_chrono i;
4067
4068 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4069 stats[i] = tp->chrono_stat[i - 1];
4070 if (i == tp->chrono_type)
4071 stats[i] += tcp_jiffies32 - tp->chrono_start;
4072 stats[i] *= USEC_PER_SEC / HZ;
4073 total += stats[i];
4074 }
4075
4076 info->tcpi_busy_time = total;
4077 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4078 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4079 }
4080
4081 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)4082 void tcp_get_info(struct sock *sk, struct tcp_info *info)
4083 {
4084 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4085 const struct inet_connection_sock *icsk = inet_csk(sk);
4086 unsigned long rate;
4087 u32 now;
4088 u64 rate64;
4089 bool slow;
4090
4091 memset(info, 0, sizeof(*info));
4092 if (sk->sk_type != SOCK_STREAM)
4093 return;
4094
4095 info->tcpi_state = inet_sk_state_load(sk);
4096
4097 /* Report meaningful fields for all TCP states, including listeners */
4098 rate = READ_ONCE(sk->sk_pacing_rate);
4099 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4100 info->tcpi_pacing_rate = rate64;
4101
4102 rate = READ_ONCE(sk->sk_max_pacing_rate);
4103 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4104 info->tcpi_max_pacing_rate = rate64;
4105
4106 info->tcpi_reordering = tp->reordering;
4107 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4108
4109 if (info->tcpi_state == TCP_LISTEN) {
4110 /* listeners aliased fields :
4111 * tcpi_unacked -> Number of children ready for accept()
4112 * tcpi_sacked -> max backlog
4113 */
4114 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4115 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4116 return;
4117 }
4118
4119 slow = lock_sock_fast(sk);
4120
4121 info->tcpi_ca_state = icsk->icsk_ca_state;
4122 info->tcpi_retransmits = icsk->icsk_retransmits;
4123 info->tcpi_probes = icsk->icsk_probes_out;
4124 info->tcpi_backoff = icsk->icsk_backoff;
4125
4126 if (tp->rx_opt.tstamp_ok)
4127 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4128 if (tcp_is_sack(tp))
4129 info->tcpi_options |= TCPI_OPT_SACK;
4130 if (tp->rx_opt.wscale_ok) {
4131 info->tcpi_options |= TCPI_OPT_WSCALE;
4132 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4133 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4134 }
4135
4136 if (tp->ecn_flags & TCP_ECN_OK)
4137 info->tcpi_options |= TCPI_OPT_ECN;
4138 if (tp->ecn_flags & TCP_ECN_SEEN)
4139 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4140 if (tp->syn_data_acked)
4141 info->tcpi_options |= TCPI_OPT_SYN_DATA;
4142 if (tp->tcp_usec_ts)
4143 info->tcpi_options |= TCPI_OPT_USEC_TS;
4144
4145 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4146 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4147 tcp_delack_max(sk)));
4148 info->tcpi_snd_mss = tp->mss_cache;
4149 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4150
4151 info->tcpi_unacked = tp->packets_out;
4152 info->tcpi_sacked = tp->sacked_out;
4153
4154 info->tcpi_lost = tp->lost_out;
4155 info->tcpi_retrans = tp->retrans_out;
4156
4157 now = tcp_jiffies32;
4158 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4159 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4160 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4161
4162 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4163 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4164 info->tcpi_rtt = tp->srtt_us >> 3;
4165 info->tcpi_rttvar = tp->mdev_us >> 2;
4166 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4167 info->tcpi_advmss = tp->advmss;
4168
4169 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4170 info->tcpi_rcv_space = tp->rcvq_space.space;
4171
4172 info->tcpi_total_retrans = tp->total_retrans;
4173
4174 info->tcpi_bytes_acked = tp->bytes_acked;
4175 info->tcpi_bytes_received = tp->bytes_received;
4176 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4177 tcp_get_info_chrono_stats(tp, info);
4178
4179 info->tcpi_segs_out = tp->segs_out;
4180
4181 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4182 info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4183 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4184
4185 info->tcpi_min_rtt = tcp_min_rtt(tp);
4186 info->tcpi_data_segs_out = tp->data_segs_out;
4187
4188 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4189 rate64 = tcp_compute_delivery_rate(tp);
4190 if (rate64)
4191 info->tcpi_delivery_rate = rate64;
4192 info->tcpi_delivered = tp->delivered;
4193 info->tcpi_delivered_ce = tp->delivered_ce;
4194 info->tcpi_bytes_sent = tp->bytes_sent;
4195 info->tcpi_bytes_retrans = tp->bytes_retrans;
4196 info->tcpi_dsack_dups = tp->dsack_dups;
4197 info->tcpi_reord_seen = tp->reord_seen;
4198 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4199 info->tcpi_snd_wnd = tp->snd_wnd;
4200 info->tcpi_rcv_wnd = tp->rcv_wnd;
4201 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4202 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4203
4204 info->tcpi_total_rto = tp->total_rto;
4205 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4206 info->tcpi_total_rto_time = tp->total_rto_time;
4207 if (tp->rto_stamp)
4208 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4209
4210 unlock_sock_fast(sk, slow);
4211 }
4212 EXPORT_SYMBOL_GPL(tcp_get_info);
4213
tcp_opt_stats_get_size(void)4214 static size_t tcp_opt_stats_get_size(void)
4215 {
4216 return
4217 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4218 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4219 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4220 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4221 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4222 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4223 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4224 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4225 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4226 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4227 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4228 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4229 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4230 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4231 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4232 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4233 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4234 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4235 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4236 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4237 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4238 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4239 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4240 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4241 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4242 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4243 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4244 0;
4245 }
4246
4247 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)4248 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4249 {
4250 if (skb->protocol == htons(ETH_P_IP))
4251 return ip_hdr(skb)->ttl;
4252 else if (skb->protocol == htons(ETH_P_IPV6))
4253 return ipv6_hdr(skb)->hop_limit;
4254 else
4255 return 0;
4256 }
4257
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)4258 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4259 const struct sk_buff *orig_skb,
4260 const struct sk_buff *ack_skb)
4261 {
4262 const struct tcp_sock *tp = tcp_sk(sk);
4263 struct sk_buff *stats;
4264 struct tcp_info info;
4265 unsigned long rate;
4266 u64 rate64;
4267
4268 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4269 if (!stats)
4270 return NULL;
4271
4272 tcp_get_info_chrono_stats(tp, &info);
4273 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4274 info.tcpi_busy_time, TCP_NLA_PAD);
4275 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4276 info.tcpi_rwnd_limited, TCP_NLA_PAD);
4277 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4278 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4279 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4280 tp->data_segs_out, TCP_NLA_PAD);
4281 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4282 tp->total_retrans, TCP_NLA_PAD);
4283
4284 rate = READ_ONCE(sk->sk_pacing_rate);
4285 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4286 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4287
4288 rate64 = tcp_compute_delivery_rate(tp);
4289 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4290
4291 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4292 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4293 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4294
4295 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4296 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4297 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4298 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4299 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4300
4301 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4302 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4303
4304 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4305 TCP_NLA_PAD);
4306 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4307 TCP_NLA_PAD);
4308 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4309 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4310 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4311 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4312 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4313 max_t(int, 0, tp->write_seq - tp->snd_nxt));
4314 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4315 TCP_NLA_PAD);
4316 if (ack_skb)
4317 nla_put_u8(stats, TCP_NLA_TTL,
4318 tcp_skb_ttl_or_hop_limit(ack_skb));
4319
4320 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4321 return stats;
4322 }
4323
do_tcp_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)4324 int do_tcp_getsockopt(struct sock *sk, int level,
4325 int optname, sockptr_t optval, sockptr_t optlen)
4326 {
4327 struct inet_connection_sock *icsk = inet_csk(sk);
4328 struct tcp_sock *tp = tcp_sk(sk);
4329 struct net *net = sock_net(sk);
4330 int val, len;
4331
4332 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4333 return -EFAULT;
4334
4335 if (len < 0)
4336 return -EINVAL;
4337
4338 len = min_t(unsigned int, len, sizeof(int));
4339
4340 switch (optname) {
4341 case TCP_MAXSEG:
4342 val = tp->mss_cache;
4343 if (tp->rx_opt.user_mss &&
4344 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4345 val = tp->rx_opt.user_mss;
4346 if (tp->repair)
4347 val = tp->rx_opt.mss_clamp;
4348 break;
4349 case TCP_NODELAY:
4350 val = !!(tp->nonagle&TCP_NAGLE_OFF);
4351 break;
4352 case TCP_CORK:
4353 val = !!(tp->nonagle&TCP_NAGLE_CORK);
4354 break;
4355 case TCP_KEEPIDLE:
4356 val = keepalive_time_when(tp) / HZ;
4357 break;
4358 case TCP_KEEPINTVL:
4359 val = keepalive_intvl_when(tp) / HZ;
4360 break;
4361 case TCP_KEEPCNT:
4362 val = keepalive_probes(tp);
4363 break;
4364 case TCP_SYNCNT:
4365 val = READ_ONCE(icsk->icsk_syn_retries) ? :
4366 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4367 break;
4368 case TCP_LINGER2:
4369 val = READ_ONCE(tp->linger2);
4370 if (val >= 0)
4371 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4372 break;
4373 case TCP_DEFER_ACCEPT:
4374 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4375 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4376 TCP_RTO_MAX / HZ);
4377 break;
4378 case TCP_WINDOW_CLAMP:
4379 val = READ_ONCE(tp->window_clamp);
4380 break;
4381 case TCP_INFO: {
4382 struct tcp_info info;
4383
4384 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4385 return -EFAULT;
4386
4387 tcp_get_info(sk, &info);
4388
4389 len = min_t(unsigned int, len, sizeof(info));
4390 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4391 return -EFAULT;
4392 if (copy_to_sockptr(optval, &info, len))
4393 return -EFAULT;
4394 return 0;
4395 }
4396 case TCP_CC_INFO: {
4397 const struct tcp_congestion_ops *ca_ops;
4398 union tcp_cc_info info;
4399 size_t sz = 0;
4400 int attr;
4401
4402 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4403 return -EFAULT;
4404
4405 ca_ops = icsk->icsk_ca_ops;
4406 if (ca_ops && ca_ops->get_info)
4407 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4408
4409 len = min_t(unsigned int, len, sz);
4410 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4411 return -EFAULT;
4412 if (copy_to_sockptr(optval, &info, len))
4413 return -EFAULT;
4414 return 0;
4415 }
4416 case TCP_QUICKACK:
4417 val = !inet_csk_in_pingpong_mode(sk);
4418 break;
4419
4420 case TCP_CONGESTION:
4421 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4422 return -EFAULT;
4423 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4424 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4425 return -EFAULT;
4426 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4427 return -EFAULT;
4428 return 0;
4429
4430 case TCP_ULP:
4431 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4432 return -EFAULT;
4433 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4434 if (!icsk->icsk_ulp_ops) {
4435 len = 0;
4436 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4437 return -EFAULT;
4438 return 0;
4439 }
4440 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4441 return -EFAULT;
4442 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4443 return -EFAULT;
4444 return 0;
4445
4446 case TCP_FASTOPEN_KEY: {
4447 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4448 unsigned int key_len;
4449
4450 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4451 return -EFAULT;
4452
4453 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4454 TCP_FASTOPEN_KEY_LENGTH;
4455 len = min_t(unsigned int, len, key_len);
4456 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4457 return -EFAULT;
4458 if (copy_to_sockptr(optval, key, len))
4459 return -EFAULT;
4460 return 0;
4461 }
4462 case TCP_THIN_LINEAR_TIMEOUTS:
4463 val = tp->thin_lto;
4464 break;
4465
4466 case TCP_THIN_DUPACK:
4467 val = 0;
4468 break;
4469
4470 case TCP_REPAIR:
4471 val = tp->repair;
4472 break;
4473
4474 case TCP_REPAIR_QUEUE:
4475 if (tp->repair)
4476 val = tp->repair_queue;
4477 else
4478 return -EINVAL;
4479 break;
4480
4481 case TCP_REPAIR_WINDOW: {
4482 struct tcp_repair_window opt;
4483
4484 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4485 return -EFAULT;
4486
4487 if (len != sizeof(opt))
4488 return -EINVAL;
4489
4490 if (!tp->repair)
4491 return -EPERM;
4492
4493 opt.snd_wl1 = tp->snd_wl1;
4494 opt.snd_wnd = tp->snd_wnd;
4495 opt.max_window = tp->max_window;
4496 opt.rcv_wnd = tp->rcv_wnd;
4497 opt.rcv_wup = tp->rcv_wup;
4498
4499 if (copy_to_sockptr(optval, &opt, len))
4500 return -EFAULT;
4501 return 0;
4502 }
4503 case TCP_QUEUE_SEQ:
4504 if (tp->repair_queue == TCP_SEND_QUEUE)
4505 val = tp->write_seq;
4506 else if (tp->repair_queue == TCP_RECV_QUEUE)
4507 val = tp->rcv_nxt;
4508 else
4509 return -EINVAL;
4510 break;
4511
4512 case TCP_USER_TIMEOUT:
4513 val = READ_ONCE(icsk->icsk_user_timeout);
4514 break;
4515
4516 case TCP_FASTOPEN:
4517 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4518 break;
4519
4520 case TCP_FASTOPEN_CONNECT:
4521 val = tp->fastopen_connect;
4522 break;
4523
4524 case TCP_FASTOPEN_NO_COOKIE:
4525 val = tp->fastopen_no_cookie;
4526 break;
4527
4528 case TCP_TX_DELAY:
4529 val = READ_ONCE(tp->tcp_tx_delay);
4530 break;
4531
4532 case TCP_TIMESTAMP:
4533 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4534 if (tp->tcp_usec_ts)
4535 val |= 1;
4536 else
4537 val &= ~1;
4538 break;
4539 case TCP_NOTSENT_LOWAT:
4540 val = READ_ONCE(tp->notsent_lowat);
4541 break;
4542 case TCP_INQ:
4543 val = tp->recvmsg_inq;
4544 break;
4545 case TCP_SAVE_SYN:
4546 val = tp->save_syn;
4547 break;
4548 case TCP_SAVED_SYN: {
4549 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4550 return -EFAULT;
4551
4552 sockopt_lock_sock(sk);
4553 if (tp->saved_syn) {
4554 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4555 len = tcp_saved_syn_len(tp->saved_syn);
4556 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4557 sockopt_release_sock(sk);
4558 return -EFAULT;
4559 }
4560 sockopt_release_sock(sk);
4561 return -EINVAL;
4562 }
4563 len = tcp_saved_syn_len(tp->saved_syn);
4564 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4565 sockopt_release_sock(sk);
4566 return -EFAULT;
4567 }
4568 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4569 sockopt_release_sock(sk);
4570 return -EFAULT;
4571 }
4572 tcp_saved_syn_free(tp);
4573 sockopt_release_sock(sk);
4574 } else {
4575 sockopt_release_sock(sk);
4576 len = 0;
4577 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4578 return -EFAULT;
4579 }
4580 return 0;
4581 }
4582 #ifdef CONFIG_MMU
4583 case TCP_ZEROCOPY_RECEIVE: {
4584 struct scm_timestamping_internal tss;
4585 struct tcp_zerocopy_receive zc = {};
4586 int err;
4587
4588 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4589 return -EFAULT;
4590 if (len < 0 ||
4591 len < offsetofend(struct tcp_zerocopy_receive, length))
4592 return -EINVAL;
4593 if (unlikely(len > sizeof(zc))) {
4594 err = check_zeroed_sockptr(optval, sizeof(zc),
4595 len - sizeof(zc));
4596 if (err < 1)
4597 return err == 0 ? -EINVAL : err;
4598 len = sizeof(zc);
4599 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4600 return -EFAULT;
4601 }
4602 if (copy_from_sockptr(&zc, optval, len))
4603 return -EFAULT;
4604 if (zc.reserved)
4605 return -EINVAL;
4606 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4607 return -EINVAL;
4608 sockopt_lock_sock(sk);
4609 err = tcp_zerocopy_receive(sk, &zc, &tss);
4610 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4611 &zc, &len, err);
4612 sockopt_release_sock(sk);
4613 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4614 goto zerocopy_rcv_cmsg;
4615 switch (len) {
4616 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4617 goto zerocopy_rcv_cmsg;
4618 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4619 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4620 case offsetofend(struct tcp_zerocopy_receive, flags):
4621 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4622 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4623 case offsetofend(struct tcp_zerocopy_receive, err):
4624 goto zerocopy_rcv_sk_err;
4625 case offsetofend(struct tcp_zerocopy_receive, inq):
4626 goto zerocopy_rcv_inq;
4627 case offsetofend(struct tcp_zerocopy_receive, length):
4628 default:
4629 goto zerocopy_rcv_out;
4630 }
4631 zerocopy_rcv_cmsg:
4632 if (zc.msg_flags & TCP_CMSG_TS)
4633 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4634 else
4635 zc.msg_flags = 0;
4636 zerocopy_rcv_sk_err:
4637 if (!err)
4638 zc.err = sock_error(sk);
4639 zerocopy_rcv_inq:
4640 zc.inq = tcp_inq_hint(sk);
4641 zerocopy_rcv_out:
4642 if (!err && copy_to_sockptr(optval, &zc, len))
4643 err = -EFAULT;
4644 return err;
4645 }
4646 #endif
4647 case TCP_AO_REPAIR:
4648 if (!tcp_can_repair_sock(sk))
4649 return -EPERM;
4650 return tcp_ao_get_repair(sk, optval, optlen);
4651 case TCP_AO_GET_KEYS:
4652 case TCP_AO_INFO: {
4653 int err;
4654
4655 sockopt_lock_sock(sk);
4656 if (optname == TCP_AO_GET_KEYS)
4657 err = tcp_ao_get_mkts(sk, optval, optlen);
4658 else
4659 err = tcp_ao_get_sock_info(sk, optval, optlen);
4660 sockopt_release_sock(sk);
4661
4662 return err;
4663 }
4664 case TCP_IS_MPTCP:
4665 val = 0;
4666 break;
4667 default:
4668 return -ENOPROTOOPT;
4669 }
4670
4671 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4672 return -EFAULT;
4673 if (copy_to_sockptr(optval, &val, len))
4674 return -EFAULT;
4675 return 0;
4676 }
4677
tcp_bpf_bypass_getsockopt(int level,int optname)4678 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4679 {
4680 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4681 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4682 */
4683 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4684 return true;
4685
4686 return false;
4687 }
4688 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4689
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4690 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4691 int __user *optlen)
4692 {
4693 struct inet_connection_sock *icsk = inet_csk(sk);
4694
4695 if (level != SOL_TCP)
4696 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4697 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4698 optval, optlen);
4699 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4700 USER_SOCKPTR(optlen));
4701 }
4702 EXPORT_SYMBOL(tcp_getsockopt);
4703
4704 #ifdef CONFIG_TCP_MD5SIG
4705 int tcp_md5_sigpool_id = -1;
4706 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
4707
tcp_md5_alloc_sigpool(void)4708 int tcp_md5_alloc_sigpool(void)
4709 {
4710 size_t scratch_size;
4711 int ret;
4712
4713 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4714 ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4715 if (ret >= 0) {
4716 /* As long as any md5 sigpool was allocated, the return
4717 * id would stay the same. Re-write the id only for the case
4718 * when previously all MD5 keys were deleted and this call
4719 * allocates the first MD5 key, which may return a different
4720 * sigpool id than was used previously.
4721 */
4722 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4723 return 0;
4724 }
4725 return ret;
4726 }
4727
tcp_md5_release_sigpool(void)4728 void tcp_md5_release_sigpool(void)
4729 {
4730 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4731 }
4732
tcp_md5_add_sigpool(void)4733 void tcp_md5_add_sigpool(void)
4734 {
4735 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4736 }
4737
tcp_md5_hash_key(struct tcp_sigpool * hp,const struct tcp_md5sig_key * key)4738 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4739 const struct tcp_md5sig_key *key)
4740 {
4741 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4742 struct scatterlist sg;
4743
4744 sg_init_one(&sg, key->key, keylen);
4745 ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4746
4747 /* We use data_race() because tcp_md5_do_add() might change
4748 * key->key under us
4749 */
4750 return data_race(crypto_ahash_update(hp->req));
4751 }
4752 EXPORT_SYMBOL(tcp_md5_hash_key);
4753
4754 /* Called with rcu_read_lock() */
4755 static enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4756 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4757 const void *saddr, const void *daddr,
4758 int family, int l3index, const __u8 *hash_location)
4759 {
4760 /* This gets called for each TCP segment that has TCP-MD5 option.
4761 * We have 3 drop cases:
4762 * o No MD5 hash and one expected.
4763 * o MD5 hash and we're not expecting one.
4764 * o MD5 hash and its wrong.
4765 */
4766 const struct tcp_sock *tp = tcp_sk(sk);
4767 struct tcp_md5sig_key *key;
4768 u8 newhash[16];
4769 int genhash;
4770
4771 key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4772
4773 if (!key && hash_location) {
4774 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4775 trace_tcp_hash_md5_unexpected(sk, skb);
4776 return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4777 }
4778
4779 /* Check the signature.
4780 * To support dual stack listeners, we need to handle
4781 * IPv4-mapped case.
4782 */
4783 if (family == AF_INET)
4784 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4785 else
4786 genhash = tp->af_specific->calc_md5_hash(newhash, key,
4787 NULL, skb);
4788 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4789 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4790 trace_tcp_hash_md5_mismatch(sk, skb);
4791 return SKB_DROP_REASON_TCP_MD5FAILURE;
4792 }
4793 return SKB_NOT_DROPPED_YET;
4794 }
4795 #else
4796 static inline enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4797 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4798 const void *saddr, const void *daddr,
4799 int family, int l3index, const __u8 *hash_location)
4800 {
4801 return SKB_NOT_DROPPED_YET;
4802 }
4803
4804 #endif
4805
4806 /* Called with rcu_read_lock() */
4807 enum skb_drop_reason
tcp_inbound_hash(struct sock * sk,const struct request_sock * req,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4808 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4809 const struct sk_buff *skb,
4810 const void *saddr, const void *daddr,
4811 int family, int dif, int sdif)
4812 {
4813 const struct tcphdr *th = tcp_hdr(skb);
4814 const struct tcp_ao_hdr *aoh;
4815 const __u8 *md5_location;
4816 int l3index;
4817
4818 /* Invalid option or two times meet any of auth options */
4819 if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4820 trace_tcp_hash_bad_header(sk, skb);
4821 return SKB_DROP_REASON_TCP_AUTH_HDR;
4822 }
4823
4824 if (req) {
4825 if (tcp_rsk_used_ao(req) != !!aoh) {
4826 u8 keyid, rnext, maclen;
4827
4828 if (aoh) {
4829 keyid = aoh->keyid;
4830 rnext = aoh->rnext_keyid;
4831 maclen = tcp_ao_hdr_maclen(aoh);
4832 } else {
4833 keyid = rnext = maclen = 0;
4834 }
4835
4836 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4837 trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4838 return SKB_DROP_REASON_TCP_AOFAILURE;
4839 }
4840 }
4841
4842 /* sdif set, means packet ingressed via a device
4843 * in an L3 domain and dif is set to the l3mdev
4844 */
4845 l3index = sdif ? dif : 0;
4846
4847 /* Fast path: unsigned segments */
4848 if (likely(!md5_location && !aoh)) {
4849 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4850 * for the remote peer. On TCP-AO established connection
4851 * the last key is impossible to remove, so there's
4852 * always at least one current_key.
4853 */
4854 if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4855 trace_tcp_hash_ao_required(sk, skb);
4856 return SKB_DROP_REASON_TCP_AONOTFOUND;
4857 }
4858 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4859 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4860 trace_tcp_hash_md5_required(sk, skb);
4861 return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4862 }
4863 return SKB_NOT_DROPPED_YET;
4864 }
4865
4866 if (aoh)
4867 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4868
4869 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4870 l3index, md5_location);
4871 }
4872 EXPORT_SYMBOL_GPL(tcp_inbound_hash);
4873
tcp_done(struct sock * sk)4874 void tcp_done(struct sock *sk)
4875 {
4876 struct request_sock *req;
4877
4878 /* We might be called with a new socket, after
4879 * inet_csk_prepare_forced_close() has been called
4880 * so we can not use lockdep_sock_is_held(sk)
4881 */
4882 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4883
4884 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4885 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4886
4887 tcp_set_state(sk, TCP_CLOSE);
4888 tcp_clear_xmit_timers(sk);
4889 if (req)
4890 reqsk_fastopen_remove(sk, req, false);
4891
4892 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4893
4894 if (!sock_flag(sk, SOCK_DEAD))
4895 sk->sk_state_change(sk);
4896 else
4897 inet_csk_destroy_sock(sk);
4898 }
4899 EXPORT_SYMBOL_GPL(tcp_done);
4900
tcp_abort(struct sock * sk,int err)4901 int tcp_abort(struct sock *sk, int err)
4902 {
4903 int state = inet_sk_state_load(sk);
4904
4905 if (state == TCP_NEW_SYN_RECV) {
4906 struct request_sock *req = inet_reqsk(sk);
4907
4908 local_bh_disable();
4909 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4910 local_bh_enable();
4911 return 0;
4912 }
4913 if (state == TCP_TIME_WAIT) {
4914 struct inet_timewait_sock *tw = inet_twsk(sk);
4915
4916 refcount_inc(&tw->tw_refcnt);
4917 local_bh_disable();
4918 inet_twsk_deschedule_put(tw);
4919 local_bh_enable();
4920 return 0;
4921 }
4922
4923 /* BPF context ensures sock locking. */
4924 if (!has_current_bpf_ctx())
4925 /* Don't race with userspace socket closes such as tcp_close. */
4926 lock_sock(sk);
4927
4928 /* Avoid closing the same socket twice. */
4929 if (sk->sk_state == TCP_CLOSE) {
4930 if (!has_current_bpf_ctx())
4931 release_sock(sk);
4932 return -ENOENT;
4933 }
4934
4935 if (sk->sk_state == TCP_LISTEN) {
4936 tcp_set_state(sk, TCP_CLOSE);
4937 inet_csk_listen_stop(sk);
4938 }
4939
4940 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4941 local_bh_disable();
4942 bh_lock_sock(sk);
4943
4944 if (tcp_need_reset(sk->sk_state))
4945 tcp_send_active_reset(sk, GFP_ATOMIC,
4946 SK_RST_REASON_TCP_STATE);
4947 tcp_done_with_error(sk, err);
4948
4949 bh_unlock_sock(sk);
4950 local_bh_enable();
4951 if (!has_current_bpf_ctx())
4952 release_sock(sk);
4953 return 0;
4954 }
4955 EXPORT_SYMBOL_GPL(tcp_abort);
4956
4957 extern struct tcp_congestion_ops tcp_reno;
4958
4959 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4960 static int __init set_thash_entries(char *str)
4961 {
4962 ssize_t ret;
4963
4964 if (!str)
4965 return 0;
4966
4967 ret = kstrtoul(str, 0, &thash_entries);
4968 if (ret)
4969 return 0;
4970
4971 return 1;
4972 }
4973 __setup("thash_entries=", set_thash_entries);
4974
tcp_init_mem(void)4975 static void __init tcp_init_mem(void)
4976 {
4977 unsigned long limit = nr_free_buffer_pages() / 16;
4978
4979 limit = max(limit, 128UL);
4980 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4981 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4982 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4983 }
4984
tcp_struct_check(void)4985 static void __init tcp_struct_check(void)
4986 {
4987 /* TX read-mostly hotpath cache lines */
4988 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
4989 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
4990 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
4991 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
4992 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
4993 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
4994 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
4995 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
4996
4997 /* TXRX read-mostly hotpath cache lines */
4998 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
4999 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
5000 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
5001 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
5002 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
5003 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
5004 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
5005 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
5006 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
5007
5008 /* RX read-mostly hotpath cache lines */
5009 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
5010 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
5011 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
5012 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
5013 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
5014 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
5015 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
5016 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
5017 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
5018 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
5019 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
5020 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
5021 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
5022
5023 /* TX read-write hotpath cache lines */
5024 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
5025 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
5026 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
5027 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
5028 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
5029 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
5030 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
5031 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5032 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5033 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5034 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
5035 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5036 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5037 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5038 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5039 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
5040
5041 /* TXRX read-write hotpath cache lines */
5042 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5043 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5044 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5045 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5046 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5047 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5048 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5049 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5050 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5051 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5052 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5053 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5054 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5055 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5056 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5057
5058 /* 32bit arches with 8byte alignment on u64 fields might need padding
5059 * before tcp_clock_cache.
5060 */
5061 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
5062
5063 /* RX read-write hotpath cache lines */
5064 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5065 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5066 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5067 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5068 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5069 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5070 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5071 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5072 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5073 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5074 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5075 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5076 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5077 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5078 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
5079 }
5080
tcp_init(void)5081 void __init tcp_init(void)
5082 {
5083 int max_rshare, max_wshare, cnt;
5084 unsigned long limit;
5085 unsigned int i;
5086
5087 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5088 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5089 sizeof_field(struct sk_buff, cb));
5090
5091 tcp_struct_check();
5092
5093 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5094
5095 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5096 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5097
5098 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5099 thash_entries, 21, /* one slot per 2 MB*/
5100 0, 64 * 1024);
5101 tcp_hashinfo.bind_bucket_cachep =
5102 kmem_cache_create("tcp_bind_bucket",
5103 sizeof(struct inet_bind_bucket), 0,
5104 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5105 SLAB_ACCOUNT,
5106 NULL);
5107 tcp_hashinfo.bind2_bucket_cachep =
5108 kmem_cache_create("tcp_bind2_bucket",
5109 sizeof(struct inet_bind2_bucket), 0,
5110 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5111 SLAB_ACCOUNT,
5112 NULL);
5113
5114 /* Size and allocate the main established and bind bucket
5115 * hash tables.
5116 *
5117 * The methodology is similar to that of the buffer cache.
5118 */
5119 tcp_hashinfo.ehash =
5120 alloc_large_system_hash("TCP established",
5121 sizeof(struct inet_ehash_bucket),
5122 thash_entries,
5123 17, /* one slot per 128 KB of memory */
5124 0,
5125 NULL,
5126 &tcp_hashinfo.ehash_mask,
5127 0,
5128 thash_entries ? 0 : 512 * 1024);
5129 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5130 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5131
5132 if (inet_ehash_locks_alloc(&tcp_hashinfo))
5133 panic("TCP: failed to alloc ehash_locks");
5134 tcp_hashinfo.bhash =
5135 alloc_large_system_hash("TCP bind",
5136 2 * sizeof(struct inet_bind_hashbucket),
5137 tcp_hashinfo.ehash_mask + 1,
5138 17, /* one slot per 128 KB of memory */
5139 0,
5140 &tcp_hashinfo.bhash_size,
5141 NULL,
5142 0,
5143 64 * 1024);
5144 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5145 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5146 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5147 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5148 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5149 spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5150 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5151 }
5152
5153 tcp_hashinfo.pernet = false;
5154
5155 cnt = tcp_hashinfo.ehash_mask + 1;
5156 sysctl_tcp_max_orphans = cnt / 2;
5157
5158 tcp_init_mem();
5159 /* Set per-socket limits to no more than 1/128 the pressure threshold */
5160 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5161 max_wshare = min(4UL*1024*1024, limit);
5162 max_rshare = min(6UL*1024*1024, limit);
5163
5164 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5165 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5166 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5167
5168 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5169 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5170 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5171
5172 pr_info("Hash tables configured (established %u bind %u)\n",
5173 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5174
5175 tcp_v4_init();
5176 tcp_metrics_init();
5177 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5178 tcp_tasklet_init();
5179 mptcp_init();
5180 }
5181