1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2
3 /* COMMON Applications Kept Enhanced (CAKE) discipline
4 *
5 * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
6 * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
7 * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
8 * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
9 * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
10 * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
11 *
12 * The CAKE Principles:
13 * (or, how to have your cake and eat it too)
14 *
15 * This is a combination of several shaping, AQM and FQ techniques into one
16 * easy-to-use package:
17 *
18 * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
19 * equipment and bloated MACs. This operates in deficit mode (as in sch_fq),
20 * eliminating the need for any sort of burst parameter (eg. token bucket
21 * depth). Burst support is limited to that necessary to overcome scheduling
22 * latency.
23 *
24 * - A Diffserv-aware priority queue, giving more priority to certain classes,
25 * up to a specified fraction of bandwidth. Above that bandwidth threshold,
26 * the priority is reduced to avoid starving other tins.
27 *
28 * - Each priority tin has a separate Flow Queue system, to isolate traffic
29 * flows from each other. This prevents a burst on one flow from increasing
30 * the delay to another. Flows are distributed to queues using a
31 * set-associative hash function.
32 *
33 * - Each queue is actively managed by Cobalt, which is a combination of the
34 * Codel and Blue AQM algorithms. This serves flows fairly, and signals
35 * congestion early via ECN (if available) and/or packet drops, to keep
36 * latency low. The codel parameters are auto-tuned based on the bandwidth
37 * setting, as is necessary at low bandwidths.
38 *
39 * The configuration parameters are kept deliberately simple for ease of use.
40 * Everything has sane defaults. Complete generality of configuration is *not*
41 * a goal.
42 *
43 * The priority queue operates according to a weighted DRR scheme, combined with
44 * a bandwidth tracker which reuses the shaper logic to detect which side of the
45 * bandwidth sharing threshold the tin is operating. This determines whether a
46 * priority-based weight (high) or a bandwidth-based weight (low) is used for
47 * that tin in the current pass.
48 *
49 * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
50 * granted us permission to leverage.
51 */
52
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/kernel.h>
56 #include <linux/jiffies.h>
57 #include <linux/string.h>
58 #include <linux/in.h>
59 #include <linux/errno.h>
60 #include <linux/init.h>
61 #include <linux/skbuff.h>
62 #include <linux/jhash.h>
63 #include <linux/slab.h>
64 #include <linux/vmalloc.h>
65 #include <linux/reciprocal_div.h>
66 #include <net/netlink.h>
67 #include <linux/if_vlan.h>
68 #include <net/gso.h>
69 #include <net/pkt_sched.h>
70 #include <net/pkt_cls.h>
71 #include <net/tcp.h>
72 #include <net/flow_dissector.h>
73
74 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
75 #include <net/netfilter/nf_conntrack_core.h>
76 #endif
77
78 #define CAKE_SET_WAYS (8)
79 #define CAKE_MAX_TINS (8)
80 #define CAKE_QUEUES (1024)
81 #define CAKE_FLOW_MASK 63
82 #define CAKE_FLOW_NAT_FLAG 64
83
84 /* struct cobalt_params - contains codel and blue parameters
85 * @interval: codel initial drop rate
86 * @target: maximum persistent sojourn time & blue update rate
87 * @mtu_time: serialisation delay of maximum-size packet
88 * @p_inc: increment of blue drop probability (0.32 fxp)
89 * @p_dec: decrement of blue drop probability (0.32 fxp)
90 */
91 struct cobalt_params {
92 u64 interval;
93 u64 target;
94 u64 mtu_time;
95 u32 p_inc;
96 u32 p_dec;
97 };
98
99 /* struct cobalt_vars - contains codel and blue variables
100 * @count: codel dropping frequency
101 * @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1
102 * @drop_next: time to drop next packet, or when we dropped last
103 * @blue_timer: Blue time to next drop
104 * @p_drop: BLUE drop probability (0.32 fxp)
105 * @dropping: set if in dropping state
106 * @ecn_marked: set if marked
107 */
108 struct cobalt_vars {
109 u32 count;
110 u32 rec_inv_sqrt;
111 ktime_t drop_next;
112 ktime_t blue_timer;
113 u32 p_drop;
114 bool dropping;
115 bool ecn_marked;
116 };
117
118 enum {
119 CAKE_SET_NONE = 0,
120 CAKE_SET_SPARSE,
121 CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */
122 CAKE_SET_BULK,
123 CAKE_SET_DECAYING
124 };
125
126 struct cake_flow {
127 /* this stuff is all needed per-flow at dequeue time */
128 struct sk_buff *head;
129 struct sk_buff *tail;
130 struct list_head flowchain;
131 s32 deficit;
132 u32 dropped;
133 struct cobalt_vars cvars;
134 u16 srchost; /* index into cake_host table */
135 u16 dsthost;
136 u8 set;
137 }; /* please try to keep this structure <= 64 bytes */
138
139 struct cake_host {
140 u32 srchost_tag;
141 u32 dsthost_tag;
142 u16 srchost_bulk_flow_count;
143 u16 dsthost_bulk_flow_count;
144 };
145
146 struct cake_heap_entry {
147 u16 t:3, b:10;
148 };
149
150 struct cake_tin_data {
151 struct cake_flow flows[CAKE_QUEUES];
152 u32 backlogs[CAKE_QUEUES];
153 u32 tags[CAKE_QUEUES]; /* for set association */
154 u16 overflow_idx[CAKE_QUEUES];
155 struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */
156 u16 flow_quantum;
157
158 struct cobalt_params cparams;
159 u32 drop_overlimit;
160 u16 bulk_flow_count;
161 u16 sparse_flow_count;
162 u16 decaying_flow_count;
163 u16 unresponsive_flow_count;
164
165 u32 max_skblen;
166
167 struct list_head new_flows;
168 struct list_head old_flows;
169 struct list_head decaying_flows;
170
171 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
172 ktime_t time_next_packet;
173 u64 tin_rate_ns;
174 u64 tin_rate_bps;
175 u16 tin_rate_shft;
176
177 u16 tin_quantum;
178 s32 tin_deficit;
179 u32 tin_backlog;
180 u32 tin_dropped;
181 u32 tin_ecn_mark;
182
183 u32 packets;
184 u64 bytes;
185
186 u32 ack_drops;
187
188 /* moving averages */
189 u64 avge_delay;
190 u64 peak_delay;
191 u64 base_delay;
192
193 /* hash function stats */
194 u32 way_directs;
195 u32 way_hits;
196 u32 way_misses;
197 u32 way_collisions;
198 }; /* number of tins is small, so size of this struct doesn't matter much */
199
200 struct cake_sched_data {
201 struct tcf_proto __rcu *filter_list; /* optional external classifier */
202 struct tcf_block *block;
203 struct cake_tin_data *tins;
204
205 struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
206 u16 overflow_timeout;
207
208 u16 tin_cnt;
209 u8 tin_mode;
210 u8 flow_mode;
211 u8 ack_filter;
212 u8 atm_mode;
213
214 u32 fwmark_mask;
215 u16 fwmark_shft;
216
217 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
218 u16 rate_shft;
219 ktime_t time_next_packet;
220 ktime_t failsafe_next_packet;
221 u64 rate_ns;
222 u64 rate_bps;
223 u16 rate_flags;
224 s16 rate_overhead;
225 u16 rate_mpu;
226 u64 interval;
227 u64 target;
228
229 /* resource tracking */
230 u32 buffer_used;
231 u32 buffer_max_used;
232 u32 buffer_limit;
233 u32 buffer_config_limit;
234
235 /* indices for dequeue */
236 u16 cur_tin;
237 u16 cur_flow;
238
239 struct qdisc_watchdog watchdog;
240 const u8 *tin_index;
241 const u8 *tin_order;
242
243 /* bandwidth capacity estimate */
244 ktime_t last_packet_time;
245 ktime_t avg_window_begin;
246 u64 avg_packet_interval;
247 u64 avg_window_bytes;
248 u64 avg_peak_bandwidth;
249 ktime_t last_reconfig_time;
250
251 /* packet length stats */
252 u32 avg_netoff;
253 u16 max_netlen;
254 u16 max_adjlen;
255 u16 min_netlen;
256 u16 min_adjlen;
257 };
258
259 enum {
260 CAKE_FLAG_OVERHEAD = BIT(0),
261 CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
262 CAKE_FLAG_INGRESS = BIT(2),
263 CAKE_FLAG_WASH = BIT(3),
264 CAKE_FLAG_SPLIT_GSO = BIT(4)
265 };
266
267 /* COBALT operates the Codel and BLUE algorithms in parallel, in order to
268 * obtain the best features of each. Codel is excellent on flows which
269 * respond to congestion signals in a TCP-like way. BLUE is more effective on
270 * unresponsive flows.
271 */
272
273 struct cobalt_skb_cb {
274 ktime_t enqueue_time;
275 u32 adjusted_len;
276 };
277
us_to_ns(u64 us)278 static u64 us_to_ns(u64 us)
279 {
280 return us * NSEC_PER_USEC;
281 }
282
get_cobalt_cb(const struct sk_buff * skb)283 static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
284 {
285 qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
286 return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
287 }
288
cobalt_get_enqueue_time(const struct sk_buff * skb)289 static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
290 {
291 return get_cobalt_cb(skb)->enqueue_time;
292 }
293
cobalt_set_enqueue_time(struct sk_buff * skb,ktime_t now)294 static void cobalt_set_enqueue_time(struct sk_buff *skb,
295 ktime_t now)
296 {
297 get_cobalt_cb(skb)->enqueue_time = now;
298 }
299
300 static u16 quantum_div[CAKE_QUEUES + 1] = {0};
301
302 /* Diffserv lookup tables */
303
304 static const u8 precedence[] = {
305 0, 0, 0, 0, 0, 0, 0, 0,
306 1, 1, 1, 1, 1, 1, 1, 1,
307 2, 2, 2, 2, 2, 2, 2, 2,
308 3, 3, 3, 3, 3, 3, 3, 3,
309 4, 4, 4, 4, 4, 4, 4, 4,
310 5, 5, 5, 5, 5, 5, 5, 5,
311 6, 6, 6, 6, 6, 6, 6, 6,
312 7, 7, 7, 7, 7, 7, 7, 7,
313 };
314
315 static const u8 diffserv8[] = {
316 2, 0, 1, 2, 4, 2, 2, 2,
317 1, 2, 1, 2, 1, 2, 1, 2,
318 5, 2, 4, 2, 4, 2, 4, 2,
319 3, 2, 3, 2, 3, 2, 3, 2,
320 6, 2, 3, 2, 3, 2, 3, 2,
321 6, 2, 2, 2, 6, 2, 6, 2,
322 7, 2, 2, 2, 2, 2, 2, 2,
323 7, 2, 2, 2, 2, 2, 2, 2,
324 };
325
326 static const u8 diffserv4[] = {
327 0, 1, 0, 0, 2, 0, 0, 0,
328 1, 0, 0, 0, 0, 0, 0, 0,
329 2, 0, 2, 0, 2, 0, 2, 0,
330 2, 0, 2, 0, 2, 0, 2, 0,
331 3, 0, 2, 0, 2, 0, 2, 0,
332 3, 0, 0, 0, 3, 0, 3, 0,
333 3, 0, 0, 0, 0, 0, 0, 0,
334 3, 0, 0, 0, 0, 0, 0, 0,
335 };
336
337 static const u8 diffserv3[] = {
338 0, 1, 0, 0, 2, 0, 0, 0,
339 1, 0, 0, 0, 0, 0, 0, 0,
340 0, 0, 0, 0, 0, 0, 0, 0,
341 0, 0, 0, 0, 0, 0, 0, 0,
342 0, 0, 0, 0, 0, 0, 0, 0,
343 0, 0, 0, 0, 2, 0, 2, 0,
344 2, 0, 0, 0, 0, 0, 0, 0,
345 2, 0, 0, 0, 0, 0, 0, 0,
346 };
347
348 static const u8 besteffort[] = {
349 0, 0, 0, 0, 0, 0, 0, 0,
350 0, 0, 0, 0, 0, 0, 0, 0,
351 0, 0, 0, 0, 0, 0, 0, 0,
352 0, 0, 0, 0, 0, 0, 0, 0,
353 0, 0, 0, 0, 0, 0, 0, 0,
354 0, 0, 0, 0, 0, 0, 0, 0,
355 0, 0, 0, 0, 0, 0, 0, 0,
356 0, 0, 0, 0, 0, 0, 0, 0,
357 };
358
359 /* tin priority order for stats dumping */
360
361 static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
362 static const u8 bulk_order[] = {1, 0, 2, 3};
363
364 /* There is a big difference in timing between the accurate values placed in the
365 * cache and the approximations given by a single Newton step for small count
366 * values, particularly when stepping from count 1 to 2 or vice versa. Hence,
367 * these values are calculated using eight Newton steps, using the
368 * implementation below. Above 16, a single Newton step gives sufficient
369 * accuracy in either direction, given the precision stored.
370 *
371 * The magnitude of the error when stepping up to count 2 is such as to give the
372 * value that *should* have been produced at count 4.
373 */
374
375 #define REC_INV_SQRT_CACHE (16)
376 static const u32 inv_sqrt_cache[REC_INV_SQRT_CACHE] = {
377 ~0, ~0, 3037000500, 2479700525,
378 2147483647, 1920767767, 1753413056, 1623345051,
379 1518500250, 1431655765, 1358187914, 1294981364,
380 1239850263, 1191209601, 1147878294, 1108955788
381 };
382
383 /* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
384 * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
385 *
386 * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
387 */
388
cobalt_newton_step(struct cobalt_vars * vars)389 static void cobalt_newton_step(struct cobalt_vars *vars)
390 {
391 u32 invsqrt, invsqrt2;
392 u64 val;
393
394 invsqrt = vars->rec_inv_sqrt;
395 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
396 val = (3LL << 32) - ((u64)vars->count * invsqrt2);
397
398 val >>= 2; /* avoid overflow in following multiply */
399 val = (val * invsqrt) >> (32 - 2 + 1);
400
401 vars->rec_inv_sqrt = val;
402 }
403
cobalt_invsqrt(struct cobalt_vars * vars)404 static void cobalt_invsqrt(struct cobalt_vars *vars)
405 {
406 if (vars->count < REC_INV_SQRT_CACHE)
407 vars->rec_inv_sqrt = inv_sqrt_cache[vars->count];
408 else
409 cobalt_newton_step(vars);
410 }
411
cobalt_vars_init(struct cobalt_vars * vars)412 static void cobalt_vars_init(struct cobalt_vars *vars)
413 {
414 memset(vars, 0, sizeof(*vars));
415 }
416
417 /* CoDel control_law is t + interval/sqrt(count)
418 * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
419 * both sqrt() and divide operation.
420 */
cobalt_control(ktime_t t,u64 interval,u32 rec_inv_sqrt)421 static ktime_t cobalt_control(ktime_t t,
422 u64 interval,
423 u32 rec_inv_sqrt)
424 {
425 return ktime_add_ns(t, reciprocal_scale(interval,
426 rec_inv_sqrt));
427 }
428
429 /* Call this when a packet had to be dropped due to queue overflow. Returns
430 * true if the BLUE state was quiescent before but active after this call.
431 */
cobalt_queue_full(struct cobalt_vars * vars,struct cobalt_params * p,ktime_t now)432 static bool cobalt_queue_full(struct cobalt_vars *vars,
433 struct cobalt_params *p,
434 ktime_t now)
435 {
436 bool up = false;
437
438 if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
439 up = !vars->p_drop;
440 vars->p_drop += p->p_inc;
441 if (vars->p_drop < p->p_inc)
442 vars->p_drop = ~0;
443 vars->blue_timer = now;
444 }
445 vars->dropping = true;
446 vars->drop_next = now;
447 if (!vars->count)
448 vars->count = 1;
449
450 return up;
451 }
452
453 /* Call this when the queue was serviced but turned out to be empty. Returns
454 * true if the BLUE state was active before but quiescent after this call.
455 */
cobalt_queue_empty(struct cobalt_vars * vars,struct cobalt_params * p,ktime_t now)456 static bool cobalt_queue_empty(struct cobalt_vars *vars,
457 struct cobalt_params *p,
458 ktime_t now)
459 {
460 bool down = false;
461
462 if (vars->p_drop &&
463 ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
464 if (vars->p_drop < p->p_dec)
465 vars->p_drop = 0;
466 else
467 vars->p_drop -= p->p_dec;
468 vars->blue_timer = now;
469 down = !vars->p_drop;
470 }
471 vars->dropping = false;
472
473 if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
474 vars->count--;
475 cobalt_invsqrt(vars);
476 vars->drop_next = cobalt_control(vars->drop_next,
477 p->interval,
478 vars->rec_inv_sqrt);
479 }
480
481 return down;
482 }
483
484 /* Call this with a freshly dequeued packet for possible congestion marking.
485 * Returns true as an instruction to drop the packet, false for delivery.
486 */
cobalt_should_drop(struct cobalt_vars * vars,struct cobalt_params * p,ktime_t now,struct sk_buff * skb,u32 bulk_flows)487 static bool cobalt_should_drop(struct cobalt_vars *vars,
488 struct cobalt_params *p,
489 ktime_t now,
490 struct sk_buff *skb,
491 u32 bulk_flows)
492 {
493 bool next_due, over_target, drop = false;
494 ktime_t schedule;
495 u64 sojourn;
496
497 /* The 'schedule' variable records, in its sign, whether 'now' is before or
498 * after 'drop_next'. This allows 'drop_next' to be updated before the next
499 * scheduling decision is actually branched, without destroying that
500 * information. Similarly, the first 'schedule' value calculated is preserved
501 * in the boolean 'next_due'.
502 *
503 * As for 'drop_next', we take advantage of the fact that 'interval' is both
504 * the delay between first exceeding 'target' and the first signalling event,
505 * *and* the scaling factor for the signalling frequency. It's therefore very
506 * natural to use a single mechanism for both purposes, and eliminates a
507 * significant amount of reference Codel's spaghetti code. To help with this,
508 * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
509 * as possible to 1.0 in fixed-point.
510 */
511
512 sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
513 schedule = ktime_sub(now, vars->drop_next);
514 over_target = sojourn > p->target &&
515 sojourn > p->mtu_time * bulk_flows * 2 &&
516 sojourn > p->mtu_time * 4;
517 next_due = vars->count && ktime_to_ns(schedule) >= 0;
518
519 vars->ecn_marked = false;
520
521 if (over_target) {
522 if (!vars->dropping) {
523 vars->dropping = true;
524 vars->drop_next = cobalt_control(now,
525 p->interval,
526 vars->rec_inv_sqrt);
527 }
528 if (!vars->count)
529 vars->count = 1;
530 } else if (vars->dropping) {
531 vars->dropping = false;
532 }
533
534 if (next_due && vars->dropping) {
535 /* Use ECN mark if possible, otherwise drop */
536 drop = !(vars->ecn_marked = INET_ECN_set_ce(skb));
537
538 vars->count++;
539 if (!vars->count)
540 vars->count--;
541 cobalt_invsqrt(vars);
542 vars->drop_next = cobalt_control(vars->drop_next,
543 p->interval,
544 vars->rec_inv_sqrt);
545 schedule = ktime_sub(now, vars->drop_next);
546 } else {
547 while (next_due) {
548 vars->count--;
549 cobalt_invsqrt(vars);
550 vars->drop_next = cobalt_control(vars->drop_next,
551 p->interval,
552 vars->rec_inv_sqrt);
553 schedule = ktime_sub(now, vars->drop_next);
554 next_due = vars->count && ktime_to_ns(schedule) >= 0;
555 }
556 }
557
558 /* Simple BLUE implementation. Lack of ECN is deliberate. */
559 if (vars->p_drop)
560 drop |= (get_random_u32() < vars->p_drop);
561
562 /* Overload the drop_next field as an activity timeout */
563 if (!vars->count)
564 vars->drop_next = ktime_add_ns(now, p->interval);
565 else if (ktime_to_ns(schedule) > 0 && !drop)
566 vars->drop_next = now;
567
568 return drop;
569 }
570
cake_update_flowkeys(struct flow_keys * keys,const struct sk_buff * skb)571 static bool cake_update_flowkeys(struct flow_keys *keys,
572 const struct sk_buff *skb)
573 {
574 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
575 struct nf_conntrack_tuple tuple = {};
576 bool rev = !skb->_nfct, upd = false;
577 __be32 ip;
578
579 if (skb_protocol(skb, true) != htons(ETH_P_IP))
580 return false;
581
582 if (!nf_ct_get_tuple_skb(&tuple, skb))
583 return false;
584
585 ip = rev ? tuple.dst.u3.ip : tuple.src.u3.ip;
586 if (ip != keys->addrs.v4addrs.src) {
587 keys->addrs.v4addrs.src = ip;
588 upd = true;
589 }
590 ip = rev ? tuple.src.u3.ip : tuple.dst.u3.ip;
591 if (ip != keys->addrs.v4addrs.dst) {
592 keys->addrs.v4addrs.dst = ip;
593 upd = true;
594 }
595
596 if (keys->ports.ports) {
597 __be16 port;
598
599 port = rev ? tuple.dst.u.all : tuple.src.u.all;
600 if (port != keys->ports.src) {
601 keys->ports.src = port;
602 upd = true;
603 }
604 port = rev ? tuple.src.u.all : tuple.dst.u.all;
605 if (port != keys->ports.dst) {
606 port = keys->ports.dst;
607 upd = true;
608 }
609 }
610 return upd;
611 #else
612 return false;
613 #endif
614 }
615
616 /* Cake has several subtle multiple bit settings. In these cases you
617 * would be matching triple isolate mode as well.
618 */
619
cake_dsrc(int flow_mode)620 static bool cake_dsrc(int flow_mode)
621 {
622 return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
623 }
624
cake_ddst(int flow_mode)625 static bool cake_ddst(int flow_mode)
626 {
627 return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
628 }
629
cake_dec_srchost_bulk_flow_count(struct cake_tin_data * q,struct cake_flow * flow,int flow_mode)630 static void cake_dec_srchost_bulk_flow_count(struct cake_tin_data *q,
631 struct cake_flow *flow,
632 int flow_mode)
633 {
634 if (likely(cake_dsrc(flow_mode) &&
635 q->hosts[flow->srchost].srchost_bulk_flow_count))
636 q->hosts[flow->srchost].srchost_bulk_flow_count--;
637 }
638
cake_inc_srchost_bulk_flow_count(struct cake_tin_data * q,struct cake_flow * flow,int flow_mode)639 static void cake_inc_srchost_bulk_flow_count(struct cake_tin_data *q,
640 struct cake_flow *flow,
641 int flow_mode)
642 {
643 if (likely(cake_dsrc(flow_mode) &&
644 q->hosts[flow->srchost].srchost_bulk_flow_count < CAKE_QUEUES))
645 q->hosts[flow->srchost].srchost_bulk_flow_count++;
646 }
647
cake_dec_dsthost_bulk_flow_count(struct cake_tin_data * q,struct cake_flow * flow,int flow_mode)648 static void cake_dec_dsthost_bulk_flow_count(struct cake_tin_data *q,
649 struct cake_flow *flow,
650 int flow_mode)
651 {
652 if (likely(cake_ddst(flow_mode) &&
653 q->hosts[flow->dsthost].dsthost_bulk_flow_count))
654 q->hosts[flow->dsthost].dsthost_bulk_flow_count--;
655 }
656
cake_inc_dsthost_bulk_flow_count(struct cake_tin_data * q,struct cake_flow * flow,int flow_mode)657 static void cake_inc_dsthost_bulk_flow_count(struct cake_tin_data *q,
658 struct cake_flow *flow,
659 int flow_mode)
660 {
661 if (likely(cake_ddst(flow_mode) &&
662 q->hosts[flow->dsthost].dsthost_bulk_flow_count < CAKE_QUEUES))
663 q->hosts[flow->dsthost].dsthost_bulk_flow_count++;
664 }
665
cake_get_flow_quantum(struct cake_tin_data * q,struct cake_flow * flow,int flow_mode)666 static u16 cake_get_flow_quantum(struct cake_tin_data *q,
667 struct cake_flow *flow,
668 int flow_mode)
669 {
670 u16 host_load = 1;
671
672 if (cake_dsrc(flow_mode))
673 host_load = max(host_load,
674 q->hosts[flow->srchost].srchost_bulk_flow_count);
675
676 if (cake_ddst(flow_mode))
677 host_load = max(host_load,
678 q->hosts[flow->dsthost].dsthost_bulk_flow_count);
679
680 /* The get_random_u16() is a way to apply dithering to avoid
681 * accumulating roundoff errors
682 */
683 return (q->flow_quantum * quantum_div[host_load] +
684 get_random_u16()) >> 16;
685 }
686
cake_hash(struct cake_tin_data * q,const struct sk_buff * skb,int flow_mode,u16 flow_override,u16 host_override)687 static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
688 int flow_mode, u16 flow_override, u16 host_override)
689 {
690 bool hash_flows = (!flow_override && !!(flow_mode & CAKE_FLOW_FLOWS));
691 bool hash_hosts = (!host_override && !!(flow_mode & CAKE_FLOW_HOSTS));
692 bool nat_enabled = !!(flow_mode & CAKE_FLOW_NAT_FLAG);
693 u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0;
694 u16 reduced_hash, srchost_idx, dsthost_idx;
695 struct flow_keys keys, host_keys;
696 bool use_skbhash = skb->l4_hash;
697
698 if (unlikely(flow_mode == CAKE_FLOW_NONE))
699 return 0;
700
701 /* If both overrides are set, or we can use the SKB hash and nat mode is
702 * disabled, we can skip packet dissection entirely. If nat mode is
703 * enabled there's another check below after doing the conntrack lookup.
704 */
705 if ((!hash_flows || (use_skbhash && !nat_enabled)) && !hash_hosts)
706 goto skip_hash;
707
708 skb_flow_dissect_flow_keys(skb, &keys,
709 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
710
711 /* Don't use the SKB hash if we change the lookup keys from conntrack */
712 if (nat_enabled && cake_update_flowkeys(&keys, skb))
713 use_skbhash = false;
714
715 /* If we can still use the SKB hash and don't need the host hash, we can
716 * skip the rest of the hashing procedure
717 */
718 if (use_skbhash && !hash_hosts)
719 goto skip_hash;
720
721 /* flow_hash_from_keys() sorts the addresses by value, so we have
722 * to preserve their order in a separate data structure to treat
723 * src and dst host addresses as independently selectable.
724 */
725 host_keys = keys;
726 host_keys.ports.ports = 0;
727 host_keys.basic.ip_proto = 0;
728 host_keys.keyid.keyid = 0;
729 host_keys.tags.flow_label = 0;
730
731 switch (host_keys.control.addr_type) {
732 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
733 host_keys.addrs.v4addrs.src = 0;
734 dsthost_hash = flow_hash_from_keys(&host_keys);
735 host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
736 host_keys.addrs.v4addrs.dst = 0;
737 srchost_hash = flow_hash_from_keys(&host_keys);
738 break;
739
740 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
741 memset(&host_keys.addrs.v6addrs.src, 0,
742 sizeof(host_keys.addrs.v6addrs.src));
743 dsthost_hash = flow_hash_from_keys(&host_keys);
744 host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
745 memset(&host_keys.addrs.v6addrs.dst, 0,
746 sizeof(host_keys.addrs.v6addrs.dst));
747 srchost_hash = flow_hash_from_keys(&host_keys);
748 break;
749
750 default:
751 dsthost_hash = 0;
752 srchost_hash = 0;
753 }
754
755 /* This *must* be after the above switch, since as a
756 * side-effect it sorts the src and dst addresses.
757 */
758 if (hash_flows && !use_skbhash)
759 flow_hash = flow_hash_from_keys(&keys);
760
761 skip_hash:
762 if (flow_override)
763 flow_hash = flow_override - 1;
764 else if (use_skbhash && (flow_mode & CAKE_FLOW_FLOWS))
765 flow_hash = skb->hash;
766 if (host_override) {
767 dsthost_hash = host_override - 1;
768 srchost_hash = host_override - 1;
769 }
770
771 if (!(flow_mode & CAKE_FLOW_FLOWS)) {
772 if (flow_mode & CAKE_FLOW_SRC_IP)
773 flow_hash ^= srchost_hash;
774
775 if (flow_mode & CAKE_FLOW_DST_IP)
776 flow_hash ^= dsthost_hash;
777 }
778
779 reduced_hash = flow_hash % CAKE_QUEUES;
780
781 /* set-associative hashing */
782 /* fast path if no hash collision (direct lookup succeeds) */
783 if (likely(q->tags[reduced_hash] == flow_hash &&
784 q->flows[reduced_hash].set)) {
785 q->way_directs++;
786 } else {
787 u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
788 u32 outer_hash = reduced_hash - inner_hash;
789 bool allocate_src = false;
790 bool allocate_dst = false;
791 u32 i, k;
792
793 /* check if any active queue in the set is reserved for
794 * this flow.
795 */
796 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
797 i++, k = (k + 1) % CAKE_SET_WAYS) {
798 if (q->tags[outer_hash + k] == flow_hash) {
799 if (i)
800 q->way_hits++;
801
802 if (!q->flows[outer_hash + k].set) {
803 /* need to increment host refcnts */
804 allocate_src = cake_dsrc(flow_mode);
805 allocate_dst = cake_ddst(flow_mode);
806 }
807
808 goto found;
809 }
810 }
811
812 /* no queue is reserved for this flow, look for an
813 * empty one.
814 */
815 for (i = 0; i < CAKE_SET_WAYS;
816 i++, k = (k + 1) % CAKE_SET_WAYS) {
817 if (!q->flows[outer_hash + k].set) {
818 q->way_misses++;
819 allocate_src = cake_dsrc(flow_mode);
820 allocate_dst = cake_ddst(flow_mode);
821 goto found;
822 }
823 }
824
825 /* With no empty queues, default to the original
826 * queue, accept the collision, update the host tags.
827 */
828 q->way_collisions++;
829 allocate_src = cake_dsrc(flow_mode);
830 allocate_dst = cake_ddst(flow_mode);
831
832 if (q->flows[outer_hash + k].set == CAKE_SET_BULK) {
833 cake_dec_srchost_bulk_flow_count(q, &q->flows[outer_hash + k], flow_mode);
834 cake_dec_dsthost_bulk_flow_count(q, &q->flows[outer_hash + k], flow_mode);
835 }
836 found:
837 /* reserve queue for future packets in same flow */
838 reduced_hash = outer_hash + k;
839 q->tags[reduced_hash] = flow_hash;
840
841 if (allocate_src) {
842 srchost_idx = srchost_hash % CAKE_QUEUES;
843 inner_hash = srchost_idx % CAKE_SET_WAYS;
844 outer_hash = srchost_idx - inner_hash;
845 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
846 i++, k = (k + 1) % CAKE_SET_WAYS) {
847 if (q->hosts[outer_hash + k].srchost_tag ==
848 srchost_hash)
849 goto found_src;
850 }
851 for (i = 0; i < CAKE_SET_WAYS;
852 i++, k = (k + 1) % CAKE_SET_WAYS) {
853 if (!q->hosts[outer_hash + k].srchost_bulk_flow_count)
854 break;
855 }
856 q->hosts[outer_hash + k].srchost_tag = srchost_hash;
857 found_src:
858 srchost_idx = outer_hash + k;
859 q->flows[reduced_hash].srchost = srchost_idx;
860
861 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
862 cake_inc_srchost_bulk_flow_count(q, &q->flows[reduced_hash], flow_mode);
863 }
864
865 if (allocate_dst) {
866 dsthost_idx = dsthost_hash % CAKE_QUEUES;
867 inner_hash = dsthost_idx % CAKE_SET_WAYS;
868 outer_hash = dsthost_idx - inner_hash;
869 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
870 i++, k = (k + 1) % CAKE_SET_WAYS) {
871 if (q->hosts[outer_hash + k].dsthost_tag ==
872 dsthost_hash)
873 goto found_dst;
874 }
875 for (i = 0; i < CAKE_SET_WAYS;
876 i++, k = (k + 1) % CAKE_SET_WAYS) {
877 if (!q->hosts[outer_hash + k].dsthost_bulk_flow_count)
878 break;
879 }
880 q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
881 found_dst:
882 dsthost_idx = outer_hash + k;
883 q->flows[reduced_hash].dsthost = dsthost_idx;
884
885 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
886 cake_inc_dsthost_bulk_flow_count(q, &q->flows[reduced_hash], flow_mode);
887 }
888 }
889
890 return reduced_hash;
891 }
892
893 /* helper functions : might be changed when/if skb use a standard list_head */
894 /* remove one skb from head of slot queue */
895
dequeue_head(struct cake_flow * flow)896 static struct sk_buff *dequeue_head(struct cake_flow *flow)
897 {
898 struct sk_buff *skb = flow->head;
899
900 if (skb) {
901 flow->head = skb->next;
902 skb_mark_not_on_list(skb);
903 }
904
905 return skb;
906 }
907
908 /* add skb to flow queue (tail add) */
909
flow_queue_add(struct cake_flow * flow,struct sk_buff * skb)910 static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
911 {
912 if (!flow->head)
913 flow->head = skb;
914 else
915 flow->tail->next = skb;
916 flow->tail = skb;
917 skb->next = NULL;
918 }
919
cake_get_iphdr(const struct sk_buff * skb,struct ipv6hdr * buf)920 static struct iphdr *cake_get_iphdr(const struct sk_buff *skb,
921 struct ipv6hdr *buf)
922 {
923 unsigned int offset = skb_network_offset(skb);
924 struct iphdr *iph;
925
926 iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf);
927
928 if (!iph)
929 return NULL;
930
931 if (iph->version == 4 && iph->protocol == IPPROTO_IPV6)
932 return skb_header_pointer(skb, offset + iph->ihl * 4,
933 sizeof(struct ipv6hdr), buf);
934
935 else if (iph->version == 4)
936 return iph;
937
938 else if (iph->version == 6)
939 return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr),
940 buf);
941
942 return NULL;
943 }
944
cake_get_tcphdr(const struct sk_buff * skb,void * buf,unsigned int bufsize)945 static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb,
946 void *buf, unsigned int bufsize)
947 {
948 unsigned int offset = skb_network_offset(skb);
949 const struct ipv6hdr *ipv6h;
950 const struct tcphdr *tcph;
951 const struct iphdr *iph;
952 struct ipv6hdr _ipv6h;
953 struct tcphdr _tcph;
954
955 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
956
957 if (!ipv6h)
958 return NULL;
959
960 if (ipv6h->version == 4) {
961 iph = (struct iphdr *)ipv6h;
962 offset += iph->ihl * 4;
963
964 /* special-case 6in4 tunnelling, as that is a common way to get
965 * v6 connectivity in the home
966 */
967 if (iph->protocol == IPPROTO_IPV6) {
968 ipv6h = skb_header_pointer(skb, offset,
969 sizeof(_ipv6h), &_ipv6h);
970
971 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
972 return NULL;
973
974 offset += sizeof(struct ipv6hdr);
975
976 } else if (iph->protocol != IPPROTO_TCP) {
977 return NULL;
978 }
979
980 } else if (ipv6h->version == 6) {
981 if (ipv6h->nexthdr != IPPROTO_TCP)
982 return NULL;
983
984 offset += sizeof(struct ipv6hdr);
985 } else {
986 return NULL;
987 }
988
989 tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
990 if (!tcph || tcph->doff < 5)
991 return NULL;
992
993 return skb_header_pointer(skb, offset,
994 min(__tcp_hdrlen(tcph), bufsize), buf);
995 }
996
cake_get_tcpopt(const struct tcphdr * tcph,int code,int * oplen)997 static const void *cake_get_tcpopt(const struct tcphdr *tcph,
998 int code, int *oplen)
999 {
1000 /* inspired by tcp_parse_options in tcp_input.c */
1001 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
1002 const u8 *ptr = (const u8 *)(tcph + 1);
1003
1004 while (length > 0) {
1005 int opcode = *ptr++;
1006 int opsize;
1007
1008 if (opcode == TCPOPT_EOL)
1009 break;
1010 if (opcode == TCPOPT_NOP) {
1011 length--;
1012 continue;
1013 }
1014 if (length < 2)
1015 break;
1016 opsize = *ptr++;
1017 if (opsize < 2 || opsize > length)
1018 break;
1019
1020 if (opcode == code) {
1021 *oplen = opsize;
1022 return ptr;
1023 }
1024
1025 ptr += opsize - 2;
1026 length -= opsize;
1027 }
1028
1029 return NULL;
1030 }
1031
1032 /* Compare two SACK sequences. A sequence is considered greater if it SACKs more
1033 * bytes than the other. In the case where both sequences ACKs bytes that the
1034 * other doesn't, A is considered greater. DSACKs in A also makes A be
1035 * considered greater.
1036 *
1037 * @return -1, 0 or 1 as normal compare functions
1038 */
cake_tcph_sack_compare(const struct tcphdr * tcph_a,const struct tcphdr * tcph_b)1039 static int cake_tcph_sack_compare(const struct tcphdr *tcph_a,
1040 const struct tcphdr *tcph_b)
1041 {
1042 const struct tcp_sack_block_wire *sack_a, *sack_b;
1043 u32 ack_seq_a = ntohl(tcph_a->ack_seq);
1044 u32 bytes_a = 0, bytes_b = 0;
1045 int oplen_a, oplen_b;
1046 bool first = true;
1047
1048 sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a);
1049 sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b);
1050
1051 /* pointers point to option contents */
1052 oplen_a -= TCPOLEN_SACK_BASE;
1053 oplen_b -= TCPOLEN_SACK_BASE;
1054
1055 if (sack_a && oplen_a >= sizeof(*sack_a) &&
1056 (!sack_b || oplen_b < sizeof(*sack_b)))
1057 return -1;
1058 else if (sack_b && oplen_b >= sizeof(*sack_b) &&
1059 (!sack_a || oplen_a < sizeof(*sack_a)))
1060 return 1;
1061 else if ((!sack_a || oplen_a < sizeof(*sack_a)) &&
1062 (!sack_b || oplen_b < sizeof(*sack_b)))
1063 return 0;
1064
1065 while (oplen_a >= sizeof(*sack_a)) {
1066 const struct tcp_sack_block_wire *sack_tmp = sack_b;
1067 u32 start_a = get_unaligned_be32(&sack_a->start_seq);
1068 u32 end_a = get_unaligned_be32(&sack_a->end_seq);
1069 int oplen_tmp = oplen_b;
1070 bool found = false;
1071
1072 /* DSACK; always considered greater to prevent dropping */
1073 if (before(start_a, ack_seq_a))
1074 return -1;
1075
1076 bytes_a += end_a - start_a;
1077
1078 while (oplen_tmp >= sizeof(*sack_tmp)) {
1079 u32 start_b = get_unaligned_be32(&sack_tmp->start_seq);
1080 u32 end_b = get_unaligned_be32(&sack_tmp->end_seq);
1081
1082 /* first time through we count the total size */
1083 if (first)
1084 bytes_b += end_b - start_b;
1085
1086 if (!after(start_b, start_a) && !before(end_b, end_a)) {
1087 found = true;
1088 if (!first)
1089 break;
1090 }
1091 oplen_tmp -= sizeof(*sack_tmp);
1092 sack_tmp++;
1093 }
1094
1095 if (!found)
1096 return -1;
1097
1098 oplen_a -= sizeof(*sack_a);
1099 sack_a++;
1100 first = false;
1101 }
1102
1103 /* If we made it this far, all ranges SACKed by A are covered by B, so
1104 * either the SACKs are equal, or B SACKs more bytes.
1105 */
1106 return bytes_b > bytes_a ? 1 : 0;
1107 }
1108
cake_tcph_get_tstamp(const struct tcphdr * tcph,u32 * tsval,u32 * tsecr)1109 static void cake_tcph_get_tstamp(const struct tcphdr *tcph,
1110 u32 *tsval, u32 *tsecr)
1111 {
1112 const u8 *ptr;
1113 int opsize;
1114
1115 ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize);
1116
1117 if (ptr && opsize == TCPOLEN_TIMESTAMP) {
1118 *tsval = get_unaligned_be32(ptr);
1119 *tsecr = get_unaligned_be32(ptr + 4);
1120 }
1121 }
1122
cake_tcph_may_drop(const struct tcphdr * tcph,u32 tstamp_new,u32 tsecr_new)1123 static bool cake_tcph_may_drop(const struct tcphdr *tcph,
1124 u32 tstamp_new, u32 tsecr_new)
1125 {
1126 /* inspired by tcp_parse_options in tcp_input.c */
1127 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
1128 const u8 *ptr = (const u8 *)(tcph + 1);
1129 u32 tstamp, tsecr;
1130
1131 /* 3 reserved flags must be unset to avoid future breakage
1132 * ACK must be set
1133 * ECE/CWR are handled separately
1134 * All other flags URG/PSH/RST/SYN/FIN must be unset
1135 * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero)
1136 * 0x00C00000 = CWR/ECE (handled separately)
1137 * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000
1138 */
1139 if (((tcp_flag_word(tcph) &
1140 cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK))
1141 return false;
1142
1143 while (length > 0) {
1144 int opcode = *ptr++;
1145 int opsize;
1146
1147 if (opcode == TCPOPT_EOL)
1148 break;
1149 if (opcode == TCPOPT_NOP) {
1150 length--;
1151 continue;
1152 }
1153 if (length < 2)
1154 break;
1155 opsize = *ptr++;
1156 if (opsize < 2 || opsize > length)
1157 break;
1158
1159 switch (opcode) {
1160 case TCPOPT_MD5SIG: /* doesn't influence state */
1161 break;
1162
1163 case TCPOPT_SACK: /* stricter checking performed later */
1164 if (opsize % 8 != 2)
1165 return false;
1166 break;
1167
1168 case TCPOPT_TIMESTAMP:
1169 /* only drop timestamps lower than new */
1170 if (opsize != TCPOLEN_TIMESTAMP)
1171 return false;
1172 tstamp = get_unaligned_be32(ptr);
1173 tsecr = get_unaligned_be32(ptr + 4);
1174 if (after(tstamp, tstamp_new) ||
1175 after(tsecr, tsecr_new))
1176 return false;
1177 break;
1178
1179 case TCPOPT_MSS: /* these should only be set on SYN */
1180 case TCPOPT_WINDOW:
1181 case TCPOPT_SACK_PERM:
1182 case TCPOPT_FASTOPEN:
1183 case TCPOPT_EXP:
1184 default: /* don't drop if any unknown options are present */
1185 return false;
1186 }
1187
1188 ptr += opsize - 2;
1189 length -= opsize;
1190 }
1191
1192 return true;
1193 }
1194
cake_ack_filter(struct cake_sched_data * q,struct cake_flow * flow)1195 static struct sk_buff *cake_ack_filter(struct cake_sched_data *q,
1196 struct cake_flow *flow)
1197 {
1198 bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE;
1199 struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL;
1200 struct sk_buff *skb_check, *skb_prev = NULL;
1201 const struct ipv6hdr *ipv6h, *ipv6h_check;
1202 unsigned char _tcph[64], _tcph_check[64];
1203 const struct tcphdr *tcph, *tcph_check;
1204 const struct iphdr *iph, *iph_check;
1205 struct ipv6hdr _iph, _iph_check;
1206 const struct sk_buff *skb;
1207 int seglen, num_found = 0;
1208 u32 tstamp = 0, tsecr = 0;
1209 __be32 elig_flags = 0;
1210 int sack_comp;
1211
1212 /* no other possible ACKs to filter */
1213 if (flow->head == flow->tail)
1214 return NULL;
1215
1216 skb = flow->tail;
1217 tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph));
1218 iph = cake_get_iphdr(skb, &_iph);
1219 if (!tcph)
1220 return NULL;
1221
1222 cake_tcph_get_tstamp(tcph, &tstamp, &tsecr);
1223
1224 /* the 'triggering' packet need only have the ACK flag set.
1225 * also check that SYN is not set, as there won't be any previous ACKs.
1226 */
1227 if ((tcp_flag_word(tcph) &
1228 (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK)
1229 return NULL;
1230
1231 /* the 'triggering' ACK is at the tail of the queue, we have already
1232 * returned if it is the only packet in the flow. loop through the rest
1233 * of the queue looking for pure ACKs with the same 5-tuple as the
1234 * triggering one.
1235 */
1236 for (skb_check = flow->head;
1237 skb_check && skb_check != skb;
1238 skb_prev = skb_check, skb_check = skb_check->next) {
1239 iph_check = cake_get_iphdr(skb_check, &_iph_check);
1240 tcph_check = cake_get_tcphdr(skb_check, &_tcph_check,
1241 sizeof(_tcph_check));
1242
1243 /* only TCP packets with matching 5-tuple are eligible, and only
1244 * drop safe headers
1245 */
1246 if (!tcph_check || iph->version != iph_check->version ||
1247 tcph_check->source != tcph->source ||
1248 tcph_check->dest != tcph->dest)
1249 continue;
1250
1251 if (iph_check->version == 4) {
1252 if (iph_check->saddr != iph->saddr ||
1253 iph_check->daddr != iph->daddr)
1254 continue;
1255
1256 seglen = iph_totlen(skb, iph_check) -
1257 (4 * iph_check->ihl);
1258 } else if (iph_check->version == 6) {
1259 ipv6h = (struct ipv6hdr *)iph;
1260 ipv6h_check = (struct ipv6hdr *)iph_check;
1261
1262 if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) ||
1263 ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr))
1264 continue;
1265
1266 seglen = ntohs(ipv6h_check->payload_len);
1267 } else {
1268 WARN_ON(1); /* shouldn't happen */
1269 continue;
1270 }
1271
1272 /* If the ECE/CWR flags changed from the previous eligible
1273 * packet in the same flow, we should no longer be dropping that
1274 * previous packet as this would lose information.
1275 */
1276 if (elig_ack && (tcp_flag_word(tcph_check) &
1277 (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) {
1278 elig_ack = NULL;
1279 elig_ack_prev = NULL;
1280 num_found--;
1281 }
1282
1283 /* Check TCP options and flags, don't drop ACKs with segment
1284 * data, and don't drop ACKs with a higher cumulative ACK
1285 * counter than the triggering packet. Check ACK seqno here to
1286 * avoid parsing SACK options of packets we are going to exclude
1287 * anyway.
1288 */
1289 if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) ||
1290 (seglen - __tcp_hdrlen(tcph_check)) != 0 ||
1291 after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq)))
1292 continue;
1293
1294 /* Check SACK options. The triggering packet must SACK more data
1295 * than the ACK under consideration, or SACK the same range but
1296 * have a larger cumulative ACK counter. The latter is a
1297 * pathological case, but is contained in the following check
1298 * anyway, just to be safe.
1299 */
1300 sack_comp = cake_tcph_sack_compare(tcph_check, tcph);
1301
1302 if (sack_comp < 0 ||
1303 (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) &&
1304 sack_comp == 0))
1305 continue;
1306
1307 /* At this point we have found an eligible pure ACK to drop; if
1308 * we are in aggressive mode, we are done. Otherwise, keep
1309 * searching unless this is the second eligible ACK we
1310 * found.
1311 *
1312 * Since we want to drop ACK closest to the head of the queue,
1313 * save the first eligible ACK we find, even if we need to loop
1314 * again.
1315 */
1316 if (!elig_ack) {
1317 elig_ack = skb_check;
1318 elig_ack_prev = skb_prev;
1319 elig_flags = (tcp_flag_word(tcph_check)
1320 & (TCP_FLAG_ECE | TCP_FLAG_CWR));
1321 }
1322
1323 if (num_found++ > 0)
1324 goto found;
1325 }
1326
1327 /* We made it through the queue without finding two eligible ACKs . If
1328 * we found a single eligible ACK we can drop it in aggressive mode if
1329 * we can guarantee that this does not interfere with ECN flag
1330 * information. We ensure this by dropping it only if the enqueued
1331 * packet is consecutive with the eligible ACK, and their flags match.
1332 */
1333 if (elig_ack && aggressive && elig_ack->next == skb &&
1334 (elig_flags == (tcp_flag_word(tcph) &
1335 (TCP_FLAG_ECE | TCP_FLAG_CWR))))
1336 goto found;
1337
1338 return NULL;
1339
1340 found:
1341 if (elig_ack_prev)
1342 elig_ack_prev->next = elig_ack->next;
1343 else
1344 flow->head = elig_ack->next;
1345
1346 skb_mark_not_on_list(elig_ack);
1347
1348 return elig_ack;
1349 }
1350
cake_ewma(u64 avg,u64 sample,u32 shift)1351 static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
1352 {
1353 avg -= avg >> shift;
1354 avg += sample >> shift;
1355 return avg;
1356 }
1357
cake_calc_overhead(struct cake_sched_data * q,u32 len,u32 off)1358 static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off)
1359 {
1360 if (q->rate_flags & CAKE_FLAG_OVERHEAD)
1361 len -= off;
1362
1363 if (q->max_netlen < len)
1364 q->max_netlen = len;
1365 if (q->min_netlen > len)
1366 q->min_netlen = len;
1367
1368 len += q->rate_overhead;
1369
1370 if (len < q->rate_mpu)
1371 len = q->rate_mpu;
1372
1373 if (q->atm_mode == CAKE_ATM_ATM) {
1374 len += 47;
1375 len /= 48;
1376 len *= 53;
1377 } else if (q->atm_mode == CAKE_ATM_PTM) {
1378 /* Add one byte per 64 bytes or part thereof.
1379 * This is conservative and easier to calculate than the
1380 * precise value.
1381 */
1382 len += (len + 63) / 64;
1383 }
1384
1385 if (q->max_adjlen < len)
1386 q->max_adjlen = len;
1387 if (q->min_adjlen > len)
1388 q->min_adjlen = len;
1389
1390 return len;
1391 }
1392
cake_overhead(struct cake_sched_data * q,const struct sk_buff * skb)1393 static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb)
1394 {
1395 const struct skb_shared_info *shinfo = skb_shinfo(skb);
1396 unsigned int hdr_len, last_len = 0;
1397 u32 off = skb_network_offset(skb);
1398 u32 len = qdisc_pkt_len(skb);
1399 u16 segs = 1;
1400
1401 q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8);
1402
1403 if (!shinfo->gso_size)
1404 return cake_calc_overhead(q, len, off);
1405
1406 /* borrowed from qdisc_pkt_len_init() */
1407 hdr_len = skb_transport_offset(skb);
1408
1409 /* + transport layer */
1410 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 |
1411 SKB_GSO_TCPV6))) {
1412 const struct tcphdr *th;
1413 struct tcphdr _tcphdr;
1414
1415 th = skb_header_pointer(skb, hdr_len,
1416 sizeof(_tcphdr), &_tcphdr);
1417 if (likely(th))
1418 hdr_len += __tcp_hdrlen(th);
1419 } else {
1420 struct udphdr _udphdr;
1421
1422 if (skb_header_pointer(skb, hdr_len,
1423 sizeof(_udphdr), &_udphdr))
1424 hdr_len += sizeof(struct udphdr);
1425 }
1426
1427 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY))
1428 segs = DIV_ROUND_UP(skb->len - hdr_len,
1429 shinfo->gso_size);
1430 else
1431 segs = shinfo->gso_segs;
1432
1433 len = shinfo->gso_size + hdr_len;
1434 last_len = skb->len - shinfo->gso_size * (segs - 1);
1435
1436 return (cake_calc_overhead(q, len, off) * (segs - 1) +
1437 cake_calc_overhead(q, last_len, off));
1438 }
1439
cake_heap_swap(struct cake_sched_data * q,u16 i,u16 j)1440 static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
1441 {
1442 struct cake_heap_entry ii = q->overflow_heap[i];
1443 struct cake_heap_entry jj = q->overflow_heap[j];
1444
1445 q->overflow_heap[i] = jj;
1446 q->overflow_heap[j] = ii;
1447
1448 q->tins[ii.t].overflow_idx[ii.b] = j;
1449 q->tins[jj.t].overflow_idx[jj.b] = i;
1450 }
1451
cake_heap_get_backlog(const struct cake_sched_data * q,u16 i)1452 static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
1453 {
1454 struct cake_heap_entry ii = q->overflow_heap[i];
1455
1456 return q->tins[ii.t].backlogs[ii.b];
1457 }
1458
cake_heapify(struct cake_sched_data * q,u16 i)1459 static void cake_heapify(struct cake_sched_data *q, u16 i)
1460 {
1461 static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
1462 u32 mb = cake_heap_get_backlog(q, i);
1463 u32 m = i;
1464
1465 while (m < a) {
1466 u32 l = m + m + 1;
1467 u32 r = l + 1;
1468
1469 if (l < a) {
1470 u32 lb = cake_heap_get_backlog(q, l);
1471
1472 if (lb > mb) {
1473 m = l;
1474 mb = lb;
1475 }
1476 }
1477
1478 if (r < a) {
1479 u32 rb = cake_heap_get_backlog(q, r);
1480
1481 if (rb > mb) {
1482 m = r;
1483 mb = rb;
1484 }
1485 }
1486
1487 if (m != i) {
1488 cake_heap_swap(q, i, m);
1489 i = m;
1490 } else {
1491 break;
1492 }
1493 }
1494 }
1495
cake_heapify_up(struct cake_sched_data * q,u16 i)1496 static void cake_heapify_up(struct cake_sched_data *q, u16 i)
1497 {
1498 while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
1499 u16 p = (i - 1) >> 1;
1500 u32 ib = cake_heap_get_backlog(q, i);
1501 u32 pb = cake_heap_get_backlog(q, p);
1502
1503 if (ib > pb) {
1504 cake_heap_swap(q, i, p);
1505 i = p;
1506 } else {
1507 break;
1508 }
1509 }
1510 }
1511
cake_advance_shaper(struct cake_sched_data * q,struct cake_tin_data * b,struct sk_buff * skb,ktime_t now,bool drop)1512 static int cake_advance_shaper(struct cake_sched_data *q,
1513 struct cake_tin_data *b,
1514 struct sk_buff *skb,
1515 ktime_t now, bool drop)
1516 {
1517 u32 len = get_cobalt_cb(skb)->adjusted_len;
1518
1519 /* charge packet bandwidth to this tin
1520 * and to the global shaper.
1521 */
1522 if (q->rate_ns) {
1523 u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
1524 u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
1525 u64 failsafe_dur = global_dur + (global_dur >> 1);
1526
1527 if (ktime_before(b->time_next_packet, now))
1528 b->time_next_packet = ktime_add_ns(b->time_next_packet,
1529 tin_dur);
1530
1531 else if (ktime_before(b->time_next_packet,
1532 ktime_add_ns(now, tin_dur)))
1533 b->time_next_packet = ktime_add_ns(now, tin_dur);
1534
1535 q->time_next_packet = ktime_add_ns(q->time_next_packet,
1536 global_dur);
1537 if (!drop)
1538 q->failsafe_next_packet = \
1539 ktime_add_ns(q->failsafe_next_packet,
1540 failsafe_dur);
1541 }
1542 return len;
1543 }
1544
cake_drop(struct Qdisc * sch,struct sk_buff ** to_free)1545 static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
1546 {
1547 struct cake_sched_data *q = qdisc_priv(sch);
1548 ktime_t now = ktime_get();
1549 u32 idx = 0, tin = 0, len;
1550 struct cake_heap_entry qq;
1551 struct cake_tin_data *b;
1552 struct cake_flow *flow;
1553 struct sk_buff *skb;
1554
1555 if (!q->overflow_timeout) {
1556 int i;
1557 /* Build fresh max-heap */
1558 for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2 - 1; i >= 0; i--)
1559 cake_heapify(q, i);
1560 }
1561 q->overflow_timeout = 65535;
1562
1563 /* select longest queue for pruning */
1564 qq = q->overflow_heap[0];
1565 tin = qq.t;
1566 idx = qq.b;
1567
1568 b = &q->tins[tin];
1569 flow = &b->flows[idx];
1570 skb = dequeue_head(flow);
1571 if (unlikely(!skb)) {
1572 /* heap has gone wrong, rebuild it next time */
1573 q->overflow_timeout = 0;
1574 return idx + (tin << 16);
1575 }
1576
1577 if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
1578 b->unresponsive_flow_count++;
1579
1580 len = qdisc_pkt_len(skb);
1581 q->buffer_used -= skb->truesize;
1582 b->backlogs[idx] -= len;
1583 b->tin_backlog -= len;
1584 sch->qstats.backlog -= len;
1585
1586 flow->dropped++;
1587 b->tin_dropped++;
1588 sch->qstats.drops++;
1589
1590 if (q->rate_flags & CAKE_FLAG_INGRESS)
1591 cake_advance_shaper(q, b, skb, now, true);
1592
1593 __qdisc_drop(skb, to_free);
1594 sch->q.qlen--;
1595 qdisc_tree_reduce_backlog(sch, 1, len);
1596
1597 cake_heapify(q, 0);
1598
1599 return idx + (tin << 16);
1600 }
1601
cake_handle_diffserv(struct sk_buff * skb,bool wash)1602 static u8 cake_handle_diffserv(struct sk_buff *skb, bool wash)
1603 {
1604 const int offset = skb_network_offset(skb);
1605 u16 *buf, buf_;
1606 u8 dscp;
1607
1608 switch (skb_protocol(skb, true)) {
1609 case htons(ETH_P_IP):
1610 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1611 if (unlikely(!buf))
1612 return 0;
1613
1614 /* ToS is in the second byte of iphdr */
1615 dscp = ipv4_get_dsfield((struct iphdr *)buf) >> 2;
1616
1617 if (wash && dscp) {
1618 const int wlen = offset + sizeof(struct iphdr);
1619
1620 if (!pskb_may_pull(skb, wlen) ||
1621 skb_try_make_writable(skb, wlen))
1622 return 0;
1623
1624 ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
1625 }
1626
1627 return dscp;
1628
1629 case htons(ETH_P_IPV6):
1630 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1631 if (unlikely(!buf))
1632 return 0;
1633
1634 /* Traffic class is in the first and second bytes of ipv6hdr */
1635 dscp = ipv6_get_dsfield((struct ipv6hdr *)buf) >> 2;
1636
1637 if (wash && dscp) {
1638 const int wlen = offset + sizeof(struct ipv6hdr);
1639
1640 if (!pskb_may_pull(skb, wlen) ||
1641 skb_try_make_writable(skb, wlen))
1642 return 0;
1643
1644 ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
1645 }
1646
1647 return dscp;
1648
1649 case htons(ETH_P_ARP):
1650 return 0x38; /* CS7 - Net Control */
1651
1652 default:
1653 /* If there is no Diffserv field, treat as best-effort */
1654 return 0;
1655 }
1656 }
1657
cake_select_tin(struct Qdisc * sch,struct sk_buff * skb)1658 static struct cake_tin_data *cake_select_tin(struct Qdisc *sch,
1659 struct sk_buff *skb)
1660 {
1661 struct cake_sched_data *q = qdisc_priv(sch);
1662 u32 tin, mark;
1663 bool wash;
1664 u8 dscp;
1665
1666 /* Tin selection: Default to diffserv-based selection, allow overriding
1667 * using firewall marks or skb->priority. Call DSCP parsing early if
1668 * wash is enabled, otherwise defer to below to skip unneeded parsing.
1669 */
1670 mark = (skb->mark & q->fwmark_mask) >> q->fwmark_shft;
1671 wash = !!(q->rate_flags & CAKE_FLAG_WASH);
1672 if (wash)
1673 dscp = cake_handle_diffserv(skb, wash);
1674
1675 if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT)
1676 tin = 0;
1677
1678 else if (mark && mark <= q->tin_cnt)
1679 tin = q->tin_order[mark - 1];
1680
1681 else if (TC_H_MAJ(skb->priority) == sch->handle &&
1682 TC_H_MIN(skb->priority) > 0 &&
1683 TC_H_MIN(skb->priority) <= q->tin_cnt)
1684 tin = q->tin_order[TC_H_MIN(skb->priority) - 1];
1685
1686 else {
1687 if (!wash)
1688 dscp = cake_handle_diffserv(skb, wash);
1689 tin = q->tin_index[dscp];
1690
1691 if (unlikely(tin >= q->tin_cnt))
1692 tin = 0;
1693 }
1694
1695 return &q->tins[tin];
1696 }
1697
cake_classify(struct Qdisc * sch,struct cake_tin_data ** t,struct sk_buff * skb,int flow_mode,int * qerr)1698 static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t,
1699 struct sk_buff *skb, int flow_mode, int *qerr)
1700 {
1701 struct cake_sched_data *q = qdisc_priv(sch);
1702 struct tcf_proto *filter;
1703 struct tcf_result res;
1704 u16 flow = 0, host = 0;
1705 int result;
1706
1707 filter = rcu_dereference_bh(q->filter_list);
1708 if (!filter)
1709 goto hash;
1710
1711 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1712 result = tcf_classify(skb, NULL, filter, &res, false);
1713
1714 if (result >= 0) {
1715 #ifdef CONFIG_NET_CLS_ACT
1716 switch (result) {
1717 case TC_ACT_STOLEN:
1718 case TC_ACT_QUEUED:
1719 case TC_ACT_TRAP:
1720 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1721 fallthrough;
1722 case TC_ACT_SHOT:
1723 return 0;
1724 }
1725 #endif
1726 if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
1727 flow = TC_H_MIN(res.classid);
1728 if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16))
1729 host = TC_H_MAJ(res.classid) >> 16;
1730 }
1731 hash:
1732 *t = cake_select_tin(sch, skb);
1733 return cake_hash(*t, skb, flow_mode, flow, host) + 1;
1734 }
1735
1736 static void cake_reconfigure(struct Qdisc *sch);
1737
cake_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)1738 static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1739 struct sk_buff **to_free)
1740 {
1741 struct cake_sched_data *q = qdisc_priv(sch);
1742 int len = qdisc_pkt_len(skb);
1743 int ret;
1744 struct sk_buff *ack = NULL;
1745 ktime_t now = ktime_get();
1746 struct cake_tin_data *b;
1747 struct cake_flow *flow;
1748 u32 idx, tin;
1749
1750 /* choose flow to insert into */
1751 idx = cake_classify(sch, &b, skb, q->flow_mode, &ret);
1752 if (idx == 0) {
1753 if (ret & __NET_XMIT_BYPASS)
1754 qdisc_qstats_drop(sch);
1755 __qdisc_drop(skb, to_free);
1756 return ret;
1757 }
1758 tin = (u32)(b - q->tins);
1759 idx--;
1760 flow = &b->flows[idx];
1761
1762 /* ensure shaper state isn't stale */
1763 if (!b->tin_backlog) {
1764 if (ktime_before(b->time_next_packet, now))
1765 b->time_next_packet = now;
1766
1767 if (!sch->q.qlen) {
1768 if (ktime_before(q->time_next_packet, now)) {
1769 q->failsafe_next_packet = now;
1770 q->time_next_packet = now;
1771 } else if (ktime_after(q->time_next_packet, now) &&
1772 ktime_after(q->failsafe_next_packet, now)) {
1773 u64 next = \
1774 min(ktime_to_ns(q->time_next_packet),
1775 ktime_to_ns(
1776 q->failsafe_next_packet));
1777 sch->qstats.overlimits++;
1778 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1779 }
1780 }
1781 }
1782
1783 if (unlikely(len > b->max_skblen))
1784 b->max_skblen = len;
1785
1786 if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) {
1787 struct sk_buff *segs, *nskb;
1788 netdev_features_t features = netif_skb_features(skb);
1789 unsigned int slen = 0, numsegs = 0;
1790
1791 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
1792 if (IS_ERR_OR_NULL(segs))
1793 return qdisc_drop(skb, sch, to_free);
1794
1795 skb_list_walk_safe(segs, segs, nskb) {
1796 skb_mark_not_on_list(segs);
1797 qdisc_skb_cb(segs)->pkt_len = segs->len;
1798 cobalt_set_enqueue_time(segs, now);
1799 get_cobalt_cb(segs)->adjusted_len = cake_overhead(q,
1800 segs);
1801 flow_queue_add(flow, segs);
1802
1803 sch->q.qlen++;
1804 numsegs++;
1805 slen += segs->len;
1806 q->buffer_used += segs->truesize;
1807 b->packets++;
1808 }
1809
1810 /* stats */
1811 b->bytes += slen;
1812 b->backlogs[idx] += slen;
1813 b->tin_backlog += slen;
1814 sch->qstats.backlog += slen;
1815 q->avg_window_bytes += slen;
1816
1817 qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen);
1818 consume_skb(skb);
1819 } else {
1820 /* not splitting */
1821 cobalt_set_enqueue_time(skb, now);
1822 get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb);
1823 flow_queue_add(flow, skb);
1824
1825 if (q->ack_filter)
1826 ack = cake_ack_filter(q, flow);
1827
1828 if (ack) {
1829 b->ack_drops++;
1830 sch->qstats.drops++;
1831 b->bytes += qdisc_pkt_len(ack);
1832 len -= qdisc_pkt_len(ack);
1833 q->buffer_used += skb->truesize - ack->truesize;
1834 if (q->rate_flags & CAKE_FLAG_INGRESS)
1835 cake_advance_shaper(q, b, ack, now, true);
1836
1837 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack));
1838 consume_skb(ack);
1839 } else {
1840 sch->q.qlen++;
1841 q->buffer_used += skb->truesize;
1842 }
1843
1844 /* stats */
1845 b->packets++;
1846 b->bytes += len;
1847 b->backlogs[idx] += len;
1848 b->tin_backlog += len;
1849 sch->qstats.backlog += len;
1850 q->avg_window_bytes += len;
1851 }
1852
1853 if (q->overflow_timeout)
1854 cake_heapify_up(q, b->overflow_idx[idx]);
1855
1856 /* incoming bandwidth capacity estimate */
1857 if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
1858 u64 packet_interval = \
1859 ktime_to_ns(ktime_sub(now, q->last_packet_time));
1860
1861 if (packet_interval > NSEC_PER_SEC)
1862 packet_interval = NSEC_PER_SEC;
1863
1864 /* filter out short-term bursts, eg. wifi aggregation */
1865 q->avg_packet_interval = \
1866 cake_ewma(q->avg_packet_interval,
1867 packet_interval,
1868 (packet_interval > q->avg_packet_interval ?
1869 2 : 8));
1870
1871 q->last_packet_time = now;
1872
1873 if (packet_interval > q->avg_packet_interval) {
1874 u64 window_interval = \
1875 ktime_to_ns(ktime_sub(now,
1876 q->avg_window_begin));
1877 u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
1878
1879 b = div64_u64(b, window_interval);
1880 q->avg_peak_bandwidth =
1881 cake_ewma(q->avg_peak_bandwidth, b,
1882 b > q->avg_peak_bandwidth ? 2 : 8);
1883 q->avg_window_bytes = 0;
1884 q->avg_window_begin = now;
1885
1886 if (ktime_after(now,
1887 ktime_add_ms(q->last_reconfig_time,
1888 250))) {
1889 q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
1890 cake_reconfigure(sch);
1891 }
1892 }
1893 } else {
1894 q->avg_window_bytes = 0;
1895 q->last_packet_time = now;
1896 }
1897
1898 /* flowchain */
1899 if (!flow->set || flow->set == CAKE_SET_DECAYING) {
1900 if (!flow->set) {
1901 list_add_tail(&flow->flowchain, &b->new_flows);
1902 } else {
1903 b->decaying_flow_count--;
1904 list_move_tail(&flow->flowchain, &b->new_flows);
1905 }
1906 flow->set = CAKE_SET_SPARSE;
1907 b->sparse_flow_count++;
1908
1909 flow->deficit = cake_get_flow_quantum(b, flow, q->flow_mode);
1910 } else if (flow->set == CAKE_SET_SPARSE_WAIT) {
1911 /* this flow was empty, accounted as a sparse flow, but actually
1912 * in the bulk rotation.
1913 */
1914 flow->set = CAKE_SET_BULK;
1915 b->sparse_flow_count--;
1916 b->bulk_flow_count++;
1917
1918 cake_inc_srchost_bulk_flow_count(b, flow, q->flow_mode);
1919 cake_inc_dsthost_bulk_flow_count(b, flow, q->flow_mode);
1920 }
1921
1922 if (q->buffer_used > q->buffer_max_used)
1923 q->buffer_max_used = q->buffer_used;
1924
1925 if (q->buffer_used > q->buffer_limit) {
1926 bool same_flow = false;
1927 u32 dropped = 0;
1928 u32 drop_id;
1929
1930 while (q->buffer_used > q->buffer_limit) {
1931 dropped++;
1932 drop_id = cake_drop(sch, to_free);
1933
1934 if ((drop_id >> 16) == tin &&
1935 (drop_id & 0xFFFF) == idx)
1936 same_flow = true;
1937 }
1938 b->drop_overlimit += dropped;
1939
1940 if (same_flow)
1941 return NET_XMIT_CN;
1942 }
1943 return NET_XMIT_SUCCESS;
1944 }
1945
cake_dequeue_one(struct Qdisc * sch)1946 static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
1947 {
1948 struct cake_sched_data *q = qdisc_priv(sch);
1949 struct cake_tin_data *b = &q->tins[q->cur_tin];
1950 struct cake_flow *flow = &b->flows[q->cur_flow];
1951 struct sk_buff *skb = NULL;
1952 u32 len;
1953
1954 if (flow->head) {
1955 skb = dequeue_head(flow);
1956 len = qdisc_pkt_len(skb);
1957 b->backlogs[q->cur_flow] -= len;
1958 b->tin_backlog -= len;
1959 sch->qstats.backlog -= len;
1960 q->buffer_used -= skb->truesize;
1961 sch->q.qlen--;
1962
1963 if (q->overflow_timeout)
1964 cake_heapify(q, b->overflow_idx[q->cur_flow]);
1965 }
1966 return skb;
1967 }
1968
1969 /* Discard leftover packets from a tin no longer in use. */
cake_clear_tin(struct Qdisc * sch,u16 tin)1970 static void cake_clear_tin(struct Qdisc *sch, u16 tin)
1971 {
1972 struct cake_sched_data *q = qdisc_priv(sch);
1973 struct sk_buff *skb;
1974
1975 q->cur_tin = tin;
1976 for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
1977 while (!!(skb = cake_dequeue_one(sch)))
1978 kfree_skb(skb);
1979 }
1980
cake_dequeue(struct Qdisc * sch)1981 static struct sk_buff *cake_dequeue(struct Qdisc *sch)
1982 {
1983 struct cake_sched_data *q = qdisc_priv(sch);
1984 struct cake_tin_data *b = &q->tins[q->cur_tin];
1985 ktime_t now = ktime_get();
1986 struct cake_flow *flow;
1987 struct list_head *head;
1988 bool first_flow = true;
1989 struct sk_buff *skb;
1990 u64 delay;
1991 u32 len;
1992
1993 begin:
1994 if (!sch->q.qlen)
1995 return NULL;
1996
1997 /* global hard shaper */
1998 if (ktime_after(q->time_next_packet, now) &&
1999 ktime_after(q->failsafe_next_packet, now)) {
2000 u64 next = min(ktime_to_ns(q->time_next_packet),
2001 ktime_to_ns(q->failsafe_next_packet));
2002
2003 sch->qstats.overlimits++;
2004 qdisc_watchdog_schedule_ns(&q->watchdog, next);
2005 return NULL;
2006 }
2007
2008 /* Choose a class to work on. */
2009 if (!q->rate_ns) {
2010 /* In unlimited mode, can't rely on shaper timings, just balance
2011 * with DRR
2012 */
2013 bool wrapped = false, empty = true;
2014
2015 while (b->tin_deficit < 0 ||
2016 !(b->sparse_flow_count + b->bulk_flow_count)) {
2017 if (b->tin_deficit <= 0)
2018 b->tin_deficit += b->tin_quantum;
2019 if (b->sparse_flow_count + b->bulk_flow_count)
2020 empty = false;
2021
2022 q->cur_tin++;
2023 b++;
2024 if (q->cur_tin >= q->tin_cnt) {
2025 q->cur_tin = 0;
2026 b = q->tins;
2027
2028 if (wrapped) {
2029 /* It's possible for q->qlen to be
2030 * nonzero when we actually have no
2031 * packets anywhere.
2032 */
2033 if (empty)
2034 return NULL;
2035 } else {
2036 wrapped = true;
2037 }
2038 }
2039 }
2040 } else {
2041 /* In shaped mode, choose:
2042 * - Highest-priority tin with queue and meeting schedule, or
2043 * - The earliest-scheduled tin with queue.
2044 */
2045 ktime_t best_time = KTIME_MAX;
2046 int tin, best_tin = 0;
2047
2048 for (tin = 0; tin < q->tin_cnt; tin++) {
2049 b = q->tins + tin;
2050 if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
2051 ktime_t time_to_pkt = \
2052 ktime_sub(b->time_next_packet, now);
2053
2054 if (ktime_to_ns(time_to_pkt) <= 0 ||
2055 ktime_compare(time_to_pkt,
2056 best_time) <= 0) {
2057 best_time = time_to_pkt;
2058 best_tin = tin;
2059 }
2060 }
2061 }
2062
2063 q->cur_tin = best_tin;
2064 b = q->tins + best_tin;
2065
2066 /* No point in going further if no packets to deliver. */
2067 if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
2068 return NULL;
2069 }
2070
2071 retry:
2072 /* service this class */
2073 head = &b->decaying_flows;
2074 if (!first_flow || list_empty(head)) {
2075 head = &b->new_flows;
2076 if (list_empty(head)) {
2077 head = &b->old_flows;
2078 if (unlikely(list_empty(head))) {
2079 head = &b->decaying_flows;
2080 if (unlikely(list_empty(head)))
2081 goto begin;
2082 }
2083 }
2084 }
2085 flow = list_first_entry(head, struct cake_flow, flowchain);
2086 q->cur_flow = flow - b->flows;
2087 first_flow = false;
2088
2089 /* flow isolation (DRR++) */
2090 if (flow->deficit <= 0) {
2091 /* Keep all flows with deficits out of the sparse and decaying
2092 * rotations. No non-empty flow can go into the decaying
2093 * rotation, so they can't get deficits
2094 */
2095 if (flow->set == CAKE_SET_SPARSE) {
2096 if (flow->head) {
2097 b->sparse_flow_count--;
2098 b->bulk_flow_count++;
2099
2100 cake_inc_srchost_bulk_flow_count(b, flow, q->flow_mode);
2101 cake_inc_dsthost_bulk_flow_count(b, flow, q->flow_mode);
2102
2103 flow->set = CAKE_SET_BULK;
2104 } else {
2105 /* we've moved it to the bulk rotation for
2106 * correct deficit accounting but we still want
2107 * to count it as a sparse flow, not a bulk one.
2108 */
2109 flow->set = CAKE_SET_SPARSE_WAIT;
2110 }
2111 }
2112
2113 flow->deficit += cake_get_flow_quantum(b, flow, q->flow_mode);
2114 list_move_tail(&flow->flowchain, &b->old_flows);
2115
2116 goto retry;
2117 }
2118
2119 /* Retrieve a packet via the AQM */
2120 while (1) {
2121 skb = cake_dequeue_one(sch);
2122 if (!skb) {
2123 /* this queue was actually empty */
2124 if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
2125 b->unresponsive_flow_count--;
2126
2127 if (flow->cvars.p_drop || flow->cvars.count ||
2128 ktime_before(now, flow->cvars.drop_next)) {
2129 /* keep in the flowchain until the state has
2130 * decayed to rest
2131 */
2132 list_move_tail(&flow->flowchain,
2133 &b->decaying_flows);
2134 if (flow->set == CAKE_SET_BULK) {
2135 b->bulk_flow_count--;
2136
2137 cake_dec_srchost_bulk_flow_count(b, flow, q->flow_mode);
2138 cake_dec_dsthost_bulk_flow_count(b, flow, q->flow_mode);
2139
2140 b->decaying_flow_count++;
2141 } else if (flow->set == CAKE_SET_SPARSE ||
2142 flow->set == CAKE_SET_SPARSE_WAIT) {
2143 b->sparse_flow_count--;
2144 b->decaying_flow_count++;
2145 }
2146 flow->set = CAKE_SET_DECAYING;
2147 } else {
2148 /* remove empty queue from the flowchain */
2149 list_del_init(&flow->flowchain);
2150 if (flow->set == CAKE_SET_SPARSE ||
2151 flow->set == CAKE_SET_SPARSE_WAIT)
2152 b->sparse_flow_count--;
2153 else if (flow->set == CAKE_SET_BULK) {
2154 b->bulk_flow_count--;
2155
2156 cake_dec_srchost_bulk_flow_count(b, flow, q->flow_mode);
2157 cake_dec_dsthost_bulk_flow_count(b, flow, q->flow_mode);
2158 } else
2159 b->decaying_flow_count--;
2160
2161 flow->set = CAKE_SET_NONE;
2162 }
2163 goto begin;
2164 }
2165
2166 /* Last packet in queue may be marked, shouldn't be dropped */
2167 if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
2168 (b->bulk_flow_count *
2169 !!(q->rate_flags &
2170 CAKE_FLAG_INGRESS))) ||
2171 !flow->head)
2172 break;
2173
2174 /* drop this packet, get another one */
2175 if (q->rate_flags & CAKE_FLAG_INGRESS) {
2176 len = cake_advance_shaper(q, b, skb,
2177 now, true);
2178 flow->deficit -= len;
2179 b->tin_deficit -= len;
2180 }
2181 flow->dropped++;
2182 b->tin_dropped++;
2183 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
2184 qdisc_qstats_drop(sch);
2185 kfree_skb(skb);
2186 if (q->rate_flags & CAKE_FLAG_INGRESS)
2187 goto retry;
2188 }
2189
2190 b->tin_ecn_mark += !!flow->cvars.ecn_marked;
2191 qdisc_bstats_update(sch, skb);
2192
2193 /* collect delay stats */
2194 delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
2195 b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
2196 b->peak_delay = cake_ewma(b->peak_delay, delay,
2197 delay > b->peak_delay ? 2 : 8);
2198 b->base_delay = cake_ewma(b->base_delay, delay,
2199 delay < b->base_delay ? 2 : 8);
2200
2201 len = cake_advance_shaper(q, b, skb, now, false);
2202 flow->deficit -= len;
2203 b->tin_deficit -= len;
2204
2205 if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
2206 u64 next = min(ktime_to_ns(q->time_next_packet),
2207 ktime_to_ns(q->failsafe_next_packet));
2208
2209 qdisc_watchdog_schedule_ns(&q->watchdog, next);
2210 } else if (!sch->q.qlen) {
2211 int i;
2212
2213 for (i = 0; i < q->tin_cnt; i++) {
2214 if (q->tins[i].decaying_flow_count) {
2215 ktime_t next = \
2216 ktime_add_ns(now,
2217 q->tins[i].cparams.target);
2218
2219 qdisc_watchdog_schedule_ns(&q->watchdog,
2220 ktime_to_ns(next));
2221 break;
2222 }
2223 }
2224 }
2225
2226 if (q->overflow_timeout)
2227 q->overflow_timeout--;
2228
2229 return skb;
2230 }
2231
cake_reset(struct Qdisc * sch)2232 static void cake_reset(struct Qdisc *sch)
2233 {
2234 struct cake_sched_data *q = qdisc_priv(sch);
2235 u32 c;
2236
2237 if (!q->tins)
2238 return;
2239
2240 for (c = 0; c < CAKE_MAX_TINS; c++)
2241 cake_clear_tin(sch, c);
2242 }
2243
2244 static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
2245 [TCA_CAKE_BASE_RATE64] = { .type = NLA_U64 },
2246 [TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
2247 [TCA_CAKE_ATM] = { .type = NLA_U32 },
2248 [TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 },
2249 [TCA_CAKE_OVERHEAD] = { .type = NLA_S32 },
2250 [TCA_CAKE_RTT] = { .type = NLA_U32 },
2251 [TCA_CAKE_TARGET] = { .type = NLA_U32 },
2252 [TCA_CAKE_AUTORATE] = { .type = NLA_U32 },
2253 [TCA_CAKE_MEMORY] = { .type = NLA_U32 },
2254 [TCA_CAKE_NAT] = { .type = NLA_U32 },
2255 [TCA_CAKE_RAW] = { .type = NLA_U32 },
2256 [TCA_CAKE_WASH] = { .type = NLA_U32 },
2257 [TCA_CAKE_MPU] = { .type = NLA_U32 },
2258 [TCA_CAKE_INGRESS] = { .type = NLA_U32 },
2259 [TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 },
2260 [TCA_CAKE_SPLIT_GSO] = { .type = NLA_U32 },
2261 [TCA_CAKE_FWMARK] = { .type = NLA_U32 },
2262 };
2263
cake_set_rate(struct cake_tin_data * b,u64 rate,u32 mtu,u64 target_ns,u64 rtt_est_ns)2264 static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
2265 u64 target_ns, u64 rtt_est_ns)
2266 {
2267 /* convert byte-rate into time-per-byte
2268 * so it will always unwedge in reasonable time.
2269 */
2270 static const u64 MIN_RATE = 64;
2271 u32 byte_target = mtu;
2272 u64 byte_target_ns;
2273 u8 rate_shft = 0;
2274 u64 rate_ns = 0;
2275
2276 b->flow_quantum = 1514;
2277 if (rate) {
2278 b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
2279 rate_shft = 34;
2280 rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
2281 rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
2282 while (!!(rate_ns >> 34)) {
2283 rate_ns >>= 1;
2284 rate_shft--;
2285 }
2286 } /* else unlimited, ie. zero delay */
2287
2288 b->tin_rate_bps = rate;
2289 b->tin_rate_ns = rate_ns;
2290 b->tin_rate_shft = rate_shft;
2291
2292 byte_target_ns = (byte_target * rate_ns) >> rate_shft;
2293
2294 b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
2295 b->cparams.interval = max(rtt_est_ns +
2296 b->cparams.target - target_ns,
2297 b->cparams.target * 2);
2298 b->cparams.mtu_time = byte_target_ns;
2299 b->cparams.p_inc = 1 << 24; /* 1/256 */
2300 b->cparams.p_dec = 1 << 20; /* 1/4096 */
2301 }
2302
cake_config_besteffort(struct Qdisc * sch)2303 static int cake_config_besteffort(struct Qdisc *sch)
2304 {
2305 struct cake_sched_data *q = qdisc_priv(sch);
2306 struct cake_tin_data *b = &q->tins[0];
2307 u32 mtu = psched_mtu(qdisc_dev(sch));
2308 u64 rate = q->rate_bps;
2309
2310 q->tin_cnt = 1;
2311
2312 q->tin_index = besteffort;
2313 q->tin_order = normal_order;
2314
2315 cake_set_rate(b, rate, mtu,
2316 us_to_ns(q->target), us_to_ns(q->interval));
2317 b->tin_quantum = 65535;
2318
2319 return 0;
2320 }
2321
cake_config_precedence(struct Qdisc * sch)2322 static int cake_config_precedence(struct Qdisc *sch)
2323 {
2324 /* convert high-level (user visible) parameters into internal format */
2325 struct cake_sched_data *q = qdisc_priv(sch);
2326 u32 mtu = psched_mtu(qdisc_dev(sch));
2327 u64 rate = q->rate_bps;
2328 u32 quantum = 256;
2329 u32 i;
2330
2331 q->tin_cnt = 8;
2332 q->tin_index = precedence;
2333 q->tin_order = normal_order;
2334
2335 for (i = 0; i < q->tin_cnt; i++) {
2336 struct cake_tin_data *b = &q->tins[i];
2337
2338 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2339 us_to_ns(q->interval));
2340
2341 b->tin_quantum = max_t(u16, 1U, quantum);
2342
2343 /* calculate next class's parameters */
2344 rate *= 7;
2345 rate >>= 3;
2346
2347 quantum *= 7;
2348 quantum >>= 3;
2349 }
2350
2351 return 0;
2352 }
2353
2354 /* List of known Diffserv codepoints:
2355 *
2356 * Default Forwarding (DF/CS0) - Best Effort
2357 * Max Throughput (TOS2)
2358 * Min Delay (TOS4)
2359 * LLT "La" (TOS5)
2360 * Assured Forwarding 1 (AF1x) - x3
2361 * Assured Forwarding 2 (AF2x) - x3
2362 * Assured Forwarding 3 (AF3x) - x3
2363 * Assured Forwarding 4 (AF4x) - x3
2364 * Precedence Class 1 (CS1)
2365 * Precedence Class 2 (CS2)
2366 * Precedence Class 3 (CS3)
2367 * Precedence Class 4 (CS4)
2368 * Precedence Class 5 (CS5)
2369 * Precedence Class 6 (CS6)
2370 * Precedence Class 7 (CS7)
2371 * Voice Admit (VA)
2372 * Expedited Forwarding (EF)
2373 * Lower Effort (LE)
2374 *
2375 * Total 26 codepoints.
2376 */
2377
2378 /* List of traffic classes in RFC 4594, updated by RFC 8622:
2379 * (roughly descending order of contended priority)
2380 * (roughly ascending order of uncontended throughput)
2381 *
2382 * Network Control (CS6,CS7) - routing traffic
2383 * Telephony (EF,VA) - aka. VoIP streams
2384 * Signalling (CS5) - VoIP setup
2385 * Multimedia Conferencing (AF4x) - aka. video calls
2386 * Realtime Interactive (CS4) - eg. games
2387 * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch
2388 * Broadcast Video (CS3)
2389 * Low-Latency Data (AF2x,TOS4) - eg. database
2390 * Ops, Admin, Management (CS2) - eg. ssh
2391 * Standard Service (DF & unrecognised codepoints)
2392 * High-Throughput Data (AF1x,TOS2) - eg. web traffic
2393 * Low-Priority Data (LE,CS1) - eg. BitTorrent
2394 *
2395 * Total 12 traffic classes.
2396 */
2397
cake_config_diffserv8(struct Qdisc * sch)2398 static int cake_config_diffserv8(struct Qdisc *sch)
2399 {
2400 /* Pruned list of traffic classes for typical applications:
2401 *
2402 * Network Control (CS6, CS7)
2403 * Minimum Latency (EF, VA, CS5, CS4)
2404 * Interactive Shell (CS2)
2405 * Low Latency Transactions (AF2x, TOS4)
2406 * Video Streaming (AF4x, AF3x, CS3)
2407 * Bog Standard (DF etc.)
2408 * High Throughput (AF1x, TOS2, CS1)
2409 * Background Traffic (LE)
2410 *
2411 * Total 8 traffic classes.
2412 */
2413
2414 struct cake_sched_data *q = qdisc_priv(sch);
2415 u32 mtu = psched_mtu(qdisc_dev(sch));
2416 u64 rate = q->rate_bps;
2417 u32 quantum = 256;
2418 u32 i;
2419
2420 q->tin_cnt = 8;
2421
2422 /* codepoint to class mapping */
2423 q->tin_index = diffserv8;
2424 q->tin_order = normal_order;
2425
2426 /* class characteristics */
2427 for (i = 0; i < q->tin_cnt; i++) {
2428 struct cake_tin_data *b = &q->tins[i];
2429
2430 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2431 us_to_ns(q->interval));
2432
2433 b->tin_quantum = max_t(u16, 1U, quantum);
2434
2435 /* calculate next class's parameters */
2436 rate *= 7;
2437 rate >>= 3;
2438
2439 quantum *= 7;
2440 quantum >>= 3;
2441 }
2442
2443 return 0;
2444 }
2445
cake_config_diffserv4(struct Qdisc * sch)2446 static int cake_config_diffserv4(struct Qdisc *sch)
2447 {
2448 /* Further pruned list of traffic classes for four-class system:
2449 *
2450 * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4)
2451 * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2)
2452 * Best Effort (DF, AF1x, TOS2, and those not specified)
2453 * Background Traffic (LE, CS1)
2454 *
2455 * Total 4 traffic classes.
2456 */
2457
2458 struct cake_sched_data *q = qdisc_priv(sch);
2459 u32 mtu = psched_mtu(qdisc_dev(sch));
2460 u64 rate = q->rate_bps;
2461 u32 quantum = 1024;
2462
2463 q->tin_cnt = 4;
2464
2465 /* codepoint to class mapping */
2466 q->tin_index = diffserv4;
2467 q->tin_order = bulk_order;
2468
2469 /* class characteristics */
2470 cake_set_rate(&q->tins[0], rate, mtu,
2471 us_to_ns(q->target), us_to_ns(q->interval));
2472 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2473 us_to_ns(q->target), us_to_ns(q->interval));
2474 cake_set_rate(&q->tins[2], rate >> 1, mtu,
2475 us_to_ns(q->target), us_to_ns(q->interval));
2476 cake_set_rate(&q->tins[3], rate >> 2, mtu,
2477 us_to_ns(q->target), us_to_ns(q->interval));
2478
2479 /* bandwidth-sharing weights */
2480 q->tins[0].tin_quantum = quantum;
2481 q->tins[1].tin_quantum = quantum >> 4;
2482 q->tins[2].tin_quantum = quantum >> 1;
2483 q->tins[3].tin_quantum = quantum >> 2;
2484
2485 return 0;
2486 }
2487
cake_config_diffserv3(struct Qdisc * sch)2488 static int cake_config_diffserv3(struct Qdisc *sch)
2489 {
2490 /* Simplified Diffserv structure with 3 tins.
2491 * Latency Sensitive (CS7, CS6, EF, VA, TOS4)
2492 * Best Effort
2493 * Low Priority (LE, CS1)
2494 */
2495 struct cake_sched_data *q = qdisc_priv(sch);
2496 u32 mtu = psched_mtu(qdisc_dev(sch));
2497 u64 rate = q->rate_bps;
2498 u32 quantum = 1024;
2499
2500 q->tin_cnt = 3;
2501
2502 /* codepoint to class mapping */
2503 q->tin_index = diffserv3;
2504 q->tin_order = bulk_order;
2505
2506 /* class characteristics */
2507 cake_set_rate(&q->tins[0], rate, mtu,
2508 us_to_ns(q->target), us_to_ns(q->interval));
2509 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2510 us_to_ns(q->target), us_to_ns(q->interval));
2511 cake_set_rate(&q->tins[2], rate >> 2, mtu,
2512 us_to_ns(q->target), us_to_ns(q->interval));
2513
2514 /* bandwidth-sharing weights */
2515 q->tins[0].tin_quantum = quantum;
2516 q->tins[1].tin_quantum = quantum >> 4;
2517 q->tins[2].tin_quantum = quantum >> 2;
2518
2519 return 0;
2520 }
2521
cake_reconfigure(struct Qdisc * sch)2522 static void cake_reconfigure(struct Qdisc *sch)
2523 {
2524 struct cake_sched_data *q = qdisc_priv(sch);
2525 int c, ft;
2526
2527 switch (q->tin_mode) {
2528 case CAKE_DIFFSERV_BESTEFFORT:
2529 ft = cake_config_besteffort(sch);
2530 break;
2531
2532 case CAKE_DIFFSERV_PRECEDENCE:
2533 ft = cake_config_precedence(sch);
2534 break;
2535
2536 case CAKE_DIFFSERV_DIFFSERV8:
2537 ft = cake_config_diffserv8(sch);
2538 break;
2539
2540 case CAKE_DIFFSERV_DIFFSERV4:
2541 ft = cake_config_diffserv4(sch);
2542 break;
2543
2544 case CAKE_DIFFSERV_DIFFSERV3:
2545 default:
2546 ft = cake_config_diffserv3(sch);
2547 break;
2548 }
2549
2550 for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
2551 cake_clear_tin(sch, c);
2552 q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
2553 }
2554
2555 q->rate_ns = q->tins[ft].tin_rate_ns;
2556 q->rate_shft = q->tins[ft].tin_rate_shft;
2557
2558 if (q->buffer_config_limit) {
2559 q->buffer_limit = q->buffer_config_limit;
2560 } else if (q->rate_bps) {
2561 u64 t = q->rate_bps * q->interval;
2562
2563 do_div(t, USEC_PER_SEC / 4);
2564 q->buffer_limit = max_t(u32, t, 4U << 20);
2565 } else {
2566 q->buffer_limit = ~0;
2567 }
2568
2569 sch->flags &= ~TCQ_F_CAN_BYPASS;
2570
2571 q->buffer_limit = min(q->buffer_limit,
2572 max(sch->limit * psched_mtu(qdisc_dev(sch)),
2573 q->buffer_config_limit));
2574 }
2575
cake_change(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)2576 static int cake_change(struct Qdisc *sch, struct nlattr *opt,
2577 struct netlink_ext_ack *extack)
2578 {
2579 struct cake_sched_data *q = qdisc_priv(sch);
2580 struct nlattr *tb[TCA_CAKE_MAX + 1];
2581 u16 rate_flags;
2582 u8 flow_mode;
2583 int err;
2584
2585 err = nla_parse_nested_deprecated(tb, TCA_CAKE_MAX, opt, cake_policy,
2586 extack);
2587 if (err < 0)
2588 return err;
2589
2590 flow_mode = q->flow_mode;
2591 if (tb[TCA_CAKE_NAT]) {
2592 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
2593 flow_mode &= ~CAKE_FLOW_NAT_FLAG;
2594 flow_mode |= CAKE_FLOW_NAT_FLAG *
2595 !!nla_get_u32(tb[TCA_CAKE_NAT]);
2596 #else
2597 NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT],
2598 "No conntrack support in kernel");
2599 return -EOPNOTSUPP;
2600 #endif
2601 }
2602
2603 if (tb[TCA_CAKE_BASE_RATE64])
2604 WRITE_ONCE(q->rate_bps,
2605 nla_get_u64(tb[TCA_CAKE_BASE_RATE64]));
2606
2607 if (tb[TCA_CAKE_DIFFSERV_MODE])
2608 WRITE_ONCE(q->tin_mode,
2609 nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]));
2610
2611 rate_flags = q->rate_flags;
2612 if (tb[TCA_CAKE_WASH]) {
2613 if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
2614 rate_flags |= CAKE_FLAG_WASH;
2615 else
2616 rate_flags &= ~CAKE_FLAG_WASH;
2617 }
2618
2619 if (tb[TCA_CAKE_FLOW_MODE])
2620 flow_mode = ((flow_mode & CAKE_FLOW_NAT_FLAG) |
2621 (nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
2622 CAKE_FLOW_MASK));
2623
2624 if (tb[TCA_CAKE_ATM])
2625 WRITE_ONCE(q->atm_mode,
2626 nla_get_u32(tb[TCA_CAKE_ATM]));
2627
2628 if (tb[TCA_CAKE_OVERHEAD]) {
2629 WRITE_ONCE(q->rate_overhead,
2630 nla_get_s32(tb[TCA_CAKE_OVERHEAD]));
2631 rate_flags |= CAKE_FLAG_OVERHEAD;
2632
2633 q->max_netlen = 0;
2634 q->max_adjlen = 0;
2635 q->min_netlen = ~0;
2636 q->min_adjlen = ~0;
2637 }
2638
2639 if (tb[TCA_CAKE_RAW]) {
2640 rate_flags &= ~CAKE_FLAG_OVERHEAD;
2641
2642 q->max_netlen = 0;
2643 q->max_adjlen = 0;
2644 q->min_netlen = ~0;
2645 q->min_adjlen = ~0;
2646 }
2647
2648 if (tb[TCA_CAKE_MPU])
2649 WRITE_ONCE(q->rate_mpu,
2650 nla_get_u32(tb[TCA_CAKE_MPU]));
2651
2652 if (tb[TCA_CAKE_RTT]) {
2653 u32 interval = nla_get_u32(tb[TCA_CAKE_RTT]);
2654
2655 WRITE_ONCE(q->interval, max(interval, 1U));
2656 }
2657
2658 if (tb[TCA_CAKE_TARGET]) {
2659 u32 target = nla_get_u32(tb[TCA_CAKE_TARGET]);
2660
2661 WRITE_ONCE(q->target, max(target, 1U));
2662 }
2663
2664 if (tb[TCA_CAKE_AUTORATE]) {
2665 if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
2666 rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
2667 else
2668 rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
2669 }
2670
2671 if (tb[TCA_CAKE_INGRESS]) {
2672 if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
2673 rate_flags |= CAKE_FLAG_INGRESS;
2674 else
2675 rate_flags &= ~CAKE_FLAG_INGRESS;
2676 }
2677
2678 if (tb[TCA_CAKE_ACK_FILTER])
2679 WRITE_ONCE(q->ack_filter,
2680 nla_get_u32(tb[TCA_CAKE_ACK_FILTER]));
2681
2682 if (tb[TCA_CAKE_MEMORY])
2683 WRITE_ONCE(q->buffer_config_limit,
2684 nla_get_u32(tb[TCA_CAKE_MEMORY]));
2685
2686 if (tb[TCA_CAKE_SPLIT_GSO]) {
2687 if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO]))
2688 rate_flags |= CAKE_FLAG_SPLIT_GSO;
2689 else
2690 rate_flags &= ~CAKE_FLAG_SPLIT_GSO;
2691 }
2692
2693 if (tb[TCA_CAKE_FWMARK]) {
2694 WRITE_ONCE(q->fwmark_mask, nla_get_u32(tb[TCA_CAKE_FWMARK]));
2695 WRITE_ONCE(q->fwmark_shft,
2696 q->fwmark_mask ? __ffs(q->fwmark_mask) : 0);
2697 }
2698
2699 WRITE_ONCE(q->rate_flags, rate_flags);
2700 WRITE_ONCE(q->flow_mode, flow_mode);
2701 if (q->tins) {
2702 sch_tree_lock(sch);
2703 cake_reconfigure(sch);
2704 sch_tree_unlock(sch);
2705 }
2706
2707 return 0;
2708 }
2709
cake_destroy(struct Qdisc * sch)2710 static void cake_destroy(struct Qdisc *sch)
2711 {
2712 struct cake_sched_data *q = qdisc_priv(sch);
2713
2714 qdisc_watchdog_cancel(&q->watchdog);
2715 tcf_block_put(q->block);
2716 kvfree(q->tins);
2717 }
2718
cake_init(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)2719 static int cake_init(struct Qdisc *sch, struct nlattr *opt,
2720 struct netlink_ext_ack *extack)
2721 {
2722 struct cake_sched_data *q = qdisc_priv(sch);
2723 int i, j, err;
2724
2725 sch->limit = 10240;
2726 q->tin_mode = CAKE_DIFFSERV_DIFFSERV3;
2727 q->flow_mode = CAKE_FLOW_TRIPLE;
2728
2729 q->rate_bps = 0; /* unlimited by default */
2730
2731 q->interval = 100000; /* 100ms default */
2732 q->target = 5000; /* 5ms: codel RFC argues
2733 * for 5 to 10% of interval
2734 */
2735 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2736 q->cur_tin = 0;
2737 q->cur_flow = 0;
2738
2739 qdisc_watchdog_init(&q->watchdog, sch);
2740
2741 if (opt) {
2742 err = cake_change(sch, opt, extack);
2743
2744 if (err)
2745 return err;
2746 }
2747
2748 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
2749 if (err)
2750 return err;
2751
2752 quantum_div[0] = ~0;
2753 for (i = 1; i <= CAKE_QUEUES; i++)
2754 quantum_div[i] = 65535 / i;
2755
2756 q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data),
2757 GFP_KERNEL);
2758 if (!q->tins)
2759 return -ENOMEM;
2760
2761 for (i = 0; i < CAKE_MAX_TINS; i++) {
2762 struct cake_tin_data *b = q->tins + i;
2763
2764 INIT_LIST_HEAD(&b->new_flows);
2765 INIT_LIST_HEAD(&b->old_flows);
2766 INIT_LIST_HEAD(&b->decaying_flows);
2767 b->sparse_flow_count = 0;
2768 b->bulk_flow_count = 0;
2769 b->decaying_flow_count = 0;
2770
2771 for (j = 0; j < CAKE_QUEUES; j++) {
2772 struct cake_flow *flow = b->flows + j;
2773 u32 k = j * CAKE_MAX_TINS + i;
2774
2775 INIT_LIST_HEAD(&flow->flowchain);
2776 cobalt_vars_init(&flow->cvars);
2777
2778 q->overflow_heap[k].t = i;
2779 q->overflow_heap[k].b = j;
2780 b->overflow_idx[j] = k;
2781 }
2782 }
2783
2784 cake_reconfigure(sch);
2785 q->avg_peak_bandwidth = q->rate_bps;
2786 q->min_netlen = ~0;
2787 q->min_adjlen = ~0;
2788 return 0;
2789 }
2790
cake_dump(struct Qdisc * sch,struct sk_buff * skb)2791 static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
2792 {
2793 struct cake_sched_data *q = qdisc_priv(sch);
2794 struct nlattr *opts;
2795 u16 rate_flags;
2796 u8 flow_mode;
2797
2798 opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
2799 if (!opts)
2800 goto nla_put_failure;
2801
2802 if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64,
2803 READ_ONCE(q->rate_bps), TCA_CAKE_PAD))
2804 goto nla_put_failure;
2805
2806 flow_mode = READ_ONCE(q->flow_mode);
2807 if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE, flow_mode & CAKE_FLOW_MASK))
2808 goto nla_put_failure;
2809
2810 if (nla_put_u32(skb, TCA_CAKE_RTT, READ_ONCE(q->interval)))
2811 goto nla_put_failure;
2812
2813 if (nla_put_u32(skb, TCA_CAKE_TARGET, READ_ONCE(q->target)))
2814 goto nla_put_failure;
2815
2816 if (nla_put_u32(skb, TCA_CAKE_MEMORY,
2817 READ_ONCE(q->buffer_config_limit)))
2818 goto nla_put_failure;
2819
2820 rate_flags = READ_ONCE(q->rate_flags);
2821 if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
2822 !!(rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
2823 goto nla_put_failure;
2824
2825 if (nla_put_u32(skb, TCA_CAKE_INGRESS,
2826 !!(rate_flags & CAKE_FLAG_INGRESS)))
2827 goto nla_put_failure;
2828
2829 if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, READ_ONCE(q->ack_filter)))
2830 goto nla_put_failure;
2831
2832 if (nla_put_u32(skb, TCA_CAKE_NAT,
2833 !!(flow_mode & CAKE_FLOW_NAT_FLAG)))
2834 goto nla_put_failure;
2835
2836 if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, READ_ONCE(q->tin_mode)))
2837 goto nla_put_failure;
2838
2839 if (nla_put_u32(skb, TCA_CAKE_WASH,
2840 !!(rate_flags & CAKE_FLAG_WASH)))
2841 goto nla_put_failure;
2842
2843 if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, READ_ONCE(q->rate_overhead)))
2844 goto nla_put_failure;
2845
2846 if (!(rate_flags & CAKE_FLAG_OVERHEAD))
2847 if (nla_put_u32(skb, TCA_CAKE_RAW, 0))
2848 goto nla_put_failure;
2849
2850 if (nla_put_u32(skb, TCA_CAKE_ATM, READ_ONCE(q->atm_mode)))
2851 goto nla_put_failure;
2852
2853 if (nla_put_u32(skb, TCA_CAKE_MPU, READ_ONCE(q->rate_mpu)))
2854 goto nla_put_failure;
2855
2856 if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO,
2857 !!(rate_flags & CAKE_FLAG_SPLIT_GSO)))
2858 goto nla_put_failure;
2859
2860 if (nla_put_u32(skb, TCA_CAKE_FWMARK, READ_ONCE(q->fwmark_mask)))
2861 goto nla_put_failure;
2862
2863 return nla_nest_end(skb, opts);
2864
2865 nla_put_failure:
2866 return -1;
2867 }
2868
cake_dump_stats(struct Qdisc * sch,struct gnet_dump * d)2869 static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2870 {
2871 struct nlattr *stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
2872 struct cake_sched_data *q = qdisc_priv(sch);
2873 struct nlattr *tstats, *ts;
2874 int i;
2875
2876 if (!stats)
2877 return -1;
2878
2879 #define PUT_STAT_U32(attr, data) do { \
2880 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2881 goto nla_put_failure; \
2882 } while (0)
2883 #define PUT_STAT_U64(attr, data) do { \
2884 if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
2885 data, TCA_CAKE_STATS_PAD)) \
2886 goto nla_put_failure; \
2887 } while (0)
2888
2889 PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
2890 PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
2891 PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
2892 PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
2893 PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
2894 PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
2895 PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
2896 PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);
2897
2898 #undef PUT_STAT_U32
2899 #undef PUT_STAT_U64
2900
2901 tstats = nla_nest_start_noflag(d->skb, TCA_CAKE_STATS_TIN_STATS);
2902 if (!tstats)
2903 goto nla_put_failure;
2904
2905 #define PUT_TSTAT_U32(attr, data) do { \
2906 if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
2907 goto nla_put_failure; \
2908 } while (0)
2909 #define PUT_TSTAT_U64(attr, data) do { \
2910 if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
2911 data, TCA_CAKE_TIN_STATS_PAD)) \
2912 goto nla_put_failure; \
2913 } while (0)
2914
2915 for (i = 0; i < q->tin_cnt; i++) {
2916 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
2917
2918 ts = nla_nest_start_noflag(d->skb, i + 1);
2919 if (!ts)
2920 goto nla_put_failure;
2921
2922 PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
2923 PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
2924 PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);
2925
2926 PUT_TSTAT_U32(TARGET_US,
2927 ktime_to_us(ns_to_ktime(b->cparams.target)));
2928 PUT_TSTAT_U32(INTERVAL_US,
2929 ktime_to_us(ns_to_ktime(b->cparams.interval)));
2930
2931 PUT_TSTAT_U32(SENT_PACKETS, b->packets);
2932 PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
2933 PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
2934 PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);
2935
2936 PUT_TSTAT_U32(PEAK_DELAY_US,
2937 ktime_to_us(ns_to_ktime(b->peak_delay)));
2938 PUT_TSTAT_U32(AVG_DELAY_US,
2939 ktime_to_us(ns_to_ktime(b->avge_delay)));
2940 PUT_TSTAT_U32(BASE_DELAY_US,
2941 ktime_to_us(ns_to_ktime(b->base_delay)));
2942
2943 PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
2944 PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
2945 PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);
2946
2947 PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
2948 b->decaying_flow_count);
2949 PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
2950 PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
2951 PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);
2952
2953 PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
2954 nla_nest_end(d->skb, ts);
2955 }
2956
2957 #undef PUT_TSTAT_U32
2958 #undef PUT_TSTAT_U64
2959
2960 nla_nest_end(d->skb, tstats);
2961 return nla_nest_end(d->skb, stats);
2962
2963 nla_put_failure:
2964 nla_nest_cancel(d->skb, stats);
2965 return -1;
2966 }
2967
cake_leaf(struct Qdisc * sch,unsigned long arg)2968 static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
2969 {
2970 return NULL;
2971 }
2972
cake_find(struct Qdisc * sch,u32 classid)2973 static unsigned long cake_find(struct Qdisc *sch, u32 classid)
2974 {
2975 return 0;
2976 }
2977
cake_bind(struct Qdisc * sch,unsigned long parent,u32 classid)2978 static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
2979 u32 classid)
2980 {
2981 return 0;
2982 }
2983
cake_unbind(struct Qdisc * q,unsigned long cl)2984 static void cake_unbind(struct Qdisc *q, unsigned long cl)
2985 {
2986 }
2987
cake_tcf_block(struct Qdisc * sch,unsigned long cl,struct netlink_ext_ack * extack)2988 static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
2989 struct netlink_ext_ack *extack)
2990 {
2991 struct cake_sched_data *q = qdisc_priv(sch);
2992
2993 if (cl)
2994 return NULL;
2995 return q->block;
2996 }
2997
cake_dump_class(struct Qdisc * sch,unsigned long cl,struct sk_buff * skb,struct tcmsg * tcm)2998 static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
2999 struct sk_buff *skb, struct tcmsg *tcm)
3000 {
3001 tcm->tcm_handle |= TC_H_MIN(cl);
3002 return 0;
3003 }
3004
cake_dump_class_stats(struct Qdisc * sch,unsigned long cl,struct gnet_dump * d)3005 static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
3006 struct gnet_dump *d)
3007 {
3008 struct cake_sched_data *q = qdisc_priv(sch);
3009 const struct cake_flow *flow = NULL;
3010 struct gnet_stats_queue qs = { 0 };
3011 struct nlattr *stats;
3012 u32 idx = cl - 1;
3013
3014 if (idx < CAKE_QUEUES * q->tin_cnt) {
3015 const struct cake_tin_data *b = \
3016 &q->tins[q->tin_order[idx / CAKE_QUEUES]];
3017 const struct sk_buff *skb;
3018
3019 flow = &b->flows[idx % CAKE_QUEUES];
3020
3021 if (flow->head) {
3022 sch_tree_lock(sch);
3023 skb = flow->head;
3024 while (skb) {
3025 qs.qlen++;
3026 skb = skb->next;
3027 }
3028 sch_tree_unlock(sch);
3029 }
3030 qs.backlog = b->backlogs[idx % CAKE_QUEUES];
3031 qs.drops = flow->dropped;
3032 }
3033 if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
3034 return -1;
3035 if (flow) {
3036 ktime_t now = ktime_get();
3037
3038 stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
3039 if (!stats)
3040 return -1;
3041
3042 #define PUT_STAT_U32(attr, data) do { \
3043 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3044 goto nla_put_failure; \
3045 } while (0)
3046 #define PUT_STAT_S32(attr, data) do { \
3047 if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3048 goto nla_put_failure; \
3049 } while (0)
3050
3051 PUT_STAT_S32(DEFICIT, flow->deficit);
3052 PUT_STAT_U32(DROPPING, flow->cvars.dropping);
3053 PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
3054 PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
3055 if (flow->cvars.p_drop) {
3056 PUT_STAT_S32(BLUE_TIMER_US,
3057 ktime_to_us(
3058 ktime_sub(now,
3059 flow->cvars.blue_timer)));
3060 }
3061 if (flow->cvars.dropping) {
3062 PUT_STAT_S32(DROP_NEXT_US,
3063 ktime_to_us(
3064 ktime_sub(now,
3065 flow->cvars.drop_next)));
3066 }
3067
3068 if (nla_nest_end(d->skb, stats) < 0)
3069 return -1;
3070 }
3071
3072 return 0;
3073
3074 nla_put_failure:
3075 nla_nest_cancel(d->skb, stats);
3076 return -1;
3077 }
3078
cake_walk(struct Qdisc * sch,struct qdisc_walker * arg)3079 static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
3080 {
3081 struct cake_sched_data *q = qdisc_priv(sch);
3082 unsigned int i, j;
3083
3084 if (arg->stop)
3085 return;
3086
3087 for (i = 0; i < q->tin_cnt; i++) {
3088 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
3089
3090 for (j = 0; j < CAKE_QUEUES; j++) {
3091 if (list_empty(&b->flows[j].flowchain)) {
3092 arg->count++;
3093 continue;
3094 }
3095 if (!tc_qdisc_stats_dump(sch, i * CAKE_QUEUES + j + 1,
3096 arg))
3097 break;
3098 }
3099 }
3100 }
3101
3102 static const struct Qdisc_class_ops cake_class_ops = {
3103 .leaf = cake_leaf,
3104 .find = cake_find,
3105 .tcf_block = cake_tcf_block,
3106 .bind_tcf = cake_bind,
3107 .unbind_tcf = cake_unbind,
3108 .dump = cake_dump_class,
3109 .dump_stats = cake_dump_class_stats,
3110 .walk = cake_walk,
3111 };
3112
3113 static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
3114 .cl_ops = &cake_class_ops,
3115 .id = "cake",
3116 .priv_size = sizeof(struct cake_sched_data),
3117 .enqueue = cake_enqueue,
3118 .dequeue = cake_dequeue,
3119 .peek = qdisc_peek_dequeued,
3120 .init = cake_init,
3121 .reset = cake_reset,
3122 .destroy = cake_destroy,
3123 .change = cake_change,
3124 .dump = cake_dump,
3125 .dump_stats = cake_dump_stats,
3126 .owner = THIS_MODULE,
3127 };
3128 MODULE_ALIAS_NET_SCH("cake");
3129
cake_module_init(void)3130 static int __init cake_module_init(void)
3131 {
3132 return register_qdisc(&cake_qdisc_ops);
3133 }
3134
cake_module_exit(void)3135 static void __exit cake_module_exit(void)
3136 {
3137 unregister_qdisc(&cake_qdisc_ops);
3138 }
3139
3140 module_init(cake_module_init)
3141 module_exit(cake_module_exit)
3142 MODULE_AUTHOR("Jonathan Morton");
3143 MODULE_LICENSE("Dual BSD/GPL");
3144 MODULE_DESCRIPTION("The CAKE shaper.");
3145