• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/net/intel/libie/rx.h>
5 
6 #include "iavf.h"
7 #include "iavf_prototype.h"
8 /* All iavf tracepoints are defined by the include below, which must
9  * be included exactly once across the whole kernel with
10  * CREATE_TRACE_POINTS defined
11  */
12 #define CREATE_TRACE_POINTS
13 #include "iavf_trace.h"
14 
15 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
16 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
17 static int iavf_close(struct net_device *netdev);
18 static void iavf_init_get_resources(struct iavf_adapter *adapter);
19 static int iavf_check_reset_complete(struct iavf_hw *hw);
20 
21 char iavf_driver_name[] = "iavf";
22 static const char iavf_driver_string[] =
23 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
24 
25 static const char iavf_copyright[] =
26 	"Copyright (c) 2013 - 2018 Intel Corporation.";
27 
28 /* iavf_pci_tbl - PCI Device ID Table
29  *
30  * Wildcard entries (PCI_ANY_ID) should come last
31  * Last entry must be all 0s
32  *
33  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
34  *   Class, Class Mask, private data (not used) }
35  */
36 static const struct pci_device_id iavf_pci_tbl[] = {
37 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
38 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
39 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
40 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
41 	/* required last entry */
42 	{0, }
43 };
44 
45 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
46 
47 MODULE_ALIAS("i40evf");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_IMPORT_NS(LIBETH);
50 MODULE_IMPORT_NS(LIBIE);
51 MODULE_LICENSE("GPL v2");
52 
53 static const struct net_device_ops iavf_netdev_ops;
54 
iavf_status_to_errno(enum iavf_status status)55 int iavf_status_to_errno(enum iavf_status status)
56 {
57 	switch (status) {
58 	case IAVF_SUCCESS:
59 		return 0;
60 	case IAVF_ERR_PARAM:
61 	case IAVF_ERR_MAC_TYPE:
62 	case IAVF_ERR_INVALID_MAC_ADDR:
63 	case IAVF_ERR_INVALID_LINK_SETTINGS:
64 	case IAVF_ERR_INVALID_PD_ID:
65 	case IAVF_ERR_INVALID_QP_ID:
66 	case IAVF_ERR_INVALID_CQ_ID:
67 	case IAVF_ERR_INVALID_CEQ_ID:
68 	case IAVF_ERR_INVALID_AEQ_ID:
69 	case IAVF_ERR_INVALID_SIZE:
70 	case IAVF_ERR_INVALID_ARP_INDEX:
71 	case IAVF_ERR_INVALID_FPM_FUNC_ID:
72 	case IAVF_ERR_QP_INVALID_MSG_SIZE:
73 	case IAVF_ERR_INVALID_FRAG_COUNT:
74 	case IAVF_ERR_INVALID_ALIGNMENT:
75 	case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
76 	case IAVF_ERR_INVALID_IMM_DATA_SIZE:
77 	case IAVF_ERR_INVALID_VF_ID:
78 	case IAVF_ERR_INVALID_HMCFN_ID:
79 	case IAVF_ERR_INVALID_PBLE_INDEX:
80 	case IAVF_ERR_INVALID_SD_INDEX:
81 	case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
82 	case IAVF_ERR_INVALID_SD_TYPE:
83 	case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
84 	case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
85 	case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
86 		return -EINVAL;
87 	case IAVF_ERR_NVM:
88 	case IAVF_ERR_NVM_CHECKSUM:
89 	case IAVF_ERR_PHY:
90 	case IAVF_ERR_CONFIG:
91 	case IAVF_ERR_UNKNOWN_PHY:
92 	case IAVF_ERR_LINK_SETUP:
93 	case IAVF_ERR_ADAPTER_STOPPED:
94 	case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
95 	case IAVF_ERR_AUTONEG_NOT_COMPLETE:
96 	case IAVF_ERR_RESET_FAILED:
97 	case IAVF_ERR_BAD_PTR:
98 	case IAVF_ERR_SWFW_SYNC:
99 	case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
100 	case IAVF_ERR_QUEUE_EMPTY:
101 	case IAVF_ERR_FLUSHED_QUEUE:
102 	case IAVF_ERR_OPCODE_MISMATCH:
103 	case IAVF_ERR_CQP_COMPL_ERROR:
104 	case IAVF_ERR_BACKING_PAGE_ERROR:
105 	case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
106 	case IAVF_ERR_MEMCPY_FAILED:
107 	case IAVF_ERR_SRQ_ENABLED:
108 	case IAVF_ERR_ADMIN_QUEUE_ERROR:
109 	case IAVF_ERR_ADMIN_QUEUE_FULL:
110 	case IAVF_ERR_BAD_RDMA_CQE:
111 	case IAVF_ERR_NVM_BLANK_MODE:
112 	case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
113 	case IAVF_ERR_DIAG_TEST_FAILED:
114 	case IAVF_ERR_FIRMWARE_API_VERSION:
115 	case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
116 		return -EIO;
117 	case IAVF_ERR_DEVICE_NOT_SUPPORTED:
118 		return -ENODEV;
119 	case IAVF_ERR_NO_AVAILABLE_VSI:
120 	case IAVF_ERR_RING_FULL:
121 		return -ENOSPC;
122 	case IAVF_ERR_NO_MEMORY:
123 		return -ENOMEM;
124 	case IAVF_ERR_TIMEOUT:
125 	case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
126 		return -ETIMEDOUT;
127 	case IAVF_ERR_NOT_IMPLEMENTED:
128 	case IAVF_NOT_SUPPORTED:
129 		return -EOPNOTSUPP;
130 	case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
131 		return -EALREADY;
132 	case IAVF_ERR_NOT_READY:
133 		return -EBUSY;
134 	case IAVF_ERR_BUF_TOO_SHORT:
135 		return -EMSGSIZE;
136 	}
137 
138 	return -EIO;
139 }
140 
virtchnl_status_to_errno(enum virtchnl_status_code v_status)141 int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
142 {
143 	switch (v_status) {
144 	case VIRTCHNL_STATUS_SUCCESS:
145 		return 0;
146 	case VIRTCHNL_STATUS_ERR_PARAM:
147 	case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
148 		return -EINVAL;
149 	case VIRTCHNL_STATUS_ERR_NO_MEMORY:
150 		return -ENOMEM;
151 	case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
152 	case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
153 	case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
154 		return -EIO;
155 	case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
156 		return -EOPNOTSUPP;
157 	}
158 
159 	return -EIO;
160 }
161 
162 /**
163  * iavf_pdev_to_adapter - go from pci_dev to adapter
164  * @pdev: pci_dev pointer
165  */
iavf_pdev_to_adapter(struct pci_dev * pdev)166 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
167 {
168 	return netdev_priv(pci_get_drvdata(pdev));
169 }
170 
171 /**
172  * iavf_is_reset_in_progress - Check if a reset is in progress
173  * @adapter: board private structure
174  */
iavf_is_reset_in_progress(struct iavf_adapter * adapter)175 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
176 {
177 	if (adapter->state == __IAVF_RESETTING ||
178 	    adapter->flags & (IAVF_FLAG_RESET_PENDING |
179 			      IAVF_FLAG_RESET_NEEDED))
180 		return true;
181 
182 	return false;
183 }
184 
185 /**
186  * iavf_wait_for_reset - Wait for reset to finish.
187  * @adapter: board private structure
188  *
189  * Returns 0 if reset finished successfully, negative on timeout or interrupt.
190  */
iavf_wait_for_reset(struct iavf_adapter * adapter)191 int iavf_wait_for_reset(struct iavf_adapter *adapter)
192 {
193 	int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
194 					!iavf_is_reset_in_progress(adapter),
195 					msecs_to_jiffies(5000));
196 
197 	/* If ret < 0 then it means wait was interrupted.
198 	 * If ret == 0 then it means we got a timeout while waiting
199 	 * for reset to finish.
200 	 * If ret > 0 it means reset has finished.
201 	 */
202 	if (ret > 0)
203 		return 0;
204 	else if (ret < 0)
205 		return -EINTR;
206 	else
207 		return -EBUSY;
208 }
209 
210 /**
211  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
212  * @hw:   pointer to the HW structure
213  * @mem:  ptr to mem struct to fill out
214  * @size: size of memory requested
215  * @alignment: what to align the allocation to
216  **/
iavf_allocate_dma_mem_d(struct iavf_hw * hw,struct iavf_dma_mem * mem,u64 size,u32 alignment)217 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
218 					 struct iavf_dma_mem *mem,
219 					 u64 size, u32 alignment)
220 {
221 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
222 
223 	if (!mem)
224 		return IAVF_ERR_PARAM;
225 
226 	mem->size = ALIGN(size, alignment);
227 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
228 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
229 	if (mem->va)
230 		return 0;
231 	else
232 		return IAVF_ERR_NO_MEMORY;
233 }
234 
235 /**
236  * iavf_free_dma_mem - wrapper for DMA memory freeing
237  * @hw:   pointer to the HW structure
238  * @mem:  ptr to mem struct to free
239  **/
iavf_free_dma_mem(struct iavf_hw * hw,struct iavf_dma_mem * mem)240 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
241 {
242 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
243 
244 	if (!mem || !mem->va)
245 		return IAVF_ERR_PARAM;
246 	dma_free_coherent(&adapter->pdev->dev, mem->size,
247 			  mem->va, (dma_addr_t)mem->pa);
248 	return 0;
249 }
250 
251 /**
252  * iavf_allocate_virt_mem - virt memory alloc wrapper
253  * @hw:   pointer to the HW structure
254  * @mem:  ptr to mem struct to fill out
255  * @size: size of memory requested
256  **/
iavf_allocate_virt_mem(struct iavf_hw * hw,struct iavf_virt_mem * mem,u32 size)257 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
258 					struct iavf_virt_mem *mem, u32 size)
259 {
260 	if (!mem)
261 		return IAVF_ERR_PARAM;
262 
263 	mem->size = size;
264 	mem->va = kzalloc(size, GFP_KERNEL);
265 
266 	if (mem->va)
267 		return 0;
268 	else
269 		return IAVF_ERR_NO_MEMORY;
270 }
271 
272 /**
273  * iavf_free_virt_mem - virt memory free wrapper
274  * @hw:   pointer to the HW structure
275  * @mem:  ptr to mem struct to free
276  **/
iavf_free_virt_mem(struct iavf_hw * hw,struct iavf_virt_mem * mem)277 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
278 {
279 	kfree(mem->va);
280 }
281 
282 /**
283  * iavf_schedule_reset - Set the flags and schedule a reset event
284  * @adapter: board private structure
285  * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
286  **/
iavf_schedule_reset(struct iavf_adapter * adapter,u64 flags)287 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
288 {
289 	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
290 	    !(adapter->flags &
291 	    (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
292 		adapter->flags |= flags;
293 		queue_work(adapter->wq, &adapter->reset_task);
294 	}
295 }
296 
297 /**
298  * iavf_schedule_aq_request - Set the flags and schedule aq request
299  * @adapter: board private structure
300  * @flags: requested aq flags
301  **/
iavf_schedule_aq_request(struct iavf_adapter * adapter,u64 flags)302 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
303 {
304 	adapter->aq_required |= flags;
305 	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
306 }
307 
308 /**
309  * iavf_tx_timeout - Respond to a Tx Hang
310  * @netdev: network interface device structure
311  * @txqueue: queue number that is timing out
312  **/
iavf_tx_timeout(struct net_device * netdev,unsigned int txqueue)313 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
314 {
315 	struct iavf_adapter *adapter = netdev_priv(netdev);
316 
317 	adapter->tx_timeout_count++;
318 	iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
319 }
320 
321 /**
322  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
323  * @adapter: board private structure
324  **/
iavf_misc_irq_disable(struct iavf_adapter * adapter)325 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
326 {
327 	struct iavf_hw *hw = &adapter->hw;
328 
329 	if (!adapter->msix_entries)
330 		return;
331 
332 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
333 
334 	iavf_flush(hw);
335 
336 	synchronize_irq(adapter->msix_entries[0].vector);
337 }
338 
339 /**
340  * iavf_misc_irq_enable - Enable default interrupt generation settings
341  * @adapter: board private structure
342  **/
iavf_misc_irq_enable(struct iavf_adapter * adapter)343 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
344 {
345 	struct iavf_hw *hw = &adapter->hw;
346 
347 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
348 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
349 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
350 
351 	iavf_flush(hw);
352 }
353 
354 /**
355  * iavf_irq_disable - Mask off interrupt generation on the NIC
356  * @adapter: board private structure
357  **/
iavf_irq_disable(struct iavf_adapter * adapter)358 static void iavf_irq_disable(struct iavf_adapter *adapter)
359 {
360 	int i;
361 	struct iavf_hw *hw = &adapter->hw;
362 
363 	if (!adapter->msix_entries)
364 		return;
365 
366 	for (i = 1; i < adapter->num_msix_vectors; i++) {
367 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
368 		synchronize_irq(adapter->msix_entries[i].vector);
369 	}
370 	iavf_flush(hw);
371 }
372 
373 /**
374  * iavf_irq_enable_queues - Enable interrupt for all queues
375  * @adapter: board private structure
376  **/
iavf_irq_enable_queues(struct iavf_adapter * adapter)377 static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
378 {
379 	struct iavf_hw *hw = &adapter->hw;
380 	int i;
381 
382 	for (i = 1; i < adapter->num_msix_vectors; i++) {
383 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
384 		     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
385 		     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
386 	}
387 }
388 
389 /**
390  * iavf_irq_enable - Enable default interrupt generation settings
391  * @adapter: board private structure
392  * @flush: boolean value whether to run rd32()
393  **/
iavf_irq_enable(struct iavf_adapter * adapter,bool flush)394 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
395 {
396 	struct iavf_hw *hw = &adapter->hw;
397 
398 	iavf_misc_irq_enable(adapter);
399 	iavf_irq_enable_queues(adapter);
400 
401 	if (flush)
402 		iavf_flush(hw);
403 }
404 
405 /**
406  * iavf_msix_aq - Interrupt handler for vector 0
407  * @irq: interrupt number
408  * @data: pointer to netdev
409  **/
iavf_msix_aq(int irq,void * data)410 static irqreturn_t iavf_msix_aq(int irq, void *data)
411 {
412 	struct net_device *netdev = data;
413 	struct iavf_adapter *adapter = netdev_priv(netdev);
414 	struct iavf_hw *hw = &adapter->hw;
415 
416 	/* handle non-queue interrupts, these reads clear the registers */
417 	rd32(hw, IAVF_VFINT_ICR01);
418 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
419 
420 	if (adapter->state != __IAVF_REMOVE)
421 		/* schedule work on the private workqueue */
422 		queue_work(adapter->wq, &adapter->adminq_task);
423 
424 	return IRQ_HANDLED;
425 }
426 
427 /**
428  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
429  * @irq: interrupt number
430  * @data: pointer to a q_vector
431  **/
iavf_msix_clean_rings(int irq,void * data)432 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
433 {
434 	struct iavf_q_vector *q_vector = data;
435 
436 	if (!q_vector->tx.ring && !q_vector->rx.ring)
437 		return IRQ_HANDLED;
438 
439 	napi_schedule_irqoff(&q_vector->napi);
440 
441 	return IRQ_HANDLED;
442 }
443 
444 /**
445  * iavf_map_vector_to_rxq - associate irqs with rx queues
446  * @adapter: board private structure
447  * @v_idx: interrupt number
448  * @r_idx: queue number
449  **/
450 static void
iavf_map_vector_to_rxq(struct iavf_adapter * adapter,int v_idx,int r_idx)451 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
452 {
453 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
454 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
455 	struct iavf_hw *hw = &adapter->hw;
456 
457 	rx_ring->q_vector = q_vector;
458 	rx_ring->next = q_vector->rx.ring;
459 	rx_ring->vsi = &adapter->vsi;
460 	q_vector->rx.ring = rx_ring;
461 	q_vector->rx.count++;
462 	q_vector->rx.next_update = jiffies + 1;
463 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
464 	q_vector->ring_mask |= BIT(r_idx);
465 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
466 	     q_vector->rx.current_itr >> 1);
467 	q_vector->rx.current_itr = q_vector->rx.target_itr;
468 }
469 
470 /**
471  * iavf_map_vector_to_txq - associate irqs with tx queues
472  * @adapter: board private structure
473  * @v_idx: interrupt number
474  * @t_idx: queue number
475  **/
476 static void
iavf_map_vector_to_txq(struct iavf_adapter * adapter,int v_idx,int t_idx)477 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
478 {
479 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
480 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
481 	struct iavf_hw *hw = &adapter->hw;
482 
483 	tx_ring->q_vector = q_vector;
484 	tx_ring->next = q_vector->tx.ring;
485 	tx_ring->vsi = &adapter->vsi;
486 	q_vector->tx.ring = tx_ring;
487 	q_vector->tx.count++;
488 	q_vector->tx.next_update = jiffies + 1;
489 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
490 	q_vector->num_ringpairs++;
491 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
492 	     q_vector->tx.target_itr >> 1);
493 	q_vector->tx.current_itr = q_vector->tx.target_itr;
494 }
495 
496 /**
497  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
498  * @adapter: board private structure to initialize
499  *
500  * This function maps descriptor rings to the queue-specific vectors
501  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
502  * one vector per ring/queue, but on a constrained vector budget, we
503  * group the rings as "efficiently" as possible.  You would add new
504  * mapping configurations in here.
505  **/
iavf_map_rings_to_vectors(struct iavf_adapter * adapter)506 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
507 {
508 	int rings_remaining = adapter->num_active_queues;
509 	int ridx = 0, vidx = 0;
510 	int q_vectors;
511 
512 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
513 
514 	for (; ridx < rings_remaining; ridx++) {
515 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
516 		iavf_map_vector_to_txq(adapter, vidx, ridx);
517 
518 		/* In the case where we have more queues than vectors, continue
519 		 * round-robin on vectors until all queues are mapped.
520 		 */
521 		if (++vidx >= q_vectors)
522 			vidx = 0;
523 	}
524 
525 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
526 }
527 
528 /**
529  * iavf_irq_affinity_notify - Callback for affinity changes
530  * @notify: context as to what irq was changed
531  * @mask: the new affinity mask
532  *
533  * This is a callback function used by the irq_set_affinity_notifier function
534  * so that we may register to receive changes to the irq affinity masks.
535  **/
iavf_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)536 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
537 				     const cpumask_t *mask)
538 {
539 	struct iavf_q_vector *q_vector =
540 		container_of(notify, struct iavf_q_vector, affinity_notify);
541 
542 	cpumask_copy(&q_vector->affinity_mask, mask);
543 }
544 
545 /**
546  * iavf_irq_affinity_release - Callback for affinity notifier release
547  * @ref: internal core kernel usage
548  *
549  * This is a callback function used by the irq_set_affinity_notifier function
550  * to inform the current notification subscriber that they will no longer
551  * receive notifications.
552  **/
iavf_irq_affinity_release(struct kref * ref)553 static void iavf_irq_affinity_release(struct kref *ref) {}
554 
555 /**
556  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
557  * @adapter: board private structure
558  * @basename: device basename
559  *
560  * Allocates MSI-X vectors for tx and rx handling, and requests
561  * interrupts from the kernel.
562  **/
563 static int
iavf_request_traffic_irqs(struct iavf_adapter * adapter,char * basename)564 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
565 {
566 	unsigned int vector, q_vectors;
567 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
568 	int irq_num, err;
569 	int cpu;
570 
571 	iavf_irq_disable(adapter);
572 	/* Decrement for Other and TCP Timer vectors */
573 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
574 
575 	for (vector = 0; vector < q_vectors; vector++) {
576 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
577 
578 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
579 
580 		if (q_vector->tx.ring && q_vector->rx.ring) {
581 			snprintf(q_vector->name, sizeof(q_vector->name),
582 				 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
583 			tx_int_idx++;
584 		} else if (q_vector->rx.ring) {
585 			snprintf(q_vector->name, sizeof(q_vector->name),
586 				 "iavf-%s-rx-%u", basename, rx_int_idx++);
587 		} else if (q_vector->tx.ring) {
588 			snprintf(q_vector->name, sizeof(q_vector->name),
589 				 "iavf-%s-tx-%u", basename, tx_int_idx++);
590 		} else {
591 			/* skip this unused q_vector */
592 			continue;
593 		}
594 		err = request_irq(irq_num,
595 				  iavf_msix_clean_rings,
596 				  0,
597 				  q_vector->name,
598 				  q_vector);
599 		if (err) {
600 			dev_info(&adapter->pdev->dev,
601 				 "Request_irq failed, error: %d\n", err);
602 			goto free_queue_irqs;
603 		}
604 		/* register for affinity change notifications */
605 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
606 		q_vector->affinity_notify.release =
607 						   iavf_irq_affinity_release;
608 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
609 		/* Spread the IRQ affinity hints across online CPUs. Note that
610 		 * get_cpu_mask returns a mask with a permanent lifetime so
611 		 * it's safe to use as a hint for irq_update_affinity_hint.
612 		 */
613 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
614 		irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
615 	}
616 
617 	return 0;
618 
619 free_queue_irqs:
620 	while (vector) {
621 		vector--;
622 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
623 		irq_set_affinity_notifier(irq_num, NULL);
624 		irq_update_affinity_hint(irq_num, NULL);
625 		free_irq(irq_num, &adapter->q_vectors[vector]);
626 	}
627 	return err;
628 }
629 
630 /**
631  * iavf_request_misc_irq - Initialize MSI-X interrupts
632  * @adapter: board private structure
633  *
634  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
635  * vector is only for the admin queue, and stays active even when the netdev
636  * is closed.
637  **/
iavf_request_misc_irq(struct iavf_adapter * adapter)638 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
639 {
640 	struct net_device *netdev = adapter->netdev;
641 	int err;
642 
643 	snprintf(adapter->misc_vector_name,
644 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
645 		 dev_name(&adapter->pdev->dev));
646 	err = request_irq(adapter->msix_entries[0].vector,
647 			  &iavf_msix_aq, 0,
648 			  adapter->misc_vector_name, netdev);
649 	if (err) {
650 		dev_err(&adapter->pdev->dev,
651 			"request_irq for %s failed: %d\n",
652 			adapter->misc_vector_name, err);
653 		free_irq(adapter->msix_entries[0].vector, netdev);
654 	}
655 	return err;
656 }
657 
658 /**
659  * iavf_free_traffic_irqs - Free MSI-X interrupts
660  * @adapter: board private structure
661  *
662  * Frees all MSI-X vectors other than 0.
663  **/
iavf_free_traffic_irqs(struct iavf_adapter * adapter)664 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
665 {
666 	int vector, irq_num, q_vectors;
667 
668 	if (!adapter->msix_entries)
669 		return;
670 
671 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
672 
673 	for (vector = 0; vector < q_vectors; vector++) {
674 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
675 		irq_set_affinity_notifier(irq_num, NULL);
676 		irq_update_affinity_hint(irq_num, NULL);
677 		free_irq(irq_num, &adapter->q_vectors[vector]);
678 	}
679 }
680 
681 /**
682  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
683  * @adapter: board private structure
684  *
685  * Frees MSI-X vector 0.
686  **/
iavf_free_misc_irq(struct iavf_adapter * adapter)687 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
688 {
689 	struct net_device *netdev = adapter->netdev;
690 
691 	if (!adapter->msix_entries)
692 		return;
693 
694 	free_irq(adapter->msix_entries[0].vector, netdev);
695 }
696 
697 /**
698  * iavf_configure_tx - Configure Transmit Unit after Reset
699  * @adapter: board private structure
700  *
701  * Configure the Tx unit of the MAC after a reset.
702  **/
iavf_configure_tx(struct iavf_adapter * adapter)703 static void iavf_configure_tx(struct iavf_adapter *adapter)
704 {
705 	struct iavf_hw *hw = &adapter->hw;
706 	int i;
707 
708 	for (i = 0; i < adapter->num_active_queues; i++)
709 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
710 }
711 
712 /**
713  * iavf_configure_rx - Configure Receive Unit after Reset
714  * @adapter: board private structure
715  *
716  * Configure the Rx unit of the MAC after a reset.
717  **/
iavf_configure_rx(struct iavf_adapter * adapter)718 static void iavf_configure_rx(struct iavf_adapter *adapter)
719 {
720 	struct iavf_hw *hw = &adapter->hw;
721 
722 	for (u32 i = 0; i < adapter->num_active_queues; i++)
723 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
724 }
725 
726 /**
727  * iavf_find_vlan - Search filter list for specific vlan filter
728  * @adapter: board private structure
729  * @vlan: vlan tag
730  *
731  * Returns ptr to the filter object or NULL. Must be called while holding the
732  * mac_vlan_list_lock.
733  **/
734 static struct
iavf_find_vlan(struct iavf_adapter * adapter,struct iavf_vlan vlan)735 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
736 				 struct iavf_vlan vlan)
737 {
738 	struct iavf_vlan_filter *f;
739 
740 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
741 		if (f->vlan.vid == vlan.vid &&
742 		    f->vlan.tpid == vlan.tpid)
743 			return f;
744 	}
745 
746 	return NULL;
747 }
748 
749 /**
750  * iavf_add_vlan - Add a vlan filter to the list
751  * @adapter: board private structure
752  * @vlan: VLAN tag
753  *
754  * Returns ptr to the filter object or NULL when no memory available.
755  **/
756 static struct
iavf_add_vlan(struct iavf_adapter * adapter,struct iavf_vlan vlan)757 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
758 				struct iavf_vlan vlan)
759 {
760 	struct iavf_vlan_filter *f = NULL;
761 
762 	spin_lock_bh(&adapter->mac_vlan_list_lock);
763 
764 	f = iavf_find_vlan(adapter, vlan);
765 	if (!f) {
766 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
767 		if (!f)
768 			goto clearout;
769 
770 		f->vlan = vlan;
771 
772 		list_add_tail(&f->list, &adapter->vlan_filter_list);
773 		f->state = IAVF_VLAN_ADD;
774 		adapter->num_vlan_filters++;
775 		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
776 	} else if (f->state == IAVF_VLAN_REMOVE) {
777 		/* IAVF_VLAN_REMOVE means that VLAN wasn't yet removed.
778 		 * We can safely only change the state here.
779 		 */
780 		f->state = IAVF_VLAN_ACTIVE;
781 	}
782 
783 clearout:
784 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
785 	return f;
786 }
787 
788 /**
789  * iavf_del_vlan - Remove a vlan filter from the list
790  * @adapter: board private structure
791  * @vlan: VLAN tag
792  **/
iavf_del_vlan(struct iavf_adapter * adapter,struct iavf_vlan vlan)793 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
794 {
795 	struct iavf_vlan_filter *f;
796 
797 	spin_lock_bh(&adapter->mac_vlan_list_lock);
798 
799 	f = iavf_find_vlan(adapter, vlan);
800 	if (f) {
801 		/* IAVF_ADD_VLAN means that VLAN wasn't even added yet.
802 		 * Remove it from the list.
803 		 */
804 		if (f->state == IAVF_VLAN_ADD) {
805 			list_del(&f->list);
806 			kfree(f);
807 			adapter->num_vlan_filters--;
808 		} else {
809 			f->state = IAVF_VLAN_REMOVE;
810 			iavf_schedule_aq_request(adapter,
811 						 IAVF_FLAG_AQ_DEL_VLAN_FILTER);
812 		}
813 	}
814 
815 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
816 }
817 
818 /**
819  * iavf_restore_filters
820  * @adapter: board private structure
821  *
822  * Restore existing non MAC filters when VF netdev comes back up
823  **/
iavf_restore_filters(struct iavf_adapter * adapter)824 static void iavf_restore_filters(struct iavf_adapter *adapter)
825 {
826 	struct iavf_vlan_filter *f;
827 
828 	/* re-add all VLAN filters */
829 	spin_lock_bh(&adapter->mac_vlan_list_lock);
830 
831 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
832 		if (f->state == IAVF_VLAN_INACTIVE)
833 			f->state = IAVF_VLAN_ADD;
834 	}
835 
836 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
837 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
838 }
839 
840 /**
841  * iavf_get_num_vlans_added - get number of VLANs added
842  * @adapter: board private structure
843  */
iavf_get_num_vlans_added(struct iavf_adapter * adapter)844 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
845 {
846 	return adapter->num_vlan_filters;
847 }
848 
849 /**
850  * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
851  * @adapter: board private structure
852  *
853  * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
854  * do not impose a limit as that maintains current behavior and for
855  * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
856  **/
iavf_get_max_vlans_allowed(struct iavf_adapter * adapter)857 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
858 {
859 	/* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
860 	 * never been a limit on the VF driver side
861 	 */
862 	if (VLAN_ALLOWED(adapter))
863 		return VLAN_N_VID;
864 	else if (VLAN_V2_ALLOWED(adapter))
865 		return adapter->vlan_v2_caps.filtering.max_filters;
866 
867 	return 0;
868 }
869 
870 /**
871  * iavf_max_vlans_added - check if maximum VLANs allowed already exist
872  * @adapter: board private structure
873  **/
iavf_max_vlans_added(struct iavf_adapter * adapter)874 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
875 {
876 	if (iavf_get_num_vlans_added(adapter) <
877 	    iavf_get_max_vlans_allowed(adapter))
878 		return false;
879 
880 	return true;
881 }
882 
883 /**
884  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
885  * @netdev: network device struct
886  * @proto: unused protocol data
887  * @vid: VLAN tag
888  **/
iavf_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)889 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
890 				__always_unused __be16 proto, u16 vid)
891 {
892 	struct iavf_adapter *adapter = netdev_priv(netdev);
893 
894 	/* Do not track VLAN 0 filter, always added by the PF on VF init */
895 	if (!vid)
896 		return 0;
897 
898 	if (!VLAN_FILTERING_ALLOWED(adapter))
899 		return -EIO;
900 
901 	if (iavf_max_vlans_added(adapter)) {
902 		netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
903 			   iavf_get_max_vlans_allowed(adapter));
904 		return -EIO;
905 	}
906 
907 	if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
908 		return -ENOMEM;
909 
910 	return 0;
911 }
912 
913 /**
914  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
915  * @netdev: network device struct
916  * @proto: unused protocol data
917  * @vid: VLAN tag
918  **/
iavf_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)919 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
920 				 __always_unused __be16 proto, u16 vid)
921 {
922 	struct iavf_adapter *adapter = netdev_priv(netdev);
923 
924 	/* We do not track VLAN 0 filter */
925 	if (!vid)
926 		return 0;
927 
928 	iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
929 	return 0;
930 }
931 
932 /**
933  * iavf_find_filter - Search filter list for specific mac filter
934  * @adapter: board private structure
935  * @macaddr: the MAC address
936  *
937  * Returns ptr to the filter object or NULL. Must be called while holding the
938  * mac_vlan_list_lock.
939  **/
940 static struct
iavf_find_filter(struct iavf_adapter * adapter,const u8 * macaddr)941 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
942 				  const u8 *macaddr)
943 {
944 	struct iavf_mac_filter *f;
945 
946 	if (!macaddr)
947 		return NULL;
948 
949 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
950 		if (ether_addr_equal(macaddr, f->macaddr))
951 			return f;
952 	}
953 	return NULL;
954 }
955 
956 /**
957  * iavf_add_filter - Add a mac filter to the filter list
958  * @adapter: board private structure
959  * @macaddr: the MAC address
960  *
961  * Returns ptr to the filter object or NULL when no memory available.
962  **/
iavf_add_filter(struct iavf_adapter * adapter,const u8 * macaddr)963 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
964 					const u8 *macaddr)
965 {
966 	struct iavf_mac_filter *f;
967 
968 	if (!macaddr)
969 		return NULL;
970 
971 	f = iavf_find_filter(adapter, macaddr);
972 	if (!f) {
973 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
974 		if (!f)
975 			return f;
976 
977 		ether_addr_copy(f->macaddr, macaddr);
978 
979 		list_add_tail(&f->list, &adapter->mac_filter_list);
980 		f->add = true;
981 		f->add_handled = false;
982 		f->is_new_mac = true;
983 		f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
984 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
985 	} else {
986 		f->remove = false;
987 	}
988 
989 	return f;
990 }
991 
992 /**
993  * iavf_replace_primary_mac - Replace current primary address
994  * @adapter: board private structure
995  * @new_mac: new MAC address to be applied
996  *
997  * Replace current dev_addr and send request to PF for removal of previous
998  * primary MAC address filter and addition of new primary MAC filter.
999  * Return 0 for success, -ENOMEM for failure.
1000  *
1001  * Do not call this with mac_vlan_list_lock!
1002  **/
iavf_replace_primary_mac(struct iavf_adapter * adapter,const u8 * new_mac)1003 static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1004 				    const u8 *new_mac)
1005 {
1006 	struct iavf_hw *hw = &adapter->hw;
1007 	struct iavf_mac_filter *new_f;
1008 	struct iavf_mac_filter *old_f;
1009 
1010 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1011 
1012 	new_f = iavf_add_filter(adapter, new_mac);
1013 	if (!new_f) {
1014 		spin_unlock_bh(&adapter->mac_vlan_list_lock);
1015 		return -ENOMEM;
1016 	}
1017 
1018 	old_f = iavf_find_filter(adapter, hw->mac.addr);
1019 	if (old_f) {
1020 		old_f->is_primary = false;
1021 		old_f->remove = true;
1022 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1023 	}
1024 	/* Always send the request to add if changing primary MAC,
1025 	 * even if filter is already present on the list
1026 	 */
1027 	new_f->is_primary = true;
1028 	new_f->add = true;
1029 	ether_addr_copy(hw->mac.addr, new_mac);
1030 
1031 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1032 
1033 	/* schedule the watchdog task to immediately process the request */
1034 	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER);
1035 	return 0;
1036 }
1037 
1038 /**
1039  * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1040  * @netdev: network interface device structure
1041  * @macaddr: MAC address to set
1042  *
1043  * Returns true on success, false on failure
1044  */
iavf_is_mac_set_handled(struct net_device * netdev,const u8 * macaddr)1045 static bool iavf_is_mac_set_handled(struct net_device *netdev,
1046 				    const u8 *macaddr)
1047 {
1048 	struct iavf_adapter *adapter = netdev_priv(netdev);
1049 	struct iavf_mac_filter *f;
1050 	bool ret = false;
1051 
1052 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1053 
1054 	f = iavf_find_filter(adapter, macaddr);
1055 
1056 	if (!f || (!f->add && f->add_handled))
1057 		ret = true;
1058 
1059 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1060 
1061 	return ret;
1062 }
1063 
1064 /**
1065  * iavf_set_mac - NDO callback to set port MAC address
1066  * @netdev: network interface device structure
1067  * @p: pointer to an address structure
1068  *
1069  * Returns 0 on success, negative on failure
1070  */
iavf_set_mac(struct net_device * netdev,void * p)1071 static int iavf_set_mac(struct net_device *netdev, void *p)
1072 {
1073 	struct iavf_adapter *adapter = netdev_priv(netdev);
1074 	struct sockaddr *addr = p;
1075 	int ret;
1076 
1077 	if (!is_valid_ether_addr(addr->sa_data))
1078 		return -EADDRNOTAVAIL;
1079 
1080 	ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1081 
1082 	if (ret)
1083 		return ret;
1084 
1085 	ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1086 					       iavf_is_mac_set_handled(netdev, addr->sa_data),
1087 					       msecs_to_jiffies(2500));
1088 
1089 	/* If ret < 0 then it means wait was interrupted.
1090 	 * If ret == 0 then it means we got a timeout.
1091 	 * else it means we got response for set MAC from PF,
1092 	 * check if netdev MAC was updated to requested MAC,
1093 	 * if yes then set MAC succeeded otherwise it failed return -EACCES
1094 	 */
1095 	if (ret < 0)
1096 		return ret;
1097 
1098 	if (!ret)
1099 		return -EAGAIN;
1100 
1101 	if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1102 		return -EACCES;
1103 
1104 	return 0;
1105 }
1106 
1107 /**
1108  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1109  * @netdev: the netdevice
1110  * @addr: address to add
1111  *
1112  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1113  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1114  */
iavf_addr_sync(struct net_device * netdev,const u8 * addr)1115 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1116 {
1117 	struct iavf_adapter *adapter = netdev_priv(netdev);
1118 
1119 	if (iavf_add_filter(adapter, addr))
1120 		return 0;
1121 	else
1122 		return -ENOMEM;
1123 }
1124 
1125 /**
1126  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1127  * @netdev: the netdevice
1128  * @addr: address to add
1129  *
1130  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1131  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1132  */
iavf_addr_unsync(struct net_device * netdev,const u8 * addr)1133 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1134 {
1135 	struct iavf_adapter *adapter = netdev_priv(netdev);
1136 	struct iavf_mac_filter *f;
1137 
1138 	/* Under some circumstances, we might receive a request to delete
1139 	 * our own device address from our uc list. Because we store the
1140 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1141 	 * such requests and not delete our device address from this list.
1142 	 */
1143 	if (ether_addr_equal(addr, netdev->dev_addr))
1144 		return 0;
1145 
1146 	f = iavf_find_filter(adapter, addr);
1147 	if (f) {
1148 		f->remove = true;
1149 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1150 	}
1151 	return 0;
1152 }
1153 
1154 /**
1155  * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1156  * @adapter: device specific adapter
1157  */
iavf_promiscuous_mode_changed(struct iavf_adapter * adapter)1158 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1159 {
1160 	return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1161 		(IFF_PROMISC | IFF_ALLMULTI);
1162 }
1163 
1164 /**
1165  * iavf_set_rx_mode - NDO callback to set the netdev filters
1166  * @netdev: network interface device structure
1167  **/
iavf_set_rx_mode(struct net_device * netdev)1168 static void iavf_set_rx_mode(struct net_device *netdev)
1169 {
1170 	struct iavf_adapter *adapter = netdev_priv(netdev);
1171 
1172 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1173 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1174 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1175 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1176 
1177 	spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1178 	if (iavf_promiscuous_mode_changed(adapter))
1179 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1180 	spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1181 }
1182 
1183 /**
1184  * iavf_napi_enable_all - enable NAPI on all queue vectors
1185  * @adapter: board private structure
1186  **/
iavf_napi_enable_all(struct iavf_adapter * adapter)1187 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1188 {
1189 	int q_idx;
1190 	struct iavf_q_vector *q_vector;
1191 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1192 
1193 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1194 		struct napi_struct *napi;
1195 
1196 		q_vector = &adapter->q_vectors[q_idx];
1197 		napi = &q_vector->napi;
1198 		napi_enable(napi);
1199 	}
1200 }
1201 
1202 /**
1203  * iavf_napi_disable_all - disable NAPI on all queue vectors
1204  * @adapter: board private structure
1205  **/
iavf_napi_disable_all(struct iavf_adapter * adapter)1206 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1207 {
1208 	int q_idx;
1209 	struct iavf_q_vector *q_vector;
1210 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1211 
1212 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1213 		q_vector = &adapter->q_vectors[q_idx];
1214 		napi_disable(&q_vector->napi);
1215 	}
1216 }
1217 
1218 /**
1219  * iavf_configure - set up transmit and receive data structures
1220  * @adapter: board private structure
1221  **/
iavf_configure(struct iavf_adapter * adapter)1222 static void iavf_configure(struct iavf_adapter *adapter)
1223 {
1224 	struct net_device *netdev = adapter->netdev;
1225 	int i;
1226 
1227 	iavf_set_rx_mode(netdev);
1228 
1229 	iavf_configure_tx(adapter);
1230 	iavf_configure_rx(adapter);
1231 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1232 
1233 	for (i = 0; i < adapter->num_active_queues; i++) {
1234 		struct iavf_ring *ring = &adapter->rx_rings[i];
1235 
1236 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1237 	}
1238 }
1239 
1240 /**
1241  * iavf_up_complete - Finish the last steps of bringing up a connection
1242  * @adapter: board private structure
1243  *
1244  * Expects to be called while holding crit_lock.
1245  **/
iavf_up_complete(struct iavf_adapter * adapter)1246 static void iavf_up_complete(struct iavf_adapter *adapter)
1247 {
1248 	iavf_change_state(adapter, __IAVF_RUNNING);
1249 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1250 
1251 	iavf_napi_enable_all(adapter);
1252 
1253 	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES);
1254 }
1255 
1256 /**
1257  * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1258  * yet and mark other to be removed.
1259  * @adapter: board private structure
1260  **/
iavf_clear_mac_vlan_filters(struct iavf_adapter * adapter)1261 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1262 {
1263 	struct iavf_vlan_filter *vlf, *vlftmp;
1264 	struct iavf_mac_filter *f, *ftmp;
1265 
1266 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1267 	/* clear the sync flag on all filters */
1268 	__dev_uc_unsync(adapter->netdev, NULL);
1269 	__dev_mc_unsync(adapter->netdev, NULL);
1270 
1271 	/* remove all MAC filters */
1272 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1273 				 list) {
1274 		if (f->add) {
1275 			list_del(&f->list);
1276 			kfree(f);
1277 		} else {
1278 			f->remove = true;
1279 		}
1280 	}
1281 
1282 	/* disable all VLAN filters */
1283 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1284 				 list)
1285 		vlf->state = IAVF_VLAN_DISABLE;
1286 
1287 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1288 }
1289 
1290 /**
1291  * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1292  * mark other to be removed.
1293  * @adapter: board private structure
1294  **/
iavf_clear_cloud_filters(struct iavf_adapter * adapter)1295 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1296 {
1297 	struct iavf_cloud_filter *cf, *cftmp;
1298 
1299 	/* remove all cloud filters */
1300 	spin_lock_bh(&adapter->cloud_filter_list_lock);
1301 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1302 				 list) {
1303 		if (cf->add) {
1304 			list_del(&cf->list);
1305 			kfree(cf);
1306 			adapter->num_cloud_filters--;
1307 		} else {
1308 			cf->del = true;
1309 		}
1310 	}
1311 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1312 }
1313 
1314 /**
1315  * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1316  * other to be removed.
1317  * @adapter: board private structure
1318  **/
iavf_clear_fdir_filters(struct iavf_adapter * adapter)1319 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1320 {
1321 	struct iavf_fdir_fltr *fdir;
1322 
1323 	/* remove all Flow Director filters */
1324 	spin_lock_bh(&adapter->fdir_fltr_lock);
1325 	list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1326 		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1327 			/* Cancel a request, keep filter as inactive */
1328 			fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1329 		} else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1330 			 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1331 			/* Disable filters which are active or have a pending
1332 			 * request to PF to be added
1333 			 */
1334 			fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1335 		}
1336 	}
1337 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1338 }
1339 
1340 /**
1341  * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1342  * other to be removed.
1343  * @adapter: board private structure
1344  **/
iavf_clear_adv_rss_conf(struct iavf_adapter * adapter)1345 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1346 {
1347 	struct iavf_adv_rss *rss, *rsstmp;
1348 
1349 	/* remove all advance RSS configuration */
1350 	spin_lock_bh(&adapter->adv_rss_lock);
1351 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1352 				 list) {
1353 		if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1354 			list_del(&rss->list);
1355 			kfree(rss);
1356 		} else {
1357 			rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1358 		}
1359 	}
1360 	spin_unlock_bh(&adapter->adv_rss_lock);
1361 }
1362 
1363 /**
1364  * iavf_down - Shutdown the connection processing
1365  * @adapter: board private structure
1366  *
1367  * Expects to be called while holding crit_lock.
1368  **/
iavf_down(struct iavf_adapter * adapter)1369 void iavf_down(struct iavf_adapter *adapter)
1370 {
1371 	struct net_device *netdev = adapter->netdev;
1372 
1373 	if (adapter->state <= __IAVF_DOWN_PENDING)
1374 		return;
1375 
1376 	netif_carrier_off(netdev);
1377 	netif_tx_disable(netdev);
1378 	adapter->link_up = false;
1379 	iavf_napi_disable_all(adapter);
1380 	iavf_irq_disable(adapter);
1381 
1382 	iavf_clear_mac_vlan_filters(adapter);
1383 	iavf_clear_cloud_filters(adapter);
1384 	iavf_clear_fdir_filters(adapter);
1385 	iavf_clear_adv_rss_conf(adapter);
1386 
1387 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1388 		return;
1389 
1390 	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1391 		/* cancel any current operation */
1392 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1393 		/* Schedule operations to close down the HW. Don't wait
1394 		 * here for this to complete. The watchdog is still running
1395 		 * and it will take care of this.
1396 		 */
1397 		if (!list_empty(&adapter->mac_filter_list))
1398 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1399 		if (!list_empty(&adapter->vlan_filter_list))
1400 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1401 		if (!list_empty(&adapter->cloud_filter_list))
1402 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1403 		if (!list_empty(&adapter->fdir_list_head))
1404 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1405 		if (!list_empty(&adapter->adv_rss_list_head))
1406 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1407 	}
1408 
1409 	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES);
1410 }
1411 
1412 /**
1413  * iavf_acquire_msix_vectors - Setup the MSIX capability
1414  * @adapter: board private structure
1415  * @vectors: number of vectors to request
1416  *
1417  * Work with the OS to set up the MSIX vectors needed.
1418  *
1419  * Returns 0 on success, negative on failure
1420  **/
1421 static int
iavf_acquire_msix_vectors(struct iavf_adapter * adapter,int vectors)1422 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1423 {
1424 	int err, vector_threshold;
1425 
1426 	/* We'll want at least 3 (vector_threshold):
1427 	 * 0) Other (Admin Queue and link, mostly)
1428 	 * 1) TxQ[0] Cleanup
1429 	 * 2) RxQ[0] Cleanup
1430 	 */
1431 	vector_threshold = MIN_MSIX_COUNT;
1432 
1433 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1434 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1435 	 * Right now, we simply care about how many we'll get; we'll
1436 	 * set them up later while requesting irq's.
1437 	 */
1438 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1439 				    vector_threshold, vectors);
1440 	if (err < 0) {
1441 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1442 		kfree(adapter->msix_entries);
1443 		adapter->msix_entries = NULL;
1444 		return err;
1445 	}
1446 
1447 	/* Adjust for only the vectors we'll use, which is minimum
1448 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1449 	 * vectors we were allocated.
1450 	 */
1451 	adapter->num_msix_vectors = err;
1452 	return 0;
1453 }
1454 
1455 /**
1456  * iavf_free_queues - Free memory for all rings
1457  * @adapter: board private structure to initialize
1458  *
1459  * Free all of the memory associated with queue pairs.
1460  **/
iavf_free_queues(struct iavf_adapter * adapter)1461 static void iavf_free_queues(struct iavf_adapter *adapter)
1462 {
1463 	if (!adapter->vsi_res)
1464 		return;
1465 	adapter->num_active_queues = 0;
1466 	kfree(adapter->tx_rings);
1467 	adapter->tx_rings = NULL;
1468 	kfree(adapter->rx_rings);
1469 	adapter->rx_rings = NULL;
1470 }
1471 
1472 /**
1473  * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1474  * @adapter: board private structure
1475  *
1476  * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1477  * stripped in certain descriptor fields. Instead of checking the offload
1478  * capability bits in the hot path, cache the location the ring specific
1479  * flags.
1480  */
iavf_set_queue_vlan_tag_loc(struct iavf_adapter * adapter)1481 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1482 {
1483 	int i;
1484 
1485 	for (i = 0; i < adapter->num_active_queues; i++) {
1486 		struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1487 		struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1488 
1489 		/* prevent multiple L2TAG bits being set after VFR */
1490 		tx_ring->flags &=
1491 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1492 			  IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1493 		rx_ring->flags &=
1494 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1495 			  IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1496 
1497 		if (VLAN_ALLOWED(adapter)) {
1498 			tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1499 			rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1500 		} else if (VLAN_V2_ALLOWED(adapter)) {
1501 			struct virtchnl_vlan_supported_caps *stripping_support;
1502 			struct virtchnl_vlan_supported_caps *insertion_support;
1503 
1504 			stripping_support =
1505 				&adapter->vlan_v2_caps.offloads.stripping_support;
1506 			insertion_support =
1507 				&adapter->vlan_v2_caps.offloads.insertion_support;
1508 
1509 			if (stripping_support->outer) {
1510 				if (stripping_support->outer &
1511 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1512 					rx_ring->flags |=
1513 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1514 				else if (stripping_support->outer &
1515 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1516 					rx_ring->flags |=
1517 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1518 			} else if (stripping_support->inner) {
1519 				if (stripping_support->inner &
1520 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1521 					rx_ring->flags |=
1522 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1523 				else if (stripping_support->inner &
1524 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1525 					rx_ring->flags |=
1526 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1527 			}
1528 
1529 			if (insertion_support->outer) {
1530 				if (insertion_support->outer &
1531 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1532 					tx_ring->flags |=
1533 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1534 				else if (insertion_support->outer &
1535 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1536 					tx_ring->flags |=
1537 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1538 			} else if (insertion_support->inner) {
1539 				if (insertion_support->inner &
1540 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1541 					tx_ring->flags |=
1542 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1543 				else if (insertion_support->inner &
1544 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1545 					tx_ring->flags |=
1546 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1547 			}
1548 		}
1549 	}
1550 }
1551 
1552 /**
1553  * iavf_alloc_queues - Allocate memory for all rings
1554  * @adapter: board private structure to initialize
1555  *
1556  * We allocate one ring per queue at run-time since we don't know the
1557  * number of queues at compile-time.  The polling_netdev array is
1558  * intended for Multiqueue, but should work fine with a single queue.
1559  **/
iavf_alloc_queues(struct iavf_adapter * adapter)1560 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1561 {
1562 	int i, num_active_queues;
1563 
1564 	/* If we're in reset reallocating queues we don't actually know yet for
1565 	 * certain the PF gave us the number of queues we asked for but we'll
1566 	 * assume it did.  Once basic reset is finished we'll confirm once we
1567 	 * start negotiating config with PF.
1568 	 */
1569 	if (adapter->num_req_queues)
1570 		num_active_queues = adapter->num_req_queues;
1571 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1572 		 adapter->num_tc)
1573 		num_active_queues = adapter->ch_config.total_qps;
1574 	else
1575 		num_active_queues = min_t(int,
1576 					  adapter->vsi_res->num_queue_pairs,
1577 					  (int)(num_online_cpus()));
1578 
1579 
1580 	adapter->tx_rings = kcalloc(num_active_queues,
1581 				    sizeof(struct iavf_ring), GFP_KERNEL);
1582 	if (!adapter->tx_rings)
1583 		goto err_out;
1584 	adapter->rx_rings = kcalloc(num_active_queues,
1585 				    sizeof(struct iavf_ring), GFP_KERNEL);
1586 	if (!adapter->rx_rings)
1587 		goto err_out;
1588 
1589 	for (i = 0; i < num_active_queues; i++) {
1590 		struct iavf_ring *tx_ring;
1591 		struct iavf_ring *rx_ring;
1592 
1593 		tx_ring = &adapter->tx_rings[i];
1594 
1595 		tx_ring->queue_index = i;
1596 		tx_ring->netdev = adapter->netdev;
1597 		tx_ring->dev = &adapter->pdev->dev;
1598 		tx_ring->count = adapter->tx_desc_count;
1599 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1600 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1601 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1602 
1603 		rx_ring = &adapter->rx_rings[i];
1604 		rx_ring->queue_index = i;
1605 		rx_ring->netdev = adapter->netdev;
1606 		rx_ring->count = adapter->rx_desc_count;
1607 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1608 	}
1609 
1610 	adapter->num_active_queues = num_active_queues;
1611 
1612 	iavf_set_queue_vlan_tag_loc(adapter);
1613 
1614 	return 0;
1615 
1616 err_out:
1617 	iavf_free_queues(adapter);
1618 	return -ENOMEM;
1619 }
1620 
1621 /**
1622  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1623  * @adapter: board private structure to initialize
1624  *
1625  * Attempt to configure the interrupts using the best available
1626  * capabilities of the hardware and the kernel.
1627  **/
iavf_set_interrupt_capability(struct iavf_adapter * adapter)1628 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1629 {
1630 	int vector, v_budget;
1631 	int pairs = 0;
1632 	int err = 0;
1633 
1634 	if (!adapter->vsi_res) {
1635 		err = -EIO;
1636 		goto out;
1637 	}
1638 	pairs = adapter->num_active_queues;
1639 
1640 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1641 	 * us much good if we have more vectors than CPUs. However, we already
1642 	 * limit the total number of queues by the number of CPUs so we do not
1643 	 * need any further limiting here.
1644 	 */
1645 	v_budget = min_t(int, pairs + NONQ_VECS,
1646 			 (int)adapter->vf_res->max_vectors);
1647 
1648 	adapter->msix_entries = kcalloc(v_budget,
1649 					sizeof(struct msix_entry), GFP_KERNEL);
1650 	if (!adapter->msix_entries) {
1651 		err = -ENOMEM;
1652 		goto out;
1653 	}
1654 
1655 	for (vector = 0; vector < v_budget; vector++)
1656 		adapter->msix_entries[vector].entry = vector;
1657 
1658 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1659 	if (!err)
1660 		iavf_schedule_finish_config(adapter);
1661 
1662 out:
1663 	return err;
1664 }
1665 
1666 /**
1667  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1668  * @adapter: board private structure
1669  *
1670  * Return 0 on success, negative on failure
1671  **/
iavf_config_rss_aq(struct iavf_adapter * adapter)1672 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1673 {
1674 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1675 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1676 	struct iavf_hw *hw = &adapter->hw;
1677 	enum iavf_status status;
1678 
1679 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1680 		/* bail because we already have a command pending */
1681 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1682 			adapter->current_op);
1683 		return -EBUSY;
1684 	}
1685 
1686 	status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1687 	if (status) {
1688 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1689 			iavf_stat_str(hw, status),
1690 			iavf_aq_str(hw, hw->aq.asq_last_status));
1691 		return iavf_status_to_errno(status);
1692 
1693 	}
1694 
1695 	status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1696 				     adapter->rss_lut, adapter->rss_lut_size);
1697 	if (status) {
1698 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1699 			iavf_stat_str(hw, status),
1700 			iavf_aq_str(hw, hw->aq.asq_last_status));
1701 		return iavf_status_to_errno(status);
1702 	}
1703 
1704 	return 0;
1705 
1706 }
1707 
1708 /**
1709  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1710  * @adapter: board private structure
1711  *
1712  * Returns 0 on success, negative on failure
1713  **/
iavf_config_rss_reg(struct iavf_adapter * adapter)1714 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1715 {
1716 	struct iavf_hw *hw = &adapter->hw;
1717 	u32 *dw;
1718 	u16 i;
1719 
1720 	dw = (u32 *)adapter->rss_key;
1721 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1722 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1723 
1724 	dw = (u32 *)adapter->rss_lut;
1725 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1726 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1727 
1728 	iavf_flush(hw);
1729 
1730 	return 0;
1731 }
1732 
1733 /**
1734  * iavf_config_rss - Configure RSS keys and lut
1735  * @adapter: board private structure
1736  *
1737  * Returns 0 on success, negative on failure
1738  **/
iavf_config_rss(struct iavf_adapter * adapter)1739 int iavf_config_rss(struct iavf_adapter *adapter)
1740 {
1741 
1742 	if (RSS_PF(adapter)) {
1743 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1744 					IAVF_FLAG_AQ_SET_RSS_KEY;
1745 		return 0;
1746 	} else if (RSS_AQ(adapter)) {
1747 		return iavf_config_rss_aq(adapter);
1748 	} else {
1749 		return iavf_config_rss_reg(adapter);
1750 	}
1751 }
1752 
1753 /**
1754  * iavf_fill_rss_lut - Fill the lut with default values
1755  * @adapter: board private structure
1756  **/
iavf_fill_rss_lut(struct iavf_adapter * adapter)1757 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1758 {
1759 	u16 i;
1760 
1761 	for (i = 0; i < adapter->rss_lut_size; i++)
1762 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1763 }
1764 
1765 /**
1766  * iavf_init_rss - Prepare for RSS
1767  * @adapter: board private structure
1768  *
1769  * Return 0 on success, negative on failure
1770  **/
iavf_init_rss(struct iavf_adapter * adapter)1771 static int iavf_init_rss(struct iavf_adapter *adapter)
1772 {
1773 	struct iavf_hw *hw = &adapter->hw;
1774 
1775 	if (!RSS_PF(adapter)) {
1776 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1777 		if (adapter->vf_res->vf_cap_flags &
1778 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1779 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1780 		else
1781 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1782 
1783 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1784 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1785 	}
1786 
1787 	iavf_fill_rss_lut(adapter);
1788 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1789 
1790 	return iavf_config_rss(adapter);
1791 }
1792 
1793 /**
1794  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1795  * @adapter: board private structure to initialize
1796  *
1797  * We allocate one q_vector per queue interrupt.  If allocation fails we
1798  * return -ENOMEM.
1799  **/
iavf_alloc_q_vectors(struct iavf_adapter * adapter)1800 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1801 {
1802 	int q_idx = 0, num_q_vectors;
1803 	struct iavf_q_vector *q_vector;
1804 
1805 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1806 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1807 				     GFP_KERNEL);
1808 	if (!adapter->q_vectors)
1809 		return -ENOMEM;
1810 
1811 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1812 		q_vector = &adapter->q_vectors[q_idx];
1813 		q_vector->adapter = adapter;
1814 		q_vector->vsi = &adapter->vsi;
1815 		q_vector->v_idx = q_idx;
1816 		q_vector->reg_idx = q_idx;
1817 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1818 		netif_napi_add(adapter->netdev, &q_vector->napi,
1819 			       iavf_napi_poll);
1820 	}
1821 
1822 	return 0;
1823 }
1824 
1825 /**
1826  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1827  * @adapter: board private structure to initialize
1828  *
1829  * This function frees the memory allocated to the q_vectors.  In addition if
1830  * NAPI is enabled it will delete any references to the NAPI struct prior
1831  * to freeing the q_vector.
1832  **/
iavf_free_q_vectors(struct iavf_adapter * adapter)1833 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1834 {
1835 	int q_idx, num_q_vectors;
1836 
1837 	if (!adapter->q_vectors)
1838 		return;
1839 
1840 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1841 
1842 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1843 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1844 
1845 		netif_napi_del(&q_vector->napi);
1846 	}
1847 	kfree(adapter->q_vectors);
1848 	adapter->q_vectors = NULL;
1849 }
1850 
1851 /**
1852  * iavf_reset_interrupt_capability - Reset MSIX setup
1853  * @adapter: board private structure
1854  *
1855  **/
iavf_reset_interrupt_capability(struct iavf_adapter * adapter)1856 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1857 {
1858 	if (!adapter->msix_entries)
1859 		return;
1860 
1861 	pci_disable_msix(adapter->pdev);
1862 	kfree(adapter->msix_entries);
1863 	adapter->msix_entries = NULL;
1864 }
1865 
1866 /**
1867  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1868  * @adapter: board private structure to initialize
1869  *
1870  **/
iavf_init_interrupt_scheme(struct iavf_adapter * adapter)1871 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1872 {
1873 	int err;
1874 
1875 	err = iavf_alloc_queues(adapter);
1876 	if (err) {
1877 		dev_err(&adapter->pdev->dev,
1878 			"Unable to allocate memory for queues\n");
1879 		goto err_alloc_queues;
1880 	}
1881 
1882 	err = iavf_set_interrupt_capability(adapter);
1883 	if (err) {
1884 		dev_err(&adapter->pdev->dev,
1885 			"Unable to setup interrupt capabilities\n");
1886 		goto err_set_interrupt;
1887 	}
1888 
1889 	err = iavf_alloc_q_vectors(adapter);
1890 	if (err) {
1891 		dev_err(&adapter->pdev->dev,
1892 			"Unable to allocate memory for queue vectors\n");
1893 		goto err_alloc_q_vectors;
1894 	}
1895 
1896 	/* If we've made it so far while ADq flag being ON, then we haven't
1897 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1898 	 * resources have been allocated in the reset path.
1899 	 * Now we can truly claim that ADq is enabled.
1900 	 */
1901 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1902 	    adapter->num_tc)
1903 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1904 			 adapter->num_tc);
1905 
1906 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1907 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1908 		 adapter->num_active_queues);
1909 
1910 	return 0;
1911 err_alloc_q_vectors:
1912 	iavf_reset_interrupt_capability(adapter);
1913 err_set_interrupt:
1914 	iavf_free_queues(adapter);
1915 err_alloc_queues:
1916 	return err;
1917 }
1918 
1919 /**
1920  * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1921  * @adapter: board private structure
1922  **/
iavf_free_interrupt_scheme(struct iavf_adapter * adapter)1923 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1924 {
1925 	iavf_free_q_vectors(adapter);
1926 	iavf_reset_interrupt_capability(adapter);
1927 	iavf_free_queues(adapter);
1928 }
1929 
1930 /**
1931  * iavf_free_rss - Free memory used by RSS structs
1932  * @adapter: board private structure
1933  **/
iavf_free_rss(struct iavf_adapter * adapter)1934 static void iavf_free_rss(struct iavf_adapter *adapter)
1935 {
1936 	kfree(adapter->rss_key);
1937 	adapter->rss_key = NULL;
1938 
1939 	kfree(adapter->rss_lut);
1940 	adapter->rss_lut = NULL;
1941 }
1942 
1943 /**
1944  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1945  * @adapter: board private structure
1946  * @running: true if adapter->state == __IAVF_RUNNING
1947  *
1948  * Returns 0 on success, negative on failure
1949  **/
iavf_reinit_interrupt_scheme(struct iavf_adapter * adapter,bool running)1950 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1951 {
1952 	struct net_device *netdev = adapter->netdev;
1953 	int err;
1954 
1955 	if (running)
1956 		iavf_free_traffic_irqs(adapter);
1957 	iavf_free_misc_irq(adapter);
1958 	iavf_free_interrupt_scheme(adapter);
1959 
1960 	err = iavf_init_interrupt_scheme(adapter);
1961 	if (err)
1962 		goto err;
1963 
1964 	netif_tx_stop_all_queues(netdev);
1965 
1966 	err = iavf_request_misc_irq(adapter);
1967 	if (err)
1968 		goto err;
1969 
1970 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1971 
1972 	iavf_map_rings_to_vectors(adapter);
1973 err:
1974 	return err;
1975 }
1976 
1977 /**
1978  * iavf_finish_config - do all netdev work that needs RTNL
1979  * @work: our work_struct
1980  *
1981  * Do work that needs both RTNL and crit_lock.
1982  **/
iavf_finish_config(struct work_struct * work)1983 static void iavf_finish_config(struct work_struct *work)
1984 {
1985 	struct iavf_adapter *adapter;
1986 	int pairs, err;
1987 
1988 	adapter = container_of(work, struct iavf_adapter, finish_config);
1989 
1990 	/* Always take RTNL first to prevent circular lock dependency */
1991 	rtnl_lock();
1992 	mutex_lock(&adapter->crit_lock);
1993 
1994 	if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
1995 	    adapter->netdev->reg_state == NETREG_REGISTERED &&
1996 	    !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1997 		netdev_update_features(adapter->netdev);
1998 		adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
1999 	}
2000 
2001 	switch (adapter->state) {
2002 	case __IAVF_DOWN:
2003 		if (adapter->netdev->reg_state != NETREG_REGISTERED) {
2004 			err = register_netdevice(adapter->netdev);
2005 			if (err) {
2006 				dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
2007 					err);
2008 
2009 				/* go back and try again.*/
2010 				iavf_free_rss(adapter);
2011 				iavf_free_misc_irq(adapter);
2012 				iavf_reset_interrupt_capability(adapter);
2013 				iavf_change_state(adapter,
2014 						  __IAVF_INIT_CONFIG_ADAPTER);
2015 				goto out;
2016 			}
2017 		}
2018 
2019 		/* Set the real number of queues when reset occurs while
2020 		 * state == __IAVF_DOWN
2021 		 */
2022 		fallthrough;
2023 	case __IAVF_RUNNING:
2024 		pairs = adapter->num_active_queues;
2025 		netif_set_real_num_rx_queues(adapter->netdev, pairs);
2026 		netif_set_real_num_tx_queues(adapter->netdev, pairs);
2027 		break;
2028 
2029 	default:
2030 		break;
2031 	}
2032 
2033 out:
2034 	mutex_unlock(&adapter->crit_lock);
2035 	rtnl_unlock();
2036 }
2037 
2038 /**
2039  * iavf_schedule_finish_config - Set the flags and schedule a reset event
2040  * @adapter: board private structure
2041  **/
iavf_schedule_finish_config(struct iavf_adapter * adapter)2042 void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2043 {
2044 	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2045 		queue_work(adapter->wq, &adapter->finish_config);
2046 }
2047 
2048 /**
2049  * iavf_process_aq_command - process aq_required flags
2050  * and sends aq command
2051  * @adapter: pointer to iavf adapter structure
2052  *
2053  * Returns 0 on success
2054  * Returns error code if no command was sent
2055  * or error code if the command failed.
2056  **/
iavf_process_aq_command(struct iavf_adapter * adapter)2057 static int iavf_process_aq_command(struct iavf_adapter *adapter)
2058 {
2059 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2060 		return iavf_send_vf_config_msg(adapter);
2061 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2062 		return iavf_send_vf_offload_vlan_v2_msg(adapter);
2063 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2064 		iavf_disable_queues(adapter);
2065 		return 0;
2066 	}
2067 
2068 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2069 		iavf_map_queues(adapter);
2070 		return 0;
2071 	}
2072 
2073 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2074 		iavf_add_ether_addrs(adapter);
2075 		return 0;
2076 	}
2077 
2078 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2079 		iavf_add_vlans(adapter);
2080 		return 0;
2081 	}
2082 
2083 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2084 		iavf_del_ether_addrs(adapter);
2085 		return 0;
2086 	}
2087 
2088 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2089 		iavf_del_vlans(adapter);
2090 		return 0;
2091 	}
2092 
2093 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2094 		iavf_enable_vlan_stripping(adapter);
2095 		return 0;
2096 	}
2097 
2098 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2099 		iavf_disable_vlan_stripping(adapter);
2100 		return 0;
2101 	}
2102 
2103 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2104 		iavf_configure_queues(adapter);
2105 		return 0;
2106 	}
2107 
2108 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2109 		iavf_enable_queues(adapter);
2110 		return 0;
2111 	}
2112 
2113 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2114 		/* This message goes straight to the firmware, not the
2115 		 * PF, so we don't have to set current_op as we will
2116 		 * not get a response through the ARQ.
2117 		 */
2118 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2119 		return 0;
2120 	}
2121 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2122 		iavf_get_hena(adapter);
2123 		return 0;
2124 	}
2125 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2126 		iavf_set_hena(adapter);
2127 		return 0;
2128 	}
2129 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2130 		iavf_set_rss_key(adapter);
2131 		return 0;
2132 	}
2133 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2134 		iavf_set_rss_lut(adapter);
2135 		return 0;
2136 	}
2137 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) {
2138 		iavf_set_rss_hfunc(adapter);
2139 		return 0;
2140 	}
2141 
2142 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2143 		iavf_set_promiscuous(adapter);
2144 		return 0;
2145 	}
2146 
2147 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2148 		iavf_enable_channels(adapter);
2149 		return 0;
2150 	}
2151 
2152 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2153 		iavf_disable_channels(adapter);
2154 		return 0;
2155 	}
2156 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2157 		iavf_add_cloud_filter(adapter);
2158 		return 0;
2159 	}
2160 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2161 		iavf_del_cloud_filter(adapter);
2162 		return 0;
2163 	}
2164 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2165 		iavf_add_fdir_filter(adapter);
2166 		return IAVF_SUCCESS;
2167 	}
2168 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2169 		iavf_del_fdir_filter(adapter);
2170 		return IAVF_SUCCESS;
2171 	}
2172 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2173 		iavf_add_adv_rss_cfg(adapter);
2174 		return 0;
2175 	}
2176 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2177 		iavf_del_adv_rss_cfg(adapter);
2178 		return 0;
2179 	}
2180 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2181 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2182 		return 0;
2183 	}
2184 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2185 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2186 		return 0;
2187 	}
2188 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2189 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2190 		return 0;
2191 	}
2192 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2193 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2194 		return 0;
2195 	}
2196 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2197 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2198 		return 0;
2199 	}
2200 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2201 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2202 		return 0;
2203 	}
2204 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2205 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2206 		return 0;
2207 	}
2208 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2209 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2210 		return 0;
2211 	}
2212 
2213 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2214 		iavf_request_stats(adapter);
2215 		return 0;
2216 	}
2217 
2218 	return -EAGAIN;
2219 }
2220 
2221 /**
2222  * iavf_set_vlan_offload_features - set VLAN offload configuration
2223  * @adapter: board private structure
2224  * @prev_features: previous features used for comparison
2225  * @features: updated features used for configuration
2226  *
2227  * Set the aq_required bit(s) based on the requested features passed in to
2228  * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2229  * the watchdog if any changes are requested to expedite the request via
2230  * virtchnl.
2231  **/
2232 static void
iavf_set_vlan_offload_features(struct iavf_adapter * adapter,netdev_features_t prev_features,netdev_features_t features)2233 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2234 			       netdev_features_t prev_features,
2235 			       netdev_features_t features)
2236 {
2237 	bool enable_stripping = true, enable_insertion = true;
2238 	u16 vlan_ethertype = 0;
2239 	u64 aq_required = 0;
2240 
2241 	/* keep cases separate because one ethertype for offloads can be
2242 	 * disabled at the same time as another is disabled, so check for an
2243 	 * enabled ethertype first, then check for disabled. Default to
2244 	 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2245 	 * stripping.
2246 	 */
2247 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2248 		vlan_ethertype = ETH_P_8021AD;
2249 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2250 		vlan_ethertype = ETH_P_8021Q;
2251 	else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2252 		vlan_ethertype = ETH_P_8021AD;
2253 	else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2254 		vlan_ethertype = ETH_P_8021Q;
2255 	else
2256 		vlan_ethertype = ETH_P_8021Q;
2257 
2258 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2259 		enable_stripping = false;
2260 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2261 		enable_insertion = false;
2262 
2263 	if (VLAN_ALLOWED(adapter)) {
2264 		/* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2265 		 * stripping via virtchnl. VLAN insertion can be toggled on the
2266 		 * netdev, but it doesn't require a virtchnl message
2267 		 */
2268 		if (enable_stripping)
2269 			aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2270 		else
2271 			aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2272 
2273 	} else if (VLAN_V2_ALLOWED(adapter)) {
2274 		switch (vlan_ethertype) {
2275 		case ETH_P_8021Q:
2276 			if (enable_stripping)
2277 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2278 			else
2279 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2280 
2281 			if (enable_insertion)
2282 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2283 			else
2284 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2285 			break;
2286 		case ETH_P_8021AD:
2287 			if (enable_stripping)
2288 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2289 			else
2290 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2291 
2292 			if (enable_insertion)
2293 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2294 			else
2295 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2296 			break;
2297 		}
2298 	}
2299 
2300 	if (aq_required)
2301 		iavf_schedule_aq_request(adapter, aq_required);
2302 }
2303 
2304 /**
2305  * iavf_startup - first step of driver startup
2306  * @adapter: board private structure
2307  *
2308  * Function process __IAVF_STARTUP driver state.
2309  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2310  * when fails the state is changed to __IAVF_INIT_FAILED
2311  **/
iavf_startup(struct iavf_adapter * adapter)2312 static void iavf_startup(struct iavf_adapter *adapter)
2313 {
2314 	struct pci_dev *pdev = adapter->pdev;
2315 	struct iavf_hw *hw = &adapter->hw;
2316 	enum iavf_status status;
2317 	int ret;
2318 
2319 	WARN_ON(adapter->state != __IAVF_STARTUP);
2320 
2321 	/* driver loaded, probe complete */
2322 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2323 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2324 
2325 	ret = iavf_check_reset_complete(hw);
2326 	if (ret) {
2327 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2328 			 ret);
2329 		goto err;
2330 	}
2331 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
2332 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
2333 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2334 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2335 
2336 	status = iavf_init_adminq(hw);
2337 	if (status) {
2338 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2339 			status);
2340 		goto err;
2341 	}
2342 	ret = iavf_send_api_ver(adapter);
2343 	if (ret) {
2344 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2345 		iavf_shutdown_adminq(hw);
2346 		goto err;
2347 	}
2348 	iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2349 	return;
2350 err:
2351 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2352 }
2353 
2354 /**
2355  * iavf_init_version_check - second step of driver startup
2356  * @adapter: board private structure
2357  *
2358  * Function process __IAVF_INIT_VERSION_CHECK driver state.
2359  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2360  * when fails the state is changed to __IAVF_INIT_FAILED
2361  **/
iavf_init_version_check(struct iavf_adapter * adapter)2362 static void iavf_init_version_check(struct iavf_adapter *adapter)
2363 {
2364 	struct pci_dev *pdev = adapter->pdev;
2365 	struct iavf_hw *hw = &adapter->hw;
2366 	int err = -EAGAIN;
2367 
2368 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2369 
2370 	if (!iavf_asq_done(hw)) {
2371 		dev_err(&pdev->dev, "Admin queue command never completed\n");
2372 		iavf_shutdown_adminq(hw);
2373 		iavf_change_state(adapter, __IAVF_STARTUP);
2374 		goto err;
2375 	}
2376 
2377 	/* aq msg sent, awaiting reply */
2378 	err = iavf_verify_api_ver(adapter);
2379 	if (err) {
2380 		if (err == -EALREADY)
2381 			err = iavf_send_api_ver(adapter);
2382 		else
2383 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2384 				adapter->pf_version.major,
2385 				adapter->pf_version.minor,
2386 				VIRTCHNL_VERSION_MAJOR,
2387 				VIRTCHNL_VERSION_MINOR);
2388 		goto err;
2389 	}
2390 	err = iavf_send_vf_config_msg(adapter);
2391 	if (err) {
2392 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2393 			err);
2394 		goto err;
2395 	}
2396 	iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2397 	return;
2398 err:
2399 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2400 }
2401 
2402 /**
2403  * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2404  * @adapter: board private structure
2405  */
iavf_parse_vf_resource_msg(struct iavf_adapter * adapter)2406 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2407 {
2408 	int i, num_req_queues = adapter->num_req_queues;
2409 	struct iavf_vsi *vsi = &adapter->vsi;
2410 
2411 	for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2412 		if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2413 			adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2414 	}
2415 	if (!adapter->vsi_res) {
2416 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2417 		return -ENODEV;
2418 	}
2419 
2420 	if (num_req_queues &&
2421 	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
2422 		/* Problem.  The PF gave us fewer queues than what we had
2423 		 * negotiated in our request.  Need a reset to see if we can't
2424 		 * get back to a working state.
2425 		 */
2426 		dev_err(&adapter->pdev->dev,
2427 			"Requested %d queues, but PF only gave us %d.\n",
2428 			num_req_queues,
2429 			adapter->vsi_res->num_queue_pairs);
2430 		adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2431 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2432 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2433 
2434 		return -EAGAIN;
2435 	}
2436 	adapter->num_req_queues = 0;
2437 	adapter->vsi.id = adapter->vsi_res->vsi_id;
2438 
2439 	adapter->vsi.back = adapter;
2440 	adapter->vsi.base_vector = 1;
2441 	vsi->netdev = adapter->netdev;
2442 	vsi->qs_handle = adapter->vsi_res->qset_handle;
2443 	if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2444 		adapter->rss_key_size = adapter->vf_res->rss_key_size;
2445 		adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2446 	} else {
2447 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2448 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2449 	}
2450 
2451 	return 0;
2452 }
2453 
2454 /**
2455  * iavf_init_get_resources - third step of driver startup
2456  * @adapter: board private structure
2457  *
2458  * Function process __IAVF_INIT_GET_RESOURCES driver state and
2459  * finishes driver initialization procedure.
2460  * When success the state is changed to __IAVF_DOWN
2461  * when fails the state is changed to __IAVF_INIT_FAILED
2462  **/
iavf_init_get_resources(struct iavf_adapter * adapter)2463 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2464 {
2465 	struct pci_dev *pdev = adapter->pdev;
2466 	struct iavf_hw *hw = &adapter->hw;
2467 	int err;
2468 
2469 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2470 	/* aq msg sent, awaiting reply */
2471 	if (!adapter->vf_res) {
2472 		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2473 					  GFP_KERNEL);
2474 		if (!adapter->vf_res) {
2475 			err = -ENOMEM;
2476 			goto err;
2477 		}
2478 	}
2479 	err = iavf_get_vf_config(adapter);
2480 	if (err == -EALREADY) {
2481 		err = iavf_send_vf_config_msg(adapter);
2482 		goto err;
2483 	} else if (err == -EINVAL) {
2484 		/* We only get -EINVAL if the device is in a very bad
2485 		 * state or if we've been disabled for previous bad
2486 		 * behavior. Either way, we're done now.
2487 		 */
2488 		iavf_shutdown_adminq(hw);
2489 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2490 		return;
2491 	}
2492 	if (err) {
2493 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2494 		goto err_alloc;
2495 	}
2496 
2497 	err = iavf_parse_vf_resource_msg(adapter);
2498 	if (err) {
2499 		dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2500 			err);
2501 		goto err_alloc;
2502 	}
2503 	/* Some features require additional messages to negotiate extended
2504 	 * capabilities. These are processed in sequence by the
2505 	 * __IAVF_INIT_EXTENDED_CAPS driver state.
2506 	 */
2507 	adapter->extended_caps = IAVF_EXTENDED_CAPS;
2508 
2509 	iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2510 	return;
2511 
2512 err_alloc:
2513 	kfree(adapter->vf_res);
2514 	adapter->vf_res = NULL;
2515 err:
2516 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2517 }
2518 
2519 /**
2520  * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2521  * @adapter: board private structure
2522  *
2523  * Function processes send of the extended VLAN V2 capability message to the
2524  * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2525  * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2526  */
iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter * adapter)2527 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2528 {
2529 	int ret;
2530 
2531 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2532 
2533 	ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2534 	if (ret && ret == -EOPNOTSUPP) {
2535 		/* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2536 		 * we did not send the capability exchange message and do not
2537 		 * expect a response.
2538 		 */
2539 		adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2540 	}
2541 
2542 	/* We sent the message, so move on to the next step */
2543 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2544 }
2545 
2546 /**
2547  * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2548  * @adapter: board private structure
2549  *
2550  * Function processes receipt of the extended VLAN V2 capability message from
2551  * the PF.
2552  **/
iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter * adapter)2553 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2554 {
2555 	int ret;
2556 
2557 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2558 
2559 	memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2560 
2561 	ret = iavf_get_vf_vlan_v2_caps(adapter);
2562 	if (ret)
2563 		goto err;
2564 
2565 	/* We've processed receipt of the VLAN V2 caps message */
2566 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2567 	return;
2568 err:
2569 	/* We didn't receive a reply. Make sure we try sending again when
2570 	 * __IAVF_INIT_FAILED attempts to recover.
2571 	 */
2572 	adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2573 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2574 }
2575 
2576 /**
2577  * iavf_init_process_extended_caps - Part of driver startup
2578  * @adapter: board private structure
2579  *
2580  * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2581  * handles negotiating capabilities for features which require an additional
2582  * message.
2583  *
2584  * Once all extended capabilities exchanges are finished, the driver will
2585  * transition into __IAVF_INIT_CONFIG_ADAPTER.
2586  */
iavf_init_process_extended_caps(struct iavf_adapter * adapter)2587 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2588 {
2589 	WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2590 
2591 	/* Process capability exchange for VLAN V2 */
2592 	if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2593 		iavf_init_send_offload_vlan_v2_caps(adapter);
2594 		return;
2595 	} else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2596 		iavf_init_recv_offload_vlan_v2_caps(adapter);
2597 		return;
2598 	}
2599 
2600 	/* When we reach here, no further extended capabilities exchanges are
2601 	 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2602 	 */
2603 	iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2604 }
2605 
2606 /**
2607  * iavf_init_config_adapter - last part of driver startup
2608  * @adapter: board private structure
2609  *
2610  * After all the supported capabilities are negotiated, then the
2611  * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2612  */
iavf_init_config_adapter(struct iavf_adapter * adapter)2613 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2614 {
2615 	struct net_device *netdev = adapter->netdev;
2616 	struct pci_dev *pdev = adapter->pdev;
2617 	int err;
2618 
2619 	WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2620 
2621 	if (iavf_process_config(adapter))
2622 		goto err;
2623 
2624 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2625 
2626 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2627 
2628 	netdev->netdev_ops = &iavf_netdev_ops;
2629 	iavf_set_ethtool_ops(netdev);
2630 	netdev->watchdog_timeo = 5 * HZ;
2631 
2632 	netdev->min_mtu = ETH_MIN_MTU;
2633 	netdev->max_mtu = LIBIE_MAX_MTU;
2634 
2635 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2636 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2637 			 adapter->hw.mac.addr);
2638 		eth_hw_addr_random(netdev);
2639 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2640 	} else {
2641 		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2642 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2643 	}
2644 
2645 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2646 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2647 	err = iavf_init_interrupt_scheme(adapter);
2648 	if (err)
2649 		goto err_sw_init;
2650 	iavf_map_rings_to_vectors(adapter);
2651 	if (adapter->vf_res->vf_cap_flags &
2652 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2653 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2654 
2655 	err = iavf_request_misc_irq(adapter);
2656 	if (err)
2657 		goto err_sw_init;
2658 
2659 	netif_carrier_off(netdev);
2660 	adapter->link_up = false;
2661 	netif_tx_stop_all_queues(netdev);
2662 
2663 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2664 	if (netdev->features & NETIF_F_GRO)
2665 		dev_info(&pdev->dev, "GRO is enabled\n");
2666 
2667 	iavf_change_state(adapter, __IAVF_DOWN);
2668 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2669 
2670 	iavf_misc_irq_enable(adapter);
2671 	wake_up(&adapter->down_waitqueue);
2672 
2673 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2674 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2675 	if (!adapter->rss_key || !adapter->rss_lut) {
2676 		err = -ENOMEM;
2677 		goto err_mem;
2678 	}
2679 	if (RSS_AQ(adapter))
2680 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2681 	else
2682 		iavf_init_rss(adapter);
2683 
2684 	if (VLAN_V2_ALLOWED(adapter))
2685 		/* request initial VLAN offload settings */
2686 		iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2687 
2688 	iavf_schedule_finish_config(adapter);
2689 	return;
2690 
2691 err_mem:
2692 	iavf_free_rss(adapter);
2693 	iavf_free_misc_irq(adapter);
2694 err_sw_init:
2695 	iavf_reset_interrupt_capability(adapter);
2696 err:
2697 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2698 }
2699 
2700 /**
2701  * iavf_watchdog_task - Periodic call-back task
2702  * @work: pointer to work_struct
2703  **/
iavf_watchdog_task(struct work_struct * work)2704 static void iavf_watchdog_task(struct work_struct *work)
2705 {
2706 	struct iavf_adapter *adapter = container_of(work,
2707 						    struct iavf_adapter,
2708 						    watchdog_task.work);
2709 	struct iavf_hw *hw = &adapter->hw;
2710 	u32 reg_val;
2711 
2712 	if (!mutex_trylock(&adapter->crit_lock)) {
2713 		if (adapter->state == __IAVF_REMOVE)
2714 			return;
2715 
2716 		goto restart_watchdog;
2717 	}
2718 
2719 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2720 		iavf_change_state(adapter, __IAVF_COMM_FAILED);
2721 
2722 	switch (adapter->state) {
2723 	case __IAVF_STARTUP:
2724 		iavf_startup(adapter);
2725 		mutex_unlock(&adapter->crit_lock);
2726 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2727 				   msecs_to_jiffies(30));
2728 		return;
2729 	case __IAVF_INIT_VERSION_CHECK:
2730 		iavf_init_version_check(adapter);
2731 		mutex_unlock(&adapter->crit_lock);
2732 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2733 				   msecs_to_jiffies(30));
2734 		return;
2735 	case __IAVF_INIT_GET_RESOURCES:
2736 		iavf_init_get_resources(adapter);
2737 		mutex_unlock(&adapter->crit_lock);
2738 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2739 				   msecs_to_jiffies(1));
2740 		return;
2741 	case __IAVF_INIT_EXTENDED_CAPS:
2742 		iavf_init_process_extended_caps(adapter);
2743 		mutex_unlock(&adapter->crit_lock);
2744 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2745 				   msecs_to_jiffies(1));
2746 		return;
2747 	case __IAVF_INIT_CONFIG_ADAPTER:
2748 		iavf_init_config_adapter(adapter);
2749 		mutex_unlock(&adapter->crit_lock);
2750 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2751 				   msecs_to_jiffies(1));
2752 		return;
2753 	case __IAVF_INIT_FAILED:
2754 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2755 			     &adapter->crit_section)) {
2756 			/* Do not update the state and do not reschedule
2757 			 * watchdog task, iavf_remove should handle this state
2758 			 * as it can loop forever
2759 			 */
2760 			mutex_unlock(&adapter->crit_lock);
2761 			return;
2762 		}
2763 		if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2764 			dev_err(&adapter->pdev->dev,
2765 				"Failed to communicate with PF; waiting before retry\n");
2766 			adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2767 			iavf_shutdown_adminq(hw);
2768 			mutex_unlock(&adapter->crit_lock);
2769 			queue_delayed_work(adapter->wq,
2770 					   &adapter->watchdog_task, (5 * HZ));
2771 			return;
2772 		}
2773 		/* Try again from failed step*/
2774 		iavf_change_state(adapter, adapter->last_state);
2775 		mutex_unlock(&adapter->crit_lock);
2776 		queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2777 		return;
2778 	case __IAVF_COMM_FAILED:
2779 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2780 			     &adapter->crit_section)) {
2781 			/* Set state to __IAVF_INIT_FAILED and perform remove
2782 			 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2783 			 * doesn't bring the state back to __IAVF_COMM_FAILED.
2784 			 */
2785 			iavf_change_state(adapter, __IAVF_INIT_FAILED);
2786 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2787 			mutex_unlock(&adapter->crit_lock);
2788 			return;
2789 		}
2790 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2791 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2792 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2793 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
2794 			/* A chance for redemption! */
2795 			dev_err(&adapter->pdev->dev,
2796 				"Hardware came out of reset. Attempting reinit.\n");
2797 			/* When init task contacts the PF and
2798 			 * gets everything set up again, it'll restart the
2799 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
2800 			 */
2801 			iavf_change_state(adapter, __IAVF_STARTUP);
2802 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2803 		}
2804 		adapter->aq_required = 0;
2805 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2806 		mutex_unlock(&adapter->crit_lock);
2807 		queue_delayed_work(adapter->wq,
2808 				   &adapter->watchdog_task,
2809 				   msecs_to_jiffies(10));
2810 		return;
2811 	case __IAVF_RESETTING:
2812 		mutex_unlock(&adapter->crit_lock);
2813 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2814 				   HZ * 2);
2815 		return;
2816 	case __IAVF_DOWN:
2817 	case __IAVF_DOWN_PENDING:
2818 	case __IAVF_TESTING:
2819 	case __IAVF_RUNNING:
2820 		if (adapter->current_op) {
2821 			if (!iavf_asq_done(hw)) {
2822 				dev_dbg(&adapter->pdev->dev,
2823 					"Admin queue timeout\n");
2824 				iavf_send_api_ver(adapter);
2825 			}
2826 		} else {
2827 			int ret = iavf_process_aq_command(adapter);
2828 
2829 			/* An error will be returned if no commands were
2830 			 * processed; use this opportunity to update stats
2831 			 * if the error isn't -ENOTSUPP
2832 			 */
2833 			if (ret && ret != -EOPNOTSUPP &&
2834 			    adapter->state == __IAVF_RUNNING)
2835 				iavf_request_stats(adapter);
2836 		}
2837 		if (adapter->state == __IAVF_RUNNING)
2838 			iavf_detect_recover_hung(&adapter->vsi);
2839 		break;
2840 	case __IAVF_REMOVE:
2841 	default:
2842 		mutex_unlock(&adapter->crit_lock);
2843 		return;
2844 	}
2845 
2846 	/* check for hw reset */
2847 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2848 	if (!reg_val) {
2849 		adapter->aq_required = 0;
2850 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2851 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2852 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2853 		mutex_unlock(&adapter->crit_lock);
2854 		queue_delayed_work(adapter->wq,
2855 				   &adapter->watchdog_task, HZ * 2);
2856 		return;
2857 	}
2858 
2859 	mutex_unlock(&adapter->crit_lock);
2860 restart_watchdog:
2861 	if (adapter->state >= __IAVF_DOWN)
2862 		queue_work(adapter->wq, &adapter->adminq_task);
2863 	if (adapter->aq_required)
2864 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2865 				   msecs_to_jiffies(20));
2866 	else
2867 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2868 				   HZ * 2);
2869 }
2870 
2871 /**
2872  * iavf_disable_vf - disable VF
2873  * @adapter: board private structure
2874  *
2875  * Set communication failed flag and free all resources.
2876  * NOTE: This function is expected to be called with crit_lock being held.
2877  **/
iavf_disable_vf(struct iavf_adapter * adapter)2878 static void iavf_disable_vf(struct iavf_adapter *adapter)
2879 {
2880 	struct iavf_mac_filter *f, *ftmp;
2881 	struct iavf_vlan_filter *fv, *fvtmp;
2882 	struct iavf_cloud_filter *cf, *cftmp;
2883 
2884 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2885 
2886 	/* We don't use netif_running() because it may be true prior to
2887 	 * ndo_open() returning, so we can't assume it means all our open
2888 	 * tasks have finished, since we're not holding the rtnl_lock here.
2889 	 */
2890 	if (adapter->state == __IAVF_RUNNING) {
2891 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2892 		netif_carrier_off(adapter->netdev);
2893 		netif_tx_disable(adapter->netdev);
2894 		adapter->link_up = false;
2895 		iavf_napi_disable_all(adapter);
2896 		iavf_irq_disable(adapter);
2897 		iavf_free_traffic_irqs(adapter);
2898 		iavf_free_all_tx_resources(adapter);
2899 		iavf_free_all_rx_resources(adapter);
2900 	}
2901 
2902 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2903 
2904 	/* Delete all of the filters */
2905 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2906 		list_del(&f->list);
2907 		kfree(f);
2908 	}
2909 
2910 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2911 		list_del(&fv->list);
2912 		kfree(fv);
2913 	}
2914 	adapter->num_vlan_filters = 0;
2915 
2916 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2917 
2918 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2919 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2920 		list_del(&cf->list);
2921 		kfree(cf);
2922 		adapter->num_cloud_filters--;
2923 	}
2924 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2925 
2926 	iavf_free_misc_irq(adapter);
2927 	iavf_free_interrupt_scheme(adapter);
2928 	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2929 	iavf_shutdown_adminq(&adapter->hw);
2930 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2931 	iavf_change_state(adapter, __IAVF_DOWN);
2932 	wake_up(&adapter->down_waitqueue);
2933 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2934 }
2935 
2936 /**
2937  * iavf_reset_task - Call-back task to handle hardware reset
2938  * @work: pointer to work_struct
2939  *
2940  * During reset we need to shut down and reinitialize the admin queue
2941  * before we can use it to communicate with the PF again. We also clear
2942  * and reinit the rings because that context is lost as well.
2943  **/
iavf_reset_task(struct work_struct * work)2944 static void iavf_reset_task(struct work_struct *work)
2945 {
2946 	struct iavf_adapter *adapter = container_of(work,
2947 						      struct iavf_adapter,
2948 						      reset_task);
2949 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2950 	struct net_device *netdev = adapter->netdev;
2951 	struct iavf_hw *hw = &adapter->hw;
2952 	struct iavf_mac_filter *f, *ftmp;
2953 	struct iavf_cloud_filter *cf;
2954 	enum iavf_status status;
2955 	u32 reg_val;
2956 	int i = 0, err;
2957 	bool running;
2958 
2959 	/* When device is being removed it doesn't make sense to run the reset
2960 	 * task, just return in such a case.
2961 	 */
2962 	if (!mutex_trylock(&adapter->crit_lock)) {
2963 		if (adapter->state != __IAVF_REMOVE)
2964 			queue_work(adapter->wq, &adapter->reset_task);
2965 
2966 		return;
2967 	}
2968 
2969 	iavf_misc_irq_disable(adapter);
2970 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2971 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2972 		/* Restart the AQ here. If we have been reset but didn't
2973 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2974 		 */
2975 		iavf_shutdown_adminq(hw);
2976 		iavf_init_adminq(hw);
2977 		iavf_request_reset(adapter);
2978 	}
2979 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2980 
2981 	/* poll until we see the reset actually happen */
2982 	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2983 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2984 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2985 		if (!reg_val)
2986 			break;
2987 		usleep_range(5000, 10000);
2988 	}
2989 	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2990 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
2991 		goto continue_reset; /* act like the reset happened */
2992 	}
2993 
2994 	/* wait until the reset is complete and the PF is responding to us */
2995 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2996 		/* sleep first to make sure a minimum wait time is met */
2997 		msleep(IAVF_RESET_WAIT_MS);
2998 
2999 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3000 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3001 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3002 			break;
3003 	}
3004 
3005 	pci_set_master(adapter->pdev);
3006 	pci_restore_msi_state(adapter->pdev);
3007 
3008 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3009 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3010 			reg_val);
3011 		iavf_disable_vf(adapter);
3012 		mutex_unlock(&adapter->crit_lock);
3013 		return; /* Do not attempt to reinit. It's dead, Jim. */
3014 	}
3015 
3016 continue_reset:
3017 	/* We don't use netif_running() because it may be true prior to
3018 	 * ndo_open() returning, so we can't assume it means all our open
3019 	 * tasks have finished, since we're not holding the rtnl_lock here.
3020 	 */
3021 	running = adapter->state == __IAVF_RUNNING;
3022 
3023 	if (running) {
3024 		netif_carrier_off(netdev);
3025 		netif_tx_stop_all_queues(netdev);
3026 		adapter->link_up = false;
3027 		iavf_napi_disable_all(adapter);
3028 	}
3029 	iavf_irq_disable(adapter);
3030 
3031 	iavf_change_state(adapter, __IAVF_RESETTING);
3032 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3033 
3034 	/* free the Tx/Rx rings and descriptors, might be better to just
3035 	 * re-use them sometime in the future
3036 	 */
3037 	iavf_free_all_rx_resources(adapter);
3038 	iavf_free_all_tx_resources(adapter);
3039 
3040 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3041 	/* kill and reinit the admin queue */
3042 	iavf_shutdown_adminq(hw);
3043 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3044 	status = iavf_init_adminq(hw);
3045 	if (status) {
3046 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3047 			 status);
3048 		goto reset_err;
3049 	}
3050 	adapter->aq_required = 0;
3051 
3052 	if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3053 	    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3054 		err = iavf_reinit_interrupt_scheme(adapter, running);
3055 		if (err)
3056 			goto reset_err;
3057 	}
3058 
3059 	if (RSS_AQ(adapter)) {
3060 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3061 	} else {
3062 		err = iavf_init_rss(adapter);
3063 		if (err)
3064 			goto reset_err;
3065 	}
3066 
3067 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3068 	/* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3069 	 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3070 	 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3071 	 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3072 	 * been successfully sent and negotiated
3073 	 */
3074 	adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3075 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3076 
3077 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3078 
3079 	/* Delete filter for the current MAC address, it could have
3080 	 * been changed by the PF via administratively set MAC.
3081 	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3082 	 */
3083 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3084 		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3085 			list_del(&f->list);
3086 			kfree(f);
3087 		}
3088 	}
3089 	/* re-add all MAC filters */
3090 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
3091 		f->add = true;
3092 	}
3093 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3094 
3095 	/* check if TCs are running and re-add all cloud filters */
3096 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3097 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3098 	    adapter->num_tc) {
3099 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3100 			cf->add = true;
3101 		}
3102 	}
3103 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3104 
3105 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3106 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3107 	iavf_misc_irq_enable(adapter);
3108 
3109 	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3110 
3111 	/* We were running when the reset started, so we need to restore some
3112 	 * state here.
3113 	 */
3114 	if (running) {
3115 		/* allocate transmit descriptors */
3116 		err = iavf_setup_all_tx_resources(adapter);
3117 		if (err)
3118 			goto reset_err;
3119 
3120 		/* allocate receive descriptors */
3121 		err = iavf_setup_all_rx_resources(adapter);
3122 		if (err)
3123 			goto reset_err;
3124 
3125 		if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3126 		    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3127 			err = iavf_request_traffic_irqs(adapter, netdev->name);
3128 			if (err)
3129 				goto reset_err;
3130 
3131 			adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3132 		}
3133 
3134 		iavf_configure(adapter);
3135 
3136 		/* iavf_up_complete() will switch device back
3137 		 * to __IAVF_RUNNING
3138 		 */
3139 		iavf_up_complete(adapter);
3140 
3141 		iavf_irq_enable(adapter, true);
3142 	} else {
3143 		iavf_change_state(adapter, __IAVF_DOWN);
3144 		wake_up(&adapter->down_waitqueue);
3145 	}
3146 
3147 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3148 
3149 	wake_up(&adapter->reset_waitqueue);
3150 	mutex_unlock(&adapter->crit_lock);
3151 
3152 	return;
3153 reset_err:
3154 	if (running) {
3155 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3156 		iavf_free_traffic_irqs(adapter);
3157 	}
3158 	iavf_disable_vf(adapter);
3159 
3160 	mutex_unlock(&adapter->crit_lock);
3161 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3162 }
3163 
3164 /**
3165  * iavf_adminq_task - worker thread to clean the admin queue
3166  * @work: pointer to work_struct containing our data
3167  **/
iavf_adminq_task(struct work_struct * work)3168 static void iavf_adminq_task(struct work_struct *work)
3169 {
3170 	struct iavf_adapter *adapter =
3171 		container_of(work, struct iavf_adapter, adminq_task);
3172 	struct iavf_hw *hw = &adapter->hw;
3173 	struct iavf_arq_event_info event;
3174 	enum virtchnl_ops v_op;
3175 	enum iavf_status ret, v_ret;
3176 	u32 val, oldval;
3177 	u16 pending;
3178 
3179 	if (!mutex_trylock(&adapter->crit_lock)) {
3180 		if (adapter->state == __IAVF_REMOVE)
3181 			return;
3182 
3183 		queue_work(adapter->wq, &adapter->adminq_task);
3184 		goto out;
3185 	}
3186 
3187 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3188 		goto unlock;
3189 
3190 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3191 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3192 	if (!event.msg_buf)
3193 		goto unlock;
3194 
3195 	do {
3196 		ret = iavf_clean_arq_element(hw, &event, &pending);
3197 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3198 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3199 
3200 		if (ret || !v_op)
3201 			break; /* No event to process or error cleaning ARQ */
3202 
3203 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3204 					 event.msg_len);
3205 		if (pending != 0)
3206 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3207 	} while (pending);
3208 
3209 	if (iavf_is_reset_in_progress(adapter))
3210 		goto freedom;
3211 
3212 	/* check for error indications */
3213 	val = rd32(hw, IAVF_VF_ARQLEN1);
3214 	if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3215 		goto freedom;
3216 	oldval = val;
3217 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3218 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3219 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3220 	}
3221 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3222 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3223 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3224 	}
3225 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3226 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3227 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3228 	}
3229 	if (oldval != val)
3230 		wr32(hw, IAVF_VF_ARQLEN1, val);
3231 
3232 	val = rd32(hw, IAVF_VF_ATQLEN1);
3233 	oldval = val;
3234 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3235 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3236 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3237 	}
3238 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3239 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3240 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3241 	}
3242 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3243 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3244 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3245 	}
3246 	if (oldval != val)
3247 		wr32(hw, IAVF_VF_ATQLEN1, val);
3248 
3249 freedom:
3250 	kfree(event.msg_buf);
3251 unlock:
3252 	mutex_unlock(&adapter->crit_lock);
3253 out:
3254 	/* re-enable Admin queue interrupt cause */
3255 	iavf_misc_irq_enable(adapter);
3256 }
3257 
3258 /**
3259  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3260  * @adapter: board private structure
3261  *
3262  * Free all transmit software resources
3263  **/
iavf_free_all_tx_resources(struct iavf_adapter * adapter)3264 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3265 {
3266 	int i;
3267 
3268 	if (!adapter->tx_rings)
3269 		return;
3270 
3271 	for (i = 0; i < adapter->num_active_queues; i++)
3272 		if (adapter->tx_rings[i].desc)
3273 			iavf_free_tx_resources(&adapter->tx_rings[i]);
3274 }
3275 
3276 /**
3277  * iavf_setup_all_tx_resources - allocate all queues Tx resources
3278  * @adapter: board private structure
3279  *
3280  * If this function returns with an error, then it's possible one or
3281  * more of the rings is populated (while the rest are not).  It is the
3282  * callers duty to clean those orphaned rings.
3283  *
3284  * Return 0 on success, negative on failure
3285  **/
iavf_setup_all_tx_resources(struct iavf_adapter * adapter)3286 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3287 {
3288 	int i, err = 0;
3289 
3290 	for (i = 0; i < adapter->num_active_queues; i++) {
3291 		adapter->tx_rings[i].count = adapter->tx_desc_count;
3292 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3293 		if (!err)
3294 			continue;
3295 		dev_err(&adapter->pdev->dev,
3296 			"Allocation for Tx Queue %u failed\n", i);
3297 		break;
3298 	}
3299 
3300 	return err;
3301 }
3302 
3303 /**
3304  * iavf_setup_all_rx_resources - allocate all queues Rx resources
3305  * @adapter: board private structure
3306  *
3307  * If this function returns with an error, then it's possible one or
3308  * more of the rings is populated (while the rest are not).  It is the
3309  * callers duty to clean those orphaned rings.
3310  *
3311  * Return 0 on success, negative on failure
3312  **/
iavf_setup_all_rx_resources(struct iavf_adapter * adapter)3313 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3314 {
3315 	int i, err = 0;
3316 
3317 	for (i = 0; i < adapter->num_active_queues; i++) {
3318 		adapter->rx_rings[i].count = adapter->rx_desc_count;
3319 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3320 		if (!err)
3321 			continue;
3322 		dev_err(&adapter->pdev->dev,
3323 			"Allocation for Rx Queue %u failed\n", i);
3324 		break;
3325 	}
3326 	return err;
3327 }
3328 
3329 /**
3330  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3331  * @adapter: board private structure
3332  *
3333  * Free all receive software resources
3334  **/
iavf_free_all_rx_resources(struct iavf_adapter * adapter)3335 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3336 {
3337 	int i;
3338 
3339 	if (!adapter->rx_rings)
3340 		return;
3341 
3342 	for (i = 0; i < adapter->num_active_queues; i++)
3343 		if (adapter->rx_rings[i].desc)
3344 			iavf_free_rx_resources(&adapter->rx_rings[i]);
3345 }
3346 
3347 /**
3348  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3349  * @adapter: board private structure
3350  * @max_tx_rate: max Tx bw for a tc
3351  **/
iavf_validate_tx_bandwidth(struct iavf_adapter * adapter,u64 max_tx_rate)3352 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3353 				      u64 max_tx_rate)
3354 {
3355 	int speed = 0, ret = 0;
3356 
3357 	if (ADV_LINK_SUPPORT(adapter)) {
3358 		if (adapter->link_speed_mbps < U32_MAX) {
3359 			speed = adapter->link_speed_mbps;
3360 			goto validate_bw;
3361 		} else {
3362 			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3363 			return -EINVAL;
3364 		}
3365 	}
3366 
3367 	switch (adapter->link_speed) {
3368 	case VIRTCHNL_LINK_SPEED_40GB:
3369 		speed = SPEED_40000;
3370 		break;
3371 	case VIRTCHNL_LINK_SPEED_25GB:
3372 		speed = SPEED_25000;
3373 		break;
3374 	case VIRTCHNL_LINK_SPEED_20GB:
3375 		speed = SPEED_20000;
3376 		break;
3377 	case VIRTCHNL_LINK_SPEED_10GB:
3378 		speed = SPEED_10000;
3379 		break;
3380 	case VIRTCHNL_LINK_SPEED_5GB:
3381 		speed = SPEED_5000;
3382 		break;
3383 	case VIRTCHNL_LINK_SPEED_2_5GB:
3384 		speed = SPEED_2500;
3385 		break;
3386 	case VIRTCHNL_LINK_SPEED_1GB:
3387 		speed = SPEED_1000;
3388 		break;
3389 	case VIRTCHNL_LINK_SPEED_100MB:
3390 		speed = SPEED_100;
3391 		break;
3392 	default:
3393 		break;
3394 	}
3395 
3396 validate_bw:
3397 	if (max_tx_rate > speed) {
3398 		dev_err(&adapter->pdev->dev,
3399 			"Invalid tx rate specified\n");
3400 		ret = -EINVAL;
3401 	}
3402 
3403 	return ret;
3404 }
3405 
3406 /**
3407  * iavf_validate_ch_config - validate queue mapping info
3408  * @adapter: board private structure
3409  * @mqprio_qopt: queue parameters
3410  *
3411  * This function validates if the config provided by the user to
3412  * configure queue channels is valid or not. Returns 0 on a valid
3413  * config.
3414  **/
iavf_validate_ch_config(struct iavf_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio_qopt)3415 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3416 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
3417 {
3418 	u64 total_max_rate = 0;
3419 	u32 tx_rate_rem = 0;
3420 	int i, num_qps = 0;
3421 	u64 tx_rate = 0;
3422 	int ret = 0;
3423 
3424 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3425 	    mqprio_qopt->qopt.num_tc < 1)
3426 		return -EINVAL;
3427 
3428 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3429 		if (!mqprio_qopt->qopt.count[i] ||
3430 		    mqprio_qopt->qopt.offset[i] != num_qps)
3431 			return -EINVAL;
3432 		if (mqprio_qopt->min_rate[i]) {
3433 			dev_err(&adapter->pdev->dev,
3434 				"Invalid min tx rate (greater than 0) specified for TC%d\n",
3435 				i);
3436 			return -EINVAL;
3437 		}
3438 
3439 		/* convert to Mbps */
3440 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
3441 				  IAVF_MBPS_DIVISOR);
3442 
3443 		if (mqprio_qopt->max_rate[i] &&
3444 		    tx_rate < IAVF_MBPS_QUANTA) {
3445 			dev_err(&adapter->pdev->dev,
3446 				"Invalid max tx rate for TC%d, minimum %dMbps\n",
3447 				i, IAVF_MBPS_QUANTA);
3448 			return -EINVAL;
3449 		}
3450 
3451 		(void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3452 
3453 		if (tx_rate_rem != 0) {
3454 			dev_err(&adapter->pdev->dev,
3455 				"Invalid max tx rate for TC%d, not divisible by %d\n",
3456 				i, IAVF_MBPS_QUANTA);
3457 			return -EINVAL;
3458 		}
3459 
3460 		total_max_rate += tx_rate;
3461 		num_qps += mqprio_qopt->qopt.count[i];
3462 	}
3463 	if (num_qps > adapter->num_active_queues) {
3464 		dev_err(&adapter->pdev->dev,
3465 			"Cannot support requested number of queues\n");
3466 		return -EINVAL;
3467 	}
3468 
3469 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3470 	return ret;
3471 }
3472 
3473 /**
3474  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3475  * @adapter: board private structure
3476  **/
iavf_del_all_cloud_filters(struct iavf_adapter * adapter)3477 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3478 {
3479 	struct iavf_cloud_filter *cf, *cftmp;
3480 
3481 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3482 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3483 				 list) {
3484 		list_del(&cf->list);
3485 		kfree(cf);
3486 		adapter->num_cloud_filters--;
3487 	}
3488 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3489 }
3490 
3491 /**
3492  * iavf_is_tc_config_same - Compare the mqprio TC config with the
3493  * TC config already configured on this adapter.
3494  * @adapter: board private structure
3495  * @mqprio_qopt: TC config received from kernel.
3496  *
3497  * This function compares the TC config received from the kernel
3498  * with the config already configured on the adapter.
3499  *
3500  * Return: True if configuration is same, false otherwise.
3501  **/
iavf_is_tc_config_same(struct iavf_adapter * adapter,struct tc_mqprio_qopt * mqprio_qopt)3502 static bool iavf_is_tc_config_same(struct iavf_adapter *adapter,
3503 				   struct tc_mqprio_qopt *mqprio_qopt)
3504 {
3505 	struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0];
3506 	int i;
3507 
3508 	if (adapter->num_tc != mqprio_qopt->num_tc)
3509 		return false;
3510 
3511 	for (i = 0; i < adapter->num_tc; i++) {
3512 		if (ch[i].count != mqprio_qopt->count[i] ||
3513 		    ch[i].offset != mqprio_qopt->offset[i])
3514 			return false;
3515 	}
3516 	return true;
3517 }
3518 
3519 /**
3520  * __iavf_setup_tc - configure multiple traffic classes
3521  * @netdev: network interface device structure
3522  * @type_data: tc offload data
3523  *
3524  * This function processes the config information provided by the
3525  * user to configure traffic classes/queue channels and packages the
3526  * information to request the PF to setup traffic classes.
3527  *
3528  * Returns 0 on success.
3529  **/
__iavf_setup_tc(struct net_device * netdev,void * type_data)3530 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3531 {
3532 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3533 	struct iavf_adapter *adapter = netdev_priv(netdev);
3534 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3535 	u8 num_tc = 0, total_qps = 0;
3536 	int ret = 0, netdev_tc = 0;
3537 	u64 max_tx_rate;
3538 	u16 mode;
3539 	int i;
3540 
3541 	num_tc = mqprio_qopt->qopt.num_tc;
3542 	mode = mqprio_qopt->mode;
3543 
3544 	/* delete queue_channel */
3545 	if (!mqprio_qopt->qopt.hw) {
3546 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3547 			/* reset the tc configuration */
3548 			netdev_reset_tc(netdev);
3549 			adapter->num_tc = 0;
3550 			netif_tx_stop_all_queues(netdev);
3551 			netif_tx_disable(netdev);
3552 			iavf_del_all_cloud_filters(adapter);
3553 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3554 			total_qps = adapter->orig_num_active_queues;
3555 			goto exit;
3556 		} else {
3557 			return -EINVAL;
3558 		}
3559 	}
3560 
3561 	/* add queue channel */
3562 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
3563 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3564 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
3565 			return -EOPNOTSUPP;
3566 		}
3567 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3568 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3569 			return -EINVAL;
3570 		}
3571 
3572 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3573 		if (ret)
3574 			return ret;
3575 		/* Return if same TC config is requested */
3576 		if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt))
3577 			return 0;
3578 		adapter->num_tc = num_tc;
3579 
3580 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3581 			if (i < num_tc) {
3582 				adapter->ch_config.ch_info[i].count =
3583 					mqprio_qopt->qopt.count[i];
3584 				adapter->ch_config.ch_info[i].offset =
3585 					mqprio_qopt->qopt.offset[i];
3586 				total_qps += mqprio_qopt->qopt.count[i];
3587 				max_tx_rate = mqprio_qopt->max_rate[i];
3588 				/* convert to Mbps */
3589 				max_tx_rate = div_u64(max_tx_rate,
3590 						      IAVF_MBPS_DIVISOR);
3591 				adapter->ch_config.ch_info[i].max_tx_rate =
3592 					max_tx_rate;
3593 			} else {
3594 				adapter->ch_config.ch_info[i].count = 1;
3595 				adapter->ch_config.ch_info[i].offset = 0;
3596 			}
3597 		}
3598 
3599 		/* Take snapshot of original config such as "num_active_queues"
3600 		 * It is used later when delete ADQ flow is exercised, so that
3601 		 * once delete ADQ flow completes, VF shall go back to its
3602 		 * original queue configuration
3603 		 */
3604 
3605 		adapter->orig_num_active_queues = adapter->num_active_queues;
3606 
3607 		/* Store queue info based on TC so that VF gets configured
3608 		 * with correct number of queues when VF completes ADQ config
3609 		 * flow
3610 		 */
3611 		adapter->ch_config.total_qps = total_qps;
3612 
3613 		netif_tx_stop_all_queues(netdev);
3614 		netif_tx_disable(netdev);
3615 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3616 		netdev_reset_tc(netdev);
3617 		/* Report the tc mapping up the stack */
3618 		netdev_set_num_tc(adapter->netdev, num_tc);
3619 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3620 			u16 qcount = mqprio_qopt->qopt.count[i];
3621 			u16 qoffset = mqprio_qopt->qopt.offset[i];
3622 
3623 			if (i < num_tc)
3624 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3625 						    qoffset);
3626 		}
3627 	}
3628 exit:
3629 	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3630 		return 0;
3631 
3632 	netif_set_real_num_rx_queues(netdev, total_qps);
3633 	netif_set_real_num_tx_queues(netdev, total_qps);
3634 
3635 	return ret;
3636 }
3637 
3638 /**
3639  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3640  * @adapter: board private structure
3641  * @f: pointer to struct flow_cls_offload
3642  * @filter: pointer to cloud filter structure
3643  */
iavf_parse_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * f,struct iavf_cloud_filter * filter)3644 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3645 				 struct flow_cls_offload *f,
3646 				 struct iavf_cloud_filter *filter)
3647 {
3648 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3649 	struct flow_dissector *dissector = rule->match.dissector;
3650 	u16 n_proto_mask = 0;
3651 	u16 n_proto_key = 0;
3652 	u8 field_flags = 0;
3653 	u16 addr_type = 0;
3654 	u16 n_proto = 0;
3655 	int i = 0;
3656 	struct virtchnl_filter *vf = &filter->f;
3657 
3658 	if (dissector->used_keys &
3659 	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3660 	      BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3661 	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3662 	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3663 	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3664 	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3665 	      BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3666 	      BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3667 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3668 			dissector->used_keys);
3669 		return -EOPNOTSUPP;
3670 	}
3671 
3672 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3673 		struct flow_match_enc_keyid match;
3674 
3675 		flow_rule_match_enc_keyid(rule, &match);
3676 		if (match.mask->keyid != 0)
3677 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3678 	}
3679 
3680 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3681 		struct flow_match_basic match;
3682 
3683 		flow_rule_match_basic(rule, &match);
3684 		n_proto_key = ntohs(match.key->n_proto);
3685 		n_proto_mask = ntohs(match.mask->n_proto);
3686 
3687 		if (n_proto_key == ETH_P_ALL) {
3688 			n_proto_key = 0;
3689 			n_proto_mask = 0;
3690 		}
3691 		n_proto = n_proto_key & n_proto_mask;
3692 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3693 			return -EINVAL;
3694 		if (n_proto == ETH_P_IPV6) {
3695 			/* specify flow type as TCP IPv6 */
3696 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3697 		}
3698 
3699 		if (match.key->ip_proto != IPPROTO_TCP) {
3700 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3701 			return -EINVAL;
3702 		}
3703 	}
3704 
3705 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3706 		struct flow_match_eth_addrs match;
3707 
3708 		flow_rule_match_eth_addrs(rule, &match);
3709 
3710 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
3711 		if (!is_zero_ether_addr(match.mask->dst)) {
3712 			if (is_broadcast_ether_addr(match.mask->dst)) {
3713 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
3714 			} else {
3715 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3716 					match.mask->dst);
3717 				return -EINVAL;
3718 			}
3719 		}
3720 
3721 		if (!is_zero_ether_addr(match.mask->src)) {
3722 			if (is_broadcast_ether_addr(match.mask->src)) {
3723 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
3724 			} else {
3725 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3726 					match.mask->src);
3727 				return -EINVAL;
3728 			}
3729 		}
3730 
3731 		if (!is_zero_ether_addr(match.key->dst))
3732 			if (is_valid_ether_addr(match.key->dst) ||
3733 			    is_multicast_ether_addr(match.key->dst)) {
3734 				/* set the mask if a valid dst_mac address */
3735 				for (i = 0; i < ETH_ALEN; i++)
3736 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3737 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
3738 						match.key->dst);
3739 			}
3740 
3741 		if (!is_zero_ether_addr(match.key->src))
3742 			if (is_valid_ether_addr(match.key->src) ||
3743 			    is_multicast_ether_addr(match.key->src)) {
3744 				/* set the mask if a valid dst_mac address */
3745 				for (i = 0; i < ETH_ALEN; i++)
3746 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
3747 				ether_addr_copy(vf->data.tcp_spec.src_mac,
3748 						match.key->src);
3749 		}
3750 	}
3751 
3752 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3753 		struct flow_match_vlan match;
3754 
3755 		flow_rule_match_vlan(rule, &match);
3756 		if (match.mask->vlan_id) {
3757 			if (match.mask->vlan_id == VLAN_VID_MASK) {
3758 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3759 			} else {
3760 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3761 					match.mask->vlan_id);
3762 				return -EINVAL;
3763 			}
3764 		}
3765 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3766 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3767 	}
3768 
3769 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3770 		struct flow_match_control match;
3771 
3772 		flow_rule_match_control(rule, &match);
3773 		addr_type = match.key->addr_type;
3774 
3775 		if (flow_rule_has_control_flags(match.mask->flags,
3776 						f->common.extack))
3777 			return -EOPNOTSUPP;
3778 	}
3779 
3780 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3781 		struct flow_match_ipv4_addrs match;
3782 
3783 		flow_rule_match_ipv4_addrs(rule, &match);
3784 		if (match.mask->dst) {
3785 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3786 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3787 			} else {
3788 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3789 					be32_to_cpu(match.mask->dst));
3790 				return -EINVAL;
3791 			}
3792 		}
3793 
3794 		if (match.mask->src) {
3795 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
3796 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3797 			} else {
3798 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3799 					be32_to_cpu(match.mask->src));
3800 				return -EINVAL;
3801 			}
3802 		}
3803 
3804 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3805 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3806 			return -EINVAL;
3807 		}
3808 		if (match.key->dst) {
3809 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3810 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3811 		}
3812 		if (match.key->src) {
3813 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3814 			vf->data.tcp_spec.src_ip[0] = match.key->src;
3815 		}
3816 	}
3817 
3818 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3819 		struct flow_match_ipv6_addrs match;
3820 
3821 		flow_rule_match_ipv6_addrs(rule, &match);
3822 
3823 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
3824 		if (ipv6_addr_any(&match.mask->dst)) {
3825 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3826 				IPV6_ADDR_ANY);
3827 			return -EINVAL;
3828 		}
3829 
3830 		/* src and dest IPv6 address should not be LOOPBACK
3831 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3832 		 */
3833 		if (ipv6_addr_loopback(&match.key->dst) ||
3834 		    ipv6_addr_loopback(&match.key->src)) {
3835 			dev_err(&adapter->pdev->dev,
3836 				"ipv6 addr should not be loopback\n");
3837 			return -EINVAL;
3838 		}
3839 		if (!ipv6_addr_any(&match.mask->dst) ||
3840 		    !ipv6_addr_any(&match.mask->src))
3841 			field_flags |= IAVF_CLOUD_FIELD_IIP;
3842 
3843 		for (i = 0; i < 4; i++)
3844 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3845 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3846 		       sizeof(vf->data.tcp_spec.dst_ip));
3847 		for (i = 0; i < 4; i++)
3848 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3849 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3850 		       sizeof(vf->data.tcp_spec.src_ip));
3851 	}
3852 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3853 		struct flow_match_ports match;
3854 
3855 		flow_rule_match_ports(rule, &match);
3856 		if (match.mask->src) {
3857 			if (match.mask->src == cpu_to_be16(0xffff)) {
3858 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3859 			} else {
3860 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3861 					be16_to_cpu(match.mask->src));
3862 				return -EINVAL;
3863 			}
3864 		}
3865 
3866 		if (match.mask->dst) {
3867 			if (match.mask->dst == cpu_to_be16(0xffff)) {
3868 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3869 			} else {
3870 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3871 					be16_to_cpu(match.mask->dst));
3872 				return -EINVAL;
3873 			}
3874 		}
3875 		if (match.key->dst) {
3876 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3877 			vf->data.tcp_spec.dst_port = match.key->dst;
3878 		}
3879 
3880 		if (match.key->src) {
3881 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3882 			vf->data.tcp_spec.src_port = match.key->src;
3883 		}
3884 	}
3885 	vf->field_flags = field_flags;
3886 
3887 	return 0;
3888 }
3889 
3890 /**
3891  * iavf_handle_tclass - Forward to a traffic class on the device
3892  * @adapter: board private structure
3893  * @tc: traffic class index on the device
3894  * @filter: pointer to cloud filter structure
3895  */
iavf_handle_tclass(struct iavf_adapter * adapter,u32 tc,struct iavf_cloud_filter * filter)3896 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3897 			      struct iavf_cloud_filter *filter)
3898 {
3899 	if (tc == 0)
3900 		return 0;
3901 	if (tc < adapter->num_tc) {
3902 		if (!filter->f.data.tcp_spec.dst_port) {
3903 			dev_err(&adapter->pdev->dev,
3904 				"Specify destination port to redirect to traffic class other than TC0\n");
3905 			return -EINVAL;
3906 		}
3907 	}
3908 	/* redirect to a traffic class on the same device */
3909 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3910 	filter->f.action_meta = tc;
3911 	return 0;
3912 }
3913 
3914 /**
3915  * iavf_find_cf - Find the cloud filter in the list
3916  * @adapter: Board private structure
3917  * @cookie: filter specific cookie
3918  *
3919  * Returns ptr to the filter object or NULL. Must be called while holding the
3920  * cloud_filter_list_lock.
3921  */
iavf_find_cf(struct iavf_adapter * adapter,unsigned long * cookie)3922 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3923 					      unsigned long *cookie)
3924 {
3925 	struct iavf_cloud_filter *filter = NULL;
3926 
3927 	if (!cookie)
3928 		return NULL;
3929 
3930 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3931 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3932 			return filter;
3933 	}
3934 	return NULL;
3935 }
3936 
3937 /**
3938  * iavf_configure_clsflower - Add tc flower filters
3939  * @adapter: board private structure
3940  * @cls_flower: Pointer to struct flow_cls_offload
3941  */
iavf_configure_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3942 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3943 				    struct flow_cls_offload *cls_flower)
3944 {
3945 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3946 	struct iavf_cloud_filter *filter = NULL;
3947 	int err = -EINVAL, count = 50;
3948 
3949 	if (tc < 0) {
3950 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3951 		return -EINVAL;
3952 	}
3953 
3954 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3955 	if (!filter)
3956 		return -ENOMEM;
3957 
3958 	while (!mutex_trylock(&adapter->crit_lock)) {
3959 		if (--count == 0) {
3960 			kfree(filter);
3961 			return err;
3962 		}
3963 		udelay(1);
3964 	}
3965 
3966 	filter->cookie = cls_flower->cookie;
3967 
3968 	/* bail out here if filter already exists */
3969 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3970 	if (iavf_find_cf(adapter, &cls_flower->cookie)) {
3971 		dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
3972 		err = -EEXIST;
3973 		goto spin_unlock;
3974 	}
3975 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3976 
3977 	/* set the mask to all zeroes to begin with */
3978 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3979 	/* start out with flow type and eth type IPv4 to begin with */
3980 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3981 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3982 	if (err)
3983 		goto err;
3984 
3985 	err = iavf_handle_tclass(adapter, tc, filter);
3986 	if (err)
3987 		goto err;
3988 
3989 	/* add filter to the list */
3990 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3991 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
3992 	adapter->num_cloud_filters++;
3993 	filter->add = true;
3994 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3995 spin_unlock:
3996 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3997 err:
3998 	if (err)
3999 		kfree(filter);
4000 
4001 	mutex_unlock(&adapter->crit_lock);
4002 	return err;
4003 }
4004 
4005 /**
4006  * iavf_delete_clsflower - Remove tc flower filters
4007  * @adapter: board private structure
4008  * @cls_flower: Pointer to struct flow_cls_offload
4009  */
iavf_delete_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)4010 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4011 				 struct flow_cls_offload *cls_flower)
4012 {
4013 	struct iavf_cloud_filter *filter = NULL;
4014 	int err = 0;
4015 
4016 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4017 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
4018 	if (filter) {
4019 		filter->del = true;
4020 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4021 	} else {
4022 		err = -EINVAL;
4023 	}
4024 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4025 
4026 	return err;
4027 }
4028 
4029 /**
4030  * iavf_setup_tc_cls_flower - flower classifier offloads
4031  * @adapter: pointer to iavf adapter structure
4032  * @cls_flower: pointer to flow_cls_offload struct with flow info
4033  */
iavf_setup_tc_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)4034 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4035 				    struct flow_cls_offload *cls_flower)
4036 {
4037 	switch (cls_flower->command) {
4038 	case FLOW_CLS_REPLACE:
4039 		return iavf_configure_clsflower(adapter, cls_flower);
4040 	case FLOW_CLS_DESTROY:
4041 		return iavf_delete_clsflower(adapter, cls_flower);
4042 	case FLOW_CLS_STATS:
4043 		return -EOPNOTSUPP;
4044 	default:
4045 		return -EOPNOTSUPP;
4046 	}
4047 }
4048 
4049 /**
4050  * iavf_add_cls_u32 - Add U32 classifier offloads
4051  * @adapter: pointer to iavf adapter structure
4052  * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4053  *
4054  * Return: 0 on success or negative errno on failure.
4055  */
iavf_add_cls_u32(struct iavf_adapter * adapter,struct tc_cls_u32_offload * cls_u32)4056 static int iavf_add_cls_u32(struct iavf_adapter *adapter,
4057 			    struct tc_cls_u32_offload *cls_u32)
4058 {
4059 	struct netlink_ext_ack *extack = cls_u32->common.extack;
4060 	struct virtchnl_fdir_rule *rule_cfg;
4061 	struct virtchnl_filter_action *vact;
4062 	struct virtchnl_proto_hdrs *hdrs;
4063 	struct ethhdr *spec_h, *mask_h;
4064 	const struct tc_action *act;
4065 	struct iavf_fdir_fltr *fltr;
4066 	struct tcf_exts *exts;
4067 	unsigned int q_index;
4068 	int i, status = 0;
4069 	int off_base = 0;
4070 
4071 	if (cls_u32->knode.link_handle) {
4072 		NL_SET_ERR_MSG_MOD(extack, "Linking not supported");
4073 		return -EOPNOTSUPP;
4074 	}
4075 
4076 	fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
4077 	if (!fltr)
4078 		return -ENOMEM;
4079 
4080 	rule_cfg = &fltr->vc_add_msg.rule_cfg;
4081 	hdrs = &rule_cfg->proto_hdrs;
4082 	hdrs->count = 0;
4083 
4084 	/* The parser lib at the PF expects the packet starting with MAC hdr */
4085 	switch (ntohs(cls_u32->common.protocol)) {
4086 	case ETH_P_802_3:
4087 		break;
4088 	case ETH_P_IP:
4089 		spec_h = (struct ethhdr *)hdrs->raw.spec;
4090 		mask_h = (struct ethhdr *)hdrs->raw.mask;
4091 		spec_h->h_proto = htons(ETH_P_IP);
4092 		mask_h->h_proto = htons(0xFFFF);
4093 		off_base += ETH_HLEN;
4094 		break;
4095 	default:
4096 		NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported");
4097 		status = -EOPNOTSUPP;
4098 		goto free_alloc;
4099 	}
4100 
4101 	for (i = 0; i < cls_u32->knode.sel->nkeys; i++) {
4102 		__be32 val, mask;
4103 		int off;
4104 
4105 		off = off_base + cls_u32->knode.sel->keys[i].off;
4106 		val = cls_u32->knode.sel->keys[i].val;
4107 		mask = cls_u32->knode.sel->keys[i].mask;
4108 
4109 		if (off >= sizeof(hdrs->raw.spec)) {
4110 			NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed.");
4111 			status = -EINVAL;
4112 			goto free_alloc;
4113 		}
4114 
4115 		memcpy(&hdrs->raw.spec[off], &val, sizeof(val));
4116 		memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask));
4117 		hdrs->raw.pkt_len = off + sizeof(val);
4118 	}
4119 
4120 	/* Only one action is allowed */
4121 	rule_cfg->action_set.count = 1;
4122 	vact = &rule_cfg->action_set.actions[0];
4123 	exts = cls_u32->knode.exts;
4124 
4125 	tcf_exts_for_each_action(i, act, exts) {
4126 		/* FDIR queue */
4127 		if (is_tcf_skbedit_rx_queue_mapping(act)) {
4128 			q_index = tcf_skbedit_rx_queue_mapping(act);
4129 			if (q_index >= adapter->num_active_queues) {
4130 				status = -EINVAL;
4131 				goto free_alloc;
4132 			}
4133 
4134 			vact->type = VIRTCHNL_ACTION_QUEUE;
4135 			vact->act_conf.queue.index = q_index;
4136 			break;
4137 		}
4138 
4139 		/* Drop */
4140 		if (is_tcf_gact_shot(act)) {
4141 			vact->type = VIRTCHNL_ACTION_DROP;
4142 			break;
4143 		}
4144 
4145 		/* Unsupported action */
4146 		NL_SET_ERR_MSG_MOD(extack, "Unsupported action.");
4147 		status = -EOPNOTSUPP;
4148 		goto free_alloc;
4149 	}
4150 
4151 	fltr->vc_add_msg.vsi_id = adapter->vsi.id;
4152 	fltr->cls_u32_handle = cls_u32->knode.handle;
4153 	return iavf_fdir_add_fltr(adapter, fltr);
4154 
4155 free_alloc:
4156 	kfree(fltr);
4157 	return status;
4158 }
4159 
4160 /**
4161  * iavf_del_cls_u32 - Delete U32 classifier offloads
4162  * @adapter: pointer to iavf adapter structure
4163  * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4164  *
4165  * Return: 0 on success or negative errno on failure.
4166  */
iavf_del_cls_u32(struct iavf_adapter * adapter,struct tc_cls_u32_offload * cls_u32)4167 static int iavf_del_cls_u32(struct iavf_adapter *adapter,
4168 			    struct tc_cls_u32_offload *cls_u32)
4169 {
4170 	return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle);
4171 }
4172 
4173 /**
4174  * iavf_setup_tc_cls_u32 - U32 filter offloads
4175  * @adapter: pointer to iavf adapter structure
4176  * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4177  *
4178  * Return: 0 on success or negative errno on failure.
4179  */
iavf_setup_tc_cls_u32(struct iavf_adapter * adapter,struct tc_cls_u32_offload * cls_u32)4180 static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter,
4181 				 struct tc_cls_u32_offload *cls_u32)
4182 {
4183 	if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter))
4184 		return -EOPNOTSUPP;
4185 
4186 	switch (cls_u32->command) {
4187 	case TC_CLSU32_NEW_KNODE:
4188 	case TC_CLSU32_REPLACE_KNODE:
4189 		return iavf_add_cls_u32(adapter, cls_u32);
4190 	case TC_CLSU32_DELETE_KNODE:
4191 		return iavf_del_cls_u32(adapter, cls_u32);
4192 	default:
4193 		return -EOPNOTSUPP;
4194 	}
4195 }
4196 
4197 /**
4198  * iavf_setup_tc_block_cb - block callback for tc
4199  * @type: type of offload
4200  * @type_data: offload data
4201  * @cb_priv:
4202  *
4203  * This function is the block callback for traffic classes
4204  **/
iavf_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)4205 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4206 				  void *cb_priv)
4207 {
4208 	struct iavf_adapter *adapter = cb_priv;
4209 
4210 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4211 		return -EOPNOTSUPP;
4212 
4213 	switch (type) {
4214 	case TC_SETUP_CLSFLOWER:
4215 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
4216 	case TC_SETUP_CLSU32:
4217 		return iavf_setup_tc_cls_u32(cb_priv, type_data);
4218 	default:
4219 		return -EOPNOTSUPP;
4220 	}
4221 }
4222 
4223 static LIST_HEAD(iavf_block_cb_list);
4224 
4225 /**
4226  * iavf_setup_tc - configure multiple traffic classes
4227  * @netdev: network interface device structure
4228  * @type: type of offload
4229  * @type_data: tc offload data
4230  *
4231  * This function is the callback to ndo_setup_tc in the
4232  * netdev_ops.
4233  *
4234  * Returns 0 on success
4235  **/
iavf_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)4236 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4237 			 void *type_data)
4238 {
4239 	struct iavf_adapter *adapter = netdev_priv(netdev);
4240 
4241 	switch (type) {
4242 	case TC_SETUP_QDISC_MQPRIO:
4243 		return __iavf_setup_tc(netdev, type_data);
4244 	case TC_SETUP_BLOCK:
4245 		return flow_block_cb_setup_simple(type_data,
4246 						  &iavf_block_cb_list,
4247 						  iavf_setup_tc_block_cb,
4248 						  adapter, adapter, true);
4249 	default:
4250 		return -EOPNOTSUPP;
4251 	}
4252 }
4253 
4254 /**
4255  * iavf_restore_fdir_filters
4256  * @adapter: board private structure
4257  *
4258  * Restore existing FDIR filters when VF netdev comes back up.
4259  **/
iavf_restore_fdir_filters(struct iavf_adapter * adapter)4260 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4261 {
4262 	struct iavf_fdir_fltr *f;
4263 
4264 	spin_lock_bh(&adapter->fdir_fltr_lock);
4265 	list_for_each_entry(f, &adapter->fdir_list_head, list) {
4266 		if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4267 			/* Cancel a request, keep filter as active */
4268 			f->state = IAVF_FDIR_FLTR_ACTIVE;
4269 		} else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4270 			   f->state == IAVF_FDIR_FLTR_INACTIVE) {
4271 			/* Add filters which are inactive or have a pending
4272 			 * request to PF to be deleted
4273 			 */
4274 			f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4275 			adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4276 		}
4277 	}
4278 	spin_unlock_bh(&adapter->fdir_fltr_lock);
4279 }
4280 
4281 /**
4282  * iavf_open - Called when a network interface is made active
4283  * @netdev: network interface device structure
4284  *
4285  * Returns 0 on success, negative value on failure
4286  *
4287  * The open entry point is called when a network interface is made
4288  * active by the system (IFF_UP).  At this point all resources needed
4289  * for transmit and receive operations are allocated, the interrupt
4290  * handler is registered with the OS, the watchdog is started,
4291  * and the stack is notified that the interface is ready.
4292  **/
iavf_open(struct net_device * netdev)4293 static int iavf_open(struct net_device *netdev)
4294 {
4295 	struct iavf_adapter *adapter = netdev_priv(netdev);
4296 	int err;
4297 
4298 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4299 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4300 		return -EIO;
4301 	}
4302 
4303 	while (!mutex_trylock(&adapter->crit_lock)) {
4304 		/* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4305 		 * is already taken and iavf_open is called from an upper
4306 		 * device's notifier reacting on NETDEV_REGISTER event.
4307 		 * We have to leave here to avoid dead lock.
4308 		 */
4309 		if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4310 			return -EBUSY;
4311 
4312 		usleep_range(500, 1000);
4313 	}
4314 
4315 	if (adapter->state != __IAVF_DOWN) {
4316 		err = -EBUSY;
4317 		goto err_unlock;
4318 	}
4319 
4320 	if (adapter->state == __IAVF_RUNNING &&
4321 	    !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4322 		dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4323 		err = 0;
4324 		goto err_unlock;
4325 	}
4326 
4327 	/* allocate transmit descriptors */
4328 	err = iavf_setup_all_tx_resources(adapter);
4329 	if (err)
4330 		goto err_setup_tx;
4331 
4332 	/* allocate receive descriptors */
4333 	err = iavf_setup_all_rx_resources(adapter);
4334 	if (err)
4335 		goto err_setup_rx;
4336 
4337 	/* clear any pending interrupts, may auto mask */
4338 	err = iavf_request_traffic_irqs(adapter, netdev->name);
4339 	if (err)
4340 		goto err_req_irq;
4341 
4342 	spin_lock_bh(&adapter->mac_vlan_list_lock);
4343 
4344 	iavf_add_filter(adapter, adapter->hw.mac.addr);
4345 
4346 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4347 
4348 	/* Restore filters that were removed with IFF_DOWN */
4349 	iavf_restore_filters(adapter);
4350 	iavf_restore_fdir_filters(adapter);
4351 
4352 	iavf_configure(adapter);
4353 
4354 	iavf_up_complete(adapter);
4355 
4356 	iavf_irq_enable(adapter, true);
4357 
4358 	mutex_unlock(&adapter->crit_lock);
4359 
4360 	return 0;
4361 
4362 err_req_irq:
4363 	iavf_down(adapter);
4364 	iavf_free_traffic_irqs(adapter);
4365 err_setup_rx:
4366 	iavf_free_all_rx_resources(adapter);
4367 err_setup_tx:
4368 	iavf_free_all_tx_resources(adapter);
4369 err_unlock:
4370 	mutex_unlock(&adapter->crit_lock);
4371 
4372 	return err;
4373 }
4374 
4375 /**
4376  * iavf_close - Disables a network interface
4377  * @netdev: network interface device structure
4378  *
4379  * Returns 0, this is not allowed to fail
4380  *
4381  * The close entry point is called when an interface is de-activated
4382  * by the OS.  The hardware is still under the drivers control, but
4383  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4384  * are freed, along with all transmit and receive resources.
4385  **/
iavf_close(struct net_device * netdev)4386 static int iavf_close(struct net_device *netdev)
4387 {
4388 	struct iavf_adapter *adapter = netdev_priv(netdev);
4389 	u64 aq_to_restore;
4390 	int status;
4391 
4392 	mutex_lock(&adapter->crit_lock);
4393 
4394 	if (adapter->state <= __IAVF_DOWN_PENDING) {
4395 		mutex_unlock(&adapter->crit_lock);
4396 		return 0;
4397 	}
4398 
4399 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4400 	/* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4401 	 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4402 	 * deadlock with adminq_task() until iavf_close timeouts. We must send
4403 	 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4404 	 * disable queues possible for vf. Give only necessary flags to
4405 	 * iavf_down and save other to set them right before iavf_close()
4406 	 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4407 	 * iavf will be in DOWN state.
4408 	 */
4409 	aq_to_restore = adapter->aq_required;
4410 	adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4411 
4412 	/* Remove flags which we do not want to send after close or we want to
4413 	 * send before disable queues.
4414 	 */
4415 	aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG		|
4416 			   IAVF_FLAG_AQ_ENABLE_QUEUES		|
4417 			   IAVF_FLAG_AQ_CONFIGURE_QUEUES	|
4418 			   IAVF_FLAG_AQ_ADD_VLAN_FILTER		|
4419 			   IAVF_FLAG_AQ_ADD_MAC_FILTER		|
4420 			   IAVF_FLAG_AQ_ADD_CLOUD_FILTER	|
4421 			   IAVF_FLAG_AQ_ADD_FDIR_FILTER		|
4422 			   IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4423 
4424 	iavf_down(adapter);
4425 	iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4426 	iavf_free_traffic_irqs(adapter);
4427 
4428 	mutex_unlock(&adapter->crit_lock);
4429 
4430 	/* We explicitly don't free resources here because the hardware is
4431 	 * still active and can DMA into memory. Resources are cleared in
4432 	 * iavf_virtchnl_completion() after we get confirmation from the PF
4433 	 * driver that the rings have been stopped.
4434 	 *
4435 	 * Also, we wait for state to transition to __IAVF_DOWN before
4436 	 * returning. State change occurs in iavf_virtchnl_completion() after
4437 	 * VF resources are released (which occurs after PF driver processes and
4438 	 * responds to admin queue commands).
4439 	 */
4440 
4441 	status = wait_event_timeout(adapter->down_waitqueue,
4442 				    adapter->state == __IAVF_DOWN,
4443 				    msecs_to_jiffies(500));
4444 	if (!status)
4445 		netdev_warn(netdev, "Device resources not yet released\n");
4446 
4447 	mutex_lock(&adapter->crit_lock);
4448 	adapter->aq_required |= aq_to_restore;
4449 	mutex_unlock(&adapter->crit_lock);
4450 	return 0;
4451 }
4452 
4453 /**
4454  * iavf_change_mtu - Change the Maximum Transfer Unit
4455  * @netdev: network interface device structure
4456  * @new_mtu: new value for maximum frame size
4457  *
4458  * Returns 0 on success, negative on failure
4459  **/
iavf_change_mtu(struct net_device * netdev,int new_mtu)4460 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4461 {
4462 	struct iavf_adapter *adapter = netdev_priv(netdev);
4463 	int ret = 0;
4464 
4465 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
4466 		   netdev->mtu, new_mtu);
4467 	WRITE_ONCE(netdev->mtu, new_mtu);
4468 
4469 	if (netif_running(netdev)) {
4470 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4471 		ret = iavf_wait_for_reset(adapter);
4472 		if (ret < 0)
4473 			netdev_warn(netdev, "MTU change interrupted waiting for reset");
4474 		else if (ret)
4475 			netdev_warn(netdev, "MTU change timed out waiting for reset");
4476 	}
4477 
4478 	return ret;
4479 }
4480 
4481 /**
4482  * iavf_disable_fdir - disable Flow Director and clear existing filters
4483  * @adapter: board private structure
4484  **/
iavf_disable_fdir(struct iavf_adapter * adapter)4485 static void iavf_disable_fdir(struct iavf_adapter *adapter)
4486 {
4487 	struct iavf_fdir_fltr *fdir, *fdirtmp;
4488 	bool del_filters = false;
4489 
4490 	adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4491 
4492 	/* remove all Flow Director filters */
4493 	spin_lock_bh(&adapter->fdir_fltr_lock);
4494 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4495 				 list) {
4496 		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4497 		    fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4498 			/* Delete filters not registered in PF */
4499 			list_del(&fdir->list);
4500 			iavf_dec_fdir_active_fltr(adapter, fdir);
4501 			kfree(fdir);
4502 		} else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4503 			   fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4504 			   fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4505 			/* Filters registered in PF, schedule their deletion */
4506 			fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4507 			del_filters = true;
4508 		} else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4509 			/* Request to delete filter already sent to PF, change
4510 			 * state to DEL_PENDING to delete filter after PF's
4511 			 * response, not set as INACTIVE
4512 			 */
4513 			fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4514 		}
4515 	}
4516 	spin_unlock_bh(&adapter->fdir_fltr_lock);
4517 
4518 	if (del_filters) {
4519 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4520 		mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4521 	}
4522 }
4523 
4524 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
4525 					 NETIF_F_HW_VLAN_CTAG_TX | \
4526 					 NETIF_F_HW_VLAN_STAG_RX | \
4527 					 NETIF_F_HW_VLAN_STAG_TX)
4528 
4529 /**
4530  * iavf_set_features - set the netdev feature flags
4531  * @netdev: ptr to the netdev being adjusted
4532  * @features: the feature set that the stack is suggesting
4533  * Note: expects to be called while under rtnl_lock()
4534  **/
iavf_set_features(struct net_device * netdev,netdev_features_t features)4535 static int iavf_set_features(struct net_device *netdev,
4536 			     netdev_features_t features)
4537 {
4538 	struct iavf_adapter *adapter = netdev_priv(netdev);
4539 
4540 	/* trigger update on any VLAN feature change */
4541 	if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4542 	    (features & NETIF_VLAN_OFFLOAD_FEATURES))
4543 		iavf_set_vlan_offload_features(adapter, netdev->features,
4544 					       features);
4545 	if (CRC_OFFLOAD_ALLOWED(adapter) &&
4546 	    ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4547 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4548 
4549 	if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4550 		if (features & NETIF_F_NTUPLE)
4551 			adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4552 		else
4553 			iavf_disable_fdir(adapter);
4554 	}
4555 
4556 	return 0;
4557 }
4558 
4559 /**
4560  * iavf_features_check - Validate encapsulated packet conforms to limits
4561  * @skb: skb buff
4562  * @dev: This physical port's netdev
4563  * @features: Offload features that the stack believes apply
4564  **/
iavf_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)4565 static netdev_features_t iavf_features_check(struct sk_buff *skb,
4566 					     struct net_device *dev,
4567 					     netdev_features_t features)
4568 {
4569 	size_t len;
4570 
4571 	/* No point in doing any of this if neither checksum nor GSO are
4572 	 * being requested for this frame.  We can rule out both by just
4573 	 * checking for CHECKSUM_PARTIAL
4574 	 */
4575 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4576 		return features;
4577 
4578 	/* We cannot support GSO if the MSS is going to be less than
4579 	 * 64 bytes.  If it is then we need to drop support for GSO.
4580 	 */
4581 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4582 		features &= ~NETIF_F_GSO_MASK;
4583 
4584 	/* MACLEN can support at most 63 words */
4585 	len = skb_network_offset(skb);
4586 	if (len & ~(63 * 2))
4587 		goto out_err;
4588 
4589 	/* IPLEN and EIPLEN can support at most 127 dwords */
4590 	len = skb_network_header_len(skb);
4591 	if (len & ~(127 * 4))
4592 		goto out_err;
4593 
4594 	if (skb->encapsulation) {
4595 		/* L4TUNLEN can support 127 words */
4596 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
4597 		if (len & ~(127 * 2))
4598 			goto out_err;
4599 
4600 		/* IPLEN can support at most 127 dwords */
4601 		len = skb_inner_transport_header(skb) -
4602 		      skb_inner_network_header(skb);
4603 		if (len & ~(127 * 4))
4604 			goto out_err;
4605 	}
4606 
4607 	/* No need to validate L4LEN as TCP is the only protocol with a
4608 	 * flexible value and we support all possible values supported
4609 	 * by TCP, which is at most 15 dwords
4610 	 */
4611 
4612 	return features;
4613 out_err:
4614 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4615 }
4616 
4617 /**
4618  * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4619  * @adapter: board private structure
4620  *
4621  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4622  * were negotiated determine the VLAN features that can be toggled on and off.
4623  **/
4624 static netdev_features_t
iavf_get_netdev_vlan_hw_features(struct iavf_adapter * adapter)4625 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4626 {
4627 	netdev_features_t hw_features = 0;
4628 
4629 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4630 		return hw_features;
4631 
4632 	/* Enable VLAN features if supported */
4633 	if (VLAN_ALLOWED(adapter)) {
4634 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4635 				NETIF_F_HW_VLAN_CTAG_RX);
4636 	} else if (VLAN_V2_ALLOWED(adapter)) {
4637 		struct virtchnl_vlan_caps *vlan_v2_caps =
4638 			&adapter->vlan_v2_caps;
4639 		struct virtchnl_vlan_supported_caps *stripping_support =
4640 			&vlan_v2_caps->offloads.stripping_support;
4641 		struct virtchnl_vlan_supported_caps *insertion_support =
4642 			&vlan_v2_caps->offloads.insertion_support;
4643 
4644 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4645 		    stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4646 			if (stripping_support->outer &
4647 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4648 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4649 			if (stripping_support->outer &
4650 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4651 				hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4652 		} else if (stripping_support->inner !=
4653 			   VIRTCHNL_VLAN_UNSUPPORTED &&
4654 			   stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4655 			if (stripping_support->inner &
4656 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4657 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4658 		}
4659 
4660 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4661 		    insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4662 			if (insertion_support->outer &
4663 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4664 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4665 			if (insertion_support->outer &
4666 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4667 				hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4668 		} else if (insertion_support->inner &&
4669 			   insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4670 			if (insertion_support->inner &
4671 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4672 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4673 		}
4674 	}
4675 
4676 	if (CRC_OFFLOAD_ALLOWED(adapter))
4677 		hw_features |= NETIF_F_RXFCS;
4678 
4679 	return hw_features;
4680 }
4681 
4682 /**
4683  * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4684  * @adapter: board private structure
4685  *
4686  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4687  * were negotiated determine the VLAN features that are enabled by default.
4688  **/
4689 static netdev_features_t
iavf_get_netdev_vlan_features(struct iavf_adapter * adapter)4690 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4691 {
4692 	netdev_features_t features = 0;
4693 
4694 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4695 		return features;
4696 
4697 	if (VLAN_ALLOWED(adapter)) {
4698 		features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4699 			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4700 	} else if (VLAN_V2_ALLOWED(adapter)) {
4701 		struct virtchnl_vlan_caps *vlan_v2_caps =
4702 			&adapter->vlan_v2_caps;
4703 		struct virtchnl_vlan_supported_caps *filtering_support =
4704 			&vlan_v2_caps->filtering.filtering_support;
4705 		struct virtchnl_vlan_supported_caps *stripping_support =
4706 			&vlan_v2_caps->offloads.stripping_support;
4707 		struct virtchnl_vlan_supported_caps *insertion_support =
4708 			&vlan_v2_caps->offloads.insertion_support;
4709 		u32 ethertype_init;
4710 
4711 		/* give priority to outer stripping and don't support both outer
4712 		 * and inner stripping
4713 		 */
4714 		ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4715 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4716 			if (stripping_support->outer &
4717 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4718 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4719 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4720 			else if (stripping_support->outer &
4721 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4722 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4723 				features |= NETIF_F_HW_VLAN_STAG_RX;
4724 		} else if (stripping_support->inner !=
4725 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4726 			if (stripping_support->inner &
4727 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4728 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4729 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4730 		}
4731 
4732 		/* give priority to outer insertion and don't support both outer
4733 		 * and inner insertion
4734 		 */
4735 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4736 			if (insertion_support->outer &
4737 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4738 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4739 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4740 			else if (insertion_support->outer &
4741 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4742 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4743 				features |= NETIF_F_HW_VLAN_STAG_TX;
4744 		} else if (insertion_support->inner !=
4745 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4746 			if (insertion_support->inner &
4747 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4748 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4749 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4750 		}
4751 
4752 		/* give priority to outer filtering and don't bother if both
4753 		 * outer and inner filtering are enabled
4754 		 */
4755 		ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4756 		if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4757 			if (filtering_support->outer &
4758 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4759 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4760 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4761 			if (filtering_support->outer &
4762 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4763 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4764 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4765 		} else if (filtering_support->inner !=
4766 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4767 			if (filtering_support->inner &
4768 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4769 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4770 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4771 			if (filtering_support->inner &
4772 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4773 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4774 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4775 		}
4776 	}
4777 
4778 	return features;
4779 }
4780 
4781 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4782 	(!(((requested) & (feature_bit)) && \
4783 	   !((allowed) & (feature_bit))))
4784 
4785 /**
4786  * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4787  * @adapter: board private structure
4788  * @requested_features: stack requested NETDEV features
4789  **/
4790 static netdev_features_t
iavf_fix_netdev_vlan_features(struct iavf_adapter * adapter,netdev_features_t requested_features)4791 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4792 			      netdev_features_t requested_features)
4793 {
4794 	netdev_features_t allowed_features;
4795 
4796 	allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4797 		iavf_get_netdev_vlan_features(adapter);
4798 
4799 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4800 					      allowed_features,
4801 					      NETIF_F_HW_VLAN_CTAG_TX))
4802 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4803 
4804 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4805 					      allowed_features,
4806 					      NETIF_F_HW_VLAN_CTAG_RX))
4807 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4808 
4809 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4810 					      allowed_features,
4811 					      NETIF_F_HW_VLAN_STAG_TX))
4812 		requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4813 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4814 					      allowed_features,
4815 					      NETIF_F_HW_VLAN_STAG_RX))
4816 		requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4817 
4818 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4819 					      allowed_features,
4820 					      NETIF_F_HW_VLAN_CTAG_FILTER))
4821 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4822 
4823 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4824 					      allowed_features,
4825 					      NETIF_F_HW_VLAN_STAG_FILTER))
4826 		requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4827 
4828 	if ((requested_features &
4829 	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4830 	    (requested_features &
4831 	     (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4832 	    adapter->vlan_v2_caps.offloads.ethertype_match ==
4833 	    VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4834 		netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4835 		requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4836 					NETIF_F_HW_VLAN_STAG_TX);
4837 	}
4838 
4839 	return requested_features;
4840 }
4841 
4842 /**
4843  * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4844  * @adapter: board private structure
4845  * @requested_features: stack requested NETDEV features
4846  *
4847  * Returns fixed-up features bits
4848  **/
4849 static netdev_features_t
iavf_fix_strip_features(struct iavf_adapter * adapter,netdev_features_t requested_features)4850 iavf_fix_strip_features(struct iavf_adapter *adapter,
4851 			netdev_features_t requested_features)
4852 {
4853 	struct net_device *netdev = adapter->netdev;
4854 	bool crc_offload_req, is_vlan_strip;
4855 	netdev_features_t vlan_strip;
4856 	int num_non_zero_vlan;
4857 
4858 	crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4859 			  (requested_features & NETIF_F_RXFCS);
4860 	num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4861 	vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4862 	is_vlan_strip = requested_features & vlan_strip;
4863 
4864 	if (!crc_offload_req)
4865 		return requested_features;
4866 
4867 	if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4868 	    !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4869 		requested_features &= ~vlan_strip;
4870 		netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4871 		return requested_features;
4872 	}
4873 
4874 	if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4875 		requested_features &= ~vlan_strip;
4876 		if (!(netdev->features & vlan_strip))
4877 			netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4878 
4879 		return requested_features;
4880 	}
4881 
4882 	if (num_non_zero_vlan && is_vlan_strip &&
4883 	    !(netdev->features & NETIF_F_RXFCS)) {
4884 		requested_features &= ~NETIF_F_RXFCS;
4885 		netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4886 	}
4887 
4888 	return requested_features;
4889 }
4890 
4891 /**
4892  * iavf_fix_features - fix up the netdev feature bits
4893  * @netdev: our net device
4894  * @features: desired feature bits
4895  *
4896  * Returns fixed-up features bits
4897  **/
iavf_fix_features(struct net_device * netdev,netdev_features_t features)4898 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4899 					   netdev_features_t features)
4900 {
4901 	struct iavf_adapter *adapter = netdev_priv(netdev);
4902 
4903 	features = iavf_fix_netdev_vlan_features(adapter, features);
4904 
4905 	if (!FDIR_FLTR_SUPPORT(adapter))
4906 		features &= ~NETIF_F_NTUPLE;
4907 
4908 	return iavf_fix_strip_features(adapter, features);
4909 }
4910 
4911 static const struct net_device_ops iavf_netdev_ops = {
4912 	.ndo_open		= iavf_open,
4913 	.ndo_stop		= iavf_close,
4914 	.ndo_start_xmit		= iavf_xmit_frame,
4915 	.ndo_set_rx_mode	= iavf_set_rx_mode,
4916 	.ndo_validate_addr	= eth_validate_addr,
4917 	.ndo_set_mac_address	= iavf_set_mac,
4918 	.ndo_change_mtu		= iavf_change_mtu,
4919 	.ndo_tx_timeout		= iavf_tx_timeout,
4920 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
4921 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
4922 	.ndo_features_check	= iavf_features_check,
4923 	.ndo_fix_features	= iavf_fix_features,
4924 	.ndo_set_features	= iavf_set_features,
4925 	.ndo_setup_tc		= iavf_setup_tc,
4926 };
4927 
4928 /**
4929  * iavf_check_reset_complete - check that VF reset is complete
4930  * @hw: pointer to hw struct
4931  *
4932  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4933  **/
iavf_check_reset_complete(struct iavf_hw * hw)4934 static int iavf_check_reset_complete(struct iavf_hw *hw)
4935 {
4936 	u32 rstat;
4937 	int i;
4938 
4939 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4940 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4941 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4942 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4943 		    (rstat == VIRTCHNL_VFR_COMPLETED))
4944 			return 0;
4945 		msleep(IAVF_RESET_WAIT_MS);
4946 	}
4947 	return -EBUSY;
4948 }
4949 
4950 /**
4951  * iavf_process_config - Process the config information we got from the PF
4952  * @adapter: board private structure
4953  *
4954  * Verify that we have a valid config struct, and set up our netdev features
4955  * and our VSI struct.
4956  **/
iavf_process_config(struct iavf_adapter * adapter)4957 int iavf_process_config(struct iavf_adapter *adapter)
4958 {
4959 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
4960 	netdev_features_t hw_vlan_features, vlan_features;
4961 	struct net_device *netdev = adapter->netdev;
4962 	netdev_features_t hw_enc_features;
4963 	netdev_features_t hw_features;
4964 
4965 	hw_enc_features = NETIF_F_SG			|
4966 			  NETIF_F_IP_CSUM		|
4967 			  NETIF_F_IPV6_CSUM		|
4968 			  NETIF_F_HIGHDMA		|
4969 			  NETIF_F_SOFT_FEATURES	|
4970 			  NETIF_F_TSO			|
4971 			  NETIF_F_TSO_ECN		|
4972 			  NETIF_F_TSO6			|
4973 			  NETIF_F_SCTP_CRC		|
4974 			  NETIF_F_RXHASH		|
4975 			  NETIF_F_RXCSUM		|
4976 			  0;
4977 
4978 	/* advertise to stack only if offloads for encapsulated packets is
4979 	 * supported
4980 	 */
4981 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4982 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
4983 				   NETIF_F_GSO_GRE		|
4984 				   NETIF_F_GSO_GRE_CSUM		|
4985 				   NETIF_F_GSO_IPXIP4		|
4986 				   NETIF_F_GSO_IPXIP6		|
4987 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
4988 				   NETIF_F_GSO_PARTIAL		|
4989 				   0;
4990 
4991 		if (!(vfres->vf_cap_flags &
4992 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4993 			netdev->gso_partial_features |=
4994 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
4995 
4996 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4997 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4998 		netdev->hw_enc_features |= hw_enc_features;
4999 	}
5000 	/* record features VLANs can make use of */
5001 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
5002 
5003 	/* Write features and hw_features separately to avoid polluting
5004 	 * with, or dropping, features that are set when we registered.
5005 	 */
5006 	hw_features = hw_enc_features;
5007 
5008 	/* get HW VLAN features that can be toggled */
5009 	hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
5010 
5011 	/* Enable HW TC offload if ADQ or tc U32 is supported */
5012 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ ||
5013 	    TC_U32_SUPPORT(adapter))
5014 		hw_features |= NETIF_F_HW_TC;
5015 
5016 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
5017 		hw_features |= NETIF_F_GSO_UDP_L4;
5018 
5019 	netdev->hw_features |= hw_features | hw_vlan_features;
5020 	vlan_features = iavf_get_netdev_vlan_features(adapter);
5021 
5022 	netdev->features |= hw_features | vlan_features;
5023 
5024 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
5025 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5026 
5027 	if (FDIR_FLTR_SUPPORT(adapter)) {
5028 		netdev->hw_features |= NETIF_F_NTUPLE;
5029 		netdev->features |= NETIF_F_NTUPLE;
5030 		adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
5031 	}
5032 
5033 	netdev->priv_flags |= IFF_UNICAST_FLT;
5034 
5035 	/* Do not turn on offloads when they are requested to be turned off.
5036 	 * TSO needs minimum 576 bytes to work correctly.
5037 	 */
5038 	if (netdev->wanted_features) {
5039 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
5040 		    netdev->mtu < 576)
5041 			netdev->features &= ~NETIF_F_TSO;
5042 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
5043 		    netdev->mtu < 576)
5044 			netdev->features &= ~NETIF_F_TSO6;
5045 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
5046 			netdev->features &= ~NETIF_F_TSO_ECN;
5047 		if (!(netdev->wanted_features & NETIF_F_GRO))
5048 			netdev->features &= ~NETIF_F_GRO;
5049 		if (!(netdev->wanted_features & NETIF_F_GSO))
5050 			netdev->features &= ~NETIF_F_GSO;
5051 	}
5052 
5053 	return 0;
5054 }
5055 
5056 /**
5057  * iavf_probe - Device Initialization Routine
5058  * @pdev: PCI device information struct
5059  * @ent: entry in iavf_pci_tbl
5060  *
5061  * Returns 0 on success, negative on failure
5062  *
5063  * iavf_probe initializes an adapter identified by a pci_dev structure.
5064  * The OS initialization, configuring of the adapter private structure,
5065  * and a hardware reset occur.
5066  **/
iavf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)5067 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5068 {
5069 	struct net_device *netdev;
5070 	struct iavf_adapter *adapter = NULL;
5071 	struct iavf_hw *hw = NULL;
5072 	int err;
5073 
5074 	err = pci_enable_device(pdev);
5075 	if (err)
5076 		return err;
5077 
5078 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5079 	if (err) {
5080 		dev_err(&pdev->dev,
5081 			"DMA configuration failed: 0x%x\n", err);
5082 		goto err_dma;
5083 	}
5084 
5085 	err = pci_request_regions(pdev, iavf_driver_name);
5086 	if (err) {
5087 		dev_err(&pdev->dev,
5088 			"pci_request_regions failed 0x%x\n", err);
5089 		goto err_pci_reg;
5090 	}
5091 
5092 	pci_set_master(pdev);
5093 
5094 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
5095 				   IAVF_MAX_REQ_QUEUES);
5096 	if (!netdev) {
5097 		err = -ENOMEM;
5098 		goto err_alloc_etherdev;
5099 	}
5100 
5101 	SET_NETDEV_DEV(netdev, &pdev->dev);
5102 
5103 	pci_set_drvdata(pdev, netdev);
5104 	adapter = netdev_priv(netdev);
5105 
5106 	adapter->netdev = netdev;
5107 	adapter->pdev = pdev;
5108 
5109 	hw = &adapter->hw;
5110 	hw->back = adapter;
5111 
5112 	adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
5113 					      iavf_driver_name);
5114 	if (!adapter->wq) {
5115 		err = -ENOMEM;
5116 		goto err_alloc_wq;
5117 	}
5118 
5119 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
5120 	iavf_change_state(adapter, __IAVF_STARTUP);
5121 
5122 	/* Call save state here because it relies on the adapter struct. */
5123 	pci_save_state(pdev);
5124 
5125 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
5126 			      pci_resource_len(pdev, 0));
5127 	if (!hw->hw_addr) {
5128 		err = -EIO;
5129 		goto err_ioremap;
5130 	}
5131 	hw->vendor_id = pdev->vendor;
5132 	hw->device_id = pdev->device;
5133 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5134 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5135 	hw->subsystem_device_id = pdev->subsystem_device;
5136 	hw->bus.device = PCI_SLOT(pdev->devfn);
5137 	hw->bus.func = PCI_FUNC(pdev->devfn);
5138 	hw->bus.bus_id = pdev->bus->number;
5139 
5140 	/* set up the locks for the AQ, do this only once in probe
5141 	 * and destroy them only once in remove
5142 	 */
5143 	mutex_init(&adapter->crit_lock);
5144 	mutex_init(&hw->aq.asq_mutex);
5145 	mutex_init(&hw->aq.arq_mutex);
5146 
5147 	spin_lock_init(&adapter->mac_vlan_list_lock);
5148 	spin_lock_init(&adapter->cloud_filter_list_lock);
5149 	spin_lock_init(&adapter->fdir_fltr_lock);
5150 	spin_lock_init(&adapter->adv_rss_lock);
5151 	spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
5152 
5153 	INIT_LIST_HEAD(&adapter->mac_filter_list);
5154 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
5155 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
5156 	INIT_LIST_HEAD(&adapter->fdir_list_head);
5157 	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
5158 
5159 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
5160 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5161 	INIT_WORK(&adapter->finish_config, iavf_finish_config);
5162 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
5163 
5164 	/* Setup the wait queue for indicating transition to down status */
5165 	init_waitqueue_head(&adapter->down_waitqueue);
5166 
5167 	/* Setup the wait queue for indicating transition to running state */
5168 	init_waitqueue_head(&adapter->reset_waitqueue);
5169 
5170 	/* Setup the wait queue for indicating virtchannel events */
5171 	init_waitqueue_head(&adapter->vc_waitqueue);
5172 
5173 	queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5174 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5175 	/* Initialization goes on in the work. Do not add more of it below. */
5176 	return 0;
5177 
5178 err_ioremap:
5179 	destroy_workqueue(adapter->wq);
5180 err_alloc_wq:
5181 	free_netdev(netdev);
5182 err_alloc_etherdev:
5183 	pci_release_regions(pdev);
5184 err_pci_reg:
5185 err_dma:
5186 	pci_disable_device(pdev);
5187 	return err;
5188 }
5189 
5190 /**
5191  * iavf_suspend - Power management suspend routine
5192  * @dev_d: device info pointer
5193  *
5194  * Called when the system (VM) is entering sleep/suspend.
5195  **/
iavf_suspend(struct device * dev_d)5196 static int iavf_suspend(struct device *dev_d)
5197 {
5198 	struct net_device *netdev = dev_get_drvdata(dev_d);
5199 	struct iavf_adapter *adapter = netdev_priv(netdev);
5200 
5201 	netif_device_detach(netdev);
5202 
5203 	mutex_lock(&adapter->crit_lock);
5204 
5205 	if (netif_running(netdev)) {
5206 		rtnl_lock();
5207 		iavf_down(adapter);
5208 		rtnl_unlock();
5209 	}
5210 	iavf_free_misc_irq(adapter);
5211 	iavf_reset_interrupt_capability(adapter);
5212 
5213 	mutex_unlock(&adapter->crit_lock);
5214 
5215 	return 0;
5216 }
5217 
5218 /**
5219  * iavf_resume - Power management resume routine
5220  * @dev_d: device info pointer
5221  *
5222  * Called when the system (VM) is resumed from sleep/suspend.
5223  **/
iavf_resume(struct device * dev_d)5224 static int iavf_resume(struct device *dev_d)
5225 {
5226 	struct pci_dev *pdev = to_pci_dev(dev_d);
5227 	struct iavf_adapter *adapter;
5228 	u32 err;
5229 
5230 	adapter = iavf_pdev_to_adapter(pdev);
5231 
5232 	pci_set_master(pdev);
5233 
5234 	rtnl_lock();
5235 	err = iavf_set_interrupt_capability(adapter);
5236 	if (err) {
5237 		rtnl_unlock();
5238 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5239 		return err;
5240 	}
5241 	err = iavf_request_misc_irq(adapter);
5242 	rtnl_unlock();
5243 	if (err) {
5244 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5245 		return err;
5246 	}
5247 
5248 	queue_work(adapter->wq, &adapter->reset_task);
5249 
5250 	netif_device_attach(adapter->netdev);
5251 
5252 	return err;
5253 }
5254 
5255 /**
5256  * iavf_remove - Device Removal Routine
5257  * @pdev: PCI device information struct
5258  *
5259  * iavf_remove is called by the PCI subsystem to alert the driver
5260  * that it should release a PCI device.  The could be caused by a
5261  * Hot-Plug event, or because the driver is going to be removed from
5262  * memory.
5263  **/
iavf_remove(struct pci_dev * pdev)5264 static void iavf_remove(struct pci_dev *pdev)
5265 {
5266 	struct iavf_fdir_fltr *fdir, *fdirtmp;
5267 	struct iavf_vlan_filter *vlf, *vlftmp;
5268 	struct iavf_cloud_filter *cf, *cftmp;
5269 	struct iavf_adv_rss *rss, *rsstmp;
5270 	struct iavf_mac_filter *f, *ftmp;
5271 	struct iavf_adapter *adapter;
5272 	struct net_device *netdev;
5273 	struct iavf_hw *hw;
5274 
5275 	/* Don't proceed with remove if netdev is already freed */
5276 	netdev = pci_get_drvdata(pdev);
5277 	if (!netdev)
5278 		return;
5279 
5280 	adapter = iavf_pdev_to_adapter(pdev);
5281 	hw = &adapter->hw;
5282 
5283 	if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5284 		return;
5285 
5286 	/* Wait until port initialization is complete.
5287 	 * There are flows where register/unregister netdev may race.
5288 	 */
5289 	while (1) {
5290 		mutex_lock(&adapter->crit_lock);
5291 		if (adapter->state == __IAVF_RUNNING ||
5292 		    adapter->state == __IAVF_DOWN ||
5293 		    adapter->state == __IAVF_INIT_FAILED) {
5294 			mutex_unlock(&adapter->crit_lock);
5295 			break;
5296 		}
5297 		/* Simply return if we already went through iavf_shutdown */
5298 		if (adapter->state == __IAVF_REMOVE) {
5299 			mutex_unlock(&adapter->crit_lock);
5300 			return;
5301 		}
5302 
5303 		mutex_unlock(&adapter->crit_lock);
5304 		usleep_range(500, 1000);
5305 	}
5306 	cancel_delayed_work_sync(&adapter->watchdog_task);
5307 	cancel_work_sync(&adapter->finish_config);
5308 
5309 	if (netdev->reg_state == NETREG_REGISTERED)
5310 		unregister_netdev(netdev);
5311 
5312 	mutex_lock(&adapter->crit_lock);
5313 	dev_info(&adapter->pdev->dev, "Removing device\n");
5314 	iavf_change_state(adapter, __IAVF_REMOVE);
5315 
5316 	iavf_request_reset(adapter);
5317 	msleep(50);
5318 	/* If the FW isn't responding, kick it once, but only once. */
5319 	if (!iavf_asq_done(hw)) {
5320 		iavf_request_reset(adapter);
5321 		msleep(50);
5322 	}
5323 
5324 	iavf_misc_irq_disable(adapter);
5325 	/* Shut down all the garbage mashers on the detention level */
5326 	cancel_work_sync(&adapter->reset_task);
5327 	cancel_delayed_work_sync(&adapter->watchdog_task);
5328 	cancel_work_sync(&adapter->adminq_task);
5329 
5330 	adapter->aq_required = 0;
5331 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5332 
5333 	iavf_free_all_tx_resources(adapter);
5334 	iavf_free_all_rx_resources(adapter);
5335 	iavf_free_misc_irq(adapter);
5336 	iavf_free_interrupt_scheme(adapter);
5337 
5338 	iavf_free_rss(adapter);
5339 
5340 	if (hw->aq.asq.count)
5341 		iavf_shutdown_adminq(hw);
5342 
5343 	/* destroy the locks only once, here */
5344 	mutex_destroy(&hw->aq.arq_mutex);
5345 	mutex_destroy(&hw->aq.asq_mutex);
5346 	mutex_unlock(&adapter->crit_lock);
5347 	mutex_destroy(&adapter->crit_lock);
5348 
5349 	iounmap(hw->hw_addr);
5350 	pci_release_regions(pdev);
5351 	kfree(adapter->vf_res);
5352 	spin_lock_bh(&adapter->mac_vlan_list_lock);
5353 	/* If we got removed before an up/down sequence, we've got a filter
5354 	 * hanging out there that we need to get rid of.
5355 	 */
5356 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5357 		list_del(&f->list);
5358 		kfree(f);
5359 	}
5360 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5361 				 list) {
5362 		list_del(&vlf->list);
5363 		kfree(vlf);
5364 	}
5365 
5366 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
5367 
5368 	spin_lock_bh(&adapter->cloud_filter_list_lock);
5369 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5370 		list_del(&cf->list);
5371 		kfree(cf);
5372 	}
5373 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
5374 
5375 	spin_lock_bh(&adapter->fdir_fltr_lock);
5376 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5377 		list_del(&fdir->list);
5378 		kfree(fdir);
5379 	}
5380 	spin_unlock_bh(&adapter->fdir_fltr_lock);
5381 
5382 	spin_lock_bh(&adapter->adv_rss_lock);
5383 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5384 				 list) {
5385 		list_del(&rss->list);
5386 		kfree(rss);
5387 	}
5388 	spin_unlock_bh(&adapter->adv_rss_lock);
5389 
5390 	destroy_workqueue(adapter->wq);
5391 
5392 	pci_set_drvdata(pdev, NULL);
5393 
5394 	free_netdev(netdev);
5395 
5396 	pci_disable_device(pdev);
5397 }
5398 
5399 /**
5400  * iavf_shutdown - Shutdown the device in preparation for a reboot
5401  * @pdev: pci device structure
5402  **/
iavf_shutdown(struct pci_dev * pdev)5403 static void iavf_shutdown(struct pci_dev *pdev)
5404 {
5405 	iavf_remove(pdev);
5406 
5407 	if (system_state == SYSTEM_POWER_OFF)
5408 		pci_set_power_state(pdev, PCI_D3hot);
5409 }
5410 
5411 static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5412 
5413 static struct pci_driver iavf_driver = {
5414 	.name      = iavf_driver_name,
5415 	.id_table  = iavf_pci_tbl,
5416 	.probe     = iavf_probe,
5417 	.remove    = iavf_remove,
5418 	.driver.pm = pm_sleep_ptr(&iavf_pm_ops),
5419 	.shutdown  = iavf_shutdown,
5420 };
5421 
5422 /**
5423  * iavf_init_module - Driver Registration Routine
5424  *
5425  * iavf_init_module is the first routine called when the driver is
5426  * loaded. All it does is register with the PCI subsystem.
5427  **/
iavf_init_module(void)5428 static int __init iavf_init_module(void)
5429 {
5430 	pr_info("iavf: %s\n", iavf_driver_string);
5431 
5432 	pr_info("%s\n", iavf_copyright);
5433 
5434 	return pci_register_driver(&iavf_driver);
5435 }
5436 
5437 module_init(iavf_init_module);
5438 
5439 /**
5440  * iavf_exit_module - Driver Exit Cleanup Routine
5441  *
5442  * iavf_exit_module is called just before the driver is removed
5443  * from memory.
5444  **/
iavf_exit_module(void)5445 static void __exit iavf_exit_module(void)
5446 {
5447 	pci_unregister_driver(&iavf_driver);
5448 }
5449 
5450 module_exit(iavf_exit_module);
5451 
5452 /* iavf_main.c */
5453