1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/net/intel/libie/rx.h>
5
6 #include "iavf.h"
7 #include "iavf_prototype.h"
8 /* All iavf tracepoints are defined by the include below, which must
9 * be included exactly once across the whole kernel with
10 * CREATE_TRACE_POINTS defined
11 */
12 #define CREATE_TRACE_POINTS
13 #include "iavf_trace.h"
14
15 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
16 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
17 static int iavf_close(struct net_device *netdev);
18 static void iavf_init_get_resources(struct iavf_adapter *adapter);
19 static int iavf_check_reset_complete(struct iavf_hw *hw);
20
21 char iavf_driver_name[] = "iavf";
22 static const char iavf_driver_string[] =
23 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
24
25 static const char iavf_copyright[] =
26 "Copyright (c) 2013 - 2018 Intel Corporation.";
27
28 /* iavf_pci_tbl - PCI Device ID Table
29 *
30 * Wildcard entries (PCI_ANY_ID) should come last
31 * Last entry must be all 0s
32 *
33 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
34 * Class, Class Mask, private data (not used) }
35 */
36 static const struct pci_device_id iavf_pci_tbl[] = {
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
40 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
41 /* required last entry */
42 {0, }
43 };
44
45 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
46
47 MODULE_ALIAS("i40evf");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_IMPORT_NS(LIBETH);
50 MODULE_IMPORT_NS(LIBIE);
51 MODULE_LICENSE("GPL v2");
52
53 static const struct net_device_ops iavf_netdev_ops;
54
iavf_status_to_errno(enum iavf_status status)55 int iavf_status_to_errno(enum iavf_status status)
56 {
57 switch (status) {
58 case IAVF_SUCCESS:
59 return 0;
60 case IAVF_ERR_PARAM:
61 case IAVF_ERR_MAC_TYPE:
62 case IAVF_ERR_INVALID_MAC_ADDR:
63 case IAVF_ERR_INVALID_LINK_SETTINGS:
64 case IAVF_ERR_INVALID_PD_ID:
65 case IAVF_ERR_INVALID_QP_ID:
66 case IAVF_ERR_INVALID_CQ_ID:
67 case IAVF_ERR_INVALID_CEQ_ID:
68 case IAVF_ERR_INVALID_AEQ_ID:
69 case IAVF_ERR_INVALID_SIZE:
70 case IAVF_ERR_INVALID_ARP_INDEX:
71 case IAVF_ERR_INVALID_FPM_FUNC_ID:
72 case IAVF_ERR_QP_INVALID_MSG_SIZE:
73 case IAVF_ERR_INVALID_FRAG_COUNT:
74 case IAVF_ERR_INVALID_ALIGNMENT:
75 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
76 case IAVF_ERR_INVALID_IMM_DATA_SIZE:
77 case IAVF_ERR_INVALID_VF_ID:
78 case IAVF_ERR_INVALID_HMCFN_ID:
79 case IAVF_ERR_INVALID_PBLE_INDEX:
80 case IAVF_ERR_INVALID_SD_INDEX:
81 case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
82 case IAVF_ERR_INVALID_SD_TYPE:
83 case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
84 case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
85 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
86 return -EINVAL;
87 case IAVF_ERR_NVM:
88 case IAVF_ERR_NVM_CHECKSUM:
89 case IAVF_ERR_PHY:
90 case IAVF_ERR_CONFIG:
91 case IAVF_ERR_UNKNOWN_PHY:
92 case IAVF_ERR_LINK_SETUP:
93 case IAVF_ERR_ADAPTER_STOPPED:
94 case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
95 case IAVF_ERR_AUTONEG_NOT_COMPLETE:
96 case IAVF_ERR_RESET_FAILED:
97 case IAVF_ERR_BAD_PTR:
98 case IAVF_ERR_SWFW_SYNC:
99 case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
100 case IAVF_ERR_QUEUE_EMPTY:
101 case IAVF_ERR_FLUSHED_QUEUE:
102 case IAVF_ERR_OPCODE_MISMATCH:
103 case IAVF_ERR_CQP_COMPL_ERROR:
104 case IAVF_ERR_BACKING_PAGE_ERROR:
105 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
106 case IAVF_ERR_MEMCPY_FAILED:
107 case IAVF_ERR_SRQ_ENABLED:
108 case IAVF_ERR_ADMIN_QUEUE_ERROR:
109 case IAVF_ERR_ADMIN_QUEUE_FULL:
110 case IAVF_ERR_BAD_RDMA_CQE:
111 case IAVF_ERR_NVM_BLANK_MODE:
112 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
113 case IAVF_ERR_DIAG_TEST_FAILED:
114 case IAVF_ERR_FIRMWARE_API_VERSION:
115 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
116 return -EIO;
117 case IAVF_ERR_DEVICE_NOT_SUPPORTED:
118 return -ENODEV;
119 case IAVF_ERR_NO_AVAILABLE_VSI:
120 case IAVF_ERR_RING_FULL:
121 return -ENOSPC;
122 case IAVF_ERR_NO_MEMORY:
123 return -ENOMEM;
124 case IAVF_ERR_TIMEOUT:
125 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
126 return -ETIMEDOUT;
127 case IAVF_ERR_NOT_IMPLEMENTED:
128 case IAVF_NOT_SUPPORTED:
129 return -EOPNOTSUPP;
130 case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
131 return -EALREADY;
132 case IAVF_ERR_NOT_READY:
133 return -EBUSY;
134 case IAVF_ERR_BUF_TOO_SHORT:
135 return -EMSGSIZE;
136 }
137
138 return -EIO;
139 }
140
virtchnl_status_to_errno(enum virtchnl_status_code v_status)141 int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
142 {
143 switch (v_status) {
144 case VIRTCHNL_STATUS_SUCCESS:
145 return 0;
146 case VIRTCHNL_STATUS_ERR_PARAM:
147 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
148 return -EINVAL;
149 case VIRTCHNL_STATUS_ERR_NO_MEMORY:
150 return -ENOMEM;
151 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
152 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
153 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
154 return -EIO;
155 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
156 return -EOPNOTSUPP;
157 }
158
159 return -EIO;
160 }
161
162 /**
163 * iavf_pdev_to_adapter - go from pci_dev to adapter
164 * @pdev: pci_dev pointer
165 */
iavf_pdev_to_adapter(struct pci_dev * pdev)166 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
167 {
168 return netdev_priv(pci_get_drvdata(pdev));
169 }
170
171 /**
172 * iavf_is_reset_in_progress - Check if a reset is in progress
173 * @adapter: board private structure
174 */
iavf_is_reset_in_progress(struct iavf_adapter * adapter)175 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
176 {
177 if (adapter->state == __IAVF_RESETTING ||
178 adapter->flags & (IAVF_FLAG_RESET_PENDING |
179 IAVF_FLAG_RESET_NEEDED))
180 return true;
181
182 return false;
183 }
184
185 /**
186 * iavf_wait_for_reset - Wait for reset to finish.
187 * @adapter: board private structure
188 *
189 * Returns 0 if reset finished successfully, negative on timeout or interrupt.
190 */
iavf_wait_for_reset(struct iavf_adapter * adapter)191 int iavf_wait_for_reset(struct iavf_adapter *adapter)
192 {
193 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
194 !iavf_is_reset_in_progress(adapter),
195 msecs_to_jiffies(5000));
196
197 /* If ret < 0 then it means wait was interrupted.
198 * If ret == 0 then it means we got a timeout while waiting
199 * for reset to finish.
200 * If ret > 0 it means reset has finished.
201 */
202 if (ret > 0)
203 return 0;
204 else if (ret < 0)
205 return -EINTR;
206 else
207 return -EBUSY;
208 }
209
210 /**
211 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
212 * @hw: pointer to the HW structure
213 * @mem: ptr to mem struct to fill out
214 * @size: size of memory requested
215 * @alignment: what to align the allocation to
216 **/
iavf_allocate_dma_mem_d(struct iavf_hw * hw,struct iavf_dma_mem * mem,u64 size,u32 alignment)217 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
218 struct iavf_dma_mem *mem,
219 u64 size, u32 alignment)
220 {
221 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
222
223 if (!mem)
224 return IAVF_ERR_PARAM;
225
226 mem->size = ALIGN(size, alignment);
227 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
228 (dma_addr_t *)&mem->pa, GFP_KERNEL);
229 if (mem->va)
230 return 0;
231 else
232 return IAVF_ERR_NO_MEMORY;
233 }
234
235 /**
236 * iavf_free_dma_mem - wrapper for DMA memory freeing
237 * @hw: pointer to the HW structure
238 * @mem: ptr to mem struct to free
239 **/
iavf_free_dma_mem(struct iavf_hw * hw,struct iavf_dma_mem * mem)240 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
241 {
242 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
243
244 if (!mem || !mem->va)
245 return IAVF_ERR_PARAM;
246 dma_free_coherent(&adapter->pdev->dev, mem->size,
247 mem->va, (dma_addr_t)mem->pa);
248 return 0;
249 }
250
251 /**
252 * iavf_allocate_virt_mem - virt memory alloc wrapper
253 * @hw: pointer to the HW structure
254 * @mem: ptr to mem struct to fill out
255 * @size: size of memory requested
256 **/
iavf_allocate_virt_mem(struct iavf_hw * hw,struct iavf_virt_mem * mem,u32 size)257 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
258 struct iavf_virt_mem *mem, u32 size)
259 {
260 if (!mem)
261 return IAVF_ERR_PARAM;
262
263 mem->size = size;
264 mem->va = kzalloc(size, GFP_KERNEL);
265
266 if (mem->va)
267 return 0;
268 else
269 return IAVF_ERR_NO_MEMORY;
270 }
271
272 /**
273 * iavf_free_virt_mem - virt memory free wrapper
274 * @hw: pointer to the HW structure
275 * @mem: ptr to mem struct to free
276 **/
iavf_free_virt_mem(struct iavf_hw * hw,struct iavf_virt_mem * mem)277 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
278 {
279 kfree(mem->va);
280 }
281
282 /**
283 * iavf_schedule_reset - Set the flags and schedule a reset event
284 * @adapter: board private structure
285 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
286 **/
iavf_schedule_reset(struct iavf_adapter * adapter,u64 flags)287 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
288 {
289 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
290 !(adapter->flags &
291 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
292 adapter->flags |= flags;
293 queue_work(adapter->wq, &adapter->reset_task);
294 }
295 }
296
297 /**
298 * iavf_schedule_aq_request - Set the flags and schedule aq request
299 * @adapter: board private structure
300 * @flags: requested aq flags
301 **/
iavf_schedule_aq_request(struct iavf_adapter * adapter,u64 flags)302 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
303 {
304 adapter->aq_required |= flags;
305 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
306 }
307
308 /**
309 * iavf_tx_timeout - Respond to a Tx Hang
310 * @netdev: network interface device structure
311 * @txqueue: queue number that is timing out
312 **/
iavf_tx_timeout(struct net_device * netdev,unsigned int txqueue)313 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
314 {
315 struct iavf_adapter *adapter = netdev_priv(netdev);
316
317 adapter->tx_timeout_count++;
318 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
319 }
320
321 /**
322 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
323 * @adapter: board private structure
324 **/
iavf_misc_irq_disable(struct iavf_adapter * adapter)325 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
326 {
327 struct iavf_hw *hw = &adapter->hw;
328
329 if (!adapter->msix_entries)
330 return;
331
332 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
333
334 iavf_flush(hw);
335
336 synchronize_irq(adapter->msix_entries[0].vector);
337 }
338
339 /**
340 * iavf_misc_irq_enable - Enable default interrupt generation settings
341 * @adapter: board private structure
342 **/
iavf_misc_irq_enable(struct iavf_adapter * adapter)343 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
344 {
345 struct iavf_hw *hw = &adapter->hw;
346
347 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
348 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
349 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
350
351 iavf_flush(hw);
352 }
353
354 /**
355 * iavf_irq_disable - Mask off interrupt generation on the NIC
356 * @adapter: board private structure
357 **/
iavf_irq_disable(struct iavf_adapter * adapter)358 static void iavf_irq_disable(struct iavf_adapter *adapter)
359 {
360 int i;
361 struct iavf_hw *hw = &adapter->hw;
362
363 if (!adapter->msix_entries)
364 return;
365
366 for (i = 1; i < adapter->num_msix_vectors; i++) {
367 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
368 synchronize_irq(adapter->msix_entries[i].vector);
369 }
370 iavf_flush(hw);
371 }
372
373 /**
374 * iavf_irq_enable_queues - Enable interrupt for all queues
375 * @adapter: board private structure
376 **/
iavf_irq_enable_queues(struct iavf_adapter * adapter)377 static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
378 {
379 struct iavf_hw *hw = &adapter->hw;
380 int i;
381
382 for (i = 1; i < adapter->num_msix_vectors; i++) {
383 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
384 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
385 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
386 }
387 }
388
389 /**
390 * iavf_irq_enable - Enable default interrupt generation settings
391 * @adapter: board private structure
392 * @flush: boolean value whether to run rd32()
393 **/
iavf_irq_enable(struct iavf_adapter * adapter,bool flush)394 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
395 {
396 struct iavf_hw *hw = &adapter->hw;
397
398 iavf_misc_irq_enable(adapter);
399 iavf_irq_enable_queues(adapter);
400
401 if (flush)
402 iavf_flush(hw);
403 }
404
405 /**
406 * iavf_msix_aq - Interrupt handler for vector 0
407 * @irq: interrupt number
408 * @data: pointer to netdev
409 **/
iavf_msix_aq(int irq,void * data)410 static irqreturn_t iavf_msix_aq(int irq, void *data)
411 {
412 struct net_device *netdev = data;
413 struct iavf_adapter *adapter = netdev_priv(netdev);
414 struct iavf_hw *hw = &adapter->hw;
415
416 /* handle non-queue interrupts, these reads clear the registers */
417 rd32(hw, IAVF_VFINT_ICR01);
418 rd32(hw, IAVF_VFINT_ICR0_ENA1);
419
420 if (adapter->state != __IAVF_REMOVE)
421 /* schedule work on the private workqueue */
422 queue_work(adapter->wq, &adapter->adminq_task);
423
424 return IRQ_HANDLED;
425 }
426
427 /**
428 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
429 * @irq: interrupt number
430 * @data: pointer to a q_vector
431 **/
iavf_msix_clean_rings(int irq,void * data)432 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
433 {
434 struct iavf_q_vector *q_vector = data;
435
436 if (!q_vector->tx.ring && !q_vector->rx.ring)
437 return IRQ_HANDLED;
438
439 napi_schedule_irqoff(&q_vector->napi);
440
441 return IRQ_HANDLED;
442 }
443
444 /**
445 * iavf_map_vector_to_rxq - associate irqs with rx queues
446 * @adapter: board private structure
447 * @v_idx: interrupt number
448 * @r_idx: queue number
449 **/
450 static void
iavf_map_vector_to_rxq(struct iavf_adapter * adapter,int v_idx,int r_idx)451 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
452 {
453 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
454 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
455 struct iavf_hw *hw = &adapter->hw;
456
457 rx_ring->q_vector = q_vector;
458 rx_ring->next = q_vector->rx.ring;
459 rx_ring->vsi = &adapter->vsi;
460 q_vector->rx.ring = rx_ring;
461 q_vector->rx.count++;
462 q_vector->rx.next_update = jiffies + 1;
463 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
464 q_vector->ring_mask |= BIT(r_idx);
465 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
466 q_vector->rx.current_itr >> 1);
467 q_vector->rx.current_itr = q_vector->rx.target_itr;
468 }
469
470 /**
471 * iavf_map_vector_to_txq - associate irqs with tx queues
472 * @adapter: board private structure
473 * @v_idx: interrupt number
474 * @t_idx: queue number
475 **/
476 static void
iavf_map_vector_to_txq(struct iavf_adapter * adapter,int v_idx,int t_idx)477 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
478 {
479 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
480 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
481 struct iavf_hw *hw = &adapter->hw;
482
483 tx_ring->q_vector = q_vector;
484 tx_ring->next = q_vector->tx.ring;
485 tx_ring->vsi = &adapter->vsi;
486 q_vector->tx.ring = tx_ring;
487 q_vector->tx.count++;
488 q_vector->tx.next_update = jiffies + 1;
489 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
490 q_vector->num_ringpairs++;
491 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
492 q_vector->tx.target_itr >> 1);
493 q_vector->tx.current_itr = q_vector->tx.target_itr;
494 }
495
496 /**
497 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
498 * @adapter: board private structure to initialize
499 *
500 * This function maps descriptor rings to the queue-specific vectors
501 * we were allotted through the MSI-X enabling code. Ideally, we'd have
502 * one vector per ring/queue, but on a constrained vector budget, we
503 * group the rings as "efficiently" as possible. You would add new
504 * mapping configurations in here.
505 **/
iavf_map_rings_to_vectors(struct iavf_adapter * adapter)506 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
507 {
508 int rings_remaining = adapter->num_active_queues;
509 int ridx = 0, vidx = 0;
510 int q_vectors;
511
512 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
513
514 for (; ridx < rings_remaining; ridx++) {
515 iavf_map_vector_to_rxq(adapter, vidx, ridx);
516 iavf_map_vector_to_txq(adapter, vidx, ridx);
517
518 /* In the case where we have more queues than vectors, continue
519 * round-robin on vectors until all queues are mapped.
520 */
521 if (++vidx >= q_vectors)
522 vidx = 0;
523 }
524
525 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
526 }
527
528 /**
529 * iavf_irq_affinity_notify - Callback for affinity changes
530 * @notify: context as to what irq was changed
531 * @mask: the new affinity mask
532 *
533 * This is a callback function used by the irq_set_affinity_notifier function
534 * so that we may register to receive changes to the irq affinity masks.
535 **/
iavf_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)536 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
537 const cpumask_t *mask)
538 {
539 struct iavf_q_vector *q_vector =
540 container_of(notify, struct iavf_q_vector, affinity_notify);
541
542 cpumask_copy(&q_vector->affinity_mask, mask);
543 }
544
545 /**
546 * iavf_irq_affinity_release - Callback for affinity notifier release
547 * @ref: internal core kernel usage
548 *
549 * This is a callback function used by the irq_set_affinity_notifier function
550 * to inform the current notification subscriber that they will no longer
551 * receive notifications.
552 **/
iavf_irq_affinity_release(struct kref * ref)553 static void iavf_irq_affinity_release(struct kref *ref) {}
554
555 /**
556 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
557 * @adapter: board private structure
558 * @basename: device basename
559 *
560 * Allocates MSI-X vectors for tx and rx handling, and requests
561 * interrupts from the kernel.
562 **/
563 static int
iavf_request_traffic_irqs(struct iavf_adapter * adapter,char * basename)564 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
565 {
566 unsigned int vector, q_vectors;
567 unsigned int rx_int_idx = 0, tx_int_idx = 0;
568 int irq_num, err;
569 int cpu;
570
571 iavf_irq_disable(adapter);
572 /* Decrement for Other and TCP Timer vectors */
573 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
574
575 for (vector = 0; vector < q_vectors; vector++) {
576 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
577
578 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
579
580 if (q_vector->tx.ring && q_vector->rx.ring) {
581 snprintf(q_vector->name, sizeof(q_vector->name),
582 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
583 tx_int_idx++;
584 } else if (q_vector->rx.ring) {
585 snprintf(q_vector->name, sizeof(q_vector->name),
586 "iavf-%s-rx-%u", basename, rx_int_idx++);
587 } else if (q_vector->tx.ring) {
588 snprintf(q_vector->name, sizeof(q_vector->name),
589 "iavf-%s-tx-%u", basename, tx_int_idx++);
590 } else {
591 /* skip this unused q_vector */
592 continue;
593 }
594 err = request_irq(irq_num,
595 iavf_msix_clean_rings,
596 0,
597 q_vector->name,
598 q_vector);
599 if (err) {
600 dev_info(&adapter->pdev->dev,
601 "Request_irq failed, error: %d\n", err);
602 goto free_queue_irqs;
603 }
604 /* register for affinity change notifications */
605 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
606 q_vector->affinity_notify.release =
607 iavf_irq_affinity_release;
608 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
609 /* Spread the IRQ affinity hints across online CPUs. Note that
610 * get_cpu_mask returns a mask with a permanent lifetime so
611 * it's safe to use as a hint for irq_update_affinity_hint.
612 */
613 cpu = cpumask_local_spread(q_vector->v_idx, -1);
614 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
615 }
616
617 return 0;
618
619 free_queue_irqs:
620 while (vector) {
621 vector--;
622 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
623 irq_set_affinity_notifier(irq_num, NULL);
624 irq_update_affinity_hint(irq_num, NULL);
625 free_irq(irq_num, &adapter->q_vectors[vector]);
626 }
627 return err;
628 }
629
630 /**
631 * iavf_request_misc_irq - Initialize MSI-X interrupts
632 * @adapter: board private structure
633 *
634 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
635 * vector is only for the admin queue, and stays active even when the netdev
636 * is closed.
637 **/
iavf_request_misc_irq(struct iavf_adapter * adapter)638 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
639 {
640 struct net_device *netdev = adapter->netdev;
641 int err;
642
643 snprintf(adapter->misc_vector_name,
644 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
645 dev_name(&adapter->pdev->dev));
646 err = request_irq(adapter->msix_entries[0].vector,
647 &iavf_msix_aq, 0,
648 adapter->misc_vector_name, netdev);
649 if (err) {
650 dev_err(&adapter->pdev->dev,
651 "request_irq for %s failed: %d\n",
652 adapter->misc_vector_name, err);
653 free_irq(adapter->msix_entries[0].vector, netdev);
654 }
655 return err;
656 }
657
658 /**
659 * iavf_free_traffic_irqs - Free MSI-X interrupts
660 * @adapter: board private structure
661 *
662 * Frees all MSI-X vectors other than 0.
663 **/
iavf_free_traffic_irqs(struct iavf_adapter * adapter)664 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
665 {
666 int vector, irq_num, q_vectors;
667
668 if (!adapter->msix_entries)
669 return;
670
671 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
672
673 for (vector = 0; vector < q_vectors; vector++) {
674 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
675 irq_set_affinity_notifier(irq_num, NULL);
676 irq_update_affinity_hint(irq_num, NULL);
677 free_irq(irq_num, &adapter->q_vectors[vector]);
678 }
679 }
680
681 /**
682 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
683 * @adapter: board private structure
684 *
685 * Frees MSI-X vector 0.
686 **/
iavf_free_misc_irq(struct iavf_adapter * adapter)687 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
688 {
689 struct net_device *netdev = adapter->netdev;
690
691 if (!adapter->msix_entries)
692 return;
693
694 free_irq(adapter->msix_entries[0].vector, netdev);
695 }
696
697 /**
698 * iavf_configure_tx - Configure Transmit Unit after Reset
699 * @adapter: board private structure
700 *
701 * Configure the Tx unit of the MAC after a reset.
702 **/
iavf_configure_tx(struct iavf_adapter * adapter)703 static void iavf_configure_tx(struct iavf_adapter *adapter)
704 {
705 struct iavf_hw *hw = &adapter->hw;
706 int i;
707
708 for (i = 0; i < adapter->num_active_queues; i++)
709 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
710 }
711
712 /**
713 * iavf_configure_rx - Configure Receive Unit after Reset
714 * @adapter: board private structure
715 *
716 * Configure the Rx unit of the MAC after a reset.
717 **/
iavf_configure_rx(struct iavf_adapter * adapter)718 static void iavf_configure_rx(struct iavf_adapter *adapter)
719 {
720 struct iavf_hw *hw = &adapter->hw;
721
722 for (u32 i = 0; i < adapter->num_active_queues; i++)
723 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
724 }
725
726 /**
727 * iavf_find_vlan - Search filter list for specific vlan filter
728 * @adapter: board private structure
729 * @vlan: vlan tag
730 *
731 * Returns ptr to the filter object or NULL. Must be called while holding the
732 * mac_vlan_list_lock.
733 **/
734 static struct
iavf_find_vlan(struct iavf_adapter * adapter,struct iavf_vlan vlan)735 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
736 struct iavf_vlan vlan)
737 {
738 struct iavf_vlan_filter *f;
739
740 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
741 if (f->vlan.vid == vlan.vid &&
742 f->vlan.tpid == vlan.tpid)
743 return f;
744 }
745
746 return NULL;
747 }
748
749 /**
750 * iavf_add_vlan - Add a vlan filter to the list
751 * @adapter: board private structure
752 * @vlan: VLAN tag
753 *
754 * Returns ptr to the filter object or NULL when no memory available.
755 **/
756 static struct
iavf_add_vlan(struct iavf_adapter * adapter,struct iavf_vlan vlan)757 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
758 struct iavf_vlan vlan)
759 {
760 struct iavf_vlan_filter *f = NULL;
761
762 spin_lock_bh(&adapter->mac_vlan_list_lock);
763
764 f = iavf_find_vlan(adapter, vlan);
765 if (!f) {
766 f = kzalloc(sizeof(*f), GFP_ATOMIC);
767 if (!f)
768 goto clearout;
769
770 f->vlan = vlan;
771
772 list_add_tail(&f->list, &adapter->vlan_filter_list);
773 f->state = IAVF_VLAN_ADD;
774 adapter->num_vlan_filters++;
775 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
776 } else if (f->state == IAVF_VLAN_REMOVE) {
777 /* IAVF_VLAN_REMOVE means that VLAN wasn't yet removed.
778 * We can safely only change the state here.
779 */
780 f->state = IAVF_VLAN_ACTIVE;
781 }
782
783 clearout:
784 spin_unlock_bh(&adapter->mac_vlan_list_lock);
785 return f;
786 }
787
788 /**
789 * iavf_del_vlan - Remove a vlan filter from the list
790 * @adapter: board private structure
791 * @vlan: VLAN tag
792 **/
iavf_del_vlan(struct iavf_adapter * adapter,struct iavf_vlan vlan)793 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
794 {
795 struct iavf_vlan_filter *f;
796
797 spin_lock_bh(&adapter->mac_vlan_list_lock);
798
799 f = iavf_find_vlan(adapter, vlan);
800 if (f) {
801 /* IAVF_ADD_VLAN means that VLAN wasn't even added yet.
802 * Remove it from the list.
803 */
804 if (f->state == IAVF_VLAN_ADD) {
805 list_del(&f->list);
806 kfree(f);
807 adapter->num_vlan_filters--;
808 } else {
809 f->state = IAVF_VLAN_REMOVE;
810 iavf_schedule_aq_request(adapter,
811 IAVF_FLAG_AQ_DEL_VLAN_FILTER);
812 }
813 }
814
815 spin_unlock_bh(&adapter->mac_vlan_list_lock);
816 }
817
818 /**
819 * iavf_restore_filters
820 * @adapter: board private structure
821 *
822 * Restore existing non MAC filters when VF netdev comes back up
823 **/
iavf_restore_filters(struct iavf_adapter * adapter)824 static void iavf_restore_filters(struct iavf_adapter *adapter)
825 {
826 struct iavf_vlan_filter *f;
827
828 /* re-add all VLAN filters */
829 spin_lock_bh(&adapter->mac_vlan_list_lock);
830
831 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
832 if (f->state == IAVF_VLAN_INACTIVE)
833 f->state = IAVF_VLAN_ADD;
834 }
835
836 spin_unlock_bh(&adapter->mac_vlan_list_lock);
837 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
838 }
839
840 /**
841 * iavf_get_num_vlans_added - get number of VLANs added
842 * @adapter: board private structure
843 */
iavf_get_num_vlans_added(struct iavf_adapter * adapter)844 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
845 {
846 return adapter->num_vlan_filters;
847 }
848
849 /**
850 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
851 * @adapter: board private structure
852 *
853 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
854 * do not impose a limit as that maintains current behavior and for
855 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
856 **/
iavf_get_max_vlans_allowed(struct iavf_adapter * adapter)857 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
858 {
859 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
860 * never been a limit on the VF driver side
861 */
862 if (VLAN_ALLOWED(adapter))
863 return VLAN_N_VID;
864 else if (VLAN_V2_ALLOWED(adapter))
865 return adapter->vlan_v2_caps.filtering.max_filters;
866
867 return 0;
868 }
869
870 /**
871 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
872 * @adapter: board private structure
873 **/
iavf_max_vlans_added(struct iavf_adapter * adapter)874 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
875 {
876 if (iavf_get_num_vlans_added(adapter) <
877 iavf_get_max_vlans_allowed(adapter))
878 return false;
879
880 return true;
881 }
882
883 /**
884 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
885 * @netdev: network device struct
886 * @proto: unused protocol data
887 * @vid: VLAN tag
888 **/
iavf_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)889 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
890 __always_unused __be16 proto, u16 vid)
891 {
892 struct iavf_adapter *adapter = netdev_priv(netdev);
893
894 /* Do not track VLAN 0 filter, always added by the PF on VF init */
895 if (!vid)
896 return 0;
897
898 if (!VLAN_FILTERING_ALLOWED(adapter))
899 return -EIO;
900
901 if (iavf_max_vlans_added(adapter)) {
902 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
903 iavf_get_max_vlans_allowed(adapter));
904 return -EIO;
905 }
906
907 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
908 return -ENOMEM;
909
910 return 0;
911 }
912
913 /**
914 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
915 * @netdev: network device struct
916 * @proto: unused protocol data
917 * @vid: VLAN tag
918 **/
iavf_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)919 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
920 __always_unused __be16 proto, u16 vid)
921 {
922 struct iavf_adapter *adapter = netdev_priv(netdev);
923
924 /* We do not track VLAN 0 filter */
925 if (!vid)
926 return 0;
927
928 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
929 return 0;
930 }
931
932 /**
933 * iavf_find_filter - Search filter list for specific mac filter
934 * @adapter: board private structure
935 * @macaddr: the MAC address
936 *
937 * Returns ptr to the filter object or NULL. Must be called while holding the
938 * mac_vlan_list_lock.
939 **/
940 static struct
iavf_find_filter(struct iavf_adapter * adapter,const u8 * macaddr)941 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
942 const u8 *macaddr)
943 {
944 struct iavf_mac_filter *f;
945
946 if (!macaddr)
947 return NULL;
948
949 list_for_each_entry(f, &adapter->mac_filter_list, list) {
950 if (ether_addr_equal(macaddr, f->macaddr))
951 return f;
952 }
953 return NULL;
954 }
955
956 /**
957 * iavf_add_filter - Add a mac filter to the filter list
958 * @adapter: board private structure
959 * @macaddr: the MAC address
960 *
961 * Returns ptr to the filter object or NULL when no memory available.
962 **/
iavf_add_filter(struct iavf_adapter * adapter,const u8 * macaddr)963 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
964 const u8 *macaddr)
965 {
966 struct iavf_mac_filter *f;
967
968 if (!macaddr)
969 return NULL;
970
971 f = iavf_find_filter(adapter, macaddr);
972 if (!f) {
973 f = kzalloc(sizeof(*f), GFP_ATOMIC);
974 if (!f)
975 return f;
976
977 ether_addr_copy(f->macaddr, macaddr);
978
979 list_add_tail(&f->list, &adapter->mac_filter_list);
980 f->add = true;
981 f->add_handled = false;
982 f->is_new_mac = true;
983 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
984 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
985 } else {
986 f->remove = false;
987 }
988
989 return f;
990 }
991
992 /**
993 * iavf_replace_primary_mac - Replace current primary address
994 * @adapter: board private structure
995 * @new_mac: new MAC address to be applied
996 *
997 * Replace current dev_addr and send request to PF for removal of previous
998 * primary MAC address filter and addition of new primary MAC filter.
999 * Return 0 for success, -ENOMEM for failure.
1000 *
1001 * Do not call this with mac_vlan_list_lock!
1002 **/
iavf_replace_primary_mac(struct iavf_adapter * adapter,const u8 * new_mac)1003 static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1004 const u8 *new_mac)
1005 {
1006 struct iavf_hw *hw = &adapter->hw;
1007 struct iavf_mac_filter *new_f;
1008 struct iavf_mac_filter *old_f;
1009
1010 spin_lock_bh(&adapter->mac_vlan_list_lock);
1011
1012 new_f = iavf_add_filter(adapter, new_mac);
1013 if (!new_f) {
1014 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1015 return -ENOMEM;
1016 }
1017
1018 old_f = iavf_find_filter(adapter, hw->mac.addr);
1019 if (old_f) {
1020 old_f->is_primary = false;
1021 old_f->remove = true;
1022 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1023 }
1024 /* Always send the request to add if changing primary MAC,
1025 * even if filter is already present on the list
1026 */
1027 new_f->is_primary = true;
1028 new_f->add = true;
1029 ether_addr_copy(hw->mac.addr, new_mac);
1030
1031 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1032
1033 /* schedule the watchdog task to immediately process the request */
1034 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER);
1035 return 0;
1036 }
1037
1038 /**
1039 * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1040 * @netdev: network interface device structure
1041 * @macaddr: MAC address to set
1042 *
1043 * Returns true on success, false on failure
1044 */
iavf_is_mac_set_handled(struct net_device * netdev,const u8 * macaddr)1045 static bool iavf_is_mac_set_handled(struct net_device *netdev,
1046 const u8 *macaddr)
1047 {
1048 struct iavf_adapter *adapter = netdev_priv(netdev);
1049 struct iavf_mac_filter *f;
1050 bool ret = false;
1051
1052 spin_lock_bh(&adapter->mac_vlan_list_lock);
1053
1054 f = iavf_find_filter(adapter, macaddr);
1055
1056 if (!f || (!f->add && f->add_handled))
1057 ret = true;
1058
1059 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1060
1061 return ret;
1062 }
1063
1064 /**
1065 * iavf_set_mac - NDO callback to set port MAC address
1066 * @netdev: network interface device structure
1067 * @p: pointer to an address structure
1068 *
1069 * Returns 0 on success, negative on failure
1070 */
iavf_set_mac(struct net_device * netdev,void * p)1071 static int iavf_set_mac(struct net_device *netdev, void *p)
1072 {
1073 struct iavf_adapter *adapter = netdev_priv(netdev);
1074 struct sockaddr *addr = p;
1075 int ret;
1076
1077 if (!is_valid_ether_addr(addr->sa_data))
1078 return -EADDRNOTAVAIL;
1079
1080 ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1081
1082 if (ret)
1083 return ret;
1084
1085 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1086 iavf_is_mac_set_handled(netdev, addr->sa_data),
1087 msecs_to_jiffies(2500));
1088
1089 /* If ret < 0 then it means wait was interrupted.
1090 * If ret == 0 then it means we got a timeout.
1091 * else it means we got response for set MAC from PF,
1092 * check if netdev MAC was updated to requested MAC,
1093 * if yes then set MAC succeeded otherwise it failed return -EACCES
1094 */
1095 if (ret < 0)
1096 return ret;
1097
1098 if (!ret)
1099 return -EAGAIN;
1100
1101 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1102 return -EACCES;
1103
1104 return 0;
1105 }
1106
1107 /**
1108 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1109 * @netdev: the netdevice
1110 * @addr: address to add
1111 *
1112 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1113 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1114 */
iavf_addr_sync(struct net_device * netdev,const u8 * addr)1115 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1116 {
1117 struct iavf_adapter *adapter = netdev_priv(netdev);
1118
1119 if (iavf_add_filter(adapter, addr))
1120 return 0;
1121 else
1122 return -ENOMEM;
1123 }
1124
1125 /**
1126 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1127 * @netdev: the netdevice
1128 * @addr: address to add
1129 *
1130 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1131 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1132 */
iavf_addr_unsync(struct net_device * netdev,const u8 * addr)1133 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1134 {
1135 struct iavf_adapter *adapter = netdev_priv(netdev);
1136 struct iavf_mac_filter *f;
1137
1138 /* Under some circumstances, we might receive a request to delete
1139 * our own device address from our uc list. Because we store the
1140 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1141 * such requests and not delete our device address from this list.
1142 */
1143 if (ether_addr_equal(addr, netdev->dev_addr))
1144 return 0;
1145
1146 f = iavf_find_filter(adapter, addr);
1147 if (f) {
1148 f->remove = true;
1149 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1150 }
1151 return 0;
1152 }
1153
1154 /**
1155 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1156 * @adapter: device specific adapter
1157 */
iavf_promiscuous_mode_changed(struct iavf_adapter * adapter)1158 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1159 {
1160 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1161 (IFF_PROMISC | IFF_ALLMULTI);
1162 }
1163
1164 /**
1165 * iavf_set_rx_mode - NDO callback to set the netdev filters
1166 * @netdev: network interface device structure
1167 **/
iavf_set_rx_mode(struct net_device * netdev)1168 static void iavf_set_rx_mode(struct net_device *netdev)
1169 {
1170 struct iavf_adapter *adapter = netdev_priv(netdev);
1171
1172 spin_lock_bh(&adapter->mac_vlan_list_lock);
1173 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1174 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1175 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1176
1177 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1178 if (iavf_promiscuous_mode_changed(adapter))
1179 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1180 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1181 }
1182
1183 /**
1184 * iavf_napi_enable_all - enable NAPI on all queue vectors
1185 * @adapter: board private structure
1186 **/
iavf_napi_enable_all(struct iavf_adapter * adapter)1187 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1188 {
1189 int q_idx;
1190 struct iavf_q_vector *q_vector;
1191 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1192
1193 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1194 struct napi_struct *napi;
1195
1196 q_vector = &adapter->q_vectors[q_idx];
1197 napi = &q_vector->napi;
1198 napi_enable(napi);
1199 }
1200 }
1201
1202 /**
1203 * iavf_napi_disable_all - disable NAPI on all queue vectors
1204 * @adapter: board private structure
1205 **/
iavf_napi_disable_all(struct iavf_adapter * adapter)1206 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1207 {
1208 int q_idx;
1209 struct iavf_q_vector *q_vector;
1210 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1211
1212 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1213 q_vector = &adapter->q_vectors[q_idx];
1214 napi_disable(&q_vector->napi);
1215 }
1216 }
1217
1218 /**
1219 * iavf_configure - set up transmit and receive data structures
1220 * @adapter: board private structure
1221 **/
iavf_configure(struct iavf_adapter * adapter)1222 static void iavf_configure(struct iavf_adapter *adapter)
1223 {
1224 struct net_device *netdev = adapter->netdev;
1225 int i;
1226
1227 iavf_set_rx_mode(netdev);
1228
1229 iavf_configure_tx(adapter);
1230 iavf_configure_rx(adapter);
1231 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1232
1233 for (i = 0; i < adapter->num_active_queues; i++) {
1234 struct iavf_ring *ring = &adapter->rx_rings[i];
1235
1236 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1237 }
1238 }
1239
1240 /**
1241 * iavf_up_complete - Finish the last steps of bringing up a connection
1242 * @adapter: board private structure
1243 *
1244 * Expects to be called while holding crit_lock.
1245 **/
iavf_up_complete(struct iavf_adapter * adapter)1246 static void iavf_up_complete(struct iavf_adapter *adapter)
1247 {
1248 iavf_change_state(adapter, __IAVF_RUNNING);
1249 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1250
1251 iavf_napi_enable_all(adapter);
1252
1253 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES);
1254 }
1255
1256 /**
1257 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1258 * yet and mark other to be removed.
1259 * @adapter: board private structure
1260 **/
iavf_clear_mac_vlan_filters(struct iavf_adapter * adapter)1261 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1262 {
1263 struct iavf_vlan_filter *vlf, *vlftmp;
1264 struct iavf_mac_filter *f, *ftmp;
1265
1266 spin_lock_bh(&adapter->mac_vlan_list_lock);
1267 /* clear the sync flag on all filters */
1268 __dev_uc_unsync(adapter->netdev, NULL);
1269 __dev_mc_unsync(adapter->netdev, NULL);
1270
1271 /* remove all MAC filters */
1272 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1273 list) {
1274 if (f->add) {
1275 list_del(&f->list);
1276 kfree(f);
1277 } else {
1278 f->remove = true;
1279 }
1280 }
1281
1282 /* disable all VLAN filters */
1283 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1284 list)
1285 vlf->state = IAVF_VLAN_DISABLE;
1286
1287 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1288 }
1289
1290 /**
1291 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1292 * mark other to be removed.
1293 * @adapter: board private structure
1294 **/
iavf_clear_cloud_filters(struct iavf_adapter * adapter)1295 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1296 {
1297 struct iavf_cloud_filter *cf, *cftmp;
1298
1299 /* remove all cloud filters */
1300 spin_lock_bh(&adapter->cloud_filter_list_lock);
1301 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1302 list) {
1303 if (cf->add) {
1304 list_del(&cf->list);
1305 kfree(cf);
1306 adapter->num_cloud_filters--;
1307 } else {
1308 cf->del = true;
1309 }
1310 }
1311 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1312 }
1313
1314 /**
1315 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1316 * other to be removed.
1317 * @adapter: board private structure
1318 **/
iavf_clear_fdir_filters(struct iavf_adapter * adapter)1319 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1320 {
1321 struct iavf_fdir_fltr *fdir;
1322
1323 /* remove all Flow Director filters */
1324 spin_lock_bh(&adapter->fdir_fltr_lock);
1325 list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1326 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1327 /* Cancel a request, keep filter as inactive */
1328 fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1329 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1330 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1331 /* Disable filters which are active or have a pending
1332 * request to PF to be added
1333 */
1334 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1335 }
1336 }
1337 spin_unlock_bh(&adapter->fdir_fltr_lock);
1338 }
1339
1340 /**
1341 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1342 * other to be removed.
1343 * @adapter: board private structure
1344 **/
iavf_clear_adv_rss_conf(struct iavf_adapter * adapter)1345 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1346 {
1347 struct iavf_adv_rss *rss, *rsstmp;
1348
1349 /* remove all advance RSS configuration */
1350 spin_lock_bh(&adapter->adv_rss_lock);
1351 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1352 list) {
1353 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1354 list_del(&rss->list);
1355 kfree(rss);
1356 } else {
1357 rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1358 }
1359 }
1360 spin_unlock_bh(&adapter->adv_rss_lock);
1361 }
1362
1363 /**
1364 * iavf_down - Shutdown the connection processing
1365 * @adapter: board private structure
1366 *
1367 * Expects to be called while holding crit_lock.
1368 **/
iavf_down(struct iavf_adapter * adapter)1369 void iavf_down(struct iavf_adapter *adapter)
1370 {
1371 struct net_device *netdev = adapter->netdev;
1372
1373 if (adapter->state <= __IAVF_DOWN_PENDING)
1374 return;
1375
1376 netif_carrier_off(netdev);
1377 netif_tx_disable(netdev);
1378 adapter->link_up = false;
1379 iavf_napi_disable_all(adapter);
1380 iavf_irq_disable(adapter);
1381
1382 iavf_clear_mac_vlan_filters(adapter);
1383 iavf_clear_cloud_filters(adapter);
1384 iavf_clear_fdir_filters(adapter);
1385 iavf_clear_adv_rss_conf(adapter);
1386
1387 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1388 return;
1389
1390 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1391 /* cancel any current operation */
1392 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1393 /* Schedule operations to close down the HW. Don't wait
1394 * here for this to complete. The watchdog is still running
1395 * and it will take care of this.
1396 */
1397 if (!list_empty(&adapter->mac_filter_list))
1398 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1399 if (!list_empty(&adapter->vlan_filter_list))
1400 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1401 if (!list_empty(&adapter->cloud_filter_list))
1402 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1403 if (!list_empty(&adapter->fdir_list_head))
1404 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1405 if (!list_empty(&adapter->adv_rss_list_head))
1406 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1407 }
1408
1409 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES);
1410 }
1411
1412 /**
1413 * iavf_acquire_msix_vectors - Setup the MSIX capability
1414 * @adapter: board private structure
1415 * @vectors: number of vectors to request
1416 *
1417 * Work with the OS to set up the MSIX vectors needed.
1418 *
1419 * Returns 0 on success, negative on failure
1420 **/
1421 static int
iavf_acquire_msix_vectors(struct iavf_adapter * adapter,int vectors)1422 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1423 {
1424 int err, vector_threshold;
1425
1426 /* We'll want at least 3 (vector_threshold):
1427 * 0) Other (Admin Queue and link, mostly)
1428 * 1) TxQ[0] Cleanup
1429 * 2) RxQ[0] Cleanup
1430 */
1431 vector_threshold = MIN_MSIX_COUNT;
1432
1433 /* The more we get, the more we will assign to Tx/Rx Cleanup
1434 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1435 * Right now, we simply care about how many we'll get; we'll
1436 * set them up later while requesting irq's.
1437 */
1438 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1439 vector_threshold, vectors);
1440 if (err < 0) {
1441 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1442 kfree(adapter->msix_entries);
1443 adapter->msix_entries = NULL;
1444 return err;
1445 }
1446
1447 /* Adjust for only the vectors we'll use, which is minimum
1448 * of max_msix_q_vectors + NONQ_VECS, or the number of
1449 * vectors we were allocated.
1450 */
1451 adapter->num_msix_vectors = err;
1452 return 0;
1453 }
1454
1455 /**
1456 * iavf_free_queues - Free memory for all rings
1457 * @adapter: board private structure to initialize
1458 *
1459 * Free all of the memory associated with queue pairs.
1460 **/
iavf_free_queues(struct iavf_adapter * adapter)1461 static void iavf_free_queues(struct iavf_adapter *adapter)
1462 {
1463 if (!adapter->vsi_res)
1464 return;
1465 adapter->num_active_queues = 0;
1466 kfree(adapter->tx_rings);
1467 adapter->tx_rings = NULL;
1468 kfree(adapter->rx_rings);
1469 adapter->rx_rings = NULL;
1470 }
1471
1472 /**
1473 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1474 * @adapter: board private structure
1475 *
1476 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1477 * stripped in certain descriptor fields. Instead of checking the offload
1478 * capability bits in the hot path, cache the location the ring specific
1479 * flags.
1480 */
iavf_set_queue_vlan_tag_loc(struct iavf_adapter * adapter)1481 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1482 {
1483 int i;
1484
1485 for (i = 0; i < adapter->num_active_queues; i++) {
1486 struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1487 struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1488
1489 /* prevent multiple L2TAG bits being set after VFR */
1490 tx_ring->flags &=
1491 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1492 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1493 rx_ring->flags &=
1494 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1495 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1496
1497 if (VLAN_ALLOWED(adapter)) {
1498 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1499 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1500 } else if (VLAN_V2_ALLOWED(adapter)) {
1501 struct virtchnl_vlan_supported_caps *stripping_support;
1502 struct virtchnl_vlan_supported_caps *insertion_support;
1503
1504 stripping_support =
1505 &adapter->vlan_v2_caps.offloads.stripping_support;
1506 insertion_support =
1507 &adapter->vlan_v2_caps.offloads.insertion_support;
1508
1509 if (stripping_support->outer) {
1510 if (stripping_support->outer &
1511 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1512 rx_ring->flags |=
1513 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1514 else if (stripping_support->outer &
1515 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1516 rx_ring->flags |=
1517 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1518 } else if (stripping_support->inner) {
1519 if (stripping_support->inner &
1520 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1521 rx_ring->flags |=
1522 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1523 else if (stripping_support->inner &
1524 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1525 rx_ring->flags |=
1526 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1527 }
1528
1529 if (insertion_support->outer) {
1530 if (insertion_support->outer &
1531 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1532 tx_ring->flags |=
1533 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1534 else if (insertion_support->outer &
1535 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1536 tx_ring->flags |=
1537 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1538 } else if (insertion_support->inner) {
1539 if (insertion_support->inner &
1540 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1541 tx_ring->flags |=
1542 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1543 else if (insertion_support->inner &
1544 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1545 tx_ring->flags |=
1546 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1547 }
1548 }
1549 }
1550 }
1551
1552 /**
1553 * iavf_alloc_queues - Allocate memory for all rings
1554 * @adapter: board private structure to initialize
1555 *
1556 * We allocate one ring per queue at run-time since we don't know the
1557 * number of queues at compile-time. The polling_netdev array is
1558 * intended for Multiqueue, but should work fine with a single queue.
1559 **/
iavf_alloc_queues(struct iavf_adapter * adapter)1560 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1561 {
1562 int i, num_active_queues;
1563
1564 /* If we're in reset reallocating queues we don't actually know yet for
1565 * certain the PF gave us the number of queues we asked for but we'll
1566 * assume it did. Once basic reset is finished we'll confirm once we
1567 * start negotiating config with PF.
1568 */
1569 if (adapter->num_req_queues)
1570 num_active_queues = adapter->num_req_queues;
1571 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1572 adapter->num_tc)
1573 num_active_queues = adapter->ch_config.total_qps;
1574 else
1575 num_active_queues = min_t(int,
1576 adapter->vsi_res->num_queue_pairs,
1577 (int)(num_online_cpus()));
1578
1579
1580 adapter->tx_rings = kcalloc(num_active_queues,
1581 sizeof(struct iavf_ring), GFP_KERNEL);
1582 if (!adapter->tx_rings)
1583 goto err_out;
1584 adapter->rx_rings = kcalloc(num_active_queues,
1585 sizeof(struct iavf_ring), GFP_KERNEL);
1586 if (!adapter->rx_rings)
1587 goto err_out;
1588
1589 for (i = 0; i < num_active_queues; i++) {
1590 struct iavf_ring *tx_ring;
1591 struct iavf_ring *rx_ring;
1592
1593 tx_ring = &adapter->tx_rings[i];
1594
1595 tx_ring->queue_index = i;
1596 tx_ring->netdev = adapter->netdev;
1597 tx_ring->dev = &adapter->pdev->dev;
1598 tx_ring->count = adapter->tx_desc_count;
1599 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1600 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1601 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1602
1603 rx_ring = &adapter->rx_rings[i];
1604 rx_ring->queue_index = i;
1605 rx_ring->netdev = adapter->netdev;
1606 rx_ring->count = adapter->rx_desc_count;
1607 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1608 }
1609
1610 adapter->num_active_queues = num_active_queues;
1611
1612 iavf_set_queue_vlan_tag_loc(adapter);
1613
1614 return 0;
1615
1616 err_out:
1617 iavf_free_queues(adapter);
1618 return -ENOMEM;
1619 }
1620
1621 /**
1622 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1623 * @adapter: board private structure to initialize
1624 *
1625 * Attempt to configure the interrupts using the best available
1626 * capabilities of the hardware and the kernel.
1627 **/
iavf_set_interrupt_capability(struct iavf_adapter * adapter)1628 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1629 {
1630 int vector, v_budget;
1631 int pairs = 0;
1632 int err = 0;
1633
1634 if (!adapter->vsi_res) {
1635 err = -EIO;
1636 goto out;
1637 }
1638 pairs = adapter->num_active_queues;
1639
1640 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1641 * us much good if we have more vectors than CPUs. However, we already
1642 * limit the total number of queues by the number of CPUs so we do not
1643 * need any further limiting here.
1644 */
1645 v_budget = min_t(int, pairs + NONQ_VECS,
1646 (int)adapter->vf_res->max_vectors);
1647
1648 adapter->msix_entries = kcalloc(v_budget,
1649 sizeof(struct msix_entry), GFP_KERNEL);
1650 if (!adapter->msix_entries) {
1651 err = -ENOMEM;
1652 goto out;
1653 }
1654
1655 for (vector = 0; vector < v_budget; vector++)
1656 adapter->msix_entries[vector].entry = vector;
1657
1658 err = iavf_acquire_msix_vectors(adapter, v_budget);
1659 if (!err)
1660 iavf_schedule_finish_config(adapter);
1661
1662 out:
1663 return err;
1664 }
1665
1666 /**
1667 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1668 * @adapter: board private structure
1669 *
1670 * Return 0 on success, negative on failure
1671 **/
iavf_config_rss_aq(struct iavf_adapter * adapter)1672 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1673 {
1674 struct iavf_aqc_get_set_rss_key_data *rss_key =
1675 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1676 struct iavf_hw *hw = &adapter->hw;
1677 enum iavf_status status;
1678
1679 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1680 /* bail because we already have a command pending */
1681 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1682 adapter->current_op);
1683 return -EBUSY;
1684 }
1685
1686 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1687 if (status) {
1688 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1689 iavf_stat_str(hw, status),
1690 iavf_aq_str(hw, hw->aq.asq_last_status));
1691 return iavf_status_to_errno(status);
1692
1693 }
1694
1695 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1696 adapter->rss_lut, adapter->rss_lut_size);
1697 if (status) {
1698 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1699 iavf_stat_str(hw, status),
1700 iavf_aq_str(hw, hw->aq.asq_last_status));
1701 return iavf_status_to_errno(status);
1702 }
1703
1704 return 0;
1705
1706 }
1707
1708 /**
1709 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1710 * @adapter: board private structure
1711 *
1712 * Returns 0 on success, negative on failure
1713 **/
iavf_config_rss_reg(struct iavf_adapter * adapter)1714 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1715 {
1716 struct iavf_hw *hw = &adapter->hw;
1717 u32 *dw;
1718 u16 i;
1719
1720 dw = (u32 *)adapter->rss_key;
1721 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1722 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1723
1724 dw = (u32 *)adapter->rss_lut;
1725 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1726 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1727
1728 iavf_flush(hw);
1729
1730 return 0;
1731 }
1732
1733 /**
1734 * iavf_config_rss - Configure RSS keys and lut
1735 * @adapter: board private structure
1736 *
1737 * Returns 0 on success, negative on failure
1738 **/
iavf_config_rss(struct iavf_adapter * adapter)1739 int iavf_config_rss(struct iavf_adapter *adapter)
1740 {
1741
1742 if (RSS_PF(adapter)) {
1743 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1744 IAVF_FLAG_AQ_SET_RSS_KEY;
1745 return 0;
1746 } else if (RSS_AQ(adapter)) {
1747 return iavf_config_rss_aq(adapter);
1748 } else {
1749 return iavf_config_rss_reg(adapter);
1750 }
1751 }
1752
1753 /**
1754 * iavf_fill_rss_lut - Fill the lut with default values
1755 * @adapter: board private structure
1756 **/
iavf_fill_rss_lut(struct iavf_adapter * adapter)1757 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1758 {
1759 u16 i;
1760
1761 for (i = 0; i < adapter->rss_lut_size; i++)
1762 adapter->rss_lut[i] = i % adapter->num_active_queues;
1763 }
1764
1765 /**
1766 * iavf_init_rss - Prepare for RSS
1767 * @adapter: board private structure
1768 *
1769 * Return 0 on success, negative on failure
1770 **/
iavf_init_rss(struct iavf_adapter * adapter)1771 static int iavf_init_rss(struct iavf_adapter *adapter)
1772 {
1773 struct iavf_hw *hw = &adapter->hw;
1774
1775 if (!RSS_PF(adapter)) {
1776 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1777 if (adapter->vf_res->vf_cap_flags &
1778 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1779 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1780 else
1781 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1782
1783 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1784 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1785 }
1786
1787 iavf_fill_rss_lut(adapter);
1788 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1789
1790 return iavf_config_rss(adapter);
1791 }
1792
1793 /**
1794 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1795 * @adapter: board private structure to initialize
1796 *
1797 * We allocate one q_vector per queue interrupt. If allocation fails we
1798 * return -ENOMEM.
1799 **/
iavf_alloc_q_vectors(struct iavf_adapter * adapter)1800 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1801 {
1802 int q_idx = 0, num_q_vectors;
1803 struct iavf_q_vector *q_vector;
1804
1805 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1806 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1807 GFP_KERNEL);
1808 if (!adapter->q_vectors)
1809 return -ENOMEM;
1810
1811 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1812 q_vector = &adapter->q_vectors[q_idx];
1813 q_vector->adapter = adapter;
1814 q_vector->vsi = &adapter->vsi;
1815 q_vector->v_idx = q_idx;
1816 q_vector->reg_idx = q_idx;
1817 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1818 netif_napi_add(adapter->netdev, &q_vector->napi,
1819 iavf_napi_poll);
1820 }
1821
1822 return 0;
1823 }
1824
1825 /**
1826 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1827 * @adapter: board private structure to initialize
1828 *
1829 * This function frees the memory allocated to the q_vectors. In addition if
1830 * NAPI is enabled it will delete any references to the NAPI struct prior
1831 * to freeing the q_vector.
1832 **/
iavf_free_q_vectors(struct iavf_adapter * adapter)1833 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1834 {
1835 int q_idx, num_q_vectors;
1836
1837 if (!adapter->q_vectors)
1838 return;
1839
1840 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1841
1842 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1843 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1844
1845 netif_napi_del(&q_vector->napi);
1846 }
1847 kfree(adapter->q_vectors);
1848 adapter->q_vectors = NULL;
1849 }
1850
1851 /**
1852 * iavf_reset_interrupt_capability - Reset MSIX setup
1853 * @adapter: board private structure
1854 *
1855 **/
iavf_reset_interrupt_capability(struct iavf_adapter * adapter)1856 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1857 {
1858 if (!adapter->msix_entries)
1859 return;
1860
1861 pci_disable_msix(adapter->pdev);
1862 kfree(adapter->msix_entries);
1863 adapter->msix_entries = NULL;
1864 }
1865
1866 /**
1867 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1868 * @adapter: board private structure to initialize
1869 *
1870 **/
iavf_init_interrupt_scheme(struct iavf_adapter * adapter)1871 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1872 {
1873 int err;
1874
1875 err = iavf_alloc_queues(adapter);
1876 if (err) {
1877 dev_err(&adapter->pdev->dev,
1878 "Unable to allocate memory for queues\n");
1879 goto err_alloc_queues;
1880 }
1881
1882 err = iavf_set_interrupt_capability(adapter);
1883 if (err) {
1884 dev_err(&adapter->pdev->dev,
1885 "Unable to setup interrupt capabilities\n");
1886 goto err_set_interrupt;
1887 }
1888
1889 err = iavf_alloc_q_vectors(adapter);
1890 if (err) {
1891 dev_err(&adapter->pdev->dev,
1892 "Unable to allocate memory for queue vectors\n");
1893 goto err_alloc_q_vectors;
1894 }
1895
1896 /* If we've made it so far while ADq flag being ON, then we haven't
1897 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1898 * resources have been allocated in the reset path.
1899 * Now we can truly claim that ADq is enabled.
1900 */
1901 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1902 adapter->num_tc)
1903 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1904 adapter->num_tc);
1905
1906 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1907 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1908 adapter->num_active_queues);
1909
1910 return 0;
1911 err_alloc_q_vectors:
1912 iavf_reset_interrupt_capability(adapter);
1913 err_set_interrupt:
1914 iavf_free_queues(adapter);
1915 err_alloc_queues:
1916 return err;
1917 }
1918
1919 /**
1920 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1921 * @adapter: board private structure
1922 **/
iavf_free_interrupt_scheme(struct iavf_adapter * adapter)1923 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1924 {
1925 iavf_free_q_vectors(adapter);
1926 iavf_reset_interrupt_capability(adapter);
1927 iavf_free_queues(adapter);
1928 }
1929
1930 /**
1931 * iavf_free_rss - Free memory used by RSS structs
1932 * @adapter: board private structure
1933 **/
iavf_free_rss(struct iavf_adapter * adapter)1934 static void iavf_free_rss(struct iavf_adapter *adapter)
1935 {
1936 kfree(adapter->rss_key);
1937 adapter->rss_key = NULL;
1938
1939 kfree(adapter->rss_lut);
1940 adapter->rss_lut = NULL;
1941 }
1942
1943 /**
1944 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1945 * @adapter: board private structure
1946 * @running: true if adapter->state == __IAVF_RUNNING
1947 *
1948 * Returns 0 on success, negative on failure
1949 **/
iavf_reinit_interrupt_scheme(struct iavf_adapter * adapter,bool running)1950 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1951 {
1952 struct net_device *netdev = adapter->netdev;
1953 int err;
1954
1955 if (running)
1956 iavf_free_traffic_irqs(adapter);
1957 iavf_free_misc_irq(adapter);
1958 iavf_free_interrupt_scheme(adapter);
1959
1960 err = iavf_init_interrupt_scheme(adapter);
1961 if (err)
1962 goto err;
1963
1964 netif_tx_stop_all_queues(netdev);
1965
1966 err = iavf_request_misc_irq(adapter);
1967 if (err)
1968 goto err;
1969
1970 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1971
1972 iavf_map_rings_to_vectors(adapter);
1973 err:
1974 return err;
1975 }
1976
1977 /**
1978 * iavf_finish_config - do all netdev work that needs RTNL
1979 * @work: our work_struct
1980 *
1981 * Do work that needs both RTNL and crit_lock.
1982 **/
iavf_finish_config(struct work_struct * work)1983 static void iavf_finish_config(struct work_struct *work)
1984 {
1985 struct iavf_adapter *adapter;
1986 int pairs, err;
1987
1988 adapter = container_of(work, struct iavf_adapter, finish_config);
1989
1990 /* Always take RTNL first to prevent circular lock dependency */
1991 rtnl_lock();
1992 mutex_lock(&adapter->crit_lock);
1993
1994 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
1995 adapter->netdev->reg_state == NETREG_REGISTERED &&
1996 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1997 netdev_update_features(adapter->netdev);
1998 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
1999 }
2000
2001 switch (adapter->state) {
2002 case __IAVF_DOWN:
2003 if (adapter->netdev->reg_state != NETREG_REGISTERED) {
2004 err = register_netdevice(adapter->netdev);
2005 if (err) {
2006 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
2007 err);
2008
2009 /* go back and try again.*/
2010 iavf_free_rss(adapter);
2011 iavf_free_misc_irq(adapter);
2012 iavf_reset_interrupt_capability(adapter);
2013 iavf_change_state(adapter,
2014 __IAVF_INIT_CONFIG_ADAPTER);
2015 goto out;
2016 }
2017 }
2018
2019 /* Set the real number of queues when reset occurs while
2020 * state == __IAVF_DOWN
2021 */
2022 fallthrough;
2023 case __IAVF_RUNNING:
2024 pairs = adapter->num_active_queues;
2025 netif_set_real_num_rx_queues(adapter->netdev, pairs);
2026 netif_set_real_num_tx_queues(adapter->netdev, pairs);
2027 break;
2028
2029 default:
2030 break;
2031 }
2032
2033 out:
2034 mutex_unlock(&adapter->crit_lock);
2035 rtnl_unlock();
2036 }
2037
2038 /**
2039 * iavf_schedule_finish_config - Set the flags and schedule a reset event
2040 * @adapter: board private structure
2041 **/
iavf_schedule_finish_config(struct iavf_adapter * adapter)2042 void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2043 {
2044 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2045 queue_work(adapter->wq, &adapter->finish_config);
2046 }
2047
2048 /**
2049 * iavf_process_aq_command - process aq_required flags
2050 * and sends aq command
2051 * @adapter: pointer to iavf adapter structure
2052 *
2053 * Returns 0 on success
2054 * Returns error code if no command was sent
2055 * or error code if the command failed.
2056 **/
iavf_process_aq_command(struct iavf_adapter * adapter)2057 static int iavf_process_aq_command(struct iavf_adapter *adapter)
2058 {
2059 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2060 return iavf_send_vf_config_msg(adapter);
2061 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2062 return iavf_send_vf_offload_vlan_v2_msg(adapter);
2063 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2064 iavf_disable_queues(adapter);
2065 return 0;
2066 }
2067
2068 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2069 iavf_map_queues(adapter);
2070 return 0;
2071 }
2072
2073 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2074 iavf_add_ether_addrs(adapter);
2075 return 0;
2076 }
2077
2078 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2079 iavf_add_vlans(adapter);
2080 return 0;
2081 }
2082
2083 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2084 iavf_del_ether_addrs(adapter);
2085 return 0;
2086 }
2087
2088 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2089 iavf_del_vlans(adapter);
2090 return 0;
2091 }
2092
2093 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2094 iavf_enable_vlan_stripping(adapter);
2095 return 0;
2096 }
2097
2098 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2099 iavf_disable_vlan_stripping(adapter);
2100 return 0;
2101 }
2102
2103 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2104 iavf_configure_queues(adapter);
2105 return 0;
2106 }
2107
2108 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2109 iavf_enable_queues(adapter);
2110 return 0;
2111 }
2112
2113 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2114 /* This message goes straight to the firmware, not the
2115 * PF, so we don't have to set current_op as we will
2116 * not get a response through the ARQ.
2117 */
2118 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2119 return 0;
2120 }
2121 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2122 iavf_get_hena(adapter);
2123 return 0;
2124 }
2125 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2126 iavf_set_hena(adapter);
2127 return 0;
2128 }
2129 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2130 iavf_set_rss_key(adapter);
2131 return 0;
2132 }
2133 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2134 iavf_set_rss_lut(adapter);
2135 return 0;
2136 }
2137 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) {
2138 iavf_set_rss_hfunc(adapter);
2139 return 0;
2140 }
2141
2142 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2143 iavf_set_promiscuous(adapter);
2144 return 0;
2145 }
2146
2147 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2148 iavf_enable_channels(adapter);
2149 return 0;
2150 }
2151
2152 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2153 iavf_disable_channels(adapter);
2154 return 0;
2155 }
2156 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2157 iavf_add_cloud_filter(adapter);
2158 return 0;
2159 }
2160 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2161 iavf_del_cloud_filter(adapter);
2162 return 0;
2163 }
2164 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2165 iavf_add_fdir_filter(adapter);
2166 return IAVF_SUCCESS;
2167 }
2168 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2169 iavf_del_fdir_filter(adapter);
2170 return IAVF_SUCCESS;
2171 }
2172 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2173 iavf_add_adv_rss_cfg(adapter);
2174 return 0;
2175 }
2176 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2177 iavf_del_adv_rss_cfg(adapter);
2178 return 0;
2179 }
2180 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2181 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2182 return 0;
2183 }
2184 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2185 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2186 return 0;
2187 }
2188 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2189 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2190 return 0;
2191 }
2192 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2193 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2194 return 0;
2195 }
2196 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2197 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2198 return 0;
2199 }
2200 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2201 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2202 return 0;
2203 }
2204 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2205 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2206 return 0;
2207 }
2208 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2209 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2210 return 0;
2211 }
2212
2213 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2214 iavf_request_stats(adapter);
2215 return 0;
2216 }
2217
2218 return -EAGAIN;
2219 }
2220
2221 /**
2222 * iavf_set_vlan_offload_features - set VLAN offload configuration
2223 * @adapter: board private structure
2224 * @prev_features: previous features used for comparison
2225 * @features: updated features used for configuration
2226 *
2227 * Set the aq_required bit(s) based on the requested features passed in to
2228 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2229 * the watchdog if any changes are requested to expedite the request via
2230 * virtchnl.
2231 **/
2232 static void
iavf_set_vlan_offload_features(struct iavf_adapter * adapter,netdev_features_t prev_features,netdev_features_t features)2233 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2234 netdev_features_t prev_features,
2235 netdev_features_t features)
2236 {
2237 bool enable_stripping = true, enable_insertion = true;
2238 u16 vlan_ethertype = 0;
2239 u64 aq_required = 0;
2240
2241 /* keep cases separate because one ethertype for offloads can be
2242 * disabled at the same time as another is disabled, so check for an
2243 * enabled ethertype first, then check for disabled. Default to
2244 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2245 * stripping.
2246 */
2247 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2248 vlan_ethertype = ETH_P_8021AD;
2249 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2250 vlan_ethertype = ETH_P_8021Q;
2251 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2252 vlan_ethertype = ETH_P_8021AD;
2253 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2254 vlan_ethertype = ETH_P_8021Q;
2255 else
2256 vlan_ethertype = ETH_P_8021Q;
2257
2258 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2259 enable_stripping = false;
2260 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2261 enable_insertion = false;
2262
2263 if (VLAN_ALLOWED(adapter)) {
2264 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2265 * stripping via virtchnl. VLAN insertion can be toggled on the
2266 * netdev, but it doesn't require a virtchnl message
2267 */
2268 if (enable_stripping)
2269 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2270 else
2271 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2272
2273 } else if (VLAN_V2_ALLOWED(adapter)) {
2274 switch (vlan_ethertype) {
2275 case ETH_P_8021Q:
2276 if (enable_stripping)
2277 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2278 else
2279 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2280
2281 if (enable_insertion)
2282 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2283 else
2284 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2285 break;
2286 case ETH_P_8021AD:
2287 if (enable_stripping)
2288 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2289 else
2290 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2291
2292 if (enable_insertion)
2293 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2294 else
2295 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2296 break;
2297 }
2298 }
2299
2300 if (aq_required)
2301 iavf_schedule_aq_request(adapter, aq_required);
2302 }
2303
2304 /**
2305 * iavf_startup - first step of driver startup
2306 * @adapter: board private structure
2307 *
2308 * Function process __IAVF_STARTUP driver state.
2309 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2310 * when fails the state is changed to __IAVF_INIT_FAILED
2311 **/
iavf_startup(struct iavf_adapter * adapter)2312 static void iavf_startup(struct iavf_adapter *adapter)
2313 {
2314 struct pci_dev *pdev = adapter->pdev;
2315 struct iavf_hw *hw = &adapter->hw;
2316 enum iavf_status status;
2317 int ret;
2318
2319 WARN_ON(adapter->state != __IAVF_STARTUP);
2320
2321 /* driver loaded, probe complete */
2322 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2323 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2324
2325 ret = iavf_check_reset_complete(hw);
2326 if (ret) {
2327 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2328 ret);
2329 goto err;
2330 }
2331 hw->aq.num_arq_entries = IAVF_AQ_LEN;
2332 hw->aq.num_asq_entries = IAVF_AQ_LEN;
2333 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2334 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2335
2336 status = iavf_init_adminq(hw);
2337 if (status) {
2338 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2339 status);
2340 goto err;
2341 }
2342 ret = iavf_send_api_ver(adapter);
2343 if (ret) {
2344 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2345 iavf_shutdown_adminq(hw);
2346 goto err;
2347 }
2348 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2349 return;
2350 err:
2351 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2352 }
2353
2354 /**
2355 * iavf_init_version_check - second step of driver startup
2356 * @adapter: board private structure
2357 *
2358 * Function process __IAVF_INIT_VERSION_CHECK driver state.
2359 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2360 * when fails the state is changed to __IAVF_INIT_FAILED
2361 **/
iavf_init_version_check(struct iavf_adapter * adapter)2362 static void iavf_init_version_check(struct iavf_adapter *adapter)
2363 {
2364 struct pci_dev *pdev = adapter->pdev;
2365 struct iavf_hw *hw = &adapter->hw;
2366 int err = -EAGAIN;
2367
2368 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2369
2370 if (!iavf_asq_done(hw)) {
2371 dev_err(&pdev->dev, "Admin queue command never completed\n");
2372 iavf_shutdown_adminq(hw);
2373 iavf_change_state(adapter, __IAVF_STARTUP);
2374 goto err;
2375 }
2376
2377 /* aq msg sent, awaiting reply */
2378 err = iavf_verify_api_ver(adapter);
2379 if (err) {
2380 if (err == -EALREADY)
2381 err = iavf_send_api_ver(adapter);
2382 else
2383 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2384 adapter->pf_version.major,
2385 adapter->pf_version.minor,
2386 VIRTCHNL_VERSION_MAJOR,
2387 VIRTCHNL_VERSION_MINOR);
2388 goto err;
2389 }
2390 err = iavf_send_vf_config_msg(adapter);
2391 if (err) {
2392 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2393 err);
2394 goto err;
2395 }
2396 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2397 return;
2398 err:
2399 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2400 }
2401
2402 /**
2403 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2404 * @adapter: board private structure
2405 */
iavf_parse_vf_resource_msg(struct iavf_adapter * adapter)2406 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2407 {
2408 int i, num_req_queues = adapter->num_req_queues;
2409 struct iavf_vsi *vsi = &adapter->vsi;
2410
2411 for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2412 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2413 adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2414 }
2415 if (!adapter->vsi_res) {
2416 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2417 return -ENODEV;
2418 }
2419
2420 if (num_req_queues &&
2421 num_req_queues > adapter->vsi_res->num_queue_pairs) {
2422 /* Problem. The PF gave us fewer queues than what we had
2423 * negotiated in our request. Need a reset to see if we can't
2424 * get back to a working state.
2425 */
2426 dev_err(&adapter->pdev->dev,
2427 "Requested %d queues, but PF only gave us %d.\n",
2428 num_req_queues,
2429 adapter->vsi_res->num_queue_pairs);
2430 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2431 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2432 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2433
2434 return -EAGAIN;
2435 }
2436 adapter->num_req_queues = 0;
2437 adapter->vsi.id = adapter->vsi_res->vsi_id;
2438
2439 adapter->vsi.back = adapter;
2440 adapter->vsi.base_vector = 1;
2441 vsi->netdev = adapter->netdev;
2442 vsi->qs_handle = adapter->vsi_res->qset_handle;
2443 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2444 adapter->rss_key_size = adapter->vf_res->rss_key_size;
2445 adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2446 } else {
2447 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2448 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2449 }
2450
2451 return 0;
2452 }
2453
2454 /**
2455 * iavf_init_get_resources - third step of driver startup
2456 * @adapter: board private structure
2457 *
2458 * Function process __IAVF_INIT_GET_RESOURCES driver state and
2459 * finishes driver initialization procedure.
2460 * When success the state is changed to __IAVF_DOWN
2461 * when fails the state is changed to __IAVF_INIT_FAILED
2462 **/
iavf_init_get_resources(struct iavf_adapter * adapter)2463 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2464 {
2465 struct pci_dev *pdev = adapter->pdev;
2466 struct iavf_hw *hw = &adapter->hw;
2467 int err;
2468
2469 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2470 /* aq msg sent, awaiting reply */
2471 if (!adapter->vf_res) {
2472 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2473 GFP_KERNEL);
2474 if (!adapter->vf_res) {
2475 err = -ENOMEM;
2476 goto err;
2477 }
2478 }
2479 err = iavf_get_vf_config(adapter);
2480 if (err == -EALREADY) {
2481 err = iavf_send_vf_config_msg(adapter);
2482 goto err;
2483 } else if (err == -EINVAL) {
2484 /* We only get -EINVAL if the device is in a very bad
2485 * state or if we've been disabled for previous bad
2486 * behavior. Either way, we're done now.
2487 */
2488 iavf_shutdown_adminq(hw);
2489 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2490 return;
2491 }
2492 if (err) {
2493 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2494 goto err_alloc;
2495 }
2496
2497 err = iavf_parse_vf_resource_msg(adapter);
2498 if (err) {
2499 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2500 err);
2501 goto err_alloc;
2502 }
2503 /* Some features require additional messages to negotiate extended
2504 * capabilities. These are processed in sequence by the
2505 * __IAVF_INIT_EXTENDED_CAPS driver state.
2506 */
2507 adapter->extended_caps = IAVF_EXTENDED_CAPS;
2508
2509 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2510 return;
2511
2512 err_alloc:
2513 kfree(adapter->vf_res);
2514 adapter->vf_res = NULL;
2515 err:
2516 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2517 }
2518
2519 /**
2520 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2521 * @adapter: board private structure
2522 *
2523 * Function processes send of the extended VLAN V2 capability message to the
2524 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2525 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2526 */
iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter * adapter)2527 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2528 {
2529 int ret;
2530
2531 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2532
2533 ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2534 if (ret && ret == -EOPNOTSUPP) {
2535 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2536 * we did not send the capability exchange message and do not
2537 * expect a response.
2538 */
2539 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2540 }
2541
2542 /* We sent the message, so move on to the next step */
2543 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2544 }
2545
2546 /**
2547 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2548 * @adapter: board private structure
2549 *
2550 * Function processes receipt of the extended VLAN V2 capability message from
2551 * the PF.
2552 **/
iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter * adapter)2553 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2554 {
2555 int ret;
2556
2557 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2558
2559 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2560
2561 ret = iavf_get_vf_vlan_v2_caps(adapter);
2562 if (ret)
2563 goto err;
2564
2565 /* We've processed receipt of the VLAN V2 caps message */
2566 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2567 return;
2568 err:
2569 /* We didn't receive a reply. Make sure we try sending again when
2570 * __IAVF_INIT_FAILED attempts to recover.
2571 */
2572 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2573 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2574 }
2575
2576 /**
2577 * iavf_init_process_extended_caps - Part of driver startup
2578 * @adapter: board private structure
2579 *
2580 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2581 * handles negotiating capabilities for features which require an additional
2582 * message.
2583 *
2584 * Once all extended capabilities exchanges are finished, the driver will
2585 * transition into __IAVF_INIT_CONFIG_ADAPTER.
2586 */
iavf_init_process_extended_caps(struct iavf_adapter * adapter)2587 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2588 {
2589 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2590
2591 /* Process capability exchange for VLAN V2 */
2592 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2593 iavf_init_send_offload_vlan_v2_caps(adapter);
2594 return;
2595 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2596 iavf_init_recv_offload_vlan_v2_caps(adapter);
2597 return;
2598 }
2599
2600 /* When we reach here, no further extended capabilities exchanges are
2601 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2602 */
2603 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2604 }
2605
2606 /**
2607 * iavf_init_config_adapter - last part of driver startup
2608 * @adapter: board private structure
2609 *
2610 * After all the supported capabilities are negotiated, then the
2611 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2612 */
iavf_init_config_adapter(struct iavf_adapter * adapter)2613 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2614 {
2615 struct net_device *netdev = adapter->netdev;
2616 struct pci_dev *pdev = adapter->pdev;
2617 int err;
2618
2619 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2620
2621 if (iavf_process_config(adapter))
2622 goto err;
2623
2624 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2625
2626 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2627
2628 netdev->netdev_ops = &iavf_netdev_ops;
2629 iavf_set_ethtool_ops(netdev);
2630 netdev->watchdog_timeo = 5 * HZ;
2631
2632 netdev->min_mtu = ETH_MIN_MTU;
2633 netdev->max_mtu = LIBIE_MAX_MTU;
2634
2635 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2636 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2637 adapter->hw.mac.addr);
2638 eth_hw_addr_random(netdev);
2639 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2640 } else {
2641 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2642 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2643 }
2644
2645 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2646 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2647 err = iavf_init_interrupt_scheme(adapter);
2648 if (err)
2649 goto err_sw_init;
2650 iavf_map_rings_to_vectors(adapter);
2651 if (adapter->vf_res->vf_cap_flags &
2652 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2653 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2654
2655 err = iavf_request_misc_irq(adapter);
2656 if (err)
2657 goto err_sw_init;
2658
2659 netif_carrier_off(netdev);
2660 adapter->link_up = false;
2661 netif_tx_stop_all_queues(netdev);
2662
2663 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2664 if (netdev->features & NETIF_F_GRO)
2665 dev_info(&pdev->dev, "GRO is enabled\n");
2666
2667 iavf_change_state(adapter, __IAVF_DOWN);
2668 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2669
2670 iavf_misc_irq_enable(adapter);
2671 wake_up(&adapter->down_waitqueue);
2672
2673 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2674 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2675 if (!adapter->rss_key || !adapter->rss_lut) {
2676 err = -ENOMEM;
2677 goto err_mem;
2678 }
2679 if (RSS_AQ(adapter))
2680 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2681 else
2682 iavf_init_rss(adapter);
2683
2684 if (VLAN_V2_ALLOWED(adapter))
2685 /* request initial VLAN offload settings */
2686 iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2687
2688 iavf_schedule_finish_config(adapter);
2689 return;
2690
2691 err_mem:
2692 iavf_free_rss(adapter);
2693 iavf_free_misc_irq(adapter);
2694 err_sw_init:
2695 iavf_reset_interrupt_capability(adapter);
2696 err:
2697 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2698 }
2699
2700 /**
2701 * iavf_watchdog_task - Periodic call-back task
2702 * @work: pointer to work_struct
2703 **/
iavf_watchdog_task(struct work_struct * work)2704 static void iavf_watchdog_task(struct work_struct *work)
2705 {
2706 struct iavf_adapter *adapter = container_of(work,
2707 struct iavf_adapter,
2708 watchdog_task.work);
2709 struct iavf_hw *hw = &adapter->hw;
2710 u32 reg_val;
2711
2712 if (!mutex_trylock(&adapter->crit_lock)) {
2713 if (adapter->state == __IAVF_REMOVE)
2714 return;
2715
2716 goto restart_watchdog;
2717 }
2718
2719 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2720 iavf_change_state(adapter, __IAVF_COMM_FAILED);
2721
2722 switch (adapter->state) {
2723 case __IAVF_STARTUP:
2724 iavf_startup(adapter);
2725 mutex_unlock(&adapter->crit_lock);
2726 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2727 msecs_to_jiffies(30));
2728 return;
2729 case __IAVF_INIT_VERSION_CHECK:
2730 iavf_init_version_check(adapter);
2731 mutex_unlock(&adapter->crit_lock);
2732 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2733 msecs_to_jiffies(30));
2734 return;
2735 case __IAVF_INIT_GET_RESOURCES:
2736 iavf_init_get_resources(adapter);
2737 mutex_unlock(&adapter->crit_lock);
2738 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2739 msecs_to_jiffies(1));
2740 return;
2741 case __IAVF_INIT_EXTENDED_CAPS:
2742 iavf_init_process_extended_caps(adapter);
2743 mutex_unlock(&adapter->crit_lock);
2744 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2745 msecs_to_jiffies(1));
2746 return;
2747 case __IAVF_INIT_CONFIG_ADAPTER:
2748 iavf_init_config_adapter(adapter);
2749 mutex_unlock(&adapter->crit_lock);
2750 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2751 msecs_to_jiffies(1));
2752 return;
2753 case __IAVF_INIT_FAILED:
2754 if (test_bit(__IAVF_IN_REMOVE_TASK,
2755 &adapter->crit_section)) {
2756 /* Do not update the state and do not reschedule
2757 * watchdog task, iavf_remove should handle this state
2758 * as it can loop forever
2759 */
2760 mutex_unlock(&adapter->crit_lock);
2761 return;
2762 }
2763 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2764 dev_err(&adapter->pdev->dev,
2765 "Failed to communicate with PF; waiting before retry\n");
2766 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2767 iavf_shutdown_adminq(hw);
2768 mutex_unlock(&adapter->crit_lock);
2769 queue_delayed_work(adapter->wq,
2770 &adapter->watchdog_task, (5 * HZ));
2771 return;
2772 }
2773 /* Try again from failed step*/
2774 iavf_change_state(adapter, adapter->last_state);
2775 mutex_unlock(&adapter->crit_lock);
2776 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2777 return;
2778 case __IAVF_COMM_FAILED:
2779 if (test_bit(__IAVF_IN_REMOVE_TASK,
2780 &adapter->crit_section)) {
2781 /* Set state to __IAVF_INIT_FAILED and perform remove
2782 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2783 * doesn't bring the state back to __IAVF_COMM_FAILED.
2784 */
2785 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2786 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2787 mutex_unlock(&adapter->crit_lock);
2788 return;
2789 }
2790 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2791 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2792 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2793 reg_val == VIRTCHNL_VFR_COMPLETED) {
2794 /* A chance for redemption! */
2795 dev_err(&adapter->pdev->dev,
2796 "Hardware came out of reset. Attempting reinit.\n");
2797 /* When init task contacts the PF and
2798 * gets everything set up again, it'll restart the
2799 * watchdog for us. Down, boy. Sit. Stay. Woof.
2800 */
2801 iavf_change_state(adapter, __IAVF_STARTUP);
2802 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2803 }
2804 adapter->aq_required = 0;
2805 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2806 mutex_unlock(&adapter->crit_lock);
2807 queue_delayed_work(adapter->wq,
2808 &adapter->watchdog_task,
2809 msecs_to_jiffies(10));
2810 return;
2811 case __IAVF_RESETTING:
2812 mutex_unlock(&adapter->crit_lock);
2813 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2814 HZ * 2);
2815 return;
2816 case __IAVF_DOWN:
2817 case __IAVF_DOWN_PENDING:
2818 case __IAVF_TESTING:
2819 case __IAVF_RUNNING:
2820 if (adapter->current_op) {
2821 if (!iavf_asq_done(hw)) {
2822 dev_dbg(&adapter->pdev->dev,
2823 "Admin queue timeout\n");
2824 iavf_send_api_ver(adapter);
2825 }
2826 } else {
2827 int ret = iavf_process_aq_command(adapter);
2828
2829 /* An error will be returned if no commands were
2830 * processed; use this opportunity to update stats
2831 * if the error isn't -ENOTSUPP
2832 */
2833 if (ret && ret != -EOPNOTSUPP &&
2834 adapter->state == __IAVF_RUNNING)
2835 iavf_request_stats(adapter);
2836 }
2837 if (adapter->state == __IAVF_RUNNING)
2838 iavf_detect_recover_hung(&adapter->vsi);
2839 break;
2840 case __IAVF_REMOVE:
2841 default:
2842 mutex_unlock(&adapter->crit_lock);
2843 return;
2844 }
2845
2846 /* check for hw reset */
2847 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2848 if (!reg_val) {
2849 adapter->aq_required = 0;
2850 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2851 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2852 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2853 mutex_unlock(&adapter->crit_lock);
2854 queue_delayed_work(adapter->wq,
2855 &adapter->watchdog_task, HZ * 2);
2856 return;
2857 }
2858
2859 mutex_unlock(&adapter->crit_lock);
2860 restart_watchdog:
2861 if (adapter->state >= __IAVF_DOWN)
2862 queue_work(adapter->wq, &adapter->adminq_task);
2863 if (adapter->aq_required)
2864 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2865 msecs_to_jiffies(20));
2866 else
2867 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2868 HZ * 2);
2869 }
2870
2871 /**
2872 * iavf_disable_vf - disable VF
2873 * @adapter: board private structure
2874 *
2875 * Set communication failed flag and free all resources.
2876 * NOTE: This function is expected to be called with crit_lock being held.
2877 **/
iavf_disable_vf(struct iavf_adapter * adapter)2878 static void iavf_disable_vf(struct iavf_adapter *adapter)
2879 {
2880 struct iavf_mac_filter *f, *ftmp;
2881 struct iavf_vlan_filter *fv, *fvtmp;
2882 struct iavf_cloud_filter *cf, *cftmp;
2883
2884 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2885
2886 /* We don't use netif_running() because it may be true prior to
2887 * ndo_open() returning, so we can't assume it means all our open
2888 * tasks have finished, since we're not holding the rtnl_lock here.
2889 */
2890 if (adapter->state == __IAVF_RUNNING) {
2891 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2892 netif_carrier_off(adapter->netdev);
2893 netif_tx_disable(adapter->netdev);
2894 adapter->link_up = false;
2895 iavf_napi_disable_all(adapter);
2896 iavf_irq_disable(adapter);
2897 iavf_free_traffic_irqs(adapter);
2898 iavf_free_all_tx_resources(adapter);
2899 iavf_free_all_rx_resources(adapter);
2900 }
2901
2902 spin_lock_bh(&adapter->mac_vlan_list_lock);
2903
2904 /* Delete all of the filters */
2905 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2906 list_del(&f->list);
2907 kfree(f);
2908 }
2909
2910 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2911 list_del(&fv->list);
2912 kfree(fv);
2913 }
2914 adapter->num_vlan_filters = 0;
2915
2916 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2917
2918 spin_lock_bh(&adapter->cloud_filter_list_lock);
2919 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2920 list_del(&cf->list);
2921 kfree(cf);
2922 adapter->num_cloud_filters--;
2923 }
2924 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2925
2926 iavf_free_misc_irq(adapter);
2927 iavf_free_interrupt_scheme(adapter);
2928 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2929 iavf_shutdown_adminq(&adapter->hw);
2930 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2931 iavf_change_state(adapter, __IAVF_DOWN);
2932 wake_up(&adapter->down_waitqueue);
2933 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2934 }
2935
2936 /**
2937 * iavf_reset_task - Call-back task to handle hardware reset
2938 * @work: pointer to work_struct
2939 *
2940 * During reset we need to shut down and reinitialize the admin queue
2941 * before we can use it to communicate with the PF again. We also clear
2942 * and reinit the rings because that context is lost as well.
2943 **/
iavf_reset_task(struct work_struct * work)2944 static void iavf_reset_task(struct work_struct *work)
2945 {
2946 struct iavf_adapter *adapter = container_of(work,
2947 struct iavf_adapter,
2948 reset_task);
2949 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2950 struct net_device *netdev = adapter->netdev;
2951 struct iavf_hw *hw = &adapter->hw;
2952 struct iavf_mac_filter *f, *ftmp;
2953 struct iavf_cloud_filter *cf;
2954 enum iavf_status status;
2955 u32 reg_val;
2956 int i = 0, err;
2957 bool running;
2958
2959 /* When device is being removed it doesn't make sense to run the reset
2960 * task, just return in such a case.
2961 */
2962 if (!mutex_trylock(&adapter->crit_lock)) {
2963 if (adapter->state != __IAVF_REMOVE)
2964 queue_work(adapter->wq, &adapter->reset_task);
2965
2966 return;
2967 }
2968
2969 iavf_misc_irq_disable(adapter);
2970 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2971 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2972 /* Restart the AQ here. If we have been reset but didn't
2973 * detect it, or if the PF had to reinit, our AQ will be hosed.
2974 */
2975 iavf_shutdown_adminq(hw);
2976 iavf_init_adminq(hw);
2977 iavf_request_reset(adapter);
2978 }
2979 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2980
2981 /* poll until we see the reset actually happen */
2982 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2983 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2984 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2985 if (!reg_val)
2986 break;
2987 usleep_range(5000, 10000);
2988 }
2989 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2990 dev_info(&adapter->pdev->dev, "Never saw reset\n");
2991 goto continue_reset; /* act like the reset happened */
2992 }
2993
2994 /* wait until the reset is complete and the PF is responding to us */
2995 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2996 /* sleep first to make sure a minimum wait time is met */
2997 msleep(IAVF_RESET_WAIT_MS);
2998
2999 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3000 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3001 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3002 break;
3003 }
3004
3005 pci_set_master(adapter->pdev);
3006 pci_restore_msi_state(adapter->pdev);
3007
3008 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3009 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3010 reg_val);
3011 iavf_disable_vf(adapter);
3012 mutex_unlock(&adapter->crit_lock);
3013 return; /* Do not attempt to reinit. It's dead, Jim. */
3014 }
3015
3016 continue_reset:
3017 /* We don't use netif_running() because it may be true prior to
3018 * ndo_open() returning, so we can't assume it means all our open
3019 * tasks have finished, since we're not holding the rtnl_lock here.
3020 */
3021 running = adapter->state == __IAVF_RUNNING;
3022
3023 if (running) {
3024 netif_carrier_off(netdev);
3025 netif_tx_stop_all_queues(netdev);
3026 adapter->link_up = false;
3027 iavf_napi_disable_all(adapter);
3028 }
3029 iavf_irq_disable(adapter);
3030
3031 iavf_change_state(adapter, __IAVF_RESETTING);
3032 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3033
3034 /* free the Tx/Rx rings and descriptors, might be better to just
3035 * re-use them sometime in the future
3036 */
3037 iavf_free_all_rx_resources(adapter);
3038 iavf_free_all_tx_resources(adapter);
3039
3040 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3041 /* kill and reinit the admin queue */
3042 iavf_shutdown_adminq(hw);
3043 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3044 status = iavf_init_adminq(hw);
3045 if (status) {
3046 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3047 status);
3048 goto reset_err;
3049 }
3050 adapter->aq_required = 0;
3051
3052 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3053 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3054 err = iavf_reinit_interrupt_scheme(adapter, running);
3055 if (err)
3056 goto reset_err;
3057 }
3058
3059 if (RSS_AQ(adapter)) {
3060 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3061 } else {
3062 err = iavf_init_rss(adapter);
3063 if (err)
3064 goto reset_err;
3065 }
3066
3067 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3068 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3069 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3070 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3071 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3072 * been successfully sent and negotiated
3073 */
3074 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3075 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3076
3077 spin_lock_bh(&adapter->mac_vlan_list_lock);
3078
3079 /* Delete filter for the current MAC address, it could have
3080 * been changed by the PF via administratively set MAC.
3081 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3082 */
3083 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3084 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3085 list_del(&f->list);
3086 kfree(f);
3087 }
3088 }
3089 /* re-add all MAC filters */
3090 list_for_each_entry(f, &adapter->mac_filter_list, list) {
3091 f->add = true;
3092 }
3093 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3094
3095 /* check if TCs are running and re-add all cloud filters */
3096 spin_lock_bh(&adapter->cloud_filter_list_lock);
3097 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3098 adapter->num_tc) {
3099 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3100 cf->add = true;
3101 }
3102 }
3103 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3104
3105 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3106 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3107 iavf_misc_irq_enable(adapter);
3108
3109 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3110
3111 /* We were running when the reset started, so we need to restore some
3112 * state here.
3113 */
3114 if (running) {
3115 /* allocate transmit descriptors */
3116 err = iavf_setup_all_tx_resources(adapter);
3117 if (err)
3118 goto reset_err;
3119
3120 /* allocate receive descriptors */
3121 err = iavf_setup_all_rx_resources(adapter);
3122 if (err)
3123 goto reset_err;
3124
3125 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3126 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3127 err = iavf_request_traffic_irqs(adapter, netdev->name);
3128 if (err)
3129 goto reset_err;
3130
3131 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3132 }
3133
3134 iavf_configure(adapter);
3135
3136 /* iavf_up_complete() will switch device back
3137 * to __IAVF_RUNNING
3138 */
3139 iavf_up_complete(adapter);
3140
3141 iavf_irq_enable(adapter, true);
3142 } else {
3143 iavf_change_state(adapter, __IAVF_DOWN);
3144 wake_up(&adapter->down_waitqueue);
3145 }
3146
3147 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3148
3149 wake_up(&adapter->reset_waitqueue);
3150 mutex_unlock(&adapter->crit_lock);
3151
3152 return;
3153 reset_err:
3154 if (running) {
3155 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3156 iavf_free_traffic_irqs(adapter);
3157 }
3158 iavf_disable_vf(adapter);
3159
3160 mutex_unlock(&adapter->crit_lock);
3161 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3162 }
3163
3164 /**
3165 * iavf_adminq_task - worker thread to clean the admin queue
3166 * @work: pointer to work_struct containing our data
3167 **/
iavf_adminq_task(struct work_struct * work)3168 static void iavf_adminq_task(struct work_struct *work)
3169 {
3170 struct iavf_adapter *adapter =
3171 container_of(work, struct iavf_adapter, adminq_task);
3172 struct iavf_hw *hw = &adapter->hw;
3173 struct iavf_arq_event_info event;
3174 enum virtchnl_ops v_op;
3175 enum iavf_status ret, v_ret;
3176 u32 val, oldval;
3177 u16 pending;
3178
3179 if (!mutex_trylock(&adapter->crit_lock)) {
3180 if (adapter->state == __IAVF_REMOVE)
3181 return;
3182
3183 queue_work(adapter->wq, &adapter->adminq_task);
3184 goto out;
3185 }
3186
3187 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3188 goto unlock;
3189
3190 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3191 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3192 if (!event.msg_buf)
3193 goto unlock;
3194
3195 do {
3196 ret = iavf_clean_arq_element(hw, &event, &pending);
3197 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3198 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3199
3200 if (ret || !v_op)
3201 break; /* No event to process or error cleaning ARQ */
3202
3203 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3204 event.msg_len);
3205 if (pending != 0)
3206 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3207 } while (pending);
3208
3209 if (iavf_is_reset_in_progress(adapter))
3210 goto freedom;
3211
3212 /* check for error indications */
3213 val = rd32(hw, IAVF_VF_ARQLEN1);
3214 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3215 goto freedom;
3216 oldval = val;
3217 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3218 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3219 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3220 }
3221 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3222 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3223 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3224 }
3225 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3226 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3227 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3228 }
3229 if (oldval != val)
3230 wr32(hw, IAVF_VF_ARQLEN1, val);
3231
3232 val = rd32(hw, IAVF_VF_ATQLEN1);
3233 oldval = val;
3234 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3235 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3236 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3237 }
3238 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3239 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3240 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3241 }
3242 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3243 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3244 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3245 }
3246 if (oldval != val)
3247 wr32(hw, IAVF_VF_ATQLEN1, val);
3248
3249 freedom:
3250 kfree(event.msg_buf);
3251 unlock:
3252 mutex_unlock(&adapter->crit_lock);
3253 out:
3254 /* re-enable Admin queue interrupt cause */
3255 iavf_misc_irq_enable(adapter);
3256 }
3257
3258 /**
3259 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3260 * @adapter: board private structure
3261 *
3262 * Free all transmit software resources
3263 **/
iavf_free_all_tx_resources(struct iavf_adapter * adapter)3264 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3265 {
3266 int i;
3267
3268 if (!adapter->tx_rings)
3269 return;
3270
3271 for (i = 0; i < adapter->num_active_queues; i++)
3272 if (adapter->tx_rings[i].desc)
3273 iavf_free_tx_resources(&adapter->tx_rings[i]);
3274 }
3275
3276 /**
3277 * iavf_setup_all_tx_resources - allocate all queues Tx resources
3278 * @adapter: board private structure
3279 *
3280 * If this function returns with an error, then it's possible one or
3281 * more of the rings is populated (while the rest are not). It is the
3282 * callers duty to clean those orphaned rings.
3283 *
3284 * Return 0 on success, negative on failure
3285 **/
iavf_setup_all_tx_resources(struct iavf_adapter * adapter)3286 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3287 {
3288 int i, err = 0;
3289
3290 for (i = 0; i < adapter->num_active_queues; i++) {
3291 adapter->tx_rings[i].count = adapter->tx_desc_count;
3292 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3293 if (!err)
3294 continue;
3295 dev_err(&adapter->pdev->dev,
3296 "Allocation for Tx Queue %u failed\n", i);
3297 break;
3298 }
3299
3300 return err;
3301 }
3302
3303 /**
3304 * iavf_setup_all_rx_resources - allocate all queues Rx resources
3305 * @adapter: board private structure
3306 *
3307 * If this function returns with an error, then it's possible one or
3308 * more of the rings is populated (while the rest are not). It is the
3309 * callers duty to clean those orphaned rings.
3310 *
3311 * Return 0 on success, negative on failure
3312 **/
iavf_setup_all_rx_resources(struct iavf_adapter * adapter)3313 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3314 {
3315 int i, err = 0;
3316
3317 for (i = 0; i < adapter->num_active_queues; i++) {
3318 adapter->rx_rings[i].count = adapter->rx_desc_count;
3319 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3320 if (!err)
3321 continue;
3322 dev_err(&adapter->pdev->dev,
3323 "Allocation for Rx Queue %u failed\n", i);
3324 break;
3325 }
3326 return err;
3327 }
3328
3329 /**
3330 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3331 * @adapter: board private structure
3332 *
3333 * Free all receive software resources
3334 **/
iavf_free_all_rx_resources(struct iavf_adapter * adapter)3335 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3336 {
3337 int i;
3338
3339 if (!adapter->rx_rings)
3340 return;
3341
3342 for (i = 0; i < adapter->num_active_queues; i++)
3343 if (adapter->rx_rings[i].desc)
3344 iavf_free_rx_resources(&adapter->rx_rings[i]);
3345 }
3346
3347 /**
3348 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3349 * @adapter: board private structure
3350 * @max_tx_rate: max Tx bw for a tc
3351 **/
iavf_validate_tx_bandwidth(struct iavf_adapter * adapter,u64 max_tx_rate)3352 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3353 u64 max_tx_rate)
3354 {
3355 int speed = 0, ret = 0;
3356
3357 if (ADV_LINK_SUPPORT(adapter)) {
3358 if (adapter->link_speed_mbps < U32_MAX) {
3359 speed = adapter->link_speed_mbps;
3360 goto validate_bw;
3361 } else {
3362 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3363 return -EINVAL;
3364 }
3365 }
3366
3367 switch (adapter->link_speed) {
3368 case VIRTCHNL_LINK_SPEED_40GB:
3369 speed = SPEED_40000;
3370 break;
3371 case VIRTCHNL_LINK_SPEED_25GB:
3372 speed = SPEED_25000;
3373 break;
3374 case VIRTCHNL_LINK_SPEED_20GB:
3375 speed = SPEED_20000;
3376 break;
3377 case VIRTCHNL_LINK_SPEED_10GB:
3378 speed = SPEED_10000;
3379 break;
3380 case VIRTCHNL_LINK_SPEED_5GB:
3381 speed = SPEED_5000;
3382 break;
3383 case VIRTCHNL_LINK_SPEED_2_5GB:
3384 speed = SPEED_2500;
3385 break;
3386 case VIRTCHNL_LINK_SPEED_1GB:
3387 speed = SPEED_1000;
3388 break;
3389 case VIRTCHNL_LINK_SPEED_100MB:
3390 speed = SPEED_100;
3391 break;
3392 default:
3393 break;
3394 }
3395
3396 validate_bw:
3397 if (max_tx_rate > speed) {
3398 dev_err(&adapter->pdev->dev,
3399 "Invalid tx rate specified\n");
3400 ret = -EINVAL;
3401 }
3402
3403 return ret;
3404 }
3405
3406 /**
3407 * iavf_validate_ch_config - validate queue mapping info
3408 * @adapter: board private structure
3409 * @mqprio_qopt: queue parameters
3410 *
3411 * This function validates if the config provided by the user to
3412 * configure queue channels is valid or not. Returns 0 on a valid
3413 * config.
3414 **/
iavf_validate_ch_config(struct iavf_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio_qopt)3415 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3416 struct tc_mqprio_qopt_offload *mqprio_qopt)
3417 {
3418 u64 total_max_rate = 0;
3419 u32 tx_rate_rem = 0;
3420 int i, num_qps = 0;
3421 u64 tx_rate = 0;
3422 int ret = 0;
3423
3424 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3425 mqprio_qopt->qopt.num_tc < 1)
3426 return -EINVAL;
3427
3428 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3429 if (!mqprio_qopt->qopt.count[i] ||
3430 mqprio_qopt->qopt.offset[i] != num_qps)
3431 return -EINVAL;
3432 if (mqprio_qopt->min_rate[i]) {
3433 dev_err(&adapter->pdev->dev,
3434 "Invalid min tx rate (greater than 0) specified for TC%d\n",
3435 i);
3436 return -EINVAL;
3437 }
3438
3439 /* convert to Mbps */
3440 tx_rate = div_u64(mqprio_qopt->max_rate[i],
3441 IAVF_MBPS_DIVISOR);
3442
3443 if (mqprio_qopt->max_rate[i] &&
3444 tx_rate < IAVF_MBPS_QUANTA) {
3445 dev_err(&adapter->pdev->dev,
3446 "Invalid max tx rate for TC%d, minimum %dMbps\n",
3447 i, IAVF_MBPS_QUANTA);
3448 return -EINVAL;
3449 }
3450
3451 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3452
3453 if (tx_rate_rem != 0) {
3454 dev_err(&adapter->pdev->dev,
3455 "Invalid max tx rate for TC%d, not divisible by %d\n",
3456 i, IAVF_MBPS_QUANTA);
3457 return -EINVAL;
3458 }
3459
3460 total_max_rate += tx_rate;
3461 num_qps += mqprio_qopt->qopt.count[i];
3462 }
3463 if (num_qps > adapter->num_active_queues) {
3464 dev_err(&adapter->pdev->dev,
3465 "Cannot support requested number of queues\n");
3466 return -EINVAL;
3467 }
3468
3469 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3470 return ret;
3471 }
3472
3473 /**
3474 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3475 * @adapter: board private structure
3476 **/
iavf_del_all_cloud_filters(struct iavf_adapter * adapter)3477 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3478 {
3479 struct iavf_cloud_filter *cf, *cftmp;
3480
3481 spin_lock_bh(&adapter->cloud_filter_list_lock);
3482 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3483 list) {
3484 list_del(&cf->list);
3485 kfree(cf);
3486 adapter->num_cloud_filters--;
3487 }
3488 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3489 }
3490
3491 /**
3492 * iavf_is_tc_config_same - Compare the mqprio TC config with the
3493 * TC config already configured on this adapter.
3494 * @adapter: board private structure
3495 * @mqprio_qopt: TC config received from kernel.
3496 *
3497 * This function compares the TC config received from the kernel
3498 * with the config already configured on the adapter.
3499 *
3500 * Return: True if configuration is same, false otherwise.
3501 **/
iavf_is_tc_config_same(struct iavf_adapter * adapter,struct tc_mqprio_qopt * mqprio_qopt)3502 static bool iavf_is_tc_config_same(struct iavf_adapter *adapter,
3503 struct tc_mqprio_qopt *mqprio_qopt)
3504 {
3505 struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0];
3506 int i;
3507
3508 if (adapter->num_tc != mqprio_qopt->num_tc)
3509 return false;
3510
3511 for (i = 0; i < adapter->num_tc; i++) {
3512 if (ch[i].count != mqprio_qopt->count[i] ||
3513 ch[i].offset != mqprio_qopt->offset[i])
3514 return false;
3515 }
3516 return true;
3517 }
3518
3519 /**
3520 * __iavf_setup_tc - configure multiple traffic classes
3521 * @netdev: network interface device structure
3522 * @type_data: tc offload data
3523 *
3524 * This function processes the config information provided by the
3525 * user to configure traffic classes/queue channels and packages the
3526 * information to request the PF to setup traffic classes.
3527 *
3528 * Returns 0 on success.
3529 **/
__iavf_setup_tc(struct net_device * netdev,void * type_data)3530 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3531 {
3532 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3533 struct iavf_adapter *adapter = netdev_priv(netdev);
3534 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3535 u8 num_tc = 0, total_qps = 0;
3536 int ret = 0, netdev_tc = 0;
3537 u64 max_tx_rate;
3538 u16 mode;
3539 int i;
3540
3541 num_tc = mqprio_qopt->qopt.num_tc;
3542 mode = mqprio_qopt->mode;
3543
3544 /* delete queue_channel */
3545 if (!mqprio_qopt->qopt.hw) {
3546 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3547 /* reset the tc configuration */
3548 netdev_reset_tc(netdev);
3549 adapter->num_tc = 0;
3550 netif_tx_stop_all_queues(netdev);
3551 netif_tx_disable(netdev);
3552 iavf_del_all_cloud_filters(adapter);
3553 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3554 total_qps = adapter->orig_num_active_queues;
3555 goto exit;
3556 } else {
3557 return -EINVAL;
3558 }
3559 }
3560
3561 /* add queue channel */
3562 if (mode == TC_MQPRIO_MODE_CHANNEL) {
3563 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3564 dev_err(&adapter->pdev->dev, "ADq not supported\n");
3565 return -EOPNOTSUPP;
3566 }
3567 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3568 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3569 return -EINVAL;
3570 }
3571
3572 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3573 if (ret)
3574 return ret;
3575 /* Return if same TC config is requested */
3576 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt))
3577 return 0;
3578 adapter->num_tc = num_tc;
3579
3580 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3581 if (i < num_tc) {
3582 adapter->ch_config.ch_info[i].count =
3583 mqprio_qopt->qopt.count[i];
3584 adapter->ch_config.ch_info[i].offset =
3585 mqprio_qopt->qopt.offset[i];
3586 total_qps += mqprio_qopt->qopt.count[i];
3587 max_tx_rate = mqprio_qopt->max_rate[i];
3588 /* convert to Mbps */
3589 max_tx_rate = div_u64(max_tx_rate,
3590 IAVF_MBPS_DIVISOR);
3591 adapter->ch_config.ch_info[i].max_tx_rate =
3592 max_tx_rate;
3593 } else {
3594 adapter->ch_config.ch_info[i].count = 1;
3595 adapter->ch_config.ch_info[i].offset = 0;
3596 }
3597 }
3598
3599 /* Take snapshot of original config such as "num_active_queues"
3600 * It is used later when delete ADQ flow is exercised, so that
3601 * once delete ADQ flow completes, VF shall go back to its
3602 * original queue configuration
3603 */
3604
3605 adapter->orig_num_active_queues = adapter->num_active_queues;
3606
3607 /* Store queue info based on TC so that VF gets configured
3608 * with correct number of queues when VF completes ADQ config
3609 * flow
3610 */
3611 adapter->ch_config.total_qps = total_qps;
3612
3613 netif_tx_stop_all_queues(netdev);
3614 netif_tx_disable(netdev);
3615 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3616 netdev_reset_tc(netdev);
3617 /* Report the tc mapping up the stack */
3618 netdev_set_num_tc(adapter->netdev, num_tc);
3619 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3620 u16 qcount = mqprio_qopt->qopt.count[i];
3621 u16 qoffset = mqprio_qopt->qopt.offset[i];
3622
3623 if (i < num_tc)
3624 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3625 qoffset);
3626 }
3627 }
3628 exit:
3629 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3630 return 0;
3631
3632 netif_set_real_num_rx_queues(netdev, total_qps);
3633 netif_set_real_num_tx_queues(netdev, total_qps);
3634
3635 return ret;
3636 }
3637
3638 /**
3639 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3640 * @adapter: board private structure
3641 * @f: pointer to struct flow_cls_offload
3642 * @filter: pointer to cloud filter structure
3643 */
iavf_parse_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * f,struct iavf_cloud_filter * filter)3644 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3645 struct flow_cls_offload *f,
3646 struct iavf_cloud_filter *filter)
3647 {
3648 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3649 struct flow_dissector *dissector = rule->match.dissector;
3650 u16 n_proto_mask = 0;
3651 u16 n_proto_key = 0;
3652 u8 field_flags = 0;
3653 u16 addr_type = 0;
3654 u16 n_proto = 0;
3655 int i = 0;
3656 struct virtchnl_filter *vf = &filter->f;
3657
3658 if (dissector->used_keys &
3659 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3660 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3661 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3662 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3663 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3664 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3665 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3666 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3667 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3668 dissector->used_keys);
3669 return -EOPNOTSUPP;
3670 }
3671
3672 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3673 struct flow_match_enc_keyid match;
3674
3675 flow_rule_match_enc_keyid(rule, &match);
3676 if (match.mask->keyid != 0)
3677 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3678 }
3679
3680 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3681 struct flow_match_basic match;
3682
3683 flow_rule_match_basic(rule, &match);
3684 n_proto_key = ntohs(match.key->n_proto);
3685 n_proto_mask = ntohs(match.mask->n_proto);
3686
3687 if (n_proto_key == ETH_P_ALL) {
3688 n_proto_key = 0;
3689 n_proto_mask = 0;
3690 }
3691 n_proto = n_proto_key & n_proto_mask;
3692 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3693 return -EINVAL;
3694 if (n_proto == ETH_P_IPV6) {
3695 /* specify flow type as TCP IPv6 */
3696 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3697 }
3698
3699 if (match.key->ip_proto != IPPROTO_TCP) {
3700 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3701 return -EINVAL;
3702 }
3703 }
3704
3705 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3706 struct flow_match_eth_addrs match;
3707
3708 flow_rule_match_eth_addrs(rule, &match);
3709
3710 /* use is_broadcast and is_zero to check for all 0xf or 0 */
3711 if (!is_zero_ether_addr(match.mask->dst)) {
3712 if (is_broadcast_ether_addr(match.mask->dst)) {
3713 field_flags |= IAVF_CLOUD_FIELD_OMAC;
3714 } else {
3715 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3716 match.mask->dst);
3717 return -EINVAL;
3718 }
3719 }
3720
3721 if (!is_zero_ether_addr(match.mask->src)) {
3722 if (is_broadcast_ether_addr(match.mask->src)) {
3723 field_flags |= IAVF_CLOUD_FIELD_IMAC;
3724 } else {
3725 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3726 match.mask->src);
3727 return -EINVAL;
3728 }
3729 }
3730
3731 if (!is_zero_ether_addr(match.key->dst))
3732 if (is_valid_ether_addr(match.key->dst) ||
3733 is_multicast_ether_addr(match.key->dst)) {
3734 /* set the mask if a valid dst_mac address */
3735 for (i = 0; i < ETH_ALEN; i++)
3736 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3737 ether_addr_copy(vf->data.tcp_spec.dst_mac,
3738 match.key->dst);
3739 }
3740
3741 if (!is_zero_ether_addr(match.key->src))
3742 if (is_valid_ether_addr(match.key->src) ||
3743 is_multicast_ether_addr(match.key->src)) {
3744 /* set the mask if a valid dst_mac address */
3745 for (i = 0; i < ETH_ALEN; i++)
3746 vf->mask.tcp_spec.src_mac[i] |= 0xff;
3747 ether_addr_copy(vf->data.tcp_spec.src_mac,
3748 match.key->src);
3749 }
3750 }
3751
3752 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3753 struct flow_match_vlan match;
3754
3755 flow_rule_match_vlan(rule, &match);
3756 if (match.mask->vlan_id) {
3757 if (match.mask->vlan_id == VLAN_VID_MASK) {
3758 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3759 } else {
3760 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3761 match.mask->vlan_id);
3762 return -EINVAL;
3763 }
3764 }
3765 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3766 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3767 }
3768
3769 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3770 struct flow_match_control match;
3771
3772 flow_rule_match_control(rule, &match);
3773 addr_type = match.key->addr_type;
3774
3775 if (flow_rule_has_control_flags(match.mask->flags,
3776 f->common.extack))
3777 return -EOPNOTSUPP;
3778 }
3779
3780 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3781 struct flow_match_ipv4_addrs match;
3782
3783 flow_rule_match_ipv4_addrs(rule, &match);
3784 if (match.mask->dst) {
3785 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3786 field_flags |= IAVF_CLOUD_FIELD_IIP;
3787 } else {
3788 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3789 be32_to_cpu(match.mask->dst));
3790 return -EINVAL;
3791 }
3792 }
3793
3794 if (match.mask->src) {
3795 if (match.mask->src == cpu_to_be32(0xffffffff)) {
3796 field_flags |= IAVF_CLOUD_FIELD_IIP;
3797 } else {
3798 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3799 be32_to_cpu(match.mask->src));
3800 return -EINVAL;
3801 }
3802 }
3803
3804 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3805 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3806 return -EINVAL;
3807 }
3808 if (match.key->dst) {
3809 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3810 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3811 }
3812 if (match.key->src) {
3813 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3814 vf->data.tcp_spec.src_ip[0] = match.key->src;
3815 }
3816 }
3817
3818 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3819 struct flow_match_ipv6_addrs match;
3820
3821 flow_rule_match_ipv6_addrs(rule, &match);
3822
3823 /* validate mask, make sure it is not IPV6_ADDR_ANY */
3824 if (ipv6_addr_any(&match.mask->dst)) {
3825 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3826 IPV6_ADDR_ANY);
3827 return -EINVAL;
3828 }
3829
3830 /* src and dest IPv6 address should not be LOOPBACK
3831 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3832 */
3833 if (ipv6_addr_loopback(&match.key->dst) ||
3834 ipv6_addr_loopback(&match.key->src)) {
3835 dev_err(&adapter->pdev->dev,
3836 "ipv6 addr should not be loopback\n");
3837 return -EINVAL;
3838 }
3839 if (!ipv6_addr_any(&match.mask->dst) ||
3840 !ipv6_addr_any(&match.mask->src))
3841 field_flags |= IAVF_CLOUD_FIELD_IIP;
3842
3843 for (i = 0; i < 4; i++)
3844 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3845 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3846 sizeof(vf->data.tcp_spec.dst_ip));
3847 for (i = 0; i < 4; i++)
3848 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3849 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3850 sizeof(vf->data.tcp_spec.src_ip));
3851 }
3852 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3853 struct flow_match_ports match;
3854
3855 flow_rule_match_ports(rule, &match);
3856 if (match.mask->src) {
3857 if (match.mask->src == cpu_to_be16(0xffff)) {
3858 field_flags |= IAVF_CLOUD_FIELD_IIP;
3859 } else {
3860 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3861 be16_to_cpu(match.mask->src));
3862 return -EINVAL;
3863 }
3864 }
3865
3866 if (match.mask->dst) {
3867 if (match.mask->dst == cpu_to_be16(0xffff)) {
3868 field_flags |= IAVF_CLOUD_FIELD_IIP;
3869 } else {
3870 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3871 be16_to_cpu(match.mask->dst));
3872 return -EINVAL;
3873 }
3874 }
3875 if (match.key->dst) {
3876 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3877 vf->data.tcp_spec.dst_port = match.key->dst;
3878 }
3879
3880 if (match.key->src) {
3881 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3882 vf->data.tcp_spec.src_port = match.key->src;
3883 }
3884 }
3885 vf->field_flags = field_flags;
3886
3887 return 0;
3888 }
3889
3890 /**
3891 * iavf_handle_tclass - Forward to a traffic class on the device
3892 * @adapter: board private structure
3893 * @tc: traffic class index on the device
3894 * @filter: pointer to cloud filter structure
3895 */
iavf_handle_tclass(struct iavf_adapter * adapter,u32 tc,struct iavf_cloud_filter * filter)3896 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3897 struct iavf_cloud_filter *filter)
3898 {
3899 if (tc == 0)
3900 return 0;
3901 if (tc < adapter->num_tc) {
3902 if (!filter->f.data.tcp_spec.dst_port) {
3903 dev_err(&adapter->pdev->dev,
3904 "Specify destination port to redirect to traffic class other than TC0\n");
3905 return -EINVAL;
3906 }
3907 }
3908 /* redirect to a traffic class on the same device */
3909 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3910 filter->f.action_meta = tc;
3911 return 0;
3912 }
3913
3914 /**
3915 * iavf_find_cf - Find the cloud filter in the list
3916 * @adapter: Board private structure
3917 * @cookie: filter specific cookie
3918 *
3919 * Returns ptr to the filter object or NULL. Must be called while holding the
3920 * cloud_filter_list_lock.
3921 */
iavf_find_cf(struct iavf_adapter * adapter,unsigned long * cookie)3922 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3923 unsigned long *cookie)
3924 {
3925 struct iavf_cloud_filter *filter = NULL;
3926
3927 if (!cookie)
3928 return NULL;
3929
3930 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3931 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3932 return filter;
3933 }
3934 return NULL;
3935 }
3936
3937 /**
3938 * iavf_configure_clsflower - Add tc flower filters
3939 * @adapter: board private structure
3940 * @cls_flower: Pointer to struct flow_cls_offload
3941 */
iavf_configure_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3942 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3943 struct flow_cls_offload *cls_flower)
3944 {
3945 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3946 struct iavf_cloud_filter *filter = NULL;
3947 int err = -EINVAL, count = 50;
3948
3949 if (tc < 0) {
3950 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3951 return -EINVAL;
3952 }
3953
3954 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3955 if (!filter)
3956 return -ENOMEM;
3957
3958 while (!mutex_trylock(&adapter->crit_lock)) {
3959 if (--count == 0) {
3960 kfree(filter);
3961 return err;
3962 }
3963 udelay(1);
3964 }
3965
3966 filter->cookie = cls_flower->cookie;
3967
3968 /* bail out here if filter already exists */
3969 spin_lock_bh(&adapter->cloud_filter_list_lock);
3970 if (iavf_find_cf(adapter, &cls_flower->cookie)) {
3971 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
3972 err = -EEXIST;
3973 goto spin_unlock;
3974 }
3975 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3976
3977 /* set the mask to all zeroes to begin with */
3978 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3979 /* start out with flow type and eth type IPv4 to begin with */
3980 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3981 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3982 if (err)
3983 goto err;
3984
3985 err = iavf_handle_tclass(adapter, tc, filter);
3986 if (err)
3987 goto err;
3988
3989 /* add filter to the list */
3990 spin_lock_bh(&adapter->cloud_filter_list_lock);
3991 list_add_tail(&filter->list, &adapter->cloud_filter_list);
3992 adapter->num_cloud_filters++;
3993 filter->add = true;
3994 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3995 spin_unlock:
3996 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3997 err:
3998 if (err)
3999 kfree(filter);
4000
4001 mutex_unlock(&adapter->crit_lock);
4002 return err;
4003 }
4004
4005 /**
4006 * iavf_delete_clsflower - Remove tc flower filters
4007 * @adapter: board private structure
4008 * @cls_flower: Pointer to struct flow_cls_offload
4009 */
iavf_delete_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)4010 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4011 struct flow_cls_offload *cls_flower)
4012 {
4013 struct iavf_cloud_filter *filter = NULL;
4014 int err = 0;
4015
4016 spin_lock_bh(&adapter->cloud_filter_list_lock);
4017 filter = iavf_find_cf(adapter, &cls_flower->cookie);
4018 if (filter) {
4019 filter->del = true;
4020 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4021 } else {
4022 err = -EINVAL;
4023 }
4024 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4025
4026 return err;
4027 }
4028
4029 /**
4030 * iavf_setup_tc_cls_flower - flower classifier offloads
4031 * @adapter: pointer to iavf adapter structure
4032 * @cls_flower: pointer to flow_cls_offload struct with flow info
4033 */
iavf_setup_tc_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)4034 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4035 struct flow_cls_offload *cls_flower)
4036 {
4037 switch (cls_flower->command) {
4038 case FLOW_CLS_REPLACE:
4039 return iavf_configure_clsflower(adapter, cls_flower);
4040 case FLOW_CLS_DESTROY:
4041 return iavf_delete_clsflower(adapter, cls_flower);
4042 case FLOW_CLS_STATS:
4043 return -EOPNOTSUPP;
4044 default:
4045 return -EOPNOTSUPP;
4046 }
4047 }
4048
4049 /**
4050 * iavf_add_cls_u32 - Add U32 classifier offloads
4051 * @adapter: pointer to iavf adapter structure
4052 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4053 *
4054 * Return: 0 on success or negative errno on failure.
4055 */
iavf_add_cls_u32(struct iavf_adapter * adapter,struct tc_cls_u32_offload * cls_u32)4056 static int iavf_add_cls_u32(struct iavf_adapter *adapter,
4057 struct tc_cls_u32_offload *cls_u32)
4058 {
4059 struct netlink_ext_ack *extack = cls_u32->common.extack;
4060 struct virtchnl_fdir_rule *rule_cfg;
4061 struct virtchnl_filter_action *vact;
4062 struct virtchnl_proto_hdrs *hdrs;
4063 struct ethhdr *spec_h, *mask_h;
4064 const struct tc_action *act;
4065 struct iavf_fdir_fltr *fltr;
4066 struct tcf_exts *exts;
4067 unsigned int q_index;
4068 int i, status = 0;
4069 int off_base = 0;
4070
4071 if (cls_u32->knode.link_handle) {
4072 NL_SET_ERR_MSG_MOD(extack, "Linking not supported");
4073 return -EOPNOTSUPP;
4074 }
4075
4076 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
4077 if (!fltr)
4078 return -ENOMEM;
4079
4080 rule_cfg = &fltr->vc_add_msg.rule_cfg;
4081 hdrs = &rule_cfg->proto_hdrs;
4082 hdrs->count = 0;
4083
4084 /* The parser lib at the PF expects the packet starting with MAC hdr */
4085 switch (ntohs(cls_u32->common.protocol)) {
4086 case ETH_P_802_3:
4087 break;
4088 case ETH_P_IP:
4089 spec_h = (struct ethhdr *)hdrs->raw.spec;
4090 mask_h = (struct ethhdr *)hdrs->raw.mask;
4091 spec_h->h_proto = htons(ETH_P_IP);
4092 mask_h->h_proto = htons(0xFFFF);
4093 off_base += ETH_HLEN;
4094 break;
4095 default:
4096 NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported");
4097 status = -EOPNOTSUPP;
4098 goto free_alloc;
4099 }
4100
4101 for (i = 0; i < cls_u32->knode.sel->nkeys; i++) {
4102 __be32 val, mask;
4103 int off;
4104
4105 off = off_base + cls_u32->knode.sel->keys[i].off;
4106 val = cls_u32->knode.sel->keys[i].val;
4107 mask = cls_u32->knode.sel->keys[i].mask;
4108
4109 if (off >= sizeof(hdrs->raw.spec)) {
4110 NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed.");
4111 status = -EINVAL;
4112 goto free_alloc;
4113 }
4114
4115 memcpy(&hdrs->raw.spec[off], &val, sizeof(val));
4116 memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask));
4117 hdrs->raw.pkt_len = off + sizeof(val);
4118 }
4119
4120 /* Only one action is allowed */
4121 rule_cfg->action_set.count = 1;
4122 vact = &rule_cfg->action_set.actions[0];
4123 exts = cls_u32->knode.exts;
4124
4125 tcf_exts_for_each_action(i, act, exts) {
4126 /* FDIR queue */
4127 if (is_tcf_skbedit_rx_queue_mapping(act)) {
4128 q_index = tcf_skbedit_rx_queue_mapping(act);
4129 if (q_index >= adapter->num_active_queues) {
4130 status = -EINVAL;
4131 goto free_alloc;
4132 }
4133
4134 vact->type = VIRTCHNL_ACTION_QUEUE;
4135 vact->act_conf.queue.index = q_index;
4136 break;
4137 }
4138
4139 /* Drop */
4140 if (is_tcf_gact_shot(act)) {
4141 vact->type = VIRTCHNL_ACTION_DROP;
4142 break;
4143 }
4144
4145 /* Unsupported action */
4146 NL_SET_ERR_MSG_MOD(extack, "Unsupported action.");
4147 status = -EOPNOTSUPP;
4148 goto free_alloc;
4149 }
4150
4151 fltr->vc_add_msg.vsi_id = adapter->vsi.id;
4152 fltr->cls_u32_handle = cls_u32->knode.handle;
4153 return iavf_fdir_add_fltr(adapter, fltr);
4154
4155 free_alloc:
4156 kfree(fltr);
4157 return status;
4158 }
4159
4160 /**
4161 * iavf_del_cls_u32 - Delete U32 classifier offloads
4162 * @adapter: pointer to iavf adapter structure
4163 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4164 *
4165 * Return: 0 on success or negative errno on failure.
4166 */
iavf_del_cls_u32(struct iavf_adapter * adapter,struct tc_cls_u32_offload * cls_u32)4167 static int iavf_del_cls_u32(struct iavf_adapter *adapter,
4168 struct tc_cls_u32_offload *cls_u32)
4169 {
4170 return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle);
4171 }
4172
4173 /**
4174 * iavf_setup_tc_cls_u32 - U32 filter offloads
4175 * @adapter: pointer to iavf adapter structure
4176 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4177 *
4178 * Return: 0 on success or negative errno on failure.
4179 */
iavf_setup_tc_cls_u32(struct iavf_adapter * adapter,struct tc_cls_u32_offload * cls_u32)4180 static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter,
4181 struct tc_cls_u32_offload *cls_u32)
4182 {
4183 if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter))
4184 return -EOPNOTSUPP;
4185
4186 switch (cls_u32->command) {
4187 case TC_CLSU32_NEW_KNODE:
4188 case TC_CLSU32_REPLACE_KNODE:
4189 return iavf_add_cls_u32(adapter, cls_u32);
4190 case TC_CLSU32_DELETE_KNODE:
4191 return iavf_del_cls_u32(adapter, cls_u32);
4192 default:
4193 return -EOPNOTSUPP;
4194 }
4195 }
4196
4197 /**
4198 * iavf_setup_tc_block_cb - block callback for tc
4199 * @type: type of offload
4200 * @type_data: offload data
4201 * @cb_priv:
4202 *
4203 * This function is the block callback for traffic classes
4204 **/
iavf_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)4205 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4206 void *cb_priv)
4207 {
4208 struct iavf_adapter *adapter = cb_priv;
4209
4210 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4211 return -EOPNOTSUPP;
4212
4213 switch (type) {
4214 case TC_SETUP_CLSFLOWER:
4215 return iavf_setup_tc_cls_flower(cb_priv, type_data);
4216 case TC_SETUP_CLSU32:
4217 return iavf_setup_tc_cls_u32(cb_priv, type_data);
4218 default:
4219 return -EOPNOTSUPP;
4220 }
4221 }
4222
4223 static LIST_HEAD(iavf_block_cb_list);
4224
4225 /**
4226 * iavf_setup_tc - configure multiple traffic classes
4227 * @netdev: network interface device structure
4228 * @type: type of offload
4229 * @type_data: tc offload data
4230 *
4231 * This function is the callback to ndo_setup_tc in the
4232 * netdev_ops.
4233 *
4234 * Returns 0 on success
4235 **/
iavf_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)4236 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4237 void *type_data)
4238 {
4239 struct iavf_adapter *adapter = netdev_priv(netdev);
4240
4241 switch (type) {
4242 case TC_SETUP_QDISC_MQPRIO:
4243 return __iavf_setup_tc(netdev, type_data);
4244 case TC_SETUP_BLOCK:
4245 return flow_block_cb_setup_simple(type_data,
4246 &iavf_block_cb_list,
4247 iavf_setup_tc_block_cb,
4248 adapter, adapter, true);
4249 default:
4250 return -EOPNOTSUPP;
4251 }
4252 }
4253
4254 /**
4255 * iavf_restore_fdir_filters
4256 * @adapter: board private structure
4257 *
4258 * Restore existing FDIR filters when VF netdev comes back up.
4259 **/
iavf_restore_fdir_filters(struct iavf_adapter * adapter)4260 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4261 {
4262 struct iavf_fdir_fltr *f;
4263
4264 spin_lock_bh(&adapter->fdir_fltr_lock);
4265 list_for_each_entry(f, &adapter->fdir_list_head, list) {
4266 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4267 /* Cancel a request, keep filter as active */
4268 f->state = IAVF_FDIR_FLTR_ACTIVE;
4269 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4270 f->state == IAVF_FDIR_FLTR_INACTIVE) {
4271 /* Add filters which are inactive or have a pending
4272 * request to PF to be deleted
4273 */
4274 f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4275 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4276 }
4277 }
4278 spin_unlock_bh(&adapter->fdir_fltr_lock);
4279 }
4280
4281 /**
4282 * iavf_open - Called when a network interface is made active
4283 * @netdev: network interface device structure
4284 *
4285 * Returns 0 on success, negative value on failure
4286 *
4287 * The open entry point is called when a network interface is made
4288 * active by the system (IFF_UP). At this point all resources needed
4289 * for transmit and receive operations are allocated, the interrupt
4290 * handler is registered with the OS, the watchdog is started,
4291 * and the stack is notified that the interface is ready.
4292 **/
iavf_open(struct net_device * netdev)4293 static int iavf_open(struct net_device *netdev)
4294 {
4295 struct iavf_adapter *adapter = netdev_priv(netdev);
4296 int err;
4297
4298 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4299 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4300 return -EIO;
4301 }
4302
4303 while (!mutex_trylock(&adapter->crit_lock)) {
4304 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4305 * is already taken and iavf_open is called from an upper
4306 * device's notifier reacting on NETDEV_REGISTER event.
4307 * We have to leave here to avoid dead lock.
4308 */
4309 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4310 return -EBUSY;
4311
4312 usleep_range(500, 1000);
4313 }
4314
4315 if (adapter->state != __IAVF_DOWN) {
4316 err = -EBUSY;
4317 goto err_unlock;
4318 }
4319
4320 if (adapter->state == __IAVF_RUNNING &&
4321 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4322 dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4323 err = 0;
4324 goto err_unlock;
4325 }
4326
4327 /* allocate transmit descriptors */
4328 err = iavf_setup_all_tx_resources(adapter);
4329 if (err)
4330 goto err_setup_tx;
4331
4332 /* allocate receive descriptors */
4333 err = iavf_setup_all_rx_resources(adapter);
4334 if (err)
4335 goto err_setup_rx;
4336
4337 /* clear any pending interrupts, may auto mask */
4338 err = iavf_request_traffic_irqs(adapter, netdev->name);
4339 if (err)
4340 goto err_req_irq;
4341
4342 spin_lock_bh(&adapter->mac_vlan_list_lock);
4343
4344 iavf_add_filter(adapter, adapter->hw.mac.addr);
4345
4346 spin_unlock_bh(&adapter->mac_vlan_list_lock);
4347
4348 /* Restore filters that were removed with IFF_DOWN */
4349 iavf_restore_filters(adapter);
4350 iavf_restore_fdir_filters(adapter);
4351
4352 iavf_configure(adapter);
4353
4354 iavf_up_complete(adapter);
4355
4356 iavf_irq_enable(adapter, true);
4357
4358 mutex_unlock(&adapter->crit_lock);
4359
4360 return 0;
4361
4362 err_req_irq:
4363 iavf_down(adapter);
4364 iavf_free_traffic_irqs(adapter);
4365 err_setup_rx:
4366 iavf_free_all_rx_resources(adapter);
4367 err_setup_tx:
4368 iavf_free_all_tx_resources(adapter);
4369 err_unlock:
4370 mutex_unlock(&adapter->crit_lock);
4371
4372 return err;
4373 }
4374
4375 /**
4376 * iavf_close - Disables a network interface
4377 * @netdev: network interface device structure
4378 *
4379 * Returns 0, this is not allowed to fail
4380 *
4381 * The close entry point is called when an interface is de-activated
4382 * by the OS. The hardware is still under the drivers control, but
4383 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4384 * are freed, along with all transmit and receive resources.
4385 **/
iavf_close(struct net_device * netdev)4386 static int iavf_close(struct net_device *netdev)
4387 {
4388 struct iavf_adapter *adapter = netdev_priv(netdev);
4389 u64 aq_to_restore;
4390 int status;
4391
4392 mutex_lock(&adapter->crit_lock);
4393
4394 if (adapter->state <= __IAVF_DOWN_PENDING) {
4395 mutex_unlock(&adapter->crit_lock);
4396 return 0;
4397 }
4398
4399 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4400 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4401 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4402 * deadlock with adminq_task() until iavf_close timeouts. We must send
4403 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4404 * disable queues possible for vf. Give only necessary flags to
4405 * iavf_down and save other to set them right before iavf_close()
4406 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4407 * iavf will be in DOWN state.
4408 */
4409 aq_to_restore = adapter->aq_required;
4410 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4411
4412 /* Remove flags which we do not want to send after close or we want to
4413 * send before disable queues.
4414 */
4415 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG |
4416 IAVF_FLAG_AQ_ENABLE_QUEUES |
4417 IAVF_FLAG_AQ_CONFIGURE_QUEUES |
4418 IAVF_FLAG_AQ_ADD_VLAN_FILTER |
4419 IAVF_FLAG_AQ_ADD_MAC_FILTER |
4420 IAVF_FLAG_AQ_ADD_CLOUD_FILTER |
4421 IAVF_FLAG_AQ_ADD_FDIR_FILTER |
4422 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4423
4424 iavf_down(adapter);
4425 iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4426 iavf_free_traffic_irqs(adapter);
4427
4428 mutex_unlock(&adapter->crit_lock);
4429
4430 /* We explicitly don't free resources here because the hardware is
4431 * still active and can DMA into memory. Resources are cleared in
4432 * iavf_virtchnl_completion() after we get confirmation from the PF
4433 * driver that the rings have been stopped.
4434 *
4435 * Also, we wait for state to transition to __IAVF_DOWN before
4436 * returning. State change occurs in iavf_virtchnl_completion() after
4437 * VF resources are released (which occurs after PF driver processes and
4438 * responds to admin queue commands).
4439 */
4440
4441 status = wait_event_timeout(adapter->down_waitqueue,
4442 adapter->state == __IAVF_DOWN,
4443 msecs_to_jiffies(500));
4444 if (!status)
4445 netdev_warn(netdev, "Device resources not yet released\n");
4446
4447 mutex_lock(&adapter->crit_lock);
4448 adapter->aq_required |= aq_to_restore;
4449 mutex_unlock(&adapter->crit_lock);
4450 return 0;
4451 }
4452
4453 /**
4454 * iavf_change_mtu - Change the Maximum Transfer Unit
4455 * @netdev: network interface device structure
4456 * @new_mtu: new value for maximum frame size
4457 *
4458 * Returns 0 on success, negative on failure
4459 **/
iavf_change_mtu(struct net_device * netdev,int new_mtu)4460 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4461 {
4462 struct iavf_adapter *adapter = netdev_priv(netdev);
4463 int ret = 0;
4464
4465 netdev_dbg(netdev, "changing MTU from %d to %d\n",
4466 netdev->mtu, new_mtu);
4467 WRITE_ONCE(netdev->mtu, new_mtu);
4468
4469 if (netif_running(netdev)) {
4470 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4471 ret = iavf_wait_for_reset(adapter);
4472 if (ret < 0)
4473 netdev_warn(netdev, "MTU change interrupted waiting for reset");
4474 else if (ret)
4475 netdev_warn(netdev, "MTU change timed out waiting for reset");
4476 }
4477
4478 return ret;
4479 }
4480
4481 /**
4482 * iavf_disable_fdir - disable Flow Director and clear existing filters
4483 * @adapter: board private structure
4484 **/
iavf_disable_fdir(struct iavf_adapter * adapter)4485 static void iavf_disable_fdir(struct iavf_adapter *adapter)
4486 {
4487 struct iavf_fdir_fltr *fdir, *fdirtmp;
4488 bool del_filters = false;
4489
4490 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4491
4492 /* remove all Flow Director filters */
4493 spin_lock_bh(&adapter->fdir_fltr_lock);
4494 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4495 list) {
4496 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4497 fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4498 /* Delete filters not registered in PF */
4499 list_del(&fdir->list);
4500 iavf_dec_fdir_active_fltr(adapter, fdir);
4501 kfree(fdir);
4502 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4503 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4504 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4505 /* Filters registered in PF, schedule their deletion */
4506 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4507 del_filters = true;
4508 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4509 /* Request to delete filter already sent to PF, change
4510 * state to DEL_PENDING to delete filter after PF's
4511 * response, not set as INACTIVE
4512 */
4513 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4514 }
4515 }
4516 spin_unlock_bh(&adapter->fdir_fltr_lock);
4517
4518 if (del_filters) {
4519 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4520 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4521 }
4522 }
4523
4524 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
4525 NETIF_F_HW_VLAN_CTAG_TX | \
4526 NETIF_F_HW_VLAN_STAG_RX | \
4527 NETIF_F_HW_VLAN_STAG_TX)
4528
4529 /**
4530 * iavf_set_features - set the netdev feature flags
4531 * @netdev: ptr to the netdev being adjusted
4532 * @features: the feature set that the stack is suggesting
4533 * Note: expects to be called while under rtnl_lock()
4534 **/
iavf_set_features(struct net_device * netdev,netdev_features_t features)4535 static int iavf_set_features(struct net_device *netdev,
4536 netdev_features_t features)
4537 {
4538 struct iavf_adapter *adapter = netdev_priv(netdev);
4539
4540 /* trigger update on any VLAN feature change */
4541 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4542 (features & NETIF_VLAN_OFFLOAD_FEATURES))
4543 iavf_set_vlan_offload_features(adapter, netdev->features,
4544 features);
4545 if (CRC_OFFLOAD_ALLOWED(adapter) &&
4546 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4547 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4548
4549 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4550 if (features & NETIF_F_NTUPLE)
4551 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4552 else
4553 iavf_disable_fdir(adapter);
4554 }
4555
4556 return 0;
4557 }
4558
4559 /**
4560 * iavf_features_check - Validate encapsulated packet conforms to limits
4561 * @skb: skb buff
4562 * @dev: This physical port's netdev
4563 * @features: Offload features that the stack believes apply
4564 **/
iavf_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)4565 static netdev_features_t iavf_features_check(struct sk_buff *skb,
4566 struct net_device *dev,
4567 netdev_features_t features)
4568 {
4569 size_t len;
4570
4571 /* No point in doing any of this if neither checksum nor GSO are
4572 * being requested for this frame. We can rule out both by just
4573 * checking for CHECKSUM_PARTIAL
4574 */
4575 if (skb->ip_summed != CHECKSUM_PARTIAL)
4576 return features;
4577
4578 /* We cannot support GSO if the MSS is going to be less than
4579 * 64 bytes. If it is then we need to drop support for GSO.
4580 */
4581 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4582 features &= ~NETIF_F_GSO_MASK;
4583
4584 /* MACLEN can support at most 63 words */
4585 len = skb_network_offset(skb);
4586 if (len & ~(63 * 2))
4587 goto out_err;
4588
4589 /* IPLEN and EIPLEN can support at most 127 dwords */
4590 len = skb_network_header_len(skb);
4591 if (len & ~(127 * 4))
4592 goto out_err;
4593
4594 if (skb->encapsulation) {
4595 /* L4TUNLEN can support 127 words */
4596 len = skb_inner_network_header(skb) - skb_transport_header(skb);
4597 if (len & ~(127 * 2))
4598 goto out_err;
4599
4600 /* IPLEN can support at most 127 dwords */
4601 len = skb_inner_transport_header(skb) -
4602 skb_inner_network_header(skb);
4603 if (len & ~(127 * 4))
4604 goto out_err;
4605 }
4606
4607 /* No need to validate L4LEN as TCP is the only protocol with a
4608 * flexible value and we support all possible values supported
4609 * by TCP, which is at most 15 dwords
4610 */
4611
4612 return features;
4613 out_err:
4614 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4615 }
4616
4617 /**
4618 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4619 * @adapter: board private structure
4620 *
4621 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4622 * were negotiated determine the VLAN features that can be toggled on and off.
4623 **/
4624 static netdev_features_t
iavf_get_netdev_vlan_hw_features(struct iavf_adapter * adapter)4625 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4626 {
4627 netdev_features_t hw_features = 0;
4628
4629 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4630 return hw_features;
4631
4632 /* Enable VLAN features if supported */
4633 if (VLAN_ALLOWED(adapter)) {
4634 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4635 NETIF_F_HW_VLAN_CTAG_RX);
4636 } else if (VLAN_V2_ALLOWED(adapter)) {
4637 struct virtchnl_vlan_caps *vlan_v2_caps =
4638 &adapter->vlan_v2_caps;
4639 struct virtchnl_vlan_supported_caps *stripping_support =
4640 &vlan_v2_caps->offloads.stripping_support;
4641 struct virtchnl_vlan_supported_caps *insertion_support =
4642 &vlan_v2_caps->offloads.insertion_support;
4643
4644 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4645 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4646 if (stripping_support->outer &
4647 VIRTCHNL_VLAN_ETHERTYPE_8100)
4648 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4649 if (stripping_support->outer &
4650 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4651 hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4652 } else if (stripping_support->inner !=
4653 VIRTCHNL_VLAN_UNSUPPORTED &&
4654 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4655 if (stripping_support->inner &
4656 VIRTCHNL_VLAN_ETHERTYPE_8100)
4657 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4658 }
4659
4660 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4661 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4662 if (insertion_support->outer &
4663 VIRTCHNL_VLAN_ETHERTYPE_8100)
4664 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4665 if (insertion_support->outer &
4666 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4667 hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4668 } else if (insertion_support->inner &&
4669 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4670 if (insertion_support->inner &
4671 VIRTCHNL_VLAN_ETHERTYPE_8100)
4672 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4673 }
4674 }
4675
4676 if (CRC_OFFLOAD_ALLOWED(adapter))
4677 hw_features |= NETIF_F_RXFCS;
4678
4679 return hw_features;
4680 }
4681
4682 /**
4683 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4684 * @adapter: board private structure
4685 *
4686 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4687 * were negotiated determine the VLAN features that are enabled by default.
4688 **/
4689 static netdev_features_t
iavf_get_netdev_vlan_features(struct iavf_adapter * adapter)4690 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4691 {
4692 netdev_features_t features = 0;
4693
4694 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4695 return features;
4696
4697 if (VLAN_ALLOWED(adapter)) {
4698 features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4699 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4700 } else if (VLAN_V2_ALLOWED(adapter)) {
4701 struct virtchnl_vlan_caps *vlan_v2_caps =
4702 &adapter->vlan_v2_caps;
4703 struct virtchnl_vlan_supported_caps *filtering_support =
4704 &vlan_v2_caps->filtering.filtering_support;
4705 struct virtchnl_vlan_supported_caps *stripping_support =
4706 &vlan_v2_caps->offloads.stripping_support;
4707 struct virtchnl_vlan_supported_caps *insertion_support =
4708 &vlan_v2_caps->offloads.insertion_support;
4709 u32 ethertype_init;
4710
4711 /* give priority to outer stripping and don't support both outer
4712 * and inner stripping
4713 */
4714 ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4715 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4716 if (stripping_support->outer &
4717 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4718 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4719 features |= NETIF_F_HW_VLAN_CTAG_RX;
4720 else if (stripping_support->outer &
4721 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4722 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4723 features |= NETIF_F_HW_VLAN_STAG_RX;
4724 } else if (stripping_support->inner !=
4725 VIRTCHNL_VLAN_UNSUPPORTED) {
4726 if (stripping_support->inner &
4727 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4728 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4729 features |= NETIF_F_HW_VLAN_CTAG_RX;
4730 }
4731
4732 /* give priority to outer insertion and don't support both outer
4733 * and inner insertion
4734 */
4735 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4736 if (insertion_support->outer &
4737 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4738 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4739 features |= NETIF_F_HW_VLAN_CTAG_TX;
4740 else if (insertion_support->outer &
4741 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4742 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4743 features |= NETIF_F_HW_VLAN_STAG_TX;
4744 } else if (insertion_support->inner !=
4745 VIRTCHNL_VLAN_UNSUPPORTED) {
4746 if (insertion_support->inner &
4747 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4748 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4749 features |= NETIF_F_HW_VLAN_CTAG_TX;
4750 }
4751
4752 /* give priority to outer filtering and don't bother if both
4753 * outer and inner filtering are enabled
4754 */
4755 ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4756 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4757 if (filtering_support->outer &
4758 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4759 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4760 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4761 if (filtering_support->outer &
4762 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4763 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4764 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4765 } else if (filtering_support->inner !=
4766 VIRTCHNL_VLAN_UNSUPPORTED) {
4767 if (filtering_support->inner &
4768 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4769 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4770 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4771 if (filtering_support->inner &
4772 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4773 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4774 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4775 }
4776 }
4777
4778 return features;
4779 }
4780
4781 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4782 (!(((requested) & (feature_bit)) && \
4783 !((allowed) & (feature_bit))))
4784
4785 /**
4786 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4787 * @adapter: board private structure
4788 * @requested_features: stack requested NETDEV features
4789 **/
4790 static netdev_features_t
iavf_fix_netdev_vlan_features(struct iavf_adapter * adapter,netdev_features_t requested_features)4791 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4792 netdev_features_t requested_features)
4793 {
4794 netdev_features_t allowed_features;
4795
4796 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4797 iavf_get_netdev_vlan_features(adapter);
4798
4799 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4800 allowed_features,
4801 NETIF_F_HW_VLAN_CTAG_TX))
4802 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4803
4804 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4805 allowed_features,
4806 NETIF_F_HW_VLAN_CTAG_RX))
4807 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4808
4809 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4810 allowed_features,
4811 NETIF_F_HW_VLAN_STAG_TX))
4812 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4813 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4814 allowed_features,
4815 NETIF_F_HW_VLAN_STAG_RX))
4816 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4817
4818 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4819 allowed_features,
4820 NETIF_F_HW_VLAN_CTAG_FILTER))
4821 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4822
4823 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4824 allowed_features,
4825 NETIF_F_HW_VLAN_STAG_FILTER))
4826 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4827
4828 if ((requested_features &
4829 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4830 (requested_features &
4831 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4832 adapter->vlan_v2_caps.offloads.ethertype_match ==
4833 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4834 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4835 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4836 NETIF_F_HW_VLAN_STAG_TX);
4837 }
4838
4839 return requested_features;
4840 }
4841
4842 /**
4843 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4844 * @adapter: board private structure
4845 * @requested_features: stack requested NETDEV features
4846 *
4847 * Returns fixed-up features bits
4848 **/
4849 static netdev_features_t
iavf_fix_strip_features(struct iavf_adapter * adapter,netdev_features_t requested_features)4850 iavf_fix_strip_features(struct iavf_adapter *adapter,
4851 netdev_features_t requested_features)
4852 {
4853 struct net_device *netdev = adapter->netdev;
4854 bool crc_offload_req, is_vlan_strip;
4855 netdev_features_t vlan_strip;
4856 int num_non_zero_vlan;
4857
4858 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4859 (requested_features & NETIF_F_RXFCS);
4860 num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4861 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4862 is_vlan_strip = requested_features & vlan_strip;
4863
4864 if (!crc_offload_req)
4865 return requested_features;
4866
4867 if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4868 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4869 requested_features &= ~vlan_strip;
4870 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4871 return requested_features;
4872 }
4873
4874 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4875 requested_features &= ~vlan_strip;
4876 if (!(netdev->features & vlan_strip))
4877 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4878
4879 return requested_features;
4880 }
4881
4882 if (num_non_zero_vlan && is_vlan_strip &&
4883 !(netdev->features & NETIF_F_RXFCS)) {
4884 requested_features &= ~NETIF_F_RXFCS;
4885 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4886 }
4887
4888 return requested_features;
4889 }
4890
4891 /**
4892 * iavf_fix_features - fix up the netdev feature bits
4893 * @netdev: our net device
4894 * @features: desired feature bits
4895 *
4896 * Returns fixed-up features bits
4897 **/
iavf_fix_features(struct net_device * netdev,netdev_features_t features)4898 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4899 netdev_features_t features)
4900 {
4901 struct iavf_adapter *adapter = netdev_priv(netdev);
4902
4903 features = iavf_fix_netdev_vlan_features(adapter, features);
4904
4905 if (!FDIR_FLTR_SUPPORT(adapter))
4906 features &= ~NETIF_F_NTUPLE;
4907
4908 return iavf_fix_strip_features(adapter, features);
4909 }
4910
4911 static const struct net_device_ops iavf_netdev_ops = {
4912 .ndo_open = iavf_open,
4913 .ndo_stop = iavf_close,
4914 .ndo_start_xmit = iavf_xmit_frame,
4915 .ndo_set_rx_mode = iavf_set_rx_mode,
4916 .ndo_validate_addr = eth_validate_addr,
4917 .ndo_set_mac_address = iavf_set_mac,
4918 .ndo_change_mtu = iavf_change_mtu,
4919 .ndo_tx_timeout = iavf_tx_timeout,
4920 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
4921 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
4922 .ndo_features_check = iavf_features_check,
4923 .ndo_fix_features = iavf_fix_features,
4924 .ndo_set_features = iavf_set_features,
4925 .ndo_setup_tc = iavf_setup_tc,
4926 };
4927
4928 /**
4929 * iavf_check_reset_complete - check that VF reset is complete
4930 * @hw: pointer to hw struct
4931 *
4932 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4933 **/
iavf_check_reset_complete(struct iavf_hw * hw)4934 static int iavf_check_reset_complete(struct iavf_hw *hw)
4935 {
4936 u32 rstat;
4937 int i;
4938
4939 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4940 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4941 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4942 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4943 (rstat == VIRTCHNL_VFR_COMPLETED))
4944 return 0;
4945 msleep(IAVF_RESET_WAIT_MS);
4946 }
4947 return -EBUSY;
4948 }
4949
4950 /**
4951 * iavf_process_config - Process the config information we got from the PF
4952 * @adapter: board private structure
4953 *
4954 * Verify that we have a valid config struct, and set up our netdev features
4955 * and our VSI struct.
4956 **/
iavf_process_config(struct iavf_adapter * adapter)4957 int iavf_process_config(struct iavf_adapter *adapter)
4958 {
4959 struct virtchnl_vf_resource *vfres = adapter->vf_res;
4960 netdev_features_t hw_vlan_features, vlan_features;
4961 struct net_device *netdev = adapter->netdev;
4962 netdev_features_t hw_enc_features;
4963 netdev_features_t hw_features;
4964
4965 hw_enc_features = NETIF_F_SG |
4966 NETIF_F_IP_CSUM |
4967 NETIF_F_IPV6_CSUM |
4968 NETIF_F_HIGHDMA |
4969 NETIF_F_SOFT_FEATURES |
4970 NETIF_F_TSO |
4971 NETIF_F_TSO_ECN |
4972 NETIF_F_TSO6 |
4973 NETIF_F_SCTP_CRC |
4974 NETIF_F_RXHASH |
4975 NETIF_F_RXCSUM |
4976 0;
4977
4978 /* advertise to stack only if offloads for encapsulated packets is
4979 * supported
4980 */
4981 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4982 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
4983 NETIF_F_GSO_GRE |
4984 NETIF_F_GSO_GRE_CSUM |
4985 NETIF_F_GSO_IPXIP4 |
4986 NETIF_F_GSO_IPXIP6 |
4987 NETIF_F_GSO_UDP_TUNNEL_CSUM |
4988 NETIF_F_GSO_PARTIAL |
4989 0;
4990
4991 if (!(vfres->vf_cap_flags &
4992 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4993 netdev->gso_partial_features |=
4994 NETIF_F_GSO_UDP_TUNNEL_CSUM;
4995
4996 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4997 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4998 netdev->hw_enc_features |= hw_enc_features;
4999 }
5000 /* record features VLANs can make use of */
5001 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
5002
5003 /* Write features and hw_features separately to avoid polluting
5004 * with, or dropping, features that are set when we registered.
5005 */
5006 hw_features = hw_enc_features;
5007
5008 /* get HW VLAN features that can be toggled */
5009 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
5010
5011 /* Enable HW TC offload if ADQ or tc U32 is supported */
5012 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ ||
5013 TC_U32_SUPPORT(adapter))
5014 hw_features |= NETIF_F_HW_TC;
5015
5016 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
5017 hw_features |= NETIF_F_GSO_UDP_L4;
5018
5019 netdev->hw_features |= hw_features | hw_vlan_features;
5020 vlan_features = iavf_get_netdev_vlan_features(adapter);
5021
5022 netdev->features |= hw_features | vlan_features;
5023
5024 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
5025 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5026
5027 if (FDIR_FLTR_SUPPORT(adapter)) {
5028 netdev->hw_features |= NETIF_F_NTUPLE;
5029 netdev->features |= NETIF_F_NTUPLE;
5030 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
5031 }
5032
5033 netdev->priv_flags |= IFF_UNICAST_FLT;
5034
5035 /* Do not turn on offloads when they are requested to be turned off.
5036 * TSO needs minimum 576 bytes to work correctly.
5037 */
5038 if (netdev->wanted_features) {
5039 if (!(netdev->wanted_features & NETIF_F_TSO) ||
5040 netdev->mtu < 576)
5041 netdev->features &= ~NETIF_F_TSO;
5042 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
5043 netdev->mtu < 576)
5044 netdev->features &= ~NETIF_F_TSO6;
5045 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
5046 netdev->features &= ~NETIF_F_TSO_ECN;
5047 if (!(netdev->wanted_features & NETIF_F_GRO))
5048 netdev->features &= ~NETIF_F_GRO;
5049 if (!(netdev->wanted_features & NETIF_F_GSO))
5050 netdev->features &= ~NETIF_F_GSO;
5051 }
5052
5053 return 0;
5054 }
5055
5056 /**
5057 * iavf_probe - Device Initialization Routine
5058 * @pdev: PCI device information struct
5059 * @ent: entry in iavf_pci_tbl
5060 *
5061 * Returns 0 on success, negative on failure
5062 *
5063 * iavf_probe initializes an adapter identified by a pci_dev structure.
5064 * The OS initialization, configuring of the adapter private structure,
5065 * and a hardware reset occur.
5066 **/
iavf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)5067 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5068 {
5069 struct net_device *netdev;
5070 struct iavf_adapter *adapter = NULL;
5071 struct iavf_hw *hw = NULL;
5072 int err;
5073
5074 err = pci_enable_device(pdev);
5075 if (err)
5076 return err;
5077
5078 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5079 if (err) {
5080 dev_err(&pdev->dev,
5081 "DMA configuration failed: 0x%x\n", err);
5082 goto err_dma;
5083 }
5084
5085 err = pci_request_regions(pdev, iavf_driver_name);
5086 if (err) {
5087 dev_err(&pdev->dev,
5088 "pci_request_regions failed 0x%x\n", err);
5089 goto err_pci_reg;
5090 }
5091
5092 pci_set_master(pdev);
5093
5094 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
5095 IAVF_MAX_REQ_QUEUES);
5096 if (!netdev) {
5097 err = -ENOMEM;
5098 goto err_alloc_etherdev;
5099 }
5100
5101 SET_NETDEV_DEV(netdev, &pdev->dev);
5102
5103 pci_set_drvdata(pdev, netdev);
5104 adapter = netdev_priv(netdev);
5105
5106 adapter->netdev = netdev;
5107 adapter->pdev = pdev;
5108
5109 hw = &adapter->hw;
5110 hw->back = adapter;
5111
5112 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
5113 iavf_driver_name);
5114 if (!adapter->wq) {
5115 err = -ENOMEM;
5116 goto err_alloc_wq;
5117 }
5118
5119 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
5120 iavf_change_state(adapter, __IAVF_STARTUP);
5121
5122 /* Call save state here because it relies on the adapter struct. */
5123 pci_save_state(pdev);
5124
5125 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
5126 pci_resource_len(pdev, 0));
5127 if (!hw->hw_addr) {
5128 err = -EIO;
5129 goto err_ioremap;
5130 }
5131 hw->vendor_id = pdev->vendor;
5132 hw->device_id = pdev->device;
5133 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5134 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5135 hw->subsystem_device_id = pdev->subsystem_device;
5136 hw->bus.device = PCI_SLOT(pdev->devfn);
5137 hw->bus.func = PCI_FUNC(pdev->devfn);
5138 hw->bus.bus_id = pdev->bus->number;
5139
5140 /* set up the locks for the AQ, do this only once in probe
5141 * and destroy them only once in remove
5142 */
5143 mutex_init(&adapter->crit_lock);
5144 mutex_init(&hw->aq.asq_mutex);
5145 mutex_init(&hw->aq.arq_mutex);
5146
5147 spin_lock_init(&adapter->mac_vlan_list_lock);
5148 spin_lock_init(&adapter->cloud_filter_list_lock);
5149 spin_lock_init(&adapter->fdir_fltr_lock);
5150 spin_lock_init(&adapter->adv_rss_lock);
5151 spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
5152
5153 INIT_LIST_HEAD(&adapter->mac_filter_list);
5154 INIT_LIST_HEAD(&adapter->vlan_filter_list);
5155 INIT_LIST_HEAD(&adapter->cloud_filter_list);
5156 INIT_LIST_HEAD(&adapter->fdir_list_head);
5157 INIT_LIST_HEAD(&adapter->adv_rss_list_head);
5158
5159 INIT_WORK(&adapter->reset_task, iavf_reset_task);
5160 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5161 INIT_WORK(&adapter->finish_config, iavf_finish_config);
5162 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
5163
5164 /* Setup the wait queue for indicating transition to down status */
5165 init_waitqueue_head(&adapter->down_waitqueue);
5166
5167 /* Setup the wait queue for indicating transition to running state */
5168 init_waitqueue_head(&adapter->reset_waitqueue);
5169
5170 /* Setup the wait queue for indicating virtchannel events */
5171 init_waitqueue_head(&adapter->vc_waitqueue);
5172
5173 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5174 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5175 /* Initialization goes on in the work. Do not add more of it below. */
5176 return 0;
5177
5178 err_ioremap:
5179 destroy_workqueue(adapter->wq);
5180 err_alloc_wq:
5181 free_netdev(netdev);
5182 err_alloc_etherdev:
5183 pci_release_regions(pdev);
5184 err_pci_reg:
5185 err_dma:
5186 pci_disable_device(pdev);
5187 return err;
5188 }
5189
5190 /**
5191 * iavf_suspend - Power management suspend routine
5192 * @dev_d: device info pointer
5193 *
5194 * Called when the system (VM) is entering sleep/suspend.
5195 **/
iavf_suspend(struct device * dev_d)5196 static int iavf_suspend(struct device *dev_d)
5197 {
5198 struct net_device *netdev = dev_get_drvdata(dev_d);
5199 struct iavf_adapter *adapter = netdev_priv(netdev);
5200
5201 netif_device_detach(netdev);
5202
5203 mutex_lock(&adapter->crit_lock);
5204
5205 if (netif_running(netdev)) {
5206 rtnl_lock();
5207 iavf_down(adapter);
5208 rtnl_unlock();
5209 }
5210 iavf_free_misc_irq(adapter);
5211 iavf_reset_interrupt_capability(adapter);
5212
5213 mutex_unlock(&adapter->crit_lock);
5214
5215 return 0;
5216 }
5217
5218 /**
5219 * iavf_resume - Power management resume routine
5220 * @dev_d: device info pointer
5221 *
5222 * Called when the system (VM) is resumed from sleep/suspend.
5223 **/
iavf_resume(struct device * dev_d)5224 static int iavf_resume(struct device *dev_d)
5225 {
5226 struct pci_dev *pdev = to_pci_dev(dev_d);
5227 struct iavf_adapter *adapter;
5228 u32 err;
5229
5230 adapter = iavf_pdev_to_adapter(pdev);
5231
5232 pci_set_master(pdev);
5233
5234 rtnl_lock();
5235 err = iavf_set_interrupt_capability(adapter);
5236 if (err) {
5237 rtnl_unlock();
5238 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5239 return err;
5240 }
5241 err = iavf_request_misc_irq(adapter);
5242 rtnl_unlock();
5243 if (err) {
5244 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5245 return err;
5246 }
5247
5248 queue_work(adapter->wq, &adapter->reset_task);
5249
5250 netif_device_attach(adapter->netdev);
5251
5252 return err;
5253 }
5254
5255 /**
5256 * iavf_remove - Device Removal Routine
5257 * @pdev: PCI device information struct
5258 *
5259 * iavf_remove is called by the PCI subsystem to alert the driver
5260 * that it should release a PCI device. The could be caused by a
5261 * Hot-Plug event, or because the driver is going to be removed from
5262 * memory.
5263 **/
iavf_remove(struct pci_dev * pdev)5264 static void iavf_remove(struct pci_dev *pdev)
5265 {
5266 struct iavf_fdir_fltr *fdir, *fdirtmp;
5267 struct iavf_vlan_filter *vlf, *vlftmp;
5268 struct iavf_cloud_filter *cf, *cftmp;
5269 struct iavf_adv_rss *rss, *rsstmp;
5270 struct iavf_mac_filter *f, *ftmp;
5271 struct iavf_adapter *adapter;
5272 struct net_device *netdev;
5273 struct iavf_hw *hw;
5274
5275 /* Don't proceed with remove if netdev is already freed */
5276 netdev = pci_get_drvdata(pdev);
5277 if (!netdev)
5278 return;
5279
5280 adapter = iavf_pdev_to_adapter(pdev);
5281 hw = &adapter->hw;
5282
5283 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5284 return;
5285
5286 /* Wait until port initialization is complete.
5287 * There are flows where register/unregister netdev may race.
5288 */
5289 while (1) {
5290 mutex_lock(&adapter->crit_lock);
5291 if (adapter->state == __IAVF_RUNNING ||
5292 adapter->state == __IAVF_DOWN ||
5293 adapter->state == __IAVF_INIT_FAILED) {
5294 mutex_unlock(&adapter->crit_lock);
5295 break;
5296 }
5297 /* Simply return if we already went through iavf_shutdown */
5298 if (adapter->state == __IAVF_REMOVE) {
5299 mutex_unlock(&adapter->crit_lock);
5300 return;
5301 }
5302
5303 mutex_unlock(&adapter->crit_lock);
5304 usleep_range(500, 1000);
5305 }
5306 cancel_delayed_work_sync(&adapter->watchdog_task);
5307 cancel_work_sync(&adapter->finish_config);
5308
5309 if (netdev->reg_state == NETREG_REGISTERED)
5310 unregister_netdev(netdev);
5311
5312 mutex_lock(&adapter->crit_lock);
5313 dev_info(&adapter->pdev->dev, "Removing device\n");
5314 iavf_change_state(adapter, __IAVF_REMOVE);
5315
5316 iavf_request_reset(adapter);
5317 msleep(50);
5318 /* If the FW isn't responding, kick it once, but only once. */
5319 if (!iavf_asq_done(hw)) {
5320 iavf_request_reset(adapter);
5321 msleep(50);
5322 }
5323
5324 iavf_misc_irq_disable(adapter);
5325 /* Shut down all the garbage mashers on the detention level */
5326 cancel_work_sync(&adapter->reset_task);
5327 cancel_delayed_work_sync(&adapter->watchdog_task);
5328 cancel_work_sync(&adapter->adminq_task);
5329
5330 adapter->aq_required = 0;
5331 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5332
5333 iavf_free_all_tx_resources(adapter);
5334 iavf_free_all_rx_resources(adapter);
5335 iavf_free_misc_irq(adapter);
5336 iavf_free_interrupt_scheme(adapter);
5337
5338 iavf_free_rss(adapter);
5339
5340 if (hw->aq.asq.count)
5341 iavf_shutdown_adminq(hw);
5342
5343 /* destroy the locks only once, here */
5344 mutex_destroy(&hw->aq.arq_mutex);
5345 mutex_destroy(&hw->aq.asq_mutex);
5346 mutex_unlock(&adapter->crit_lock);
5347 mutex_destroy(&adapter->crit_lock);
5348
5349 iounmap(hw->hw_addr);
5350 pci_release_regions(pdev);
5351 kfree(adapter->vf_res);
5352 spin_lock_bh(&adapter->mac_vlan_list_lock);
5353 /* If we got removed before an up/down sequence, we've got a filter
5354 * hanging out there that we need to get rid of.
5355 */
5356 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5357 list_del(&f->list);
5358 kfree(f);
5359 }
5360 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5361 list) {
5362 list_del(&vlf->list);
5363 kfree(vlf);
5364 }
5365
5366 spin_unlock_bh(&adapter->mac_vlan_list_lock);
5367
5368 spin_lock_bh(&adapter->cloud_filter_list_lock);
5369 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5370 list_del(&cf->list);
5371 kfree(cf);
5372 }
5373 spin_unlock_bh(&adapter->cloud_filter_list_lock);
5374
5375 spin_lock_bh(&adapter->fdir_fltr_lock);
5376 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5377 list_del(&fdir->list);
5378 kfree(fdir);
5379 }
5380 spin_unlock_bh(&adapter->fdir_fltr_lock);
5381
5382 spin_lock_bh(&adapter->adv_rss_lock);
5383 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5384 list) {
5385 list_del(&rss->list);
5386 kfree(rss);
5387 }
5388 spin_unlock_bh(&adapter->adv_rss_lock);
5389
5390 destroy_workqueue(adapter->wq);
5391
5392 pci_set_drvdata(pdev, NULL);
5393
5394 free_netdev(netdev);
5395
5396 pci_disable_device(pdev);
5397 }
5398
5399 /**
5400 * iavf_shutdown - Shutdown the device in preparation for a reboot
5401 * @pdev: pci device structure
5402 **/
iavf_shutdown(struct pci_dev * pdev)5403 static void iavf_shutdown(struct pci_dev *pdev)
5404 {
5405 iavf_remove(pdev);
5406
5407 if (system_state == SYSTEM_POWER_OFF)
5408 pci_set_power_state(pdev, PCI_D3hot);
5409 }
5410
5411 static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5412
5413 static struct pci_driver iavf_driver = {
5414 .name = iavf_driver_name,
5415 .id_table = iavf_pci_tbl,
5416 .probe = iavf_probe,
5417 .remove = iavf_remove,
5418 .driver.pm = pm_sleep_ptr(&iavf_pm_ops),
5419 .shutdown = iavf_shutdown,
5420 };
5421
5422 /**
5423 * iavf_init_module - Driver Registration Routine
5424 *
5425 * iavf_init_module is the first routine called when the driver is
5426 * loaded. All it does is register with the PCI subsystem.
5427 **/
iavf_init_module(void)5428 static int __init iavf_init_module(void)
5429 {
5430 pr_info("iavf: %s\n", iavf_driver_string);
5431
5432 pr_info("%s\n", iavf_copyright);
5433
5434 return pci_register_driver(&iavf_driver);
5435 }
5436
5437 module_init(iavf_init_module);
5438
5439 /**
5440 * iavf_exit_module - Driver Exit Cleanup Routine
5441 *
5442 * iavf_exit_module is called just before the driver is removed
5443 * from memory.
5444 **/
iavf_exit_module(void)5445 static void __exit iavf_exit_module(void)
5446 {
5447 pci_unregister_driver(&iavf_driver);
5448 }
5449
5450 module_exit(iavf_exit_module);
5451
5452 /* iavf_main.c */
5453