1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49 #include <linux/fsnotify.h>
50 #include <linux/fs_context.h>
51 #include <linux/fs_parser.h>
52
53 #include "ext4.h"
54 #include "ext4_extents.h" /* Needed for trace points definition */
55 #include "ext4_jbd2.h"
56 #include "xattr.h"
57 #include "acl.h"
58 #include "mballoc.h"
59 #include "fsmap.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/ext4.h>
63
64 static struct ext4_lazy_init *ext4_li_info;
65 static DEFINE_MUTEX(ext4_li_mtx);
66 static struct ratelimit_state ext4_mount_msg_ratelimit;
67
68 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
69 unsigned long journal_devnum);
70 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
71 static void ext4_update_super(struct super_block *sb);
72 static int ext4_commit_super(struct super_block *sb);
73 static int ext4_mark_recovery_complete(struct super_block *sb,
74 struct ext4_super_block *es);
75 static int ext4_clear_journal_err(struct super_block *sb,
76 struct ext4_super_block *es);
77 static int ext4_sync_fs(struct super_block *sb, int wait);
78 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
79 static int ext4_unfreeze(struct super_block *sb);
80 static int ext4_freeze(struct super_block *sb);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 unsigned int journal_inum);
88 static int ext4_validate_options(struct fs_context *fc);
89 static int ext4_check_opt_consistency(struct fs_context *fc,
90 struct super_block *sb);
91 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
92 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
93 static int ext4_get_tree(struct fs_context *fc);
94 static int ext4_reconfigure(struct fs_context *fc);
95 static void ext4_fc_free(struct fs_context *fc);
96 static int ext4_init_fs_context(struct fs_context *fc);
97 static void ext4_kill_sb(struct super_block *sb);
98 static const struct fs_parameter_spec ext4_param_specs[];
99
100 /*
101 * Lock ordering
102 *
103 * page fault path:
104 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
105 * -> page lock -> i_data_sem (rw)
106 *
107 * buffered write path:
108 * sb_start_write -> i_mutex -> mmap_lock
109 * sb_start_write -> i_mutex -> transaction start -> page lock ->
110 * i_data_sem (rw)
111 *
112 * truncate:
113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
114 * page lock
115 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
116 * i_data_sem (rw)
117 *
118 * direct IO:
119 * sb_start_write -> i_mutex -> mmap_lock
120 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
121 *
122 * writepages:
123 * transaction start -> page lock(s) -> i_data_sem (rw)
124 */
125
126 static const struct fs_context_operations ext4_context_ops = {
127 .parse_param = ext4_parse_param,
128 .get_tree = ext4_get_tree,
129 .reconfigure = ext4_reconfigure,
130 .free = ext4_fc_free,
131 };
132
133
134 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
135 static struct file_system_type ext2_fs_type = {
136 .owner = THIS_MODULE,
137 .name = "ext2",
138 .init_fs_context = ext4_init_fs_context,
139 .parameters = ext4_param_specs,
140 .kill_sb = ext4_kill_sb,
141 .fs_flags = FS_REQUIRES_DEV,
142 };
143 MODULE_ALIAS_FS("ext2");
144 MODULE_ALIAS("ext2");
145 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
146 #else
147 #define IS_EXT2_SB(sb) (0)
148 #endif
149
150
151 static struct file_system_type ext3_fs_type = {
152 .owner = THIS_MODULE,
153 .name = "ext3",
154 .init_fs_context = ext4_init_fs_context,
155 .parameters = ext4_param_specs,
156 .kill_sb = ext4_kill_sb,
157 .fs_flags = FS_REQUIRES_DEV,
158 };
159 MODULE_ALIAS_FS("ext3");
160 MODULE_ALIAS("ext3");
161 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
162
163
__ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)164 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
165 bh_end_io_t *end_io, bool simu_fail)
166 {
167 if (simu_fail) {
168 clear_buffer_uptodate(bh);
169 unlock_buffer(bh);
170 return;
171 }
172
173 /*
174 * buffer's verified bit is no longer valid after reading from
175 * disk again due to write out error, clear it to make sure we
176 * recheck the buffer contents.
177 */
178 clear_buffer_verified(bh);
179
180 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
181 get_bh(bh);
182 submit_bh(REQ_OP_READ | op_flags, bh);
183 }
184
ext4_read_bh_nowait(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)185 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
186 bh_end_io_t *end_io, bool simu_fail)
187 {
188 BUG_ON(!buffer_locked(bh));
189
190 if (ext4_buffer_uptodate(bh)) {
191 unlock_buffer(bh);
192 return;
193 }
194 __ext4_read_bh(bh, op_flags, end_io, simu_fail);
195 }
196
ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)197 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
198 bh_end_io_t *end_io, bool simu_fail)
199 {
200 BUG_ON(!buffer_locked(bh));
201
202 if (ext4_buffer_uptodate(bh)) {
203 unlock_buffer(bh);
204 return 0;
205 }
206
207 __ext4_read_bh(bh, op_flags, end_io, simu_fail);
208
209 wait_on_buffer(bh);
210 if (buffer_uptodate(bh))
211 return 0;
212 return -EIO;
213 }
214
ext4_read_bh_lock(struct buffer_head * bh,blk_opf_t op_flags,bool wait)215 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
216 {
217 lock_buffer(bh);
218 if (!wait) {
219 ext4_read_bh_nowait(bh, op_flags, NULL, false);
220 return 0;
221 }
222 return ext4_read_bh(bh, op_flags, NULL, false);
223 }
224
225 /*
226 * This works like __bread_gfp() except it uses ERR_PTR for error
227 * returns. Currently with sb_bread it's impossible to distinguish
228 * between ENOMEM and EIO situations (since both result in a NULL
229 * return.
230 */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,blk_opf_t op_flags,gfp_t gfp)231 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
232 sector_t block,
233 blk_opf_t op_flags, gfp_t gfp)
234 {
235 struct buffer_head *bh;
236 int ret;
237
238 bh = sb_getblk_gfp(sb, block, gfp);
239 if (bh == NULL)
240 return ERR_PTR(-ENOMEM);
241 if (ext4_buffer_uptodate(bh))
242 return bh;
243
244 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
245 if (ret) {
246 put_bh(bh);
247 return ERR_PTR(ret);
248 }
249 return bh;
250 }
251
ext4_sb_bread(struct super_block * sb,sector_t block,blk_opf_t op_flags)252 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
253 blk_opf_t op_flags)
254 {
255 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
256 ~__GFP_FS) | __GFP_MOVABLE;
257
258 return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
259 }
260
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)261 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
262 sector_t block)
263 {
264 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
265 ~__GFP_FS);
266
267 return __ext4_sb_bread_gfp(sb, block, 0, gfp);
268 }
269
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)270 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
271 {
272 struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
273 sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN);
274
275 if (likely(bh)) {
276 if (trylock_buffer(bh))
277 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL, false);
278 brelse(bh);
279 }
280 }
281
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)282 static int ext4_verify_csum_type(struct super_block *sb,
283 struct ext4_super_block *es)
284 {
285 if (!ext4_has_feature_metadata_csum(sb))
286 return 1;
287
288 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
289 }
290
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)291 __le32 ext4_superblock_csum(struct super_block *sb,
292 struct ext4_super_block *es)
293 {
294 struct ext4_sb_info *sbi = EXT4_SB(sb);
295 int offset = offsetof(struct ext4_super_block, s_checksum);
296 __u32 csum;
297
298 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
299
300 return cpu_to_le32(csum);
301 }
302
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)303 static int ext4_superblock_csum_verify(struct super_block *sb,
304 struct ext4_super_block *es)
305 {
306 if (!ext4_has_metadata_csum(sb))
307 return 1;
308
309 return es->s_checksum == ext4_superblock_csum(sb, es);
310 }
311
ext4_superblock_csum_set(struct super_block * sb)312 void ext4_superblock_csum_set(struct super_block *sb)
313 {
314 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
315
316 if (!ext4_has_metadata_csum(sb))
317 return;
318
319 es->s_checksum = ext4_superblock_csum(sb, es);
320 }
321
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)322 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
323 struct ext4_group_desc *bg)
324 {
325 return le32_to_cpu(bg->bg_block_bitmap_lo) |
326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
328 }
329
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)330 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
331 struct ext4_group_desc *bg)
332 {
333 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
336 }
337
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)338 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
339 struct ext4_group_desc *bg)
340 {
341 return le32_to_cpu(bg->bg_inode_table_lo) |
342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
344 }
345
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)346 __u32 ext4_free_group_clusters(struct super_block *sb,
347 struct ext4_group_desc *bg)
348 {
349 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
350 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
351 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
352 }
353
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)354 __u32 ext4_free_inodes_count(struct super_block *sb,
355 struct ext4_group_desc *bg)
356 {
357 return le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_lo)) |
358 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
359 (__u32)le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_hi)) << 16 : 0);
360 }
361
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)362 __u32 ext4_used_dirs_count(struct super_block *sb,
363 struct ext4_group_desc *bg)
364 {
365 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
366 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
367 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
368 }
369
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)370 __u32 ext4_itable_unused_count(struct super_block *sb,
371 struct ext4_group_desc *bg)
372 {
373 return le16_to_cpu(bg->bg_itable_unused_lo) |
374 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
375 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
376 }
377
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)378 void ext4_block_bitmap_set(struct super_block *sb,
379 struct ext4_group_desc *bg, ext4_fsblk_t blk)
380 {
381 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
384 }
385
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)386 void ext4_inode_bitmap_set(struct super_block *sb,
387 struct ext4_group_desc *bg, ext4_fsblk_t blk)
388 {
389 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
392 }
393
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)394 void ext4_inode_table_set(struct super_block *sb,
395 struct ext4_group_desc *bg, ext4_fsblk_t blk)
396 {
397 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
400 }
401
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)402 void ext4_free_group_clusters_set(struct super_block *sb,
403 struct ext4_group_desc *bg, __u32 count)
404 {
405 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
406 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
407 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
408 }
409
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)410 void ext4_free_inodes_set(struct super_block *sb,
411 struct ext4_group_desc *bg, __u32 count)
412 {
413 WRITE_ONCE(bg->bg_free_inodes_count_lo, cpu_to_le16((__u16)count));
414 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
415 WRITE_ONCE(bg->bg_free_inodes_count_hi, cpu_to_le16(count >> 16));
416 }
417
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)418 void ext4_used_dirs_set(struct super_block *sb,
419 struct ext4_group_desc *bg, __u32 count)
420 {
421 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
422 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
423 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
424 }
425
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)426 void ext4_itable_unused_set(struct super_block *sb,
427 struct ext4_group_desc *bg, __u32 count)
428 {
429 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
430 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
431 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
432 }
433
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)434 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
435 {
436 now = clamp_val(now, 0, (1ull << 40) - 1);
437
438 *lo = cpu_to_le32(lower_32_bits(now));
439 *hi = upper_32_bits(now);
440 }
441
__ext4_get_tstamp(__le32 * lo,__u8 * hi)442 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
443 {
444 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
445 }
446 #define ext4_update_tstamp(es, tstamp) \
447 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
448 ktime_get_real_seconds())
449 #define ext4_get_tstamp(es, tstamp) \
450 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
451
452 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
453 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
454
455 /*
456 * The ext4_maybe_update_superblock() function checks and updates the
457 * superblock if needed.
458 *
459 * This function is designed to update the on-disk superblock only under
460 * certain conditions to prevent excessive disk writes and unnecessary
461 * waking of the disk from sleep. The superblock will be updated if:
462 * 1. More than an hour has passed since the last superblock update, and
463 * 2. More than 16MB have been written since the last superblock update.
464 *
465 * @sb: The superblock
466 */
ext4_maybe_update_superblock(struct super_block * sb)467 static void ext4_maybe_update_superblock(struct super_block *sb)
468 {
469 struct ext4_sb_info *sbi = EXT4_SB(sb);
470 struct ext4_super_block *es = sbi->s_es;
471 journal_t *journal = sbi->s_journal;
472 time64_t now;
473 __u64 last_update;
474 __u64 lifetime_write_kbytes;
475 __u64 diff_size;
476
477 if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
478 !journal || (journal->j_flags & JBD2_UNMOUNT))
479 return;
480
481 now = ktime_get_real_seconds();
482 last_update = ext4_get_tstamp(es, s_wtime);
483
484 if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
485 return;
486
487 lifetime_write_kbytes = sbi->s_kbytes_written +
488 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
489 sbi->s_sectors_written_start) >> 1);
490
491 /* Get the number of kilobytes not written to disk to account
492 * for statistics and compare with a multiple of 16 MB. This
493 * is used to determine when the next superblock commit should
494 * occur (i.e. not more often than once per 16MB if there was
495 * less written in an hour).
496 */
497 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
498
499 if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
500 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
501 }
502
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)503 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
504 {
505 struct super_block *sb = journal->j_private;
506 struct ext4_sb_info *sbi = EXT4_SB(sb);
507 int error = is_journal_aborted(journal);
508 struct ext4_journal_cb_entry *jce;
509
510 BUG_ON(txn->t_state == T_FINISHED);
511
512 ext4_process_freed_data(sb, txn->t_tid);
513 ext4_maybe_update_superblock(sb);
514
515 spin_lock(&sbi->s_md_lock);
516 while (!list_empty(&txn->t_private_list)) {
517 jce = list_entry(txn->t_private_list.next,
518 struct ext4_journal_cb_entry, jce_list);
519 list_del_init(&jce->jce_list);
520 spin_unlock(&sbi->s_md_lock);
521 jce->jce_func(sb, jce, error);
522 spin_lock(&sbi->s_md_lock);
523 }
524 spin_unlock(&sbi->s_md_lock);
525 }
526
527 /*
528 * This writepage callback for write_cache_pages()
529 * takes care of a few cases after page cleaning.
530 *
531 * write_cache_pages() already checks for dirty pages
532 * and calls clear_page_dirty_for_io(), which we want,
533 * to write protect the pages.
534 *
535 * However, we may have to redirty a page (see below.)
536 */
ext4_journalled_writepage_callback(struct folio * folio,struct writeback_control * wbc,void * data)537 static int ext4_journalled_writepage_callback(struct folio *folio,
538 struct writeback_control *wbc,
539 void *data)
540 {
541 transaction_t *transaction = (transaction_t *) data;
542 struct buffer_head *bh, *head;
543 struct journal_head *jh;
544
545 bh = head = folio_buffers(folio);
546 do {
547 /*
548 * We have to redirty a page in these cases:
549 * 1) If buffer is dirty, it means the page was dirty because it
550 * contains a buffer that needs checkpointing. So the dirty bit
551 * needs to be preserved so that checkpointing writes the buffer
552 * properly.
553 * 2) If buffer is not part of the committing transaction
554 * (we may have just accidentally come across this buffer because
555 * inode range tracking is not exact) or if the currently running
556 * transaction already contains this buffer as well, dirty bit
557 * needs to be preserved so that the buffer gets writeprotected
558 * properly on running transaction's commit.
559 */
560 jh = bh2jh(bh);
561 if (buffer_dirty(bh) ||
562 (jh && (jh->b_transaction != transaction ||
563 jh->b_next_transaction))) {
564 folio_redirty_for_writepage(wbc, folio);
565 goto out;
566 }
567 } while ((bh = bh->b_this_page) != head);
568
569 out:
570 return AOP_WRITEPAGE_ACTIVATE;
571 }
572
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)573 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
574 {
575 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
576 struct writeback_control wbc = {
577 .sync_mode = WB_SYNC_ALL,
578 .nr_to_write = LONG_MAX,
579 .range_start = jinode->i_dirty_start,
580 .range_end = jinode->i_dirty_end,
581 };
582
583 return write_cache_pages(mapping, &wbc,
584 ext4_journalled_writepage_callback,
585 jinode->i_transaction);
586 }
587
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)588 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
589 {
590 int ret;
591
592 if (ext4_should_journal_data(jinode->i_vfs_inode))
593 ret = ext4_journalled_submit_inode_data_buffers(jinode);
594 else
595 ret = ext4_normal_submit_inode_data_buffers(jinode);
596 return ret;
597 }
598
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)599 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
600 {
601 int ret = 0;
602
603 if (!ext4_should_journal_data(jinode->i_vfs_inode))
604 ret = jbd2_journal_finish_inode_data_buffers(jinode);
605
606 return ret;
607 }
608
system_going_down(void)609 static bool system_going_down(void)
610 {
611 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
612 || system_state == SYSTEM_RESTART;
613 }
614
615 struct ext4_err_translation {
616 int code;
617 int errno;
618 };
619
620 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
621
622 static struct ext4_err_translation err_translation[] = {
623 EXT4_ERR_TRANSLATE(EIO),
624 EXT4_ERR_TRANSLATE(ENOMEM),
625 EXT4_ERR_TRANSLATE(EFSBADCRC),
626 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
627 EXT4_ERR_TRANSLATE(ENOSPC),
628 EXT4_ERR_TRANSLATE(ENOKEY),
629 EXT4_ERR_TRANSLATE(EROFS),
630 EXT4_ERR_TRANSLATE(EFBIG),
631 EXT4_ERR_TRANSLATE(EEXIST),
632 EXT4_ERR_TRANSLATE(ERANGE),
633 EXT4_ERR_TRANSLATE(EOVERFLOW),
634 EXT4_ERR_TRANSLATE(EBUSY),
635 EXT4_ERR_TRANSLATE(ENOTDIR),
636 EXT4_ERR_TRANSLATE(ENOTEMPTY),
637 EXT4_ERR_TRANSLATE(ESHUTDOWN),
638 EXT4_ERR_TRANSLATE(EFAULT),
639 };
640
ext4_errno_to_code(int errno)641 static int ext4_errno_to_code(int errno)
642 {
643 int i;
644
645 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
646 if (err_translation[i].errno == errno)
647 return err_translation[i].code;
648 return EXT4_ERR_UNKNOWN;
649 }
650
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)651 static void save_error_info(struct super_block *sb, int error,
652 __u32 ino, __u64 block,
653 const char *func, unsigned int line)
654 {
655 struct ext4_sb_info *sbi = EXT4_SB(sb);
656
657 /* We default to EFSCORRUPTED error... */
658 if (error == 0)
659 error = EFSCORRUPTED;
660
661 spin_lock(&sbi->s_error_lock);
662 sbi->s_add_error_count++;
663 sbi->s_last_error_code = error;
664 sbi->s_last_error_line = line;
665 sbi->s_last_error_ino = ino;
666 sbi->s_last_error_block = block;
667 sbi->s_last_error_func = func;
668 sbi->s_last_error_time = ktime_get_real_seconds();
669 if (!sbi->s_first_error_time) {
670 sbi->s_first_error_code = error;
671 sbi->s_first_error_line = line;
672 sbi->s_first_error_ino = ino;
673 sbi->s_first_error_block = block;
674 sbi->s_first_error_func = func;
675 sbi->s_first_error_time = sbi->s_last_error_time;
676 }
677 spin_unlock(&sbi->s_error_lock);
678 }
679
680 /* Deal with the reporting of failure conditions on a filesystem such as
681 * inconsistencies detected or read IO failures.
682 *
683 * On ext2, we can store the error state of the filesystem in the
684 * superblock. That is not possible on ext4, because we may have other
685 * write ordering constraints on the superblock which prevent us from
686 * writing it out straight away; and given that the journal is about to
687 * be aborted, we can't rely on the current, or future, transactions to
688 * write out the superblock safely.
689 *
690 * We'll just use the jbd2_journal_abort() error code to record an error in
691 * the journal instead. On recovery, the journal will complain about
692 * that error until we've noted it down and cleared it.
693 *
694 * If force_ro is set, we unconditionally force the filesystem into an
695 * ABORT|READONLY state, unless the error response on the fs has been set to
696 * panic in which case we take the easy way out and panic immediately. This is
697 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
698 * at a critical moment in log management.
699 */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)700 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
701 __u32 ino, __u64 block,
702 const char *func, unsigned int line)
703 {
704 journal_t *journal = EXT4_SB(sb)->s_journal;
705 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
706
707 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
708 if (test_opt(sb, WARN_ON_ERROR))
709 WARN_ON_ONCE(1);
710
711 if (!continue_fs && !sb_rdonly(sb)) {
712 set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
713 if (journal)
714 jbd2_journal_abort(journal, -EIO);
715 }
716
717 if (!bdev_read_only(sb->s_bdev)) {
718 save_error_info(sb, error, ino, block, func, line);
719 /*
720 * In case the fs should keep running, we need to writeout
721 * superblock through the journal. Due to lock ordering
722 * constraints, it may not be safe to do it right here so we
723 * defer superblock flushing to a workqueue. We just need to be
724 * careful when the journal is already shutting down. If we get
725 * here in that case, just update the sb directly as the last
726 * transaction won't commit anyway.
727 */
728 if (continue_fs && journal &&
729 !ext4_test_mount_flag(sb, EXT4_MF_JOURNAL_DESTROY))
730 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
731 else
732 ext4_commit_super(sb);
733 }
734
735 /*
736 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
737 * could panic during 'reboot -f' as the underlying device got already
738 * disabled.
739 */
740 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
741 panic("EXT4-fs (device %s): panic forced after error\n",
742 sb->s_id);
743 }
744
745 if (sb_rdonly(sb) || continue_fs)
746 return;
747
748 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
749 /*
750 * EXT4_FLAGS_SHUTDOWN was set which stops all filesystem
751 * modifications. We don't set SB_RDONLY because that requires
752 * sb->s_umount semaphore and setting it without proper remount
753 * procedure is confusing code such as freeze_super() leading to
754 * deadlocks and other problems.
755 */
756 }
757
update_super_work(struct work_struct * work)758 static void update_super_work(struct work_struct *work)
759 {
760 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
761 s_sb_upd_work);
762 journal_t *journal = sbi->s_journal;
763 handle_t *handle;
764
765 /*
766 * If the journal is still running, we have to write out superblock
767 * through the journal to avoid collisions of other journalled sb
768 * updates.
769 *
770 * We use directly jbd2 functions here to avoid recursing back into
771 * ext4 error handling code during handling of previous errors.
772 */
773 if (!sb_rdonly(sbi->s_sb) && journal) {
774 struct buffer_head *sbh = sbi->s_sbh;
775 bool call_notify_err = false;
776
777 handle = jbd2_journal_start(journal, 1);
778 if (IS_ERR(handle))
779 goto write_directly;
780 if (jbd2_journal_get_write_access(handle, sbh)) {
781 jbd2_journal_stop(handle);
782 goto write_directly;
783 }
784
785 if (sbi->s_add_error_count > 0)
786 call_notify_err = true;
787
788 ext4_update_super(sbi->s_sb);
789 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
790 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
791 "superblock detected");
792 clear_buffer_write_io_error(sbh);
793 set_buffer_uptodate(sbh);
794 }
795
796 if (jbd2_journal_dirty_metadata(handle, sbh)) {
797 jbd2_journal_stop(handle);
798 goto write_directly;
799 }
800 jbd2_journal_stop(handle);
801
802 if (call_notify_err)
803 ext4_notify_error_sysfs(sbi);
804
805 return;
806 }
807 write_directly:
808 /*
809 * Write through journal failed. Write sb directly to get error info
810 * out and hope for the best.
811 */
812 ext4_commit_super(sbi->s_sb);
813 ext4_notify_error_sysfs(sbi);
814 }
815
816 #define ext4_error_ratelimit(sb) \
817 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
818 "EXT4-fs error")
819
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)820 void __ext4_error(struct super_block *sb, const char *function,
821 unsigned int line, bool force_ro, int error, __u64 block,
822 const char *fmt, ...)
823 {
824 struct va_format vaf;
825 va_list args;
826
827 if (unlikely(ext4_forced_shutdown(sb)))
828 return;
829
830 trace_ext4_error(sb, function, line);
831 if (ext4_error_ratelimit(sb)) {
832 va_start(args, fmt);
833 vaf.fmt = fmt;
834 vaf.va = &args;
835 printk(KERN_CRIT
836 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
837 sb->s_id, function, line, current->comm, &vaf);
838 va_end(args);
839 }
840 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
841
842 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
843 }
844
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)845 void __ext4_error_inode(struct inode *inode, const char *function,
846 unsigned int line, ext4_fsblk_t block, int error,
847 const char *fmt, ...)
848 {
849 va_list args;
850 struct va_format vaf;
851
852 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
853 return;
854
855 trace_ext4_error(inode->i_sb, function, line);
856 if (ext4_error_ratelimit(inode->i_sb)) {
857 va_start(args, fmt);
858 vaf.fmt = fmt;
859 vaf.va = &args;
860 if (block)
861 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
862 "inode #%lu: block %llu: comm %s: %pV\n",
863 inode->i_sb->s_id, function, line, inode->i_ino,
864 block, current->comm, &vaf);
865 else
866 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
867 "inode #%lu: comm %s: %pV\n",
868 inode->i_sb->s_id, function, line, inode->i_ino,
869 current->comm, &vaf);
870 va_end(args);
871 }
872 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
873
874 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
875 function, line);
876 }
877
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)878 void __ext4_error_file(struct file *file, const char *function,
879 unsigned int line, ext4_fsblk_t block,
880 const char *fmt, ...)
881 {
882 va_list args;
883 struct va_format vaf;
884 struct inode *inode = file_inode(file);
885 char pathname[80], *path;
886
887 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
888 return;
889
890 trace_ext4_error(inode->i_sb, function, line);
891 if (ext4_error_ratelimit(inode->i_sb)) {
892 path = file_path(file, pathname, sizeof(pathname));
893 if (IS_ERR(path))
894 path = "(unknown)";
895 va_start(args, fmt);
896 vaf.fmt = fmt;
897 vaf.va = &args;
898 if (block)
899 printk(KERN_CRIT
900 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
901 "block %llu: comm %s: path %s: %pV\n",
902 inode->i_sb->s_id, function, line, inode->i_ino,
903 block, current->comm, path, &vaf);
904 else
905 printk(KERN_CRIT
906 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
907 "comm %s: path %s: %pV\n",
908 inode->i_sb->s_id, function, line, inode->i_ino,
909 current->comm, path, &vaf);
910 va_end(args);
911 }
912 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
913
914 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
915 function, line);
916 }
917
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])918 const char *ext4_decode_error(struct super_block *sb, int errno,
919 char nbuf[16])
920 {
921 char *errstr = NULL;
922
923 switch (errno) {
924 case -EFSCORRUPTED:
925 errstr = "Corrupt filesystem";
926 break;
927 case -EFSBADCRC:
928 errstr = "Filesystem failed CRC";
929 break;
930 case -EIO:
931 errstr = "IO failure";
932 break;
933 case -ENOMEM:
934 errstr = "Out of memory";
935 break;
936 case -EROFS:
937 if (!sb || (EXT4_SB(sb)->s_journal &&
938 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
939 errstr = "Journal has aborted";
940 else
941 errstr = "Readonly filesystem";
942 break;
943 default:
944 /* If the caller passed in an extra buffer for unknown
945 * errors, textualise them now. Else we just return
946 * NULL. */
947 if (nbuf) {
948 /* Check for truncated error codes... */
949 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
950 errstr = nbuf;
951 }
952 break;
953 }
954
955 return errstr;
956 }
957
958 /* __ext4_std_error decodes expected errors from journaling functions
959 * automatically and invokes the appropriate error response. */
960
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)961 void __ext4_std_error(struct super_block *sb, const char *function,
962 unsigned int line, int errno)
963 {
964 char nbuf[16];
965 const char *errstr;
966
967 if (unlikely(ext4_forced_shutdown(sb)))
968 return;
969
970 /* Special case: if the error is EROFS, and we're not already
971 * inside a transaction, then there's really no point in logging
972 * an error. */
973 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
974 return;
975
976 if (ext4_error_ratelimit(sb)) {
977 errstr = ext4_decode_error(sb, errno, nbuf);
978 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
979 sb->s_id, function, line, errstr);
980 }
981 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
982
983 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
984 }
985
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)986 void __ext4_msg(struct super_block *sb,
987 const char *prefix, const char *fmt, ...)
988 {
989 struct va_format vaf;
990 va_list args;
991
992 if (sb) {
993 atomic_inc(&EXT4_SB(sb)->s_msg_count);
994 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
995 "EXT4-fs"))
996 return;
997 }
998
999 va_start(args, fmt);
1000 vaf.fmt = fmt;
1001 vaf.va = &args;
1002 if (sb)
1003 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
1004 else
1005 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1006 va_end(args);
1007 }
1008
ext4_warning_ratelimit(struct super_block * sb)1009 static int ext4_warning_ratelimit(struct super_block *sb)
1010 {
1011 atomic_inc(&EXT4_SB(sb)->s_warning_count);
1012 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1013 "EXT4-fs warning");
1014 }
1015
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)1016 void __ext4_warning(struct super_block *sb, const char *function,
1017 unsigned int line, const char *fmt, ...)
1018 {
1019 struct va_format vaf;
1020 va_list args;
1021
1022 if (!ext4_warning_ratelimit(sb))
1023 return;
1024
1025 va_start(args, fmt);
1026 vaf.fmt = fmt;
1027 vaf.va = &args;
1028 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1029 sb->s_id, function, line, &vaf);
1030 va_end(args);
1031 }
1032
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)1033 void __ext4_warning_inode(const struct inode *inode, const char *function,
1034 unsigned int line, const char *fmt, ...)
1035 {
1036 struct va_format vaf;
1037 va_list args;
1038
1039 if (!ext4_warning_ratelimit(inode->i_sb))
1040 return;
1041
1042 va_start(args, fmt);
1043 vaf.fmt = fmt;
1044 vaf.va = &args;
1045 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1046 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1047 function, line, inode->i_ino, current->comm, &vaf);
1048 va_end(args);
1049 }
1050
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)1051 void __ext4_grp_locked_error(const char *function, unsigned int line,
1052 struct super_block *sb, ext4_group_t grp,
1053 unsigned long ino, ext4_fsblk_t block,
1054 const char *fmt, ...)
1055 __releases(bitlock)
1056 __acquires(bitlock)
1057 {
1058 struct va_format vaf;
1059 va_list args;
1060
1061 if (unlikely(ext4_forced_shutdown(sb)))
1062 return;
1063
1064 trace_ext4_error(sb, function, line);
1065 if (ext4_error_ratelimit(sb)) {
1066 va_start(args, fmt);
1067 vaf.fmt = fmt;
1068 vaf.va = &args;
1069 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1070 sb->s_id, function, line, grp);
1071 if (ino)
1072 printk(KERN_CONT "inode %lu: ", ino);
1073 if (block)
1074 printk(KERN_CONT "block %llu:",
1075 (unsigned long long) block);
1076 printk(KERN_CONT "%pV\n", &vaf);
1077 va_end(args);
1078 }
1079
1080 if (test_opt(sb, ERRORS_CONT)) {
1081 if (test_opt(sb, WARN_ON_ERROR))
1082 WARN_ON_ONCE(1);
1083 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1084 if (!bdev_read_only(sb->s_bdev)) {
1085 save_error_info(sb, EFSCORRUPTED, ino, block, function,
1086 line);
1087 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1088 }
1089 return;
1090 }
1091 ext4_unlock_group(sb, grp);
1092 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1093 /*
1094 * We only get here in the ERRORS_RO case; relocking the group
1095 * may be dangerous, but nothing bad will happen since the
1096 * filesystem will have already been marked read/only and the
1097 * journal has been aborted. We return 1 as a hint to callers
1098 * who might what to use the return value from
1099 * ext4_grp_locked_error() to distinguish between the
1100 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1101 * aggressively from the ext4 function in question, with a
1102 * more appropriate error code.
1103 */
1104 ext4_lock_group(sb, grp);
1105 return;
1106 }
1107
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1108 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1109 ext4_group_t group,
1110 unsigned int flags)
1111 {
1112 struct ext4_sb_info *sbi = EXT4_SB(sb);
1113 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1114 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1115 int ret;
1116
1117 if (!grp || !gdp)
1118 return;
1119 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1120 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1121 &grp->bb_state);
1122 if (!ret)
1123 percpu_counter_sub(&sbi->s_freeclusters_counter,
1124 grp->bb_free);
1125 }
1126
1127 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1128 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1129 &grp->bb_state);
1130 if (!ret && gdp) {
1131 int count;
1132
1133 count = ext4_free_inodes_count(sb, gdp);
1134 percpu_counter_sub(&sbi->s_freeinodes_counter,
1135 count);
1136 }
1137 }
1138 }
1139
ext4_update_dynamic_rev(struct super_block * sb)1140 void ext4_update_dynamic_rev(struct super_block *sb)
1141 {
1142 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1143
1144 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1145 return;
1146
1147 ext4_warning(sb,
1148 "updating to rev %d because of new feature flag, "
1149 "running e2fsck is recommended",
1150 EXT4_DYNAMIC_REV);
1151
1152 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1153 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1154 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1155 /* leave es->s_feature_*compat flags alone */
1156 /* es->s_uuid will be set by e2fsck if empty */
1157
1158 /*
1159 * The rest of the superblock fields should be zero, and if not it
1160 * means they are likely already in use, so leave them alone. We
1161 * can leave it up to e2fsck to clean up any inconsistencies there.
1162 */
1163 }
1164
orphan_list_entry(struct list_head * l)1165 static inline struct inode *orphan_list_entry(struct list_head *l)
1166 {
1167 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1168 }
1169
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1170 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1171 {
1172 struct list_head *l;
1173
1174 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1175 le32_to_cpu(sbi->s_es->s_last_orphan));
1176
1177 printk(KERN_ERR "sb_info orphan list:\n");
1178 list_for_each(l, &sbi->s_orphan) {
1179 struct inode *inode = orphan_list_entry(l);
1180 printk(KERN_ERR " "
1181 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1182 inode->i_sb->s_id, inode->i_ino, inode,
1183 inode->i_mode, inode->i_nlink,
1184 NEXT_ORPHAN(inode));
1185 }
1186 }
1187
1188 #ifdef CONFIG_QUOTA
1189 static int ext4_quota_off(struct super_block *sb, int type);
1190
ext4_quotas_off(struct super_block * sb,int type)1191 static inline void ext4_quotas_off(struct super_block *sb, int type)
1192 {
1193 BUG_ON(type > EXT4_MAXQUOTAS);
1194
1195 /* Use our quota_off function to clear inode flags etc. */
1196 for (type--; type >= 0; type--)
1197 ext4_quota_off(sb, type);
1198 }
1199
1200 /*
1201 * This is a helper function which is used in the mount/remount
1202 * codepaths (which holds s_umount) to fetch the quota file name.
1203 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1204 static inline char *get_qf_name(struct super_block *sb,
1205 struct ext4_sb_info *sbi,
1206 int type)
1207 {
1208 return rcu_dereference_protected(sbi->s_qf_names[type],
1209 lockdep_is_held(&sb->s_umount));
1210 }
1211 #else
ext4_quotas_off(struct super_block * sb,int type)1212 static inline void ext4_quotas_off(struct super_block *sb, int type)
1213 {
1214 }
1215 #endif
1216
ext4_percpu_param_init(struct ext4_sb_info * sbi)1217 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1218 {
1219 ext4_fsblk_t block;
1220 int err;
1221
1222 block = ext4_count_free_clusters(sbi->s_sb);
1223 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1224 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1225 GFP_KERNEL);
1226 if (!err) {
1227 unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1228 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1229 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1230 GFP_KERNEL);
1231 }
1232 if (!err)
1233 err = percpu_counter_init(&sbi->s_dirs_counter,
1234 ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1235 if (!err)
1236 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1237 GFP_KERNEL);
1238 if (!err)
1239 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1240 GFP_KERNEL);
1241 if (!err)
1242 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1243
1244 if (err)
1245 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1246
1247 return err;
1248 }
1249
ext4_percpu_param_destroy(struct ext4_sb_info * sbi)1250 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1251 {
1252 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1253 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1254 percpu_counter_destroy(&sbi->s_dirs_counter);
1255 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1256 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1257 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1258 }
1259
ext4_group_desc_free(struct ext4_sb_info * sbi)1260 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1261 {
1262 struct buffer_head **group_desc;
1263 int i;
1264
1265 rcu_read_lock();
1266 group_desc = rcu_dereference(sbi->s_group_desc);
1267 for (i = 0; i < sbi->s_gdb_count; i++)
1268 brelse(group_desc[i]);
1269 kvfree(group_desc);
1270 rcu_read_unlock();
1271 }
1272
ext4_flex_groups_free(struct ext4_sb_info * sbi)1273 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1274 {
1275 struct flex_groups **flex_groups;
1276 int i;
1277
1278 rcu_read_lock();
1279 flex_groups = rcu_dereference(sbi->s_flex_groups);
1280 if (flex_groups) {
1281 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1282 kvfree(flex_groups[i]);
1283 kvfree(flex_groups);
1284 }
1285 rcu_read_unlock();
1286 }
1287
ext4_put_super(struct super_block * sb)1288 static void ext4_put_super(struct super_block *sb)
1289 {
1290 struct ext4_sb_info *sbi = EXT4_SB(sb);
1291 struct ext4_super_block *es = sbi->s_es;
1292 int aborted = 0;
1293 int err;
1294
1295 /*
1296 * Unregister sysfs before destroying jbd2 journal.
1297 * Since we could still access attr_journal_task attribute via sysfs
1298 * path which could have sbi->s_journal->j_task as NULL
1299 * Unregister sysfs before flush sbi->s_sb_upd_work.
1300 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1301 * read metadata verify failed then will queue error work.
1302 * update_super_work will call start_this_handle may trigger
1303 * BUG_ON.
1304 */
1305 ext4_unregister_sysfs(sb);
1306
1307 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1308 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1309 &sb->s_uuid);
1310
1311 ext4_unregister_li_request(sb);
1312 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1313
1314 destroy_workqueue(sbi->rsv_conversion_wq);
1315 ext4_release_orphan_info(sb);
1316
1317 if (sbi->s_journal) {
1318 aborted = is_journal_aborted(sbi->s_journal);
1319 err = ext4_journal_destroy(sbi, sbi->s_journal);
1320 if ((err < 0) && !aborted) {
1321 ext4_abort(sb, -err, "Couldn't clean up the journal");
1322 }
1323 } else
1324 flush_work(&sbi->s_sb_upd_work);
1325
1326 ext4_es_unregister_shrinker(sbi);
1327 timer_shutdown_sync(&sbi->s_err_report);
1328 ext4_release_system_zone(sb);
1329 ext4_mb_release(sb);
1330 ext4_ext_release(sb);
1331
1332 if (!sb_rdonly(sb) && !aborted) {
1333 ext4_clear_feature_journal_needs_recovery(sb);
1334 ext4_clear_feature_orphan_present(sb);
1335 es->s_state = cpu_to_le16(sbi->s_mount_state);
1336 }
1337 if (!sb_rdonly(sb))
1338 ext4_commit_super(sb);
1339
1340 ext4_group_desc_free(sbi);
1341 ext4_flex_groups_free(sbi);
1342
1343 WARN_ON_ONCE(!(sbi->s_mount_state & EXT4_ERROR_FS) &&
1344 percpu_counter_sum(&sbi->s_dirtyclusters_counter));
1345 ext4_percpu_param_destroy(sbi);
1346 #ifdef CONFIG_QUOTA
1347 for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1348 kfree(get_qf_name(sb, sbi, i));
1349 #endif
1350
1351 /* Debugging code just in case the in-memory inode orphan list
1352 * isn't empty. The on-disk one can be non-empty if we've
1353 * detected an error and taken the fs readonly, but the
1354 * in-memory list had better be clean by this point. */
1355 if (!list_empty(&sbi->s_orphan))
1356 dump_orphan_list(sb, sbi);
1357 ASSERT(list_empty(&sbi->s_orphan));
1358
1359 sync_blockdev(sb->s_bdev);
1360 invalidate_bdev(sb->s_bdev);
1361 if (sbi->s_journal_bdev_file) {
1362 /*
1363 * Invalidate the journal device's buffers. We don't want them
1364 * floating about in memory - the physical journal device may
1365 * hotswapped, and it breaks the `ro-after' testing code.
1366 */
1367 sync_blockdev(file_bdev(sbi->s_journal_bdev_file));
1368 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
1369 }
1370
1371 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1372 sbi->s_ea_inode_cache = NULL;
1373
1374 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1375 sbi->s_ea_block_cache = NULL;
1376
1377 ext4_stop_mmpd(sbi);
1378
1379 brelse(sbi->s_sbh);
1380 sb->s_fs_info = NULL;
1381 /*
1382 * Now that we are completely done shutting down the
1383 * superblock, we need to actually destroy the kobject.
1384 */
1385 kobject_put(&sbi->s_kobj);
1386 wait_for_completion(&sbi->s_kobj_unregister);
1387 if (sbi->s_chksum_driver)
1388 crypto_free_shash(sbi->s_chksum_driver);
1389 kfree(sbi->s_blockgroup_lock);
1390 fs_put_dax(sbi->s_daxdev, NULL);
1391 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1392 #if IS_ENABLED(CONFIG_UNICODE)
1393 utf8_unload(sb->s_encoding);
1394 #endif
1395 kfree(sbi);
1396 }
1397
1398 static struct kmem_cache *ext4_inode_cachep;
1399
1400 /*
1401 * Called inside transaction, so use GFP_NOFS
1402 */
ext4_alloc_inode(struct super_block * sb)1403 static struct inode *ext4_alloc_inode(struct super_block *sb)
1404 {
1405 struct ext4_inode_info *ei;
1406
1407 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1408 if (!ei)
1409 return NULL;
1410
1411 inode_set_iversion(&ei->vfs_inode, 1);
1412 ei->i_flags = 0;
1413 spin_lock_init(&ei->i_raw_lock);
1414 ei->i_prealloc_node = RB_ROOT;
1415 atomic_set(&ei->i_prealloc_active, 0);
1416 rwlock_init(&ei->i_prealloc_lock);
1417 ext4_es_init_tree(&ei->i_es_tree);
1418 rwlock_init(&ei->i_es_lock);
1419 INIT_LIST_HEAD(&ei->i_es_list);
1420 ei->i_es_all_nr = 0;
1421 ei->i_es_shk_nr = 0;
1422 ei->i_es_shrink_lblk = 0;
1423 ei->i_reserved_data_blocks = 0;
1424 spin_lock_init(&(ei->i_block_reservation_lock));
1425 ext4_init_pending_tree(&ei->i_pending_tree);
1426 #ifdef CONFIG_QUOTA
1427 ei->i_reserved_quota = 0;
1428 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1429 #endif
1430 ei->jinode = NULL;
1431 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1432 spin_lock_init(&ei->i_completed_io_lock);
1433 ei->i_sync_tid = 0;
1434 ei->i_datasync_tid = 0;
1435 atomic_set(&ei->i_unwritten, 0);
1436 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1437 ext4_fc_init_inode(&ei->vfs_inode);
1438 mutex_init(&ei->i_fc_lock);
1439 return &ei->vfs_inode;
1440 }
1441
ext4_drop_inode(struct inode * inode)1442 static int ext4_drop_inode(struct inode *inode)
1443 {
1444 int drop = generic_drop_inode(inode);
1445
1446 if (!drop)
1447 drop = fscrypt_drop_inode(inode);
1448
1449 trace_ext4_drop_inode(inode, drop);
1450 return drop;
1451 }
1452
ext4_free_in_core_inode(struct inode * inode)1453 static void ext4_free_in_core_inode(struct inode *inode)
1454 {
1455 fscrypt_free_inode(inode);
1456 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1457 pr_warn("%s: inode %ld still in fc list",
1458 __func__, inode->i_ino);
1459 }
1460 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1461 }
1462
ext4_destroy_inode(struct inode * inode)1463 static void ext4_destroy_inode(struct inode *inode)
1464 {
1465 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1466 ext4_msg(inode->i_sb, KERN_ERR,
1467 "Inode %lu (%p): orphan list check failed!",
1468 inode->i_ino, EXT4_I(inode));
1469 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1470 EXT4_I(inode), sizeof(struct ext4_inode_info),
1471 true);
1472 dump_stack();
1473 }
1474
1475 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ERROR_FS) &&
1476 WARN_ON_ONCE(EXT4_I(inode)->i_reserved_data_blocks))
1477 ext4_msg(inode->i_sb, KERN_ERR,
1478 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1479 inode->i_ino, EXT4_I(inode),
1480 EXT4_I(inode)->i_reserved_data_blocks);
1481 }
1482
ext4_shutdown(struct super_block * sb)1483 static void ext4_shutdown(struct super_block *sb)
1484 {
1485 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1486 }
1487
init_once(void * foo)1488 static void init_once(void *foo)
1489 {
1490 struct ext4_inode_info *ei = foo;
1491
1492 INIT_LIST_HEAD(&ei->i_orphan);
1493 init_rwsem(&ei->xattr_sem);
1494 init_rwsem(&ei->i_data_sem);
1495 inode_init_once(&ei->vfs_inode);
1496 ext4_fc_init_inode(&ei->vfs_inode);
1497 }
1498
init_inodecache(void)1499 static int __init init_inodecache(void)
1500 {
1501 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1502 sizeof(struct ext4_inode_info), 0,
1503 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
1504 offsetof(struct ext4_inode_info, i_data),
1505 sizeof_field(struct ext4_inode_info, i_data),
1506 init_once);
1507 if (ext4_inode_cachep == NULL)
1508 return -ENOMEM;
1509 return 0;
1510 }
1511
destroy_inodecache(void)1512 static void destroy_inodecache(void)
1513 {
1514 /*
1515 * Make sure all delayed rcu free inodes are flushed before we
1516 * destroy cache.
1517 */
1518 rcu_barrier();
1519 kmem_cache_destroy(ext4_inode_cachep);
1520 }
1521
ext4_clear_inode(struct inode * inode)1522 void ext4_clear_inode(struct inode *inode)
1523 {
1524 ext4_fc_del(inode);
1525 invalidate_inode_buffers(inode);
1526 clear_inode(inode);
1527 ext4_discard_preallocations(inode);
1528 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1529 dquot_drop(inode);
1530 if (EXT4_I(inode)->jinode) {
1531 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1532 EXT4_I(inode)->jinode);
1533 jbd2_free_inode(EXT4_I(inode)->jinode);
1534 EXT4_I(inode)->jinode = NULL;
1535 }
1536 fscrypt_put_encryption_info(inode);
1537 fsverity_cleanup_inode(inode);
1538 }
1539
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1540 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1541 u64 ino, u32 generation)
1542 {
1543 struct inode *inode;
1544
1545 /*
1546 * Currently we don't know the generation for parent directory, so
1547 * a generation of 0 means "accept any"
1548 */
1549 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1550 if (IS_ERR(inode))
1551 return ERR_CAST(inode);
1552 if (generation && inode->i_generation != generation) {
1553 iput(inode);
1554 return ERR_PTR(-ESTALE);
1555 }
1556
1557 return inode;
1558 }
1559
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1560 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1561 int fh_len, int fh_type)
1562 {
1563 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1564 ext4_nfs_get_inode);
1565 }
1566
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1567 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1568 int fh_len, int fh_type)
1569 {
1570 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1571 ext4_nfs_get_inode);
1572 }
1573
ext4_nfs_commit_metadata(struct inode * inode)1574 static int ext4_nfs_commit_metadata(struct inode *inode)
1575 {
1576 struct writeback_control wbc = {
1577 .sync_mode = WB_SYNC_ALL
1578 };
1579
1580 trace_ext4_nfs_commit_metadata(inode);
1581 return ext4_write_inode(inode, &wbc);
1582 }
1583
1584 #ifdef CONFIG_QUOTA
1585 static const char * const quotatypes[] = INITQFNAMES;
1586 #define QTYPE2NAME(t) (quotatypes[t])
1587
1588 static int ext4_write_dquot(struct dquot *dquot);
1589 static int ext4_acquire_dquot(struct dquot *dquot);
1590 static int ext4_release_dquot(struct dquot *dquot);
1591 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1592 static int ext4_write_info(struct super_block *sb, int type);
1593 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1594 const struct path *path);
1595 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1596 size_t len, loff_t off);
1597 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1598 const char *data, size_t len, loff_t off);
1599 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1600 unsigned int flags);
1601
ext4_get_dquots(struct inode * inode)1602 static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1603 {
1604 return EXT4_I(inode)->i_dquot;
1605 }
1606
1607 static const struct dquot_operations ext4_quota_operations = {
1608 .get_reserved_space = ext4_get_reserved_space,
1609 .write_dquot = ext4_write_dquot,
1610 .acquire_dquot = ext4_acquire_dquot,
1611 .release_dquot = ext4_release_dquot,
1612 .mark_dirty = ext4_mark_dquot_dirty,
1613 .write_info = ext4_write_info,
1614 .alloc_dquot = dquot_alloc,
1615 .destroy_dquot = dquot_destroy,
1616 .get_projid = ext4_get_projid,
1617 .get_inode_usage = ext4_get_inode_usage,
1618 .get_next_id = dquot_get_next_id,
1619 };
1620
1621 static const struct quotactl_ops ext4_qctl_operations = {
1622 .quota_on = ext4_quota_on,
1623 .quota_off = ext4_quota_off,
1624 .quota_sync = dquot_quota_sync,
1625 .get_state = dquot_get_state,
1626 .set_info = dquot_set_dqinfo,
1627 .get_dqblk = dquot_get_dqblk,
1628 .set_dqblk = dquot_set_dqblk,
1629 .get_nextdqblk = dquot_get_next_dqblk,
1630 };
1631 #endif
1632
1633 static const struct super_operations ext4_sops = {
1634 .alloc_inode = ext4_alloc_inode,
1635 .free_inode = ext4_free_in_core_inode,
1636 .destroy_inode = ext4_destroy_inode,
1637 .write_inode = ext4_write_inode,
1638 .dirty_inode = ext4_dirty_inode,
1639 .drop_inode = ext4_drop_inode,
1640 .evict_inode = ext4_evict_inode,
1641 .put_super = ext4_put_super,
1642 .sync_fs = ext4_sync_fs,
1643 .freeze_fs = ext4_freeze,
1644 .unfreeze_fs = ext4_unfreeze,
1645 .statfs = ext4_statfs,
1646 .show_options = ext4_show_options,
1647 .shutdown = ext4_shutdown,
1648 #ifdef CONFIG_QUOTA
1649 .quota_read = ext4_quota_read,
1650 .quota_write = ext4_quota_write,
1651 .get_dquots = ext4_get_dquots,
1652 #endif
1653 };
1654
1655 static const struct export_operations ext4_export_ops = {
1656 .encode_fh = generic_encode_ino32_fh,
1657 .fh_to_dentry = ext4_fh_to_dentry,
1658 .fh_to_parent = ext4_fh_to_parent,
1659 .get_parent = ext4_get_parent,
1660 .commit_metadata = ext4_nfs_commit_metadata,
1661 };
1662
1663 enum {
1664 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1665 Opt_resgid, Opt_resuid, Opt_sb,
1666 Opt_nouid32, Opt_debug, Opt_removed,
1667 Opt_user_xattr, Opt_acl,
1668 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1669 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1670 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1671 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1672 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1673 Opt_inlinecrypt,
1674 Opt_usrjquota, Opt_grpjquota, Opt_quota,
1675 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1676 Opt_usrquota, Opt_grpquota, Opt_prjquota,
1677 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1678 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1679 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1680 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1681 Opt_inode_readahead_blks, Opt_journal_ioprio,
1682 Opt_dioread_nolock, Opt_dioread_lock,
1683 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1684 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1685 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1686 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1687 #ifdef CONFIG_EXT4_DEBUG
1688 Opt_fc_debug_max_replay, Opt_fc_debug_force
1689 #endif
1690 };
1691
1692 static const struct constant_table ext4_param_errors[] = {
1693 {"continue", EXT4_MOUNT_ERRORS_CONT},
1694 {"panic", EXT4_MOUNT_ERRORS_PANIC},
1695 {"remount-ro", EXT4_MOUNT_ERRORS_RO},
1696 {}
1697 };
1698
1699 static const struct constant_table ext4_param_data[] = {
1700 {"journal", EXT4_MOUNT_JOURNAL_DATA},
1701 {"ordered", EXT4_MOUNT_ORDERED_DATA},
1702 {"writeback", EXT4_MOUNT_WRITEBACK_DATA},
1703 {}
1704 };
1705
1706 static const struct constant_table ext4_param_data_err[] = {
1707 {"abort", Opt_data_err_abort},
1708 {"ignore", Opt_data_err_ignore},
1709 {}
1710 };
1711
1712 static const struct constant_table ext4_param_jqfmt[] = {
1713 {"vfsold", QFMT_VFS_OLD},
1714 {"vfsv0", QFMT_VFS_V0},
1715 {"vfsv1", QFMT_VFS_V1},
1716 {}
1717 };
1718
1719 static const struct constant_table ext4_param_dax[] = {
1720 {"always", Opt_dax_always},
1721 {"inode", Opt_dax_inode},
1722 {"never", Opt_dax_never},
1723 {}
1724 };
1725
1726 /*
1727 * Mount option specification
1728 * We don't use fsparam_flag_no because of the way we set the
1729 * options and the way we show them in _ext4_show_options(). To
1730 * keep the changes to a minimum, let's keep the negative options
1731 * separate for now.
1732 */
1733 static const struct fs_parameter_spec ext4_param_specs[] = {
1734 fsparam_flag ("bsddf", Opt_bsd_df),
1735 fsparam_flag ("minixdf", Opt_minix_df),
1736 fsparam_flag ("grpid", Opt_grpid),
1737 fsparam_flag ("bsdgroups", Opt_grpid),
1738 fsparam_flag ("nogrpid", Opt_nogrpid),
1739 fsparam_flag ("sysvgroups", Opt_nogrpid),
1740 fsparam_gid ("resgid", Opt_resgid),
1741 fsparam_uid ("resuid", Opt_resuid),
1742 fsparam_u32 ("sb", Opt_sb),
1743 fsparam_enum ("errors", Opt_errors, ext4_param_errors),
1744 fsparam_flag ("nouid32", Opt_nouid32),
1745 fsparam_flag ("debug", Opt_debug),
1746 fsparam_flag ("oldalloc", Opt_removed),
1747 fsparam_flag ("orlov", Opt_removed),
1748 fsparam_flag ("user_xattr", Opt_user_xattr),
1749 fsparam_flag ("acl", Opt_acl),
1750 fsparam_flag ("norecovery", Opt_noload),
1751 fsparam_flag ("noload", Opt_noload),
1752 fsparam_flag ("bh", Opt_removed),
1753 fsparam_flag ("nobh", Opt_removed),
1754 fsparam_u32 ("commit", Opt_commit),
1755 fsparam_u32 ("min_batch_time", Opt_min_batch_time),
1756 fsparam_u32 ("max_batch_time", Opt_max_batch_time),
1757 fsparam_u32 ("journal_dev", Opt_journal_dev),
1758 fsparam_bdev ("journal_path", Opt_journal_path),
1759 fsparam_flag ("journal_checksum", Opt_journal_checksum),
1760 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
1761 fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
1762 fsparam_flag ("abort", Opt_abort),
1763 fsparam_enum ("data", Opt_data, ext4_param_data),
1764 fsparam_enum ("data_err", Opt_data_err,
1765 ext4_param_data_err),
1766 fsparam_string_empty
1767 ("usrjquota", Opt_usrjquota),
1768 fsparam_string_empty
1769 ("grpjquota", Opt_grpjquota),
1770 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
1771 fsparam_flag ("grpquota", Opt_grpquota),
1772 fsparam_flag ("quota", Opt_quota),
1773 fsparam_flag ("noquota", Opt_noquota),
1774 fsparam_flag ("usrquota", Opt_usrquota),
1775 fsparam_flag ("prjquota", Opt_prjquota),
1776 fsparam_flag ("barrier", Opt_barrier),
1777 fsparam_u32 ("barrier", Opt_barrier),
1778 fsparam_flag ("nobarrier", Opt_nobarrier),
1779 fsparam_flag ("i_version", Opt_removed),
1780 fsparam_flag ("dax", Opt_dax),
1781 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
1782 fsparam_u32 ("stripe", Opt_stripe),
1783 fsparam_flag ("delalloc", Opt_delalloc),
1784 fsparam_flag ("nodelalloc", Opt_nodelalloc),
1785 fsparam_flag ("warn_on_error", Opt_warn_on_error),
1786 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
1787 fsparam_u32 ("debug_want_extra_isize",
1788 Opt_debug_want_extra_isize),
1789 fsparam_flag ("mblk_io_submit", Opt_removed),
1790 fsparam_flag ("nomblk_io_submit", Opt_removed),
1791 fsparam_flag ("block_validity", Opt_block_validity),
1792 fsparam_flag ("noblock_validity", Opt_noblock_validity),
1793 fsparam_u32 ("inode_readahead_blks",
1794 Opt_inode_readahead_blks),
1795 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
1796 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
1797 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
1798 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
1799 fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
1800 fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
1801 fsparam_flag ("dioread_lock", Opt_dioread_lock),
1802 fsparam_flag ("discard", Opt_discard),
1803 fsparam_flag ("nodiscard", Opt_nodiscard),
1804 fsparam_u32 ("init_itable", Opt_init_itable),
1805 fsparam_flag ("init_itable", Opt_init_itable),
1806 fsparam_flag ("noinit_itable", Opt_noinit_itable),
1807 #ifdef CONFIG_EXT4_DEBUG
1808 fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
1809 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1810 #endif
1811 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
1812 fsparam_flag ("test_dummy_encryption",
1813 Opt_test_dummy_encryption),
1814 fsparam_string ("test_dummy_encryption",
1815 Opt_test_dummy_encryption),
1816 fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
1817 fsparam_flag ("nombcache", Opt_nombcache),
1818 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
1819 fsparam_flag ("prefetch_block_bitmaps",
1820 Opt_removed),
1821 fsparam_flag ("no_prefetch_block_bitmaps",
1822 Opt_no_prefetch_block_bitmaps),
1823 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
1824 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
1825 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
1826 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
1827 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
1828 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
1829 {}
1830 };
1831
1832 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1833
1834 #define MOPT_SET 0x0001
1835 #define MOPT_CLEAR 0x0002
1836 #define MOPT_NOSUPPORT 0x0004
1837 #define MOPT_EXPLICIT 0x0008
1838 #ifdef CONFIG_QUOTA
1839 #define MOPT_Q 0
1840 #define MOPT_QFMT 0x0010
1841 #else
1842 #define MOPT_Q MOPT_NOSUPPORT
1843 #define MOPT_QFMT MOPT_NOSUPPORT
1844 #endif
1845 #define MOPT_NO_EXT2 0x0020
1846 #define MOPT_NO_EXT3 0x0040
1847 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1848 #define MOPT_SKIP 0x0080
1849 #define MOPT_2 0x0100
1850
1851 static const struct mount_opts {
1852 int token;
1853 int mount_opt;
1854 int flags;
1855 } ext4_mount_opts[] = {
1856 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1857 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1858 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1859 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1860 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1861 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1862 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1863 MOPT_EXT4_ONLY | MOPT_SET},
1864 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1865 MOPT_EXT4_ONLY | MOPT_CLEAR},
1866 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1867 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1868 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1869 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1870 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1871 MOPT_EXT4_ONLY | MOPT_CLEAR},
1872 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1873 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1874 {Opt_commit, 0, MOPT_NO_EXT2},
1875 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1876 MOPT_EXT4_ONLY | MOPT_CLEAR},
1877 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1878 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1879 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1880 EXT4_MOUNT_JOURNAL_CHECKSUM),
1881 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1882 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1883 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1884 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1885 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1886 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1887 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1888 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1889 {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1890 {Opt_journal_dev, 0, MOPT_NO_EXT2},
1891 {Opt_journal_path, 0, MOPT_NO_EXT2},
1892 {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1893 {Opt_data, 0, MOPT_NO_EXT2},
1894 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1895 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1896 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1897 #else
1898 {Opt_acl, 0, MOPT_NOSUPPORT},
1899 #endif
1900 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1901 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1902 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1903 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1904 MOPT_SET | MOPT_Q},
1905 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1906 MOPT_SET | MOPT_Q},
1907 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1908 MOPT_SET | MOPT_Q},
1909 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1910 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1911 MOPT_CLEAR | MOPT_Q},
1912 {Opt_usrjquota, 0, MOPT_Q},
1913 {Opt_grpjquota, 0, MOPT_Q},
1914 {Opt_jqfmt, 0, MOPT_QFMT},
1915 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1916 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1917 MOPT_SET},
1918 #ifdef CONFIG_EXT4_DEBUG
1919 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1920 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1921 #endif
1922 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1923 {Opt_err, 0, 0}
1924 };
1925
1926 #if IS_ENABLED(CONFIG_UNICODE)
1927 static const struct ext4_sb_encodings {
1928 __u16 magic;
1929 char *name;
1930 unsigned int version;
1931 } ext4_sb_encoding_map[] = {
1932 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1933 };
1934
1935 static const struct ext4_sb_encodings *
ext4_sb_read_encoding(const struct ext4_super_block * es)1936 ext4_sb_read_encoding(const struct ext4_super_block *es)
1937 {
1938 __u16 magic = le16_to_cpu(es->s_encoding);
1939 int i;
1940
1941 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1942 if (magic == ext4_sb_encoding_map[i].magic)
1943 return &ext4_sb_encoding_map[i];
1944
1945 return NULL;
1946 }
1947 #endif
1948
1949 #define EXT4_SPEC_JQUOTA (1 << 0)
1950 #define EXT4_SPEC_JQFMT (1 << 1)
1951 #define EXT4_SPEC_DATAJ (1 << 2)
1952 #define EXT4_SPEC_SB_BLOCK (1 << 3)
1953 #define EXT4_SPEC_JOURNAL_DEV (1 << 4)
1954 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
1955 #define EXT4_SPEC_s_want_extra_isize (1 << 7)
1956 #define EXT4_SPEC_s_max_batch_time (1 << 8)
1957 #define EXT4_SPEC_s_min_batch_time (1 << 9)
1958 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
1959 #define EXT4_SPEC_s_li_wait_mult (1 << 11)
1960 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
1961 #define EXT4_SPEC_s_stripe (1 << 13)
1962 #define EXT4_SPEC_s_resuid (1 << 14)
1963 #define EXT4_SPEC_s_resgid (1 << 15)
1964 #define EXT4_SPEC_s_commit_interval (1 << 16)
1965 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
1966 #define EXT4_SPEC_s_sb_block (1 << 18)
1967 #define EXT4_SPEC_mb_optimize_scan (1 << 19)
1968
1969 struct ext4_fs_context {
1970 char *s_qf_names[EXT4_MAXQUOTAS];
1971 struct fscrypt_dummy_policy dummy_enc_policy;
1972 int s_jquota_fmt; /* Format of quota to use */
1973 #ifdef CONFIG_EXT4_DEBUG
1974 int s_fc_debug_max_replay;
1975 #endif
1976 unsigned short qname_spec;
1977 unsigned long vals_s_flags; /* Bits to set in s_flags */
1978 unsigned long mask_s_flags; /* Bits changed in s_flags */
1979 unsigned long journal_devnum;
1980 unsigned long s_commit_interval;
1981 unsigned long s_stripe;
1982 unsigned int s_inode_readahead_blks;
1983 unsigned int s_want_extra_isize;
1984 unsigned int s_li_wait_mult;
1985 unsigned int s_max_dir_size_kb;
1986 unsigned int journal_ioprio;
1987 unsigned int vals_s_mount_opt;
1988 unsigned int mask_s_mount_opt;
1989 unsigned int vals_s_mount_opt2;
1990 unsigned int mask_s_mount_opt2;
1991 unsigned int opt_flags; /* MOPT flags */
1992 unsigned int spec;
1993 u32 s_max_batch_time;
1994 u32 s_min_batch_time;
1995 kuid_t s_resuid;
1996 kgid_t s_resgid;
1997 ext4_fsblk_t s_sb_block;
1998 };
1999
ext4_fc_free(struct fs_context * fc)2000 static void ext4_fc_free(struct fs_context *fc)
2001 {
2002 struct ext4_fs_context *ctx = fc->fs_private;
2003 int i;
2004
2005 if (!ctx)
2006 return;
2007
2008 for (i = 0; i < EXT4_MAXQUOTAS; i++)
2009 kfree(ctx->s_qf_names[i]);
2010
2011 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2012 kfree(ctx);
2013 }
2014
ext4_init_fs_context(struct fs_context * fc)2015 int ext4_init_fs_context(struct fs_context *fc)
2016 {
2017 struct ext4_fs_context *ctx;
2018
2019 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2020 if (!ctx)
2021 return -ENOMEM;
2022
2023 fc->fs_private = ctx;
2024 fc->ops = &ext4_context_ops;
2025
2026 /* i_version is always enabled now */
2027 fc->sb_flags |= SB_I_VERSION;
2028
2029 return 0;
2030 }
2031
2032 #ifdef CONFIG_QUOTA
2033 /*
2034 * Note the name of the specified quota file.
2035 */
note_qf_name(struct fs_context * fc,int qtype,struct fs_parameter * param)2036 static int note_qf_name(struct fs_context *fc, int qtype,
2037 struct fs_parameter *param)
2038 {
2039 struct ext4_fs_context *ctx = fc->fs_private;
2040 char *qname;
2041
2042 if (param->size < 1) {
2043 ext4_msg(NULL, KERN_ERR, "Missing quota name");
2044 return -EINVAL;
2045 }
2046 if (strchr(param->string, '/')) {
2047 ext4_msg(NULL, KERN_ERR,
2048 "quotafile must be on filesystem root");
2049 return -EINVAL;
2050 }
2051 if (ctx->s_qf_names[qtype]) {
2052 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2053 ext4_msg(NULL, KERN_ERR,
2054 "%s quota file already specified",
2055 QTYPE2NAME(qtype));
2056 return -EINVAL;
2057 }
2058 return 0;
2059 }
2060
2061 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2062 if (!qname) {
2063 ext4_msg(NULL, KERN_ERR,
2064 "Not enough memory for storing quotafile name");
2065 return -ENOMEM;
2066 }
2067 ctx->s_qf_names[qtype] = qname;
2068 ctx->qname_spec |= 1 << qtype;
2069 ctx->spec |= EXT4_SPEC_JQUOTA;
2070 return 0;
2071 }
2072
2073 /*
2074 * Clear the name of the specified quota file.
2075 */
unnote_qf_name(struct fs_context * fc,int qtype)2076 static int unnote_qf_name(struct fs_context *fc, int qtype)
2077 {
2078 struct ext4_fs_context *ctx = fc->fs_private;
2079
2080 kfree(ctx->s_qf_names[qtype]);
2081
2082 ctx->s_qf_names[qtype] = NULL;
2083 ctx->qname_spec |= 1 << qtype;
2084 ctx->spec |= EXT4_SPEC_JQUOTA;
2085 return 0;
2086 }
2087 #endif
2088
ext4_parse_test_dummy_encryption(const struct fs_parameter * param,struct ext4_fs_context * ctx)2089 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2090 struct ext4_fs_context *ctx)
2091 {
2092 int err;
2093
2094 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2095 ext4_msg(NULL, KERN_WARNING,
2096 "test_dummy_encryption option not supported");
2097 return -EINVAL;
2098 }
2099 err = fscrypt_parse_test_dummy_encryption(param,
2100 &ctx->dummy_enc_policy);
2101 if (err == -EINVAL) {
2102 ext4_msg(NULL, KERN_WARNING,
2103 "Value of option \"%s\" is unrecognized", param->key);
2104 } else if (err == -EEXIST) {
2105 ext4_msg(NULL, KERN_WARNING,
2106 "Conflicting test_dummy_encryption options");
2107 return -EINVAL;
2108 }
2109 return err;
2110 }
2111
2112 #define EXT4_SET_CTX(name) \
2113 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \
2114 unsigned long flag) \
2115 { \
2116 ctx->mask_s_##name |= flag; \
2117 ctx->vals_s_##name |= flag; \
2118 }
2119
2120 #define EXT4_CLEAR_CTX(name) \
2121 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \
2122 unsigned long flag) \
2123 { \
2124 ctx->mask_s_##name |= flag; \
2125 ctx->vals_s_##name &= ~flag; \
2126 }
2127
2128 #define EXT4_TEST_CTX(name) \
2129 static inline unsigned long \
2130 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2131 { \
2132 return (ctx->vals_s_##name & flag); \
2133 }
2134
2135 EXT4_SET_CTX(flags); /* set only */
2136 EXT4_SET_CTX(mount_opt);
2137 EXT4_CLEAR_CTX(mount_opt);
2138 EXT4_TEST_CTX(mount_opt);
2139 EXT4_SET_CTX(mount_opt2);
2140 EXT4_CLEAR_CTX(mount_opt2);
2141 EXT4_TEST_CTX(mount_opt2);
2142
ext4_parse_param(struct fs_context * fc,struct fs_parameter * param)2143 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2144 {
2145 struct ext4_fs_context *ctx = fc->fs_private;
2146 struct fs_parse_result result;
2147 const struct mount_opts *m;
2148 int is_remount;
2149 int token;
2150
2151 token = fs_parse(fc, ext4_param_specs, param, &result);
2152 if (token < 0)
2153 return token;
2154 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2155
2156 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2157 if (token == m->token)
2158 break;
2159
2160 ctx->opt_flags |= m->flags;
2161
2162 if (m->flags & MOPT_EXPLICIT) {
2163 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2164 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2165 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2166 ctx_set_mount_opt2(ctx,
2167 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2168 } else
2169 return -EINVAL;
2170 }
2171
2172 if (m->flags & MOPT_NOSUPPORT) {
2173 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2174 param->key);
2175 return 0;
2176 }
2177
2178 switch (token) {
2179 #ifdef CONFIG_QUOTA
2180 case Opt_usrjquota:
2181 if (!*param->string)
2182 return unnote_qf_name(fc, USRQUOTA);
2183 else
2184 return note_qf_name(fc, USRQUOTA, param);
2185 case Opt_grpjquota:
2186 if (!*param->string)
2187 return unnote_qf_name(fc, GRPQUOTA);
2188 else
2189 return note_qf_name(fc, GRPQUOTA, param);
2190 #endif
2191 case Opt_sb:
2192 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2193 ext4_msg(NULL, KERN_WARNING,
2194 "Ignoring %s option on remount", param->key);
2195 } else {
2196 ctx->s_sb_block = result.uint_32;
2197 ctx->spec |= EXT4_SPEC_s_sb_block;
2198 }
2199 return 0;
2200 case Opt_removed:
2201 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2202 param->key);
2203 return 0;
2204 case Opt_inlinecrypt:
2205 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2206 ctx_set_flags(ctx, SB_INLINECRYPT);
2207 #else
2208 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2209 #endif
2210 return 0;
2211 case Opt_errors:
2212 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2213 ctx_set_mount_opt(ctx, result.uint_32);
2214 return 0;
2215 #ifdef CONFIG_QUOTA
2216 case Opt_jqfmt:
2217 ctx->s_jquota_fmt = result.uint_32;
2218 ctx->spec |= EXT4_SPEC_JQFMT;
2219 return 0;
2220 #endif
2221 case Opt_data:
2222 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2223 ctx_set_mount_opt(ctx, result.uint_32);
2224 ctx->spec |= EXT4_SPEC_DATAJ;
2225 return 0;
2226 case Opt_commit:
2227 if (result.uint_32 == 0)
2228 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2229 else if (result.uint_32 > INT_MAX / HZ) {
2230 ext4_msg(NULL, KERN_ERR,
2231 "Invalid commit interval %d, "
2232 "must be smaller than %d",
2233 result.uint_32, INT_MAX / HZ);
2234 return -EINVAL;
2235 }
2236 ctx->s_commit_interval = HZ * result.uint_32;
2237 ctx->spec |= EXT4_SPEC_s_commit_interval;
2238 return 0;
2239 case Opt_debug_want_extra_isize:
2240 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2241 ext4_msg(NULL, KERN_ERR,
2242 "Invalid want_extra_isize %d", result.uint_32);
2243 return -EINVAL;
2244 }
2245 ctx->s_want_extra_isize = result.uint_32;
2246 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2247 return 0;
2248 case Opt_max_batch_time:
2249 ctx->s_max_batch_time = result.uint_32;
2250 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2251 return 0;
2252 case Opt_min_batch_time:
2253 ctx->s_min_batch_time = result.uint_32;
2254 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2255 return 0;
2256 case Opt_inode_readahead_blks:
2257 if (result.uint_32 &&
2258 (result.uint_32 > (1 << 30) ||
2259 !is_power_of_2(result.uint_32))) {
2260 ext4_msg(NULL, KERN_ERR,
2261 "EXT4-fs: inode_readahead_blks must be "
2262 "0 or a power of 2 smaller than 2^31");
2263 return -EINVAL;
2264 }
2265 ctx->s_inode_readahead_blks = result.uint_32;
2266 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2267 return 0;
2268 case Opt_init_itable:
2269 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2270 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2271 if (param->type == fs_value_is_string)
2272 ctx->s_li_wait_mult = result.uint_32;
2273 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2274 return 0;
2275 case Opt_max_dir_size_kb:
2276 ctx->s_max_dir_size_kb = result.uint_32;
2277 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2278 return 0;
2279 #ifdef CONFIG_EXT4_DEBUG
2280 case Opt_fc_debug_max_replay:
2281 ctx->s_fc_debug_max_replay = result.uint_32;
2282 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2283 return 0;
2284 #endif
2285 case Opt_stripe:
2286 ctx->s_stripe = result.uint_32;
2287 ctx->spec |= EXT4_SPEC_s_stripe;
2288 return 0;
2289 case Opt_resuid:
2290 ctx->s_resuid = result.uid;
2291 ctx->spec |= EXT4_SPEC_s_resuid;
2292 return 0;
2293 case Opt_resgid:
2294 ctx->s_resgid = result.gid;
2295 ctx->spec |= EXT4_SPEC_s_resgid;
2296 return 0;
2297 case Opt_journal_dev:
2298 if (is_remount) {
2299 ext4_msg(NULL, KERN_ERR,
2300 "Cannot specify journal on remount");
2301 return -EINVAL;
2302 }
2303 ctx->journal_devnum = result.uint_32;
2304 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2305 return 0;
2306 case Opt_journal_path:
2307 {
2308 struct inode *journal_inode;
2309 struct path path;
2310 int error;
2311
2312 if (is_remount) {
2313 ext4_msg(NULL, KERN_ERR,
2314 "Cannot specify journal on remount");
2315 return -EINVAL;
2316 }
2317
2318 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2319 if (error) {
2320 ext4_msg(NULL, KERN_ERR, "error: could not find "
2321 "journal device path");
2322 return -EINVAL;
2323 }
2324
2325 journal_inode = d_inode(path.dentry);
2326 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2327 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2328 path_put(&path);
2329 return 0;
2330 }
2331 case Opt_journal_ioprio:
2332 if (result.uint_32 > 7) {
2333 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2334 " (must be 0-7)");
2335 return -EINVAL;
2336 }
2337 ctx->journal_ioprio =
2338 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2339 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2340 return 0;
2341 case Opt_test_dummy_encryption:
2342 return ext4_parse_test_dummy_encryption(param, ctx);
2343 case Opt_dax:
2344 case Opt_dax_type:
2345 #ifdef CONFIG_FS_DAX
2346 {
2347 int type = (token == Opt_dax) ?
2348 Opt_dax : result.uint_32;
2349
2350 switch (type) {
2351 case Opt_dax:
2352 case Opt_dax_always:
2353 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2354 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2355 break;
2356 case Opt_dax_never:
2357 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2358 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2359 break;
2360 case Opt_dax_inode:
2361 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2362 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2363 /* Strictly for printing options */
2364 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2365 break;
2366 }
2367 return 0;
2368 }
2369 #else
2370 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2371 return -EINVAL;
2372 #endif
2373 case Opt_data_err:
2374 if (result.uint_32 == Opt_data_err_abort)
2375 ctx_set_mount_opt(ctx, m->mount_opt);
2376 else if (result.uint_32 == Opt_data_err_ignore)
2377 ctx_clear_mount_opt(ctx, m->mount_opt);
2378 return 0;
2379 case Opt_mb_optimize_scan:
2380 if (result.int_32 == 1) {
2381 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2382 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2383 } else if (result.int_32 == 0) {
2384 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2385 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2386 } else {
2387 ext4_msg(NULL, KERN_WARNING,
2388 "mb_optimize_scan should be set to 0 or 1.");
2389 return -EINVAL;
2390 }
2391 return 0;
2392 }
2393
2394 /*
2395 * At this point we should only be getting options requiring MOPT_SET,
2396 * or MOPT_CLEAR. Anything else is a bug
2397 */
2398 if (m->token == Opt_err) {
2399 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2400 param->key);
2401 WARN_ON(1);
2402 return -EINVAL;
2403 }
2404
2405 else {
2406 unsigned int set = 0;
2407
2408 if ((param->type == fs_value_is_flag) ||
2409 result.uint_32 > 0)
2410 set = 1;
2411
2412 if (m->flags & MOPT_CLEAR)
2413 set = !set;
2414 else if (unlikely(!(m->flags & MOPT_SET))) {
2415 ext4_msg(NULL, KERN_WARNING,
2416 "buggy handling of option %s",
2417 param->key);
2418 WARN_ON(1);
2419 return -EINVAL;
2420 }
2421 if (m->flags & MOPT_2) {
2422 if (set != 0)
2423 ctx_set_mount_opt2(ctx, m->mount_opt);
2424 else
2425 ctx_clear_mount_opt2(ctx, m->mount_opt);
2426 } else {
2427 if (set != 0)
2428 ctx_set_mount_opt(ctx, m->mount_opt);
2429 else
2430 ctx_clear_mount_opt(ctx, m->mount_opt);
2431 }
2432 }
2433
2434 return 0;
2435 }
2436
parse_options(struct fs_context * fc,char * options)2437 static int parse_options(struct fs_context *fc, char *options)
2438 {
2439 struct fs_parameter param;
2440 int ret;
2441 char *key;
2442
2443 if (!options)
2444 return 0;
2445
2446 while ((key = strsep(&options, ",")) != NULL) {
2447 if (*key) {
2448 size_t v_len = 0;
2449 char *value = strchr(key, '=');
2450
2451 param.type = fs_value_is_flag;
2452 param.string = NULL;
2453
2454 if (value) {
2455 if (value == key)
2456 continue;
2457
2458 *value++ = 0;
2459 v_len = strlen(value);
2460 param.string = kmemdup_nul(value, v_len,
2461 GFP_KERNEL);
2462 if (!param.string)
2463 return -ENOMEM;
2464 param.type = fs_value_is_string;
2465 }
2466
2467 param.key = key;
2468 param.size = v_len;
2469
2470 ret = ext4_parse_param(fc, ¶m);
2471 kfree(param.string);
2472 if (ret < 0)
2473 return ret;
2474 }
2475 }
2476
2477 ret = ext4_validate_options(fc);
2478 if (ret < 0)
2479 return ret;
2480
2481 return 0;
2482 }
2483
parse_apply_sb_mount_options(struct super_block * sb,struct ext4_fs_context * m_ctx)2484 static int parse_apply_sb_mount_options(struct super_block *sb,
2485 struct ext4_fs_context *m_ctx)
2486 {
2487 struct ext4_sb_info *sbi = EXT4_SB(sb);
2488 char *s_mount_opts = NULL;
2489 struct ext4_fs_context *s_ctx = NULL;
2490 struct fs_context *fc = NULL;
2491 int ret = -ENOMEM;
2492
2493 if (!sbi->s_es->s_mount_opts[0])
2494 return 0;
2495
2496 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2497 sizeof(sbi->s_es->s_mount_opts),
2498 GFP_KERNEL);
2499 if (!s_mount_opts)
2500 return ret;
2501
2502 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2503 if (!fc)
2504 goto out_free;
2505
2506 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2507 if (!s_ctx)
2508 goto out_free;
2509
2510 fc->fs_private = s_ctx;
2511 fc->s_fs_info = sbi;
2512
2513 ret = parse_options(fc, s_mount_opts);
2514 if (ret < 0)
2515 goto parse_failed;
2516
2517 ret = ext4_check_opt_consistency(fc, sb);
2518 if (ret < 0) {
2519 parse_failed:
2520 ext4_msg(sb, KERN_WARNING,
2521 "failed to parse options in superblock: %s",
2522 s_mount_opts);
2523 ret = 0;
2524 goto out_free;
2525 }
2526
2527 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2528 m_ctx->journal_devnum = s_ctx->journal_devnum;
2529 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2530 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2531
2532 ext4_apply_options(fc, sb);
2533 ret = 0;
2534
2535 out_free:
2536 if (fc) {
2537 ext4_fc_free(fc);
2538 kfree(fc);
2539 }
2540 kfree(s_mount_opts);
2541 return ret;
2542 }
2543
ext4_apply_quota_options(struct fs_context * fc,struct super_block * sb)2544 static void ext4_apply_quota_options(struct fs_context *fc,
2545 struct super_block *sb)
2546 {
2547 #ifdef CONFIG_QUOTA
2548 bool quota_feature = ext4_has_feature_quota(sb);
2549 struct ext4_fs_context *ctx = fc->fs_private;
2550 struct ext4_sb_info *sbi = EXT4_SB(sb);
2551 char *qname;
2552 int i;
2553
2554 if (quota_feature)
2555 return;
2556
2557 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2558 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2559 if (!(ctx->qname_spec & (1 << i)))
2560 continue;
2561
2562 qname = ctx->s_qf_names[i]; /* May be NULL */
2563 if (qname)
2564 set_opt(sb, QUOTA);
2565 ctx->s_qf_names[i] = NULL;
2566 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2567 lockdep_is_held(&sb->s_umount));
2568 if (qname)
2569 kfree_rcu_mightsleep(qname);
2570 }
2571 }
2572
2573 if (ctx->spec & EXT4_SPEC_JQFMT)
2574 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2575 #endif
2576 }
2577
2578 /*
2579 * Check quota settings consistency.
2580 */
ext4_check_quota_consistency(struct fs_context * fc,struct super_block * sb)2581 static int ext4_check_quota_consistency(struct fs_context *fc,
2582 struct super_block *sb)
2583 {
2584 #ifdef CONFIG_QUOTA
2585 struct ext4_fs_context *ctx = fc->fs_private;
2586 struct ext4_sb_info *sbi = EXT4_SB(sb);
2587 bool quota_feature = ext4_has_feature_quota(sb);
2588 bool quota_loaded = sb_any_quota_loaded(sb);
2589 bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2590 int quota_flags, i;
2591
2592 /*
2593 * We do the test below only for project quotas. 'usrquota' and
2594 * 'grpquota' mount options are allowed even without quota feature
2595 * to support legacy quotas in quota files.
2596 */
2597 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2598 !ext4_has_feature_project(sb)) {
2599 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2600 "Cannot enable project quota enforcement.");
2601 return -EINVAL;
2602 }
2603
2604 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2605 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2606 if (quota_loaded &&
2607 ctx->mask_s_mount_opt & quota_flags &&
2608 !ctx_test_mount_opt(ctx, quota_flags))
2609 goto err_quota_change;
2610
2611 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2612
2613 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2614 if (!(ctx->qname_spec & (1 << i)))
2615 continue;
2616
2617 if (quota_loaded &&
2618 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2619 goto err_jquota_change;
2620
2621 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2622 strcmp(get_qf_name(sb, sbi, i),
2623 ctx->s_qf_names[i]) != 0)
2624 goto err_jquota_specified;
2625 }
2626
2627 if (quota_feature) {
2628 ext4_msg(NULL, KERN_INFO,
2629 "Journaled quota options ignored when "
2630 "QUOTA feature is enabled");
2631 return 0;
2632 }
2633 }
2634
2635 if (ctx->spec & EXT4_SPEC_JQFMT) {
2636 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2637 goto err_jquota_change;
2638 if (quota_feature) {
2639 ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2640 "ignored when QUOTA feature is enabled");
2641 return 0;
2642 }
2643 }
2644
2645 /* Make sure we don't mix old and new quota format */
2646 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2647 ctx->s_qf_names[USRQUOTA]);
2648 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2649 ctx->s_qf_names[GRPQUOTA]);
2650
2651 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2652 test_opt(sb, USRQUOTA));
2653
2654 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2655 test_opt(sb, GRPQUOTA));
2656
2657 if (usr_qf_name) {
2658 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2659 usrquota = false;
2660 }
2661 if (grp_qf_name) {
2662 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2663 grpquota = false;
2664 }
2665
2666 if (usr_qf_name || grp_qf_name) {
2667 if (usrquota || grpquota) {
2668 ext4_msg(NULL, KERN_ERR, "old and new quota "
2669 "format mixing");
2670 return -EINVAL;
2671 }
2672
2673 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2674 ext4_msg(NULL, KERN_ERR, "journaled quota format "
2675 "not specified");
2676 return -EINVAL;
2677 }
2678 }
2679
2680 return 0;
2681
2682 err_quota_change:
2683 ext4_msg(NULL, KERN_ERR,
2684 "Cannot change quota options when quota turned on");
2685 return -EINVAL;
2686 err_jquota_change:
2687 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2688 "options when quota turned on");
2689 return -EINVAL;
2690 err_jquota_specified:
2691 ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2692 QTYPE2NAME(i));
2693 return -EINVAL;
2694 #else
2695 return 0;
2696 #endif
2697 }
2698
ext4_check_test_dummy_encryption(const struct fs_context * fc,struct super_block * sb)2699 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2700 struct super_block *sb)
2701 {
2702 const struct ext4_fs_context *ctx = fc->fs_private;
2703 const struct ext4_sb_info *sbi = EXT4_SB(sb);
2704
2705 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2706 return 0;
2707
2708 if (!ext4_has_feature_encrypt(sb)) {
2709 ext4_msg(NULL, KERN_WARNING,
2710 "test_dummy_encryption requires encrypt feature");
2711 return -EINVAL;
2712 }
2713 /*
2714 * This mount option is just for testing, and it's not worthwhile to
2715 * implement the extra complexity (e.g. RCU protection) that would be
2716 * needed to allow it to be set or changed during remount. We do allow
2717 * it to be specified during remount, but only if there is no change.
2718 */
2719 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2720 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2721 &ctx->dummy_enc_policy))
2722 return 0;
2723 ext4_msg(NULL, KERN_WARNING,
2724 "Can't set or change test_dummy_encryption on remount");
2725 return -EINVAL;
2726 }
2727 /* Also make sure s_mount_opts didn't contain a conflicting value. */
2728 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2729 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2730 &ctx->dummy_enc_policy))
2731 return 0;
2732 ext4_msg(NULL, KERN_WARNING,
2733 "Conflicting test_dummy_encryption options");
2734 return -EINVAL;
2735 }
2736 return 0;
2737 }
2738
ext4_apply_test_dummy_encryption(struct ext4_fs_context * ctx,struct super_block * sb)2739 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2740 struct super_block *sb)
2741 {
2742 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2743 /* if already set, it was already verified to be the same */
2744 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2745 return;
2746 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2747 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2748 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2749 }
2750
ext4_check_opt_consistency(struct fs_context * fc,struct super_block * sb)2751 static int ext4_check_opt_consistency(struct fs_context *fc,
2752 struct super_block *sb)
2753 {
2754 struct ext4_fs_context *ctx = fc->fs_private;
2755 struct ext4_sb_info *sbi = fc->s_fs_info;
2756 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2757 int err;
2758
2759 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2760 ext4_msg(NULL, KERN_ERR,
2761 "Mount option(s) incompatible with ext2");
2762 return -EINVAL;
2763 }
2764 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2765 ext4_msg(NULL, KERN_ERR,
2766 "Mount option(s) incompatible with ext3");
2767 return -EINVAL;
2768 }
2769
2770 if (ctx->s_want_extra_isize >
2771 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2772 ext4_msg(NULL, KERN_ERR,
2773 "Invalid want_extra_isize %d",
2774 ctx->s_want_extra_isize);
2775 return -EINVAL;
2776 }
2777
2778 err = ext4_check_test_dummy_encryption(fc, sb);
2779 if (err)
2780 return err;
2781
2782 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2783 if (!sbi->s_journal) {
2784 ext4_msg(NULL, KERN_WARNING,
2785 "Remounting file system with no journal "
2786 "so ignoring journalled data option");
2787 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2788 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2789 test_opt(sb, DATA_FLAGS)) {
2790 ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2791 "on remount");
2792 return -EINVAL;
2793 }
2794 }
2795
2796 if (is_remount) {
2797 if (!sbi->s_journal &&
2798 ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT)) {
2799 ext4_msg(NULL, KERN_WARNING,
2800 "Remounting fs w/o journal so ignoring data_err option");
2801 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT);
2802 }
2803
2804 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2805 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2806 ext4_msg(NULL, KERN_ERR, "can't mount with "
2807 "both data=journal and dax");
2808 return -EINVAL;
2809 }
2810
2811 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2812 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2813 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2814 fail_dax_change_remount:
2815 ext4_msg(NULL, KERN_ERR, "can't change "
2816 "dax mount option while remounting");
2817 return -EINVAL;
2818 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2819 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2820 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2821 goto fail_dax_change_remount;
2822 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2823 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2824 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2825 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2826 goto fail_dax_change_remount;
2827 }
2828 }
2829
2830 return ext4_check_quota_consistency(fc, sb);
2831 }
2832
ext4_apply_options(struct fs_context * fc,struct super_block * sb)2833 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2834 {
2835 struct ext4_fs_context *ctx = fc->fs_private;
2836 struct ext4_sb_info *sbi = fc->s_fs_info;
2837
2838 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2839 sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2840 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2841 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2842 sb->s_flags &= ~ctx->mask_s_flags;
2843 sb->s_flags |= ctx->vals_s_flags;
2844
2845 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2846 APPLY(s_commit_interval);
2847 APPLY(s_stripe);
2848 APPLY(s_max_batch_time);
2849 APPLY(s_min_batch_time);
2850 APPLY(s_want_extra_isize);
2851 APPLY(s_inode_readahead_blks);
2852 APPLY(s_max_dir_size_kb);
2853 APPLY(s_li_wait_mult);
2854 APPLY(s_resgid);
2855 APPLY(s_resuid);
2856
2857 #ifdef CONFIG_EXT4_DEBUG
2858 APPLY(s_fc_debug_max_replay);
2859 #endif
2860
2861 ext4_apply_quota_options(fc, sb);
2862 ext4_apply_test_dummy_encryption(ctx, sb);
2863 }
2864
2865
ext4_validate_options(struct fs_context * fc)2866 static int ext4_validate_options(struct fs_context *fc)
2867 {
2868 #ifdef CONFIG_QUOTA
2869 struct ext4_fs_context *ctx = fc->fs_private;
2870 char *usr_qf_name, *grp_qf_name;
2871
2872 usr_qf_name = ctx->s_qf_names[USRQUOTA];
2873 grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2874
2875 if (usr_qf_name || grp_qf_name) {
2876 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2877 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2878
2879 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2880 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2881
2882 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2883 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2884 ext4_msg(NULL, KERN_ERR, "old and new quota "
2885 "format mixing");
2886 return -EINVAL;
2887 }
2888 }
2889 #endif
2890 return 1;
2891 }
2892
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2893 static inline void ext4_show_quota_options(struct seq_file *seq,
2894 struct super_block *sb)
2895 {
2896 #if defined(CONFIG_QUOTA)
2897 struct ext4_sb_info *sbi = EXT4_SB(sb);
2898 char *usr_qf_name, *grp_qf_name;
2899
2900 if (sbi->s_jquota_fmt) {
2901 char *fmtname = "";
2902
2903 switch (sbi->s_jquota_fmt) {
2904 case QFMT_VFS_OLD:
2905 fmtname = "vfsold";
2906 break;
2907 case QFMT_VFS_V0:
2908 fmtname = "vfsv0";
2909 break;
2910 case QFMT_VFS_V1:
2911 fmtname = "vfsv1";
2912 break;
2913 }
2914 seq_printf(seq, ",jqfmt=%s", fmtname);
2915 }
2916
2917 rcu_read_lock();
2918 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2919 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2920 if (usr_qf_name)
2921 seq_show_option(seq, "usrjquota", usr_qf_name);
2922 if (grp_qf_name)
2923 seq_show_option(seq, "grpjquota", grp_qf_name);
2924 rcu_read_unlock();
2925 #endif
2926 }
2927
token2str(int token)2928 static const char *token2str(int token)
2929 {
2930 const struct fs_parameter_spec *spec;
2931
2932 for (spec = ext4_param_specs; spec->name != NULL; spec++)
2933 if (spec->opt == token && !spec->type)
2934 break;
2935 return spec->name;
2936 }
2937
2938 /*
2939 * Show an option if
2940 * - it's set to a non-default value OR
2941 * - if the per-sb default is different from the global default
2942 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2943 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2944 int nodefs)
2945 {
2946 struct ext4_sb_info *sbi = EXT4_SB(sb);
2947 struct ext4_super_block *es = sbi->s_es;
2948 int def_errors;
2949 const struct mount_opts *m;
2950 char sep = nodefs ? '\n' : ',';
2951
2952 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2953 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2954
2955 if (sbi->s_sb_block != 1)
2956 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2957
2958 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2959 int want_set = m->flags & MOPT_SET;
2960 int opt_2 = m->flags & MOPT_2;
2961 unsigned int mount_opt, def_mount_opt;
2962
2963 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2964 m->flags & MOPT_SKIP)
2965 continue;
2966
2967 if (opt_2) {
2968 mount_opt = sbi->s_mount_opt2;
2969 def_mount_opt = sbi->s_def_mount_opt2;
2970 } else {
2971 mount_opt = sbi->s_mount_opt;
2972 def_mount_opt = sbi->s_def_mount_opt;
2973 }
2974 /* skip if same as the default */
2975 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2976 continue;
2977 /* select Opt_noFoo vs Opt_Foo */
2978 if ((want_set &&
2979 (mount_opt & m->mount_opt) != m->mount_opt) ||
2980 (!want_set && (mount_opt & m->mount_opt)))
2981 continue;
2982 SEQ_OPTS_PRINT("%s", token2str(m->token));
2983 }
2984
2985 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2986 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2987 SEQ_OPTS_PRINT("resuid=%u",
2988 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2989 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2990 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2991 SEQ_OPTS_PRINT("resgid=%u",
2992 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2993 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2994 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2995 SEQ_OPTS_PUTS("errors=remount-ro");
2996 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2997 SEQ_OPTS_PUTS("errors=continue");
2998 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2999 SEQ_OPTS_PUTS("errors=panic");
3000 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
3001 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
3002 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
3003 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
3004 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
3005 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
3006 if (nodefs || sbi->s_stripe)
3007 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
3008 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
3009 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3010 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3011 SEQ_OPTS_PUTS("data=journal");
3012 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3013 SEQ_OPTS_PUTS("data=ordered");
3014 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3015 SEQ_OPTS_PUTS("data=writeback");
3016 }
3017 if (nodefs ||
3018 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3019 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3020 sbi->s_inode_readahead_blks);
3021
3022 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3023 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3024 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3025 if (nodefs || sbi->s_max_dir_size_kb)
3026 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3027 if (test_opt(sb, DATA_ERR_ABORT))
3028 SEQ_OPTS_PUTS("data_err=abort");
3029
3030 fscrypt_show_test_dummy_encryption(seq, sep, sb);
3031
3032 if (sb->s_flags & SB_INLINECRYPT)
3033 SEQ_OPTS_PUTS("inlinecrypt");
3034
3035 if (test_opt(sb, DAX_ALWAYS)) {
3036 if (IS_EXT2_SB(sb))
3037 SEQ_OPTS_PUTS("dax");
3038 else
3039 SEQ_OPTS_PUTS("dax=always");
3040 } else if (test_opt2(sb, DAX_NEVER)) {
3041 SEQ_OPTS_PUTS("dax=never");
3042 } else if (test_opt2(sb, DAX_INODE)) {
3043 SEQ_OPTS_PUTS("dax=inode");
3044 }
3045
3046 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3047 !test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3048 SEQ_OPTS_PUTS("mb_optimize_scan=0");
3049 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3050 test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3051 SEQ_OPTS_PUTS("mb_optimize_scan=1");
3052 }
3053
3054 ext4_show_quota_options(seq, sb);
3055 return 0;
3056 }
3057
ext4_show_options(struct seq_file * seq,struct dentry * root)3058 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3059 {
3060 return _ext4_show_options(seq, root->d_sb, 0);
3061 }
3062
ext4_seq_options_show(struct seq_file * seq,void * offset)3063 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3064 {
3065 struct super_block *sb = seq->private;
3066 int rc;
3067
3068 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3069 rc = _ext4_show_options(seq, sb, 1);
3070 seq_putc(seq, '\n');
3071 return rc;
3072 }
3073
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)3074 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3075 int read_only)
3076 {
3077 struct ext4_sb_info *sbi = EXT4_SB(sb);
3078 int err = 0;
3079
3080 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3081 ext4_msg(sb, KERN_ERR, "revision level too high, "
3082 "forcing read-only mode");
3083 err = -EROFS;
3084 goto done;
3085 }
3086 if (read_only)
3087 goto done;
3088 if (!(sbi->s_mount_state & EXT4_VALID_FS))
3089 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3090 "running e2fsck is recommended");
3091 else if (sbi->s_mount_state & EXT4_ERROR_FS)
3092 ext4_msg(sb, KERN_WARNING,
3093 "warning: mounting fs with errors, "
3094 "running e2fsck is recommended");
3095 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3096 le16_to_cpu(es->s_mnt_count) >=
3097 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3098 ext4_msg(sb, KERN_WARNING,
3099 "warning: maximal mount count reached, "
3100 "running e2fsck is recommended");
3101 else if (le32_to_cpu(es->s_checkinterval) &&
3102 (ext4_get_tstamp(es, s_lastcheck) +
3103 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3104 ext4_msg(sb, KERN_WARNING,
3105 "warning: checktime reached, "
3106 "running e2fsck is recommended");
3107 if (!sbi->s_journal)
3108 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3109 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3110 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3111 le16_add_cpu(&es->s_mnt_count, 1);
3112 ext4_update_tstamp(es, s_mtime);
3113 if (sbi->s_journal) {
3114 ext4_set_feature_journal_needs_recovery(sb);
3115 if (ext4_has_feature_orphan_file(sb))
3116 ext4_set_feature_orphan_present(sb);
3117 }
3118
3119 err = ext4_commit_super(sb);
3120 done:
3121 if (test_opt(sb, DEBUG))
3122 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3123 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3124 sb->s_blocksize,
3125 sbi->s_groups_count,
3126 EXT4_BLOCKS_PER_GROUP(sb),
3127 EXT4_INODES_PER_GROUP(sb),
3128 sbi->s_mount_opt, sbi->s_mount_opt2);
3129
3130 cleancache_init_fs(sb);
3131 return err;
3132 }
3133
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)3134 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3135 {
3136 struct ext4_sb_info *sbi = EXT4_SB(sb);
3137 struct flex_groups **old_groups, **new_groups;
3138 int size, i, j;
3139
3140 if (!sbi->s_log_groups_per_flex)
3141 return 0;
3142
3143 size = ext4_flex_group(sbi, ngroup - 1) + 1;
3144 if (size <= sbi->s_flex_groups_allocated)
3145 return 0;
3146
3147 new_groups = kvzalloc(roundup_pow_of_two(size *
3148 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3149 if (!new_groups) {
3150 ext4_msg(sb, KERN_ERR,
3151 "not enough memory for %d flex group pointers", size);
3152 return -ENOMEM;
3153 }
3154 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3155 new_groups[i] = kvzalloc(roundup_pow_of_two(
3156 sizeof(struct flex_groups)),
3157 GFP_KERNEL);
3158 if (!new_groups[i]) {
3159 for (j = sbi->s_flex_groups_allocated; j < i; j++)
3160 kvfree(new_groups[j]);
3161 kvfree(new_groups);
3162 ext4_msg(sb, KERN_ERR,
3163 "not enough memory for %d flex groups", size);
3164 return -ENOMEM;
3165 }
3166 }
3167 rcu_read_lock();
3168 old_groups = rcu_dereference(sbi->s_flex_groups);
3169 if (old_groups)
3170 memcpy(new_groups, old_groups,
3171 (sbi->s_flex_groups_allocated *
3172 sizeof(struct flex_groups *)));
3173 rcu_read_unlock();
3174 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3175 sbi->s_flex_groups_allocated = size;
3176 if (old_groups)
3177 ext4_kvfree_array_rcu(old_groups);
3178 return 0;
3179 }
3180
ext4_fill_flex_info(struct super_block * sb)3181 static int ext4_fill_flex_info(struct super_block *sb)
3182 {
3183 struct ext4_sb_info *sbi = EXT4_SB(sb);
3184 struct ext4_group_desc *gdp = NULL;
3185 struct flex_groups *fg;
3186 ext4_group_t flex_group;
3187 int i, err;
3188
3189 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3190 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3191 sbi->s_log_groups_per_flex = 0;
3192 return 1;
3193 }
3194
3195 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3196 if (err)
3197 goto failed;
3198
3199 for (i = 0; i < sbi->s_groups_count; i++) {
3200 gdp = ext4_get_group_desc(sb, i, NULL);
3201
3202 flex_group = ext4_flex_group(sbi, i);
3203 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3204 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3205 atomic64_add(ext4_free_group_clusters(sb, gdp),
3206 &fg->free_clusters);
3207 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3208 }
3209
3210 return 1;
3211 failed:
3212 return 0;
3213 }
3214
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3215 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3216 struct ext4_group_desc *gdp)
3217 {
3218 int offset = offsetof(struct ext4_group_desc, bg_checksum);
3219 __u16 crc = 0;
3220 __le32 le_group = cpu_to_le32(block_group);
3221 struct ext4_sb_info *sbi = EXT4_SB(sb);
3222
3223 if (ext4_has_metadata_csum(sbi->s_sb)) {
3224 /* Use new metadata_csum algorithm */
3225 __u32 csum32;
3226 __u16 dummy_csum = 0;
3227
3228 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3229 sizeof(le_group));
3230 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3231 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3232 sizeof(dummy_csum));
3233 offset += sizeof(dummy_csum);
3234 if (offset < sbi->s_desc_size)
3235 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3236 sbi->s_desc_size - offset);
3237
3238 crc = csum32 & 0xFFFF;
3239 goto out;
3240 }
3241
3242 /* old crc16 code */
3243 if (!ext4_has_feature_gdt_csum(sb))
3244 return 0;
3245
3246 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3247 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3248 crc = crc16(crc, (__u8 *)gdp, offset);
3249 offset += sizeof(gdp->bg_checksum); /* skip checksum */
3250 /* for checksum of struct ext4_group_desc do the rest...*/
3251 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3252 crc = crc16(crc, (__u8 *)gdp + offset,
3253 sbi->s_desc_size - offset);
3254
3255 out:
3256 return cpu_to_le16(crc);
3257 }
3258
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3259 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3260 struct ext4_group_desc *gdp)
3261 {
3262 if (ext4_has_group_desc_csum(sb) &&
3263 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3264 return 0;
3265
3266 return 1;
3267 }
3268
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3269 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3270 struct ext4_group_desc *gdp)
3271 {
3272 if (!ext4_has_group_desc_csum(sb))
3273 return;
3274 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3275 }
3276
3277 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)3278 static int ext4_check_descriptors(struct super_block *sb,
3279 ext4_fsblk_t sb_block,
3280 ext4_group_t *first_not_zeroed)
3281 {
3282 struct ext4_sb_info *sbi = EXT4_SB(sb);
3283 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3284 ext4_fsblk_t last_block;
3285 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3286 ext4_fsblk_t block_bitmap;
3287 ext4_fsblk_t inode_bitmap;
3288 ext4_fsblk_t inode_table;
3289 int flexbg_flag = 0;
3290 ext4_group_t i, grp = sbi->s_groups_count;
3291
3292 if (ext4_has_feature_flex_bg(sb))
3293 flexbg_flag = 1;
3294
3295 ext4_debug("Checking group descriptors");
3296
3297 for (i = 0; i < sbi->s_groups_count; i++) {
3298 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3299
3300 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3301 last_block = ext4_blocks_count(sbi->s_es) - 1;
3302 else
3303 last_block = first_block +
3304 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3305
3306 if ((grp == sbi->s_groups_count) &&
3307 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3308 grp = i;
3309
3310 block_bitmap = ext4_block_bitmap(sb, gdp);
3311 if (block_bitmap == sb_block) {
3312 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3313 "Block bitmap for group %u overlaps "
3314 "superblock", i);
3315 if (!sb_rdonly(sb))
3316 return 0;
3317 }
3318 if (block_bitmap >= sb_block + 1 &&
3319 block_bitmap <= last_bg_block) {
3320 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3321 "Block bitmap for group %u overlaps "
3322 "block group descriptors", i);
3323 if (!sb_rdonly(sb))
3324 return 0;
3325 }
3326 if (block_bitmap < first_block || block_bitmap > last_block) {
3327 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3328 "Block bitmap for group %u not in group "
3329 "(block %llu)!", i, block_bitmap);
3330 return 0;
3331 }
3332 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3333 if (inode_bitmap == sb_block) {
3334 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3335 "Inode bitmap for group %u overlaps "
3336 "superblock", i);
3337 if (!sb_rdonly(sb))
3338 return 0;
3339 }
3340 if (inode_bitmap >= sb_block + 1 &&
3341 inode_bitmap <= last_bg_block) {
3342 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3343 "Inode bitmap for group %u overlaps "
3344 "block group descriptors", i);
3345 if (!sb_rdonly(sb))
3346 return 0;
3347 }
3348 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3349 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3350 "Inode bitmap for group %u not in group "
3351 "(block %llu)!", i, inode_bitmap);
3352 return 0;
3353 }
3354 inode_table = ext4_inode_table(sb, gdp);
3355 if (inode_table == sb_block) {
3356 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3357 "Inode table for group %u overlaps "
3358 "superblock", i);
3359 if (!sb_rdonly(sb))
3360 return 0;
3361 }
3362 if (inode_table >= sb_block + 1 &&
3363 inode_table <= last_bg_block) {
3364 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3365 "Inode table for group %u overlaps "
3366 "block group descriptors", i);
3367 if (!sb_rdonly(sb))
3368 return 0;
3369 }
3370 if (inode_table < first_block ||
3371 inode_table + sbi->s_itb_per_group - 1 > last_block) {
3372 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3373 "Inode table for group %u not in group "
3374 "(block %llu)!", i, inode_table);
3375 return 0;
3376 }
3377 ext4_lock_group(sb, i);
3378 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3379 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3380 "Checksum for group %u failed (%u!=%u)",
3381 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3382 gdp)), le16_to_cpu(gdp->bg_checksum));
3383 if (!sb_rdonly(sb)) {
3384 ext4_unlock_group(sb, i);
3385 return 0;
3386 }
3387 }
3388 ext4_unlock_group(sb, i);
3389 if (!flexbg_flag)
3390 first_block += EXT4_BLOCKS_PER_GROUP(sb);
3391 }
3392 if (NULL != first_not_zeroed)
3393 *first_not_zeroed = grp;
3394 return 1;
3395 }
3396
3397 /*
3398 * Maximal extent format file size.
3399 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3400 * extent format containers, within a sector_t, and within i_blocks
3401 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3402 * so that won't be a limiting factor.
3403 *
3404 * However there is other limiting factor. We do store extents in the form
3405 * of starting block and length, hence the resulting length of the extent
3406 * covering maximum file size must fit into on-disk format containers as
3407 * well. Given that length is always by 1 unit bigger than max unit (because
3408 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3409 *
3410 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3411 */
ext4_max_size(int blkbits,int has_huge_files)3412 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3413 {
3414 loff_t res;
3415 loff_t upper_limit = MAX_LFS_FILESIZE;
3416
3417 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3418
3419 if (!has_huge_files) {
3420 upper_limit = (1LL << 32) - 1;
3421
3422 /* total blocks in file system block size */
3423 upper_limit >>= (blkbits - 9);
3424 upper_limit <<= blkbits;
3425 }
3426
3427 /*
3428 * 32-bit extent-start container, ee_block. We lower the maxbytes
3429 * by one fs block, so ee_len can cover the extent of maximum file
3430 * size
3431 */
3432 res = (1LL << 32) - 1;
3433 res <<= blkbits;
3434
3435 /* Sanity check against vm- & vfs- imposed limits */
3436 if (res > upper_limit)
3437 res = upper_limit;
3438
3439 return res;
3440 }
3441
3442 /*
3443 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3444 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3445 * We need to be 1 filesystem block less than the 2^48 sector limit.
3446 */
ext4_max_bitmap_size(int bits,int has_huge_files)3447 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3448 {
3449 loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3450 int meta_blocks;
3451 unsigned int ppb = 1 << (bits - 2);
3452
3453 /*
3454 * This is calculated to be the largest file size for a dense, block
3455 * mapped file such that the file's total number of 512-byte sectors,
3456 * including data and all indirect blocks, does not exceed (2^48 - 1).
3457 *
3458 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3459 * number of 512-byte sectors of the file.
3460 */
3461 if (!has_huge_files) {
3462 /*
3463 * !has_huge_files or implies that the inode i_block field
3464 * represents total file blocks in 2^32 512-byte sectors ==
3465 * size of vfs inode i_blocks * 8
3466 */
3467 upper_limit = (1LL << 32) - 1;
3468
3469 /* total blocks in file system block size */
3470 upper_limit >>= (bits - 9);
3471
3472 } else {
3473 /*
3474 * We use 48 bit ext4_inode i_blocks
3475 * With EXT4_HUGE_FILE_FL set the i_blocks
3476 * represent total number of blocks in
3477 * file system block size
3478 */
3479 upper_limit = (1LL << 48) - 1;
3480
3481 }
3482
3483 /* Compute how many blocks we can address by block tree */
3484 res += ppb;
3485 res += ppb * ppb;
3486 res += ((loff_t)ppb) * ppb * ppb;
3487 /* Compute how many metadata blocks are needed */
3488 meta_blocks = 1;
3489 meta_blocks += 1 + ppb;
3490 meta_blocks += 1 + ppb + ppb * ppb;
3491 /* Does block tree limit file size? */
3492 if (res + meta_blocks <= upper_limit)
3493 goto check_lfs;
3494
3495 res = upper_limit;
3496 /* How many metadata blocks are needed for addressing upper_limit? */
3497 upper_limit -= EXT4_NDIR_BLOCKS;
3498 /* indirect blocks */
3499 meta_blocks = 1;
3500 upper_limit -= ppb;
3501 /* double indirect blocks */
3502 if (upper_limit < ppb * ppb) {
3503 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3504 res -= meta_blocks;
3505 goto check_lfs;
3506 }
3507 meta_blocks += 1 + ppb;
3508 upper_limit -= ppb * ppb;
3509 /* tripple indirect blocks for the rest */
3510 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3511 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3512 res -= meta_blocks;
3513 check_lfs:
3514 res <<= bits;
3515 if (res > MAX_LFS_FILESIZE)
3516 res = MAX_LFS_FILESIZE;
3517
3518 return res;
3519 }
3520
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3521 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3522 ext4_fsblk_t logical_sb_block, int nr)
3523 {
3524 struct ext4_sb_info *sbi = EXT4_SB(sb);
3525 ext4_group_t bg, first_meta_bg;
3526 int has_super = 0;
3527
3528 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3529
3530 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3531 return logical_sb_block + nr + 1;
3532 bg = sbi->s_desc_per_block * nr;
3533 if (ext4_bg_has_super(sb, bg))
3534 has_super = 1;
3535
3536 /*
3537 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3538 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3539 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3540 * compensate.
3541 */
3542 if (sb->s_blocksize == 1024 && nr == 0 &&
3543 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3544 has_super++;
3545
3546 return (has_super + ext4_group_first_block_no(sb, bg));
3547 }
3548
3549 /**
3550 * ext4_get_stripe_size: Get the stripe size.
3551 * @sbi: In memory super block info
3552 *
3553 * If we have specified it via mount option, then
3554 * use the mount option value. If the value specified at mount time is
3555 * greater than the blocks per group use the super block value.
3556 * If the super block value is greater than blocks per group return 0.
3557 * Allocator needs it be less than blocks per group.
3558 *
3559 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3560 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3561 {
3562 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3563 unsigned long stripe_width =
3564 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3565 int ret;
3566
3567 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3568 ret = sbi->s_stripe;
3569 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3570 ret = stripe_width;
3571 else if (stride && stride <= sbi->s_blocks_per_group)
3572 ret = stride;
3573 else
3574 ret = 0;
3575
3576 /*
3577 * If the stripe width is 1, this makes no sense and
3578 * we set it to 0 to turn off stripe handling code.
3579 */
3580 if (ret <= 1)
3581 ret = 0;
3582
3583 return ret;
3584 }
3585
3586 /*
3587 * Check whether this filesystem can be mounted based on
3588 * the features present and the RDONLY/RDWR mount requested.
3589 * Returns 1 if this filesystem can be mounted as requested,
3590 * 0 if it cannot be.
3591 */
ext4_feature_set_ok(struct super_block * sb,int readonly)3592 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3593 {
3594 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3595 ext4_msg(sb, KERN_ERR,
3596 "Couldn't mount because of "
3597 "unsupported optional features (%x)",
3598 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3599 ~EXT4_FEATURE_INCOMPAT_SUPP));
3600 return 0;
3601 }
3602
3603 if (!IS_ENABLED(CONFIG_UNICODE) && ext4_has_feature_casefold(sb)) {
3604 ext4_msg(sb, KERN_ERR,
3605 "Filesystem with casefold feature cannot be "
3606 "mounted without CONFIG_UNICODE");
3607 return 0;
3608 }
3609
3610 if (readonly)
3611 return 1;
3612
3613 if (ext4_has_feature_readonly(sb)) {
3614 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3615 sb->s_flags |= SB_RDONLY;
3616 return 1;
3617 }
3618
3619 /* Check that feature set is OK for a read-write mount */
3620 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3621 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3622 "unsupported optional features (%x)",
3623 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3624 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3625 return 0;
3626 }
3627 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3628 ext4_msg(sb, KERN_ERR,
3629 "Can't support bigalloc feature without "
3630 "extents feature\n");
3631 return 0;
3632 }
3633
3634 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3635 if (!readonly && (ext4_has_feature_quota(sb) ||
3636 ext4_has_feature_project(sb))) {
3637 ext4_msg(sb, KERN_ERR,
3638 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3639 return 0;
3640 }
3641 #endif /* CONFIG_QUOTA */
3642 return 1;
3643 }
3644
3645 /*
3646 * This function is called once a day if we have errors logged
3647 * on the file system
3648 */
print_daily_error_info(struct timer_list * t)3649 static void print_daily_error_info(struct timer_list *t)
3650 {
3651 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3652 struct super_block *sb = sbi->s_sb;
3653 struct ext4_super_block *es = sbi->s_es;
3654
3655 if (es->s_error_count)
3656 /* fsck newer than v1.41.13 is needed to clean this condition. */
3657 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3658 le32_to_cpu(es->s_error_count));
3659 if (es->s_first_error_time) {
3660 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3661 sb->s_id,
3662 ext4_get_tstamp(es, s_first_error_time),
3663 (int) sizeof(es->s_first_error_func),
3664 es->s_first_error_func,
3665 le32_to_cpu(es->s_first_error_line));
3666 if (es->s_first_error_ino)
3667 printk(KERN_CONT ": inode %u",
3668 le32_to_cpu(es->s_first_error_ino));
3669 if (es->s_first_error_block)
3670 printk(KERN_CONT ": block %llu", (unsigned long long)
3671 le64_to_cpu(es->s_first_error_block));
3672 printk(KERN_CONT "\n");
3673 }
3674 if (es->s_last_error_time) {
3675 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3676 sb->s_id,
3677 ext4_get_tstamp(es, s_last_error_time),
3678 (int) sizeof(es->s_last_error_func),
3679 es->s_last_error_func,
3680 le32_to_cpu(es->s_last_error_line));
3681 if (es->s_last_error_ino)
3682 printk(KERN_CONT ": inode %u",
3683 le32_to_cpu(es->s_last_error_ino));
3684 if (es->s_last_error_block)
3685 printk(KERN_CONT ": block %llu", (unsigned long long)
3686 le64_to_cpu(es->s_last_error_block));
3687 printk(KERN_CONT "\n");
3688 }
3689 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3690 }
3691
3692 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3693 static int ext4_run_li_request(struct ext4_li_request *elr)
3694 {
3695 struct ext4_group_desc *gdp = NULL;
3696 struct super_block *sb = elr->lr_super;
3697 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3698 ext4_group_t group = elr->lr_next_group;
3699 unsigned int prefetch_ios = 0;
3700 int ret = 0;
3701 int nr = EXT4_SB(sb)->s_mb_prefetch;
3702 u64 start_time;
3703
3704 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3705 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3706 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3707 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3708 if (group >= elr->lr_next_group) {
3709 ret = 1;
3710 if (elr->lr_first_not_zeroed != ngroups &&
3711 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3712 elr->lr_next_group = elr->lr_first_not_zeroed;
3713 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3714 ret = 0;
3715 }
3716 }
3717 return ret;
3718 }
3719
3720 for (; group < ngroups; group++) {
3721 gdp = ext4_get_group_desc(sb, group, NULL);
3722 if (!gdp) {
3723 ret = 1;
3724 break;
3725 }
3726
3727 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3728 break;
3729 }
3730
3731 if (group >= ngroups)
3732 ret = 1;
3733
3734 if (!ret) {
3735 start_time = ktime_get_real_ns();
3736 ret = ext4_init_inode_table(sb, group,
3737 elr->lr_timeout ? 0 : 1);
3738 trace_ext4_lazy_itable_init(sb, group);
3739 if (elr->lr_timeout == 0) {
3740 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3741 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3742 }
3743 elr->lr_next_sched = jiffies + elr->lr_timeout;
3744 elr->lr_next_group = group + 1;
3745 }
3746 return ret;
3747 }
3748
3749 /*
3750 * Remove lr_request from the list_request and free the
3751 * request structure. Should be called with li_list_mtx held
3752 */
ext4_remove_li_request(struct ext4_li_request * elr)3753 static void ext4_remove_li_request(struct ext4_li_request *elr)
3754 {
3755 if (!elr)
3756 return;
3757
3758 list_del(&elr->lr_request);
3759 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3760 kfree(elr);
3761 }
3762
ext4_unregister_li_request(struct super_block * sb)3763 static void ext4_unregister_li_request(struct super_block *sb)
3764 {
3765 mutex_lock(&ext4_li_mtx);
3766 if (!ext4_li_info) {
3767 mutex_unlock(&ext4_li_mtx);
3768 return;
3769 }
3770
3771 mutex_lock(&ext4_li_info->li_list_mtx);
3772 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3773 mutex_unlock(&ext4_li_info->li_list_mtx);
3774 mutex_unlock(&ext4_li_mtx);
3775 }
3776
3777 static struct task_struct *ext4_lazyinit_task;
3778
3779 /*
3780 * This is the function where ext4lazyinit thread lives. It walks
3781 * through the request list searching for next scheduled filesystem.
3782 * When such a fs is found, run the lazy initialization request
3783 * (ext4_rn_li_request) and keep track of the time spend in this
3784 * function. Based on that time we compute next schedule time of
3785 * the request. When walking through the list is complete, compute
3786 * next waking time and put itself into sleep.
3787 */
ext4_lazyinit_thread(void * arg)3788 static int ext4_lazyinit_thread(void *arg)
3789 {
3790 struct ext4_lazy_init *eli = arg;
3791 struct list_head *pos, *n;
3792 struct ext4_li_request *elr;
3793 unsigned long next_wakeup, cur;
3794
3795 BUG_ON(NULL == eli);
3796 set_freezable();
3797
3798 cont_thread:
3799 while (true) {
3800 next_wakeup = MAX_JIFFY_OFFSET;
3801
3802 mutex_lock(&eli->li_list_mtx);
3803 if (list_empty(&eli->li_request_list)) {
3804 mutex_unlock(&eli->li_list_mtx);
3805 goto exit_thread;
3806 }
3807 list_for_each_safe(pos, n, &eli->li_request_list) {
3808 int err = 0;
3809 int progress = 0;
3810 elr = list_entry(pos, struct ext4_li_request,
3811 lr_request);
3812
3813 if (time_before(jiffies, elr->lr_next_sched)) {
3814 if (time_before(elr->lr_next_sched, next_wakeup))
3815 next_wakeup = elr->lr_next_sched;
3816 continue;
3817 }
3818 if (down_read_trylock(&elr->lr_super->s_umount)) {
3819 if (sb_start_write_trylock(elr->lr_super)) {
3820 progress = 1;
3821 /*
3822 * We hold sb->s_umount, sb can not
3823 * be removed from the list, it is
3824 * now safe to drop li_list_mtx
3825 */
3826 mutex_unlock(&eli->li_list_mtx);
3827 err = ext4_run_li_request(elr);
3828 sb_end_write(elr->lr_super);
3829 mutex_lock(&eli->li_list_mtx);
3830 n = pos->next;
3831 }
3832 up_read((&elr->lr_super->s_umount));
3833 }
3834 /* error, remove the lazy_init job */
3835 if (err) {
3836 ext4_remove_li_request(elr);
3837 continue;
3838 }
3839 if (!progress) {
3840 elr->lr_next_sched = jiffies +
3841 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3842 }
3843 if (time_before(elr->lr_next_sched, next_wakeup))
3844 next_wakeup = elr->lr_next_sched;
3845 }
3846 mutex_unlock(&eli->li_list_mtx);
3847
3848 try_to_freeze();
3849
3850 cur = jiffies;
3851 if ((time_after_eq(cur, next_wakeup)) ||
3852 (MAX_JIFFY_OFFSET == next_wakeup)) {
3853 cond_resched();
3854 continue;
3855 }
3856
3857 schedule_timeout_interruptible(next_wakeup - cur);
3858
3859 if (kthread_should_stop()) {
3860 ext4_clear_request_list();
3861 goto exit_thread;
3862 }
3863 }
3864
3865 exit_thread:
3866 /*
3867 * It looks like the request list is empty, but we need
3868 * to check it under the li_list_mtx lock, to prevent any
3869 * additions into it, and of course we should lock ext4_li_mtx
3870 * to atomically free the list and ext4_li_info, because at
3871 * this point another ext4 filesystem could be registering
3872 * new one.
3873 */
3874 mutex_lock(&ext4_li_mtx);
3875 mutex_lock(&eli->li_list_mtx);
3876 if (!list_empty(&eli->li_request_list)) {
3877 mutex_unlock(&eli->li_list_mtx);
3878 mutex_unlock(&ext4_li_mtx);
3879 goto cont_thread;
3880 }
3881 mutex_unlock(&eli->li_list_mtx);
3882 kfree(ext4_li_info);
3883 ext4_li_info = NULL;
3884 mutex_unlock(&ext4_li_mtx);
3885
3886 return 0;
3887 }
3888
ext4_clear_request_list(void)3889 static void ext4_clear_request_list(void)
3890 {
3891 struct list_head *pos, *n;
3892 struct ext4_li_request *elr;
3893
3894 mutex_lock(&ext4_li_info->li_list_mtx);
3895 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3896 elr = list_entry(pos, struct ext4_li_request,
3897 lr_request);
3898 ext4_remove_li_request(elr);
3899 }
3900 mutex_unlock(&ext4_li_info->li_list_mtx);
3901 }
3902
ext4_run_lazyinit_thread(void)3903 static int ext4_run_lazyinit_thread(void)
3904 {
3905 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3906 ext4_li_info, "ext4lazyinit");
3907 if (IS_ERR(ext4_lazyinit_task)) {
3908 int err = PTR_ERR(ext4_lazyinit_task);
3909 ext4_clear_request_list();
3910 kfree(ext4_li_info);
3911 ext4_li_info = NULL;
3912 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3913 "initialization thread\n",
3914 err);
3915 return err;
3916 }
3917 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3918 return 0;
3919 }
3920
3921 /*
3922 * Check whether it make sense to run itable init. thread or not.
3923 * If there is at least one uninitialized inode table, return
3924 * corresponding group number, else the loop goes through all
3925 * groups and return total number of groups.
3926 */
ext4_has_uninit_itable(struct super_block * sb)3927 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3928 {
3929 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3930 struct ext4_group_desc *gdp = NULL;
3931
3932 if (!ext4_has_group_desc_csum(sb))
3933 return ngroups;
3934
3935 for (group = 0; group < ngroups; group++) {
3936 gdp = ext4_get_group_desc(sb, group, NULL);
3937 if (!gdp)
3938 continue;
3939
3940 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3941 break;
3942 }
3943
3944 return group;
3945 }
3946
ext4_li_info_new(void)3947 static int ext4_li_info_new(void)
3948 {
3949 struct ext4_lazy_init *eli = NULL;
3950
3951 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3952 if (!eli)
3953 return -ENOMEM;
3954
3955 INIT_LIST_HEAD(&eli->li_request_list);
3956 mutex_init(&eli->li_list_mtx);
3957
3958 eli->li_state |= EXT4_LAZYINIT_QUIT;
3959
3960 ext4_li_info = eli;
3961
3962 return 0;
3963 }
3964
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3965 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3966 ext4_group_t start)
3967 {
3968 struct ext4_li_request *elr;
3969
3970 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3971 if (!elr)
3972 return NULL;
3973
3974 elr->lr_super = sb;
3975 elr->lr_first_not_zeroed = start;
3976 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3977 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3978 elr->lr_next_group = start;
3979 } else {
3980 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3981 }
3982
3983 /*
3984 * Randomize first schedule time of the request to
3985 * spread the inode table initialization requests
3986 * better.
3987 */
3988 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3989 return elr;
3990 }
3991
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3992 int ext4_register_li_request(struct super_block *sb,
3993 ext4_group_t first_not_zeroed)
3994 {
3995 struct ext4_sb_info *sbi = EXT4_SB(sb);
3996 struct ext4_li_request *elr = NULL;
3997 ext4_group_t ngroups = sbi->s_groups_count;
3998 int ret = 0;
3999
4000 mutex_lock(&ext4_li_mtx);
4001 if (sbi->s_li_request != NULL) {
4002 /*
4003 * Reset timeout so it can be computed again, because
4004 * s_li_wait_mult might have changed.
4005 */
4006 sbi->s_li_request->lr_timeout = 0;
4007 goto out;
4008 }
4009
4010 if (sb_rdonly(sb) ||
4011 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4012 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4013 goto out;
4014
4015 elr = ext4_li_request_new(sb, first_not_zeroed);
4016 if (!elr) {
4017 ret = -ENOMEM;
4018 goto out;
4019 }
4020
4021 if (NULL == ext4_li_info) {
4022 ret = ext4_li_info_new();
4023 if (ret)
4024 goto out;
4025 }
4026
4027 mutex_lock(&ext4_li_info->li_list_mtx);
4028 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4029 mutex_unlock(&ext4_li_info->li_list_mtx);
4030
4031 sbi->s_li_request = elr;
4032 /*
4033 * set elr to NULL here since it has been inserted to
4034 * the request_list and the removal and free of it is
4035 * handled by ext4_clear_request_list from now on.
4036 */
4037 elr = NULL;
4038
4039 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4040 ret = ext4_run_lazyinit_thread();
4041 if (ret)
4042 goto out;
4043 }
4044 out:
4045 mutex_unlock(&ext4_li_mtx);
4046 if (ret)
4047 kfree(elr);
4048 return ret;
4049 }
4050
4051 /*
4052 * We do not need to lock anything since this is called on
4053 * module unload.
4054 */
ext4_destroy_lazyinit_thread(void)4055 static void ext4_destroy_lazyinit_thread(void)
4056 {
4057 /*
4058 * If thread exited earlier
4059 * there's nothing to be done.
4060 */
4061 if (!ext4_li_info || !ext4_lazyinit_task)
4062 return;
4063
4064 kthread_stop(ext4_lazyinit_task);
4065 }
4066
set_journal_csum_feature_set(struct super_block * sb)4067 static int set_journal_csum_feature_set(struct super_block *sb)
4068 {
4069 int ret = 1;
4070 int compat, incompat;
4071 struct ext4_sb_info *sbi = EXT4_SB(sb);
4072
4073 if (ext4_has_metadata_csum(sb)) {
4074 /* journal checksum v3 */
4075 compat = 0;
4076 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4077 } else {
4078 /* journal checksum v1 */
4079 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4080 incompat = 0;
4081 }
4082
4083 jbd2_journal_clear_features(sbi->s_journal,
4084 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4085 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4086 JBD2_FEATURE_INCOMPAT_CSUM_V2);
4087 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4088 ret = jbd2_journal_set_features(sbi->s_journal,
4089 compat, 0,
4090 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4091 incompat);
4092 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4093 ret = jbd2_journal_set_features(sbi->s_journal,
4094 compat, 0,
4095 incompat);
4096 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4097 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4098 } else {
4099 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4100 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4101 }
4102
4103 return ret;
4104 }
4105
4106 /*
4107 * Note: calculating the overhead so we can be compatible with
4108 * historical BSD practice is quite difficult in the face of
4109 * clusters/bigalloc. This is because multiple metadata blocks from
4110 * different block group can end up in the same allocation cluster.
4111 * Calculating the exact overhead in the face of clustered allocation
4112 * requires either O(all block bitmaps) in memory or O(number of block
4113 * groups**2) in time. We will still calculate the superblock for
4114 * older file systems --- and if we come across with a bigalloc file
4115 * system with zero in s_overhead_clusters the estimate will be close to
4116 * correct especially for very large cluster sizes --- but for newer
4117 * file systems, it's better to calculate this figure once at mkfs
4118 * time, and store it in the superblock. If the superblock value is
4119 * present (even for non-bigalloc file systems), we will use it.
4120 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)4121 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4122 char *buf)
4123 {
4124 struct ext4_sb_info *sbi = EXT4_SB(sb);
4125 struct ext4_group_desc *gdp;
4126 ext4_fsblk_t first_block, last_block, b;
4127 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4128 int s, j, count = 0;
4129 int has_super = ext4_bg_has_super(sb, grp);
4130
4131 if (!ext4_has_feature_bigalloc(sb))
4132 return (has_super + ext4_bg_num_gdb(sb, grp) +
4133 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4134 sbi->s_itb_per_group + 2);
4135
4136 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4137 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4138 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4139 for (i = 0; i < ngroups; i++) {
4140 gdp = ext4_get_group_desc(sb, i, NULL);
4141 b = ext4_block_bitmap(sb, gdp);
4142 if (b >= first_block && b <= last_block) {
4143 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4144 count++;
4145 }
4146 b = ext4_inode_bitmap(sb, gdp);
4147 if (b >= first_block && b <= last_block) {
4148 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4149 count++;
4150 }
4151 b = ext4_inode_table(sb, gdp);
4152 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4153 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4154 int c = EXT4_B2C(sbi, b - first_block);
4155 ext4_set_bit(c, buf);
4156 count++;
4157 }
4158 if (i != grp)
4159 continue;
4160 s = 0;
4161 if (ext4_bg_has_super(sb, grp)) {
4162 ext4_set_bit(s++, buf);
4163 count++;
4164 }
4165 j = ext4_bg_num_gdb(sb, grp);
4166 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4167 ext4_error(sb, "Invalid number of block group "
4168 "descriptor blocks: %d", j);
4169 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4170 }
4171 count += j;
4172 for (; j > 0; j--)
4173 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4174 }
4175 if (!count)
4176 return 0;
4177 return EXT4_CLUSTERS_PER_GROUP(sb) -
4178 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4179 }
4180
4181 /*
4182 * Compute the overhead and stash it in sbi->s_overhead
4183 */
ext4_calculate_overhead(struct super_block * sb)4184 int ext4_calculate_overhead(struct super_block *sb)
4185 {
4186 struct ext4_sb_info *sbi = EXT4_SB(sb);
4187 struct ext4_super_block *es = sbi->s_es;
4188 struct inode *j_inode;
4189 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4190 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4191 ext4_fsblk_t overhead = 0;
4192 char *buf = (char *) get_zeroed_page(GFP_NOFS);
4193
4194 if (!buf)
4195 return -ENOMEM;
4196
4197 /*
4198 * Compute the overhead (FS structures). This is constant
4199 * for a given filesystem unless the number of block groups
4200 * changes so we cache the previous value until it does.
4201 */
4202
4203 /*
4204 * All of the blocks before first_data_block are overhead
4205 */
4206 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4207
4208 /*
4209 * Add the overhead found in each block group
4210 */
4211 for (i = 0; i < ngroups; i++) {
4212 int blks;
4213
4214 blks = count_overhead(sb, i, buf);
4215 overhead += blks;
4216 if (blks)
4217 memset(buf, 0, PAGE_SIZE);
4218 cond_resched();
4219 }
4220
4221 /*
4222 * Add the internal journal blocks whether the journal has been
4223 * loaded or not
4224 */
4225 if (sbi->s_journal && !sbi->s_journal_bdev_file)
4226 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4227 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4228 /* j_inum for internal journal is non-zero */
4229 j_inode = ext4_get_journal_inode(sb, j_inum);
4230 if (!IS_ERR(j_inode)) {
4231 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4232 overhead += EXT4_NUM_B2C(sbi, j_blocks);
4233 iput(j_inode);
4234 } else {
4235 ext4_msg(sb, KERN_ERR, "can't get journal size");
4236 }
4237 }
4238 sbi->s_overhead = overhead;
4239 smp_wmb();
4240 free_page((unsigned long) buf);
4241 return 0;
4242 }
4243
ext4_set_resv_clusters(struct super_block * sb)4244 static void ext4_set_resv_clusters(struct super_block *sb)
4245 {
4246 ext4_fsblk_t resv_clusters;
4247 struct ext4_sb_info *sbi = EXT4_SB(sb);
4248
4249 /*
4250 * There's no need to reserve anything when we aren't using extents.
4251 * The space estimates are exact, there are no unwritten extents,
4252 * hole punching doesn't need new metadata... This is needed especially
4253 * to keep ext2/3 backward compatibility.
4254 */
4255 if (!ext4_has_feature_extents(sb))
4256 return;
4257 /*
4258 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4259 * This should cover the situations where we can not afford to run
4260 * out of space like for example punch hole, or converting
4261 * unwritten extents in delalloc path. In most cases such
4262 * allocation would require 1, or 2 blocks, higher numbers are
4263 * very rare.
4264 */
4265 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4266 sbi->s_cluster_bits);
4267
4268 do_div(resv_clusters, 50);
4269 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4270
4271 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4272 }
4273
ext4_quota_mode(struct super_block * sb)4274 static const char *ext4_quota_mode(struct super_block *sb)
4275 {
4276 #ifdef CONFIG_QUOTA
4277 if (!ext4_quota_capable(sb))
4278 return "none";
4279
4280 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4281 return "journalled";
4282 else
4283 return "writeback";
4284 #else
4285 return "disabled";
4286 #endif
4287 }
4288
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))4289 static void ext4_setup_csum_trigger(struct super_block *sb,
4290 enum ext4_journal_trigger_type type,
4291 void (*trigger)(
4292 struct jbd2_buffer_trigger_type *type,
4293 struct buffer_head *bh,
4294 void *mapped_data,
4295 size_t size))
4296 {
4297 struct ext4_sb_info *sbi = EXT4_SB(sb);
4298
4299 sbi->s_journal_triggers[type].sb = sb;
4300 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4301 }
4302
ext4_free_sbi(struct ext4_sb_info * sbi)4303 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4304 {
4305 if (!sbi)
4306 return;
4307
4308 kfree(sbi->s_blockgroup_lock);
4309 fs_put_dax(sbi->s_daxdev, NULL);
4310 kfree(sbi);
4311 }
4312
ext4_alloc_sbi(struct super_block * sb)4313 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4314 {
4315 struct ext4_sb_info *sbi;
4316
4317 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4318 if (!sbi)
4319 return NULL;
4320
4321 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4322 NULL, NULL);
4323
4324 sbi->s_blockgroup_lock =
4325 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4326
4327 if (!sbi->s_blockgroup_lock)
4328 goto err_out;
4329
4330 sb->s_fs_info = sbi;
4331 sbi->s_sb = sb;
4332 return sbi;
4333 err_out:
4334 fs_put_dax(sbi->s_daxdev, NULL);
4335 kfree(sbi);
4336 return NULL;
4337 }
4338
ext4_set_def_opts(struct super_block * sb,struct ext4_super_block * es)4339 static void ext4_set_def_opts(struct super_block *sb,
4340 struct ext4_super_block *es)
4341 {
4342 unsigned long def_mount_opts;
4343
4344 /* Set defaults before we parse the mount options */
4345 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4346 set_opt(sb, INIT_INODE_TABLE);
4347 if (def_mount_opts & EXT4_DEFM_DEBUG)
4348 set_opt(sb, DEBUG);
4349 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4350 set_opt(sb, GRPID);
4351 if (def_mount_opts & EXT4_DEFM_UID16)
4352 set_opt(sb, NO_UID32);
4353 /* xattr user namespace & acls are now defaulted on */
4354 set_opt(sb, XATTR_USER);
4355 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4356 set_opt(sb, POSIX_ACL);
4357 #endif
4358 if (ext4_has_feature_fast_commit(sb))
4359 set_opt2(sb, JOURNAL_FAST_COMMIT);
4360 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4361 if (ext4_has_metadata_csum(sb))
4362 set_opt(sb, JOURNAL_CHECKSUM);
4363
4364 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4365 set_opt(sb, JOURNAL_DATA);
4366 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4367 set_opt(sb, ORDERED_DATA);
4368 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4369 set_opt(sb, WRITEBACK_DATA);
4370
4371 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4372 set_opt(sb, ERRORS_PANIC);
4373 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4374 set_opt(sb, ERRORS_CONT);
4375 else
4376 set_opt(sb, ERRORS_RO);
4377 /* block_validity enabled by default; disable with noblock_validity */
4378 set_opt(sb, BLOCK_VALIDITY);
4379 if (def_mount_opts & EXT4_DEFM_DISCARD)
4380 set_opt(sb, DISCARD);
4381
4382 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4383 set_opt(sb, BARRIER);
4384
4385 /*
4386 * enable delayed allocation by default
4387 * Use -o nodelalloc to turn it off
4388 */
4389 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4390 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4391 set_opt(sb, DELALLOC);
4392
4393 if (sb->s_blocksize <= PAGE_SIZE)
4394 set_opt(sb, DIOREAD_NOLOCK);
4395 }
4396
ext4_handle_clustersize(struct super_block * sb)4397 static int ext4_handle_clustersize(struct super_block *sb)
4398 {
4399 struct ext4_sb_info *sbi = EXT4_SB(sb);
4400 struct ext4_super_block *es = sbi->s_es;
4401 int clustersize;
4402
4403 /* Handle clustersize */
4404 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4405 if (ext4_has_feature_bigalloc(sb)) {
4406 if (clustersize < sb->s_blocksize) {
4407 ext4_msg(sb, KERN_ERR,
4408 "cluster size (%d) smaller than "
4409 "block size (%lu)", clustersize, sb->s_blocksize);
4410 return -EINVAL;
4411 }
4412 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4413 le32_to_cpu(es->s_log_block_size);
4414 } else {
4415 if (clustersize != sb->s_blocksize) {
4416 ext4_msg(sb, KERN_ERR,
4417 "fragment/cluster size (%d) != "
4418 "block size (%lu)", clustersize, sb->s_blocksize);
4419 return -EINVAL;
4420 }
4421 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4422 ext4_msg(sb, KERN_ERR,
4423 "#blocks per group too big: %lu",
4424 sbi->s_blocks_per_group);
4425 return -EINVAL;
4426 }
4427 sbi->s_cluster_bits = 0;
4428 }
4429 sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group);
4430 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4431 ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu",
4432 sbi->s_clusters_per_group);
4433 return -EINVAL;
4434 }
4435 if (sbi->s_blocks_per_group !=
4436 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4437 ext4_msg(sb, KERN_ERR,
4438 "blocks per group (%lu) and clusters per group (%lu) inconsistent",
4439 sbi->s_blocks_per_group, sbi->s_clusters_per_group);
4440 return -EINVAL;
4441 }
4442 sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4443
4444 /* Do we have standard group size of clustersize * 8 blocks ? */
4445 if (sbi->s_blocks_per_group == clustersize << 3)
4446 set_opt2(sb, STD_GROUP_SIZE);
4447
4448 return 0;
4449 }
4450
ext4_fast_commit_init(struct super_block * sb)4451 static void ext4_fast_commit_init(struct super_block *sb)
4452 {
4453 struct ext4_sb_info *sbi = EXT4_SB(sb);
4454
4455 /* Initialize fast commit stuff */
4456 atomic_set(&sbi->s_fc_subtid, 0);
4457 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4458 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4459 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4460 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4461 sbi->s_fc_bytes = 0;
4462 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4463 sbi->s_fc_ineligible_tid = 0;
4464 spin_lock_init(&sbi->s_fc_lock);
4465 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4466 sbi->s_fc_replay_state.fc_regions = NULL;
4467 sbi->s_fc_replay_state.fc_regions_size = 0;
4468 sbi->s_fc_replay_state.fc_regions_used = 0;
4469 sbi->s_fc_replay_state.fc_regions_valid = 0;
4470 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4471 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4472 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4473 }
4474
ext4_inode_info_init(struct super_block * sb,struct ext4_super_block * es)4475 static int ext4_inode_info_init(struct super_block *sb,
4476 struct ext4_super_block *es)
4477 {
4478 struct ext4_sb_info *sbi = EXT4_SB(sb);
4479
4480 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4481 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4482 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4483 } else {
4484 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4485 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4486 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4487 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4488 sbi->s_first_ino);
4489 return -EINVAL;
4490 }
4491 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4492 (!is_power_of_2(sbi->s_inode_size)) ||
4493 (sbi->s_inode_size > sb->s_blocksize)) {
4494 ext4_msg(sb, KERN_ERR,
4495 "unsupported inode size: %d",
4496 sbi->s_inode_size);
4497 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4498 return -EINVAL;
4499 }
4500 /*
4501 * i_atime_extra is the last extra field available for
4502 * [acm]times in struct ext4_inode. Checking for that
4503 * field should suffice to ensure we have extra space
4504 * for all three.
4505 */
4506 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4507 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4508 sb->s_time_gran = 1;
4509 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4510 } else {
4511 sb->s_time_gran = NSEC_PER_SEC;
4512 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4513 }
4514 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4515 }
4516
4517 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4518 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4519 EXT4_GOOD_OLD_INODE_SIZE;
4520 if (ext4_has_feature_extra_isize(sb)) {
4521 unsigned v, max = (sbi->s_inode_size -
4522 EXT4_GOOD_OLD_INODE_SIZE);
4523
4524 v = le16_to_cpu(es->s_want_extra_isize);
4525 if (v > max) {
4526 ext4_msg(sb, KERN_ERR,
4527 "bad s_want_extra_isize: %d", v);
4528 return -EINVAL;
4529 }
4530 if (sbi->s_want_extra_isize < v)
4531 sbi->s_want_extra_isize = v;
4532
4533 v = le16_to_cpu(es->s_min_extra_isize);
4534 if (v > max) {
4535 ext4_msg(sb, KERN_ERR,
4536 "bad s_min_extra_isize: %d", v);
4537 return -EINVAL;
4538 }
4539 if (sbi->s_want_extra_isize < v)
4540 sbi->s_want_extra_isize = v;
4541 }
4542 }
4543
4544 return 0;
4545 }
4546
4547 #if IS_ENABLED(CONFIG_UNICODE)
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4548 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4549 {
4550 const struct ext4_sb_encodings *encoding_info;
4551 struct unicode_map *encoding;
4552 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4553
4554 if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4555 return 0;
4556
4557 encoding_info = ext4_sb_read_encoding(es);
4558 if (!encoding_info) {
4559 ext4_msg(sb, KERN_ERR,
4560 "Encoding requested by superblock is unknown");
4561 return -EINVAL;
4562 }
4563
4564 encoding = utf8_load(encoding_info->version);
4565 if (IS_ERR(encoding)) {
4566 ext4_msg(sb, KERN_ERR,
4567 "can't mount with superblock charset: %s-%u.%u.%u "
4568 "not supported by the kernel. flags: 0x%x.",
4569 encoding_info->name,
4570 unicode_major(encoding_info->version),
4571 unicode_minor(encoding_info->version),
4572 unicode_rev(encoding_info->version),
4573 encoding_flags);
4574 return -EINVAL;
4575 }
4576 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4577 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4578 unicode_major(encoding_info->version),
4579 unicode_minor(encoding_info->version),
4580 unicode_rev(encoding_info->version),
4581 encoding_flags);
4582
4583 sb->s_encoding = encoding;
4584 sb->s_encoding_flags = encoding_flags;
4585
4586 return 0;
4587 }
4588 #else
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4589 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4590 {
4591 return 0;
4592 }
4593 #endif
4594
ext4_init_metadata_csum(struct super_block * sb,struct ext4_super_block * es)4595 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4596 {
4597 struct ext4_sb_info *sbi = EXT4_SB(sb);
4598
4599 /* Warn if metadata_csum and gdt_csum are both set. */
4600 if (ext4_has_feature_metadata_csum(sb) &&
4601 ext4_has_feature_gdt_csum(sb))
4602 ext4_warning(sb, "metadata_csum and uninit_bg are "
4603 "redundant flags; please run fsck.");
4604
4605 /* Check for a known checksum algorithm */
4606 if (!ext4_verify_csum_type(sb, es)) {
4607 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4608 "unknown checksum algorithm.");
4609 return -EINVAL;
4610 }
4611 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4612 ext4_orphan_file_block_trigger);
4613
4614 /* Load the checksum driver */
4615 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4616 if (IS_ERR(sbi->s_chksum_driver)) {
4617 int ret = PTR_ERR(sbi->s_chksum_driver);
4618 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4619 sbi->s_chksum_driver = NULL;
4620 return ret;
4621 }
4622
4623 /* Check superblock checksum */
4624 if (!ext4_superblock_csum_verify(sb, es)) {
4625 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4626 "invalid superblock checksum. Run e2fsck?");
4627 return -EFSBADCRC;
4628 }
4629
4630 /* Precompute checksum seed for all metadata */
4631 if (ext4_has_feature_csum_seed(sb))
4632 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4633 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4634 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4635 sizeof(es->s_uuid));
4636 return 0;
4637 }
4638
ext4_check_feature_compatibility(struct super_block * sb,struct ext4_super_block * es,int silent)4639 static int ext4_check_feature_compatibility(struct super_block *sb,
4640 struct ext4_super_block *es,
4641 int silent)
4642 {
4643 struct ext4_sb_info *sbi = EXT4_SB(sb);
4644
4645 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4646 (ext4_has_compat_features(sb) ||
4647 ext4_has_ro_compat_features(sb) ||
4648 ext4_has_incompat_features(sb)))
4649 ext4_msg(sb, KERN_WARNING,
4650 "feature flags set on rev 0 fs, "
4651 "running e2fsck is recommended");
4652
4653 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4654 set_opt2(sb, HURD_COMPAT);
4655 if (ext4_has_feature_64bit(sb)) {
4656 ext4_msg(sb, KERN_ERR,
4657 "The Hurd can't support 64-bit file systems");
4658 return -EINVAL;
4659 }
4660
4661 /*
4662 * ea_inode feature uses l_i_version field which is not
4663 * available in HURD_COMPAT mode.
4664 */
4665 if (ext4_has_feature_ea_inode(sb)) {
4666 ext4_msg(sb, KERN_ERR,
4667 "ea_inode feature is not supported for Hurd");
4668 return -EINVAL;
4669 }
4670 }
4671
4672 if (IS_EXT2_SB(sb)) {
4673 if (ext2_feature_set_ok(sb))
4674 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4675 "using the ext4 subsystem");
4676 else {
4677 /*
4678 * If we're probing be silent, if this looks like
4679 * it's actually an ext[34] filesystem.
4680 */
4681 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4682 return -EINVAL;
4683 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4684 "to feature incompatibilities");
4685 return -EINVAL;
4686 }
4687 }
4688
4689 if (IS_EXT3_SB(sb)) {
4690 if (ext3_feature_set_ok(sb))
4691 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4692 "using the ext4 subsystem");
4693 else {
4694 /*
4695 * If we're probing be silent, if this looks like
4696 * it's actually an ext4 filesystem.
4697 */
4698 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4699 return -EINVAL;
4700 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4701 "to feature incompatibilities");
4702 return -EINVAL;
4703 }
4704 }
4705
4706 /*
4707 * Check feature flags regardless of the revision level, since we
4708 * previously didn't change the revision level when setting the flags,
4709 * so there is a chance incompat flags are set on a rev 0 filesystem.
4710 */
4711 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4712 return -EINVAL;
4713
4714 if (sbi->s_daxdev) {
4715 if (sb->s_blocksize == PAGE_SIZE)
4716 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4717 else
4718 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4719 }
4720
4721 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4722 if (ext4_has_feature_inline_data(sb)) {
4723 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4724 " that may contain inline data");
4725 return -EINVAL;
4726 }
4727 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4728 ext4_msg(sb, KERN_ERR,
4729 "DAX unsupported by block device.");
4730 return -EINVAL;
4731 }
4732 }
4733
4734 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4735 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4736 es->s_encryption_level);
4737 return -EINVAL;
4738 }
4739
4740 return 0;
4741 }
4742
ext4_check_geometry(struct super_block * sb,struct ext4_super_block * es)4743 static int ext4_check_geometry(struct super_block *sb,
4744 struct ext4_super_block *es)
4745 {
4746 struct ext4_sb_info *sbi = EXT4_SB(sb);
4747 __u64 blocks_count;
4748 int err;
4749
4750 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4751 ext4_msg(sb, KERN_ERR,
4752 "Number of reserved GDT blocks insanely large: %d",
4753 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4754 return -EINVAL;
4755 }
4756 /*
4757 * Test whether we have more sectors than will fit in sector_t,
4758 * and whether the max offset is addressable by the page cache.
4759 */
4760 err = generic_check_addressable(sb->s_blocksize_bits,
4761 ext4_blocks_count(es));
4762 if (err) {
4763 ext4_msg(sb, KERN_ERR, "filesystem"
4764 " too large to mount safely on this system");
4765 return err;
4766 }
4767
4768 /* check blocks count against device size */
4769 blocks_count = sb_bdev_nr_blocks(sb);
4770 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4771 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4772 "exceeds size of device (%llu blocks)",
4773 ext4_blocks_count(es), blocks_count);
4774 return -EINVAL;
4775 }
4776
4777 /*
4778 * It makes no sense for the first data block to be beyond the end
4779 * of the filesystem.
4780 */
4781 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4782 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4783 "block %u is beyond end of filesystem (%llu)",
4784 le32_to_cpu(es->s_first_data_block),
4785 ext4_blocks_count(es));
4786 return -EINVAL;
4787 }
4788 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4789 (sbi->s_cluster_ratio == 1)) {
4790 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4791 "block is 0 with a 1k block and cluster size");
4792 return -EINVAL;
4793 }
4794
4795 blocks_count = (ext4_blocks_count(es) -
4796 le32_to_cpu(es->s_first_data_block) +
4797 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4798 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4799 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4800 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4801 "(block count %llu, first data block %u, "
4802 "blocks per group %lu)", blocks_count,
4803 ext4_blocks_count(es),
4804 le32_to_cpu(es->s_first_data_block),
4805 EXT4_BLOCKS_PER_GROUP(sb));
4806 return -EINVAL;
4807 }
4808 sbi->s_groups_count = blocks_count;
4809 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4810 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4811 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4812 le32_to_cpu(es->s_inodes_count)) {
4813 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4814 le32_to_cpu(es->s_inodes_count),
4815 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4816 return -EINVAL;
4817 }
4818
4819 return 0;
4820 }
4821
ext4_group_desc_init(struct super_block * sb,struct ext4_super_block * es,ext4_fsblk_t logical_sb_block,ext4_group_t * first_not_zeroed)4822 static int ext4_group_desc_init(struct super_block *sb,
4823 struct ext4_super_block *es,
4824 ext4_fsblk_t logical_sb_block,
4825 ext4_group_t *first_not_zeroed)
4826 {
4827 struct ext4_sb_info *sbi = EXT4_SB(sb);
4828 unsigned int db_count;
4829 ext4_fsblk_t block;
4830 int i;
4831
4832 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4833 EXT4_DESC_PER_BLOCK(sb);
4834 if (ext4_has_feature_meta_bg(sb)) {
4835 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4836 ext4_msg(sb, KERN_WARNING,
4837 "first meta block group too large: %u "
4838 "(group descriptor block count %u)",
4839 le32_to_cpu(es->s_first_meta_bg), db_count);
4840 return -EINVAL;
4841 }
4842 }
4843 rcu_assign_pointer(sbi->s_group_desc,
4844 kvmalloc_array(db_count,
4845 sizeof(struct buffer_head *),
4846 GFP_KERNEL));
4847 if (sbi->s_group_desc == NULL) {
4848 ext4_msg(sb, KERN_ERR, "not enough memory");
4849 return -ENOMEM;
4850 }
4851
4852 bgl_lock_init(sbi->s_blockgroup_lock);
4853
4854 /* Pre-read the descriptors into the buffer cache */
4855 for (i = 0; i < db_count; i++) {
4856 block = descriptor_loc(sb, logical_sb_block, i);
4857 ext4_sb_breadahead_unmovable(sb, block);
4858 }
4859
4860 for (i = 0; i < db_count; i++) {
4861 struct buffer_head *bh;
4862
4863 block = descriptor_loc(sb, logical_sb_block, i);
4864 bh = ext4_sb_bread_unmovable(sb, block);
4865 if (IS_ERR(bh)) {
4866 ext4_msg(sb, KERN_ERR,
4867 "can't read group descriptor %d", i);
4868 sbi->s_gdb_count = i;
4869 return PTR_ERR(bh);
4870 }
4871 rcu_read_lock();
4872 rcu_dereference(sbi->s_group_desc)[i] = bh;
4873 rcu_read_unlock();
4874 }
4875 sbi->s_gdb_count = db_count;
4876 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4877 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4878 return -EFSCORRUPTED;
4879 }
4880
4881 return 0;
4882 }
4883
ext4_load_and_init_journal(struct super_block * sb,struct ext4_super_block * es,struct ext4_fs_context * ctx)4884 static int ext4_load_and_init_journal(struct super_block *sb,
4885 struct ext4_super_block *es,
4886 struct ext4_fs_context *ctx)
4887 {
4888 struct ext4_sb_info *sbi = EXT4_SB(sb);
4889 int err;
4890
4891 err = ext4_load_journal(sb, es, ctx->journal_devnum);
4892 if (err)
4893 return err;
4894
4895 if (ext4_has_feature_64bit(sb) &&
4896 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4897 JBD2_FEATURE_INCOMPAT_64BIT)) {
4898 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4899 goto out;
4900 }
4901
4902 if (!set_journal_csum_feature_set(sb)) {
4903 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4904 "feature set");
4905 goto out;
4906 }
4907
4908 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4909 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4910 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4911 ext4_msg(sb, KERN_ERR,
4912 "Failed to set fast commit journal feature");
4913 goto out;
4914 }
4915
4916 /* We have now updated the journal if required, so we can
4917 * validate the data journaling mode. */
4918 switch (test_opt(sb, DATA_FLAGS)) {
4919 case 0:
4920 /* No mode set, assume a default based on the journal
4921 * capabilities: ORDERED_DATA if the journal can
4922 * cope, else JOURNAL_DATA
4923 */
4924 if (jbd2_journal_check_available_features
4925 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4926 set_opt(sb, ORDERED_DATA);
4927 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4928 } else {
4929 set_opt(sb, JOURNAL_DATA);
4930 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4931 }
4932 break;
4933
4934 case EXT4_MOUNT_ORDERED_DATA:
4935 case EXT4_MOUNT_WRITEBACK_DATA:
4936 if (!jbd2_journal_check_available_features
4937 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4938 ext4_msg(sb, KERN_ERR, "Journal does not support "
4939 "requested data journaling mode");
4940 goto out;
4941 }
4942 break;
4943 default:
4944 break;
4945 }
4946
4947 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4948 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4949 ext4_msg(sb, KERN_ERR, "can't mount with "
4950 "journal_async_commit in data=ordered mode");
4951 goto out;
4952 }
4953
4954 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4955
4956 sbi->s_journal->j_submit_inode_data_buffers =
4957 ext4_journal_submit_inode_data_buffers;
4958 sbi->s_journal->j_finish_inode_data_buffers =
4959 ext4_journal_finish_inode_data_buffers;
4960
4961 return 0;
4962
4963 out:
4964 ext4_journal_destroy(sbi, sbi->s_journal);
4965 return -EINVAL;
4966 }
4967
ext4_check_journal_data_mode(struct super_block * sb)4968 static int ext4_check_journal_data_mode(struct super_block *sb)
4969 {
4970 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4971 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4972 "data=journal disables delayed allocation, "
4973 "dioread_nolock, O_DIRECT and fast_commit support!\n");
4974 /* can't mount with both data=journal and dioread_nolock. */
4975 clear_opt(sb, DIOREAD_NOLOCK);
4976 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4977 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4978 ext4_msg(sb, KERN_ERR, "can't mount with "
4979 "both data=journal and delalloc");
4980 return -EINVAL;
4981 }
4982 if (test_opt(sb, DAX_ALWAYS)) {
4983 ext4_msg(sb, KERN_ERR, "can't mount with "
4984 "both data=journal and dax");
4985 return -EINVAL;
4986 }
4987 if (ext4_has_feature_encrypt(sb)) {
4988 ext4_msg(sb, KERN_WARNING,
4989 "encrypted files will use data=ordered "
4990 "instead of data journaling mode");
4991 }
4992 if (test_opt(sb, DELALLOC))
4993 clear_opt(sb, DELALLOC);
4994 } else {
4995 sb->s_iflags |= SB_I_CGROUPWB;
4996 }
4997
4998 return 0;
4999 }
5000
ext4_load_super(struct super_block * sb,ext4_fsblk_t * lsb,int silent)5001 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5002 int silent)
5003 {
5004 struct ext4_sb_info *sbi = EXT4_SB(sb);
5005 struct ext4_super_block *es;
5006 ext4_fsblk_t logical_sb_block;
5007 unsigned long offset = 0;
5008 struct buffer_head *bh;
5009 int ret = -EINVAL;
5010 int blocksize;
5011
5012 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5013 if (!blocksize) {
5014 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5015 return -EINVAL;
5016 }
5017
5018 /*
5019 * The ext4 superblock will not be buffer aligned for other than 1kB
5020 * block sizes. We need to calculate the offset from buffer start.
5021 */
5022 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5023 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5024 offset = do_div(logical_sb_block, blocksize);
5025 } else {
5026 logical_sb_block = sbi->s_sb_block;
5027 }
5028
5029 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5030 if (IS_ERR(bh)) {
5031 ext4_msg(sb, KERN_ERR, "unable to read superblock");
5032 return PTR_ERR(bh);
5033 }
5034 /*
5035 * Note: s_es must be initialized as soon as possible because
5036 * some ext4 macro-instructions depend on its value
5037 */
5038 es = (struct ext4_super_block *) (bh->b_data + offset);
5039 sbi->s_es = es;
5040 sb->s_magic = le16_to_cpu(es->s_magic);
5041 if (sb->s_magic != EXT4_SUPER_MAGIC) {
5042 if (!silent)
5043 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5044 goto out;
5045 }
5046
5047 if (le32_to_cpu(es->s_log_block_size) >
5048 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5049 ext4_msg(sb, KERN_ERR,
5050 "Invalid log block size: %u",
5051 le32_to_cpu(es->s_log_block_size));
5052 goto out;
5053 }
5054 if (le32_to_cpu(es->s_log_cluster_size) >
5055 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5056 ext4_msg(sb, KERN_ERR,
5057 "Invalid log cluster size: %u",
5058 le32_to_cpu(es->s_log_cluster_size));
5059 goto out;
5060 }
5061
5062 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5063
5064 /*
5065 * If the default block size is not the same as the real block size,
5066 * we need to reload it.
5067 */
5068 if (sb->s_blocksize == blocksize) {
5069 *lsb = logical_sb_block;
5070 sbi->s_sbh = bh;
5071 return 0;
5072 }
5073
5074 /*
5075 * bh must be released before kill_bdev(), otherwise
5076 * it won't be freed and its page also. kill_bdev()
5077 * is called by sb_set_blocksize().
5078 */
5079 brelse(bh);
5080 /* Validate the filesystem blocksize */
5081 if (!sb_set_blocksize(sb, blocksize)) {
5082 ext4_msg(sb, KERN_ERR, "bad block size %d",
5083 blocksize);
5084 bh = NULL;
5085 goto out;
5086 }
5087
5088 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5089 offset = do_div(logical_sb_block, blocksize);
5090 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5091 if (IS_ERR(bh)) {
5092 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5093 ret = PTR_ERR(bh);
5094 bh = NULL;
5095 goto out;
5096 }
5097 es = (struct ext4_super_block *)(bh->b_data + offset);
5098 sbi->s_es = es;
5099 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5100 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5101 goto out;
5102 }
5103 *lsb = logical_sb_block;
5104 sbi->s_sbh = bh;
5105 return 0;
5106 out:
5107 brelse(bh);
5108 return ret;
5109 }
5110
ext4_hash_info_init(struct super_block * sb)5111 static int ext4_hash_info_init(struct super_block *sb)
5112 {
5113 struct ext4_sb_info *sbi = EXT4_SB(sb);
5114 struct ext4_super_block *es = sbi->s_es;
5115 unsigned int i;
5116
5117 sbi->s_def_hash_version = es->s_def_hash_version;
5118
5119 if (sbi->s_def_hash_version > DX_HASH_LAST) {
5120 ext4_msg(sb, KERN_ERR,
5121 "Invalid default hash set in the superblock");
5122 return -EINVAL;
5123 } else if (sbi->s_def_hash_version == DX_HASH_SIPHASH) {
5124 ext4_msg(sb, KERN_ERR,
5125 "SIPHASH is not a valid default hash value");
5126 return -EINVAL;
5127 }
5128
5129 for (i = 0; i < 4; i++)
5130 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5131
5132 if (ext4_has_feature_dir_index(sb)) {
5133 i = le32_to_cpu(es->s_flags);
5134 if (i & EXT2_FLAGS_UNSIGNED_HASH)
5135 sbi->s_hash_unsigned = 3;
5136 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5137 #ifdef __CHAR_UNSIGNED__
5138 if (!sb_rdonly(sb))
5139 es->s_flags |=
5140 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5141 sbi->s_hash_unsigned = 3;
5142 #else
5143 if (!sb_rdonly(sb))
5144 es->s_flags |=
5145 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5146 #endif
5147 }
5148 }
5149 return 0;
5150 }
5151
ext4_block_group_meta_init(struct super_block * sb,int silent)5152 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5153 {
5154 struct ext4_sb_info *sbi = EXT4_SB(sb);
5155 struct ext4_super_block *es = sbi->s_es;
5156 int has_huge_files;
5157
5158 has_huge_files = ext4_has_feature_huge_file(sb);
5159 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5160 has_huge_files);
5161 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5162
5163 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5164 if (ext4_has_feature_64bit(sb)) {
5165 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5166 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5167 !is_power_of_2(sbi->s_desc_size)) {
5168 ext4_msg(sb, KERN_ERR,
5169 "unsupported descriptor size %lu",
5170 sbi->s_desc_size);
5171 return -EINVAL;
5172 }
5173 } else
5174 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5175
5176 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5177 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5178
5179 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5180 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5181 if (!silent)
5182 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5183 return -EINVAL;
5184 }
5185 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5186 sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5187 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5188 sbi->s_inodes_per_group);
5189 return -EINVAL;
5190 }
5191 sbi->s_itb_per_group = sbi->s_inodes_per_group /
5192 sbi->s_inodes_per_block;
5193 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5194 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5195 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5196 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5197
5198 return 0;
5199 }
5200
5201 /*
5202 * It's hard to get stripe aligned blocks if stripe is not aligned with
5203 * cluster, just disable stripe and alert user to simplify code and avoid
5204 * stripe aligned allocation which will rarely succeed.
5205 */
ext4_is_stripe_incompatible(struct super_block * sb,unsigned long stripe)5206 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe)
5207 {
5208 struct ext4_sb_info *sbi = EXT4_SB(sb);
5209 return (stripe > 0 && sbi->s_cluster_ratio > 1 &&
5210 stripe % sbi->s_cluster_ratio != 0);
5211 }
5212
__ext4_fill_super(struct fs_context * fc,struct super_block * sb)5213 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5214 {
5215 struct ext4_super_block *es = NULL;
5216 struct ext4_sb_info *sbi = EXT4_SB(sb);
5217 ext4_fsblk_t logical_sb_block;
5218 struct inode *root;
5219 int needs_recovery;
5220 int err;
5221 ext4_group_t first_not_zeroed;
5222 struct ext4_fs_context *ctx = fc->fs_private;
5223 int silent = fc->sb_flags & SB_SILENT;
5224
5225 /* Set defaults for the variables that will be set during parsing */
5226 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5227 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5228
5229 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5230 sbi->s_sectors_written_start =
5231 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5232
5233 err = ext4_load_super(sb, &logical_sb_block, silent);
5234 if (err)
5235 goto out_fail;
5236
5237 es = sbi->s_es;
5238 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5239
5240 err = ext4_init_metadata_csum(sb, es);
5241 if (err)
5242 goto failed_mount;
5243
5244 ext4_set_def_opts(sb, es);
5245
5246 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5247 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5248 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5249 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5250 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5251
5252 /*
5253 * set default s_li_wait_mult for lazyinit, for the case there is
5254 * no mount option specified.
5255 */
5256 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5257
5258 err = ext4_inode_info_init(sb, es);
5259 if (err)
5260 goto failed_mount;
5261
5262 err = parse_apply_sb_mount_options(sb, ctx);
5263 if (err < 0)
5264 goto failed_mount;
5265
5266 sbi->s_def_mount_opt = sbi->s_mount_opt;
5267 sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5268
5269 err = ext4_check_opt_consistency(fc, sb);
5270 if (err < 0)
5271 goto failed_mount;
5272
5273 ext4_apply_options(fc, sb);
5274
5275 err = ext4_encoding_init(sb, es);
5276 if (err)
5277 goto failed_mount;
5278
5279 err = ext4_check_journal_data_mode(sb);
5280 if (err)
5281 goto failed_mount;
5282
5283 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5284 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5285
5286 err = ext4_check_feature_compatibility(sb, es, silent);
5287 if (err)
5288 goto failed_mount;
5289
5290 err = ext4_block_group_meta_init(sb, silent);
5291 if (err)
5292 goto failed_mount;
5293
5294 err = ext4_hash_info_init(sb);
5295 if (err)
5296 goto failed_mount;
5297
5298 err = ext4_handle_clustersize(sb);
5299 if (err)
5300 goto failed_mount;
5301
5302 err = ext4_check_geometry(sb, es);
5303 if (err)
5304 goto failed_mount;
5305
5306 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5307 spin_lock_init(&sbi->s_error_lock);
5308 INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5309
5310 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5311 if (err)
5312 goto failed_mount3;
5313
5314 err = ext4_es_register_shrinker(sbi);
5315 if (err)
5316 goto failed_mount3;
5317
5318 sbi->s_stripe = ext4_get_stripe_size(sbi);
5319 if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) {
5320 ext4_msg(sb, KERN_WARNING,
5321 "stripe (%lu) is not aligned with cluster size (%u), "
5322 "stripe is disabled",
5323 sbi->s_stripe, sbi->s_cluster_ratio);
5324 sbi->s_stripe = 0;
5325 }
5326 sbi->s_extent_max_zeroout_kb = 32;
5327
5328 /*
5329 * set up enough so that it can read an inode
5330 */
5331 sb->s_op = &ext4_sops;
5332 sb->s_export_op = &ext4_export_ops;
5333 sb->s_xattr = ext4_xattr_handlers;
5334 #ifdef CONFIG_FS_ENCRYPTION
5335 sb->s_cop = &ext4_cryptops;
5336 #endif
5337 #ifdef CONFIG_FS_VERITY
5338 sb->s_vop = &ext4_verityops;
5339 #endif
5340 #ifdef CONFIG_QUOTA
5341 sb->dq_op = &ext4_quota_operations;
5342 if (ext4_has_feature_quota(sb))
5343 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5344 else
5345 sb->s_qcop = &ext4_qctl_operations;
5346 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5347 #endif
5348 super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid));
5349 super_set_sysfs_name_bdev(sb);
5350
5351 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5352 mutex_init(&sbi->s_orphan_lock);
5353
5354 spin_lock_init(&sbi->s_bdev_wb_lock);
5355
5356 ext4_fast_commit_init(sb);
5357
5358 sb->s_root = NULL;
5359
5360 needs_recovery = (es->s_last_orphan != 0 ||
5361 ext4_has_feature_orphan_present(sb) ||
5362 ext4_has_feature_journal_needs_recovery(sb));
5363
5364 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5365 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5366 if (err)
5367 goto failed_mount3a;
5368 }
5369
5370 err = -EINVAL;
5371 /*
5372 * The first inode we look at is the journal inode. Don't try
5373 * root first: it may be modified in the journal!
5374 */
5375 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5376 err = ext4_load_and_init_journal(sb, es, ctx);
5377 if (err)
5378 goto failed_mount3a;
5379 if (bdev_read_only(sb->s_bdev))
5380 needs_recovery = 0;
5381 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5382 ext4_has_feature_journal_needs_recovery(sb)) {
5383 ext4_msg(sb, KERN_ERR, "required journal recovery "
5384 "suppressed and not mounted read-only");
5385 goto failed_mount3a;
5386 } else {
5387 /* Nojournal mode, all journal mount options are illegal */
5388 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5389 ext4_msg(sb, KERN_ERR, "can't mount with "
5390 "journal_async_commit, fs mounted w/o journal");
5391 goto failed_mount3a;
5392 }
5393
5394 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5395 ext4_msg(sb, KERN_ERR, "can't mount with "
5396 "journal_checksum, fs mounted w/o journal");
5397 goto failed_mount3a;
5398 }
5399 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5400 ext4_msg(sb, KERN_ERR, "can't mount with "
5401 "commit=%lu, fs mounted w/o journal",
5402 sbi->s_commit_interval / HZ);
5403 goto failed_mount3a;
5404 }
5405 if (EXT4_MOUNT_DATA_FLAGS &
5406 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5407 ext4_msg(sb, KERN_ERR, "can't mount with "
5408 "data=, fs mounted w/o journal");
5409 goto failed_mount3a;
5410 }
5411 if (test_opt(sb, DATA_ERR_ABORT)) {
5412 ext4_msg(sb, KERN_ERR,
5413 "can't mount with data_err=abort, fs mounted w/o journal");
5414 goto failed_mount3a;
5415 }
5416 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5417 clear_opt(sb, JOURNAL_CHECKSUM);
5418 clear_opt(sb, DATA_FLAGS);
5419 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5420 sbi->s_journal = NULL;
5421 needs_recovery = 0;
5422 }
5423
5424 if (!test_opt(sb, NO_MBCACHE)) {
5425 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5426 if (!sbi->s_ea_block_cache) {
5427 ext4_msg(sb, KERN_ERR,
5428 "Failed to create ea_block_cache");
5429 err = -EINVAL;
5430 goto failed_mount_wq;
5431 }
5432
5433 if (ext4_has_feature_ea_inode(sb)) {
5434 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5435 if (!sbi->s_ea_inode_cache) {
5436 ext4_msg(sb, KERN_ERR,
5437 "Failed to create ea_inode_cache");
5438 err = -EINVAL;
5439 goto failed_mount_wq;
5440 }
5441 }
5442 }
5443
5444 /*
5445 * Get the # of file system overhead blocks from the
5446 * superblock if present.
5447 */
5448 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5449 /* ignore the precalculated value if it is ridiculous */
5450 if (sbi->s_overhead > ext4_blocks_count(es))
5451 sbi->s_overhead = 0;
5452 /*
5453 * If the bigalloc feature is not enabled recalculating the
5454 * overhead doesn't take long, so we might as well just redo
5455 * it to make sure we are using the correct value.
5456 */
5457 if (!ext4_has_feature_bigalloc(sb))
5458 sbi->s_overhead = 0;
5459 if (sbi->s_overhead == 0) {
5460 err = ext4_calculate_overhead(sb);
5461 if (err)
5462 goto failed_mount_wq;
5463 }
5464
5465 /*
5466 * The maximum number of concurrent works can be high and
5467 * concurrency isn't really necessary. Limit it to 1.
5468 */
5469 EXT4_SB(sb)->rsv_conversion_wq =
5470 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5471 if (!EXT4_SB(sb)->rsv_conversion_wq) {
5472 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5473 err = -ENOMEM;
5474 goto failed_mount4;
5475 }
5476
5477 /*
5478 * The jbd2_journal_load will have done any necessary log recovery,
5479 * so we can safely mount the rest of the filesystem now.
5480 */
5481
5482 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5483 if (IS_ERR(root)) {
5484 ext4_msg(sb, KERN_ERR, "get root inode failed");
5485 err = PTR_ERR(root);
5486 root = NULL;
5487 goto failed_mount4;
5488 }
5489 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5490 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5491 iput(root);
5492 err = -EFSCORRUPTED;
5493 goto failed_mount4;
5494 }
5495
5496 generic_set_sb_d_ops(sb);
5497 sb->s_root = d_make_root(root);
5498 if (!sb->s_root) {
5499 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5500 err = -ENOMEM;
5501 goto failed_mount4;
5502 }
5503
5504 err = ext4_setup_super(sb, es, sb_rdonly(sb));
5505 if (err == -EROFS) {
5506 sb->s_flags |= SB_RDONLY;
5507 } else if (err)
5508 goto failed_mount4a;
5509
5510 ext4_set_resv_clusters(sb);
5511
5512 if (test_opt(sb, BLOCK_VALIDITY)) {
5513 err = ext4_setup_system_zone(sb);
5514 if (err) {
5515 ext4_msg(sb, KERN_ERR, "failed to initialize system "
5516 "zone (%d)", err);
5517 goto failed_mount4a;
5518 }
5519 }
5520 ext4_fc_replay_cleanup(sb);
5521
5522 ext4_ext_init(sb);
5523
5524 /*
5525 * Enable optimize_scan if number of groups is > threshold. This can be
5526 * turned off by passing "mb_optimize_scan=0". This can also be
5527 * turned on forcefully by passing "mb_optimize_scan=1".
5528 */
5529 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5530 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5531 set_opt2(sb, MB_OPTIMIZE_SCAN);
5532 else
5533 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5534 }
5535
5536 err = ext4_mb_init(sb);
5537 if (err) {
5538 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5539 err);
5540 goto failed_mount5;
5541 }
5542
5543 /*
5544 * We can only set up the journal commit callback once
5545 * mballoc is initialized
5546 */
5547 if (sbi->s_journal)
5548 sbi->s_journal->j_commit_callback =
5549 ext4_journal_commit_callback;
5550
5551 err = ext4_percpu_param_init(sbi);
5552 if (err)
5553 goto failed_mount6;
5554
5555 if (ext4_has_feature_flex_bg(sb))
5556 if (!ext4_fill_flex_info(sb)) {
5557 ext4_msg(sb, KERN_ERR,
5558 "unable to initialize "
5559 "flex_bg meta info!");
5560 err = -ENOMEM;
5561 goto failed_mount6;
5562 }
5563
5564 err = ext4_register_li_request(sb, first_not_zeroed);
5565 if (err)
5566 goto failed_mount6;
5567
5568 err = ext4_init_orphan_info(sb);
5569 if (err)
5570 goto failed_mount7;
5571 #ifdef CONFIG_QUOTA
5572 /* Enable quota usage during mount. */
5573 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5574 err = ext4_enable_quotas(sb);
5575 if (err)
5576 goto failed_mount8;
5577 }
5578 #endif /* CONFIG_QUOTA */
5579
5580 /*
5581 * Save the original bdev mapping's wb_err value which could be
5582 * used to detect the metadata async write error.
5583 */
5584 errseq_check_and_advance(&sb->s_bdev->bd_mapping->wb_err,
5585 &sbi->s_bdev_wb_err);
5586 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5587 ext4_orphan_cleanup(sb, es);
5588 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5589 /*
5590 * Update the checksum after updating free space/inode counters and
5591 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5592 * checksum in the buffer cache until it is written out and
5593 * e2fsprogs programs trying to open a file system immediately
5594 * after it is mounted can fail.
5595 */
5596 ext4_superblock_csum_set(sb);
5597 if (needs_recovery) {
5598 ext4_msg(sb, KERN_INFO, "recovery complete");
5599 err = ext4_mark_recovery_complete(sb, es);
5600 if (err)
5601 goto failed_mount9;
5602 }
5603
5604 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5605 ext4_msg(sb, KERN_WARNING,
5606 "mounting with \"discard\" option, but the device does not support discard");
5607
5608 if (es->s_error_count)
5609 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5610
5611 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5612 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5613 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5614 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5615 atomic_set(&sbi->s_warning_count, 0);
5616 atomic_set(&sbi->s_msg_count, 0);
5617
5618 /* Register sysfs after all initializations are complete. */
5619 err = ext4_register_sysfs(sb);
5620 if (err)
5621 goto failed_mount9;
5622
5623 return 0;
5624
5625 failed_mount9:
5626 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5627 failed_mount8: __maybe_unused
5628 ext4_release_orphan_info(sb);
5629 failed_mount7:
5630 ext4_unregister_li_request(sb);
5631 failed_mount6:
5632 ext4_mb_release(sb);
5633 ext4_flex_groups_free(sbi);
5634 ext4_percpu_param_destroy(sbi);
5635 failed_mount5:
5636 ext4_ext_release(sb);
5637 ext4_release_system_zone(sb);
5638 failed_mount4a:
5639 dput(sb->s_root);
5640 sb->s_root = NULL;
5641 failed_mount4:
5642 ext4_msg(sb, KERN_ERR, "mount failed");
5643 if (EXT4_SB(sb)->rsv_conversion_wq)
5644 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5645 failed_mount_wq:
5646 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5647 sbi->s_ea_inode_cache = NULL;
5648
5649 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5650 sbi->s_ea_block_cache = NULL;
5651
5652 if (sbi->s_journal) {
5653 ext4_journal_destroy(sbi, sbi->s_journal);
5654 }
5655 failed_mount3a:
5656 ext4_es_unregister_shrinker(sbi);
5657 failed_mount3:
5658 /* flush s_sb_upd_work before sbi destroy */
5659 flush_work(&sbi->s_sb_upd_work);
5660 ext4_stop_mmpd(sbi);
5661 del_timer_sync(&sbi->s_err_report);
5662 ext4_group_desc_free(sbi);
5663 failed_mount:
5664 if (sbi->s_chksum_driver)
5665 crypto_free_shash(sbi->s_chksum_driver);
5666
5667 #if IS_ENABLED(CONFIG_UNICODE)
5668 utf8_unload(sb->s_encoding);
5669 #endif
5670
5671 #ifdef CONFIG_QUOTA
5672 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5673 kfree(get_qf_name(sb, sbi, i));
5674 #endif
5675 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5676 brelse(sbi->s_sbh);
5677 if (sbi->s_journal_bdev_file) {
5678 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
5679 bdev_fput(sbi->s_journal_bdev_file);
5680 }
5681 out_fail:
5682 invalidate_bdev(sb->s_bdev);
5683 sb->s_fs_info = NULL;
5684 return err;
5685 }
5686
ext4_fill_super(struct super_block * sb,struct fs_context * fc)5687 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5688 {
5689 struct ext4_fs_context *ctx = fc->fs_private;
5690 struct ext4_sb_info *sbi;
5691 const char *descr;
5692 int ret;
5693
5694 sbi = ext4_alloc_sbi(sb);
5695 if (!sbi)
5696 return -ENOMEM;
5697
5698 fc->s_fs_info = sbi;
5699
5700 /* Cleanup superblock name */
5701 strreplace(sb->s_id, '/', '!');
5702
5703 sbi->s_sb_block = 1; /* Default super block location */
5704 if (ctx->spec & EXT4_SPEC_s_sb_block)
5705 sbi->s_sb_block = ctx->s_sb_block;
5706
5707 ret = __ext4_fill_super(fc, sb);
5708 if (ret < 0)
5709 goto free_sbi;
5710
5711 if (sbi->s_journal) {
5712 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5713 descr = " journalled data mode";
5714 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5715 descr = " ordered data mode";
5716 else
5717 descr = " writeback data mode";
5718 } else
5719 descr = "out journal";
5720
5721 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5722 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5723 "Quota mode: %s.", &sb->s_uuid,
5724 sb_rdonly(sb) ? "ro" : "r/w", descr,
5725 ext4_quota_mode(sb));
5726
5727 /* Update the s_overhead_clusters if necessary */
5728 ext4_update_overhead(sb, false);
5729 return 0;
5730
5731 free_sbi:
5732 ext4_free_sbi(sbi);
5733 fc->s_fs_info = NULL;
5734 return ret;
5735 }
5736
ext4_get_tree(struct fs_context * fc)5737 static int ext4_get_tree(struct fs_context *fc)
5738 {
5739 return get_tree_bdev(fc, ext4_fill_super);
5740 }
5741
5742 /*
5743 * Setup any per-fs journal parameters now. We'll do this both on
5744 * initial mount, once the journal has been initialised but before we've
5745 * done any recovery; and again on any subsequent remount.
5746 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5747 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5748 {
5749 struct ext4_sb_info *sbi = EXT4_SB(sb);
5750
5751 journal->j_commit_interval = sbi->s_commit_interval;
5752 journal->j_min_batch_time = sbi->s_min_batch_time;
5753 journal->j_max_batch_time = sbi->s_max_batch_time;
5754 ext4_fc_init(sb, journal);
5755
5756 write_lock(&journal->j_state_lock);
5757 if (test_opt(sb, BARRIER))
5758 journal->j_flags |= JBD2_BARRIER;
5759 else
5760 journal->j_flags &= ~JBD2_BARRIER;
5761 if (test_opt(sb, DATA_ERR_ABORT))
5762 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5763 else
5764 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5765 /*
5766 * Always enable journal cycle record option, letting the journal
5767 * records log transactions continuously between each mount.
5768 */
5769 journal->j_flags |= JBD2_CYCLE_RECORD;
5770 write_unlock(&journal->j_state_lock);
5771 }
5772
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5773 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5774 unsigned int journal_inum)
5775 {
5776 struct inode *journal_inode;
5777
5778 /*
5779 * Test for the existence of a valid inode on disk. Bad things
5780 * happen if we iget() an unused inode, as the subsequent iput()
5781 * will try to delete it.
5782 */
5783 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5784 if (IS_ERR(journal_inode)) {
5785 ext4_msg(sb, KERN_ERR, "no journal found");
5786 return ERR_CAST(journal_inode);
5787 }
5788 if (!journal_inode->i_nlink) {
5789 make_bad_inode(journal_inode);
5790 iput(journal_inode);
5791 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5792 return ERR_PTR(-EFSCORRUPTED);
5793 }
5794 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5795 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5796 iput(journal_inode);
5797 return ERR_PTR(-EFSCORRUPTED);
5798 }
5799
5800 ext4_debug("Journal inode found at %p: %lld bytes\n",
5801 journal_inode, journal_inode->i_size);
5802 return journal_inode;
5803 }
5804
ext4_journal_bmap(journal_t * journal,sector_t * block)5805 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5806 {
5807 struct ext4_map_blocks map;
5808 int ret;
5809
5810 if (journal->j_inode == NULL)
5811 return 0;
5812
5813 map.m_lblk = *block;
5814 map.m_len = 1;
5815 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5816 if (ret <= 0) {
5817 ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5818 "journal bmap failed: block %llu ret %d\n",
5819 *block, ret);
5820 jbd2_journal_abort(journal, ret ? ret : -EIO);
5821 return ret;
5822 }
5823 *block = map.m_pblk;
5824 return 0;
5825 }
5826
ext4_open_inode_journal(struct super_block * sb,unsigned int journal_inum)5827 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5828 unsigned int journal_inum)
5829 {
5830 struct inode *journal_inode;
5831 journal_t *journal;
5832
5833 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5834 if (IS_ERR(journal_inode))
5835 return ERR_CAST(journal_inode);
5836
5837 journal = jbd2_journal_init_inode(journal_inode);
5838 if (IS_ERR(journal)) {
5839 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5840 iput(journal_inode);
5841 return ERR_CAST(journal);
5842 }
5843 journal->j_private = sb;
5844 journal->j_bmap = ext4_journal_bmap;
5845 ext4_init_journal_params(sb, journal);
5846 return journal;
5847 }
5848
ext4_get_journal_blkdev(struct super_block * sb,dev_t j_dev,ext4_fsblk_t * j_start,ext4_fsblk_t * j_len)5849 static struct file *ext4_get_journal_blkdev(struct super_block *sb,
5850 dev_t j_dev, ext4_fsblk_t *j_start,
5851 ext4_fsblk_t *j_len)
5852 {
5853 struct buffer_head *bh;
5854 struct block_device *bdev;
5855 struct file *bdev_file;
5856 int hblock, blocksize;
5857 ext4_fsblk_t sb_block;
5858 unsigned long offset;
5859 struct ext4_super_block *es;
5860 int errno;
5861
5862 bdev_file = bdev_file_open_by_dev(j_dev,
5863 BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5864 sb, &fs_holder_ops);
5865 if (IS_ERR(bdev_file)) {
5866 ext4_msg(sb, KERN_ERR,
5867 "failed to open journal device unknown-block(%u,%u) %ld",
5868 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file));
5869 return bdev_file;
5870 }
5871
5872 bdev = file_bdev(bdev_file);
5873 blocksize = sb->s_blocksize;
5874 hblock = bdev_logical_block_size(bdev);
5875 if (blocksize < hblock) {
5876 ext4_msg(sb, KERN_ERR,
5877 "blocksize too small for journal device");
5878 errno = -EINVAL;
5879 goto out_bdev;
5880 }
5881
5882 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5883 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5884 set_blocksize(bdev_file, blocksize);
5885 bh = __bread(bdev, sb_block, blocksize);
5886 if (!bh) {
5887 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5888 "external journal");
5889 errno = -EINVAL;
5890 goto out_bdev;
5891 }
5892
5893 es = (struct ext4_super_block *) (bh->b_data + offset);
5894 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5895 !(le32_to_cpu(es->s_feature_incompat) &
5896 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5897 ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5898 errno = -EFSCORRUPTED;
5899 goto out_bh;
5900 }
5901
5902 if ((le32_to_cpu(es->s_feature_ro_compat) &
5903 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5904 es->s_checksum != ext4_superblock_csum(sb, es)) {
5905 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5906 errno = -EFSCORRUPTED;
5907 goto out_bh;
5908 }
5909
5910 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5911 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5912 errno = -EFSCORRUPTED;
5913 goto out_bh;
5914 }
5915
5916 *j_start = sb_block + 1;
5917 *j_len = ext4_blocks_count(es);
5918 brelse(bh);
5919 return bdev_file;
5920
5921 out_bh:
5922 brelse(bh);
5923 out_bdev:
5924 bdev_fput(bdev_file);
5925 return ERR_PTR(errno);
5926 }
5927
ext4_open_dev_journal(struct super_block * sb,dev_t j_dev)5928 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5929 dev_t j_dev)
5930 {
5931 journal_t *journal;
5932 ext4_fsblk_t j_start;
5933 ext4_fsblk_t j_len;
5934 struct file *bdev_file;
5935 int errno = 0;
5936
5937 bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5938 if (IS_ERR(bdev_file))
5939 return ERR_CAST(bdev_file);
5940
5941 journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start,
5942 j_len, sb->s_blocksize);
5943 if (IS_ERR(journal)) {
5944 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5945 errno = PTR_ERR(journal);
5946 goto out_bdev;
5947 }
5948 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5949 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5950 "user (unsupported) - %d",
5951 be32_to_cpu(journal->j_superblock->s_nr_users));
5952 errno = -EINVAL;
5953 goto out_journal;
5954 }
5955 journal->j_private = sb;
5956 EXT4_SB(sb)->s_journal_bdev_file = bdev_file;
5957 ext4_init_journal_params(sb, journal);
5958 return journal;
5959
5960 out_journal:
5961 ext4_journal_destroy(EXT4_SB(sb), journal);
5962 out_bdev:
5963 bdev_fput(bdev_file);
5964 return ERR_PTR(errno);
5965 }
5966
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5967 static int ext4_load_journal(struct super_block *sb,
5968 struct ext4_super_block *es,
5969 unsigned long journal_devnum)
5970 {
5971 journal_t *journal;
5972 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5973 dev_t journal_dev;
5974 int err = 0;
5975 int really_read_only;
5976 int journal_dev_ro;
5977
5978 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5979 return -EFSCORRUPTED;
5980
5981 if (journal_devnum &&
5982 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5983 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5984 "numbers have changed");
5985 journal_dev = new_decode_dev(journal_devnum);
5986 } else
5987 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5988
5989 if (journal_inum && journal_dev) {
5990 ext4_msg(sb, KERN_ERR,
5991 "filesystem has both journal inode and journal device!");
5992 return -EINVAL;
5993 }
5994
5995 if (journal_inum) {
5996 journal = ext4_open_inode_journal(sb, journal_inum);
5997 if (IS_ERR(journal))
5998 return PTR_ERR(journal);
5999 } else {
6000 journal = ext4_open_dev_journal(sb, journal_dev);
6001 if (IS_ERR(journal))
6002 return PTR_ERR(journal);
6003 }
6004
6005 journal_dev_ro = bdev_read_only(journal->j_dev);
6006 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6007
6008 if (journal_dev_ro && !sb_rdonly(sb)) {
6009 ext4_msg(sb, KERN_ERR,
6010 "journal device read-only, try mounting with '-o ro'");
6011 err = -EROFS;
6012 goto err_out;
6013 }
6014
6015 /*
6016 * Are we loading a blank journal or performing recovery after a
6017 * crash? For recovery, we need to check in advance whether we
6018 * can get read-write access to the device.
6019 */
6020 if (ext4_has_feature_journal_needs_recovery(sb)) {
6021 if (sb_rdonly(sb)) {
6022 ext4_msg(sb, KERN_INFO, "INFO: recovery "
6023 "required on readonly filesystem");
6024 if (really_read_only) {
6025 ext4_msg(sb, KERN_ERR, "write access "
6026 "unavailable, cannot proceed "
6027 "(try mounting with noload)");
6028 err = -EROFS;
6029 goto err_out;
6030 }
6031 ext4_msg(sb, KERN_INFO, "write access will "
6032 "be enabled during recovery");
6033 }
6034 }
6035
6036 if (!(journal->j_flags & JBD2_BARRIER))
6037 ext4_msg(sb, KERN_INFO, "barriers disabled");
6038
6039 if (!ext4_has_feature_journal_needs_recovery(sb))
6040 err = jbd2_journal_wipe(journal, !really_read_only);
6041 if (!err) {
6042 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6043 __le16 orig_state;
6044 bool changed = false;
6045
6046 if (save)
6047 memcpy(save, ((char *) es) +
6048 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6049 err = jbd2_journal_load(journal);
6050 if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6051 save, EXT4_S_ERR_LEN)) {
6052 memcpy(((char *) es) + EXT4_S_ERR_START,
6053 save, EXT4_S_ERR_LEN);
6054 changed = true;
6055 }
6056 kfree(save);
6057 orig_state = es->s_state;
6058 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6059 EXT4_ERROR_FS);
6060 if (orig_state != es->s_state)
6061 changed = true;
6062 /* Write out restored error information to the superblock */
6063 if (changed && !really_read_only) {
6064 int err2;
6065 err2 = ext4_commit_super(sb);
6066 err = err ? : err2;
6067 }
6068 }
6069
6070 if (err) {
6071 ext4_msg(sb, KERN_ERR, "error loading journal");
6072 goto err_out;
6073 }
6074
6075 EXT4_SB(sb)->s_journal = journal;
6076 err = ext4_clear_journal_err(sb, es);
6077 if (err) {
6078 ext4_journal_destroy(EXT4_SB(sb), journal);
6079 return err;
6080 }
6081
6082 if (!really_read_only && journal_devnum &&
6083 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6084 es->s_journal_dev = cpu_to_le32(journal_devnum);
6085 ext4_commit_super(sb);
6086 }
6087 if (!really_read_only && journal_inum &&
6088 journal_inum != le32_to_cpu(es->s_journal_inum)) {
6089 es->s_journal_inum = cpu_to_le32(journal_inum);
6090 ext4_commit_super(sb);
6091 }
6092
6093 return 0;
6094
6095 err_out:
6096 ext4_journal_destroy(EXT4_SB(sb), journal);
6097 return err;
6098 }
6099
6100 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)6101 static void ext4_update_super(struct super_block *sb)
6102 {
6103 struct ext4_sb_info *sbi = EXT4_SB(sb);
6104 struct ext4_super_block *es = sbi->s_es;
6105 struct buffer_head *sbh = sbi->s_sbh;
6106
6107 lock_buffer(sbh);
6108 /*
6109 * If the file system is mounted read-only, don't update the
6110 * superblock write time. This avoids updating the superblock
6111 * write time when we are mounting the root file system
6112 * read/only but we need to replay the journal; at that point,
6113 * for people who are east of GMT and who make their clock
6114 * tick in localtime for Windows bug-for-bug compatibility,
6115 * the clock is set in the future, and this will cause e2fsck
6116 * to complain and force a full file system check.
6117 */
6118 if (!sb_rdonly(sb))
6119 ext4_update_tstamp(es, s_wtime);
6120 es->s_kbytes_written =
6121 cpu_to_le64(sbi->s_kbytes_written +
6122 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6123 sbi->s_sectors_written_start) >> 1));
6124 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6125 ext4_free_blocks_count_set(es,
6126 EXT4_C2B(sbi, percpu_counter_sum_positive(
6127 &sbi->s_freeclusters_counter)));
6128 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6129 es->s_free_inodes_count =
6130 cpu_to_le32(percpu_counter_sum_positive(
6131 &sbi->s_freeinodes_counter));
6132 /* Copy error information to the on-disk superblock */
6133 spin_lock(&sbi->s_error_lock);
6134 if (sbi->s_add_error_count > 0) {
6135 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6136 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6137 __ext4_update_tstamp(&es->s_first_error_time,
6138 &es->s_first_error_time_hi,
6139 sbi->s_first_error_time);
6140 strtomem_pad(es->s_first_error_func,
6141 sbi->s_first_error_func, 0);
6142 es->s_first_error_line =
6143 cpu_to_le32(sbi->s_first_error_line);
6144 es->s_first_error_ino =
6145 cpu_to_le32(sbi->s_first_error_ino);
6146 es->s_first_error_block =
6147 cpu_to_le64(sbi->s_first_error_block);
6148 es->s_first_error_errcode =
6149 ext4_errno_to_code(sbi->s_first_error_code);
6150 }
6151 __ext4_update_tstamp(&es->s_last_error_time,
6152 &es->s_last_error_time_hi,
6153 sbi->s_last_error_time);
6154 strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0);
6155 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6156 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6157 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6158 es->s_last_error_errcode =
6159 ext4_errno_to_code(sbi->s_last_error_code);
6160 /*
6161 * Start the daily error reporting function if it hasn't been
6162 * started already
6163 */
6164 if (!es->s_error_count)
6165 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6166 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6167 sbi->s_add_error_count = 0;
6168 }
6169 spin_unlock(&sbi->s_error_lock);
6170
6171 ext4_superblock_csum_set(sb);
6172 unlock_buffer(sbh);
6173 }
6174
ext4_commit_super(struct super_block * sb)6175 static int ext4_commit_super(struct super_block *sb)
6176 {
6177 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6178
6179 if (!sbh)
6180 return -EINVAL;
6181
6182 ext4_update_super(sb);
6183
6184 lock_buffer(sbh);
6185 /* Buffer got discarded which means block device got invalidated */
6186 if (!buffer_mapped(sbh)) {
6187 unlock_buffer(sbh);
6188 return -EIO;
6189 }
6190
6191 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6192 /*
6193 * Oh, dear. A previous attempt to write the
6194 * superblock failed. This could happen because the
6195 * USB device was yanked out. Or it could happen to
6196 * be a transient write error and maybe the block will
6197 * be remapped. Nothing we can do but to retry the
6198 * write and hope for the best.
6199 */
6200 ext4_msg(sb, KERN_ERR, "previous I/O error to "
6201 "superblock detected");
6202 clear_buffer_write_io_error(sbh);
6203 set_buffer_uptodate(sbh);
6204 }
6205 get_bh(sbh);
6206 /* Clear potential dirty bit if it was journalled update */
6207 clear_buffer_dirty(sbh);
6208 sbh->b_end_io = end_buffer_write_sync;
6209 submit_bh(REQ_OP_WRITE | REQ_SYNC |
6210 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6211 wait_on_buffer(sbh);
6212 if (buffer_write_io_error(sbh)) {
6213 ext4_msg(sb, KERN_ERR, "I/O error while writing "
6214 "superblock");
6215 clear_buffer_write_io_error(sbh);
6216 set_buffer_uptodate(sbh);
6217 return -EIO;
6218 }
6219 return 0;
6220 }
6221
6222 /*
6223 * Have we just finished recovery? If so, and if we are mounting (or
6224 * remounting) the filesystem readonly, then we will end up with a
6225 * consistent fs on disk. Record that fact.
6226 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)6227 static int ext4_mark_recovery_complete(struct super_block *sb,
6228 struct ext4_super_block *es)
6229 {
6230 int err;
6231 journal_t *journal = EXT4_SB(sb)->s_journal;
6232
6233 if (!ext4_has_feature_journal(sb)) {
6234 if (journal != NULL) {
6235 ext4_error(sb, "Journal got removed while the fs was "
6236 "mounted!");
6237 return -EFSCORRUPTED;
6238 }
6239 return 0;
6240 }
6241 jbd2_journal_lock_updates(journal);
6242 err = jbd2_journal_flush(journal, 0);
6243 if (err < 0)
6244 goto out;
6245
6246 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6247 ext4_has_feature_orphan_present(sb))) {
6248 if (!ext4_orphan_file_empty(sb)) {
6249 ext4_error(sb, "Orphan file not empty on read-only fs.");
6250 err = -EFSCORRUPTED;
6251 goto out;
6252 }
6253 ext4_clear_feature_journal_needs_recovery(sb);
6254 ext4_clear_feature_orphan_present(sb);
6255 ext4_commit_super(sb);
6256 }
6257 out:
6258 jbd2_journal_unlock_updates(journal);
6259 return err;
6260 }
6261
6262 /*
6263 * If we are mounting (or read-write remounting) a filesystem whose journal
6264 * has recorded an error from a previous lifetime, move that error to the
6265 * main filesystem now.
6266 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)6267 static int ext4_clear_journal_err(struct super_block *sb,
6268 struct ext4_super_block *es)
6269 {
6270 journal_t *journal;
6271 int j_errno;
6272 const char *errstr;
6273
6274 if (!ext4_has_feature_journal(sb)) {
6275 ext4_error(sb, "Journal got removed while the fs was mounted!");
6276 return -EFSCORRUPTED;
6277 }
6278
6279 journal = EXT4_SB(sb)->s_journal;
6280
6281 /*
6282 * Now check for any error status which may have been recorded in the
6283 * journal by a prior ext4_error() or ext4_abort()
6284 */
6285
6286 j_errno = jbd2_journal_errno(journal);
6287 if (j_errno) {
6288 char nbuf[16];
6289
6290 errstr = ext4_decode_error(sb, j_errno, nbuf);
6291 ext4_warning(sb, "Filesystem error recorded "
6292 "from previous mount: %s", errstr);
6293
6294 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6295 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6296 j_errno = ext4_commit_super(sb);
6297 if (j_errno)
6298 return j_errno;
6299 ext4_warning(sb, "Marked fs in need of filesystem check.");
6300
6301 jbd2_journal_clear_err(journal);
6302 jbd2_journal_update_sb_errno(journal);
6303 }
6304 return 0;
6305 }
6306
6307 /*
6308 * Force the running and committing transactions to commit,
6309 * and wait on the commit.
6310 */
ext4_force_commit(struct super_block * sb)6311 int ext4_force_commit(struct super_block *sb)
6312 {
6313 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6314 }
6315
ext4_sync_fs(struct super_block * sb,int wait)6316 static int ext4_sync_fs(struct super_block *sb, int wait)
6317 {
6318 int ret = 0;
6319 tid_t target;
6320 bool needs_barrier = false;
6321 struct ext4_sb_info *sbi = EXT4_SB(sb);
6322
6323 if (unlikely(ext4_forced_shutdown(sb)))
6324 return 0;
6325
6326 trace_ext4_sync_fs(sb, wait);
6327 flush_workqueue(sbi->rsv_conversion_wq);
6328 /*
6329 * Writeback quota in non-journalled quota case - journalled quota has
6330 * no dirty dquots
6331 */
6332 dquot_writeback_dquots(sb, -1);
6333 /*
6334 * Data writeback is possible w/o journal transaction, so barrier must
6335 * being sent at the end of the function. But we can skip it if
6336 * transaction_commit will do it for us.
6337 */
6338 if (sbi->s_journal) {
6339 target = jbd2_get_latest_transaction(sbi->s_journal);
6340 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6341 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6342 needs_barrier = true;
6343
6344 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6345 if (wait)
6346 ret = jbd2_log_wait_commit(sbi->s_journal,
6347 target);
6348 }
6349 } else if (wait && test_opt(sb, BARRIER))
6350 needs_barrier = true;
6351 if (needs_barrier) {
6352 int err;
6353 err = blkdev_issue_flush(sb->s_bdev);
6354 if (!ret)
6355 ret = err;
6356 }
6357
6358 return ret;
6359 }
6360
6361 /*
6362 * LVM calls this function before a (read-only) snapshot is created. This
6363 * gives us a chance to flush the journal completely and mark the fs clean.
6364 *
6365 * Note that only this function cannot bring a filesystem to be in a clean
6366 * state independently. It relies on upper layer to stop all data & metadata
6367 * modifications.
6368 */
ext4_freeze(struct super_block * sb)6369 static int ext4_freeze(struct super_block *sb)
6370 {
6371 int error = 0;
6372 journal_t *journal = EXT4_SB(sb)->s_journal;
6373
6374 if (journal) {
6375 /* Now we set up the journal barrier. */
6376 jbd2_journal_lock_updates(journal);
6377
6378 /*
6379 * Don't clear the needs_recovery flag if we failed to
6380 * flush the journal.
6381 */
6382 error = jbd2_journal_flush(journal, 0);
6383 if (error < 0)
6384 goto out;
6385
6386 /* Journal blocked and flushed, clear needs_recovery flag. */
6387 ext4_clear_feature_journal_needs_recovery(sb);
6388 if (ext4_orphan_file_empty(sb))
6389 ext4_clear_feature_orphan_present(sb);
6390 }
6391
6392 error = ext4_commit_super(sb);
6393 out:
6394 if (journal)
6395 /* we rely on upper layer to stop further updates */
6396 jbd2_journal_unlock_updates(journal);
6397 return error;
6398 }
6399
6400 /*
6401 * Called by LVM after the snapshot is done. We need to reset the RECOVER
6402 * flag here, even though the filesystem is not technically dirty yet.
6403 */
ext4_unfreeze(struct super_block * sb)6404 static int ext4_unfreeze(struct super_block *sb)
6405 {
6406 if (ext4_forced_shutdown(sb))
6407 return 0;
6408
6409 if (EXT4_SB(sb)->s_journal) {
6410 /* Reset the needs_recovery flag before the fs is unlocked. */
6411 ext4_set_feature_journal_needs_recovery(sb);
6412 if (ext4_has_feature_orphan_file(sb))
6413 ext4_set_feature_orphan_present(sb);
6414 }
6415
6416 ext4_commit_super(sb);
6417 return 0;
6418 }
6419
6420 /*
6421 * Structure to save mount options for ext4_remount's benefit
6422 */
6423 struct ext4_mount_options {
6424 unsigned long s_mount_opt;
6425 unsigned long s_mount_opt2;
6426 kuid_t s_resuid;
6427 kgid_t s_resgid;
6428 unsigned long s_commit_interval;
6429 u32 s_min_batch_time, s_max_batch_time;
6430 #ifdef CONFIG_QUOTA
6431 int s_jquota_fmt;
6432 char *s_qf_names[EXT4_MAXQUOTAS];
6433 #endif
6434 };
6435
__ext4_remount(struct fs_context * fc,struct super_block * sb)6436 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6437 {
6438 struct ext4_fs_context *ctx = fc->fs_private;
6439 struct ext4_super_block *es;
6440 struct ext4_sb_info *sbi = EXT4_SB(sb);
6441 unsigned long old_sb_flags;
6442 struct ext4_mount_options old_opts;
6443 ext4_group_t g;
6444 int err = 0;
6445 int alloc_ctx;
6446 #ifdef CONFIG_QUOTA
6447 int enable_quota = 0;
6448 int i, j;
6449 char *to_free[EXT4_MAXQUOTAS];
6450 #endif
6451
6452
6453 /* Store the original options */
6454 old_sb_flags = sb->s_flags;
6455 old_opts.s_mount_opt = sbi->s_mount_opt;
6456 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6457 old_opts.s_resuid = sbi->s_resuid;
6458 old_opts.s_resgid = sbi->s_resgid;
6459 old_opts.s_commit_interval = sbi->s_commit_interval;
6460 old_opts.s_min_batch_time = sbi->s_min_batch_time;
6461 old_opts.s_max_batch_time = sbi->s_max_batch_time;
6462 #ifdef CONFIG_QUOTA
6463 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6464 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6465 if (sbi->s_qf_names[i]) {
6466 char *qf_name = get_qf_name(sb, sbi, i);
6467
6468 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6469 if (!old_opts.s_qf_names[i]) {
6470 for (j = 0; j < i; j++)
6471 kfree(old_opts.s_qf_names[j]);
6472 return -ENOMEM;
6473 }
6474 } else
6475 old_opts.s_qf_names[i] = NULL;
6476 #endif
6477 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6478 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6479 ctx->journal_ioprio =
6480 sbi->s_journal->j_task->io_context->ioprio;
6481 else
6482 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6483
6484 }
6485
6486 if ((ctx->spec & EXT4_SPEC_s_stripe) &&
6487 ext4_is_stripe_incompatible(sb, ctx->s_stripe)) {
6488 ext4_msg(sb, KERN_WARNING,
6489 "stripe (%lu) is not aligned with cluster size (%u), "
6490 "stripe is disabled",
6491 ctx->s_stripe, sbi->s_cluster_ratio);
6492 ctx->s_stripe = 0;
6493 }
6494
6495 /*
6496 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6497 * two calls to ext4_should_dioread_nolock() to return inconsistent
6498 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6499 * here s_writepages_rwsem to avoid race between writepages ops and
6500 * remount.
6501 */
6502 alloc_ctx = ext4_writepages_down_write(sb);
6503 ext4_apply_options(fc, sb);
6504 ext4_writepages_up_write(sb, alloc_ctx);
6505
6506 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6507 test_opt(sb, JOURNAL_CHECKSUM)) {
6508 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6509 "during remount not supported; ignoring");
6510 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6511 }
6512
6513 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6514 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6515 ext4_msg(sb, KERN_ERR, "can't mount with "
6516 "both data=journal and delalloc");
6517 err = -EINVAL;
6518 goto restore_opts;
6519 }
6520 if (test_opt(sb, DIOREAD_NOLOCK)) {
6521 ext4_msg(sb, KERN_ERR, "can't mount with "
6522 "both data=journal and dioread_nolock");
6523 err = -EINVAL;
6524 goto restore_opts;
6525 }
6526 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6527 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6528 ext4_msg(sb, KERN_ERR, "can't mount with "
6529 "journal_async_commit in data=ordered mode");
6530 err = -EINVAL;
6531 goto restore_opts;
6532 }
6533 }
6534
6535 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6536 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6537 err = -EINVAL;
6538 goto restore_opts;
6539 }
6540
6541 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6542 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6543
6544 es = sbi->s_es;
6545
6546 if (sbi->s_journal) {
6547 ext4_init_journal_params(sb, sbi->s_journal);
6548 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6549 }
6550
6551 /* Flush outstanding errors before changing fs state */
6552 flush_work(&sbi->s_sb_upd_work);
6553
6554 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6555 if (ext4_forced_shutdown(sb)) {
6556 err = -EROFS;
6557 goto restore_opts;
6558 }
6559
6560 if (fc->sb_flags & SB_RDONLY) {
6561 err = sync_filesystem(sb);
6562 if (err < 0)
6563 goto restore_opts;
6564 err = dquot_suspend(sb, -1);
6565 if (err < 0)
6566 goto restore_opts;
6567
6568 /*
6569 * First of all, the unconditional stuff we have to do
6570 * to disable replay of the journal when we next remount
6571 */
6572 sb->s_flags |= SB_RDONLY;
6573
6574 /*
6575 * OK, test if we are remounting a valid rw partition
6576 * readonly, and if so set the rdonly flag and then
6577 * mark the partition as valid again.
6578 */
6579 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6580 (sbi->s_mount_state & EXT4_VALID_FS))
6581 es->s_state = cpu_to_le16(sbi->s_mount_state);
6582
6583 if (sbi->s_journal) {
6584 /*
6585 * We let remount-ro finish even if marking fs
6586 * as clean failed...
6587 */
6588 ext4_mark_recovery_complete(sb, es);
6589 }
6590 } else {
6591 /* Make sure we can mount this feature set readwrite */
6592 if (ext4_has_feature_readonly(sb) ||
6593 !ext4_feature_set_ok(sb, 0)) {
6594 err = -EROFS;
6595 goto restore_opts;
6596 }
6597 /*
6598 * Make sure the group descriptor checksums
6599 * are sane. If they aren't, refuse to remount r/w.
6600 */
6601 for (g = 0; g < sbi->s_groups_count; g++) {
6602 struct ext4_group_desc *gdp =
6603 ext4_get_group_desc(sb, g, NULL);
6604
6605 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6606 ext4_msg(sb, KERN_ERR,
6607 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6608 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6609 le16_to_cpu(gdp->bg_checksum));
6610 err = -EFSBADCRC;
6611 goto restore_opts;
6612 }
6613 }
6614
6615 /*
6616 * If we have an unprocessed orphan list hanging
6617 * around from a previously readonly bdev mount,
6618 * require a full umount/remount for now.
6619 */
6620 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6621 ext4_msg(sb, KERN_WARNING, "Couldn't "
6622 "remount RDWR because of unprocessed "
6623 "orphan inode list. Please "
6624 "umount/remount instead");
6625 err = -EINVAL;
6626 goto restore_opts;
6627 }
6628
6629 /*
6630 * Mounting a RDONLY partition read-write, so reread
6631 * and store the current valid flag. (It may have
6632 * been changed by e2fsck since we originally mounted
6633 * the partition.)
6634 */
6635 if (sbi->s_journal) {
6636 err = ext4_clear_journal_err(sb, es);
6637 if (err)
6638 goto restore_opts;
6639 }
6640 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6641 ~EXT4_FC_REPLAY);
6642
6643 err = ext4_setup_super(sb, es, 0);
6644 if (err)
6645 goto restore_opts;
6646
6647 sb->s_flags &= ~SB_RDONLY;
6648 if (ext4_has_feature_mmp(sb)) {
6649 err = ext4_multi_mount_protect(sb,
6650 le64_to_cpu(es->s_mmp_block));
6651 if (err)
6652 goto restore_opts;
6653 }
6654 #ifdef CONFIG_QUOTA
6655 enable_quota = 1;
6656 #endif
6657 }
6658 }
6659
6660 /*
6661 * Handle creation of system zone data early because it can fail.
6662 * Releasing of existing data is done when we are sure remount will
6663 * succeed.
6664 */
6665 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6666 err = ext4_setup_system_zone(sb);
6667 if (err)
6668 goto restore_opts;
6669 }
6670
6671 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6672 err = ext4_commit_super(sb);
6673 if (err)
6674 goto restore_opts;
6675 }
6676
6677 #ifdef CONFIG_QUOTA
6678 if (enable_quota) {
6679 if (sb_any_quota_suspended(sb))
6680 dquot_resume(sb, -1);
6681 else if (ext4_has_feature_quota(sb)) {
6682 err = ext4_enable_quotas(sb);
6683 if (err)
6684 goto restore_opts;
6685 }
6686 }
6687 /* Release old quota file names */
6688 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6689 kfree(old_opts.s_qf_names[i]);
6690 #endif
6691 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6692 ext4_release_system_zone(sb);
6693
6694 /*
6695 * Reinitialize lazy itable initialization thread based on
6696 * current settings
6697 */
6698 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6699 ext4_unregister_li_request(sb);
6700 else {
6701 ext4_group_t first_not_zeroed;
6702 first_not_zeroed = ext4_has_uninit_itable(sb);
6703 ext4_register_li_request(sb, first_not_zeroed);
6704 }
6705
6706 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6707 ext4_stop_mmpd(sbi);
6708
6709 /*
6710 * Handle aborting the filesystem as the last thing during remount to
6711 * avoid obsure errors during remount when some option changes fail to
6712 * apply due to shutdown filesystem.
6713 */
6714 if (test_opt2(sb, ABORT))
6715 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6716
6717 return 0;
6718
6719 restore_opts:
6720 /*
6721 * If there was a failing r/w to ro transition, we may need to
6722 * re-enable quota
6723 */
6724 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6725 sb_any_quota_suspended(sb))
6726 dquot_resume(sb, -1);
6727
6728 alloc_ctx = ext4_writepages_down_write(sb);
6729 sb->s_flags = old_sb_flags;
6730 sbi->s_mount_opt = old_opts.s_mount_opt;
6731 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6732 sbi->s_resuid = old_opts.s_resuid;
6733 sbi->s_resgid = old_opts.s_resgid;
6734 sbi->s_commit_interval = old_opts.s_commit_interval;
6735 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6736 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6737 ext4_writepages_up_write(sb, alloc_ctx);
6738
6739 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6740 ext4_release_system_zone(sb);
6741 #ifdef CONFIG_QUOTA
6742 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6743 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6744 to_free[i] = get_qf_name(sb, sbi, i);
6745 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6746 }
6747 synchronize_rcu();
6748 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6749 kfree(to_free[i]);
6750 #endif
6751 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6752 ext4_stop_mmpd(sbi);
6753 return err;
6754 }
6755
ext4_reconfigure(struct fs_context * fc)6756 static int ext4_reconfigure(struct fs_context *fc)
6757 {
6758 struct super_block *sb = fc->root->d_sb;
6759 int ret;
6760 bool old_ro = sb_rdonly(sb);
6761
6762 fc->s_fs_info = EXT4_SB(sb);
6763
6764 ret = ext4_check_opt_consistency(fc, sb);
6765 if (ret < 0)
6766 return ret;
6767
6768 ret = __ext4_remount(fc, sb);
6769 if (ret < 0)
6770 return ret;
6771
6772 ext4_msg(sb, KERN_INFO, "re-mounted %pU%s.",
6773 &sb->s_uuid,
6774 (old_ro != sb_rdonly(sb)) ? (sb_rdonly(sb) ? " ro" : " r/w") : "");
6775
6776 return 0;
6777 }
6778
6779 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6780 static int ext4_statfs_project(struct super_block *sb,
6781 kprojid_t projid, struct kstatfs *buf)
6782 {
6783 struct kqid qid;
6784 struct dquot *dquot;
6785 u64 limit;
6786 u64 curblock;
6787
6788 qid = make_kqid_projid(projid);
6789 dquot = dqget(sb, qid);
6790 if (IS_ERR(dquot))
6791 return PTR_ERR(dquot);
6792 spin_lock(&dquot->dq_dqb_lock);
6793
6794 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6795 dquot->dq_dqb.dqb_bhardlimit);
6796 limit >>= sb->s_blocksize_bits;
6797
6798 if (limit) {
6799 uint64_t remaining = 0;
6800
6801 curblock = (dquot->dq_dqb.dqb_curspace +
6802 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6803 if (limit > curblock)
6804 remaining = limit - curblock;
6805
6806 buf->f_blocks = min(buf->f_blocks, limit);
6807 buf->f_bfree = min(buf->f_bfree, remaining);
6808 buf->f_bavail = min(buf->f_bavail, remaining);
6809 }
6810
6811 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6812 dquot->dq_dqb.dqb_ihardlimit);
6813 if (limit) {
6814 uint64_t remaining = 0;
6815
6816 if (limit > dquot->dq_dqb.dqb_curinodes)
6817 remaining = limit - dquot->dq_dqb.dqb_curinodes;
6818
6819 buf->f_files = min(buf->f_files, limit);
6820 buf->f_ffree = min(buf->f_ffree, remaining);
6821 }
6822
6823 spin_unlock(&dquot->dq_dqb_lock);
6824 dqput(dquot);
6825 return 0;
6826 }
6827 #endif
6828
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6829 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6830 {
6831 struct super_block *sb = dentry->d_sb;
6832 struct ext4_sb_info *sbi = EXT4_SB(sb);
6833 struct ext4_super_block *es = sbi->s_es;
6834 ext4_fsblk_t overhead = 0, resv_blocks;
6835 s64 bfree;
6836 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6837
6838 if (!test_opt(sb, MINIX_DF))
6839 overhead = sbi->s_overhead;
6840
6841 buf->f_type = EXT4_SUPER_MAGIC;
6842 buf->f_bsize = sb->s_blocksize;
6843 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6844 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6845 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6846 /* prevent underflow in case that few free space is available */
6847 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6848 buf->f_bavail = buf->f_bfree -
6849 (ext4_r_blocks_count(es) + resv_blocks);
6850 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6851 buf->f_bavail = 0;
6852 buf->f_files = le32_to_cpu(es->s_inodes_count);
6853 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6854 buf->f_namelen = EXT4_NAME_LEN;
6855 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6856
6857 #ifdef CONFIG_QUOTA
6858 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6859 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6860 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6861 #endif
6862 return 0;
6863 }
6864
6865
6866 #ifdef CONFIG_QUOTA
6867
6868 /*
6869 * Helper functions so that transaction is started before we acquire dqio_sem
6870 * to keep correct lock ordering of transaction > dqio_sem
6871 */
dquot_to_inode(struct dquot * dquot)6872 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6873 {
6874 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6875 }
6876
ext4_write_dquot(struct dquot * dquot)6877 static int ext4_write_dquot(struct dquot *dquot)
6878 {
6879 int ret, err;
6880 handle_t *handle;
6881 struct inode *inode;
6882
6883 inode = dquot_to_inode(dquot);
6884 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6885 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6886 if (IS_ERR(handle))
6887 return PTR_ERR(handle);
6888 ret = dquot_commit(dquot);
6889 if (ret < 0)
6890 ext4_error_err(dquot->dq_sb, -ret,
6891 "Failed to commit dquot type %d",
6892 dquot->dq_id.type);
6893 err = ext4_journal_stop(handle);
6894 if (!ret)
6895 ret = err;
6896 return ret;
6897 }
6898
ext4_acquire_dquot(struct dquot * dquot)6899 static int ext4_acquire_dquot(struct dquot *dquot)
6900 {
6901 int ret, err;
6902 handle_t *handle;
6903
6904 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6905 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6906 if (IS_ERR(handle))
6907 return PTR_ERR(handle);
6908 ret = dquot_acquire(dquot);
6909 if (ret < 0)
6910 ext4_error_err(dquot->dq_sb, -ret,
6911 "Failed to acquire dquot type %d",
6912 dquot->dq_id.type);
6913 err = ext4_journal_stop(handle);
6914 if (!ret)
6915 ret = err;
6916 return ret;
6917 }
6918
ext4_release_dquot(struct dquot * dquot)6919 static int ext4_release_dquot(struct dquot *dquot)
6920 {
6921 int ret, err;
6922 handle_t *handle;
6923 bool freeze_protected = false;
6924
6925 /*
6926 * Trying to sb_start_intwrite() in a running transaction
6927 * can result in a deadlock. Further, running transactions
6928 * are already protected from freezing.
6929 */
6930 if (!ext4_journal_current_handle()) {
6931 sb_start_intwrite(dquot->dq_sb);
6932 freeze_protected = true;
6933 }
6934
6935 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6936 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6937 if (IS_ERR(handle)) {
6938 /* Release dquot anyway to avoid endless cycle in dqput() */
6939 dquot_release(dquot);
6940 if (freeze_protected)
6941 sb_end_intwrite(dquot->dq_sb);
6942 return PTR_ERR(handle);
6943 }
6944 ret = dquot_release(dquot);
6945 if (ret < 0)
6946 ext4_error_err(dquot->dq_sb, -ret,
6947 "Failed to release dquot type %d",
6948 dquot->dq_id.type);
6949 err = ext4_journal_stop(handle);
6950 if (!ret)
6951 ret = err;
6952
6953 if (freeze_protected)
6954 sb_end_intwrite(dquot->dq_sb);
6955
6956 return ret;
6957 }
6958
ext4_mark_dquot_dirty(struct dquot * dquot)6959 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6960 {
6961 struct super_block *sb = dquot->dq_sb;
6962
6963 if (ext4_is_quota_journalled(sb)) {
6964 dquot_mark_dquot_dirty(dquot);
6965 return ext4_write_dquot(dquot);
6966 } else {
6967 return dquot_mark_dquot_dirty(dquot);
6968 }
6969 }
6970
ext4_write_info(struct super_block * sb,int type)6971 static int ext4_write_info(struct super_block *sb, int type)
6972 {
6973 int ret, err;
6974 handle_t *handle;
6975
6976 /* Data block + inode block */
6977 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6978 if (IS_ERR(handle))
6979 return PTR_ERR(handle);
6980 ret = dquot_commit_info(sb, type);
6981 err = ext4_journal_stop(handle);
6982 if (!ret)
6983 ret = err;
6984 return ret;
6985 }
6986
lockdep_set_quota_inode(struct inode * inode,int subclass)6987 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6988 {
6989 struct ext4_inode_info *ei = EXT4_I(inode);
6990
6991 /* The first argument of lockdep_set_subclass has to be
6992 * *exactly* the same as the argument to init_rwsem() --- in
6993 * this case, in init_once() --- or lockdep gets unhappy
6994 * because the name of the lock is set using the
6995 * stringification of the argument to init_rwsem().
6996 */
6997 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6998 lockdep_set_subclass(&ei->i_data_sem, subclass);
6999 }
7000
7001 /*
7002 * Standard function to be called on quota_on
7003 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)7004 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
7005 const struct path *path)
7006 {
7007 int err;
7008
7009 if (!test_opt(sb, QUOTA))
7010 return -EINVAL;
7011
7012 /* Quotafile not on the same filesystem? */
7013 if (path->dentry->d_sb != sb)
7014 return -EXDEV;
7015
7016 /* Quota already enabled for this file? */
7017 if (IS_NOQUOTA(d_inode(path->dentry)))
7018 return -EBUSY;
7019
7020 /* Journaling quota? */
7021 if (EXT4_SB(sb)->s_qf_names[type]) {
7022 /* Quotafile not in fs root? */
7023 if (path->dentry->d_parent != sb->s_root)
7024 ext4_msg(sb, KERN_WARNING,
7025 "Quota file not on filesystem root. "
7026 "Journaled quota will not work");
7027 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
7028 } else {
7029 /*
7030 * Clear the flag just in case mount options changed since
7031 * last time.
7032 */
7033 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
7034 }
7035
7036 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
7037 err = dquot_quota_on(sb, type, format_id, path);
7038 if (!err) {
7039 struct inode *inode = d_inode(path->dentry);
7040 handle_t *handle;
7041
7042 /*
7043 * Set inode flags to prevent userspace from messing with quota
7044 * files. If this fails, we return success anyway since quotas
7045 * are already enabled and this is not a hard failure.
7046 */
7047 inode_lock(inode);
7048 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7049 if (IS_ERR(handle))
7050 goto unlock_inode;
7051 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7052 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7053 S_NOATIME | S_IMMUTABLE);
7054 err = ext4_mark_inode_dirty(handle, inode);
7055 ext4_journal_stop(handle);
7056 unlock_inode:
7057 inode_unlock(inode);
7058 if (err)
7059 dquot_quota_off(sb, type);
7060 }
7061 if (err)
7062 lockdep_set_quota_inode(path->dentry->d_inode,
7063 I_DATA_SEM_NORMAL);
7064 return err;
7065 }
7066
ext4_check_quota_inum(int type,unsigned long qf_inum)7067 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7068 {
7069 switch (type) {
7070 case USRQUOTA:
7071 return qf_inum == EXT4_USR_QUOTA_INO;
7072 case GRPQUOTA:
7073 return qf_inum == EXT4_GRP_QUOTA_INO;
7074 case PRJQUOTA:
7075 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7076 default:
7077 BUG();
7078 }
7079 }
7080
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)7081 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7082 unsigned int flags)
7083 {
7084 int err;
7085 struct inode *qf_inode;
7086 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7087 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7088 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7089 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7090 };
7091
7092 BUG_ON(!ext4_has_feature_quota(sb));
7093
7094 if (!qf_inums[type])
7095 return -EPERM;
7096
7097 if (!ext4_check_quota_inum(type, qf_inums[type])) {
7098 ext4_error(sb, "Bad quota inum: %lu, type: %d",
7099 qf_inums[type], type);
7100 return -EUCLEAN;
7101 }
7102
7103 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7104 if (IS_ERR(qf_inode)) {
7105 ext4_error(sb, "Bad quota inode: %lu, type: %d",
7106 qf_inums[type], type);
7107 return PTR_ERR(qf_inode);
7108 }
7109
7110 /* Don't account quota for quota files to avoid recursion */
7111 qf_inode->i_flags |= S_NOQUOTA;
7112 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7113 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7114 if (err)
7115 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7116 iput(qf_inode);
7117
7118 return err;
7119 }
7120
7121 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)7122 int ext4_enable_quotas(struct super_block *sb)
7123 {
7124 int type, err = 0;
7125 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7126 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7127 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7128 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7129 };
7130 bool quota_mopt[EXT4_MAXQUOTAS] = {
7131 test_opt(sb, USRQUOTA),
7132 test_opt(sb, GRPQUOTA),
7133 test_opt(sb, PRJQUOTA),
7134 };
7135
7136 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7137 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7138 if (qf_inums[type]) {
7139 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7140 DQUOT_USAGE_ENABLED |
7141 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7142 if (err) {
7143 ext4_warning(sb,
7144 "Failed to enable quota tracking "
7145 "(type=%d, err=%d, ino=%lu). "
7146 "Please run e2fsck to fix.", type,
7147 err, qf_inums[type]);
7148
7149 ext4_quotas_off(sb, type);
7150 return err;
7151 }
7152 }
7153 }
7154 return 0;
7155 }
7156
ext4_quota_off(struct super_block * sb,int type)7157 static int ext4_quota_off(struct super_block *sb, int type)
7158 {
7159 struct inode *inode = sb_dqopt(sb)->files[type];
7160 handle_t *handle;
7161 int err;
7162
7163 /* Force all delayed allocation blocks to be allocated.
7164 * Caller already holds s_umount sem */
7165 if (test_opt(sb, DELALLOC))
7166 sync_filesystem(sb);
7167
7168 if (!inode || !igrab(inode))
7169 goto out;
7170
7171 err = dquot_quota_off(sb, type);
7172 if (err || ext4_has_feature_quota(sb))
7173 goto out_put;
7174 /*
7175 * When the filesystem was remounted read-only first, we cannot cleanup
7176 * inode flags here. Bad luck but people should be using QUOTA feature
7177 * these days anyway.
7178 */
7179 if (sb_rdonly(sb))
7180 goto out_put;
7181
7182 inode_lock(inode);
7183 /*
7184 * Update modification times of quota files when userspace can
7185 * start looking at them. If we fail, we return success anyway since
7186 * this is not a hard failure and quotas are already disabled.
7187 */
7188 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7189 if (IS_ERR(handle)) {
7190 err = PTR_ERR(handle);
7191 goto out_unlock;
7192 }
7193 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7194 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7195 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7196 err = ext4_mark_inode_dirty(handle, inode);
7197 ext4_journal_stop(handle);
7198 out_unlock:
7199 inode_unlock(inode);
7200 out_put:
7201 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7202 iput(inode);
7203 return err;
7204 out:
7205 return dquot_quota_off(sb, type);
7206 }
7207
7208 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7209 * acquiring the locks... As quota files are never truncated and quota code
7210 * itself serializes the operations (and no one else should touch the files)
7211 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)7212 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7213 size_t len, loff_t off)
7214 {
7215 struct inode *inode = sb_dqopt(sb)->files[type];
7216 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7217 int offset = off & (sb->s_blocksize - 1);
7218 int tocopy;
7219 size_t toread;
7220 struct buffer_head *bh;
7221 loff_t i_size = i_size_read(inode);
7222
7223 if (off > i_size)
7224 return 0;
7225 if (off+len > i_size)
7226 len = i_size-off;
7227 toread = len;
7228 while (toread > 0) {
7229 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7230 bh = ext4_bread(NULL, inode, blk, 0);
7231 if (IS_ERR(bh))
7232 return PTR_ERR(bh);
7233 if (!bh) /* A hole? */
7234 memset(data, 0, tocopy);
7235 else
7236 memcpy(data, bh->b_data+offset, tocopy);
7237 brelse(bh);
7238 offset = 0;
7239 toread -= tocopy;
7240 data += tocopy;
7241 blk++;
7242 }
7243 return len;
7244 }
7245
7246 /* Write to quotafile (we know the transaction is already started and has
7247 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)7248 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7249 const char *data, size_t len, loff_t off)
7250 {
7251 struct inode *inode = sb_dqopt(sb)->files[type];
7252 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7253 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7254 int retries = 0;
7255 struct buffer_head *bh;
7256 handle_t *handle = journal_current_handle();
7257
7258 if (!handle) {
7259 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7260 " cancelled because transaction is not started",
7261 (unsigned long long)off, (unsigned long long)len);
7262 return -EIO;
7263 }
7264 /*
7265 * Since we account only one data block in transaction credits,
7266 * then it is impossible to cross a block boundary.
7267 */
7268 if (sb->s_blocksize - offset < len) {
7269 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7270 " cancelled because not block aligned",
7271 (unsigned long long)off, (unsigned long long)len);
7272 return -EIO;
7273 }
7274
7275 do {
7276 bh = ext4_bread(handle, inode, blk,
7277 EXT4_GET_BLOCKS_CREATE |
7278 EXT4_GET_BLOCKS_METADATA_NOFAIL);
7279 } while (PTR_ERR(bh) == -ENOSPC &&
7280 ext4_should_retry_alloc(inode->i_sb, &retries));
7281 if (IS_ERR(bh))
7282 return PTR_ERR(bh);
7283 if (!bh)
7284 goto out;
7285 BUFFER_TRACE(bh, "get write access");
7286 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7287 if (err) {
7288 brelse(bh);
7289 return err;
7290 }
7291 lock_buffer(bh);
7292 memcpy(bh->b_data+offset, data, len);
7293 flush_dcache_page(bh->b_page);
7294 unlock_buffer(bh);
7295 err = ext4_handle_dirty_metadata(handle, NULL, bh);
7296 brelse(bh);
7297 out:
7298 if (inode->i_size < off + len) {
7299 i_size_write(inode, off + len);
7300 EXT4_I(inode)->i_disksize = inode->i_size;
7301 err2 = ext4_mark_inode_dirty(handle, inode);
7302 if (unlikely(err2 && !err))
7303 err = err2;
7304 }
7305 return err ? err : len;
7306 }
7307 #endif
7308
7309 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)7310 static inline void register_as_ext2(void)
7311 {
7312 int err = register_filesystem(&ext2_fs_type);
7313 if (err)
7314 printk(KERN_WARNING
7315 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7316 }
7317
unregister_as_ext2(void)7318 static inline void unregister_as_ext2(void)
7319 {
7320 unregister_filesystem(&ext2_fs_type);
7321 }
7322
ext2_feature_set_ok(struct super_block * sb)7323 static inline int ext2_feature_set_ok(struct super_block *sb)
7324 {
7325 if (ext4_has_unknown_ext2_incompat_features(sb))
7326 return 0;
7327 if (sb_rdonly(sb))
7328 return 1;
7329 if (ext4_has_unknown_ext2_ro_compat_features(sb))
7330 return 0;
7331 return 1;
7332 }
7333 #else
register_as_ext2(void)7334 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)7335 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)7336 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7337 #endif
7338
register_as_ext3(void)7339 static inline void register_as_ext3(void)
7340 {
7341 int err = register_filesystem(&ext3_fs_type);
7342 if (err)
7343 printk(KERN_WARNING
7344 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7345 }
7346
unregister_as_ext3(void)7347 static inline void unregister_as_ext3(void)
7348 {
7349 unregister_filesystem(&ext3_fs_type);
7350 }
7351
ext3_feature_set_ok(struct super_block * sb)7352 static inline int ext3_feature_set_ok(struct super_block *sb)
7353 {
7354 if (ext4_has_unknown_ext3_incompat_features(sb))
7355 return 0;
7356 if (!ext4_has_feature_journal(sb))
7357 return 0;
7358 if (sb_rdonly(sb))
7359 return 1;
7360 if (ext4_has_unknown_ext3_ro_compat_features(sb))
7361 return 0;
7362 return 1;
7363 }
7364
ext4_kill_sb(struct super_block * sb)7365 static void ext4_kill_sb(struct super_block *sb)
7366 {
7367 struct ext4_sb_info *sbi = EXT4_SB(sb);
7368 struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL;
7369
7370 kill_block_super(sb);
7371
7372 if (bdev_file)
7373 bdev_fput(bdev_file);
7374 }
7375
7376 static struct file_system_type ext4_fs_type = {
7377 .owner = THIS_MODULE,
7378 .name = "ext4",
7379 .init_fs_context = ext4_init_fs_context,
7380 .parameters = ext4_param_specs,
7381 .kill_sb = ext4_kill_sb,
7382 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7383 };
7384 MODULE_ALIAS_FS("ext4");
7385
7386 /* Shared across all ext4 file systems */
7387 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7388
ext4_init_fs(void)7389 static int __init ext4_init_fs(void)
7390 {
7391 int i, err;
7392
7393 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7394 ext4_li_info = NULL;
7395
7396 /* Build-time check for flags consistency */
7397 ext4_check_flag_values();
7398
7399 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7400 init_waitqueue_head(&ext4__ioend_wq[i]);
7401
7402 err = ext4_init_es();
7403 if (err)
7404 return err;
7405
7406 err = ext4_init_pending();
7407 if (err)
7408 goto out7;
7409
7410 err = ext4_init_post_read_processing();
7411 if (err)
7412 goto out6;
7413
7414 err = ext4_init_pageio();
7415 if (err)
7416 goto out5;
7417
7418 err = ext4_init_system_zone();
7419 if (err)
7420 goto out4;
7421
7422 err = ext4_init_sysfs();
7423 if (err)
7424 goto out3;
7425
7426 err = ext4_init_mballoc();
7427 if (err)
7428 goto out2;
7429 err = init_inodecache();
7430 if (err)
7431 goto out1;
7432
7433 err = ext4_fc_init_dentry_cache();
7434 if (err)
7435 goto out05;
7436
7437 register_as_ext3();
7438 register_as_ext2();
7439 err = register_filesystem(&ext4_fs_type);
7440 if (err)
7441 goto out;
7442
7443 return 0;
7444 out:
7445 unregister_as_ext2();
7446 unregister_as_ext3();
7447 ext4_fc_destroy_dentry_cache();
7448 out05:
7449 destroy_inodecache();
7450 out1:
7451 ext4_exit_mballoc();
7452 out2:
7453 ext4_exit_sysfs();
7454 out3:
7455 ext4_exit_system_zone();
7456 out4:
7457 ext4_exit_pageio();
7458 out5:
7459 ext4_exit_post_read_processing();
7460 out6:
7461 ext4_exit_pending();
7462 out7:
7463 ext4_exit_es();
7464
7465 return err;
7466 }
7467
ext4_exit_fs(void)7468 static void __exit ext4_exit_fs(void)
7469 {
7470 ext4_destroy_lazyinit_thread();
7471 unregister_as_ext2();
7472 unregister_as_ext3();
7473 unregister_filesystem(&ext4_fs_type);
7474 ext4_fc_destroy_dentry_cache();
7475 destroy_inodecache();
7476 ext4_exit_mballoc();
7477 ext4_exit_sysfs();
7478 ext4_exit_system_zone();
7479 ext4_exit_pageio();
7480 ext4_exit_post_read_processing();
7481 ext4_exit_es();
7482 ext4_exit_pending();
7483 }
7484
7485 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7486 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7487 MODULE_LICENSE("GPL");
7488 MODULE_SOFTDEP("pre: crc32c");
7489 module_init(ext4_init_fs)
7490 module_exit(ext4_exit_fs)
7491