1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/rmap.h>
35 #include <linux/namei.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 #include <linux/workqueue.h>
39 #include <linux/kernel.h>
40 #include <linux/printk.h>
41 #include <linux/slab.h>
42 #include <linux/bitops.h>
43 #include <linux/iomap.h>
44 #include <linux/iversion.h>
45
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "truncate.h"
50
51 #include <trace/events/ext4.h>
52
53 static void ext4_journalled_zero_new_buffers(handle_t *handle,
54 struct inode *inode,
55 struct folio *folio,
56 unsigned from, unsigned to);
57
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)58 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
59 struct ext4_inode_info *ei)
60 {
61 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
62 __u32 csum;
63 __u16 dummy_csum = 0;
64 int offset = offsetof(struct ext4_inode, i_checksum_lo);
65 unsigned int csum_size = sizeof(dummy_csum);
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
68 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
69 offset += csum_size;
70 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
71 EXT4_GOOD_OLD_INODE_SIZE - offset);
72
73 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
74 offset = offsetof(struct ext4_inode, i_checksum_hi);
75 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
76 EXT4_GOOD_OLD_INODE_SIZE,
77 offset - EXT4_GOOD_OLD_INODE_SIZE);
78 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
79 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
80 csum_size);
81 offset += csum_size;
82 }
83 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
84 EXT4_INODE_SIZE(inode->i_sb) - offset);
85 }
86
87 return csum;
88 }
89
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)90 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
91 struct ext4_inode_info *ei)
92 {
93 __u32 provided, calculated;
94
95 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
96 cpu_to_le32(EXT4_OS_LINUX) ||
97 !ext4_has_metadata_csum(inode->i_sb))
98 return 1;
99
100 provided = le16_to_cpu(raw->i_checksum_lo);
101 calculated = ext4_inode_csum(inode, raw, ei);
102 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
103 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
104 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
105 else
106 calculated &= 0xFFFF;
107
108 return provided == calculated;
109 }
110
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)111 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
112 struct ext4_inode_info *ei)
113 {
114 __u32 csum;
115
116 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
117 cpu_to_le32(EXT4_OS_LINUX) ||
118 !ext4_has_metadata_csum(inode->i_sb))
119 return;
120
121 csum = ext4_inode_csum(inode, raw, ei);
122 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
123 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
124 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
125 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
126 }
127
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)128 static inline int ext4_begin_ordered_truncate(struct inode *inode,
129 loff_t new_size)
130 {
131 trace_ext4_begin_ordered_truncate(inode, new_size);
132 /*
133 * If jinode is zero, then we never opened the file for
134 * writing, so there's no need to call
135 * jbd2_journal_begin_ordered_truncate() since there's no
136 * outstanding writes we need to flush.
137 */
138 if (!EXT4_I(inode)->jinode)
139 return 0;
140 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
141 EXT4_I(inode)->jinode,
142 new_size);
143 }
144
145 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
146 int pextents);
147
148 /*
149 * Test whether an inode is a fast symlink.
150 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
151 */
ext4_inode_is_fast_symlink(struct inode * inode)152 int ext4_inode_is_fast_symlink(struct inode *inode)
153 {
154 if (!ext4_has_feature_ea_inode(inode->i_sb)) {
155 int ea_blocks = EXT4_I(inode)->i_file_acl ?
156 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
157
158 if (ext4_has_inline_data(inode))
159 return 0;
160
161 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
162 }
163 return S_ISLNK(inode->i_mode) && inode->i_size &&
164 (inode->i_size < EXT4_N_BLOCKS * 4);
165 }
166
167 /*
168 * Called at the last iput() if i_nlink is zero.
169 */
ext4_evict_inode(struct inode * inode)170 void ext4_evict_inode(struct inode *inode)
171 {
172 handle_t *handle;
173 int err;
174 /*
175 * Credits for final inode cleanup and freeing:
176 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
177 * (xattr block freeing), bitmap, group descriptor (inode freeing)
178 */
179 int extra_credits = 6;
180 struct ext4_xattr_inode_array *ea_inode_array = NULL;
181 bool freeze_protected = false;
182
183 trace_ext4_evict_inode(inode);
184
185 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
186 ext4_evict_ea_inode(inode);
187 if (inode->i_nlink) {
188 truncate_inode_pages_final(&inode->i_data);
189
190 goto no_delete;
191 }
192
193 if (is_bad_inode(inode))
194 goto no_delete;
195 dquot_initialize(inode);
196
197 if (ext4_should_order_data(inode))
198 ext4_begin_ordered_truncate(inode, 0);
199 truncate_inode_pages_final(&inode->i_data);
200
201 /*
202 * For inodes with journalled data, transaction commit could have
203 * dirtied the inode. And for inodes with dioread_nolock, unwritten
204 * extents converting worker could merge extents and also have dirtied
205 * the inode. Flush worker is ignoring it because of I_FREEING flag but
206 * we still need to remove the inode from the writeback lists.
207 */
208 if (!list_empty_careful(&inode->i_io_list))
209 inode_io_list_del(inode);
210
211 /*
212 * Protect us against freezing - iput() caller didn't have to have any
213 * protection against it. When we are in a running transaction though,
214 * we are already protected against freezing and we cannot grab further
215 * protection due to lock ordering constraints.
216 */
217 if (!ext4_journal_current_handle()) {
218 sb_start_intwrite(inode->i_sb);
219 freeze_protected = true;
220 }
221
222 if (!IS_NOQUOTA(inode))
223 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
224
225 /*
226 * Block bitmap, group descriptor, and inode are accounted in both
227 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
228 */
229 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
230 ext4_blocks_for_truncate(inode) + extra_credits - 3);
231 if (IS_ERR(handle)) {
232 ext4_std_error(inode->i_sb, PTR_ERR(handle));
233 /*
234 * If we're going to skip the normal cleanup, we still need to
235 * make sure that the in-core orphan linked list is properly
236 * cleaned up.
237 */
238 ext4_orphan_del(NULL, inode);
239 if (freeze_protected)
240 sb_end_intwrite(inode->i_sb);
241 goto no_delete;
242 }
243
244 if (IS_SYNC(inode))
245 ext4_handle_sync(handle);
246
247 /*
248 * Set inode->i_size to 0 before calling ext4_truncate(). We need
249 * special handling of symlinks here because i_size is used to
250 * determine whether ext4_inode_info->i_data contains symlink data or
251 * block mappings. Setting i_size to 0 will remove its fast symlink
252 * status. Erase i_data so that it becomes a valid empty block map.
253 */
254 if (ext4_inode_is_fast_symlink(inode))
255 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
256 inode->i_size = 0;
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
259 ext4_warning(inode->i_sb,
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
263 if (inode->i_blocks) {
264 err = ext4_truncate(inode);
265 if (err) {
266 ext4_error_err(inode->i_sb, -err,
267 "couldn't truncate inode %lu (err %d)",
268 inode->i_ino, err);
269 goto stop_handle;
270 }
271 }
272
273 /* Remove xattr references. */
274 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
275 extra_credits);
276 if (err) {
277 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
278 stop_handle:
279 ext4_journal_stop(handle);
280 ext4_orphan_del(NULL, inode);
281 if (freeze_protected)
282 sb_end_intwrite(inode->i_sb);
283 ext4_xattr_inode_array_free(ea_inode_array);
284 goto no_delete;
285 }
286
287 /*
288 * Kill off the orphan record which ext4_truncate created.
289 * AKPM: I think this can be inside the above `if'.
290 * Note that ext4_orphan_del() has to be able to cope with the
291 * deletion of a non-existent orphan - this is because we don't
292 * know if ext4_truncate() actually created an orphan record.
293 * (Well, we could do this if we need to, but heck - it works)
294 */
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
305 if (ext4_mark_inode_dirty(handle, inode))
306 /* If that failed, just do the required in-core inode clear. */
307 ext4_clear_inode(inode);
308 else
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
311 if (freeze_protected)
312 sb_end_intwrite(inode->i_sb);
313 ext4_xattr_inode_array_free(ea_inode_array);
314 return;
315 no_delete:
316 /*
317 * Check out some where else accidentally dirty the evicting inode,
318 * which may probably cause inode use-after-free issues later.
319 */
320 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
321
322 if (!list_empty(&EXT4_I(inode)->i_fc_list))
323 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
324 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
325 }
326
327 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)328 qsize_t *ext4_get_reserved_space(struct inode *inode)
329 {
330 return &EXT4_I(inode)->i_reserved_quota;
331 }
332 #endif
333
334 /*
335 * Called with i_data_sem down, which is important since we can call
336 * ext4_discard_preallocations() from here.
337 */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)338 void ext4_da_update_reserve_space(struct inode *inode,
339 int used, int quota_claim)
340 {
341 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
342 struct ext4_inode_info *ei = EXT4_I(inode);
343
344 spin_lock(&ei->i_block_reservation_lock);
345 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
346 if (unlikely(used > ei->i_reserved_data_blocks)) {
347 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
348 "with only %d reserved data blocks",
349 __func__, inode->i_ino, used,
350 ei->i_reserved_data_blocks);
351 WARN_ON(1);
352 used = ei->i_reserved_data_blocks;
353 }
354
355 /* Update per-inode reservations */
356 ei->i_reserved_data_blocks -= used;
357 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
358
359 spin_unlock(&ei->i_block_reservation_lock);
360
361 /* Update quota subsystem for data blocks */
362 if (quota_claim)
363 dquot_claim_block(inode, EXT4_C2B(sbi, used));
364 else {
365 /*
366 * We did fallocate with an offset that is already delayed
367 * allocated. So on delayed allocated writeback we should
368 * not re-claim the quota for fallocated blocks.
369 */
370 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
371 }
372
373 /*
374 * If we have done all the pending block allocations and if
375 * there aren't any writers on the inode, we can discard the
376 * inode's preallocations.
377 */
378 if ((ei->i_reserved_data_blocks == 0) &&
379 !inode_is_open_for_write(inode))
380 ext4_discard_preallocations(inode);
381 }
382
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)383 static int __check_block_validity(struct inode *inode, const char *func,
384 unsigned int line,
385 struct ext4_map_blocks *map)
386 {
387 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
388
389 if (journal && inode == journal->j_inode)
390 return 0;
391
392 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
393 ext4_error_inode(inode, func, line, map->m_pblk,
394 "lblock %lu mapped to illegal pblock %llu "
395 "(length %d)", (unsigned long) map->m_lblk,
396 map->m_pblk, map->m_len);
397 return -EFSCORRUPTED;
398 }
399 return 0;
400 }
401
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)402 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
403 ext4_lblk_t len)
404 {
405 int ret;
406
407 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
408 return fscrypt_zeroout_range(inode, lblk, pblk, len);
409
410 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
411 if (ret > 0)
412 ret = 0;
413
414 return ret;
415 }
416
417 #define check_block_validity(inode, map) \
418 __check_block_validity((inode), __func__, __LINE__, (map))
419
420 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)421 static void ext4_map_blocks_es_recheck(handle_t *handle,
422 struct inode *inode,
423 struct ext4_map_blocks *es_map,
424 struct ext4_map_blocks *map,
425 int flags)
426 {
427 int retval;
428
429 map->m_flags = 0;
430 /*
431 * There is a race window that the result is not the same.
432 * e.g. xfstests #223 when dioread_nolock enables. The reason
433 * is that we lookup a block mapping in extent status tree with
434 * out taking i_data_sem. So at the time the unwritten extent
435 * could be converted.
436 */
437 down_read(&EXT4_I(inode)->i_data_sem);
438 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
439 retval = ext4_ext_map_blocks(handle, inode, map, 0);
440 } else {
441 retval = ext4_ind_map_blocks(handle, inode, map, 0);
442 }
443 up_read((&EXT4_I(inode)->i_data_sem));
444
445 /*
446 * We don't check m_len because extent will be collpased in status
447 * tree. So the m_len might not equal.
448 */
449 if (es_map->m_lblk != map->m_lblk ||
450 es_map->m_flags != map->m_flags ||
451 es_map->m_pblk != map->m_pblk) {
452 printk("ES cache assertion failed for inode: %lu "
453 "es_cached ex [%d/%d/%llu/%x] != "
454 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
455 inode->i_ino, es_map->m_lblk, es_map->m_len,
456 es_map->m_pblk, es_map->m_flags, map->m_lblk,
457 map->m_len, map->m_pblk, map->m_flags,
458 retval, flags);
459 }
460 }
461 #endif /* ES_AGGRESSIVE_TEST */
462
ext4_map_query_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map)463 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
464 struct ext4_map_blocks *map)
465 {
466 unsigned int status;
467 int retval;
468
469 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
470 retval = ext4_ext_map_blocks(handle, inode, map, 0);
471 else
472 retval = ext4_ind_map_blocks(handle, inode, map, 0);
473
474 if (retval <= 0)
475 return retval;
476
477 if (unlikely(retval != map->m_len)) {
478 ext4_warning(inode->i_sb,
479 "ES len assertion failed for inode "
480 "%lu: retval %d != map->m_len %d",
481 inode->i_ino, retval, map->m_len);
482 WARN_ON(1);
483 }
484
485 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
486 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
487 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
488 map->m_pblk, status, 0);
489 return retval;
490 }
491
ext4_map_create_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)492 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
493 struct ext4_map_blocks *map, int flags)
494 {
495 struct extent_status es;
496 unsigned int status;
497 int err, retval = 0;
498
499 /*
500 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
501 * indicates that the blocks and quotas has already been
502 * checked when the data was copied into the page cache.
503 */
504 if (map->m_flags & EXT4_MAP_DELAYED)
505 flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
506
507 /*
508 * Here we clear m_flags because after allocating an new extent,
509 * it will be set again.
510 */
511 map->m_flags &= ~EXT4_MAP_FLAGS;
512
513 /*
514 * We need to check for EXT4 here because migrate could have
515 * changed the inode type in between.
516 */
517 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
518 retval = ext4_ext_map_blocks(handle, inode, map, flags);
519 } else {
520 retval = ext4_ind_map_blocks(handle, inode, map, flags);
521
522 /*
523 * We allocated new blocks which will result in i_data's
524 * format changing. Force the migrate to fail by clearing
525 * migrate flags.
526 */
527 if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
528 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
529 }
530 if (retval <= 0)
531 return retval;
532
533 if (unlikely(retval != map->m_len)) {
534 ext4_warning(inode->i_sb,
535 "ES len assertion failed for inode %lu: "
536 "retval %d != map->m_len %d",
537 inode->i_ino, retval, map->m_len);
538 WARN_ON(1);
539 }
540
541 /*
542 * We have to zeroout blocks before inserting them into extent
543 * status tree. Otherwise someone could look them up there and
544 * use them before they are really zeroed. We also have to
545 * unmap metadata before zeroing as otherwise writeback can
546 * overwrite zeros with stale data from block device.
547 */
548 if (flags & EXT4_GET_BLOCKS_ZERO &&
549 map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
550 err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
551 map->m_len);
552 if (err)
553 return err;
554 }
555
556 /*
557 * If the extent has been zeroed out, we don't need to update
558 * extent status tree.
559 */
560 if (flags & EXT4_GET_BLOCKS_PRE_IO &&
561 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
562 if (ext4_es_is_written(&es))
563 return retval;
564 }
565
566 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
569 map->m_pblk, status, flags);
570
571 return retval;
572 }
573
574 /*
575 * The ext4_map_blocks() function tries to look up the requested blocks,
576 * and returns if the blocks are already mapped.
577 *
578 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
579 * and store the allocated blocks in the result buffer head and mark it
580 * mapped.
581 *
582 * If file type is extents based, it will call ext4_ext_map_blocks(),
583 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
584 * based files
585 *
586 * On success, it returns the number of blocks being mapped or allocated.
587 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
588 * pre-allocated and unwritten, the resulting @map is marked as unwritten.
589 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
590 *
591 * It returns 0 if plain look up failed (blocks have not been allocated), in
592 * that case, @map is returned as unmapped but we still do fill map->m_len to
593 * indicate the length of a hole starting at map->m_lblk.
594 *
595 * It returns the error in case of allocation failure.
596 */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)597 int ext4_map_blocks(handle_t *handle, struct inode *inode,
598 struct ext4_map_blocks *map, int flags)
599 {
600 struct extent_status es;
601 int retval;
602 int ret = 0;
603 #ifdef ES_AGGRESSIVE_TEST
604 struct ext4_map_blocks orig_map;
605
606 memcpy(&orig_map, map, sizeof(*map));
607 #endif
608
609 map->m_flags = 0;
610 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
611 flags, map->m_len, (unsigned long) map->m_lblk);
612
613 /*
614 * ext4_map_blocks returns an int, and m_len is an unsigned int
615 */
616 if (unlikely(map->m_len > INT_MAX))
617 map->m_len = INT_MAX;
618
619 /* We can handle the block number less than EXT_MAX_BLOCKS */
620 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
621 return -EFSCORRUPTED;
622
623 /* Lookup extent status tree firstly */
624 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
625 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
626 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
627 map->m_pblk = ext4_es_pblock(&es) +
628 map->m_lblk - es.es_lblk;
629 map->m_flags |= ext4_es_is_written(&es) ?
630 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
631 retval = es.es_len - (map->m_lblk - es.es_lblk);
632 if (retval > map->m_len)
633 retval = map->m_len;
634 map->m_len = retval;
635 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
636 map->m_pblk = 0;
637 map->m_flags |= ext4_es_is_delayed(&es) ?
638 EXT4_MAP_DELAYED : 0;
639 retval = es.es_len - (map->m_lblk - es.es_lblk);
640 if (retval > map->m_len)
641 retval = map->m_len;
642 map->m_len = retval;
643 retval = 0;
644 } else {
645 BUG();
646 }
647
648 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
649 return retval;
650 #ifdef ES_AGGRESSIVE_TEST
651 ext4_map_blocks_es_recheck(handle, inode, map,
652 &orig_map, flags);
653 #endif
654 goto found;
655 }
656 /*
657 * In the query cache no-wait mode, nothing we can do more if we
658 * cannot find extent in the cache.
659 */
660 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
661 return 0;
662
663 /*
664 * Try to see if we can get the block without requesting a new
665 * file system block.
666 */
667 down_read(&EXT4_I(inode)->i_data_sem);
668 retval = ext4_map_query_blocks(handle, inode, map);
669 up_read((&EXT4_I(inode)->i_data_sem));
670
671 found:
672 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
673 ret = check_block_validity(inode, map);
674 if (ret != 0)
675 return ret;
676 }
677
678 /* If it is only a block(s) look up */
679 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
680 return retval;
681
682 /*
683 * Returns if the blocks have already allocated
684 *
685 * Note that if blocks have been preallocated
686 * ext4_ext_map_blocks() returns with buffer head unmapped
687 */
688 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
689 /*
690 * If we need to convert extent to unwritten
691 * we continue and do the actual work in
692 * ext4_ext_map_blocks()
693 */
694 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
695 return retval;
696
697 /*
698 * New blocks allocate and/or writing to unwritten extent
699 * will possibly result in updating i_data, so we take
700 * the write lock of i_data_sem, and call get_block()
701 * with create == 1 flag.
702 */
703 down_write(&EXT4_I(inode)->i_data_sem);
704 retval = ext4_map_create_blocks(handle, inode, map, flags);
705 up_write((&EXT4_I(inode)->i_data_sem));
706 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
707 ret = check_block_validity(inode, map);
708 if (ret != 0)
709 return ret;
710
711 /*
712 * Inodes with freshly allocated blocks where contents will be
713 * visible after transaction commit must be on transaction's
714 * ordered data list.
715 */
716 if (map->m_flags & EXT4_MAP_NEW &&
717 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
718 !(flags & EXT4_GET_BLOCKS_ZERO) &&
719 !ext4_is_quota_file(inode) &&
720 ext4_should_order_data(inode)) {
721 loff_t start_byte =
722 (loff_t)map->m_lblk << inode->i_blkbits;
723 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
724
725 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
726 ret = ext4_jbd2_inode_add_wait(handle, inode,
727 start_byte, length);
728 else
729 ret = ext4_jbd2_inode_add_write(handle, inode,
730 start_byte, length);
731 if (ret)
732 return ret;
733 }
734 }
735 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
736 map->m_flags & EXT4_MAP_MAPPED))
737 ext4_fc_track_range(handle, inode, map->m_lblk,
738 map->m_lblk + map->m_len - 1);
739 if (retval < 0)
740 ext_debug(inode, "failed with err %d\n", retval);
741 return retval;
742 }
743
744 /*
745 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
746 * we have to be careful as someone else may be manipulating b_state as well.
747 */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)748 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
749 {
750 unsigned long old_state;
751 unsigned long new_state;
752
753 flags &= EXT4_MAP_FLAGS;
754
755 /* Dummy buffer_head? Set non-atomically. */
756 if (!bh->b_page) {
757 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
758 return;
759 }
760 /*
761 * Someone else may be modifying b_state. Be careful! This is ugly but
762 * once we get rid of using bh as a container for mapping information
763 * to pass to / from get_block functions, this can go away.
764 */
765 old_state = READ_ONCE(bh->b_state);
766 do {
767 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
768 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
769 }
770
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)771 static int _ext4_get_block(struct inode *inode, sector_t iblock,
772 struct buffer_head *bh, int flags)
773 {
774 struct ext4_map_blocks map;
775 int ret = 0;
776
777 if (ext4_has_inline_data(inode))
778 return -ERANGE;
779
780 map.m_lblk = iblock;
781 map.m_len = bh->b_size >> inode->i_blkbits;
782
783 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
784 flags);
785 if (ret > 0) {
786 map_bh(bh, inode->i_sb, map.m_pblk);
787 ext4_update_bh_state(bh, map.m_flags);
788 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
789 ret = 0;
790 } else if (ret == 0) {
791 /* hole case, need to fill in bh->b_size */
792 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793 }
794 return ret;
795 }
796
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)797 int ext4_get_block(struct inode *inode, sector_t iblock,
798 struct buffer_head *bh, int create)
799 {
800 return _ext4_get_block(inode, iblock, bh,
801 create ? EXT4_GET_BLOCKS_CREATE : 0);
802 }
803
804 /*
805 * Get block function used when preparing for buffered write if we require
806 * creating an unwritten extent if blocks haven't been allocated. The extent
807 * will be converted to written after the IO is complete.
808 */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)809 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh_result, int create)
811 {
812 int ret = 0;
813
814 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
815 inode->i_ino, create);
816 ret = _ext4_get_block(inode, iblock, bh_result,
817 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
818
819 /*
820 * If the buffer is marked unwritten, mark it as new to make sure it is
821 * zeroed out correctly in case of partial writes. Otherwise, there is
822 * a chance of stale data getting exposed.
823 */
824 if (ret == 0 && buffer_unwritten(bh_result))
825 set_buffer_new(bh_result);
826
827 return ret;
828 }
829
830 /* Maximum number of blocks we map for direct IO at once. */
831 #define DIO_MAX_BLOCKS 4096
832
833 /*
834 * `handle' can be NULL if create is zero
835 */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)836 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
837 ext4_lblk_t block, int map_flags)
838 {
839 struct ext4_map_blocks map;
840 struct buffer_head *bh;
841 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
842 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
843 int err;
844
845 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
846 || handle != NULL || create == 0);
847 ASSERT(create == 0 || !nowait);
848
849 map.m_lblk = block;
850 map.m_len = 1;
851 err = ext4_map_blocks(handle, inode, &map, map_flags);
852
853 if (err == 0)
854 return create ? ERR_PTR(-ENOSPC) : NULL;
855 if (err < 0)
856 return ERR_PTR(err);
857
858 if (nowait)
859 return sb_find_get_block(inode->i_sb, map.m_pblk);
860
861 bh = sb_getblk(inode->i_sb, map.m_pblk);
862 if (unlikely(!bh))
863 return ERR_PTR(-ENOMEM);
864 if (map.m_flags & EXT4_MAP_NEW) {
865 ASSERT(create != 0);
866 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
867 || (handle != NULL));
868
869 /*
870 * Now that we do not always journal data, we should
871 * keep in mind whether this should always journal the
872 * new buffer as metadata. For now, regular file
873 * writes use ext4_get_block instead, so it's not a
874 * problem.
875 */
876 lock_buffer(bh);
877 BUFFER_TRACE(bh, "call get_create_access");
878 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
879 EXT4_JTR_NONE);
880 if (unlikely(err)) {
881 unlock_buffer(bh);
882 goto errout;
883 }
884 if (!buffer_uptodate(bh)) {
885 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
886 set_buffer_uptodate(bh);
887 }
888 unlock_buffer(bh);
889 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
890 err = ext4_handle_dirty_metadata(handle, inode, bh);
891 if (unlikely(err))
892 goto errout;
893 } else
894 BUFFER_TRACE(bh, "not a new buffer");
895 return bh;
896 errout:
897 brelse(bh);
898 return ERR_PTR(err);
899 }
900
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)901 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
902 ext4_lblk_t block, int map_flags)
903 {
904 struct buffer_head *bh;
905 int ret;
906
907 bh = ext4_getblk(handle, inode, block, map_flags);
908 if (IS_ERR(bh))
909 return bh;
910 if (!bh || ext4_buffer_uptodate(bh))
911 return bh;
912
913 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
914 if (ret) {
915 put_bh(bh);
916 return ERR_PTR(ret);
917 }
918 return bh;
919 }
920
921 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)922 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
923 bool wait, struct buffer_head **bhs)
924 {
925 int i, err;
926
927 for (i = 0; i < bh_count; i++) {
928 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
929 if (IS_ERR(bhs[i])) {
930 err = PTR_ERR(bhs[i]);
931 bh_count = i;
932 goto out_brelse;
933 }
934 }
935
936 for (i = 0; i < bh_count; i++)
937 /* Note that NULL bhs[i] is valid because of holes. */
938 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
939 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
940
941 if (!wait)
942 return 0;
943
944 for (i = 0; i < bh_count; i++)
945 if (bhs[i])
946 wait_on_buffer(bhs[i]);
947
948 for (i = 0; i < bh_count; i++) {
949 if (bhs[i] && !buffer_uptodate(bhs[i])) {
950 err = -EIO;
951 goto out_brelse;
952 }
953 }
954 return 0;
955
956 out_brelse:
957 for (i = 0; i < bh_count; i++) {
958 brelse(bhs[i]);
959 bhs[i] = NULL;
960 }
961 return err;
962 }
963
ext4_walk_page_buffers(handle_t * handle,struct inode * inode,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct inode * inode,struct buffer_head * bh))964 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
965 struct buffer_head *head,
966 unsigned from,
967 unsigned to,
968 int *partial,
969 int (*fn)(handle_t *handle, struct inode *inode,
970 struct buffer_head *bh))
971 {
972 struct buffer_head *bh;
973 unsigned block_start, block_end;
974 unsigned blocksize = head->b_size;
975 int err, ret = 0;
976 struct buffer_head *next;
977
978 for (bh = head, block_start = 0;
979 ret == 0 && (bh != head || !block_start);
980 block_start = block_end, bh = next) {
981 next = bh->b_this_page;
982 block_end = block_start + blocksize;
983 if (block_end <= from || block_start >= to) {
984 if (partial && !buffer_uptodate(bh))
985 *partial = 1;
986 continue;
987 }
988 err = (*fn)(handle, inode, bh);
989 if (!ret)
990 ret = err;
991 }
992 return ret;
993 }
994
995 /*
996 * Helper for handling dirtying of journalled data. We also mark the folio as
997 * dirty so that writeback code knows about this page (and inode) contains
998 * dirty data. ext4_writepages() then commits appropriate transaction to
999 * make data stable.
1000 */
ext4_dirty_journalled_data(handle_t * handle,struct buffer_head * bh)1001 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1002 {
1003 struct folio *folio = bh->b_folio;
1004 struct inode *inode = folio->mapping->host;
1005
1006 /* only regular files have a_ops */
1007 if (S_ISREG(inode->i_mode))
1008 folio_mark_dirty(folio);
1009 return ext4_handle_dirty_metadata(handle, NULL, bh);
1010 }
1011
do_journal_get_write_access(handle_t * handle,struct inode * inode,struct buffer_head * bh)1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013 struct buffer_head *bh)
1014 {
1015 if (!buffer_mapped(bh) || buffer_freed(bh))
1016 return 0;
1017 BUFFER_TRACE(bh, "get write access");
1018 return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1019 EXT4_JTR_NONE);
1020 }
1021
ext4_block_write_begin(handle_t * handle,struct folio * folio,loff_t pos,unsigned len,get_block_t * get_block)1022 int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1023 loff_t pos, unsigned len,
1024 get_block_t *get_block)
1025 {
1026 unsigned from = pos & (PAGE_SIZE - 1);
1027 unsigned to = from + len;
1028 struct inode *inode = folio->mapping->host;
1029 unsigned block_start, block_end;
1030 sector_t block;
1031 int err = 0;
1032 unsigned blocksize = inode->i_sb->s_blocksize;
1033 unsigned bbits;
1034 struct buffer_head *bh, *head, *wait[2];
1035 int nr_wait = 0;
1036 int i;
1037 bool should_journal_data = ext4_should_journal_data(inode);
1038
1039 BUG_ON(!folio_test_locked(folio));
1040 BUG_ON(from > PAGE_SIZE);
1041 BUG_ON(to > PAGE_SIZE);
1042 BUG_ON(from > to);
1043
1044 head = folio_buffers(folio);
1045 if (!head)
1046 head = create_empty_buffers(folio, blocksize, 0);
1047 bbits = ilog2(blocksize);
1048 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1049
1050 for (bh = head, block_start = 0; bh != head || !block_start;
1051 block++, block_start = block_end, bh = bh->b_this_page) {
1052 block_end = block_start + blocksize;
1053 if (block_end <= from || block_start >= to) {
1054 if (folio_test_uptodate(folio)) {
1055 set_buffer_uptodate(bh);
1056 }
1057 continue;
1058 }
1059 if (WARN_ON_ONCE(buffer_new(bh)))
1060 clear_buffer_new(bh);
1061 if (!buffer_mapped(bh)) {
1062 WARN_ON(bh->b_size != blocksize);
1063 err = get_block(inode, block, bh, 1);
1064 if (err)
1065 break;
1066 if (buffer_new(bh)) {
1067 /*
1068 * We may be zeroing partial buffers or all new
1069 * buffers in case of failure. Prepare JBD2 for
1070 * that.
1071 */
1072 if (should_journal_data)
1073 do_journal_get_write_access(handle,
1074 inode, bh);
1075 if (folio_test_uptodate(folio)) {
1076 /*
1077 * Unlike __block_write_begin() we leave
1078 * dirtying of new uptodate buffers to
1079 * ->write_end() time or
1080 * folio_zero_new_buffers().
1081 */
1082 set_buffer_uptodate(bh);
1083 continue;
1084 }
1085 if (block_end > to || block_start < from)
1086 folio_zero_segments(folio, to,
1087 block_end,
1088 block_start, from);
1089 continue;
1090 }
1091 }
1092 if (folio_test_uptodate(folio)) {
1093 set_buffer_uptodate(bh);
1094 continue;
1095 }
1096 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1097 !buffer_unwritten(bh) &&
1098 (block_start < from || block_end > to)) {
1099 ext4_read_bh_lock(bh, 0, false);
1100 wait[nr_wait++] = bh;
1101 }
1102 }
1103 /*
1104 * If we issued read requests, let them complete.
1105 */
1106 for (i = 0; i < nr_wait; i++) {
1107 wait_on_buffer(wait[i]);
1108 if (!buffer_uptodate(wait[i]))
1109 err = -EIO;
1110 }
1111 if (unlikely(err)) {
1112 if (should_journal_data)
1113 ext4_journalled_zero_new_buffers(handle, inode, folio,
1114 from, to);
1115 else
1116 folio_zero_new_buffers(folio, from, to);
1117 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1118 for (i = 0; i < nr_wait; i++) {
1119 int err2;
1120
1121 err2 = fscrypt_decrypt_pagecache_blocks(folio,
1122 blocksize, bh_offset(wait[i]));
1123 if (err2) {
1124 clear_buffer_uptodate(wait[i]);
1125 err = err2;
1126 }
1127 }
1128 }
1129
1130 return err;
1131 }
1132
1133 /*
1134 * To preserve ordering, it is essential that the hole instantiation and
1135 * the data write be encapsulated in a single transaction. We cannot
1136 * close off a transaction and start a new one between the ext4_get_block()
1137 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of
1138 * ext4_write_begin() is the right place.
1139 */
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)1140 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1141 loff_t pos, unsigned len,
1142 struct folio **foliop, void **fsdata)
1143 {
1144 struct inode *inode = mapping->host;
1145 int ret, needed_blocks;
1146 handle_t *handle;
1147 int retries = 0;
1148 struct folio *folio;
1149 pgoff_t index;
1150 unsigned from, to;
1151
1152 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1153 return -EIO;
1154
1155 trace_ext4_write_begin(inode, pos, len);
1156 /*
1157 * Reserve one block more for addition to orphan list in case
1158 * we allocate blocks but write fails for some reason
1159 */
1160 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1161 index = pos >> PAGE_SHIFT;
1162 from = pos & (PAGE_SIZE - 1);
1163 to = from + len;
1164
1165 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1166 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1167 foliop);
1168 if (ret < 0)
1169 return ret;
1170 if (ret == 1)
1171 return 0;
1172 }
1173
1174 /*
1175 * __filemap_get_folio() can take a long time if the
1176 * system is thrashing due to memory pressure, or if the folio
1177 * is being written back. So grab it first before we start
1178 * the transaction handle. This also allows us to allocate
1179 * the folio (if needed) without using GFP_NOFS.
1180 */
1181 retry_grab:
1182 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1183 mapping_gfp_mask(mapping));
1184 if (IS_ERR(folio))
1185 return PTR_ERR(folio);
1186 /*
1187 * The same as page allocation, we prealloc buffer heads before
1188 * starting the handle.
1189 */
1190 if (!folio_buffers(folio))
1191 create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1192
1193 folio_unlock(folio);
1194
1195 retry_journal:
1196 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1197 if (IS_ERR(handle)) {
1198 folio_put(folio);
1199 return PTR_ERR(handle);
1200 }
1201
1202 folio_lock(folio);
1203 if (folio->mapping != mapping) {
1204 /* The folio got truncated from under us */
1205 folio_unlock(folio);
1206 folio_put(folio);
1207 ext4_journal_stop(handle);
1208 goto retry_grab;
1209 }
1210 /* In case writeback began while the folio was unlocked */
1211 folio_wait_stable(folio);
1212
1213 if (ext4_should_dioread_nolock(inode))
1214 ret = ext4_block_write_begin(handle, folio, pos, len,
1215 ext4_get_block_unwritten);
1216 else
1217 ret = ext4_block_write_begin(handle, folio, pos, len,
1218 ext4_get_block);
1219 if (!ret && ext4_should_journal_data(inode)) {
1220 ret = ext4_walk_page_buffers(handle, inode,
1221 folio_buffers(folio), from, to,
1222 NULL, do_journal_get_write_access);
1223 }
1224
1225 if (ret) {
1226 bool extended = (pos + len > inode->i_size) &&
1227 !ext4_verity_in_progress(inode);
1228
1229 folio_unlock(folio);
1230 /*
1231 * ext4_block_write_begin may have instantiated a few blocks
1232 * outside i_size. Trim these off again. Don't need
1233 * i_size_read because we hold i_rwsem.
1234 *
1235 * Add inode to orphan list in case we crash before
1236 * truncate finishes
1237 */
1238 if (extended && ext4_can_truncate(inode))
1239 ext4_orphan_add(handle, inode);
1240
1241 ext4_journal_stop(handle);
1242 if (extended) {
1243 ext4_truncate_failed_write(inode);
1244 /*
1245 * If truncate failed early the inode might
1246 * still be on the orphan list; we need to
1247 * make sure the inode is removed from the
1248 * orphan list in that case.
1249 */
1250 if (inode->i_nlink)
1251 ext4_orphan_del(NULL, inode);
1252 }
1253
1254 if (ret == -ENOSPC &&
1255 ext4_should_retry_alloc(inode->i_sb, &retries))
1256 goto retry_journal;
1257 folio_put(folio);
1258 return ret;
1259 }
1260 *foliop = folio;
1261 return ret;
1262 }
1263
1264 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct inode * inode,struct buffer_head * bh)1265 static int write_end_fn(handle_t *handle, struct inode *inode,
1266 struct buffer_head *bh)
1267 {
1268 int ret;
1269 if (!buffer_mapped(bh) || buffer_freed(bh))
1270 return 0;
1271 set_buffer_uptodate(bh);
1272 ret = ext4_dirty_journalled_data(handle, bh);
1273 clear_buffer_meta(bh);
1274 clear_buffer_prio(bh);
1275 clear_buffer_new(bh);
1276 return ret;
1277 }
1278
1279 /*
1280 * We need to pick up the new inode size which generic_commit_write gave us
1281 * `file' can be NULL - eg, when called from page_symlink().
1282 *
1283 * ext4 never places buffers on inode->i_mapping->i_private_list. metadata
1284 * buffers are managed internally.
1285 */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)1286 static int ext4_write_end(struct file *file,
1287 struct address_space *mapping,
1288 loff_t pos, unsigned len, unsigned copied,
1289 struct folio *folio, void *fsdata)
1290 {
1291 handle_t *handle = ext4_journal_current_handle();
1292 struct inode *inode = mapping->host;
1293 loff_t old_size = inode->i_size;
1294 int ret = 0, ret2;
1295 int i_size_changed = 0;
1296 bool verity = ext4_verity_in_progress(inode);
1297
1298 trace_ext4_write_end(inode, pos, len, copied);
1299
1300 if (ext4_has_inline_data(inode) &&
1301 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1302 return ext4_write_inline_data_end(inode, pos, len, copied,
1303 folio);
1304
1305 copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
1306 /*
1307 * it's important to update i_size while still holding folio lock:
1308 * page writeout could otherwise come in and zero beyond i_size.
1309 *
1310 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1311 * blocks are being written past EOF, so skip the i_size update.
1312 */
1313 if (!verity)
1314 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1315 folio_unlock(folio);
1316 folio_put(folio);
1317
1318 if (old_size < pos && !verity) {
1319 pagecache_isize_extended(inode, old_size, pos);
1320 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1321 }
1322 /*
1323 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1324 * makes the holding time of folio lock longer. Second, it forces lock
1325 * ordering of folio lock and transaction start for journaling
1326 * filesystems.
1327 */
1328 if (i_size_changed)
1329 ret = ext4_mark_inode_dirty(handle, inode);
1330
1331 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1332 /* if we have allocated more blocks and copied
1333 * less. We will have blocks allocated outside
1334 * inode->i_size. So truncate them
1335 */
1336 ext4_orphan_add(handle, inode);
1337
1338 ret2 = ext4_journal_stop(handle);
1339 if (!ret)
1340 ret = ret2;
1341
1342 if (pos + len > inode->i_size && !verity) {
1343 ext4_truncate_failed_write(inode);
1344 /*
1345 * If truncate failed early the inode might still be
1346 * on the orphan list; we need to make sure the inode
1347 * is removed from the orphan list in that case.
1348 */
1349 if (inode->i_nlink)
1350 ext4_orphan_del(NULL, inode);
1351 }
1352
1353 return ret ? ret : copied;
1354 }
1355
1356 /*
1357 * This is a private version of folio_zero_new_buffers() which doesn't
1358 * set the buffer to be dirty, since in data=journalled mode we need
1359 * to call ext4_dirty_journalled_data() instead.
1360 */
ext4_journalled_zero_new_buffers(handle_t * handle,struct inode * inode,struct folio * folio,unsigned from,unsigned to)1361 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1362 struct inode *inode,
1363 struct folio *folio,
1364 unsigned from, unsigned to)
1365 {
1366 unsigned int block_start = 0, block_end;
1367 struct buffer_head *head, *bh;
1368
1369 bh = head = folio_buffers(folio);
1370 do {
1371 block_end = block_start + bh->b_size;
1372 if (buffer_new(bh)) {
1373 if (block_end > from && block_start < to) {
1374 if (!folio_test_uptodate(folio)) {
1375 unsigned start, size;
1376
1377 start = max(from, block_start);
1378 size = min(to, block_end) - start;
1379
1380 folio_zero_range(folio, start, size);
1381 }
1382 clear_buffer_new(bh);
1383 write_end_fn(handle, inode, bh);
1384 }
1385 }
1386 block_start = block_end;
1387 bh = bh->b_this_page;
1388 } while (bh != head);
1389 }
1390
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)1391 static int ext4_journalled_write_end(struct file *file,
1392 struct address_space *mapping,
1393 loff_t pos, unsigned len, unsigned copied,
1394 struct folio *folio, void *fsdata)
1395 {
1396 handle_t *handle = ext4_journal_current_handle();
1397 struct inode *inode = mapping->host;
1398 loff_t old_size = inode->i_size;
1399 int ret = 0, ret2;
1400 int partial = 0;
1401 unsigned from, to;
1402 int size_changed = 0;
1403 bool verity = ext4_verity_in_progress(inode);
1404
1405 trace_ext4_journalled_write_end(inode, pos, len, copied);
1406 from = pos & (PAGE_SIZE - 1);
1407 to = from + len;
1408
1409 BUG_ON(!ext4_handle_valid(handle));
1410
1411 if (ext4_has_inline_data(inode))
1412 return ext4_write_inline_data_end(inode, pos, len, copied,
1413 folio);
1414
1415 if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1416 copied = 0;
1417 ext4_journalled_zero_new_buffers(handle, inode, folio,
1418 from, to);
1419 } else {
1420 if (unlikely(copied < len))
1421 ext4_journalled_zero_new_buffers(handle, inode, folio,
1422 from + copied, to);
1423 ret = ext4_walk_page_buffers(handle, inode,
1424 folio_buffers(folio),
1425 from, from + copied, &partial,
1426 write_end_fn);
1427 if (!partial)
1428 folio_mark_uptodate(folio);
1429 }
1430 if (!verity)
1431 size_changed = ext4_update_inode_size(inode, pos + copied);
1432 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1433 folio_unlock(folio);
1434 folio_put(folio);
1435
1436 if (old_size < pos && !verity) {
1437 pagecache_isize_extended(inode, old_size, pos);
1438 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1439 }
1440
1441 if (size_changed) {
1442 ret2 = ext4_mark_inode_dirty(handle, inode);
1443 if (!ret)
1444 ret = ret2;
1445 }
1446
1447 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1448 /* if we have allocated more blocks and copied
1449 * less. We will have blocks allocated outside
1450 * inode->i_size. So truncate them
1451 */
1452 ext4_orphan_add(handle, inode);
1453
1454 ret2 = ext4_journal_stop(handle);
1455 if (!ret)
1456 ret = ret2;
1457 if (pos + len > inode->i_size && !verity) {
1458 ext4_truncate_failed_write(inode);
1459 /*
1460 * If truncate failed early the inode might still be
1461 * on the orphan list; we need to make sure the inode
1462 * is removed from the orphan list in that case.
1463 */
1464 if (inode->i_nlink)
1465 ext4_orphan_del(NULL, inode);
1466 }
1467
1468 return ret ? ret : copied;
1469 }
1470
1471 /*
1472 * Reserve space for 'nr_resv' clusters
1473 */
ext4_da_reserve_space(struct inode * inode,int nr_resv)1474 static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1475 {
1476 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1477 struct ext4_inode_info *ei = EXT4_I(inode);
1478 int ret;
1479
1480 /*
1481 * We will charge metadata quota at writeout time; this saves
1482 * us from metadata over-estimation, though we may go over by
1483 * a small amount in the end. Here we just reserve for data.
1484 */
1485 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1486 if (ret)
1487 return ret;
1488
1489 spin_lock(&ei->i_block_reservation_lock);
1490 if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1491 spin_unlock(&ei->i_block_reservation_lock);
1492 dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1493 return -ENOSPC;
1494 }
1495 ei->i_reserved_data_blocks += nr_resv;
1496 trace_ext4_da_reserve_space(inode, nr_resv);
1497 spin_unlock(&ei->i_block_reservation_lock);
1498
1499 return 0; /* success */
1500 }
1501
ext4_da_release_space(struct inode * inode,int to_free)1502 void ext4_da_release_space(struct inode *inode, int to_free)
1503 {
1504 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1505 struct ext4_inode_info *ei = EXT4_I(inode);
1506
1507 if (!to_free)
1508 return; /* Nothing to release, exit */
1509
1510 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1511
1512 trace_ext4_da_release_space(inode, to_free);
1513 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1514 /*
1515 * if there aren't enough reserved blocks, then the
1516 * counter is messed up somewhere. Since this
1517 * function is called from invalidate page, it's
1518 * harmless to return without any action.
1519 */
1520 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1521 "ino %lu, to_free %d with only %d reserved "
1522 "data blocks", inode->i_ino, to_free,
1523 ei->i_reserved_data_blocks);
1524 WARN_ON(1);
1525 to_free = ei->i_reserved_data_blocks;
1526 }
1527 ei->i_reserved_data_blocks -= to_free;
1528
1529 /* update fs dirty data blocks counter */
1530 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1531
1532 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1533
1534 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1535 }
1536
1537 /*
1538 * Delayed allocation stuff
1539 */
1540
1541 struct mpage_da_data {
1542 /* These are input fields for ext4_do_writepages() */
1543 struct inode *inode;
1544 struct writeback_control *wbc;
1545 unsigned int can_map:1; /* Can writepages call map blocks? */
1546
1547 /* These are internal state of ext4_do_writepages() */
1548 pgoff_t first_page; /* The first page to write */
1549 pgoff_t next_page; /* Current page to examine */
1550 pgoff_t last_page; /* Last page to examine */
1551 /*
1552 * Extent to map - this can be after first_page because that can be
1553 * fully mapped. We somewhat abuse m_flags to store whether the extent
1554 * is delalloc or unwritten.
1555 */
1556 struct ext4_map_blocks map;
1557 struct ext4_io_submit io_submit; /* IO submission data */
1558 unsigned int do_map:1;
1559 unsigned int scanned_until_end:1;
1560 unsigned int journalled_more_data:1;
1561 };
1562
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1563 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1564 bool invalidate)
1565 {
1566 unsigned nr, i;
1567 pgoff_t index, end;
1568 struct folio_batch fbatch;
1569 struct inode *inode = mpd->inode;
1570 struct address_space *mapping = inode->i_mapping;
1571
1572 /* This is necessary when next_page == 0. */
1573 if (mpd->first_page >= mpd->next_page)
1574 return;
1575
1576 mpd->scanned_until_end = 0;
1577 index = mpd->first_page;
1578 end = mpd->next_page - 1;
1579 if (invalidate) {
1580 ext4_lblk_t start, last;
1581 start = index << (PAGE_SHIFT - inode->i_blkbits);
1582 last = end << (PAGE_SHIFT - inode->i_blkbits);
1583
1584 /*
1585 * avoid racing with extent status tree scans made by
1586 * ext4_insert_delayed_block()
1587 */
1588 down_write(&EXT4_I(inode)->i_data_sem);
1589 ext4_es_remove_extent(inode, start, last - start + 1);
1590 up_write(&EXT4_I(inode)->i_data_sem);
1591 }
1592
1593 folio_batch_init(&fbatch);
1594 while (index <= end) {
1595 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1596 if (nr == 0)
1597 break;
1598 for (i = 0; i < nr; i++) {
1599 struct folio *folio = fbatch.folios[i];
1600
1601 if (folio->index < mpd->first_page)
1602 continue;
1603 if (folio_next_index(folio) - 1 > end)
1604 continue;
1605 BUG_ON(!folio_test_locked(folio));
1606 BUG_ON(folio_test_writeback(folio));
1607 if (invalidate) {
1608 if (folio_mapped(folio))
1609 folio_clear_dirty_for_io(folio);
1610 block_invalidate_folio(folio, 0,
1611 folio_size(folio));
1612 folio_clear_uptodate(folio);
1613 }
1614 folio_unlock(folio);
1615 }
1616 folio_batch_release(&fbatch);
1617 }
1618 }
1619
ext4_print_free_blocks(struct inode * inode)1620 static void ext4_print_free_blocks(struct inode *inode)
1621 {
1622 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1623 struct super_block *sb = inode->i_sb;
1624 struct ext4_inode_info *ei = EXT4_I(inode);
1625
1626 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1627 EXT4_C2B(EXT4_SB(inode->i_sb),
1628 ext4_count_free_clusters(sb)));
1629 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1630 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1631 (long long) EXT4_C2B(EXT4_SB(sb),
1632 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1633 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1634 (long long) EXT4_C2B(EXT4_SB(sb),
1635 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1636 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1637 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1638 ei->i_reserved_data_blocks);
1639 return;
1640 }
1641
1642 /*
1643 * Check whether the cluster containing lblk has been allocated or has
1644 * delalloc reservation.
1645 *
1646 * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1647 * reservation, 2 if it's already been allocated, negative error code on
1648 * failure.
1649 */
ext4_clu_alloc_state(struct inode * inode,ext4_lblk_t lblk)1650 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1651 {
1652 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1653 int ret;
1654
1655 /* Has delalloc reservation? */
1656 if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1657 return 1;
1658
1659 /* Already been allocated? */
1660 if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1661 return 2;
1662 ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1663 if (ret < 0)
1664 return ret;
1665 if (ret > 0)
1666 return 2;
1667
1668 return 0;
1669 }
1670
1671 /*
1672 * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1673 * status tree, incrementing the reserved
1674 * cluster/block count or making pending
1675 * reservations where needed
1676 *
1677 * @inode - file containing the newly added block
1678 * @lblk - start logical block to be added
1679 * @len - length of blocks to be added
1680 *
1681 * Returns 0 on success, negative error code on failure.
1682 */
ext4_insert_delayed_blocks(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)1683 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1684 ext4_lblk_t len)
1685 {
1686 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1687 int ret;
1688 bool lclu_allocated = false;
1689 bool end_allocated = false;
1690 ext4_lblk_t resv_clu;
1691 ext4_lblk_t end = lblk + len - 1;
1692
1693 /*
1694 * If the cluster containing lblk or end is shared with a delayed,
1695 * written, or unwritten extent in a bigalloc file system, it's
1696 * already been accounted for and does not need to be reserved.
1697 * A pending reservation must be made for the cluster if it's
1698 * shared with a written or unwritten extent and doesn't already
1699 * have one. Written and unwritten extents can be purged from the
1700 * extents status tree if the system is under memory pressure, so
1701 * it's necessary to examine the extent tree if a search of the
1702 * extents status tree doesn't get a match.
1703 */
1704 if (sbi->s_cluster_ratio == 1) {
1705 ret = ext4_da_reserve_space(inode, len);
1706 if (ret != 0) /* ENOSPC */
1707 return ret;
1708 } else { /* bigalloc */
1709 resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1710
1711 ret = ext4_clu_alloc_state(inode, lblk);
1712 if (ret < 0)
1713 return ret;
1714 if (ret > 0) {
1715 resv_clu--;
1716 lclu_allocated = (ret == 2);
1717 }
1718
1719 if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1720 ret = ext4_clu_alloc_state(inode, end);
1721 if (ret < 0)
1722 return ret;
1723 if (ret > 0) {
1724 resv_clu--;
1725 end_allocated = (ret == 2);
1726 }
1727 }
1728
1729 if (resv_clu) {
1730 ret = ext4_da_reserve_space(inode, resv_clu);
1731 if (ret != 0) /* ENOSPC */
1732 return ret;
1733 }
1734 }
1735
1736 ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1737 end_allocated);
1738 return 0;
1739 }
1740
1741 /*
1742 * Looks up the requested blocks and sets the delalloc extent map.
1743 * First try to look up for the extent entry that contains the requested
1744 * blocks in the extent status tree without i_data_sem, then try to look
1745 * up for the ondisk extent mapping with i_data_sem in read mode,
1746 * finally hold i_data_sem in write mode, looks up again and add a
1747 * delalloc extent entry if it still couldn't find any extent. Pass out
1748 * the mapped extent through @map and return 0 on success.
1749 */
ext4_da_map_blocks(struct inode * inode,struct ext4_map_blocks * map)1750 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1751 {
1752 struct extent_status es;
1753 int retval;
1754 #ifdef ES_AGGRESSIVE_TEST
1755 struct ext4_map_blocks orig_map;
1756
1757 memcpy(&orig_map, map, sizeof(*map));
1758 #endif
1759
1760 map->m_flags = 0;
1761 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1762 (unsigned long) map->m_lblk);
1763
1764 /* Lookup extent status tree firstly */
1765 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1766 map->m_len = min_t(unsigned int, map->m_len,
1767 es.es_len - (map->m_lblk - es.es_lblk));
1768
1769 if (ext4_es_is_hole(&es))
1770 goto add_delayed;
1771
1772 found:
1773 /*
1774 * Delayed extent could be allocated by fallocate.
1775 * So we need to check it.
1776 */
1777 if (ext4_es_is_delayed(&es)) {
1778 map->m_flags |= EXT4_MAP_DELAYED;
1779 return 0;
1780 }
1781
1782 map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
1783 if (ext4_es_is_written(&es))
1784 map->m_flags |= EXT4_MAP_MAPPED;
1785 else if (ext4_es_is_unwritten(&es))
1786 map->m_flags |= EXT4_MAP_UNWRITTEN;
1787 else
1788 BUG();
1789
1790 #ifdef ES_AGGRESSIVE_TEST
1791 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1792 #endif
1793 return 0;
1794 }
1795
1796 /*
1797 * Try to see if we can get the block without requesting a new
1798 * file system block.
1799 */
1800 down_read(&EXT4_I(inode)->i_data_sem);
1801 if (ext4_has_inline_data(inode))
1802 retval = 0;
1803 else
1804 retval = ext4_map_query_blocks(NULL, inode, map);
1805 up_read(&EXT4_I(inode)->i_data_sem);
1806 if (retval)
1807 return retval < 0 ? retval : 0;
1808
1809 add_delayed:
1810 down_write(&EXT4_I(inode)->i_data_sem);
1811 /*
1812 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1813 * and fallocate path (no folio lock) can race. Make sure we
1814 * lookup the extent status tree here again while i_data_sem
1815 * is held in write mode, before inserting a new da entry in
1816 * the extent status tree.
1817 */
1818 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1819 map->m_len = min_t(unsigned int, map->m_len,
1820 es.es_len - (map->m_lblk - es.es_lblk));
1821
1822 if (!ext4_es_is_hole(&es)) {
1823 up_write(&EXT4_I(inode)->i_data_sem);
1824 goto found;
1825 }
1826 } else if (!ext4_has_inline_data(inode)) {
1827 retval = ext4_map_query_blocks(NULL, inode, map);
1828 if (retval) {
1829 up_write(&EXT4_I(inode)->i_data_sem);
1830 return retval < 0 ? retval : 0;
1831 }
1832 }
1833
1834 map->m_flags |= EXT4_MAP_DELAYED;
1835 retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1836 up_write(&EXT4_I(inode)->i_data_sem);
1837
1838 return retval;
1839 }
1840
1841 /*
1842 * This is a special get_block_t callback which is used by
1843 * ext4_da_write_begin(). It will either return mapped block or
1844 * reserve space for a single block.
1845 *
1846 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1847 * We also have b_blocknr = -1 and b_bdev initialized properly
1848 *
1849 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1850 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1851 * initialized properly.
1852 */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1853 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1854 struct buffer_head *bh, int create)
1855 {
1856 struct ext4_map_blocks map;
1857 sector_t invalid_block = ~((sector_t) 0xffff);
1858 int ret = 0;
1859
1860 BUG_ON(create == 0);
1861 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1862
1863 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1864 invalid_block = ~0;
1865
1866 map.m_lblk = iblock;
1867 map.m_len = 1;
1868
1869 /*
1870 * first, we need to know whether the block is allocated already
1871 * preallocated blocks are unmapped but should treated
1872 * the same as allocated blocks.
1873 */
1874 ret = ext4_da_map_blocks(inode, &map);
1875 if (ret < 0)
1876 return ret;
1877
1878 if (map.m_flags & EXT4_MAP_DELAYED) {
1879 map_bh(bh, inode->i_sb, invalid_block);
1880 set_buffer_new(bh);
1881 set_buffer_delay(bh);
1882 return 0;
1883 }
1884
1885 map_bh(bh, inode->i_sb, map.m_pblk);
1886 ext4_update_bh_state(bh, map.m_flags);
1887
1888 if (buffer_unwritten(bh)) {
1889 /* A delayed write to unwritten bh should be marked
1890 * new and mapped. Mapped ensures that we don't do
1891 * get_block multiple times when we write to the same
1892 * offset and new ensures that we do proper zero out
1893 * for partial write.
1894 */
1895 set_buffer_new(bh);
1896 set_buffer_mapped(bh);
1897 }
1898 return 0;
1899 }
1900
mpage_folio_done(struct mpage_da_data * mpd,struct folio * folio)1901 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1902 {
1903 mpd->first_page += folio_nr_pages(folio);
1904 folio_unlock(folio);
1905 }
1906
mpage_submit_folio(struct mpage_da_data * mpd,struct folio * folio)1907 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1908 {
1909 size_t len;
1910 loff_t size;
1911 int err;
1912
1913 BUG_ON(folio->index != mpd->first_page);
1914 folio_clear_dirty_for_io(folio);
1915 /*
1916 * We have to be very careful here! Nothing protects writeback path
1917 * against i_size changes and the page can be writeably mapped into
1918 * page tables. So an application can be growing i_size and writing
1919 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1920 * write-protects our page in page tables and the page cannot get
1921 * written to again until we release folio lock. So only after
1922 * folio_clear_dirty_for_io() we are safe to sample i_size for
1923 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1924 * on the barrier provided by folio_test_clear_dirty() in
1925 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1926 * after page tables are updated.
1927 */
1928 size = i_size_read(mpd->inode);
1929 len = folio_size(folio);
1930 if (folio_pos(folio) + len > size &&
1931 !ext4_verity_in_progress(mpd->inode))
1932 len = size & (len - 1);
1933 err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1934 if (!err)
1935 mpd->wbc->nr_to_write--;
1936
1937 return err;
1938 }
1939
1940 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1941
1942 /*
1943 * mballoc gives us at most this number of blocks...
1944 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1945 * The rest of mballoc seems to handle chunks up to full group size.
1946 */
1947 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1948
1949 /*
1950 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1951 *
1952 * @mpd - extent of blocks
1953 * @lblk - logical number of the block in the file
1954 * @bh - buffer head we want to add to the extent
1955 *
1956 * The function is used to collect contig. blocks in the same state. If the
1957 * buffer doesn't require mapping for writeback and we haven't started the
1958 * extent of buffers to map yet, the function returns 'true' immediately - the
1959 * caller can write the buffer right away. Otherwise the function returns true
1960 * if the block has been added to the extent, false if the block couldn't be
1961 * added.
1962 */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)1963 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1964 struct buffer_head *bh)
1965 {
1966 struct ext4_map_blocks *map = &mpd->map;
1967
1968 /* Buffer that doesn't need mapping for writeback? */
1969 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1970 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1971 /* So far no extent to map => we write the buffer right away */
1972 if (map->m_len == 0)
1973 return true;
1974 return false;
1975 }
1976
1977 /* First block in the extent? */
1978 if (map->m_len == 0) {
1979 /* We cannot map unless handle is started... */
1980 if (!mpd->do_map)
1981 return false;
1982 map->m_lblk = lblk;
1983 map->m_len = 1;
1984 map->m_flags = bh->b_state & BH_FLAGS;
1985 return true;
1986 }
1987
1988 /* Don't go larger than mballoc is willing to allocate */
1989 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1990 return false;
1991
1992 /* Can we merge the block to our big extent? */
1993 if (lblk == map->m_lblk + map->m_len &&
1994 (bh->b_state & BH_FLAGS) == map->m_flags) {
1995 map->m_len++;
1996 return true;
1997 }
1998 return false;
1999 }
2000
2001 /*
2002 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2003 *
2004 * @mpd - extent of blocks for mapping
2005 * @head - the first buffer in the page
2006 * @bh - buffer we should start processing from
2007 * @lblk - logical number of the block in the file corresponding to @bh
2008 *
2009 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2010 * the page for IO if all buffers in this page were mapped and there's no
2011 * accumulated extent of buffers to map or add buffers in the page to the
2012 * extent of buffers to map. The function returns 1 if the caller can continue
2013 * by processing the next page, 0 if it should stop adding buffers to the
2014 * extent to map because we cannot extend it anymore. It can also return value
2015 * < 0 in case of error during IO submission.
2016 */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2017 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2018 struct buffer_head *head,
2019 struct buffer_head *bh,
2020 ext4_lblk_t lblk)
2021 {
2022 struct inode *inode = mpd->inode;
2023 int err;
2024 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2025 >> inode->i_blkbits;
2026
2027 if (ext4_verity_in_progress(inode))
2028 blocks = EXT_MAX_BLOCKS;
2029
2030 do {
2031 BUG_ON(buffer_locked(bh));
2032
2033 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2034 /* Found extent to map? */
2035 if (mpd->map.m_len)
2036 return 0;
2037 /* Buffer needs mapping and handle is not started? */
2038 if (!mpd->do_map)
2039 return 0;
2040 /* Everything mapped so far and we hit EOF */
2041 break;
2042 }
2043 } while (lblk++, (bh = bh->b_this_page) != head);
2044 /* So far everything mapped? Submit the page for IO. */
2045 if (mpd->map.m_len == 0) {
2046 err = mpage_submit_folio(mpd, head->b_folio);
2047 if (err < 0)
2048 return err;
2049 mpage_folio_done(mpd, head->b_folio);
2050 }
2051 if (lblk >= blocks) {
2052 mpd->scanned_until_end = 1;
2053 return 0;
2054 }
2055 return 1;
2056 }
2057
2058 /*
2059 * mpage_process_folio - update folio buffers corresponding to changed extent
2060 * and may submit fully mapped page for IO
2061 * @mpd: description of extent to map, on return next extent to map
2062 * @folio: Contains these buffers.
2063 * @m_lblk: logical block mapping.
2064 * @m_pblk: corresponding physical mapping.
2065 * @map_bh: determines on return whether this page requires any further
2066 * mapping or not.
2067 *
2068 * Scan given folio buffers corresponding to changed extent and update buffer
2069 * state according to new extent state.
2070 * We map delalloc buffers to their physical location, clear unwritten bits.
2071 * If the given folio is not fully mapped, we update @mpd to the next extent in
2072 * the given folio that needs mapping & return @map_bh as true.
2073 */
mpage_process_folio(struct mpage_da_data * mpd,struct folio * folio,ext4_lblk_t * m_lblk,ext4_fsblk_t * m_pblk,bool * map_bh)2074 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2075 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2076 bool *map_bh)
2077 {
2078 struct buffer_head *head, *bh;
2079 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2080 ext4_lblk_t lblk = *m_lblk;
2081 ext4_fsblk_t pblock = *m_pblk;
2082 int err = 0;
2083 int blkbits = mpd->inode->i_blkbits;
2084 ssize_t io_end_size = 0;
2085 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2086
2087 bh = head = folio_buffers(folio);
2088 do {
2089 if (lblk < mpd->map.m_lblk)
2090 continue;
2091 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2092 /*
2093 * Buffer after end of mapped extent.
2094 * Find next buffer in the folio to map.
2095 */
2096 mpd->map.m_len = 0;
2097 mpd->map.m_flags = 0;
2098 io_end_vec->size += io_end_size;
2099
2100 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2101 if (err > 0)
2102 err = 0;
2103 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2104 io_end_vec = ext4_alloc_io_end_vec(io_end);
2105 if (IS_ERR(io_end_vec)) {
2106 err = PTR_ERR(io_end_vec);
2107 goto out;
2108 }
2109 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2110 }
2111 *map_bh = true;
2112 goto out;
2113 }
2114 if (buffer_delay(bh)) {
2115 clear_buffer_delay(bh);
2116 bh->b_blocknr = pblock++;
2117 }
2118 clear_buffer_unwritten(bh);
2119 io_end_size += (1 << blkbits);
2120 } while (lblk++, (bh = bh->b_this_page) != head);
2121
2122 io_end_vec->size += io_end_size;
2123 *map_bh = false;
2124 out:
2125 *m_lblk = lblk;
2126 *m_pblk = pblock;
2127 return err;
2128 }
2129
2130 /*
2131 * mpage_map_buffers - update buffers corresponding to changed extent and
2132 * submit fully mapped pages for IO
2133 *
2134 * @mpd - description of extent to map, on return next extent to map
2135 *
2136 * Scan buffers corresponding to changed extent (we expect corresponding pages
2137 * to be already locked) and update buffer state according to new extent state.
2138 * We map delalloc buffers to their physical location, clear unwritten bits,
2139 * and mark buffers as uninit when we perform writes to unwritten extents
2140 * and do extent conversion after IO is finished. If the last page is not fully
2141 * mapped, we update @map to the next extent in the last page that needs
2142 * mapping. Otherwise we submit the page for IO.
2143 */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2144 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2145 {
2146 struct folio_batch fbatch;
2147 unsigned nr, i;
2148 struct inode *inode = mpd->inode;
2149 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2150 pgoff_t start, end;
2151 ext4_lblk_t lblk;
2152 ext4_fsblk_t pblock;
2153 int err;
2154 bool map_bh = false;
2155
2156 start = mpd->map.m_lblk >> bpp_bits;
2157 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2158 lblk = start << bpp_bits;
2159 pblock = mpd->map.m_pblk;
2160
2161 folio_batch_init(&fbatch);
2162 while (start <= end) {
2163 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2164 if (nr == 0)
2165 break;
2166 for (i = 0; i < nr; i++) {
2167 struct folio *folio = fbatch.folios[i];
2168
2169 err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2170 &map_bh);
2171 /*
2172 * If map_bh is true, means page may require further bh
2173 * mapping, or maybe the page was submitted for IO.
2174 * So we return to call further extent mapping.
2175 */
2176 if (err < 0 || map_bh)
2177 goto out;
2178 /* Page fully mapped - let IO run! */
2179 err = mpage_submit_folio(mpd, folio);
2180 if (err < 0)
2181 goto out;
2182 mpage_folio_done(mpd, folio);
2183 }
2184 folio_batch_release(&fbatch);
2185 }
2186 /* Extent fully mapped and matches with page boundary. We are done. */
2187 mpd->map.m_len = 0;
2188 mpd->map.m_flags = 0;
2189 return 0;
2190 out:
2191 folio_batch_release(&fbatch);
2192 return err;
2193 }
2194
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2195 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2196 {
2197 struct inode *inode = mpd->inode;
2198 struct ext4_map_blocks *map = &mpd->map;
2199 int get_blocks_flags;
2200 int err, dioread_nolock;
2201
2202 trace_ext4_da_write_pages_extent(inode, map);
2203 /*
2204 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2205 * to convert an unwritten extent to be initialized (in the case
2206 * where we have written into one or more preallocated blocks). It is
2207 * possible that we're going to need more metadata blocks than
2208 * previously reserved. However we must not fail because we're in
2209 * writeback and there is nothing we can do about it so it might result
2210 * in data loss. So use reserved blocks to allocate metadata if
2211 * possible.
2212 */
2213 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2214 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2215 EXT4_GET_BLOCKS_IO_SUBMIT;
2216 dioread_nolock = ext4_should_dioread_nolock(inode);
2217 if (dioread_nolock)
2218 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2219
2220 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2221 if (err < 0)
2222 return err;
2223 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2224 if (!mpd->io_submit.io_end->handle &&
2225 ext4_handle_valid(handle)) {
2226 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2227 handle->h_rsv_handle = NULL;
2228 }
2229 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2230 }
2231
2232 BUG_ON(map->m_len == 0);
2233 return 0;
2234 }
2235
2236 /*
2237 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2238 * mpd->len and submit pages underlying it for IO
2239 *
2240 * @handle - handle for journal operations
2241 * @mpd - extent to map
2242 * @give_up_on_write - we set this to true iff there is a fatal error and there
2243 * is no hope of writing the data. The caller should discard
2244 * dirty pages to avoid infinite loops.
2245 *
2246 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2247 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2248 * them to initialized or split the described range from larger unwritten
2249 * extent. Note that we need not map all the described range since allocation
2250 * can return less blocks or the range is covered by more unwritten extents. We
2251 * cannot map more because we are limited by reserved transaction credits. On
2252 * the other hand we always make sure that the last touched page is fully
2253 * mapped so that it can be written out (and thus forward progress is
2254 * guaranteed). After mapping we submit all mapped pages for IO.
2255 */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2256 static int mpage_map_and_submit_extent(handle_t *handle,
2257 struct mpage_da_data *mpd,
2258 bool *give_up_on_write)
2259 {
2260 struct inode *inode = mpd->inode;
2261 struct ext4_map_blocks *map = &mpd->map;
2262 int err;
2263 loff_t disksize;
2264 int progress = 0;
2265 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2266 struct ext4_io_end_vec *io_end_vec;
2267
2268 io_end_vec = ext4_alloc_io_end_vec(io_end);
2269 if (IS_ERR(io_end_vec))
2270 return PTR_ERR(io_end_vec);
2271 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2272 do {
2273 err = mpage_map_one_extent(handle, mpd);
2274 if (err < 0) {
2275 struct super_block *sb = inode->i_sb;
2276
2277 if (ext4_forced_shutdown(sb))
2278 goto invalidate_dirty_pages;
2279 /*
2280 * Let the uper layers retry transient errors.
2281 * In the case of ENOSPC, if ext4_count_free_blocks()
2282 * is non-zero, a commit should free up blocks.
2283 */
2284 if ((err == -ENOMEM) ||
2285 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2286 if (progress)
2287 goto update_disksize;
2288 return err;
2289 }
2290 ext4_msg(sb, KERN_CRIT,
2291 "Delayed block allocation failed for "
2292 "inode %lu at logical offset %llu with"
2293 " max blocks %u with error %d",
2294 inode->i_ino,
2295 (unsigned long long)map->m_lblk,
2296 (unsigned)map->m_len, -err);
2297 ext4_msg(sb, KERN_CRIT,
2298 "This should not happen!! Data will "
2299 "be lost\n");
2300 if (err == -ENOSPC)
2301 ext4_print_free_blocks(inode);
2302 invalidate_dirty_pages:
2303 *give_up_on_write = true;
2304 return err;
2305 }
2306 progress = 1;
2307 /*
2308 * Update buffer state, submit mapped pages, and get us new
2309 * extent to map
2310 */
2311 err = mpage_map_and_submit_buffers(mpd);
2312 if (err < 0)
2313 goto update_disksize;
2314 } while (map->m_len);
2315
2316 update_disksize:
2317 /*
2318 * Update on-disk size after IO is submitted. Races with
2319 * truncate are avoided by checking i_size under i_data_sem.
2320 */
2321 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2322 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2323 int err2;
2324 loff_t i_size;
2325
2326 down_write(&EXT4_I(inode)->i_data_sem);
2327 i_size = i_size_read(inode);
2328 if (disksize > i_size)
2329 disksize = i_size;
2330 if (disksize > EXT4_I(inode)->i_disksize)
2331 EXT4_I(inode)->i_disksize = disksize;
2332 up_write(&EXT4_I(inode)->i_data_sem);
2333 err2 = ext4_mark_inode_dirty(handle, inode);
2334 if (err2) {
2335 ext4_error_err(inode->i_sb, -err2,
2336 "Failed to mark inode %lu dirty",
2337 inode->i_ino);
2338 }
2339 if (!err)
2340 err = err2;
2341 }
2342 return err;
2343 }
2344
2345 /*
2346 * Calculate the total number of credits to reserve for one writepages
2347 * iteration. This is called from ext4_writepages(). We map an extent of
2348 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2349 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2350 * bpp - 1 blocks in bpp different extents.
2351 */
ext4_da_writepages_trans_blocks(struct inode * inode)2352 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2353 {
2354 int bpp = ext4_journal_blocks_per_page(inode);
2355
2356 return ext4_meta_trans_blocks(inode,
2357 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2358 }
2359
ext4_journal_folio_buffers(handle_t * handle,struct folio * folio,size_t len)2360 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2361 size_t len)
2362 {
2363 struct buffer_head *page_bufs = folio_buffers(folio);
2364 struct inode *inode = folio->mapping->host;
2365 int ret, err;
2366
2367 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2368 NULL, do_journal_get_write_access);
2369 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2370 NULL, write_end_fn);
2371 if (ret == 0)
2372 ret = err;
2373 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2374 if (ret == 0)
2375 ret = err;
2376 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2377
2378 return ret;
2379 }
2380
mpage_journal_page_buffers(handle_t * handle,struct mpage_da_data * mpd,struct folio * folio)2381 static int mpage_journal_page_buffers(handle_t *handle,
2382 struct mpage_da_data *mpd,
2383 struct folio *folio)
2384 {
2385 struct inode *inode = mpd->inode;
2386 loff_t size = i_size_read(inode);
2387 size_t len = folio_size(folio);
2388
2389 folio_clear_checked(folio);
2390 mpd->wbc->nr_to_write--;
2391
2392 if (folio_pos(folio) + len > size &&
2393 !ext4_verity_in_progress(inode))
2394 len = size & (len - 1);
2395
2396 return ext4_journal_folio_buffers(handle, folio, len);
2397 }
2398
2399 /*
2400 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2401 * needing mapping, submit mapped pages
2402 *
2403 * @mpd - where to look for pages
2404 *
2405 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2406 * IO immediately. If we cannot map blocks, we submit just already mapped
2407 * buffers in the page for IO and keep page dirty. When we can map blocks and
2408 * we find a page which isn't mapped we start accumulating extent of buffers
2409 * underlying these pages that needs mapping (formed by either delayed or
2410 * unwritten buffers). We also lock the pages containing these buffers. The
2411 * extent found is returned in @mpd structure (starting at mpd->lblk with
2412 * length mpd->len blocks).
2413 *
2414 * Note that this function can attach bios to one io_end structure which are
2415 * neither logically nor physically contiguous. Although it may seem as an
2416 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2417 * case as we need to track IO to all buffers underlying a page in one io_end.
2418 */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2419 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2420 {
2421 struct address_space *mapping = mpd->inode->i_mapping;
2422 struct folio_batch fbatch;
2423 unsigned int nr_folios;
2424 pgoff_t index = mpd->first_page;
2425 pgoff_t end = mpd->last_page;
2426 xa_mark_t tag;
2427 int i, err = 0;
2428 int blkbits = mpd->inode->i_blkbits;
2429 ext4_lblk_t lblk;
2430 struct buffer_head *head;
2431 handle_t *handle = NULL;
2432 int bpp = ext4_journal_blocks_per_page(mpd->inode);
2433
2434 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2435 tag = PAGECACHE_TAG_TOWRITE;
2436 else
2437 tag = PAGECACHE_TAG_DIRTY;
2438
2439 mpd->map.m_len = 0;
2440 mpd->next_page = index;
2441 if (ext4_should_journal_data(mpd->inode)) {
2442 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2443 bpp);
2444 if (IS_ERR(handle))
2445 return PTR_ERR(handle);
2446 }
2447 folio_batch_init(&fbatch);
2448 while (index <= end) {
2449 nr_folios = filemap_get_folios_tag(mapping, &index, end,
2450 tag, &fbatch);
2451 if (nr_folios == 0)
2452 break;
2453
2454 for (i = 0; i < nr_folios; i++) {
2455 struct folio *folio = fbatch.folios[i];
2456
2457 /*
2458 * Accumulated enough dirty pages? This doesn't apply
2459 * to WB_SYNC_ALL mode. For integrity sync we have to
2460 * keep going because someone may be concurrently
2461 * dirtying pages, and we might have synced a lot of
2462 * newly appeared dirty pages, but have not synced all
2463 * of the old dirty pages.
2464 */
2465 if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2466 mpd->wbc->nr_to_write <=
2467 mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2468 goto out;
2469
2470 /* If we can't merge this page, we are done. */
2471 if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2472 goto out;
2473
2474 if (handle) {
2475 err = ext4_journal_ensure_credits(handle, bpp,
2476 0);
2477 if (err < 0)
2478 goto out;
2479 }
2480
2481 folio_lock(folio);
2482 /*
2483 * If the page is no longer dirty, or its mapping no
2484 * longer corresponds to inode we are writing (which
2485 * means it has been truncated or invalidated), or the
2486 * page is already under writeback and we are not doing
2487 * a data integrity writeback, skip the page
2488 */
2489 if (!folio_test_dirty(folio) ||
2490 (folio_test_writeback(folio) &&
2491 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2492 unlikely(folio->mapping != mapping)) {
2493 folio_unlock(folio);
2494 continue;
2495 }
2496
2497 folio_wait_writeback(folio);
2498 BUG_ON(folio_test_writeback(folio));
2499
2500 /*
2501 * Should never happen but for buggy code in
2502 * other subsystems that call
2503 * set_page_dirty() without properly warning
2504 * the file system first. See [1] for more
2505 * information.
2506 *
2507 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2508 */
2509 if (!folio_buffers(folio)) {
2510 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2511 folio_clear_dirty(folio);
2512 folio_unlock(folio);
2513 continue;
2514 }
2515
2516 if (mpd->map.m_len == 0)
2517 mpd->first_page = folio->index;
2518 mpd->next_page = folio_next_index(folio);
2519 /*
2520 * Writeout when we cannot modify metadata is simple.
2521 * Just submit the page. For data=journal mode we
2522 * first handle writeout of the page for checkpoint and
2523 * only after that handle delayed page dirtying. This
2524 * makes sure current data is checkpointed to the final
2525 * location before possibly journalling it again which
2526 * is desirable when the page is frequently dirtied
2527 * through a pin.
2528 */
2529 if (!mpd->can_map) {
2530 err = mpage_submit_folio(mpd, folio);
2531 if (err < 0)
2532 goto out;
2533 /* Pending dirtying of journalled data? */
2534 if (folio_test_checked(folio)) {
2535 err = mpage_journal_page_buffers(handle,
2536 mpd, folio);
2537 if (err < 0)
2538 goto out;
2539 mpd->journalled_more_data = 1;
2540 }
2541 mpage_folio_done(mpd, folio);
2542 } else {
2543 /* Add all dirty buffers to mpd */
2544 lblk = ((ext4_lblk_t)folio->index) <<
2545 (PAGE_SHIFT - blkbits);
2546 head = folio_buffers(folio);
2547 err = mpage_process_page_bufs(mpd, head, head,
2548 lblk);
2549 if (err <= 0)
2550 goto out;
2551 err = 0;
2552 }
2553 }
2554 folio_batch_release(&fbatch);
2555 cond_resched();
2556 }
2557 mpd->scanned_until_end = 1;
2558 if (handle)
2559 ext4_journal_stop(handle);
2560 return 0;
2561 out:
2562 folio_batch_release(&fbatch);
2563 if (handle)
2564 ext4_journal_stop(handle);
2565 return err;
2566 }
2567
ext4_do_writepages(struct mpage_da_data * mpd)2568 static int ext4_do_writepages(struct mpage_da_data *mpd)
2569 {
2570 struct writeback_control *wbc = mpd->wbc;
2571 pgoff_t writeback_index = 0;
2572 long nr_to_write = wbc->nr_to_write;
2573 int range_whole = 0;
2574 int cycled = 1;
2575 handle_t *handle = NULL;
2576 struct inode *inode = mpd->inode;
2577 struct address_space *mapping = inode->i_mapping;
2578 int needed_blocks, rsv_blocks = 0, ret = 0;
2579 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2580 struct blk_plug plug;
2581 bool give_up_on_write = false;
2582
2583 trace_ext4_writepages(inode, wbc);
2584
2585 /*
2586 * No pages to write? This is mainly a kludge to avoid starting
2587 * a transaction for special inodes like journal inode on last iput()
2588 * because that could violate lock ordering on umount
2589 */
2590 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2591 goto out_writepages;
2592
2593 /*
2594 * If the filesystem has aborted, it is read-only, so return
2595 * right away instead of dumping stack traces later on that
2596 * will obscure the real source of the problem. We test
2597 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2598 * the latter could be true if the filesystem is mounted
2599 * read-only, and in that case, ext4_writepages should
2600 * *never* be called, so if that ever happens, we would want
2601 * the stack trace.
2602 */
2603 if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2604 ret = -EROFS;
2605 goto out_writepages;
2606 }
2607
2608 /*
2609 * If we have inline data and arrive here, it means that
2610 * we will soon create the block for the 1st page, so
2611 * we'd better clear the inline data here.
2612 */
2613 if (ext4_has_inline_data(inode)) {
2614 /* Just inode will be modified... */
2615 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2616 if (IS_ERR(handle)) {
2617 ret = PTR_ERR(handle);
2618 goto out_writepages;
2619 }
2620 BUG_ON(ext4_test_inode_state(inode,
2621 EXT4_STATE_MAY_INLINE_DATA));
2622 ext4_destroy_inline_data(handle, inode);
2623 ext4_journal_stop(handle);
2624 }
2625
2626 /*
2627 * data=journal mode does not do delalloc so we just need to writeout /
2628 * journal already mapped buffers. On the other hand we need to commit
2629 * transaction to make data stable. We expect all the data to be
2630 * already in the journal (the only exception are DMA pinned pages
2631 * dirtied behind our back) so we commit transaction here and run the
2632 * writeback loop to checkpoint them. The checkpointing is not actually
2633 * necessary to make data persistent *but* quite a few places (extent
2634 * shifting operations, fsverity, ...) depend on being able to drop
2635 * pagecache pages after calling filemap_write_and_wait() and for that
2636 * checkpointing needs to happen.
2637 */
2638 if (ext4_should_journal_data(inode)) {
2639 mpd->can_map = 0;
2640 if (wbc->sync_mode == WB_SYNC_ALL)
2641 ext4_fc_commit(sbi->s_journal,
2642 EXT4_I(inode)->i_datasync_tid);
2643 }
2644 mpd->journalled_more_data = 0;
2645
2646 if (ext4_should_dioread_nolock(inode)) {
2647 /*
2648 * We may need to convert up to one extent per block in
2649 * the page and we may dirty the inode.
2650 */
2651 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2652 PAGE_SIZE >> inode->i_blkbits);
2653 }
2654
2655 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2656 range_whole = 1;
2657
2658 if (wbc->range_cyclic) {
2659 writeback_index = mapping->writeback_index;
2660 if (writeback_index)
2661 cycled = 0;
2662 mpd->first_page = writeback_index;
2663 mpd->last_page = -1;
2664 } else {
2665 mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2666 mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2667 }
2668
2669 ext4_io_submit_init(&mpd->io_submit, wbc);
2670 retry:
2671 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2672 tag_pages_for_writeback(mapping, mpd->first_page,
2673 mpd->last_page);
2674 blk_start_plug(&plug);
2675
2676 /*
2677 * First writeback pages that don't need mapping - we can avoid
2678 * starting a transaction unnecessarily and also avoid being blocked
2679 * in the block layer on device congestion while having transaction
2680 * started.
2681 */
2682 mpd->do_map = 0;
2683 mpd->scanned_until_end = 0;
2684 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2685 if (!mpd->io_submit.io_end) {
2686 ret = -ENOMEM;
2687 goto unplug;
2688 }
2689 ret = mpage_prepare_extent_to_map(mpd);
2690 /* Unlock pages we didn't use */
2691 mpage_release_unused_pages(mpd, false);
2692 /* Submit prepared bio */
2693 ext4_io_submit(&mpd->io_submit);
2694 ext4_put_io_end_defer(mpd->io_submit.io_end);
2695 mpd->io_submit.io_end = NULL;
2696 if (ret < 0)
2697 goto unplug;
2698
2699 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2700 /* For each extent of pages we use new io_end */
2701 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2702 if (!mpd->io_submit.io_end) {
2703 ret = -ENOMEM;
2704 break;
2705 }
2706
2707 WARN_ON_ONCE(!mpd->can_map);
2708 /*
2709 * We have two constraints: We find one extent to map and we
2710 * must always write out whole page (makes a difference when
2711 * blocksize < pagesize) so that we don't block on IO when we
2712 * try to write out the rest of the page. Journalled mode is
2713 * not supported by delalloc.
2714 */
2715 BUG_ON(ext4_should_journal_data(inode));
2716 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2717
2718 /* start a new transaction */
2719 handle = ext4_journal_start_with_reserve(inode,
2720 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2721 if (IS_ERR(handle)) {
2722 ret = PTR_ERR(handle);
2723 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2724 "%ld pages, ino %lu; err %d", __func__,
2725 wbc->nr_to_write, inode->i_ino, ret);
2726 /* Release allocated io_end */
2727 ext4_put_io_end(mpd->io_submit.io_end);
2728 mpd->io_submit.io_end = NULL;
2729 break;
2730 }
2731 mpd->do_map = 1;
2732
2733 trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2734 ret = mpage_prepare_extent_to_map(mpd);
2735 if (!ret && mpd->map.m_len)
2736 ret = mpage_map_and_submit_extent(handle, mpd,
2737 &give_up_on_write);
2738 /*
2739 * Caution: If the handle is synchronous,
2740 * ext4_journal_stop() can wait for transaction commit
2741 * to finish which may depend on writeback of pages to
2742 * complete or on page lock to be released. In that
2743 * case, we have to wait until after we have
2744 * submitted all the IO, released page locks we hold,
2745 * and dropped io_end reference (for extent conversion
2746 * to be able to complete) before stopping the handle.
2747 */
2748 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2749 ext4_journal_stop(handle);
2750 handle = NULL;
2751 mpd->do_map = 0;
2752 }
2753 /* Unlock pages we didn't use */
2754 mpage_release_unused_pages(mpd, give_up_on_write);
2755 /* Submit prepared bio */
2756 ext4_io_submit(&mpd->io_submit);
2757
2758 /*
2759 * Drop our io_end reference we got from init. We have
2760 * to be careful and use deferred io_end finishing if
2761 * we are still holding the transaction as we can
2762 * release the last reference to io_end which may end
2763 * up doing unwritten extent conversion.
2764 */
2765 if (handle) {
2766 ext4_put_io_end_defer(mpd->io_submit.io_end);
2767 ext4_journal_stop(handle);
2768 } else
2769 ext4_put_io_end(mpd->io_submit.io_end);
2770 mpd->io_submit.io_end = NULL;
2771
2772 if (ret == -ENOSPC && sbi->s_journal) {
2773 /*
2774 * Commit the transaction which would
2775 * free blocks released in the transaction
2776 * and try again
2777 */
2778 jbd2_journal_force_commit_nested(sbi->s_journal);
2779 ret = 0;
2780 continue;
2781 }
2782 /* Fatal error - ENOMEM, EIO... */
2783 if (ret)
2784 break;
2785 }
2786 unplug:
2787 blk_finish_plug(&plug);
2788 if (!ret && !cycled && wbc->nr_to_write > 0) {
2789 cycled = 1;
2790 mpd->last_page = writeback_index - 1;
2791 mpd->first_page = 0;
2792 goto retry;
2793 }
2794
2795 /* Update index */
2796 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2797 /*
2798 * Set the writeback_index so that range_cyclic
2799 * mode will write it back later
2800 */
2801 mapping->writeback_index = mpd->first_page;
2802
2803 out_writepages:
2804 trace_ext4_writepages_result(inode, wbc, ret,
2805 nr_to_write - wbc->nr_to_write);
2806 return ret;
2807 }
2808
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2809 static int ext4_writepages(struct address_space *mapping,
2810 struct writeback_control *wbc)
2811 {
2812 struct super_block *sb = mapping->host->i_sb;
2813 struct mpage_da_data mpd = {
2814 .inode = mapping->host,
2815 .wbc = wbc,
2816 .can_map = 1,
2817 };
2818 int ret;
2819 int alloc_ctx;
2820
2821 if (unlikely(ext4_forced_shutdown(sb)))
2822 return -EIO;
2823
2824 alloc_ctx = ext4_writepages_down_read(sb);
2825 ret = ext4_do_writepages(&mpd);
2826 /*
2827 * For data=journal writeback we could have come across pages marked
2828 * for delayed dirtying (PageChecked) which were just added to the
2829 * running transaction. Try once more to get them to stable storage.
2830 */
2831 if (!ret && mpd.journalled_more_data)
2832 ret = ext4_do_writepages(&mpd);
2833 ext4_writepages_up_read(sb, alloc_ctx);
2834
2835 return ret;
2836 }
2837
ext4_normal_submit_inode_data_buffers(struct jbd2_inode * jinode)2838 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2839 {
2840 struct writeback_control wbc = {
2841 .sync_mode = WB_SYNC_ALL,
2842 .nr_to_write = LONG_MAX,
2843 .range_start = jinode->i_dirty_start,
2844 .range_end = jinode->i_dirty_end,
2845 };
2846 struct mpage_da_data mpd = {
2847 .inode = jinode->i_vfs_inode,
2848 .wbc = &wbc,
2849 .can_map = 0,
2850 };
2851 return ext4_do_writepages(&mpd);
2852 }
2853
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2854 static int ext4_dax_writepages(struct address_space *mapping,
2855 struct writeback_control *wbc)
2856 {
2857 int ret;
2858 long nr_to_write = wbc->nr_to_write;
2859 struct inode *inode = mapping->host;
2860 int alloc_ctx;
2861
2862 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2863 return -EIO;
2864
2865 alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2866 trace_ext4_writepages(inode, wbc);
2867
2868 ret = dax_writeback_mapping_range(mapping,
2869 EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2870 trace_ext4_writepages_result(inode, wbc, ret,
2871 nr_to_write - wbc->nr_to_write);
2872 ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2873 return ret;
2874 }
2875
ext4_nonda_switch(struct super_block * sb)2876 static int ext4_nonda_switch(struct super_block *sb)
2877 {
2878 s64 free_clusters, dirty_clusters;
2879 struct ext4_sb_info *sbi = EXT4_SB(sb);
2880
2881 /*
2882 * switch to non delalloc mode if we are running low
2883 * on free block. The free block accounting via percpu
2884 * counters can get slightly wrong with percpu_counter_batch getting
2885 * accumulated on each CPU without updating global counters
2886 * Delalloc need an accurate free block accounting. So switch
2887 * to non delalloc when we are near to error range.
2888 */
2889 free_clusters =
2890 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2891 dirty_clusters =
2892 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2893 /*
2894 * Start pushing delalloc when 1/2 of free blocks are dirty.
2895 */
2896 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2897 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2898
2899 if (2 * free_clusters < 3 * dirty_clusters ||
2900 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2901 /*
2902 * free block count is less than 150% of dirty blocks
2903 * or free blocks is less than watermark
2904 */
2905 return 1;
2906 }
2907 return 0;
2908 }
2909
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)2910 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2911 loff_t pos, unsigned len,
2912 struct folio **foliop, void **fsdata)
2913 {
2914 int ret, retries = 0;
2915 struct folio *folio;
2916 pgoff_t index;
2917 struct inode *inode = mapping->host;
2918
2919 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2920 return -EIO;
2921
2922 index = pos >> PAGE_SHIFT;
2923
2924 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2925 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2926 return ext4_write_begin(file, mapping, pos,
2927 len, foliop, fsdata);
2928 }
2929 *fsdata = (void *)0;
2930 trace_ext4_da_write_begin(inode, pos, len);
2931
2932 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2933 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2934 foliop, fsdata);
2935 if (ret < 0)
2936 return ret;
2937 if (ret == 1)
2938 return 0;
2939 }
2940
2941 retry:
2942 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2943 mapping_gfp_mask(mapping));
2944 if (IS_ERR(folio))
2945 return PTR_ERR(folio);
2946
2947 ret = ext4_block_write_begin(NULL, folio, pos, len,
2948 ext4_da_get_block_prep);
2949 if (ret < 0) {
2950 folio_unlock(folio);
2951 folio_put(folio);
2952 /*
2953 * block_write_begin may have instantiated a few blocks
2954 * outside i_size. Trim these off again. Don't need
2955 * i_size_read because we hold inode lock.
2956 */
2957 if (pos + len > inode->i_size)
2958 ext4_truncate_failed_write(inode);
2959
2960 if (ret == -ENOSPC &&
2961 ext4_should_retry_alloc(inode->i_sb, &retries))
2962 goto retry;
2963 return ret;
2964 }
2965
2966 *foliop = folio;
2967 return ret;
2968 }
2969
2970 /*
2971 * Check if we should update i_disksize
2972 * when write to the end of file but not require block allocation
2973 */
ext4_da_should_update_i_disksize(struct folio * folio,unsigned long offset)2974 static int ext4_da_should_update_i_disksize(struct folio *folio,
2975 unsigned long offset)
2976 {
2977 struct buffer_head *bh;
2978 struct inode *inode = folio->mapping->host;
2979 unsigned int idx;
2980 int i;
2981
2982 bh = folio_buffers(folio);
2983 idx = offset >> inode->i_blkbits;
2984
2985 for (i = 0; i < idx; i++)
2986 bh = bh->b_this_page;
2987
2988 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2989 return 0;
2990 return 1;
2991 }
2992
ext4_da_do_write_end(struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio)2993 static int ext4_da_do_write_end(struct address_space *mapping,
2994 loff_t pos, unsigned len, unsigned copied,
2995 struct folio *folio)
2996 {
2997 struct inode *inode = mapping->host;
2998 loff_t old_size = inode->i_size;
2999 bool disksize_changed = false;
3000 loff_t new_i_size, zero_len = 0;
3001 handle_t *handle;
3002
3003 if (unlikely(!folio_buffers(folio))) {
3004 folio_unlock(folio);
3005 folio_put(folio);
3006 return -EIO;
3007 }
3008 /*
3009 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
3010 * flag, which all that's needed to trigger page writeback.
3011 */
3012 copied = block_write_end(NULL, mapping, pos, len, copied,
3013 folio, NULL);
3014 new_i_size = pos + copied;
3015
3016 /*
3017 * It's important to update i_size while still holding folio lock,
3018 * because folio writeout could otherwise come in and zero beyond
3019 * i_size.
3020 *
3021 * Since we are holding inode lock, we are sure i_disksize <=
3022 * i_size. We also know that if i_disksize < i_size, there are
3023 * delalloc writes pending in the range up to i_size. If the end of
3024 * the current write is <= i_size, there's no need to touch
3025 * i_disksize since writeback will push i_disksize up to i_size
3026 * eventually. If the end of the current write is > i_size and
3027 * inside an allocated block which ext4_da_should_update_i_disksize()
3028 * checked, we need to update i_disksize here as certain
3029 * ext4_writepages() paths not allocating blocks and update i_disksize.
3030 */
3031 if (new_i_size > inode->i_size) {
3032 unsigned long end;
3033
3034 i_size_write(inode, new_i_size);
3035 end = (new_i_size - 1) & (PAGE_SIZE - 1);
3036 if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3037 ext4_update_i_disksize(inode, new_i_size);
3038 disksize_changed = true;
3039 }
3040 }
3041
3042 folio_unlock(folio);
3043 folio_put(folio);
3044
3045 if (pos > old_size) {
3046 pagecache_isize_extended(inode, old_size, pos);
3047 zero_len = pos - old_size;
3048 }
3049
3050 if (!disksize_changed && !zero_len)
3051 return copied;
3052
3053 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3054 if (IS_ERR(handle))
3055 return PTR_ERR(handle);
3056 if (zero_len)
3057 ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3058 ext4_mark_inode_dirty(handle, inode);
3059 ext4_journal_stop(handle);
3060
3061 return copied;
3062 }
3063
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3064 static int ext4_da_write_end(struct file *file,
3065 struct address_space *mapping,
3066 loff_t pos, unsigned len, unsigned copied,
3067 struct folio *folio, void *fsdata)
3068 {
3069 struct inode *inode = mapping->host;
3070 int write_mode = (int)(unsigned long)fsdata;
3071
3072 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3073 return ext4_write_end(file, mapping, pos,
3074 len, copied, folio, fsdata);
3075
3076 trace_ext4_da_write_end(inode, pos, len, copied);
3077
3078 if (write_mode != CONVERT_INLINE_DATA &&
3079 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3080 ext4_has_inline_data(inode))
3081 return ext4_write_inline_data_end(inode, pos, len, copied,
3082 folio);
3083
3084 if (unlikely(copied < len) && !folio_test_uptodate(folio))
3085 copied = 0;
3086
3087 return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3088 }
3089
3090 /*
3091 * Force all delayed allocation blocks to be allocated for a given inode.
3092 */
ext4_alloc_da_blocks(struct inode * inode)3093 int ext4_alloc_da_blocks(struct inode *inode)
3094 {
3095 trace_ext4_alloc_da_blocks(inode);
3096
3097 if (!EXT4_I(inode)->i_reserved_data_blocks)
3098 return 0;
3099
3100 /*
3101 * We do something simple for now. The filemap_flush() will
3102 * also start triggering a write of the data blocks, which is
3103 * not strictly speaking necessary (and for users of
3104 * laptop_mode, not even desirable). However, to do otherwise
3105 * would require replicating code paths in:
3106 *
3107 * ext4_writepages() ->
3108 * write_cache_pages() ---> (via passed in callback function)
3109 * __mpage_da_writepage() -->
3110 * mpage_add_bh_to_extent()
3111 * mpage_da_map_blocks()
3112 *
3113 * The problem is that write_cache_pages(), located in
3114 * mm/page-writeback.c, marks pages clean in preparation for
3115 * doing I/O, which is not desirable if we're not planning on
3116 * doing I/O at all.
3117 *
3118 * We could call write_cache_pages(), and then redirty all of
3119 * the pages by calling redirty_page_for_writepage() but that
3120 * would be ugly in the extreme. So instead we would need to
3121 * replicate parts of the code in the above functions,
3122 * simplifying them because we wouldn't actually intend to
3123 * write out the pages, but rather only collect contiguous
3124 * logical block extents, call the multi-block allocator, and
3125 * then update the buffer heads with the block allocations.
3126 *
3127 * For now, though, we'll cheat by calling filemap_flush(),
3128 * which will map the blocks, and start the I/O, but not
3129 * actually wait for the I/O to complete.
3130 */
3131 return filemap_flush(inode->i_mapping);
3132 }
3133
3134 /*
3135 * bmap() is special. It gets used by applications such as lilo and by
3136 * the swapper to find the on-disk block of a specific piece of data.
3137 *
3138 * Naturally, this is dangerous if the block concerned is still in the
3139 * journal. If somebody makes a swapfile on an ext4 data-journaling
3140 * filesystem and enables swap, then they may get a nasty shock when the
3141 * data getting swapped to that swapfile suddenly gets overwritten by
3142 * the original zero's written out previously to the journal and
3143 * awaiting writeback in the kernel's buffer cache.
3144 *
3145 * So, if we see any bmap calls here on a modified, data-journaled file,
3146 * take extra steps to flush any blocks which might be in the cache.
3147 */
ext4_bmap(struct address_space * mapping,sector_t block)3148 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3149 {
3150 struct inode *inode = mapping->host;
3151 sector_t ret = 0;
3152
3153 inode_lock_shared(inode);
3154 /*
3155 * We can get here for an inline file via the FIBMAP ioctl
3156 */
3157 if (ext4_has_inline_data(inode))
3158 goto out;
3159
3160 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3161 (test_opt(inode->i_sb, DELALLOC) ||
3162 ext4_should_journal_data(inode))) {
3163 /*
3164 * With delalloc or journalled data we want to sync the file so
3165 * that we can make sure we allocate blocks for file and data
3166 * is in place for the user to see it
3167 */
3168 filemap_write_and_wait(mapping);
3169 }
3170
3171 ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3172
3173 out:
3174 inode_unlock_shared(inode);
3175 return ret;
3176 }
3177
ext4_read_folio(struct file * file,struct folio * folio)3178 static int ext4_read_folio(struct file *file, struct folio *folio)
3179 {
3180 int ret = -EAGAIN;
3181 struct inode *inode = folio->mapping->host;
3182
3183 trace_ext4_read_folio(inode, folio);
3184
3185 if (ext4_has_inline_data(inode))
3186 ret = ext4_readpage_inline(inode, folio);
3187
3188 if (ret == -EAGAIN)
3189 return ext4_mpage_readpages(inode, NULL, folio);
3190
3191 return ret;
3192 }
3193
ext4_readahead(struct readahead_control * rac)3194 static void ext4_readahead(struct readahead_control *rac)
3195 {
3196 struct inode *inode = rac->mapping->host;
3197
3198 /* If the file has inline data, no need to do readahead. */
3199 if (ext4_has_inline_data(inode))
3200 return;
3201
3202 ext4_mpage_readpages(inode, rac, NULL);
3203 }
3204
ext4_invalidate_folio(struct folio * folio,size_t offset,size_t length)3205 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3206 size_t length)
3207 {
3208 trace_ext4_invalidate_folio(folio, offset, length);
3209
3210 /* No journalling happens on data buffers when this function is used */
3211 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3212
3213 block_invalidate_folio(folio, offset, length);
3214 }
3215
__ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3216 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3217 size_t offset, size_t length)
3218 {
3219 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3220
3221 trace_ext4_journalled_invalidate_folio(folio, offset, length);
3222
3223 /*
3224 * If it's a full truncate we just forget about the pending dirtying
3225 */
3226 if (offset == 0 && length == folio_size(folio))
3227 folio_clear_checked(folio);
3228
3229 return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3230 }
3231
3232 /* Wrapper for aops... */
ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3233 static void ext4_journalled_invalidate_folio(struct folio *folio,
3234 size_t offset,
3235 size_t length)
3236 {
3237 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3238 }
3239
ext4_release_folio(struct folio * folio,gfp_t wait)3240 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3241 {
3242 struct inode *inode = folio->mapping->host;
3243 journal_t *journal = EXT4_JOURNAL(inode);
3244
3245 trace_ext4_release_folio(inode, folio);
3246
3247 /* Page has dirty journalled data -> cannot release */
3248 if (folio_test_checked(folio))
3249 return false;
3250 if (journal)
3251 return jbd2_journal_try_to_free_buffers(journal, folio);
3252 else
3253 return try_to_free_buffers(folio);
3254 }
3255
ext4_inode_datasync_dirty(struct inode * inode)3256 static bool ext4_inode_datasync_dirty(struct inode *inode)
3257 {
3258 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3259
3260 if (journal) {
3261 if (jbd2_transaction_committed(journal,
3262 EXT4_I(inode)->i_datasync_tid))
3263 return false;
3264 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3265 return !list_empty(&EXT4_I(inode)->i_fc_list);
3266 return true;
3267 }
3268
3269 /* Any metadata buffers to write? */
3270 if (!list_empty(&inode->i_mapping->i_private_list))
3271 return true;
3272 return inode->i_state & I_DIRTY_DATASYNC;
3273 }
3274
ext4_set_iomap(struct inode * inode,struct iomap * iomap,struct ext4_map_blocks * map,loff_t offset,loff_t length,unsigned int flags)3275 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3276 struct ext4_map_blocks *map, loff_t offset,
3277 loff_t length, unsigned int flags)
3278 {
3279 u8 blkbits = inode->i_blkbits;
3280
3281 /*
3282 * Writes that span EOF might trigger an I/O size update on completion,
3283 * so consider them to be dirty for the purpose of O_DSYNC, even if
3284 * there is no other metadata changes being made or are pending.
3285 */
3286 iomap->flags = 0;
3287 if (ext4_inode_datasync_dirty(inode) ||
3288 offset + length > i_size_read(inode))
3289 iomap->flags |= IOMAP_F_DIRTY;
3290
3291 if (map->m_flags & EXT4_MAP_NEW)
3292 iomap->flags |= IOMAP_F_NEW;
3293
3294 if (flags & IOMAP_DAX)
3295 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3296 else
3297 iomap->bdev = inode->i_sb->s_bdev;
3298 iomap->offset = (u64) map->m_lblk << blkbits;
3299 iomap->length = (u64) map->m_len << blkbits;
3300
3301 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3302 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3303 iomap->flags |= IOMAP_F_MERGED;
3304
3305 /*
3306 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3307 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3308 * set. In order for any allocated unwritten extents to be converted
3309 * into written extents correctly within the ->end_io() handler, we
3310 * need to ensure that the iomap->type is set appropriately. Hence, the
3311 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3312 * been set first.
3313 */
3314 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3315 iomap->type = IOMAP_UNWRITTEN;
3316 iomap->addr = (u64) map->m_pblk << blkbits;
3317 if (flags & IOMAP_DAX)
3318 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3319 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3320 iomap->type = IOMAP_MAPPED;
3321 iomap->addr = (u64) map->m_pblk << blkbits;
3322 if (flags & IOMAP_DAX)
3323 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3324 } else if (map->m_flags & EXT4_MAP_DELAYED) {
3325 iomap->type = IOMAP_DELALLOC;
3326 iomap->addr = IOMAP_NULL_ADDR;
3327 } else {
3328 iomap->type = IOMAP_HOLE;
3329 iomap->addr = IOMAP_NULL_ADDR;
3330 }
3331 }
3332
ext4_iomap_alloc(struct inode * inode,struct ext4_map_blocks * map,unsigned int flags)3333 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3334 unsigned int flags)
3335 {
3336 handle_t *handle;
3337 u8 blkbits = inode->i_blkbits;
3338 int ret, dio_credits, m_flags = 0, retries = 0;
3339
3340 /*
3341 * Trim the mapping request to the maximum value that we can map at
3342 * once for direct I/O.
3343 */
3344 if (map->m_len > DIO_MAX_BLOCKS)
3345 map->m_len = DIO_MAX_BLOCKS;
3346 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3347
3348 retry:
3349 /*
3350 * Either we allocate blocks and then don't get an unwritten extent, so
3351 * in that case we have reserved enough credits. Or, the blocks are
3352 * already allocated and unwritten. In that case, the extent conversion
3353 * fits into the credits as well.
3354 */
3355 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3356 if (IS_ERR(handle))
3357 return PTR_ERR(handle);
3358
3359 /*
3360 * DAX and direct I/O are the only two operations that are currently
3361 * supported with IOMAP_WRITE.
3362 */
3363 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3364 if (flags & IOMAP_DAX)
3365 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3366 /*
3367 * We use i_size instead of i_disksize here because delalloc writeback
3368 * can complete at any point during the I/O and subsequently push the
3369 * i_disksize out to i_size. This could be beyond where direct I/O is
3370 * happening and thus expose allocated blocks to direct I/O reads.
3371 */
3372 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3373 m_flags = EXT4_GET_BLOCKS_CREATE;
3374 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3375 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3376
3377 ret = ext4_map_blocks(handle, inode, map, m_flags);
3378
3379 /*
3380 * We cannot fill holes in indirect tree based inodes as that could
3381 * expose stale data in the case of a crash. Use the magic error code
3382 * to fallback to buffered I/O.
3383 */
3384 if (!m_flags && !ret)
3385 ret = -ENOTBLK;
3386
3387 ext4_journal_stop(handle);
3388 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3389 goto retry;
3390
3391 return ret;
3392 }
3393
3394
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3395 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3396 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3397 {
3398 int ret;
3399 struct ext4_map_blocks map;
3400 u8 blkbits = inode->i_blkbits;
3401
3402 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3403 return -EINVAL;
3404
3405 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3406 return -ERANGE;
3407
3408 /*
3409 * Calculate the first and last logical blocks respectively.
3410 */
3411 map.m_lblk = offset >> blkbits;
3412 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3413 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3414
3415 if (flags & IOMAP_WRITE) {
3416 /*
3417 * We check here if the blocks are already allocated, then we
3418 * don't need to start a journal txn and we can directly return
3419 * the mapping information. This could boost performance
3420 * especially in multi-threaded overwrite requests.
3421 */
3422 if (offset + length <= i_size_read(inode)) {
3423 ret = ext4_map_blocks(NULL, inode, &map, 0);
3424 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3425 goto out;
3426 }
3427 ret = ext4_iomap_alloc(inode, &map, flags);
3428 } else {
3429 ret = ext4_map_blocks(NULL, inode, &map, 0);
3430 }
3431
3432 if (ret < 0)
3433 return ret;
3434 out:
3435 /*
3436 * When inline encryption is enabled, sometimes I/O to an encrypted file
3437 * has to be broken up to guarantee DUN contiguity. Handle this by
3438 * limiting the length of the mapping returned.
3439 */
3440 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3441
3442 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3443
3444 return 0;
3445 }
3446
ext4_iomap_overwrite_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3447 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3448 loff_t length, unsigned flags, struct iomap *iomap,
3449 struct iomap *srcmap)
3450 {
3451 int ret;
3452
3453 /*
3454 * Even for writes we don't need to allocate blocks, so just pretend
3455 * we are reading to save overhead of starting a transaction.
3456 */
3457 flags &= ~IOMAP_WRITE;
3458 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3459 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3460 return ret;
3461 }
3462
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3463 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3464 ssize_t written, unsigned flags, struct iomap *iomap)
3465 {
3466 /*
3467 * Check to see whether an error occurred while writing out the data to
3468 * the allocated blocks. If so, return the magic error code so that we
3469 * fallback to buffered I/O and attempt to complete the remainder of
3470 * the I/O. Any blocks that may have been allocated in preparation for
3471 * the direct I/O will be reused during buffered I/O.
3472 */
3473 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3474 return -ENOTBLK;
3475
3476 return 0;
3477 }
3478
3479 const struct iomap_ops ext4_iomap_ops = {
3480 .iomap_begin = ext4_iomap_begin,
3481 .iomap_end = ext4_iomap_end,
3482 };
3483
3484 const struct iomap_ops ext4_iomap_overwrite_ops = {
3485 .iomap_begin = ext4_iomap_overwrite_begin,
3486 .iomap_end = ext4_iomap_end,
3487 };
3488
ext4_iomap_begin_report(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)3489 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3490 loff_t length, unsigned int flags,
3491 struct iomap *iomap, struct iomap *srcmap)
3492 {
3493 int ret;
3494 struct ext4_map_blocks map;
3495 u8 blkbits = inode->i_blkbits;
3496
3497 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3498 return -EINVAL;
3499
3500 if (ext4_has_inline_data(inode)) {
3501 ret = ext4_inline_data_iomap(inode, iomap);
3502 if (ret != -EAGAIN) {
3503 if (ret == 0 && offset >= iomap->length)
3504 ret = -ENOENT;
3505 return ret;
3506 }
3507 }
3508
3509 /*
3510 * Calculate the first and last logical block respectively.
3511 */
3512 map.m_lblk = offset >> blkbits;
3513 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3514 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3515
3516 /*
3517 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3518 * So handle it here itself instead of querying ext4_map_blocks().
3519 * Since ext4_map_blocks() will warn about it and will return
3520 * -EIO error.
3521 */
3522 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3523 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3524
3525 if (offset >= sbi->s_bitmap_maxbytes) {
3526 map.m_flags = 0;
3527 goto set_iomap;
3528 }
3529 }
3530
3531 ret = ext4_map_blocks(NULL, inode, &map, 0);
3532 if (ret < 0)
3533 return ret;
3534 set_iomap:
3535 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3536
3537 return 0;
3538 }
3539
3540 const struct iomap_ops ext4_iomap_report_ops = {
3541 .iomap_begin = ext4_iomap_begin_report,
3542 };
3543
3544 /*
3545 * For data=journal mode, folio should be marked dirty only when it was
3546 * writeably mapped. When that happens, it was already attached to the
3547 * transaction and marked as jbddirty (we take care of this in
3548 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3549 * so we should have nothing to do here, except for the case when someone
3550 * had the page pinned and dirtied the page through this pin (e.g. by doing
3551 * direct IO to it). In that case we'd need to attach buffers here to the
3552 * transaction but we cannot due to lock ordering. We cannot just dirty the
3553 * folio and leave attached buffers clean, because the buffers' dirty state is
3554 * "definitive". We cannot just set the buffers dirty or jbddirty because all
3555 * the journalling code will explode. So what we do is to mark the folio
3556 * "pending dirty" and next time ext4_writepages() is called, attach buffers
3557 * to the transaction appropriately.
3558 */
ext4_journalled_dirty_folio(struct address_space * mapping,struct folio * folio)3559 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3560 struct folio *folio)
3561 {
3562 WARN_ON_ONCE(!folio_buffers(folio));
3563 if (folio_maybe_dma_pinned(folio))
3564 folio_set_checked(folio);
3565 return filemap_dirty_folio(mapping, folio);
3566 }
3567
ext4_dirty_folio(struct address_space * mapping,struct folio * folio)3568 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3569 {
3570 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3571 WARN_ON_ONCE(!folio_buffers(folio));
3572 return block_dirty_folio(mapping, folio);
3573 }
3574
ext4_iomap_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3575 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3576 struct file *file, sector_t *span)
3577 {
3578 return iomap_swapfile_activate(sis, file, span,
3579 &ext4_iomap_report_ops);
3580 }
3581
3582 static const struct address_space_operations ext4_aops = {
3583 .read_folio = ext4_read_folio,
3584 .readahead = ext4_readahead,
3585 .writepages = ext4_writepages,
3586 .write_begin = ext4_write_begin,
3587 .write_end = ext4_write_end,
3588 .dirty_folio = ext4_dirty_folio,
3589 .bmap = ext4_bmap,
3590 .invalidate_folio = ext4_invalidate_folio,
3591 .release_folio = ext4_release_folio,
3592 .migrate_folio = buffer_migrate_folio,
3593 .is_partially_uptodate = block_is_partially_uptodate,
3594 .error_remove_folio = generic_error_remove_folio,
3595 .swap_activate = ext4_iomap_swap_activate,
3596 };
3597
3598 static const struct address_space_operations ext4_journalled_aops = {
3599 .read_folio = ext4_read_folio,
3600 .readahead = ext4_readahead,
3601 .writepages = ext4_writepages,
3602 .write_begin = ext4_write_begin,
3603 .write_end = ext4_journalled_write_end,
3604 .dirty_folio = ext4_journalled_dirty_folio,
3605 .bmap = ext4_bmap,
3606 .invalidate_folio = ext4_journalled_invalidate_folio,
3607 .release_folio = ext4_release_folio,
3608 .migrate_folio = buffer_migrate_folio_norefs,
3609 .is_partially_uptodate = block_is_partially_uptodate,
3610 .error_remove_folio = generic_error_remove_folio,
3611 .swap_activate = ext4_iomap_swap_activate,
3612 };
3613
3614 static const struct address_space_operations ext4_da_aops = {
3615 .read_folio = ext4_read_folio,
3616 .readahead = ext4_readahead,
3617 .writepages = ext4_writepages,
3618 .write_begin = ext4_da_write_begin,
3619 .write_end = ext4_da_write_end,
3620 .dirty_folio = ext4_dirty_folio,
3621 .bmap = ext4_bmap,
3622 .invalidate_folio = ext4_invalidate_folio,
3623 .release_folio = ext4_release_folio,
3624 .migrate_folio = buffer_migrate_folio,
3625 .is_partially_uptodate = block_is_partially_uptodate,
3626 .error_remove_folio = generic_error_remove_folio,
3627 .swap_activate = ext4_iomap_swap_activate,
3628 };
3629
3630 static const struct address_space_operations ext4_dax_aops = {
3631 .writepages = ext4_dax_writepages,
3632 .dirty_folio = noop_dirty_folio,
3633 .bmap = ext4_bmap,
3634 .swap_activate = ext4_iomap_swap_activate,
3635 };
3636
ext4_set_aops(struct inode * inode)3637 void ext4_set_aops(struct inode *inode)
3638 {
3639 switch (ext4_inode_journal_mode(inode)) {
3640 case EXT4_INODE_ORDERED_DATA_MODE:
3641 case EXT4_INODE_WRITEBACK_DATA_MODE:
3642 break;
3643 case EXT4_INODE_JOURNAL_DATA_MODE:
3644 inode->i_mapping->a_ops = &ext4_journalled_aops;
3645 return;
3646 default:
3647 BUG();
3648 }
3649 if (IS_DAX(inode))
3650 inode->i_mapping->a_ops = &ext4_dax_aops;
3651 else if (test_opt(inode->i_sb, DELALLOC))
3652 inode->i_mapping->a_ops = &ext4_da_aops;
3653 else
3654 inode->i_mapping->a_ops = &ext4_aops;
3655 }
3656
3657 /*
3658 * Here we can't skip an unwritten buffer even though it usually reads zero
3659 * because it might have data in pagecache (eg, if called from ext4_zero_range,
3660 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3661 * racing writeback can come later and flush the stale pagecache to disk.
3662 */
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3663 static int __ext4_block_zero_page_range(handle_t *handle,
3664 struct address_space *mapping, loff_t from, loff_t length)
3665 {
3666 ext4_fsblk_t index = from >> PAGE_SHIFT;
3667 unsigned offset = from & (PAGE_SIZE-1);
3668 unsigned blocksize, pos;
3669 ext4_lblk_t iblock;
3670 struct inode *inode = mapping->host;
3671 struct buffer_head *bh;
3672 struct folio *folio;
3673 int err = 0;
3674
3675 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3676 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3677 mapping_gfp_constraint(mapping, ~__GFP_FS));
3678 if (IS_ERR(folio))
3679 return PTR_ERR(folio);
3680
3681 blocksize = inode->i_sb->s_blocksize;
3682
3683 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3684
3685 bh = folio_buffers(folio);
3686 if (!bh)
3687 bh = create_empty_buffers(folio, blocksize, 0);
3688
3689 /* Find the buffer that contains "offset" */
3690 pos = blocksize;
3691 while (offset >= pos) {
3692 bh = bh->b_this_page;
3693 iblock++;
3694 pos += blocksize;
3695 }
3696 if (buffer_freed(bh)) {
3697 BUFFER_TRACE(bh, "freed: skip");
3698 goto unlock;
3699 }
3700 if (!buffer_mapped(bh)) {
3701 BUFFER_TRACE(bh, "unmapped");
3702 ext4_get_block(inode, iblock, bh, 0);
3703 /* unmapped? It's a hole - nothing to do */
3704 if (!buffer_mapped(bh)) {
3705 BUFFER_TRACE(bh, "still unmapped");
3706 goto unlock;
3707 }
3708 }
3709
3710 /* Ok, it's mapped. Make sure it's up-to-date */
3711 if (folio_test_uptodate(folio))
3712 set_buffer_uptodate(bh);
3713
3714 if (!buffer_uptodate(bh)) {
3715 err = ext4_read_bh_lock(bh, 0, true);
3716 if (err)
3717 goto unlock;
3718 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3719 /* We expect the key to be set. */
3720 BUG_ON(!fscrypt_has_encryption_key(inode));
3721 err = fscrypt_decrypt_pagecache_blocks(folio,
3722 blocksize,
3723 bh_offset(bh));
3724 if (err) {
3725 clear_buffer_uptodate(bh);
3726 goto unlock;
3727 }
3728 }
3729 }
3730 if (ext4_should_journal_data(inode)) {
3731 BUFFER_TRACE(bh, "get write access");
3732 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3733 EXT4_JTR_NONE);
3734 if (err)
3735 goto unlock;
3736 }
3737 folio_zero_range(folio, offset, length);
3738 BUFFER_TRACE(bh, "zeroed end of block");
3739
3740 if (ext4_should_journal_data(inode)) {
3741 err = ext4_dirty_journalled_data(handle, bh);
3742 } else {
3743 err = 0;
3744 mark_buffer_dirty(bh);
3745 if (ext4_should_order_data(inode))
3746 err = ext4_jbd2_inode_add_write(handle, inode, from,
3747 length);
3748 }
3749
3750 unlock:
3751 folio_unlock(folio);
3752 folio_put(folio);
3753 return err;
3754 }
3755
3756 /*
3757 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3758 * starting from file offset 'from'. The range to be zero'd must
3759 * be contained with in one block. If the specified range exceeds
3760 * the end of the block it will be shortened to end of the block
3761 * that corresponds to 'from'
3762 */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3763 static int ext4_block_zero_page_range(handle_t *handle,
3764 struct address_space *mapping, loff_t from, loff_t length)
3765 {
3766 struct inode *inode = mapping->host;
3767 unsigned offset = from & (PAGE_SIZE-1);
3768 unsigned blocksize = inode->i_sb->s_blocksize;
3769 unsigned max = blocksize - (offset & (blocksize - 1));
3770
3771 /*
3772 * correct length if it does not fall between
3773 * 'from' and the end of the block
3774 */
3775 if (length > max || length < 0)
3776 length = max;
3777
3778 if (IS_DAX(inode)) {
3779 return dax_zero_range(inode, from, length, NULL,
3780 &ext4_iomap_ops);
3781 }
3782 return __ext4_block_zero_page_range(handle, mapping, from, length);
3783 }
3784
3785 /*
3786 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3787 * up to the end of the block which corresponds to `from'.
3788 * This required during truncate. We need to physically zero the tail end
3789 * of that block so it doesn't yield old data if the file is later grown.
3790 */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3791 static int ext4_block_truncate_page(handle_t *handle,
3792 struct address_space *mapping, loff_t from)
3793 {
3794 unsigned offset = from & (PAGE_SIZE-1);
3795 unsigned length;
3796 unsigned blocksize;
3797 struct inode *inode = mapping->host;
3798
3799 /* If we are processing an encrypted inode during orphan list handling */
3800 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3801 return 0;
3802
3803 blocksize = inode->i_sb->s_blocksize;
3804 length = blocksize - (offset & (blocksize - 1));
3805
3806 return ext4_block_zero_page_range(handle, mapping, from, length);
3807 }
3808
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3809 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3810 loff_t lstart, loff_t length)
3811 {
3812 struct super_block *sb = inode->i_sb;
3813 struct address_space *mapping = inode->i_mapping;
3814 unsigned partial_start, partial_end;
3815 ext4_fsblk_t start, end;
3816 loff_t byte_end = (lstart + length - 1);
3817 int err = 0;
3818
3819 partial_start = lstart & (sb->s_blocksize - 1);
3820 partial_end = byte_end & (sb->s_blocksize - 1);
3821
3822 start = lstart >> sb->s_blocksize_bits;
3823 end = byte_end >> sb->s_blocksize_bits;
3824
3825 /* Handle partial zero within the single block */
3826 if (start == end &&
3827 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3828 err = ext4_block_zero_page_range(handle, mapping,
3829 lstart, length);
3830 return err;
3831 }
3832 /* Handle partial zero out on the start of the range */
3833 if (partial_start) {
3834 err = ext4_block_zero_page_range(handle, mapping,
3835 lstart, sb->s_blocksize);
3836 if (err)
3837 return err;
3838 }
3839 /* Handle partial zero out on the end of the range */
3840 if (partial_end != sb->s_blocksize - 1)
3841 err = ext4_block_zero_page_range(handle, mapping,
3842 byte_end - partial_end,
3843 partial_end + 1);
3844 return err;
3845 }
3846
ext4_can_truncate(struct inode * inode)3847 int ext4_can_truncate(struct inode *inode)
3848 {
3849 if (S_ISREG(inode->i_mode))
3850 return 1;
3851 if (S_ISDIR(inode->i_mode))
3852 return 1;
3853 if (S_ISLNK(inode->i_mode))
3854 return !ext4_inode_is_fast_symlink(inode);
3855 return 0;
3856 }
3857
3858 /*
3859 * We have to make sure i_disksize gets properly updated before we truncate
3860 * page cache due to hole punching or zero range. Otherwise i_disksize update
3861 * can get lost as it may have been postponed to submission of writeback but
3862 * that will never happen after we truncate page cache.
3863 */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3864 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3865 loff_t len)
3866 {
3867 handle_t *handle;
3868 int ret;
3869
3870 loff_t size = i_size_read(inode);
3871
3872 WARN_ON(!inode_is_locked(inode));
3873 if (offset > size || offset + len < size)
3874 return 0;
3875
3876 if (EXT4_I(inode)->i_disksize >= size)
3877 return 0;
3878
3879 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3880 if (IS_ERR(handle))
3881 return PTR_ERR(handle);
3882 ext4_update_i_disksize(inode, size);
3883 ret = ext4_mark_inode_dirty(handle, inode);
3884 ext4_journal_stop(handle);
3885
3886 return ret;
3887 }
3888
ext4_truncate_folio(struct inode * inode,loff_t start,loff_t end)3889 static inline void ext4_truncate_folio(struct inode *inode,
3890 loff_t start, loff_t end)
3891 {
3892 unsigned long blocksize = i_blocksize(inode);
3893 struct folio *folio;
3894
3895 /* Nothing to be done if no complete block needs to be truncated. */
3896 if (round_up(start, blocksize) >= round_down(end, blocksize))
3897 return;
3898
3899 folio = filemap_lock_folio(inode->i_mapping, start >> PAGE_SHIFT);
3900 if (IS_ERR(folio))
3901 return;
3902
3903 if (folio_mkclean(folio))
3904 folio_mark_dirty(folio);
3905 folio_unlock(folio);
3906 folio_put(folio);
3907 }
3908
ext4_truncate_page_cache_block_range(struct inode * inode,loff_t start,loff_t end)3909 int ext4_truncate_page_cache_block_range(struct inode *inode,
3910 loff_t start, loff_t end)
3911 {
3912 unsigned long blocksize = i_blocksize(inode);
3913 int ret;
3914
3915 /*
3916 * For journalled data we need to write (and checkpoint) pages
3917 * before discarding page cache to avoid inconsitent data on disk
3918 * in case of crash before freeing or unwritten converting trans
3919 * is committed.
3920 */
3921 if (ext4_should_journal_data(inode)) {
3922 ret = filemap_write_and_wait_range(inode->i_mapping, start,
3923 end - 1);
3924 if (ret)
3925 return ret;
3926 goto truncate_pagecache;
3927 }
3928
3929 /*
3930 * If the block size is less than the page size, the file's mapped
3931 * blocks within one page could be freed or converted to unwritten.
3932 * So it's necessary to remove writable userspace mappings, and then
3933 * ext4_page_mkwrite() can be called during subsequent write access
3934 * to these partial folios.
3935 */
3936 if (!IS_ALIGNED(start | end, PAGE_SIZE) &&
3937 blocksize < PAGE_SIZE && start < inode->i_size) {
3938 loff_t page_boundary = round_up(start, PAGE_SIZE);
3939
3940 ext4_truncate_folio(inode, start, min(page_boundary, end));
3941 if (end > page_boundary)
3942 ext4_truncate_folio(inode,
3943 round_down(end, PAGE_SIZE), end);
3944 }
3945
3946 truncate_pagecache:
3947 truncate_pagecache_range(inode, start, end - 1);
3948 return 0;
3949 }
3950
ext4_wait_dax_page(struct inode * inode)3951 static void ext4_wait_dax_page(struct inode *inode)
3952 {
3953 filemap_invalidate_unlock(inode->i_mapping);
3954 schedule();
3955 filemap_invalidate_lock(inode->i_mapping);
3956 }
3957
ext4_break_layouts(struct inode * inode)3958 int ext4_break_layouts(struct inode *inode)
3959 {
3960 struct page *page;
3961 int error;
3962
3963 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3964 return -EINVAL;
3965
3966 do {
3967 page = dax_layout_busy_page(inode->i_mapping);
3968 if (!page)
3969 return 0;
3970
3971 error = ___wait_var_event(&page->_refcount,
3972 atomic_read(&page->_refcount) == 1,
3973 TASK_INTERRUPTIBLE, 0, 0,
3974 ext4_wait_dax_page(inode));
3975 } while (error == 0);
3976
3977 return error;
3978 }
3979
3980 /*
3981 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3982 * associated with the given offset and length
3983 *
3984 * @inode: File inode
3985 * @offset: The offset where the hole will begin
3986 * @len: The length of the hole
3987 *
3988 * Returns: 0 on success or negative on failure
3989 */
3990
ext4_punch_hole(struct file * file,loff_t offset,loff_t length)3991 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3992 {
3993 struct inode *inode = file_inode(file);
3994 struct super_block *sb = inode->i_sb;
3995 ext4_lblk_t start_lblk, end_lblk;
3996 loff_t max_end = sb->s_maxbytes;
3997 loff_t end = offset + length;
3998 handle_t *handle;
3999 unsigned int credits;
4000 int ret;
4001
4002 trace_ext4_punch_hole(inode, offset, length, 0);
4003 WARN_ON_ONCE(!inode_is_locked(inode));
4004
4005 /*
4006 * For indirect-block based inodes, make sure that the hole within
4007 * one block before last range.
4008 */
4009 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4010 max_end = EXT4_SB(sb)->s_bitmap_maxbytes - sb->s_blocksize;
4011
4012 /* No need to punch hole beyond i_size */
4013 if (offset >= inode->i_size || offset >= max_end)
4014 return 0;
4015
4016 /*
4017 * If the hole extends beyond i_size, set the hole to end after
4018 * the page that contains i_size.
4019 */
4020 if (end > inode->i_size)
4021 end = round_up(inode->i_size, PAGE_SIZE);
4022 if (end > max_end)
4023 end = max_end;
4024 length = end - offset;
4025
4026 /*
4027 * Attach jinode to inode for jbd2 if we do any zeroing of partial
4028 * block.
4029 */
4030 if (!IS_ALIGNED(offset | end, sb->s_blocksize)) {
4031 ret = ext4_inode_attach_jinode(inode);
4032 if (ret < 0)
4033 return ret;
4034 }
4035
4036
4037 ret = ext4_update_disksize_before_punch(inode, offset, length);
4038 if (ret)
4039 return ret;
4040
4041 /* Now release the pages and zero block aligned part of pages*/
4042 ret = ext4_truncate_page_cache_block_range(inode, offset, end);
4043 if (ret)
4044 return ret;
4045
4046 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4047 credits = ext4_writepage_trans_blocks(inode);
4048 else
4049 credits = ext4_blocks_for_truncate(inode);
4050 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4051 if (IS_ERR(handle)) {
4052 ret = PTR_ERR(handle);
4053 ext4_std_error(sb, ret);
4054 return ret;
4055 }
4056
4057 ret = ext4_zero_partial_blocks(handle, inode, offset, length);
4058 if (ret)
4059 goto out_handle;
4060
4061 /* If there are blocks to remove, do it */
4062 start_lblk = EXT4_B_TO_LBLK(inode, offset);
4063 end_lblk = end >> inode->i_blkbits;
4064
4065 if (end_lblk > start_lblk) {
4066 ext4_lblk_t hole_len = end_lblk - start_lblk;
4067
4068 down_write(&EXT4_I(inode)->i_data_sem);
4069 ext4_discard_preallocations(inode);
4070
4071 ext4_es_remove_extent(inode, start_lblk, hole_len);
4072
4073 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4074 ret = ext4_ext_remove_space(inode, start_lblk,
4075 end_lblk - 1);
4076 else
4077 ret = ext4_ind_remove_space(handle, inode, start_lblk,
4078 end_lblk);
4079 if (ret) {
4080 up_write(&EXT4_I(inode)->i_data_sem);
4081 goto out_handle;
4082 }
4083
4084 ext4_es_insert_extent(inode, start_lblk, hole_len, ~0,
4085 EXTENT_STATUS_HOLE, 0);
4086 up_write(&EXT4_I(inode)->i_data_sem);
4087 }
4088 ext4_fc_track_range(handle, inode, start_lblk, end_lblk);
4089
4090 ret = ext4_mark_inode_dirty(handle, inode);
4091 if (unlikely(ret))
4092 goto out_handle;
4093
4094 ext4_update_inode_fsync_trans(handle, inode, 1);
4095 if (IS_SYNC(inode))
4096 ext4_handle_sync(handle);
4097 out_handle:
4098 ext4_journal_stop(handle);
4099 return ret;
4100 }
4101
ext4_inode_attach_jinode(struct inode * inode)4102 int ext4_inode_attach_jinode(struct inode *inode)
4103 {
4104 struct ext4_inode_info *ei = EXT4_I(inode);
4105 struct jbd2_inode *jinode;
4106
4107 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4108 return 0;
4109
4110 jinode = jbd2_alloc_inode(GFP_KERNEL);
4111 spin_lock(&inode->i_lock);
4112 if (!ei->jinode) {
4113 if (!jinode) {
4114 spin_unlock(&inode->i_lock);
4115 return -ENOMEM;
4116 }
4117 ei->jinode = jinode;
4118 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4119 jinode = NULL;
4120 }
4121 spin_unlock(&inode->i_lock);
4122 if (unlikely(jinode != NULL))
4123 jbd2_free_inode(jinode);
4124 return 0;
4125 }
4126
4127 /*
4128 * ext4_truncate()
4129 *
4130 * We block out ext4_get_block() block instantiations across the entire
4131 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4132 * simultaneously on behalf of the same inode.
4133 *
4134 * As we work through the truncate and commit bits of it to the journal there
4135 * is one core, guiding principle: the file's tree must always be consistent on
4136 * disk. We must be able to restart the truncate after a crash.
4137 *
4138 * The file's tree may be transiently inconsistent in memory (although it
4139 * probably isn't), but whenever we close off and commit a journal transaction,
4140 * the contents of (the filesystem + the journal) must be consistent and
4141 * restartable. It's pretty simple, really: bottom up, right to left (although
4142 * left-to-right works OK too).
4143 *
4144 * Note that at recovery time, journal replay occurs *before* the restart of
4145 * truncate against the orphan inode list.
4146 *
4147 * The committed inode has the new, desired i_size (which is the same as
4148 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4149 * that this inode's truncate did not complete and it will again call
4150 * ext4_truncate() to have another go. So there will be instantiated blocks
4151 * to the right of the truncation point in a crashed ext4 filesystem. But
4152 * that's fine - as long as they are linked from the inode, the post-crash
4153 * ext4_truncate() run will find them and release them.
4154 */
ext4_truncate(struct inode * inode)4155 int ext4_truncate(struct inode *inode)
4156 {
4157 struct ext4_inode_info *ei = EXT4_I(inode);
4158 unsigned int credits;
4159 int err = 0, err2;
4160 handle_t *handle;
4161 struct address_space *mapping = inode->i_mapping;
4162
4163 /*
4164 * There is a possibility that we're either freeing the inode
4165 * or it's a completely new inode. In those cases we might not
4166 * have i_rwsem locked because it's not necessary.
4167 */
4168 if (!(inode->i_state & (I_NEW|I_FREEING)))
4169 WARN_ON(!inode_is_locked(inode));
4170 trace_ext4_truncate_enter(inode);
4171
4172 if (!ext4_can_truncate(inode))
4173 goto out_trace;
4174
4175 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4176 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4177
4178 if (ext4_has_inline_data(inode)) {
4179 int has_inline = 1;
4180
4181 err = ext4_inline_data_truncate(inode, &has_inline);
4182 if (err || has_inline)
4183 goto out_trace;
4184 }
4185
4186 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4187 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4188 err = ext4_inode_attach_jinode(inode);
4189 if (err)
4190 goto out_trace;
4191 }
4192
4193 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4194 credits = ext4_writepage_trans_blocks(inode);
4195 else
4196 credits = ext4_blocks_for_truncate(inode);
4197
4198 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4199 if (IS_ERR(handle)) {
4200 err = PTR_ERR(handle);
4201 goto out_trace;
4202 }
4203
4204 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4205 ext4_block_truncate_page(handle, mapping, inode->i_size);
4206
4207 /*
4208 * We add the inode to the orphan list, so that if this
4209 * truncate spans multiple transactions, and we crash, we will
4210 * resume the truncate when the filesystem recovers. It also
4211 * marks the inode dirty, to catch the new size.
4212 *
4213 * Implication: the file must always be in a sane, consistent
4214 * truncatable state while each transaction commits.
4215 */
4216 err = ext4_orphan_add(handle, inode);
4217 if (err)
4218 goto out_stop;
4219
4220 down_write(&EXT4_I(inode)->i_data_sem);
4221
4222 ext4_discard_preallocations(inode);
4223
4224 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4225 err = ext4_ext_truncate(handle, inode);
4226 else
4227 ext4_ind_truncate(handle, inode);
4228
4229 up_write(&ei->i_data_sem);
4230 if (err)
4231 goto out_stop;
4232
4233 if (IS_SYNC(inode))
4234 ext4_handle_sync(handle);
4235
4236 out_stop:
4237 /*
4238 * If this was a simple ftruncate() and the file will remain alive,
4239 * then we need to clear up the orphan record which we created above.
4240 * However, if this was a real unlink then we were called by
4241 * ext4_evict_inode(), and we allow that function to clean up the
4242 * orphan info for us.
4243 */
4244 if (inode->i_nlink)
4245 ext4_orphan_del(handle, inode);
4246
4247 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4248 err2 = ext4_mark_inode_dirty(handle, inode);
4249 if (unlikely(err2 && !err))
4250 err = err2;
4251 ext4_journal_stop(handle);
4252
4253 out_trace:
4254 trace_ext4_truncate_exit(inode);
4255 return err;
4256 }
4257
ext4_inode_peek_iversion(const struct inode * inode)4258 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4259 {
4260 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4261 return inode_peek_iversion_raw(inode);
4262 else
4263 return inode_peek_iversion(inode);
4264 }
4265
ext4_inode_blocks_set(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4266 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4267 struct ext4_inode_info *ei)
4268 {
4269 struct inode *inode = &(ei->vfs_inode);
4270 u64 i_blocks = READ_ONCE(inode->i_blocks);
4271 struct super_block *sb = inode->i_sb;
4272
4273 if (i_blocks <= ~0U) {
4274 /*
4275 * i_blocks can be represented in a 32 bit variable
4276 * as multiple of 512 bytes
4277 */
4278 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4279 raw_inode->i_blocks_high = 0;
4280 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4281 return 0;
4282 }
4283
4284 /*
4285 * This should never happen since sb->s_maxbytes should not have
4286 * allowed this, sb->s_maxbytes was set according to the huge_file
4287 * feature in ext4_fill_super().
4288 */
4289 if (!ext4_has_feature_huge_file(sb))
4290 return -EFSCORRUPTED;
4291
4292 if (i_blocks <= 0xffffffffffffULL) {
4293 /*
4294 * i_blocks can be represented in a 48 bit variable
4295 * as multiple of 512 bytes
4296 */
4297 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4298 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4299 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4300 } else {
4301 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4302 /* i_block is stored in file system block size */
4303 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4304 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4305 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4306 }
4307 return 0;
4308 }
4309
ext4_fill_raw_inode(struct inode * inode,struct ext4_inode * raw_inode)4310 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4311 {
4312 struct ext4_inode_info *ei = EXT4_I(inode);
4313 uid_t i_uid;
4314 gid_t i_gid;
4315 projid_t i_projid;
4316 int block;
4317 int err;
4318
4319 err = ext4_inode_blocks_set(raw_inode, ei);
4320
4321 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4322 i_uid = i_uid_read(inode);
4323 i_gid = i_gid_read(inode);
4324 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4325 if (!(test_opt(inode->i_sb, NO_UID32))) {
4326 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4327 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4328 /*
4329 * Fix up interoperability with old kernels. Otherwise,
4330 * old inodes get re-used with the upper 16 bits of the
4331 * uid/gid intact.
4332 */
4333 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4334 raw_inode->i_uid_high = 0;
4335 raw_inode->i_gid_high = 0;
4336 } else {
4337 raw_inode->i_uid_high =
4338 cpu_to_le16(high_16_bits(i_uid));
4339 raw_inode->i_gid_high =
4340 cpu_to_le16(high_16_bits(i_gid));
4341 }
4342 } else {
4343 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4344 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4345 raw_inode->i_uid_high = 0;
4346 raw_inode->i_gid_high = 0;
4347 }
4348 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4349
4350 EXT4_INODE_SET_CTIME(inode, raw_inode);
4351 EXT4_INODE_SET_MTIME(inode, raw_inode);
4352 EXT4_INODE_SET_ATIME(inode, raw_inode);
4353 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4354
4355 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4356 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4357 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4358 raw_inode->i_file_acl_high =
4359 cpu_to_le16(ei->i_file_acl >> 32);
4360 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4361 ext4_isize_set(raw_inode, ei->i_disksize);
4362
4363 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4364 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4365 if (old_valid_dev(inode->i_rdev)) {
4366 raw_inode->i_block[0] =
4367 cpu_to_le32(old_encode_dev(inode->i_rdev));
4368 raw_inode->i_block[1] = 0;
4369 } else {
4370 raw_inode->i_block[0] = 0;
4371 raw_inode->i_block[1] =
4372 cpu_to_le32(new_encode_dev(inode->i_rdev));
4373 raw_inode->i_block[2] = 0;
4374 }
4375 } else if (!ext4_has_inline_data(inode)) {
4376 for (block = 0; block < EXT4_N_BLOCKS; block++)
4377 raw_inode->i_block[block] = ei->i_data[block];
4378 }
4379
4380 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4381 u64 ivers = ext4_inode_peek_iversion(inode);
4382
4383 raw_inode->i_disk_version = cpu_to_le32(ivers);
4384 if (ei->i_extra_isize) {
4385 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4386 raw_inode->i_version_hi =
4387 cpu_to_le32(ivers >> 32);
4388 raw_inode->i_extra_isize =
4389 cpu_to_le16(ei->i_extra_isize);
4390 }
4391 }
4392
4393 if (i_projid != EXT4_DEF_PROJID &&
4394 !ext4_has_feature_project(inode->i_sb))
4395 err = err ?: -EFSCORRUPTED;
4396
4397 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4398 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4399 raw_inode->i_projid = cpu_to_le32(i_projid);
4400
4401 ext4_inode_csum_set(inode, raw_inode, ei);
4402 return err;
4403 }
4404
4405 /*
4406 * ext4_get_inode_loc returns with an extra refcount against the inode's
4407 * underlying buffer_head on success. If we pass 'inode' and it does not
4408 * have in-inode xattr, we have all inode data in memory that is needed
4409 * to recreate the on-disk version of this inode.
4410 */
__ext4_get_inode_loc(struct super_block * sb,unsigned long ino,struct inode * inode,struct ext4_iloc * iloc,ext4_fsblk_t * ret_block)4411 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4412 struct inode *inode, struct ext4_iloc *iloc,
4413 ext4_fsblk_t *ret_block)
4414 {
4415 struct ext4_group_desc *gdp;
4416 struct buffer_head *bh;
4417 ext4_fsblk_t block;
4418 struct blk_plug plug;
4419 int inodes_per_block, inode_offset;
4420
4421 iloc->bh = NULL;
4422 if (ino < EXT4_ROOT_INO ||
4423 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4424 return -EFSCORRUPTED;
4425
4426 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4427 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4428 if (!gdp)
4429 return -EIO;
4430
4431 /*
4432 * Figure out the offset within the block group inode table
4433 */
4434 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4435 inode_offset = ((ino - 1) %
4436 EXT4_INODES_PER_GROUP(sb));
4437 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4438
4439 block = ext4_inode_table(sb, gdp);
4440 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4441 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4442 ext4_error(sb, "Invalid inode table block %llu in "
4443 "block_group %u", block, iloc->block_group);
4444 return -EFSCORRUPTED;
4445 }
4446 block += (inode_offset / inodes_per_block);
4447
4448 bh = sb_getblk(sb, block);
4449 if (unlikely(!bh))
4450 return -ENOMEM;
4451 if (ext4_buffer_uptodate(bh))
4452 goto has_buffer;
4453
4454 lock_buffer(bh);
4455 if (ext4_buffer_uptodate(bh)) {
4456 /* Someone brought it uptodate while we waited */
4457 unlock_buffer(bh);
4458 goto has_buffer;
4459 }
4460
4461 /*
4462 * If we have all information of the inode in memory and this
4463 * is the only valid inode in the block, we need not read the
4464 * block.
4465 */
4466 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4467 struct buffer_head *bitmap_bh;
4468 int i, start;
4469
4470 start = inode_offset & ~(inodes_per_block - 1);
4471
4472 /* Is the inode bitmap in cache? */
4473 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4474 if (unlikely(!bitmap_bh))
4475 goto make_io;
4476
4477 /*
4478 * If the inode bitmap isn't in cache then the
4479 * optimisation may end up performing two reads instead
4480 * of one, so skip it.
4481 */
4482 if (!buffer_uptodate(bitmap_bh)) {
4483 brelse(bitmap_bh);
4484 goto make_io;
4485 }
4486 for (i = start; i < start + inodes_per_block; i++) {
4487 if (i == inode_offset)
4488 continue;
4489 if (ext4_test_bit(i, bitmap_bh->b_data))
4490 break;
4491 }
4492 brelse(bitmap_bh);
4493 if (i == start + inodes_per_block) {
4494 struct ext4_inode *raw_inode =
4495 (struct ext4_inode *) (bh->b_data + iloc->offset);
4496
4497 /* all other inodes are free, so skip I/O */
4498 memset(bh->b_data, 0, bh->b_size);
4499 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4500 ext4_fill_raw_inode(inode, raw_inode);
4501 set_buffer_uptodate(bh);
4502 unlock_buffer(bh);
4503 goto has_buffer;
4504 }
4505 }
4506
4507 make_io:
4508 /*
4509 * If we need to do any I/O, try to pre-readahead extra
4510 * blocks from the inode table.
4511 */
4512 blk_start_plug(&plug);
4513 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4514 ext4_fsblk_t b, end, table;
4515 unsigned num;
4516 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4517
4518 table = ext4_inode_table(sb, gdp);
4519 /* s_inode_readahead_blks is always a power of 2 */
4520 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4521 if (table > b)
4522 b = table;
4523 end = b + ra_blks;
4524 num = EXT4_INODES_PER_GROUP(sb);
4525 if (ext4_has_group_desc_csum(sb))
4526 num -= ext4_itable_unused_count(sb, gdp);
4527 table += num / inodes_per_block;
4528 if (end > table)
4529 end = table;
4530 while (b <= end)
4531 ext4_sb_breadahead_unmovable(sb, b++);
4532 }
4533
4534 /*
4535 * There are other valid inodes in the buffer, this inode
4536 * has in-inode xattrs, or we don't have this inode in memory.
4537 * Read the block from disk.
4538 */
4539 trace_ext4_load_inode(sb, ino);
4540 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4541 ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4542 blk_finish_plug(&plug);
4543 wait_on_buffer(bh);
4544 if (!buffer_uptodate(bh)) {
4545 if (ret_block)
4546 *ret_block = block;
4547 brelse(bh);
4548 return -EIO;
4549 }
4550 has_buffer:
4551 iloc->bh = bh;
4552 return 0;
4553 }
4554
__ext4_get_inode_loc_noinmem(struct inode * inode,struct ext4_iloc * iloc)4555 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4556 struct ext4_iloc *iloc)
4557 {
4558 ext4_fsblk_t err_blk = 0;
4559 int ret;
4560
4561 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4562 &err_blk);
4563
4564 if (ret == -EIO)
4565 ext4_error_inode_block(inode, err_blk, EIO,
4566 "unable to read itable block");
4567
4568 return ret;
4569 }
4570
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4571 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4572 {
4573 ext4_fsblk_t err_blk = 0;
4574 int ret;
4575
4576 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4577 &err_blk);
4578
4579 if (ret == -EIO)
4580 ext4_error_inode_block(inode, err_blk, EIO,
4581 "unable to read itable block");
4582
4583 return ret;
4584 }
4585
4586
ext4_get_fc_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc)4587 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4588 struct ext4_iloc *iloc)
4589 {
4590 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4591 }
4592
ext4_should_enable_dax(struct inode * inode)4593 static bool ext4_should_enable_dax(struct inode *inode)
4594 {
4595 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4596
4597 if (test_opt2(inode->i_sb, DAX_NEVER))
4598 return false;
4599 if (!S_ISREG(inode->i_mode))
4600 return false;
4601 if (ext4_should_journal_data(inode))
4602 return false;
4603 if (ext4_has_inline_data(inode))
4604 return false;
4605 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4606 return false;
4607 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4608 return false;
4609 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4610 return false;
4611 if (test_opt(inode->i_sb, DAX_ALWAYS))
4612 return true;
4613
4614 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4615 }
4616
ext4_set_inode_flags(struct inode * inode,bool init)4617 void ext4_set_inode_flags(struct inode *inode, bool init)
4618 {
4619 unsigned int flags = EXT4_I(inode)->i_flags;
4620 unsigned int new_fl = 0;
4621
4622 WARN_ON_ONCE(IS_DAX(inode) && init);
4623
4624 if (flags & EXT4_SYNC_FL)
4625 new_fl |= S_SYNC;
4626 if (flags & EXT4_APPEND_FL)
4627 new_fl |= S_APPEND;
4628 if (flags & EXT4_IMMUTABLE_FL)
4629 new_fl |= S_IMMUTABLE;
4630 if (flags & EXT4_NOATIME_FL)
4631 new_fl |= S_NOATIME;
4632 if (flags & EXT4_DIRSYNC_FL)
4633 new_fl |= S_DIRSYNC;
4634
4635 /* Because of the way inode_set_flags() works we must preserve S_DAX
4636 * here if already set. */
4637 new_fl |= (inode->i_flags & S_DAX);
4638 if (init && ext4_should_enable_dax(inode))
4639 new_fl |= S_DAX;
4640
4641 if (flags & EXT4_ENCRYPT_FL)
4642 new_fl |= S_ENCRYPTED;
4643 if (flags & EXT4_CASEFOLD_FL)
4644 new_fl |= S_CASEFOLD;
4645 if (flags & EXT4_VERITY_FL)
4646 new_fl |= S_VERITY;
4647 inode_set_flags(inode, new_fl,
4648 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4649 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4650 }
4651
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4652 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4653 struct ext4_inode_info *ei)
4654 {
4655 blkcnt_t i_blocks ;
4656 struct inode *inode = &(ei->vfs_inode);
4657 struct super_block *sb = inode->i_sb;
4658
4659 if (ext4_has_feature_huge_file(sb)) {
4660 /* we are using combined 48 bit field */
4661 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4662 le32_to_cpu(raw_inode->i_blocks_lo);
4663 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4664 /* i_blocks represent file system block size */
4665 return i_blocks << (inode->i_blkbits - 9);
4666 } else {
4667 return i_blocks;
4668 }
4669 } else {
4670 return le32_to_cpu(raw_inode->i_blocks_lo);
4671 }
4672 }
4673
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4674 static inline int ext4_iget_extra_inode(struct inode *inode,
4675 struct ext4_inode *raw_inode,
4676 struct ext4_inode_info *ei)
4677 {
4678 __le32 *magic = (void *)raw_inode +
4679 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4680
4681 if (EXT4_INODE_HAS_XATTR_SPACE(inode) &&
4682 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4683 int err;
4684
4685 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4686 err = ext4_find_inline_data_nolock(inode);
4687 if (!err && ext4_has_inline_data(inode))
4688 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4689 return err;
4690 } else
4691 EXT4_I(inode)->i_inline_off = 0;
4692 return 0;
4693 }
4694
ext4_get_projid(struct inode * inode,kprojid_t * projid)4695 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4696 {
4697 if (!ext4_has_feature_project(inode->i_sb))
4698 return -EOPNOTSUPP;
4699 *projid = EXT4_I(inode)->i_projid;
4700 return 0;
4701 }
4702
4703 /*
4704 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4705 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4706 * set.
4707 */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4708 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4709 {
4710 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4711 inode_set_iversion_raw(inode, val);
4712 else
4713 inode_set_iversion_queried(inode, val);
4714 }
4715
check_igot_inode(struct inode * inode,ext4_iget_flags flags,const char * function,unsigned int line)4716 static int check_igot_inode(struct inode *inode, ext4_iget_flags flags,
4717 const char *function, unsigned int line)
4718 {
4719 const char *err_str;
4720
4721 if (flags & EXT4_IGET_EA_INODE) {
4722 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
4723 err_str = "missing EA_INODE flag";
4724 goto error;
4725 }
4726 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4727 EXT4_I(inode)->i_file_acl) {
4728 err_str = "ea_inode with extended attributes";
4729 goto error;
4730 }
4731 } else {
4732 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
4733 /*
4734 * open_by_handle_at() could provide an old inode number
4735 * that has since been reused for an ea_inode; this does
4736 * not indicate filesystem corruption
4737 */
4738 if (flags & EXT4_IGET_HANDLE)
4739 return -ESTALE;
4740 err_str = "unexpected EA_INODE flag";
4741 goto error;
4742 }
4743 }
4744 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
4745 err_str = "unexpected bad inode w/o EXT4_IGET_BAD";
4746 goto error;
4747 }
4748 return 0;
4749
4750 error:
4751 ext4_error_inode(inode, function, line, 0, err_str);
4752 return -EFSCORRUPTED;
4753 }
4754
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4755 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4756 ext4_iget_flags flags, const char *function,
4757 unsigned int line)
4758 {
4759 struct ext4_iloc iloc;
4760 struct ext4_inode *raw_inode;
4761 struct ext4_inode_info *ei;
4762 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4763 struct inode *inode;
4764 journal_t *journal = EXT4_SB(sb)->s_journal;
4765 long ret;
4766 loff_t size;
4767 int block;
4768 uid_t i_uid;
4769 gid_t i_gid;
4770 projid_t i_projid;
4771
4772 if ((!(flags & EXT4_IGET_SPECIAL) &&
4773 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4774 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4775 ino == le32_to_cpu(es->s_grp_quota_inum) ||
4776 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4777 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4778 (ino < EXT4_ROOT_INO) ||
4779 (ino > le32_to_cpu(es->s_inodes_count))) {
4780 if (flags & EXT4_IGET_HANDLE)
4781 return ERR_PTR(-ESTALE);
4782 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4783 "inode #%lu: comm %s: iget: illegal inode #",
4784 ino, current->comm);
4785 return ERR_PTR(-EFSCORRUPTED);
4786 }
4787
4788 inode = iget_locked(sb, ino);
4789 if (!inode)
4790 return ERR_PTR(-ENOMEM);
4791 if (!(inode->i_state & I_NEW)) {
4792 ret = check_igot_inode(inode, flags, function, line);
4793 if (ret) {
4794 iput(inode);
4795 return ERR_PTR(ret);
4796 }
4797 return inode;
4798 }
4799
4800 ei = EXT4_I(inode);
4801 iloc.bh = NULL;
4802
4803 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4804 if (ret < 0)
4805 goto bad_inode;
4806 raw_inode = ext4_raw_inode(&iloc);
4807
4808 if ((flags & EXT4_IGET_HANDLE) &&
4809 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4810 ret = -ESTALE;
4811 goto bad_inode;
4812 }
4813
4814 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4815 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4816 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4817 EXT4_INODE_SIZE(inode->i_sb) ||
4818 (ei->i_extra_isize & 3)) {
4819 ext4_error_inode(inode, function, line, 0,
4820 "iget: bad extra_isize %u "
4821 "(inode size %u)",
4822 ei->i_extra_isize,
4823 EXT4_INODE_SIZE(inode->i_sb));
4824 ret = -EFSCORRUPTED;
4825 goto bad_inode;
4826 }
4827 } else
4828 ei->i_extra_isize = 0;
4829
4830 /* Precompute checksum seed for inode metadata */
4831 if (ext4_has_metadata_csum(sb)) {
4832 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4833 __u32 csum;
4834 __le32 inum = cpu_to_le32(inode->i_ino);
4835 __le32 gen = raw_inode->i_generation;
4836 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4837 sizeof(inum));
4838 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4839 sizeof(gen));
4840 }
4841
4842 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4843 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4844 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4845 ext4_error_inode_err(inode, function, line, 0,
4846 EFSBADCRC, "iget: checksum invalid");
4847 ret = -EFSBADCRC;
4848 goto bad_inode;
4849 }
4850
4851 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4852 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4853 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4854 if (ext4_has_feature_project(sb) &&
4855 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4856 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4857 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4858 else
4859 i_projid = EXT4_DEF_PROJID;
4860
4861 if (!(test_opt(inode->i_sb, NO_UID32))) {
4862 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4863 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4864 }
4865 i_uid_write(inode, i_uid);
4866 i_gid_write(inode, i_gid);
4867 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4868 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4869
4870 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4871 ei->i_inline_off = 0;
4872 ei->i_dir_start_lookup = 0;
4873 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4874 /* We now have enough fields to check if the inode was active or not.
4875 * This is needed because nfsd might try to access dead inodes
4876 * the test is that same one that e2fsck uses
4877 * NeilBrown 1999oct15
4878 */
4879 if (inode->i_nlink == 0) {
4880 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4881 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4882 ino != EXT4_BOOT_LOADER_INO) {
4883 /* this inode is deleted or unallocated */
4884 if (flags & EXT4_IGET_SPECIAL) {
4885 ext4_error_inode(inode, function, line, 0,
4886 "iget: special inode unallocated");
4887 ret = -EFSCORRUPTED;
4888 } else
4889 ret = -ESTALE;
4890 goto bad_inode;
4891 }
4892 /* The only unlinked inodes we let through here have
4893 * valid i_mode and are being read by the orphan
4894 * recovery code: that's fine, we're about to complete
4895 * the process of deleting those.
4896 * OR it is the EXT4_BOOT_LOADER_INO which is
4897 * not initialized on a new filesystem. */
4898 }
4899 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4900 ext4_set_inode_flags(inode, true);
4901 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4902 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4903 if (ext4_has_feature_64bit(sb))
4904 ei->i_file_acl |=
4905 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4906 inode->i_size = ext4_isize(sb, raw_inode);
4907 size = i_size_read(inode);
4908 if (size < 0 || size > ext4_get_maxbytes(inode)) {
4909 ext4_error_inode(inode, function, line, 0,
4910 "iget: bad i_size value: %lld", size);
4911 ret = -EFSCORRUPTED;
4912 goto bad_inode;
4913 }
4914 /*
4915 * If dir_index is not enabled but there's dir with INDEX flag set,
4916 * we'd normally treat htree data as empty space. But with metadata
4917 * checksumming that corrupts checksums so forbid that.
4918 */
4919 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4920 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4921 ext4_error_inode(inode, function, line, 0,
4922 "iget: Dir with htree data on filesystem without dir_index feature.");
4923 ret = -EFSCORRUPTED;
4924 goto bad_inode;
4925 }
4926 ei->i_disksize = inode->i_size;
4927 #ifdef CONFIG_QUOTA
4928 ei->i_reserved_quota = 0;
4929 #endif
4930 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4931 ei->i_block_group = iloc.block_group;
4932 ei->i_last_alloc_group = ~0;
4933 /*
4934 * NOTE! The in-memory inode i_data array is in little-endian order
4935 * even on big-endian machines: we do NOT byteswap the block numbers!
4936 */
4937 for (block = 0; block < EXT4_N_BLOCKS; block++)
4938 ei->i_data[block] = raw_inode->i_block[block];
4939 INIT_LIST_HEAD(&ei->i_orphan);
4940 ext4_fc_init_inode(&ei->vfs_inode);
4941
4942 /*
4943 * Set transaction id's of transactions that have to be committed
4944 * to finish f[data]sync. We set them to currently running transaction
4945 * as we cannot be sure that the inode or some of its metadata isn't
4946 * part of the transaction - the inode could have been reclaimed and
4947 * now it is reread from disk.
4948 */
4949 if (journal) {
4950 transaction_t *transaction;
4951 tid_t tid;
4952
4953 read_lock(&journal->j_state_lock);
4954 if (journal->j_running_transaction)
4955 transaction = journal->j_running_transaction;
4956 else
4957 transaction = journal->j_committing_transaction;
4958 if (transaction)
4959 tid = transaction->t_tid;
4960 else
4961 tid = journal->j_commit_sequence;
4962 read_unlock(&journal->j_state_lock);
4963 ei->i_sync_tid = tid;
4964 ei->i_datasync_tid = tid;
4965 }
4966
4967 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4968 if (ei->i_extra_isize == 0) {
4969 /* The extra space is currently unused. Use it. */
4970 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4971 ei->i_extra_isize = sizeof(struct ext4_inode) -
4972 EXT4_GOOD_OLD_INODE_SIZE;
4973 } else {
4974 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4975 if (ret)
4976 goto bad_inode;
4977 }
4978 }
4979
4980 EXT4_INODE_GET_CTIME(inode, raw_inode);
4981 EXT4_INODE_GET_ATIME(inode, raw_inode);
4982 EXT4_INODE_GET_MTIME(inode, raw_inode);
4983 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4984
4985 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4986 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4987
4988 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4989 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4990 ivers |=
4991 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4992 }
4993 ext4_inode_set_iversion_queried(inode, ivers);
4994 }
4995
4996 ret = 0;
4997 if (ei->i_file_acl &&
4998 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4999 ext4_error_inode(inode, function, line, 0,
5000 "iget: bad extended attribute block %llu",
5001 ei->i_file_acl);
5002 ret = -EFSCORRUPTED;
5003 goto bad_inode;
5004 } else if (!ext4_has_inline_data(inode)) {
5005 /* validate the block references in the inode */
5006 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5007 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5008 (S_ISLNK(inode->i_mode) &&
5009 !ext4_inode_is_fast_symlink(inode)))) {
5010 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5011 ret = ext4_ext_check_inode(inode);
5012 else
5013 ret = ext4_ind_check_inode(inode);
5014 }
5015 }
5016 if (ret)
5017 goto bad_inode;
5018
5019 if (S_ISREG(inode->i_mode)) {
5020 inode->i_op = &ext4_file_inode_operations;
5021 inode->i_fop = &ext4_file_operations;
5022 ext4_set_aops(inode);
5023 } else if (S_ISDIR(inode->i_mode)) {
5024 inode->i_op = &ext4_dir_inode_operations;
5025 inode->i_fop = &ext4_dir_operations;
5026 } else if (S_ISLNK(inode->i_mode)) {
5027 /* VFS does not allow setting these so must be corruption */
5028 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5029 ext4_error_inode(inode, function, line, 0,
5030 "iget: immutable or append flags "
5031 "not allowed on symlinks");
5032 ret = -EFSCORRUPTED;
5033 goto bad_inode;
5034 }
5035 if (IS_ENCRYPTED(inode)) {
5036 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5037 } else if (ext4_inode_is_fast_symlink(inode)) {
5038 inode->i_link = (char *)ei->i_data;
5039 inode->i_op = &ext4_fast_symlink_inode_operations;
5040 nd_terminate_link(ei->i_data, inode->i_size,
5041 sizeof(ei->i_data) - 1);
5042 } else {
5043 inode->i_op = &ext4_symlink_inode_operations;
5044 }
5045 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5046 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5047 inode->i_op = &ext4_special_inode_operations;
5048 if (raw_inode->i_block[0])
5049 init_special_inode(inode, inode->i_mode,
5050 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5051 else
5052 init_special_inode(inode, inode->i_mode,
5053 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5054 } else if (ino == EXT4_BOOT_LOADER_INO) {
5055 make_bad_inode(inode);
5056 } else {
5057 ret = -EFSCORRUPTED;
5058 ext4_error_inode(inode, function, line, 0,
5059 "iget: bogus i_mode (%o)", inode->i_mode);
5060 goto bad_inode;
5061 }
5062 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5063 ext4_error_inode(inode, function, line, 0,
5064 "casefold flag without casefold feature");
5065 ret = -EFSCORRUPTED;
5066 goto bad_inode;
5067 }
5068 ret = check_igot_inode(inode, flags, function, line);
5069 /*
5070 * -ESTALE here means there is nothing inherently wrong with the inode,
5071 * it's just not an inode we can return for an fhandle lookup.
5072 */
5073 if (ret == -ESTALE) {
5074 brelse(iloc.bh);
5075 unlock_new_inode(inode);
5076 iput(inode);
5077 return ERR_PTR(-ESTALE);
5078 }
5079 if (ret)
5080 goto bad_inode;
5081 brelse(iloc.bh);
5082
5083 unlock_new_inode(inode);
5084 return inode;
5085
5086 bad_inode:
5087 brelse(iloc.bh);
5088 iget_failed(inode);
5089 return ERR_PTR(ret);
5090 }
5091
__ext4_update_other_inode_time(struct super_block * sb,unsigned long orig_ino,unsigned long ino,struct ext4_inode * raw_inode)5092 static void __ext4_update_other_inode_time(struct super_block *sb,
5093 unsigned long orig_ino,
5094 unsigned long ino,
5095 struct ext4_inode *raw_inode)
5096 {
5097 struct inode *inode;
5098
5099 inode = find_inode_by_ino_rcu(sb, ino);
5100 if (!inode)
5101 return;
5102
5103 if (!inode_is_dirtytime_only(inode))
5104 return;
5105
5106 spin_lock(&inode->i_lock);
5107 if (inode_is_dirtytime_only(inode)) {
5108 struct ext4_inode_info *ei = EXT4_I(inode);
5109
5110 inode->i_state &= ~I_DIRTY_TIME;
5111 spin_unlock(&inode->i_lock);
5112
5113 spin_lock(&ei->i_raw_lock);
5114 EXT4_INODE_SET_CTIME(inode, raw_inode);
5115 EXT4_INODE_SET_MTIME(inode, raw_inode);
5116 EXT4_INODE_SET_ATIME(inode, raw_inode);
5117 ext4_inode_csum_set(inode, raw_inode, ei);
5118 spin_unlock(&ei->i_raw_lock);
5119 trace_ext4_other_inode_update_time(inode, orig_ino);
5120 return;
5121 }
5122 spin_unlock(&inode->i_lock);
5123 }
5124
5125 /*
5126 * Opportunistically update the other time fields for other inodes in
5127 * the same inode table block.
5128 */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5129 static void ext4_update_other_inodes_time(struct super_block *sb,
5130 unsigned long orig_ino, char *buf)
5131 {
5132 unsigned long ino;
5133 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5134 int inode_size = EXT4_INODE_SIZE(sb);
5135
5136 /*
5137 * Calculate the first inode in the inode table block. Inode
5138 * numbers are one-based. That is, the first inode in a block
5139 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5140 */
5141 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5142 rcu_read_lock();
5143 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5144 if (ino == orig_ino)
5145 continue;
5146 __ext4_update_other_inode_time(sb, orig_ino, ino,
5147 (struct ext4_inode *)buf);
5148 }
5149 rcu_read_unlock();
5150 }
5151
5152 /*
5153 * Post the struct inode info into an on-disk inode location in the
5154 * buffer-cache. This gobbles the caller's reference to the
5155 * buffer_head in the inode location struct.
5156 *
5157 * The caller must have write access to iloc->bh.
5158 */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5159 static int ext4_do_update_inode(handle_t *handle,
5160 struct inode *inode,
5161 struct ext4_iloc *iloc)
5162 {
5163 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5164 struct ext4_inode_info *ei = EXT4_I(inode);
5165 struct buffer_head *bh = iloc->bh;
5166 struct super_block *sb = inode->i_sb;
5167 int err;
5168 int need_datasync = 0, set_large_file = 0;
5169
5170 spin_lock(&ei->i_raw_lock);
5171
5172 /*
5173 * For fields not tracked in the in-memory inode, initialise them
5174 * to zero for new inodes.
5175 */
5176 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5177 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5178
5179 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5180 need_datasync = 1;
5181 if (ei->i_disksize > 0x7fffffffULL) {
5182 if (!ext4_has_feature_large_file(sb) ||
5183 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5184 set_large_file = 1;
5185 }
5186
5187 err = ext4_fill_raw_inode(inode, raw_inode);
5188 spin_unlock(&ei->i_raw_lock);
5189 if (err) {
5190 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5191 goto out_brelse;
5192 }
5193
5194 if (inode->i_sb->s_flags & SB_LAZYTIME)
5195 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5196 bh->b_data);
5197
5198 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5199 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5200 if (err)
5201 goto out_error;
5202 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5203 if (set_large_file) {
5204 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5205 err = ext4_journal_get_write_access(handle, sb,
5206 EXT4_SB(sb)->s_sbh,
5207 EXT4_JTR_NONE);
5208 if (err)
5209 goto out_error;
5210 lock_buffer(EXT4_SB(sb)->s_sbh);
5211 ext4_set_feature_large_file(sb);
5212 ext4_superblock_csum_set(sb);
5213 unlock_buffer(EXT4_SB(sb)->s_sbh);
5214 ext4_handle_sync(handle);
5215 err = ext4_handle_dirty_metadata(handle, NULL,
5216 EXT4_SB(sb)->s_sbh);
5217 }
5218 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5219 out_error:
5220 ext4_std_error(inode->i_sb, err);
5221 out_brelse:
5222 brelse(bh);
5223 return err;
5224 }
5225
5226 /*
5227 * ext4_write_inode()
5228 *
5229 * We are called from a few places:
5230 *
5231 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5232 * Here, there will be no transaction running. We wait for any running
5233 * transaction to commit.
5234 *
5235 * - Within flush work (sys_sync(), kupdate and such).
5236 * We wait on commit, if told to.
5237 *
5238 * - Within iput_final() -> write_inode_now()
5239 * We wait on commit, if told to.
5240 *
5241 * In all cases it is actually safe for us to return without doing anything,
5242 * because the inode has been copied into a raw inode buffer in
5243 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5244 * writeback.
5245 *
5246 * Note that we are absolutely dependent upon all inode dirtiers doing the
5247 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5248 * which we are interested.
5249 *
5250 * It would be a bug for them to not do this. The code:
5251 *
5252 * mark_inode_dirty(inode)
5253 * stuff();
5254 * inode->i_size = expr;
5255 *
5256 * is in error because write_inode() could occur while `stuff()' is running,
5257 * and the new i_size will be lost. Plus the inode will no longer be on the
5258 * superblock's dirty inode list.
5259 */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5260 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5261 {
5262 int err;
5263
5264 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5265 return 0;
5266
5267 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5268 return -EIO;
5269
5270 if (EXT4_SB(inode->i_sb)->s_journal) {
5271 if (ext4_journal_current_handle()) {
5272 ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5273 dump_stack();
5274 return -EIO;
5275 }
5276
5277 /*
5278 * No need to force transaction in WB_SYNC_NONE mode. Also
5279 * ext4_sync_fs() will force the commit after everything is
5280 * written.
5281 */
5282 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5283 return 0;
5284
5285 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5286 EXT4_I(inode)->i_sync_tid);
5287 } else {
5288 struct ext4_iloc iloc;
5289
5290 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5291 if (err)
5292 return err;
5293 /*
5294 * sync(2) will flush the whole buffer cache. No need to do
5295 * it here separately for each inode.
5296 */
5297 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5298 sync_dirty_buffer(iloc.bh);
5299 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5300 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5301 "IO error syncing inode");
5302 err = -EIO;
5303 }
5304 brelse(iloc.bh);
5305 }
5306 return err;
5307 }
5308
5309 /*
5310 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5311 * buffers that are attached to a folio straddling i_size and are undergoing
5312 * commit. In that case we have to wait for commit to finish and try again.
5313 */
ext4_wait_for_tail_page_commit(struct inode * inode)5314 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5315 {
5316 unsigned offset;
5317 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5318 tid_t commit_tid;
5319 int ret;
5320 bool has_transaction;
5321
5322 offset = inode->i_size & (PAGE_SIZE - 1);
5323 /*
5324 * If the folio is fully truncated, we don't need to wait for any commit
5325 * (and we even should not as __ext4_journalled_invalidate_folio() may
5326 * strip all buffers from the folio but keep the folio dirty which can then
5327 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5328 * buffers). Also we don't need to wait for any commit if all buffers in
5329 * the folio remain valid. This is most beneficial for the common case of
5330 * blocksize == PAGESIZE.
5331 */
5332 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5333 return;
5334 while (1) {
5335 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5336 inode->i_size >> PAGE_SHIFT);
5337 if (IS_ERR(folio))
5338 return;
5339 ret = __ext4_journalled_invalidate_folio(folio, offset,
5340 folio_size(folio) - offset);
5341 folio_unlock(folio);
5342 folio_put(folio);
5343 if (ret != -EBUSY)
5344 return;
5345 has_transaction = false;
5346 read_lock(&journal->j_state_lock);
5347 if (journal->j_committing_transaction) {
5348 commit_tid = journal->j_committing_transaction->t_tid;
5349 has_transaction = true;
5350 }
5351 read_unlock(&journal->j_state_lock);
5352 if (has_transaction)
5353 jbd2_log_wait_commit(journal, commit_tid);
5354 }
5355 }
5356
5357 /*
5358 * ext4_setattr()
5359 *
5360 * Called from notify_change.
5361 *
5362 * We want to trap VFS attempts to truncate the file as soon as
5363 * possible. In particular, we want to make sure that when the VFS
5364 * shrinks i_size, we put the inode on the orphan list and modify
5365 * i_disksize immediately, so that during the subsequent flushing of
5366 * dirty pages and freeing of disk blocks, we can guarantee that any
5367 * commit will leave the blocks being flushed in an unused state on
5368 * disk. (On recovery, the inode will get truncated and the blocks will
5369 * be freed, so we have a strong guarantee that no future commit will
5370 * leave these blocks visible to the user.)
5371 *
5372 * Another thing we have to assure is that if we are in ordered mode
5373 * and inode is still attached to the committing transaction, we must
5374 * we start writeout of all the dirty pages which are being truncated.
5375 * This way we are sure that all the data written in the previous
5376 * transaction are already on disk (truncate waits for pages under
5377 * writeback).
5378 *
5379 * Called with inode->i_rwsem down.
5380 */
ext4_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5381 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5382 struct iattr *attr)
5383 {
5384 struct inode *inode = d_inode(dentry);
5385 int error, rc = 0;
5386 int orphan = 0;
5387 const unsigned int ia_valid = attr->ia_valid;
5388 bool inc_ivers = true;
5389
5390 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5391 return -EIO;
5392
5393 if (unlikely(IS_IMMUTABLE(inode)))
5394 return -EPERM;
5395
5396 if (unlikely(IS_APPEND(inode) &&
5397 (ia_valid & (ATTR_MODE | ATTR_UID |
5398 ATTR_GID | ATTR_TIMES_SET))))
5399 return -EPERM;
5400
5401 error = setattr_prepare(idmap, dentry, attr);
5402 if (error)
5403 return error;
5404
5405 error = fscrypt_prepare_setattr(dentry, attr);
5406 if (error)
5407 return error;
5408
5409 error = fsverity_prepare_setattr(dentry, attr);
5410 if (error)
5411 return error;
5412
5413 if (is_quota_modification(idmap, inode, attr)) {
5414 error = dquot_initialize(inode);
5415 if (error)
5416 return error;
5417 }
5418
5419 if (i_uid_needs_update(idmap, attr, inode) ||
5420 i_gid_needs_update(idmap, attr, inode)) {
5421 handle_t *handle;
5422
5423 /* (user+group)*(old+new) structure, inode write (sb,
5424 * inode block, ? - but truncate inode update has it) */
5425 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5426 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5427 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5428 if (IS_ERR(handle)) {
5429 error = PTR_ERR(handle);
5430 goto err_out;
5431 }
5432
5433 /* dquot_transfer() calls back ext4_get_inode_usage() which
5434 * counts xattr inode references.
5435 */
5436 down_read(&EXT4_I(inode)->xattr_sem);
5437 error = dquot_transfer(idmap, inode, attr);
5438 up_read(&EXT4_I(inode)->xattr_sem);
5439
5440 if (error) {
5441 ext4_journal_stop(handle);
5442 return error;
5443 }
5444 /* Update corresponding info in inode so that everything is in
5445 * one transaction */
5446 i_uid_update(idmap, attr, inode);
5447 i_gid_update(idmap, attr, inode);
5448 error = ext4_mark_inode_dirty(handle, inode);
5449 ext4_journal_stop(handle);
5450 if (unlikely(error)) {
5451 return error;
5452 }
5453 }
5454
5455 if (attr->ia_valid & ATTR_SIZE) {
5456 handle_t *handle;
5457 loff_t oldsize = inode->i_size;
5458 loff_t old_disksize;
5459 int shrink = (attr->ia_size < inode->i_size);
5460
5461 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5462 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5463
5464 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5465 return -EFBIG;
5466 }
5467 }
5468 if (!S_ISREG(inode->i_mode)) {
5469 return -EINVAL;
5470 }
5471
5472 if (attr->ia_size == inode->i_size)
5473 inc_ivers = false;
5474
5475 if (shrink) {
5476 if (ext4_should_order_data(inode)) {
5477 error = ext4_begin_ordered_truncate(inode,
5478 attr->ia_size);
5479 if (error)
5480 goto err_out;
5481 }
5482 /*
5483 * Blocks are going to be removed from the inode. Wait
5484 * for dio in flight.
5485 */
5486 inode_dio_wait(inode);
5487 }
5488
5489 filemap_invalidate_lock(inode->i_mapping);
5490
5491 rc = ext4_break_layouts(inode);
5492 if (rc) {
5493 filemap_invalidate_unlock(inode->i_mapping);
5494 goto err_out;
5495 }
5496
5497 if (attr->ia_size != inode->i_size) {
5498 /* attach jbd2 jinode for EOF folio tail zeroing */
5499 if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5500 oldsize & (inode->i_sb->s_blocksize - 1)) {
5501 error = ext4_inode_attach_jinode(inode);
5502 if (error)
5503 goto out_mmap_sem;
5504 }
5505
5506 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5507 if (IS_ERR(handle)) {
5508 error = PTR_ERR(handle);
5509 goto out_mmap_sem;
5510 }
5511 if (ext4_handle_valid(handle) && shrink) {
5512 error = ext4_orphan_add(handle, inode);
5513 orphan = 1;
5514 }
5515 /*
5516 * Update c/mtime and tail zero the EOF folio on
5517 * truncate up. ext4_truncate() handles the shrink case
5518 * below.
5519 */
5520 if (!shrink) {
5521 inode_set_mtime_to_ts(inode,
5522 inode_set_ctime_current(inode));
5523 if (oldsize & (inode->i_sb->s_blocksize - 1))
5524 ext4_block_truncate_page(handle,
5525 inode->i_mapping, oldsize);
5526 }
5527
5528 if (shrink)
5529 ext4_fc_track_range(handle, inode,
5530 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5531 inode->i_sb->s_blocksize_bits,
5532 EXT_MAX_BLOCKS - 1);
5533 else
5534 ext4_fc_track_range(
5535 handle, inode,
5536 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5537 inode->i_sb->s_blocksize_bits,
5538 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5539 inode->i_sb->s_blocksize_bits);
5540
5541 down_write(&EXT4_I(inode)->i_data_sem);
5542 old_disksize = EXT4_I(inode)->i_disksize;
5543 EXT4_I(inode)->i_disksize = attr->ia_size;
5544 rc = ext4_mark_inode_dirty(handle, inode);
5545 if (!error)
5546 error = rc;
5547 /*
5548 * We have to update i_size under i_data_sem together
5549 * with i_disksize to avoid races with writeback code
5550 * running ext4_wb_update_i_disksize().
5551 */
5552 if (!error)
5553 i_size_write(inode, attr->ia_size);
5554 else
5555 EXT4_I(inode)->i_disksize = old_disksize;
5556 up_write(&EXT4_I(inode)->i_data_sem);
5557 ext4_journal_stop(handle);
5558 if (error)
5559 goto out_mmap_sem;
5560 if (!shrink) {
5561 pagecache_isize_extended(inode, oldsize,
5562 inode->i_size);
5563 } else if (ext4_should_journal_data(inode)) {
5564 ext4_wait_for_tail_page_commit(inode);
5565 }
5566 }
5567
5568 /*
5569 * Truncate pagecache after we've waited for commit
5570 * in data=journal mode to make pages freeable.
5571 */
5572 truncate_pagecache(inode, inode->i_size);
5573 /*
5574 * Call ext4_truncate() even if i_size didn't change to
5575 * truncate possible preallocated blocks.
5576 */
5577 if (attr->ia_size <= oldsize) {
5578 rc = ext4_truncate(inode);
5579 if (rc)
5580 error = rc;
5581 }
5582 out_mmap_sem:
5583 filemap_invalidate_unlock(inode->i_mapping);
5584 }
5585
5586 if (!error) {
5587 if (inc_ivers)
5588 inode_inc_iversion(inode);
5589 setattr_copy(idmap, inode, attr);
5590 mark_inode_dirty(inode);
5591 }
5592
5593 /*
5594 * If the call to ext4_truncate failed to get a transaction handle at
5595 * all, we need to clean up the in-core orphan list manually.
5596 */
5597 if (orphan && inode->i_nlink)
5598 ext4_orphan_del(NULL, inode);
5599
5600 if (!error && (ia_valid & ATTR_MODE))
5601 rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5602
5603 err_out:
5604 if (error)
5605 ext4_std_error(inode->i_sb, error);
5606 if (!error)
5607 error = rc;
5608 return error;
5609 }
5610
ext4_dio_alignment(struct inode * inode)5611 u32 ext4_dio_alignment(struct inode *inode)
5612 {
5613 if (fsverity_active(inode))
5614 return 0;
5615 if (ext4_should_journal_data(inode))
5616 return 0;
5617 if (ext4_has_inline_data(inode))
5618 return 0;
5619 if (IS_ENCRYPTED(inode)) {
5620 if (!fscrypt_dio_supported(inode))
5621 return 0;
5622 return i_blocksize(inode);
5623 }
5624 return 1; /* use the iomap defaults */
5625 }
5626
ext4_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5627 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5628 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5629 {
5630 struct inode *inode = d_inode(path->dentry);
5631 struct ext4_inode *raw_inode;
5632 struct ext4_inode_info *ei = EXT4_I(inode);
5633 unsigned int flags;
5634
5635 if ((request_mask & STATX_BTIME) &&
5636 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5637 stat->result_mask |= STATX_BTIME;
5638 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5639 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5640 }
5641
5642 /*
5643 * Return the DIO alignment restrictions if requested. We only return
5644 * this information when requested, since on encrypted files it might
5645 * take a fair bit of work to get if the file wasn't opened recently.
5646 */
5647 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5648 u32 dio_align = ext4_dio_alignment(inode);
5649
5650 stat->result_mask |= STATX_DIOALIGN;
5651 if (dio_align == 1) {
5652 struct block_device *bdev = inode->i_sb->s_bdev;
5653
5654 /* iomap defaults */
5655 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5656 stat->dio_offset_align = bdev_logical_block_size(bdev);
5657 } else {
5658 stat->dio_mem_align = dio_align;
5659 stat->dio_offset_align = dio_align;
5660 }
5661 }
5662
5663 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5664 if (flags & EXT4_APPEND_FL)
5665 stat->attributes |= STATX_ATTR_APPEND;
5666 if (flags & EXT4_COMPR_FL)
5667 stat->attributes |= STATX_ATTR_COMPRESSED;
5668 if (flags & EXT4_ENCRYPT_FL)
5669 stat->attributes |= STATX_ATTR_ENCRYPTED;
5670 if (flags & EXT4_IMMUTABLE_FL)
5671 stat->attributes |= STATX_ATTR_IMMUTABLE;
5672 if (flags & EXT4_NODUMP_FL)
5673 stat->attributes |= STATX_ATTR_NODUMP;
5674 if (flags & EXT4_VERITY_FL)
5675 stat->attributes |= STATX_ATTR_VERITY;
5676
5677 stat->attributes_mask |= (STATX_ATTR_APPEND |
5678 STATX_ATTR_COMPRESSED |
5679 STATX_ATTR_ENCRYPTED |
5680 STATX_ATTR_IMMUTABLE |
5681 STATX_ATTR_NODUMP |
5682 STATX_ATTR_VERITY);
5683
5684 generic_fillattr(idmap, request_mask, inode, stat);
5685 return 0;
5686 }
5687
ext4_file_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5688 int ext4_file_getattr(struct mnt_idmap *idmap,
5689 const struct path *path, struct kstat *stat,
5690 u32 request_mask, unsigned int query_flags)
5691 {
5692 struct inode *inode = d_inode(path->dentry);
5693 u64 delalloc_blocks;
5694
5695 ext4_getattr(idmap, path, stat, request_mask, query_flags);
5696
5697 /*
5698 * If there is inline data in the inode, the inode will normally not
5699 * have data blocks allocated (it may have an external xattr block).
5700 * Report at least one sector for such files, so tools like tar, rsync,
5701 * others don't incorrectly think the file is completely sparse.
5702 */
5703 if (unlikely(ext4_has_inline_data(inode)))
5704 stat->blocks += (stat->size + 511) >> 9;
5705
5706 /*
5707 * We can't update i_blocks if the block allocation is delayed
5708 * otherwise in the case of system crash before the real block
5709 * allocation is done, we will have i_blocks inconsistent with
5710 * on-disk file blocks.
5711 * We always keep i_blocks updated together with real
5712 * allocation. But to not confuse with user, stat
5713 * will return the blocks that include the delayed allocation
5714 * blocks for this file.
5715 */
5716 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5717 EXT4_I(inode)->i_reserved_data_blocks);
5718 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5719 return 0;
5720 }
5721
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5722 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5723 int pextents)
5724 {
5725 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5726 return ext4_ind_trans_blocks(inode, lblocks);
5727 return ext4_ext_index_trans_blocks(inode, pextents);
5728 }
5729
5730 /*
5731 * Account for index blocks, block groups bitmaps and block group
5732 * descriptor blocks if modify datablocks and index blocks
5733 * worse case, the indexs blocks spread over different block groups
5734 *
5735 * If datablocks are discontiguous, they are possible to spread over
5736 * different block groups too. If they are contiguous, with flexbg,
5737 * they could still across block group boundary.
5738 *
5739 * Also account for superblock, inode, quota and xattr blocks
5740 */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5741 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5742 int pextents)
5743 {
5744 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5745 int gdpblocks;
5746 int idxblocks;
5747 int ret;
5748
5749 /*
5750 * How many index blocks need to touch to map @lblocks logical blocks
5751 * to @pextents physical extents?
5752 */
5753 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5754
5755 ret = idxblocks;
5756
5757 /*
5758 * Now let's see how many group bitmaps and group descriptors need
5759 * to account
5760 */
5761 groups = idxblocks + pextents;
5762 gdpblocks = groups;
5763 if (groups > ngroups)
5764 groups = ngroups;
5765 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5766 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5767
5768 /* bitmaps and block group descriptor blocks */
5769 ret += groups + gdpblocks;
5770
5771 /* Blocks for super block, inode, quota and xattr blocks */
5772 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5773
5774 return ret;
5775 }
5776
5777 /*
5778 * Calculate the total number of credits to reserve to fit
5779 * the modification of a single pages into a single transaction,
5780 * which may include multiple chunks of block allocations.
5781 *
5782 * This could be called via ext4_write_begin()
5783 *
5784 * We need to consider the worse case, when
5785 * one new block per extent.
5786 */
ext4_writepage_trans_blocks(struct inode * inode)5787 int ext4_writepage_trans_blocks(struct inode *inode)
5788 {
5789 int bpp = ext4_journal_blocks_per_page(inode);
5790 int ret;
5791
5792 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5793
5794 /* Account for data blocks for journalled mode */
5795 if (ext4_should_journal_data(inode))
5796 ret += bpp;
5797 return ret;
5798 }
5799
5800 /*
5801 * Calculate the journal credits for a chunk of data modification.
5802 *
5803 * This is called from DIO, fallocate or whoever calling
5804 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5805 *
5806 * journal buffers for data blocks are not included here, as DIO
5807 * and fallocate do no need to journal data buffers.
5808 */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5809 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5810 {
5811 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5812 }
5813
5814 /*
5815 * The caller must have previously called ext4_reserve_inode_write().
5816 * Give this, we know that the caller already has write access to iloc->bh.
5817 */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5818 int ext4_mark_iloc_dirty(handle_t *handle,
5819 struct inode *inode, struct ext4_iloc *iloc)
5820 {
5821 int err = 0;
5822
5823 if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5824 put_bh(iloc->bh);
5825 return -EIO;
5826 }
5827 ext4_fc_track_inode(handle, inode);
5828
5829 /* the do_update_inode consumes one bh->b_count */
5830 get_bh(iloc->bh);
5831
5832 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5833 err = ext4_do_update_inode(handle, inode, iloc);
5834 put_bh(iloc->bh);
5835 return err;
5836 }
5837
5838 /*
5839 * On success, We end up with an outstanding reference count against
5840 * iloc->bh. This _must_ be cleaned up later.
5841 */
5842
5843 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5844 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5845 struct ext4_iloc *iloc)
5846 {
5847 int err;
5848
5849 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5850 return -EIO;
5851
5852 err = ext4_get_inode_loc(inode, iloc);
5853 if (!err) {
5854 BUFFER_TRACE(iloc->bh, "get_write_access");
5855 err = ext4_journal_get_write_access(handle, inode->i_sb,
5856 iloc->bh, EXT4_JTR_NONE);
5857 if (err) {
5858 brelse(iloc->bh);
5859 iloc->bh = NULL;
5860 }
5861 }
5862 ext4_std_error(inode->i_sb, err);
5863 return err;
5864 }
5865
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)5866 static int __ext4_expand_extra_isize(struct inode *inode,
5867 unsigned int new_extra_isize,
5868 struct ext4_iloc *iloc,
5869 handle_t *handle, int *no_expand)
5870 {
5871 struct ext4_inode *raw_inode;
5872 struct ext4_xattr_ibody_header *header;
5873 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5874 struct ext4_inode_info *ei = EXT4_I(inode);
5875 int error;
5876
5877 /* this was checked at iget time, but double check for good measure */
5878 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5879 (ei->i_extra_isize & 3)) {
5880 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5881 ei->i_extra_isize,
5882 EXT4_INODE_SIZE(inode->i_sb));
5883 return -EFSCORRUPTED;
5884 }
5885 if ((new_extra_isize < ei->i_extra_isize) ||
5886 (new_extra_isize < 4) ||
5887 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5888 return -EINVAL; /* Should never happen */
5889
5890 raw_inode = ext4_raw_inode(iloc);
5891
5892 header = IHDR(inode, raw_inode);
5893
5894 /* No extended attributes present */
5895 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5896 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5897 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5898 EXT4_I(inode)->i_extra_isize, 0,
5899 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5900 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5901 return 0;
5902 }
5903
5904 /*
5905 * We may need to allocate external xattr block so we need quotas
5906 * initialized. Here we can be called with various locks held so we
5907 * cannot affort to initialize quotas ourselves. So just bail.
5908 */
5909 if (dquot_initialize_needed(inode))
5910 return -EAGAIN;
5911
5912 /* try to expand with EAs present */
5913 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5914 raw_inode, handle);
5915 if (error) {
5916 /*
5917 * Inode size expansion failed; don't try again
5918 */
5919 *no_expand = 1;
5920 }
5921
5922 return error;
5923 }
5924
5925 /*
5926 * Expand an inode by new_extra_isize bytes.
5927 * Returns 0 on success or negative error number on failure.
5928 */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5929 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5930 unsigned int new_extra_isize,
5931 struct ext4_iloc iloc,
5932 handle_t *handle)
5933 {
5934 int no_expand;
5935 int error;
5936
5937 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5938 return -EOVERFLOW;
5939
5940 /*
5941 * In nojournal mode, we can immediately attempt to expand
5942 * the inode. When journaled, we first need to obtain extra
5943 * buffer credits since we may write into the EA block
5944 * with this same handle. If journal_extend fails, then it will
5945 * only result in a minor loss of functionality for that inode.
5946 * If this is felt to be critical, then e2fsck should be run to
5947 * force a large enough s_min_extra_isize.
5948 */
5949 if (ext4_journal_extend(handle,
5950 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5951 return -ENOSPC;
5952
5953 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5954 return -EBUSY;
5955
5956 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5957 handle, &no_expand);
5958 ext4_write_unlock_xattr(inode, &no_expand);
5959
5960 return error;
5961 }
5962
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)5963 int ext4_expand_extra_isize(struct inode *inode,
5964 unsigned int new_extra_isize,
5965 struct ext4_iloc *iloc)
5966 {
5967 handle_t *handle;
5968 int no_expand;
5969 int error, rc;
5970
5971 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5972 brelse(iloc->bh);
5973 return -EOVERFLOW;
5974 }
5975
5976 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5977 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5978 if (IS_ERR(handle)) {
5979 error = PTR_ERR(handle);
5980 brelse(iloc->bh);
5981 return error;
5982 }
5983
5984 ext4_write_lock_xattr(inode, &no_expand);
5985
5986 BUFFER_TRACE(iloc->bh, "get_write_access");
5987 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5988 EXT4_JTR_NONE);
5989 if (error) {
5990 brelse(iloc->bh);
5991 goto out_unlock;
5992 }
5993
5994 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5995 handle, &no_expand);
5996
5997 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5998 if (!error)
5999 error = rc;
6000
6001 out_unlock:
6002 ext4_write_unlock_xattr(inode, &no_expand);
6003 ext4_journal_stop(handle);
6004 return error;
6005 }
6006
6007 /*
6008 * What we do here is to mark the in-core inode as clean with respect to inode
6009 * dirtiness (it may still be data-dirty).
6010 * This means that the in-core inode may be reaped by prune_icache
6011 * without having to perform any I/O. This is a very good thing,
6012 * because *any* task may call prune_icache - even ones which
6013 * have a transaction open against a different journal.
6014 *
6015 * Is this cheating? Not really. Sure, we haven't written the
6016 * inode out, but prune_icache isn't a user-visible syncing function.
6017 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6018 * we start and wait on commits.
6019 */
__ext4_mark_inode_dirty(handle_t * handle,struct inode * inode,const char * func,unsigned int line)6020 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6021 const char *func, unsigned int line)
6022 {
6023 struct ext4_iloc iloc;
6024 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6025 int err;
6026
6027 might_sleep();
6028 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6029 err = ext4_reserve_inode_write(handle, inode, &iloc);
6030 if (err)
6031 goto out;
6032
6033 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6034 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6035 iloc, handle);
6036
6037 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6038 out:
6039 if (unlikely(err))
6040 ext4_error_inode_err(inode, func, line, 0, err,
6041 "mark_inode_dirty error");
6042 return err;
6043 }
6044
6045 /*
6046 * ext4_dirty_inode() is called from __mark_inode_dirty()
6047 *
6048 * We're really interested in the case where a file is being extended.
6049 * i_size has been changed by generic_commit_write() and we thus need
6050 * to include the updated inode in the current transaction.
6051 *
6052 * Also, dquot_alloc_block() will always dirty the inode when blocks
6053 * are allocated to the file.
6054 *
6055 * If the inode is marked synchronous, we don't honour that here - doing
6056 * so would cause a commit on atime updates, which we don't bother doing.
6057 * We handle synchronous inodes at the highest possible level.
6058 */
ext4_dirty_inode(struct inode * inode,int flags)6059 void ext4_dirty_inode(struct inode *inode, int flags)
6060 {
6061 handle_t *handle;
6062
6063 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6064 if (IS_ERR(handle))
6065 return;
6066 ext4_mark_inode_dirty(handle, inode);
6067 ext4_journal_stop(handle);
6068 }
6069
ext4_change_inode_journal_flag(struct inode * inode,int val)6070 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6071 {
6072 journal_t *journal;
6073 handle_t *handle;
6074 int err;
6075 int alloc_ctx;
6076
6077 /*
6078 * We have to be very careful here: changing a data block's
6079 * journaling status dynamically is dangerous. If we write a
6080 * data block to the journal, change the status and then delete
6081 * that block, we risk forgetting to revoke the old log record
6082 * from the journal and so a subsequent replay can corrupt data.
6083 * So, first we make sure that the journal is empty and that
6084 * nobody is changing anything.
6085 */
6086
6087 journal = EXT4_JOURNAL(inode);
6088 if (!journal)
6089 return 0;
6090 if (is_journal_aborted(journal))
6091 return -EROFS;
6092
6093 /* Wait for all existing dio workers */
6094 inode_dio_wait(inode);
6095
6096 /*
6097 * Before flushing the journal and switching inode's aops, we have
6098 * to flush all dirty data the inode has. There can be outstanding
6099 * delayed allocations, there can be unwritten extents created by
6100 * fallocate or buffered writes in dioread_nolock mode covered by
6101 * dirty data which can be converted only after flushing the dirty
6102 * data (and journalled aops don't know how to handle these cases).
6103 */
6104 if (val) {
6105 filemap_invalidate_lock(inode->i_mapping);
6106 err = filemap_write_and_wait(inode->i_mapping);
6107 if (err < 0) {
6108 filemap_invalidate_unlock(inode->i_mapping);
6109 return err;
6110 }
6111 }
6112
6113 alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6114 jbd2_journal_lock_updates(journal);
6115
6116 /*
6117 * OK, there are no updates running now, and all cached data is
6118 * synced to disk. We are now in a completely consistent state
6119 * which doesn't have anything in the journal, and we know that
6120 * no filesystem updates are running, so it is safe to modify
6121 * the inode's in-core data-journaling state flag now.
6122 */
6123
6124 if (val)
6125 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6126 else {
6127 err = jbd2_journal_flush(journal, 0);
6128 if (err < 0) {
6129 jbd2_journal_unlock_updates(journal);
6130 ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6131 return err;
6132 }
6133 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6134 }
6135 ext4_set_aops(inode);
6136
6137 jbd2_journal_unlock_updates(journal);
6138 ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6139
6140 if (val)
6141 filemap_invalidate_unlock(inode->i_mapping);
6142
6143 /* Finally we can mark the inode as dirty. */
6144
6145 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6146 if (IS_ERR(handle))
6147 return PTR_ERR(handle);
6148
6149 ext4_fc_mark_ineligible(inode->i_sb,
6150 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6151 err = ext4_mark_inode_dirty(handle, inode);
6152 ext4_handle_sync(handle);
6153 ext4_journal_stop(handle);
6154 ext4_std_error(inode->i_sb, err);
6155
6156 return err;
6157 }
6158
ext4_bh_unmapped(handle_t * handle,struct inode * inode,struct buffer_head * bh)6159 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6160 struct buffer_head *bh)
6161 {
6162 return !buffer_mapped(bh);
6163 }
6164
ext4_page_mkwrite(struct vm_fault * vmf)6165 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6166 {
6167 struct vm_area_struct *vma = vmf->vma;
6168 struct folio *folio = page_folio(vmf->page);
6169 loff_t size;
6170 unsigned long len;
6171 int err;
6172 vm_fault_t ret;
6173 struct file *file = vma->vm_file;
6174 struct inode *inode = file_inode(file);
6175 struct address_space *mapping = inode->i_mapping;
6176 handle_t *handle;
6177 get_block_t *get_block;
6178 int retries = 0;
6179
6180 if (unlikely(IS_IMMUTABLE(inode)))
6181 return VM_FAULT_SIGBUS;
6182
6183 sb_start_pagefault(inode->i_sb);
6184 file_update_time(vma->vm_file);
6185
6186 filemap_invalidate_lock_shared(mapping);
6187
6188 err = ext4_convert_inline_data(inode);
6189 if (err)
6190 goto out_ret;
6191
6192 /*
6193 * On data journalling we skip straight to the transaction handle:
6194 * there's no delalloc; page truncated will be checked later; the
6195 * early return w/ all buffers mapped (calculates size/len) can't
6196 * be used; and there's no dioread_nolock, so only ext4_get_block.
6197 */
6198 if (ext4_should_journal_data(inode))
6199 goto retry_alloc;
6200
6201 /* Delalloc case is easy... */
6202 if (test_opt(inode->i_sb, DELALLOC) &&
6203 !ext4_nonda_switch(inode->i_sb)) {
6204 do {
6205 err = block_page_mkwrite(vma, vmf,
6206 ext4_da_get_block_prep);
6207 } while (err == -ENOSPC &&
6208 ext4_should_retry_alloc(inode->i_sb, &retries));
6209 goto out_ret;
6210 }
6211
6212 folio_lock(folio);
6213 size = i_size_read(inode);
6214 /* Page got truncated from under us? */
6215 if (folio->mapping != mapping || folio_pos(folio) > size) {
6216 folio_unlock(folio);
6217 ret = VM_FAULT_NOPAGE;
6218 goto out;
6219 }
6220
6221 len = folio_size(folio);
6222 if (folio_pos(folio) + len > size)
6223 len = size - folio_pos(folio);
6224 /*
6225 * Return if we have all the buffers mapped. This avoids the need to do
6226 * journal_start/journal_stop which can block and take a long time
6227 *
6228 * This cannot be done for data journalling, as we have to add the
6229 * inode to the transaction's list to writeprotect pages on commit.
6230 */
6231 if (folio_buffers(folio)) {
6232 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6233 0, len, NULL,
6234 ext4_bh_unmapped)) {
6235 /* Wait so that we don't change page under IO */
6236 folio_wait_stable(folio);
6237 ret = VM_FAULT_LOCKED;
6238 goto out;
6239 }
6240 }
6241 folio_unlock(folio);
6242 /* OK, we need to fill the hole... */
6243 if (ext4_should_dioread_nolock(inode))
6244 get_block = ext4_get_block_unwritten;
6245 else
6246 get_block = ext4_get_block;
6247 retry_alloc:
6248 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6249 ext4_writepage_trans_blocks(inode));
6250 if (IS_ERR(handle)) {
6251 ret = VM_FAULT_SIGBUS;
6252 goto out;
6253 }
6254 /*
6255 * Data journalling can't use block_page_mkwrite() because it
6256 * will set_buffer_dirty() before do_journal_get_write_access()
6257 * thus might hit warning messages for dirty metadata buffers.
6258 */
6259 if (!ext4_should_journal_data(inode)) {
6260 err = block_page_mkwrite(vma, vmf, get_block);
6261 } else {
6262 folio_lock(folio);
6263 size = i_size_read(inode);
6264 /* Page got truncated from under us? */
6265 if (folio->mapping != mapping || folio_pos(folio) > size) {
6266 ret = VM_FAULT_NOPAGE;
6267 goto out_error;
6268 }
6269
6270 len = folio_size(folio);
6271 if (folio_pos(folio) + len > size)
6272 len = size - folio_pos(folio);
6273
6274 err = ext4_block_write_begin(handle, folio, 0, len,
6275 ext4_get_block);
6276 if (!err) {
6277 ret = VM_FAULT_SIGBUS;
6278 if (ext4_journal_folio_buffers(handle, folio, len))
6279 goto out_error;
6280 } else {
6281 folio_unlock(folio);
6282 }
6283 }
6284 ext4_journal_stop(handle);
6285 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6286 goto retry_alloc;
6287 out_ret:
6288 ret = vmf_fs_error(err);
6289 out:
6290 filemap_invalidate_unlock_shared(mapping);
6291 sb_end_pagefault(inode->i_sb);
6292 return ret;
6293 out_error:
6294 folio_unlock(folio);
6295 ext4_journal_stop(handle);
6296 goto out;
6297 }
6298