1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34 
__reverse_ulong(unsigned char * str)35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
__reverse_ffs(unsigned long word)54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
f2fs_need_SSR(struct f2fs_sb_info * sbi)171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
f2fs_abort_atomic_write(struct inode * inode,bool clean)188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 
192 	if (!f2fs_is_atomic_file(inode))
193 		return;
194 
195 	if (clean)
196 		truncate_inode_pages_final(inode->i_mapping);
197 
198 	release_atomic_write_cnt(inode);
199 	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 	clear_inode_flag(inode, FI_ATOMIC_FILE);
202 	if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
203 		clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
204 		/*
205 		 * The vfs inode keeps clean during commit, but the f2fs inode
206 		 * doesn't. So clear the dirty state after commit and let
207 		 * f2fs_mark_inode_dirty_sync ensure a consistent dirty state.
208 		 */
209 		f2fs_inode_synced(inode);
210 		f2fs_mark_inode_dirty_sync(inode, true);
211 	}
212 	stat_dec_atomic_inode(inode);
213 
214 	F2FS_I(inode)->atomic_write_task = NULL;
215 
216 	if (clean) {
217 		f2fs_i_size_write(inode, fi->original_i_size);
218 		fi->original_i_size = 0;
219 	}
220 	/* avoid stale dirty inode during eviction */
221 	sync_inode_metadata(inode, 0);
222 }
223 
__replace_atomic_write_block(struct inode * inode,pgoff_t index,block_t new_addr,block_t * old_addr,bool recover)224 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
225 			block_t new_addr, block_t *old_addr, bool recover)
226 {
227 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
228 	struct dnode_of_data dn;
229 	struct node_info ni;
230 	int err;
231 
232 retry:
233 	set_new_dnode(&dn, inode, NULL, NULL, 0);
234 	err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
235 	if (err) {
236 		if (err == -ENOMEM) {
237 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
238 			goto retry;
239 		}
240 		return err;
241 	}
242 
243 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
244 	if (err) {
245 		f2fs_put_dnode(&dn);
246 		return err;
247 	}
248 
249 	if (recover) {
250 		/* dn.data_blkaddr is always valid */
251 		if (!__is_valid_data_blkaddr(new_addr)) {
252 			if (new_addr == NULL_ADDR)
253 				dec_valid_block_count(sbi, inode, 1);
254 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr, 1);
255 			f2fs_update_data_blkaddr(&dn, new_addr);
256 		} else {
257 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
258 				new_addr, ni.version, true, true);
259 		}
260 	} else {
261 		blkcnt_t count = 1;
262 
263 		err = inc_valid_block_count(sbi, inode, &count, true);
264 		if (err) {
265 			f2fs_put_dnode(&dn);
266 			return err;
267 		}
268 
269 		*old_addr = dn.data_blkaddr;
270 		f2fs_truncate_data_blocks_range(&dn, 1);
271 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
272 
273 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
274 					ni.version, true, false);
275 	}
276 
277 	f2fs_put_dnode(&dn);
278 
279 	trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
280 			index, old_addr ? *old_addr : 0, new_addr, recover);
281 	return 0;
282 }
283 
__complete_revoke_list(struct inode * inode,struct list_head * head,bool revoke)284 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
285 					bool revoke)
286 {
287 	struct revoke_entry *cur, *tmp;
288 	pgoff_t start_index = 0;
289 	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
290 
291 	list_for_each_entry_safe(cur, tmp, head, list) {
292 		if (revoke) {
293 			__replace_atomic_write_block(inode, cur->index,
294 						cur->old_addr, NULL, true);
295 		} else if (truncate) {
296 			f2fs_truncate_hole(inode, start_index, cur->index);
297 			start_index = cur->index + 1;
298 		}
299 
300 		list_del(&cur->list);
301 		kmem_cache_free(revoke_entry_slab, cur);
302 	}
303 
304 	if (!revoke && truncate)
305 		f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
306 }
307 
__f2fs_commit_atomic_write(struct inode * inode)308 static int __f2fs_commit_atomic_write(struct inode *inode)
309 {
310 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
311 	struct f2fs_inode_info *fi = F2FS_I(inode);
312 	struct inode *cow_inode = fi->cow_inode;
313 	struct revoke_entry *new;
314 	struct list_head revoke_list;
315 	block_t blkaddr;
316 	struct dnode_of_data dn;
317 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
318 	pgoff_t off = 0, blen, index;
319 	int ret = 0, i;
320 
321 	INIT_LIST_HEAD(&revoke_list);
322 
323 	while (len) {
324 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
325 
326 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
327 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
328 		if (ret && ret != -ENOENT) {
329 			goto out;
330 		} else if (ret == -ENOENT) {
331 			ret = 0;
332 			if (dn.max_level == 0)
333 				goto out;
334 			goto next;
335 		}
336 
337 		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
338 				len);
339 		index = off;
340 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
341 			blkaddr = f2fs_data_blkaddr(&dn);
342 
343 			if (!__is_valid_data_blkaddr(blkaddr)) {
344 				continue;
345 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
346 					DATA_GENERIC_ENHANCE)) {
347 				f2fs_put_dnode(&dn);
348 				ret = -EFSCORRUPTED;
349 				goto out;
350 			}
351 
352 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
353 							true, NULL);
354 
355 			ret = __replace_atomic_write_block(inode, index, blkaddr,
356 							&new->old_addr, false);
357 			if (ret) {
358 				f2fs_put_dnode(&dn);
359 				kmem_cache_free(revoke_entry_slab, new);
360 				goto out;
361 			}
362 
363 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
364 			new->index = index;
365 			list_add_tail(&new->list, &revoke_list);
366 		}
367 		f2fs_put_dnode(&dn);
368 next:
369 		off += blen;
370 		len -= blen;
371 	}
372 
373 out:
374 	if (ret) {
375 		sbi->revoked_atomic_block += fi->atomic_write_cnt;
376 	} else {
377 		sbi->committed_atomic_block += fi->atomic_write_cnt;
378 		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
379 
380 		/*
381 		 * inode may has no FI_ATOMIC_DIRTIED flag due to no write
382 		 * before commit.
383 		 */
384 		if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
385 			/* clear atomic dirty status and set vfs dirty status */
386 			clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
387 			f2fs_mark_inode_dirty_sync(inode, true);
388 		}
389 	}
390 
391 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
392 
393 	return ret;
394 }
395 
f2fs_commit_atomic_write(struct inode * inode)396 int f2fs_commit_atomic_write(struct inode *inode)
397 {
398 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
399 	struct f2fs_inode_info *fi = F2FS_I(inode);
400 	int err;
401 
402 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
403 	if (err)
404 		return err;
405 
406 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
407 	f2fs_lock_op(sbi);
408 
409 	err = __f2fs_commit_atomic_write(inode);
410 
411 	f2fs_unlock_op(sbi);
412 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
413 
414 	return err;
415 }
416 
417 /*
418  * This function balances dirty node and dentry pages.
419  * In addition, it controls garbage collection.
420  */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)421 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
422 {
423 	if (f2fs_cp_error(sbi))
424 		return;
425 
426 	if (time_to_inject(sbi, FAULT_CHECKPOINT))
427 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
428 
429 	/* balance_fs_bg is able to be pending */
430 	if (need && excess_cached_nats(sbi))
431 		f2fs_balance_fs_bg(sbi, false);
432 
433 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
434 		return;
435 
436 	/*
437 	 * We should do GC or end up with checkpoint, if there are so many dirty
438 	 * dir/node pages without enough free segments.
439 	 */
440 	if (has_enough_free_secs(sbi, 0, 0))
441 		return;
442 
443 	if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
444 				sbi->gc_thread->f2fs_gc_task) {
445 		DEFINE_WAIT(wait);
446 
447 		prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
448 					TASK_UNINTERRUPTIBLE);
449 		wake_up(&sbi->gc_thread->gc_wait_queue_head);
450 		io_schedule();
451 		finish_wait(&sbi->gc_thread->fggc_wq, &wait);
452 	} else {
453 		struct f2fs_gc_control gc_control = {
454 			.victim_segno = NULL_SEGNO,
455 			.init_gc_type = BG_GC,
456 			.no_bg_gc = true,
457 			.should_migrate_blocks = false,
458 			.err_gc_skipped = false,
459 			.nr_free_secs = 1 };
460 		f2fs_down_write(&sbi->gc_lock);
461 		stat_inc_gc_call_count(sbi, FOREGROUND);
462 		f2fs_gc(sbi, &gc_control);
463 	}
464 }
465 
excess_dirty_threshold(struct f2fs_sb_info * sbi)466 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
467 {
468 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
469 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
470 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
471 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
472 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
473 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
474 	unsigned int threshold =
475 		SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD));
476 	unsigned int global_threshold = threshold * 3 / 2;
477 
478 	if (dents >= threshold || qdata >= threshold ||
479 		nodes >= threshold || meta >= threshold ||
480 		imeta >= threshold)
481 		return true;
482 	return dents + qdata + nodes + meta + imeta >  global_threshold;
483 }
484 
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)485 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
486 {
487 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
488 		return;
489 
490 	/* try to shrink extent cache when there is no enough memory */
491 	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
492 		f2fs_shrink_read_extent_tree(sbi,
493 				READ_EXTENT_CACHE_SHRINK_NUMBER);
494 
495 	/* try to shrink age extent cache when there is no enough memory */
496 	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
497 		f2fs_shrink_age_extent_tree(sbi,
498 				AGE_EXTENT_CACHE_SHRINK_NUMBER);
499 
500 	/* check the # of cached NAT entries */
501 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
502 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
503 
504 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
505 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
506 	else
507 		f2fs_build_free_nids(sbi, false, false);
508 
509 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
510 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
511 		goto do_sync;
512 
513 	/* there is background inflight IO or foreground operation recently */
514 	if (is_inflight_io(sbi, REQ_TIME) ||
515 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
516 		return;
517 
518 	/* exceed periodical checkpoint timeout threshold */
519 	if (f2fs_time_over(sbi, CP_TIME))
520 		goto do_sync;
521 
522 	/* checkpoint is the only way to shrink partial cached entries */
523 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
524 		f2fs_available_free_memory(sbi, INO_ENTRIES))
525 		return;
526 
527 do_sync:
528 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
529 		struct blk_plug plug;
530 
531 		mutex_lock(&sbi->flush_lock);
532 
533 		blk_start_plug(&plug);
534 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
535 		blk_finish_plug(&plug);
536 
537 		mutex_unlock(&sbi->flush_lock);
538 	}
539 	stat_inc_cp_call_count(sbi, BACKGROUND);
540 	f2fs_sync_fs(sbi->sb, 1);
541 }
542 
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)543 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
544 				struct block_device *bdev)
545 {
546 	int ret = blkdev_issue_flush(bdev);
547 
548 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
549 				test_opt(sbi, FLUSH_MERGE), ret);
550 	if (!ret)
551 		f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
552 	return ret;
553 }
554 
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)555 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
556 {
557 	int ret = 0;
558 	int i;
559 
560 	if (!f2fs_is_multi_device(sbi))
561 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
562 
563 	for (i = 0; i < sbi->s_ndevs; i++) {
564 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
565 			continue;
566 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
567 		if (ret)
568 			break;
569 	}
570 	return ret;
571 }
572 
issue_flush_thread(void * data)573 static int issue_flush_thread(void *data)
574 {
575 	struct f2fs_sb_info *sbi = data;
576 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
577 	wait_queue_head_t *q = &fcc->flush_wait_queue;
578 repeat:
579 	if (kthread_should_stop())
580 		return 0;
581 
582 	if (!llist_empty(&fcc->issue_list)) {
583 		struct flush_cmd *cmd, *next;
584 		int ret;
585 
586 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
587 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
588 
589 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
590 
591 		ret = submit_flush_wait(sbi, cmd->ino);
592 		atomic_inc(&fcc->issued_flush);
593 
594 		llist_for_each_entry_safe(cmd, next,
595 					  fcc->dispatch_list, llnode) {
596 			cmd->ret = ret;
597 			complete(&cmd->wait);
598 		}
599 		fcc->dispatch_list = NULL;
600 	}
601 
602 	wait_event_interruptible(*q,
603 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
604 	goto repeat;
605 }
606 
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)607 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
608 {
609 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
610 	struct flush_cmd cmd;
611 	int ret;
612 
613 	if (test_opt(sbi, NOBARRIER))
614 		return 0;
615 
616 	if (!test_opt(sbi, FLUSH_MERGE)) {
617 		atomic_inc(&fcc->queued_flush);
618 		ret = submit_flush_wait(sbi, ino);
619 		atomic_dec(&fcc->queued_flush);
620 		atomic_inc(&fcc->issued_flush);
621 		return ret;
622 	}
623 
624 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
625 	    f2fs_is_multi_device(sbi)) {
626 		ret = submit_flush_wait(sbi, ino);
627 		atomic_dec(&fcc->queued_flush);
628 
629 		atomic_inc(&fcc->issued_flush);
630 		return ret;
631 	}
632 
633 	cmd.ino = ino;
634 	init_completion(&cmd.wait);
635 
636 	llist_add(&cmd.llnode, &fcc->issue_list);
637 
638 	/*
639 	 * update issue_list before we wake up issue_flush thread, this
640 	 * smp_mb() pairs with another barrier in ___wait_event(), see
641 	 * more details in comments of waitqueue_active().
642 	 */
643 	smp_mb();
644 
645 	if (waitqueue_active(&fcc->flush_wait_queue))
646 		wake_up(&fcc->flush_wait_queue);
647 
648 	if (fcc->f2fs_issue_flush) {
649 		wait_for_completion(&cmd.wait);
650 		atomic_dec(&fcc->queued_flush);
651 	} else {
652 		struct llist_node *list;
653 
654 		list = llist_del_all(&fcc->issue_list);
655 		if (!list) {
656 			wait_for_completion(&cmd.wait);
657 			atomic_dec(&fcc->queued_flush);
658 		} else {
659 			struct flush_cmd *tmp, *next;
660 
661 			ret = submit_flush_wait(sbi, ino);
662 
663 			llist_for_each_entry_safe(tmp, next, list, llnode) {
664 				if (tmp == &cmd) {
665 					cmd.ret = ret;
666 					atomic_dec(&fcc->queued_flush);
667 					continue;
668 				}
669 				tmp->ret = ret;
670 				complete(&tmp->wait);
671 			}
672 		}
673 	}
674 
675 	return cmd.ret;
676 }
677 
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)678 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
679 {
680 	dev_t dev = sbi->sb->s_bdev->bd_dev;
681 	struct flush_cmd_control *fcc;
682 
683 	if (SM_I(sbi)->fcc_info) {
684 		fcc = SM_I(sbi)->fcc_info;
685 		if (fcc->f2fs_issue_flush)
686 			return 0;
687 		goto init_thread;
688 	}
689 
690 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
691 	if (!fcc)
692 		return -ENOMEM;
693 	atomic_set(&fcc->issued_flush, 0);
694 	atomic_set(&fcc->queued_flush, 0);
695 	init_waitqueue_head(&fcc->flush_wait_queue);
696 	init_llist_head(&fcc->issue_list);
697 	SM_I(sbi)->fcc_info = fcc;
698 	if (!test_opt(sbi, FLUSH_MERGE))
699 		return 0;
700 
701 init_thread:
702 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
703 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
704 	if (IS_ERR(fcc->f2fs_issue_flush)) {
705 		int err = PTR_ERR(fcc->f2fs_issue_flush);
706 
707 		fcc->f2fs_issue_flush = NULL;
708 		return err;
709 	}
710 
711 	return 0;
712 }
713 
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)714 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
715 {
716 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
717 
718 	if (fcc && fcc->f2fs_issue_flush) {
719 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
720 
721 		fcc->f2fs_issue_flush = NULL;
722 		kthread_stop(flush_thread);
723 	}
724 	if (free) {
725 		kfree(fcc);
726 		SM_I(sbi)->fcc_info = NULL;
727 	}
728 }
729 
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)730 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
731 {
732 	int ret = 0, i;
733 
734 	if (!f2fs_is_multi_device(sbi))
735 		return 0;
736 
737 	if (test_opt(sbi, NOBARRIER))
738 		return 0;
739 
740 	for (i = 1; i < sbi->s_ndevs; i++) {
741 		int count = DEFAULT_RETRY_IO_COUNT;
742 
743 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
744 			continue;
745 
746 		do {
747 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
748 			if (ret)
749 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
750 		} while (ret && --count);
751 
752 		if (ret) {
753 			f2fs_stop_checkpoint(sbi, false,
754 					STOP_CP_REASON_FLUSH_FAIL);
755 			break;
756 		}
757 
758 		spin_lock(&sbi->dev_lock);
759 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
760 		spin_unlock(&sbi->dev_lock);
761 	}
762 
763 	return ret;
764 }
765 
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)766 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
767 		enum dirty_type dirty_type)
768 {
769 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
770 
771 	/* need not be added */
772 	if (IS_CURSEG(sbi, segno))
773 		return;
774 
775 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
776 		dirty_i->nr_dirty[dirty_type]++;
777 
778 	if (dirty_type == DIRTY) {
779 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
780 		enum dirty_type t = sentry->type;
781 
782 		if (unlikely(t >= DIRTY)) {
783 			f2fs_bug_on(sbi, 1);
784 			return;
785 		}
786 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
787 			dirty_i->nr_dirty[t]++;
788 
789 		if (__is_large_section(sbi)) {
790 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
791 			block_t valid_blocks =
792 				get_valid_blocks(sbi, segno, true);
793 
794 			f2fs_bug_on(sbi,
795 				(!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
796 				!valid_blocks) ||
797 				valid_blocks == CAP_BLKS_PER_SEC(sbi));
798 
799 			if (!IS_CURSEC(sbi, secno))
800 				set_bit(secno, dirty_i->dirty_secmap);
801 		}
802 	}
803 }
804 
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)805 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
806 		enum dirty_type dirty_type)
807 {
808 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
809 	block_t valid_blocks;
810 
811 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
812 		dirty_i->nr_dirty[dirty_type]--;
813 
814 	if (dirty_type == DIRTY) {
815 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
816 		enum dirty_type t = sentry->type;
817 
818 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
819 			dirty_i->nr_dirty[t]--;
820 
821 		valid_blocks = get_valid_blocks(sbi, segno, true);
822 		if (valid_blocks == 0) {
823 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
824 						dirty_i->victim_secmap);
825 #ifdef CONFIG_F2FS_CHECK_FS
826 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
827 #endif
828 		}
829 		if (__is_large_section(sbi)) {
830 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
831 
832 			if (!valid_blocks ||
833 					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
834 				clear_bit(secno, dirty_i->dirty_secmap);
835 				return;
836 			}
837 
838 			if (!IS_CURSEC(sbi, secno))
839 				set_bit(secno, dirty_i->dirty_secmap);
840 		}
841 	}
842 }
843 
844 /*
845  * Should not occur error such as -ENOMEM.
846  * Adding dirty entry into seglist is not critical operation.
847  * If a given segment is one of current working segments, it won't be added.
848  */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)849 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
850 {
851 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
852 	unsigned short valid_blocks, ckpt_valid_blocks;
853 	unsigned int usable_blocks;
854 
855 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
856 		return;
857 
858 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
859 	mutex_lock(&dirty_i->seglist_lock);
860 
861 	valid_blocks = get_valid_blocks(sbi, segno, false);
862 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
863 
864 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
865 		ckpt_valid_blocks == usable_blocks)) {
866 		__locate_dirty_segment(sbi, segno, PRE);
867 		__remove_dirty_segment(sbi, segno, DIRTY);
868 	} else if (valid_blocks < usable_blocks) {
869 		__locate_dirty_segment(sbi, segno, DIRTY);
870 	} else {
871 		/* Recovery routine with SSR needs this */
872 		__remove_dirty_segment(sbi, segno, DIRTY);
873 	}
874 
875 	mutex_unlock(&dirty_i->seglist_lock);
876 }
877 
878 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)879 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
880 {
881 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
882 	unsigned int segno;
883 
884 	mutex_lock(&dirty_i->seglist_lock);
885 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
886 		if (get_valid_blocks(sbi, segno, false))
887 			continue;
888 		if (IS_CURSEG(sbi, segno))
889 			continue;
890 		__locate_dirty_segment(sbi, segno, PRE);
891 		__remove_dirty_segment(sbi, segno, DIRTY);
892 	}
893 	mutex_unlock(&dirty_i->seglist_lock);
894 }
895 
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)896 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
897 {
898 	int ovp_hole_segs =
899 		(overprovision_segments(sbi) - reserved_segments(sbi));
900 	block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs);
901 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
902 	block_t holes[2] = {0, 0};	/* DATA and NODE */
903 	block_t unusable;
904 	struct seg_entry *se;
905 	unsigned int segno;
906 
907 	mutex_lock(&dirty_i->seglist_lock);
908 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
909 		se = get_seg_entry(sbi, segno);
910 		if (IS_NODESEG(se->type))
911 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
912 							se->valid_blocks;
913 		else
914 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
915 							se->valid_blocks;
916 	}
917 	mutex_unlock(&dirty_i->seglist_lock);
918 
919 	unusable = max(holes[DATA], holes[NODE]);
920 	if (unusable > ovp_holes)
921 		return unusable - ovp_holes;
922 	return 0;
923 }
924 
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)925 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
926 {
927 	int ovp_hole_segs =
928 		(overprovision_segments(sbi) - reserved_segments(sbi));
929 
930 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
931 		return 0;
932 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
933 		return -EAGAIN;
934 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
935 		dirty_segments(sbi) > ovp_hole_segs)
936 		return -EAGAIN;
937 	if (has_not_enough_free_secs(sbi, 0, 0))
938 		return -EAGAIN;
939 	return 0;
940 }
941 
942 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)943 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
944 {
945 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
946 	unsigned int segno = 0;
947 
948 	mutex_lock(&dirty_i->seglist_lock);
949 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
950 		if (get_valid_blocks(sbi, segno, false))
951 			continue;
952 		if (get_ckpt_valid_blocks(sbi, segno, false))
953 			continue;
954 		mutex_unlock(&dirty_i->seglist_lock);
955 		return segno;
956 	}
957 	mutex_unlock(&dirty_i->seglist_lock);
958 	return NULL_SEGNO;
959 }
960 
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)961 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
962 		struct block_device *bdev, block_t lstart,
963 		block_t start, block_t len)
964 {
965 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
966 	struct list_head *pend_list;
967 	struct discard_cmd *dc;
968 
969 	f2fs_bug_on(sbi, !len);
970 
971 	pend_list = &dcc->pend_list[plist_idx(len)];
972 
973 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
974 	INIT_LIST_HEAD(&dc->list);
975 	dc->bdev = bdev;
976 	dc->di.lstart = lstart;
977 	dc->di.start = start;
978 	dc->di.len = len;
979 	dc->ref = 0;
980 	dc->state = D_PREP;
981 	dc->queued = 0;
982 	dc->error = 0;
983 	init_completion(&dc->wait);
984 	list_add_tail(&dc->list, pend_list);
985 	spin_lock_init(&dc->lock);
986 	dc->bio_ref = 0;
987 	atomic_inc(&dcc->discard_cmd_cnt);
988 	dcc->undiscard_blks += len;
989 
990 	return dc;
991 }
992 
f2fs_check_discard_tree(struct f2fs_sb_info * sbi)993 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
994 {
995 #ifdef CONFIG_F2FS_CHECK_FS
996 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
997 	struct rb_node *cur = rb_first_cached(&dcc->root), *next;
998 	struct discard_cmd *cur_dc, *next_dc;
999 
1000 	while (cur) {
1001 		next = rb_next(cur);
1002 		if (!next)
1003 			return true;
1004 
1005 		cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
1006 		next_dc = rb_entry(next, struct discard_cmd, rb_node);
1007 
1008 		if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
1009 			f2fs_info(sbi, "broken discard_rbtree, "
1010 				"cur(%u, %u) next(%u, %u)",
1011 				cur_dc->di.lstart, cur_dc->di.len,
1012 				next_dc->di.lstart, next_dc->di.len);
1013 			return false;
1014 		}
1015 		cur = next;
1016 	}
1017 #endif
1018 	return true;
1019 }
1020 
__lookup_discard_cmd(struct f2fs_sb_info * sbi,block_t blkaddr)1021 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1022 						block_t blkaddr)
1023 {
1024 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1025 	struct rb_node *node = dcc->root.rb_root.rb_node;
1026 	struct discard_cmd *dc;
1027 
1028 	while (node) {
1029 		dc = rb_entry(node, struct discard_cmd, rb_node);
1030 
1031 		if (blkaddr < dc->di.lstart)
1032 			node = node->rb_left;
1033 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1034 			node = node->rb_right;
1035 		else
1036 			return dc;
1037 	}
1038 	return NULL;
1039 }
1040 
__lookup_discard_cmd_ret(struct rb_root_cached * root,block_t blkaddr,struct discard_cmd ** prev_entry,struct discard_cmd ** next_entry,struct rb_node *** insert_p,struct rb_node ** insert_parent)1041 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1042 				block_t blkaddr,
1043 				struct discard_cmd **prev_entry,
1044 				struct discard_cmd **next_entry,
1045 				struct rb_node ***insert_p,
1046 				struct rb_node **insert_parent)
1047 {
1048 	struct rb_node **pnode = &root->rb_root.rb_node;
1049 	struct rb_node *parent = NULL, *tmp_node;
1050 	struct discard_cmd *dc;
1051 
1052 	*insert_p = NULL;
1053 	*insert_parent = NULL;
1054 	*prev_entry = NULL;
1055 	*next_entry = NULL;
1056 
1057 	if (RB_EMPTY_ROOT(&root->rb_root))
1058 		return NULL;
1059 
1060 	while (*pnode) {
1061 		parent = *pnode;
1062 		dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1063 
1064 		if (blkaddr < dc->di.lstart)
1065 			pnode = &(*pnode)->rb_left;
1066 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1067 			pnode = &(*pnode)->rb_right;
1068 		else
1069 			goto lookup_neighbors;
1070 	}
1071 
1072 	*insert_p = pnode;
1073 	*insert_parent = parent;
1074 
1075 	dc = rb_entry(parent, struct discard_cmd, rb_node);
1076 	tmp_node = parent;
1077 	if (parent && blkaddr > dc->di.lstart)
1078 		tmp_node = rb_next(parent);
1079 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1080 
1081 	tmp_node = parent;
1082 	if (parent && blkaddr < dc->di.lstart)
1083 		tmp_node = rb_prev(parent);
1084 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1085 	return NULL;
1086 
1087 lookup_neighbors:
1088 	/* lookup prev node for merging backward later */
1089 	tmp_node = rb_prev(&dc->rb_node);
1090 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1091 
1092 	/* lookup next node for merging frontward later */
1093 	tmp_node = rb_next(&dc->rb_node);
1094 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1095 	return dc;
1096 }
1097 
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1098 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1099 							struct discard_cmd *dc)
1100 {
1101 	if (dc->state == D_DONE)
1102 		atomic_sub(dc->queued, &dcc->queued_discard);
1103 
1104 	list_del(&dc->list);
1105 	rb_erase_cached(&dc->rb_node, &dcc->root);
1106 	dcc->undiscard_blks -= dc->di.len;
1107 
1108 	kmem_cache_free(discard_cmd_slab, dc);
1109 
1110 	atomic_dec(&dcc->discard_cmd_cnt);
1111 }
1112 
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1113 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1114 							struct discard_cmd *dc)
1115 {
1116 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1117 	unsigned long flags;
1118 
1119 	trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1120 
1121 	spin_lock_irqsave(&dc->lock, flags);
1122 	if (dc->bio_ref) {
1123 		spin_unlock_irqrestore(&dc->lock, flags);
1124 		return;
1125 	}
1126 	spin_unlock_irqrestore(&dc->lock, flags);
1127 
1128 	f2fs_bug_on(sbi, dc->ref);
1129 
1130 	if (dc->error == -EOPNOTSUPP)
1131 		dc->error = 0;
1132 
1133 	if (dc->error)
1134 		f2fs_info_ratelimited(sbi,
1135 			"Issue discard(%u, %u, %u) failed, ret: %d",
1136 			dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1137 	__detach_discard_cmd(dcc, dc);
1138 }
1139 
f2fs_submit_discard_endio(struct bio * bio)1140 static void f2fs_submit_discard_endio(struct bio *bio)
1141 {
1142 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1143 	unsigned long flags;
1144 
1145 	spin_lock_irqsave(&dc->lock, flags);
1146 	if (!dc->error)
1147 		dc->error = blk_status_to_errno(bio->bi_status);
1148 	dc->bio_ref--;
1149 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1150 		dc->state = D_DONE;
1151 		complete_all(&dc->wait);
1152 	}
1153 	spin_unlock_irqrestore(&dc->lock, flags);
1154 	bio_put(bio);
1155 }
1156 
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1157 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1158 				block_t start, block_t end)
1159 {
1160 #ifdef CONFIG_F2FS_CHECK_FS
1161 	struct seg_entry *sentry;
1162 	unsigned int segno;
1163 	block_t blk = start;
1164 	unsigned long offset, size, *map;
1165 
1166 	while (blk < end) {
1167 		segno = GET_SEGNO(sbi, blk);
1168 		sentry = get_seg_entry(sbi, segno);
1169 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1170 
1171 		if (end < START_BLOCK(sbi, segno + 1))
1172 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1173 		else
1174 			size = BLKS_PER_SEG(sbi);
1175 		map = (unsigned long *)(sentry->cur_valid_map);
1176 		offset = __find_rev_next_bit(map, size, offset);
1177 		f2fs_bug_on(sbi, offset != size);
1178 		blk = START_BLOCK(sbi, segno + 1);
1179 	}
1180 #endif
1181 }
1182 
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1183 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1184 				struct discard_policy *dpolicy,
1185 				int discard_type, unsigned int granularity)
1186 {
1187 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1188 
1189 	/* common policy */
1190 	dpolicy->type = discard_type;
1191 	dpolicy->sync = true;
1192 	dpolicy->ordered = false;
1193 	dpolicy->granularity = granularity;
1194 
1195 	dpolicy->max_requests = dcc->max_discard_request;
1196 	dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1197 	dpolicy->timeout = false;
1198 
1199 	if (discard_type == DPOLICY_BG) {
1200 		dpolicy->min_interval = dcc->min_discard_issue_time;
1201 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1202 		dpolicy->max_interval = dcc->max_discard_issue_time;
1203 		if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1204 			dpolicy->io_aware = true;
1205 		else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1206 			dpolicy->io_aware = false;
1207 		dpolicy->sync = false;
1208 		dpolicy->ordered = true;
1209 		if (utilization(sbi) > dcc->discard_urgent_util) {
1210 			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1211 			if (atomic_read(&dcc->discard_cmd_cnt))
1212 				dpolicy->max_interval =
1213 					dcc->min_discard_issue_time;
1214 		}
1215 	} else if (discard_type == DPOLICY_FORCE) {
1216 		dpolicy->min_interval = dcc->min_discard_issue_time;
1217 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1218 		dpolicy->max_interval = dcc->max_discard_issue_time;
1219 		dpolicy->io_aware = false;
1220 	} else if (discard_type == DPOLICY_FSTRIM) {
1221 		dpolicy->io_aware = false;
1222 	} else if (discard_type == DPOLICY_UMOUNT) {
1223 		dpolicy->io_aware = false;
1224 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1225 		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1226 		dpolicy->timeout = true;
1227 	}
1228 }
1229 
1230 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1231 				struct block_device *bdev, block_t lstart,
1232 				block_t start, block_t len);
1233 
1234 #ifdef CONFIG_BLK_DEV_ZONED
__submit_zone_reset_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,blk_opf_t flag,struct list_head * wait_list,unsigned int * issued)1235 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1236 				   struct discard_cmd *dc, blk_opf_t flag,
1237 				   struct list_head *wait_list,
1238 				   unsigned int *issued)
1239 {
1240 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1241 	struct block_device *bdev = dc->bdev;
1242 	struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1243 	unsigned long flags;
1244 
1245 	trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1246 
1247 	spin_lock_irqsave(&dc->lock, flags);
1248 	dc->state = D_SUBMIT;
1249 	dc->bio_ref++;
1250 	spin_unlock_irqrestore(&dc->lock, flags);
1251 
1252 	if (issued)
1253 		(*issued)++;
1254 
1255 	atomic_inc(&dcc->queued_discard);
1256 	dc->queued++;
1257 	list_move_tail(&dc->list, wait_list);
1258 
1259 	/* sanity check on discard range */
1260 	__check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1261 
1262 	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1263 	bio->bi_private = dc;
1264 	bio->bi_end_io = f2fs_submit_discard_endio;
1265 	submit_bio(bio);
1266 
1267 	atomic_inc(&dcc->issued_discard);
1268 	f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1269 }
1270 #endif
1271 
1272 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,int * issued)1273 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1274 				struct discard_policy *dpolicy,
1275 				struct discard_cmd *dc, int *issued)
1276 {
1277 	struct block_device *bdev = dc->bdev;
1278 	unsigned int max_discard_blocks =
1279 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1280 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1281 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1282 					&(dcc->fstrim_list) : &(dcc->wait_list);
1283 	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1284 	block_t lstart, start, len, total_len;
1285 	int err = 0;
1286 
1287 	if (dc->state != D_PREP)
1288 		return 0;
1289 
1290 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1291 		return 0;
1292 
1293 #ifdef CONFIG_BLK_DEV_ZONED
1294 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1295 		int devi = f2fs_bdev_index(sbi, bdev);
1296 
1297 		if (devi < 0)
1298 			return -EINVAL;
1299 
1300 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1301 			__submit_zone_reset_cmd(sbi, dc, flag,
1302 						wait_list, issued);
1303 			return 0;
1304 		}
1305 	}
1306 #endif
1307 
1308 	/*
1309 	 * stop issuing discard for any of below cases:
1310 	 * 1. device is conventional zone, but it doesn't support discard.
1311 	 * 2. device is regulare device, after snapshot it doesn't support
1312 	 * discard.
1313 	 */
1314 	if (!bdev_max_discard_sectors(bdev))
1315 		return -EOPNOTSUPP;
1316 
1317 	trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1318 
1319 	lstart = dc->di.lstart;
1320 	start = dc->di.start;
1321 	len = dc->di.len;
1322 	total_len = len;
1323 
1324 	dc->di.len = 0;
1325 
1326 	while (total_len && *issued < dpolicy->max_requests && !err) {
1327 		struct bio *bio = NULL;
1328 		unsigned long flags;
1329 		bool last = true;
1330 
1331 		if (len > max_discard_blocks) {
1332 			len = max_discard_blocks;
1333 			last = false;
1334 		}
1335 
1336 		(*issued)++;
1337 		if (*issued == dpolicy->max_requests)
1338 			last = true;
1339 
1340 		dc->di.len += len;
1341 
1342 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1343 			err = -EIO;
1344 		} else {
1345 			err = __blkdev_issue_discard(bdev,
1346 					SECTOR_FROM_BLOCK(start),
1347 					SECTOR_FROM_BLOCK(len),
1348 					GFP_NOFS, &bio);
1349 		}
1350 		if (err) {
1351 			spin_lock_irqsave(&dc->lock, flags);
1352 			if (dc->state == D_PARTIAL)
1353 				dc->state = D_SUBMIT;
1354 			spin_unlock_irqrestore(&dc->lock, flags);
1355 
1356 			break;
1357 		}
1358 
1359 		f2fs_bug_on(sbi, !bio);
1360 
1361 		/*
1362 		 * should keep before submission to avoid D_DONE
1363 		 * right away
1364 		 */
1365 		spin_lock_irqsave(&dc->lock, flags);
1366 		if (last)
1367 			dc->state = D_SUBMIT;
1368 		else
1369 			dc->state = D_PARTIAL;
1370 		dc->bio_ref++;
1371 		spin_unlock_irqrestore(&dc->lock, flags);
1372 
1373 		atomic_inc(&dcc->queued_discard);
1374 		dc->queued++;
1375 		list_move_tail(&dc->list, wait_list);
1376 
1377 		/* sanity check on discard range */
1378 		__check_sit_bitmap(sbi, lstart, lstart + len);
1379 
1380 		bio->bi_private = dc;
1381 		bio->bi_end_io = f2fs_submit_discard_endio;
1382 		bio->bi_opf |= flag;
1383 		submit_bio(bio);
1384 
1385 		atomic_inc(&dcc->issued_discard);
1386 
1387 		f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1388 
1389 		lstart += len;
1390 		start += len;
1391 		total_len -= len;
1392 		len = total_len;
1393 	}
1394 
1395 	if (!err && len) {
1396 		dcc->undiscard_blks -= len;
1397 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1398 	}
1399 	return err;
1400 }
1401 
__insert_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1402 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1403 				struct block_device *bdev, block_t lstart,
1404 				block_t start, block_t len)
1405 {
1406 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1407 	struct rb_node **p = &dcc->root.rb_root.rb_node;
1408 	struct rb_node *parent = NULL;
1409 	struct discard_cmd *dc;
1410 	bool leftmost = true;
1411 
1412 	/* look up rb tree to find parent node */
1413 	while (*p) {
1414 		parent = *p;
1415 		dc = rb_entry(parent, struct discard_cmd, rb_node);
1416 
1417 		if (lstart < dc->di.lstart) {
1418 			p = &(*p)->rb_left;
1419 		} else if (lstart >= dc->di.lstart + dc->di.len) {
1420 			p = &(*p)->rb_right;
1421 			leftmost = false;
1422 		} else {
1423 			/* Let's skip to add, if exists */
1424 			return;
1425 		}
1426 	}
1427 
1428 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1429 
1430 	rb_link_node(&dc->rb_node, parent, p);
1431 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1432 }
1433 
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1434 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1435 						struct discard_cmd *dc)
1436 {
1437 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1438 }
1439 
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1440 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1441 				struct discard_cmd *dc, block_t blkaddr)
1442 {
1443 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1444 	struct discard_info di = dc->di;
1445 	bool modified = false;
1446 
1447 	if (dc->state == D_DONE || dc->di.len == 1) {
1448 		__remove_discard_cmd(sbi, dc);
1449 		return;
1450 	}
1451 
1452 	dcc->undiscard_blks -= di.len;
1453 
1454 	if (blkaddr > di.lstart) {
1455 		dc->di.len = blkaddr - dc->di.lstart;
1456 		dcc->undiscard_blks += dc->di.len;
1457 		__relocate_discard_cmd(dcc, dc);
1458 		modified = true;
1459 	}
1460 
1461 	if (blkaddr < di.lstart + di.len - 1) {
1462 		if (modified) {
1463 			__insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1464 					di.start + blkaddr + 1 - di.lstart,
1465 					di.lstart + di.len - 1 - blkaddr);
1466 		} else {
1467 			dc->di.lstart++;
1468 			dc->di.len--;
1469 			dc->di.start++;
1470 			dcc->undiscard_blks += dc->di.len;
1471 			__relocate_discard_cmd(dcc, dc);
1472 		}
1473 	}
1474 }
1475 
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1476 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1477 				struct block_device *bdev, block_t lstart,
1478 				block_t start, block_t len)
1479 {
1480 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1481 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1482 	struct discard_cmd *dc;
1483 	struct discard_info di = {0};
1484 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1485 	unsigned int max_discard_blocks =
1486 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1487 	block_t end = lstart + len;
1488 
1489 	dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1490 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1491 	if (dc)
1492 		prev_dc = dc;
1493 
1494 	if (!prev_dc) {
1495 		di.lstart = lstart;
1496 		di.len = next_dc ? next_dc->di.lstart - lstart : len;
1497 		di.len = min(di.len, len);
1498 		di.start = start;
1499 	}
1500 
1501 	while (1) {
1502 		struct rb_node *node;
1503 		bool merged = false;
1504 		struct discard_cmd *tdc = NULL;
1505 
1506 		if (prev_dc) {
1507 			di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1508 			if (di.lstart < lstart)
1509 				di.lstart = lstart;
1510 			if (di.lstart >= end)
1511 				break;
1512 
1513 			if (!next_dc || next_dc->di.lstart > end)
1514 				di.len = end - di.lstart;
1515 			else
1516 				di.len = next_dc->di.lstart - di.lstart;
1517 			di.start = start + di.lstart - lstart;
1518 		}
1519 
1520 		if (!di.len)
1521 			goto next;
1522 
1523 		if (prev_dc && prev_dc->state == D_PREP &&
1524 			prev_dc->bdev == bdev &&
1525 			__is_discard_back_mergeable(&di, &prev_dc->di,
1526 							max_discard_blocks)) {
1527 			prev_dc->di.len += di.len;
1528 			dcc->undiscard_blks += di.len;
1529 			__relocate_discard_cmd(dcc, prev_dc);
1530 			di = prev_dc->di;
1531 			tdc = prev_dc;
1532 			merged = true;
1533 		}
1534 
1535 		if (next_dc && next_dc->state == D_PREP &&
1536 			next_dc->bdev == bdev &&
1537 			__is_discard_front_mergeable(&di, &next_dc->di,
1538 							max_discard_blocks)) {
1539 			next_dc->di.lstart = di.lstart;
1540 			next_dc->di.len += di.len;
1541 			next_dc->di.start = di.start;
1542 			dcc->undiscard_blks += di.len;
1543 			__relocate_discard_cmd(dcc, next_dc);
1544 			if (tdc)
1545 				__remove_discard_cmd(sbi, tdc);
1546 			merged = true;
1547 		}
1548 
1549 		if (!merged)
1550 			__insert_discard_cmd(sbi, bdev,
1551 						di.lstart, di.start, di.len);
1552  next:
1553 		prev_dc = next_dc;
1554 		if (!prev_dc)
1555 			break;
1556 
1557 		node = rb_next(&prev_dc->rb_node);
1558 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1559 	}
1560 }
1561 
1562 #ifdef CONFIG_BLK_DEV_ZONED
__queue_zone_reset_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t lblkstart,block_t blklen)1563 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1564 		struct block_device *bdev, block_t blkstart, block_t lblkstart,
1565 		block_t blklen)
1566 {
1567 	trace_f2fs_queue_reset_zone(bdev, blkstart);
1568 
1569 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1570 	__insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1571 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1572 }
1573 #endif
1574 
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1575 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1576 		struct block_device *bdev, block_t blkstart, block_t blklen)
1577 {
1578 	block_t lblkstart = blkstart;
1579 
1580 	if (!f2fs_bdev_support_discard(bdev))
1581 		return;
1582 
1583 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1584 
1585 	if (f2fs_is_multi_device(sbi)) {
1586 		int devi = f2fs_target_device_index(sbi, blkstart);
1587 
1588 		blkstart -= FDEV(devi).start_blk;
1589 	}
1590 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1591 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1592 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1593 }
1594 
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int * issued)1595 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1596 		struct discard_policy *dpolicy, int *issued)
1597 {
1598 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1599 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1600 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1601 	struct discard_cmd *dc;
1602 	struct blk_plug plug;
1603 	bool io_interrupted = false;
1604 
1605 	mutex_lock(&dcc->cmd_lock);
1606 	dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1607 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1608 	if (!dc)
1609 		dc = next_dc;
1610 
1611 	blk_start_plug(&plug);
1612 
1613 	while (dc) {
1614 		struct rb_node *node;
1615 		int err = 0;
1616 
1617 		if (dc->state != D_PREP)
1618 			goto next;
1619 
1620 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1621 			io_interrupted = true;
1622 			break;
1623 		}
1624 
1625 		dcc->next_pos = dc->di.lstart + dc->di.len;
1626 		err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1627 
1628 		if (*issued >= dpolicy->max_requests)
1629 			break;
1630 next:
1631 		node = rb_next(&dc->rb_node);
1632 		if (err)
1633 			__remove_discard_cmd(sbi, dc);
1634 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1635 	}
1636 
1637 	blk_finish_plug(&plug);
1638 
1639 	if (!dc)
1640 		dcc->next_pos = 0;
1641 
1642 	mutex_unlock(&dcc->cmd_lock);
1643 
1644 	if (!(*issued) && io_interrupted)
1645 		*issued = -1;
1646 }
1647 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1648 					struct discard_policy *dpolicy);
1649 
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1650 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1651 					struct discard_policy *dpolicy)
1652 {
1653 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1654 	struct list_head *pend_list;
1655 	struct discard_cmd *dc, *tmp;
1656 	struct blk_plug plug;
1657 	int i, issued;
1658 	bool io_interrupted = false;
1659 
1660 	if (dpolicy->timeout)
1661 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1662 
1663 retry:
1664 	issued = 0;
1665 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1666 		if (dpolicy->timeout &&
1667 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1668 			break;
1669 
1670 		if (i + 1 < dpolicy->granularity)
1671 			break;
1672 
1673 		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1674 			__issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1675 			return issued;
1676 		}
1677 
1678 		pend_list = &dcc->pend_list[i];
1679 
1680 		mutex_lock(&dcc->cmd_lock);
1681 		if (list_empty(pend_list))
1682 			goto next;
1683 		if (unlikely(dcc->rbtree_check))
1684 			f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1685 		blk_start_plug(&plug);
1686 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1687 			f2fs_bug_on(sbi, dc->state != D_PREP);
1688 
1689 			if (dpolicy->timeout &&
1690 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1691 				break;
1692 
1693 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1694 						!is_idle(sbi, DISCARD_TIME)) {
1695 				io_interrupted = true;
1696 				break;
1697 			}
1698 
1699 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1700 
1701 			if (issued >= dpolicy->max_requests)
1702 				break;
1703 		}
1704 		blk_finish_plug(&plug);
1705 next:
1706 		mutex_unlock(&dcc->cmd_lock);
1707 
1708 		if (issued >= dpolicy->max_requests || io_interrupted)
1709 			break;
1710 	}
1711 
1712 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1713 		__wait_all_discard_cmd(sbi, dpolicy);
1714 		goto retry;
1715 	}
1716 
1717 	if (!issued && io_interrupted)
1718 		issued = -1;
1719 
1720 	return issued;
1721 }
1722 
__drop_discard_cmd(struct f2fs_sb_info * sbi)1723 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1724 {
1725 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1726 	struct list_head *pend_list;
1727 	struct discard_cmd *dc, *tmp;
1728 	int i;
1729 	bool dropped = false;
1730 
1731 	mutex_lock(&dcc->cmd_lock);
1732 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1733 		pend_list = &dcc->pend_list[i];
1734 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1735 			f2fs_bug_on(sbi, dc->state != D_PREP);
1736 			__remove_discard_cmd(sbi, dc);
1737 			dropped = true;
1738 		}
1739 	}
1740 	mutex_unlock(&dcc->cmd_lock);
1741 
1742 	return dropped;
1743 }
1744 
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1745 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1746 {
1747 	__drop_discard_cmd(sbi);
1748 }
1749 
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1750 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1751 							struct discard_cmd *dc)
1752 {
1753 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1754 	unsigned int len = 0;
1755 
1756 	wait_for_completion_io(&dc->wait);
1757 	mutex_lock(&dcc->cmd_lock);
1758 	f2fs_bug_on(sbi, dc->state != D_DONE);
1759 	dc->ref--;
1760 	if (!dc->ref) {
1761 		if (!dc->error)
1762 			len = dc->di.len;
1763 		__remove_discard_cmd(sbi, dc);
1764 	}
1765 	mutex_unlock(&dcc->cmd_lock);
1766 
1767 	return len;
1768 }
1769 
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1770 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1771 						struct discard_policy *dpolicy,
1772 						block_t start, block_t end)
1773 {
1774 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1775 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1776 					&(dcc->fstrim_list) : &(dcc->wait_list);
1777 	struct discard_cmd *dc = NULL, *iter, *tmp;
1778 	unsigned int trimmed = 0;
1779 
1780 next:
1781 	dc = NULL;
1782 
1783 	mutex_lock(&dcc->cmd_lock);
1784 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1785 		if (iter->di.lstart + iter->di.len <= start ||
1786 					end <= iter->di.lstart)
1787 			continue;
1788 		if (iter->di.len < dpolicy->granularity)
1789 			continue;
1790 		if (iter->state == D_DONE && !iter->ref) {
1791 			wait_for_completion_io(&iter->wait);
1792 			if (!iter->error)
1793 				trimmed += iter->di.len;
1794 			__remove_discard_cmd(sbi, iter);
1795 		} else {
1796 			iter->ref++;
1797 			dc = iter;
1798 			break;
1799 		}
1800 	}
1801 	mutex_unlock(&dcc->cmd_lock);
1802 
1803 	if (dc) {
1804 		trimmed += __wait_one_discard_bio(sbi, dc);
1805 		goto next;
1806 	}
1807 
1808 	return trimmed;
1809 }
1810 
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1811 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1812 						struct discard_policy *dpolicy)
1813 {
1814 	struct discard_policy dp;
1815 	unsigned int discard_blks;
1816 
1817 	if (dpolicy)
1818 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1819 
1820 	/* wait all */
1821 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1822 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1823 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1824 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1825 
1826 	return discard_blks;
1827 }
1828 
1829 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1830 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1831 {
1832 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1833 	struct discard_cmd *dc;
1834 	bool need_wait = false;
1835 
1836 	mutex_lock(&dcc->cmd_lock);
1837 	dc = __lookup_discard_cmd(sbi, blkaddr);
1838 #ifdef CONFIG_BLK_DEV_ZONED
1839 	if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1840 		int devi = f2fs_bdev_index(sbi, dc->bdev);
1841 
1842 		if (devi < 0) {
1843 			mutex_unlock(&dcc->cmd_lock);
1844 			return;
1845 		}
1846 
1847 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1848 			/* force submit zone reset */
1849 			if (dc->state == D_PREP)
1850 				__submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1851 							&dcc->wait_list, NULL);
1852 			dc->ref++;
1853 			mutex_unlock(&dcc->cmd_lock);
1854 			/* wait zone reset */
1855 			__wait_one_discard_bio(sbi, dc);
1856 			return;
1857 		}
1858 	}
1859 #endif
1860 	if (dc) {
1861 		if (dc->state == D_PREP) {
1862 			__punch_discard_cmd(sbi, dc, blkaddr);
1863 		} else {
1864 			dc->ref++;
1865 			need_wait = true;
1866 		}
1867 	}
1868 	mutex_unlock(&dcc->cmd_lock);
1869 
1870 	if (need_wait)
1871 		__wait_one_discard_bio(sbi, dc);
1872 }
1873 
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1874 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1875 {
1876 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1877 
1878 	if (dcc && dcc->f2fs_issue_discard) {
1879 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1880 
1881 		dcc->f2fs_issue_discard = NULL;
1882 		kthread_stop(discard_thread);
1883 	}
1884 }
1885 
1886 /**
1887  * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1888  * @sbi: the f2fs_sb_info data for discard cmd to issue
1889  *
1890  * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1891  *
1892  * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1893  */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1894 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1895 {
1896 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1897 	struct discard_policy dpolicy;
1898 	bool dropped;
1899 
1900 	if (!atomic_read(&dcc->discard_cmd_cnt))
1901 		return true;
1902 
1903 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1904 					dcc->discard_granularity);
1905 	__issue_discard_cmd(sbi, &dpolicy);
1906 	dropped = __drop_discard_cmd(sbi);
1907 
1908 	/* just to make sure there is no pending discard commands */
1909 	__wait_all_discard_cmd(sbi, NULL);
1910 
1911 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1912 	return !dropped;
1913 }
1914 
issue_discard_thread(void * data)1915 static int issue_discard_thread(void *data)
1916 {
1917 	struct f2fs_sb_info *sbi = data;
1918 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1919 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1920 	struct discard_policy dpolicy;
1921 	unsigned int wait_ms = dcc->min_discard_issue_time;
1922 	int issued;
1923 
1924 	set_freezable();
1925 
1926 	do {
1927 		wait_event_freezable_timeout(*q,
1928 				kthread_should_stop() || dcc->discard_wake,
1929 				msecs_to_jiffies(wait_ms));
1930 
1931 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1932 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1933 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1934 						MIN_DISCARD_GRANULARITY);
1935 		else
1936 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1937 						dcc->discard_granularity);
1938 
1939 		if (dcc->discard_wake)
1940 			dcc->discard_wake = false;
1941 
1942 		/* clean up pending candidates before going to sleep */
1943 		if (atomic_read(&dcc->queued_discard))
1944 			__wait_all_discard_cmd(sbi, NULL);
1945 
1946 		if (f2fs_readonly(sbi->sb))
1947 			continue;
1948 		if (kthread_should_stop())
1949 			return 0;
1950 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1951 			!atomic_read(&dcc->discard_cmd_cnt)) {
1952 			wait_ms = dpolicy.max_interval;
1953 			continue;
1954 		}
1955 
1956 		sb_start_intwrite(sbi->sb);
1957 
1958 		issued = __issue_discard_cmd(sbi, &dpolicy);
1959 		if (issued > 0) {
1960 			__wait_all_discard_cmd(sbi, &dpolicy);
1961 			wait_ms = dpolicy.min_interval;
1962 		} else if (issued == -1) {
1963 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1964 			if (!wait_ms)
1965 				wait_ms = dpolicy.mid_interval;
1966 		} else {
1967 			wait_ms = dpolicy.max_interval;
1968 		}
1969 		if (!atomic_read(&dcc->discard_cmd_cnt))
1970 			wait_ms = dpolicy.max_interval;
1971 
1972 		sb_end_intwrite(sbi->sb);
1973 
1974 	} while (!kthread_should_stop());
1975 	return 0;
1976 }
1977 
1978 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1979 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1980 		struct block_device *bdev, block_t blkstart, block_t blklen)
1981 {
1982 	sector_t sector, nr_sects;
1983 	block_t lblkstart = blkstart;
1984 	int devi = 0;
1985 	u64 remainder = 0;
1986 
1987 	if (f2fs_is_multi_device(sbi)) {
1988 		devi = f2fs_target_device_index(sbi, blkstart);
1989 		if (blkstart < FDEV(devi).start_blk ||
1990 		    blkstart > FDEV(devi).end_blk) {
1991 			f2fs_err(sbi, "Invalid block %x", blkstart);
1992 			return -EIO;
1993 		}
1994 		blkstart -= FDEV(devi).start_blk;
1995 	}
1996 
1997 	/* For sequential zones, reset the zone write pointer */
1998 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1999 		sector = SECTOR_FROM_BLOCK(blkstart);
2000 		nr_sects = SECTOR_FROM_BLOCK(blklen);
2001 		div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
2002 
2003 		if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
2004 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
2005 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
2006 				 blkstart, blklen);
2007 			return -EIO;
2008 		}
2009 
2010 		if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
2011 			unsigned int nofs_flags;
2012 			int ret;
2013 
2014 			trace_f2fs_issue_reset_zone(bdev, blkstart);
2015 			nofs_flags = memalloc_nofs_save();
2016 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
2017 						sector, nr_sects);
2018 			memalloc_nofs_restore(nofs_flags);
2019 			return ret;
2020 		}
2021 
2022 		__queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
2023 		return 0;
2024 	}
2025 
2026 	/* For conventional zones, use regular discard if supported */
2027 	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
2028 	return 0;
2029 }
2030 #endif
2031 
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)2032 static int __issue_discard_async(struct f2fs_sb_info *sbi,
2033 		struct block_device *bdev, block_t blkstart, block_t blklen)
2034 {
2035 #ifdef CONFIG_BLK_DEV_ZONED
2036 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2037 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2038 #endif
2039 	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
2040 	return 0;
2041 }
2042 
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)2043 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2044 				block_t blkstart, block_t blklen)
2045 {
2046 	sector_t start = blkstart, len = 0;
2047 	struct block_device *bdev;
2048 	struct seg_entry *se;
2049 	unsigned int offset;
2050 	block_t i;
2051 	int err = 0;
2052 
2053 	bdev = f2fs_target_device(sbi, blkstart, NULL);
2054 
2055 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
2056 		if (i != start) {
2057 			struct block_device *bdev2 =
2058 				f2fs_target_device(sbi, i, NULL);
2059 
2060 			if (bdev2 != bdev) {
2061 				err = __issue_discard_async(sbi, bdev,
2062 						start, len);
2063 				if (err)
2064 					return err;
2065 				bdev = bdev2;
2066 				start = i;
2067 				len = 0;
2068 			}
2069 		}
2070 
2071 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2072 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2073 
2074 		if (f2fs_block_unit_discard(sbi) &&
2075 				!f2fs_test_and_set_bit(offset, se->discard_map))
2076 			sbi->discard_blks--;
2077 	}
2078 
2079 	if (len)
2080 		err = __issue_discard_async(sbi, bdev, start, len);
2081 	return err;
2082 }
2083 
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)2084 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2085 							bool check_only)
2086 {
2087 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2088 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2089 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2090 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2091 	unsigned long *discard_map = (unsigned long *)se->discard_map;
2092 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
2093 	unsigned int start = 0, end = -1;
2094 	bool force = (cpc->reason & CP_DISCARD);
2095 	struct discard_entry *de = NULL;
2096 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2097 	int i;
2098 
2099 	if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2100 	    !f2fs_hw_support_discard(sbi) ||
2101 	    !f2fs_block_unit_discard(sbi))
2102 		return false;
2103 
2104 	if (!force) {
2105 		if (!f2fs_realtime_discard_enable(sbi) ||
2106 			(!se->valid_blocks &&
2107 				!IS_CURSEG(sbi, cpc->trim_start)) ||
2108 			SM_I(sbi)->dcc_info->nr_discards >=
2109 				SM_I(sbi)->dcc_info->max_discards)
2110 			return false;
2111 	}
2112 
2113 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2114 	for (i = 0; i < entries; i++)
2115 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2116 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2117 
2118 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
2119 				SM_I(sbi)->dcc_info->max_discards) {
2120 		start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2121 		if (start >= BLKS_PER_SEG(sbi))
2122 			break;
2123 
2124 		end = __find_rev_next_zero_bit(dmap,
2125 						BLKS_PER_SEG(sbi), start + 1);
2126 		if (force && start && end != BLKS_PER_SEG(sbi) &&
2127 		    (end - start) < cpc->trim_minlen)
2128 			continue;
2129 
2130 		if (check_only)
2131 			return true;
2132 
2133 		if (!de) {
2134 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
2135 						GFP_F2FS_ZERO, true, NULL);
2136 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2137 			list_add_tail(&de->list, head);
2138 		}
2139 
2140 		for (i = start; i < end; i++)
2141 			__set_bit_le(i, (void *)de->discard_map);
2142 
2143 		SM_I(sbi)->dcc_info->nr_discards += end - start;
2144 	}
2145 	return false;
2146 }
2147 
release_discard_addr(struct discard_entry * entry)2148 static void release_discard_addr(struct discard_entry *entry)
2149 {
2150 	list_del(&entry->list);
2151 	kmem_cache_free(discard_entry_slab, entry);
2152 }
2153 
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)2154 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2155 {
2156 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2157 	struct discard_entry *entry, *this;
2158 
2159 	/* drop caches */
2160 	list_for_each_entry_safe(entry, this, head, list)
2161 		release_discard_addr(entry);
2162 }
2163 
2164 /*
2165  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2166  */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)2167 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2168 {
2169 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2170 	unsigned int segno;
2171 
2172 	mutex_lock(&dirty_i->seglist_lock);
2173 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2174 		__set_test_and_free(sbi, segno, false);
2175 	mutex_unlock(&dirty_i->seglist_lock);
2176 }
2177 
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)2178 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2179 						struct cp_control *cpc)
2180 {
2181 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2182 	struct list_head *head = &dcc->entry_list;
2183 	struct discard_entry *entry, *this;
2184 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2185 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2186 	unsigned int start = 0, end = -1;
2187 	unsigned int secno, start_segno;
2188 	bool force = (cpc->reason & CP_DISCARD);
2189 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2190 						DISCARD_UNIT_SECTION;
2191 
2192 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2193 		section_alignment = true;
2194 
2195 	mutex_lock(&dirty_i->seglist_lock);
2196 
2197 	while (1) {
2198 		int i;
2199 
2200 		if (section_alignment && end != -1)
2201 			end--;
2202 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2203 		if (start >= MAIN_SEGS(sbi))
2204 			break;
2205 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2206 								start + 1);
2207 
2208 		if (section_alignment) {
2209 			start = rounddown(start, SEGS_PER_SEC(sbi));
2210 			end = roundup(end, SEGS_PER_SEC(sbi));
2211 		}
2212 
2213 		for (i = start; i < end; i++) {
2214 			if (test_and_clear_bit(i, prefree_map))
2215 				dirty_i->nr_dirty[PRE]--;
2216 		}
2217 
2218 		if (!f2fs_realtime_discard_enable(sbi))
2219 			continue;
2220 
2221 		if (force && start >= cpc->trim_start &&
2222 					(end - 1) <= cpc->trim_end)
2223 			continue;
2224 
2225 		/* Should cover 2MB zoned device for zone-based reset */
2226 		if (!f2fs_sb_has_blkzoned(sbi) &&
2227 		    (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2228 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2229 				SEGS_TO_BLKS(sbi, end - start));
2230 			continue;
2231 		}
2232 next:
2233 		secno = GET_SEC_FROM_SEG(sbi, start);
2234 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2235 		if (!IS_CURSEC(sbi, secno) &&
2236 			!get_valid_blocks(sbi, start, true))
2237 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2238 						BLKS_PER_SEC(sbi));
2239 
2240 		start = start_segno + SEGS_PER_SEC(sbi);
2241 		if (start < end)
2242 			goto next;
2243 		else
2244 			end = start - 1;
2245 	}
2246 	mutex_unlock(&dirty_i->seglist_lock);
2247 
2248 	if (!f2fs_block_unit_discard(sbi))
2249 		goto wakeup;
2250 
2251 	/* send small discards */
2252 	list_for_each_entry_safe(entry, this, head, list) {
2253 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2254 		bool is_valid = test_bit_le(0, entry->discard_map);
2255 
2256 find_next:
2257 		if (is_valid) {
2258 			next_pos = find_next_zero_bit_le(entry->discard_map,
2259 						BLKS_PER_SEG(sbi), cur_pos);
2260 			len = next_pos - cur_pos;
2261 
2262 			if (f2fs_sb_has_blkzoned(sbi) ||
2263 			    (force && len < cpc->trim_minlen))
2264 				goto skip;
2265 
2266 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2267 									len);
2268 			total_len += len;
2269 		} else {
2270 			next_pos = find_next_bit_le(entry->discard_map,
2271 						BLKS_PER_SEG(sbi), cur_pos);
2272 		}
2273 skip:
2274 		cur_pos = next_pos;
2275 		is_valid = !is_valid;
2276 
2277 		if (cur_pos < BLKS_PER_SEG(sbi))
2278 			goto find_next;
2279 
2280 		release_discard_addr(entry);
2281 		dcc->nr_discards -= total_len;
2282 	}
2283 
2284 wakeup:
2285 	wake_up_discard_thread(sbi, false);
2286 }
2287 
f2fs_start_discard_thread(struct f2fs_sb_info * sbi)2288 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2289 {
2290 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2291 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2292 	int err = 0;
2293 
2294 	if (f2fs_sb_has_readonly(sbi)) {
2295 		f2fs_info(sbi,
2296 			"Skip to start discard thread for readonly image");
2297 		return 0;
2298 	}
2299 
2300 	if (!f2fs_realtime_discard_enable(sbi))
2301 		return 0;
2302 
2303 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2304 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2305 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2306 		err = PTR_ERR(dcc->f2fs_issue_discard);
2307 		dcc->f2fs_issue_discard = NULL;
2308 	}
2309 
2310 	return err;
2311 }
2312 
create_discard_cmd_control(struct f2fs_sb_info * sbi)2313 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2314 {
2315 	struct discard_cmd_control *dcc;
2316 	int err = 0, i;
2317 
2318 	if (SM_I(sbi)->dcc_info) {
2319 		dcc = SM_I(sbi)->dcc_info;
2320 		goto init_thread;
2321 	}
2322 
2323 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2324 	if (!dcc)
2325 		return -ENOMEM;
2326 
2327 	dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2328 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2329 	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2330 	dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2331 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT ||
2332 		F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2333 		dcc->discard_granularity = BLKS_PER_SEG(sbi);
2334 
2335 	INIT_LIST_HEAD(&dcc->entry_list);
2336 	for (i = 0; i < MAX_PLIST_NUM; i++)
2337 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2338 	INIT_LIST_HEAD(&dcc->wait_list);
2339 	INIT_LIST_HEAD(&dcc->fstrim_list);
2340 	mutex_init(&dcc->cmd_lock);
2341 	atomic_set(&dcc->issued_discard, 0);
2342 	atomic_set(&dcc->queued_discard, 0);
2343 	atomic_set(&dcc->discard_cmd_cnt, 0);
2344 	dcc->nr_discards = 0;
2345 	dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi));
2346 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2347 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2348 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2349 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2350 	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2351 	dcc->undiscard_blks = 0;
2352 	dcc->next_pos = 0;
2353 	dcc->root = RB_ROOT_CACHED;
2354 	dcc->rbtree_check = false;
2355 
2356 	init_waitqueue_head(&dcc->discard_wait_queue);
2357 	SM_I(sbi)->dcc_info = dcc;
2358 init_thread:
2359 	err = f2fs_start_discard_thread(sbi);
2360 	if (err) {
2361 		kfree(dcc);
2362 		SM_I(sbi)->dcc_info = NULL;
2363 	}
2364 
2365 	return err;
2366 }
2367 
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2368 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2369 {
2370 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2371 
2372 	if (!dcc)
2373 		return;
2374 
2375 	f2fs_stop_discard_thread(sbi);
2376 
2377 	/*
2378 	 * Recovery can cache discard commands, so in error path of
2379 	 * fill_super(), it needs to give a chance to handle them.
2380 	 */
2381 	f2fs_issue_discard_timeout(sbi);
2382 
2383 	kfree(dcc);
2384 	SM_I(sbi)->dcc_info = NULL;
2385 }
2386 
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2387 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2388 {
2389 	struct sit_info *sit_i = SIT_I(sbi);
2390 
2391 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2392 		sit_i->dirty_sentries++;
2393 		return false;
2394 	}
2395 
2396 	return true;
2397 }
2398 
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2399 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2400 					unsigned int segno, int modified)
2401 {
2402 	struct seg_entry *se = get_seg_entry(sbi, segno);
2403 
2404 	se->type = type;
2405 	if (modified)
2406 		__mark_sit_entry_dirty(sbi, segno);
2407 }
2408 
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2409 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2410 								block_t blkaddr)
2411 {
2412 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2413 
2414 	if (segno == NULL_SEGNO)
2415 		return 0;
2416 	return get_seg_entry(sbi, segno)->mtime;
2417 }
2418 
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2419 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2420 						unsigned long long old_mtime)
2421 {
2422 	struct seg_entry *se;
2423 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2424 	unsigned long long ctime = get_mtime(sbi, false);
2425 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2426 
2427 	if (segno == NULL_SEGNO)
2428 		return;
2429 
2430 	se = get_seg_entry(sbi, segno);
2431 
2432 	if (!se->mtime)
2433 		se->mtime = mtime;
2434 	else
2435 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2436 						se->valid_blocks + 1);
2437 
2438 	if (ctime > SIT_I(sbi)->max_mtime)
2439 		SIT_I(sbi)->max_mtime = ctime;
2440 }
2441 
2442 /*
2443  * NOTE: when updating multiple blocks at the same time, please ensure
2444  * that the consecutive input blocks belong to the same segment.
2445  */
update_sit_entry_for_release(struct f2fs_sb_info * sbi,struct seg_entry * se,unsigned int segno,block_t blkaddr,unsigned int offset,int del)2446 static int update_sit_entry_for_release(struct f2fs_sb_info *sbi, struct seg_entry *se,
2447 				unsigned int segno, block_t blkaddr, unsigned int offset, int del)
2448 {
2449 	bool exist;
2450 #ifdef CONFIG_F2FS_CHECK_FS
2451 	bool mir_exist;
2452 #endif
2453 	int i;
2454 	int del_count = -del;
2455 
2456 	f2fs_bug_on(sbi, GET_SEGNO(sbi, blkaddr) != GET_SEGNO(sbi, blkaddr + del_count - 1));
2457 
2458 	for (i = 0; i < del_count; i++) {
2459 		exist = f2fs_test_and_clear_bit(offset + i, se->cur_valid_map);
2460 #ifdef CONFIG_F2FS_CHECK_FS
2461 		mir_exist = f2fs_test_and_clear_bit(offset + i,
2462 						se->cur_valid_map_mir);
2463 		if (unlikely(exist != mir_exist)) {
2464 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2465 				blkaddr + i, exist);
2466 			f2fs_bug_on(sbi, 1);
2467 		}
2468 #endif
2469 		if (unlikely(!exist)) {
2470 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", blkaddr + i);
2471 			f2fs_bug_on(sbi, 1);
2472 			se->valid_blocks++;
2473 			del += 1;
2474 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2475 			/*
2476 			 * If checkpoints are off, we must not reuse data that
2477 			 * was used in the previous checkpoint. If it was used
2478 			 * before, we must track that to know how much space we
2479 			 * really have.
2480 			 */
2481 			if (f2fs_test_bit(offset + i, se->ckpt_valid_map)) {
2482 				spin_lock(&sbi->stat_lock);
2483 				sbi->unusable_block_count++;
2484 				spin_unlock(&sbi->stat_lock);
2485 			}
2486 		}
2487 
2488 		if (f2fs_block_unit_discard(sbi) &&
2489 				f2fs_test_and_clear_bit(offset + i, se->discard_map))
2490 			sbi->discard_blks++;
2491 
2492 		if (!f2fs_test_bit(offset + i, se->ckpt_valid_map)) {
2493 			se->ckpt_valid_blocks -= 1;
2494 			if (__is_large_section(sbi))
2495 				android_get_sec_entry(sbi, segno)->
2496 						ckpt_valid_blocks -= 1;
2497 		}
2498 	}
2499 
2500 	if (__is_large_section(sbi))
2501 		sanity_check_valid_blocks(sbi, segno);
2502 
2503 	return del;
2504 }
2505 
update_sit_entry_for_alloc(struct f2fs_sb_info * sbi,struct seg_entry * se,unsigned int segno,block_t blkaddr,unsigned int offset,int del)2506 static int update_sit_entry_for_alloc(struct f2fs_sb_info *sbi, struct seg_entry *se,
2507 				unsigned int segno, block_t blkaddr, unsigned int offset, int del)
2508 {
2509 	bool exist;
2510 #ifdef CONFIG_F2FS_CHECK_FS
2511 	bool mir_exist;
2512 #endif
2513 
2514 	exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2515 #ifdef CONFIG_F2FS_CHECK_FS
2516 	mir_exist = f2fs_test_and_set_bit(offset,
2517 					se->cur_valid_map_mir);
2518 	if (unlikely(exist != mir_exist)) {
2519 		f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2520 			blkaddr, exist);
2521 		f2fs_bug_on(sbi, 1);
2522 	}
2523 #endif
2524 	if (unlikely(exist)) {
2525 		f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", blkaddr);
2526 		f2fs_bug_on(sbi, 1);
2527 		se->valid_blocks--;
2528 		del = 0;
2529 	}
2530 
2531 	if (f2fs_block_unit_discard(sbi) &&
2532 			!f2fs_test_and_set_bit(offset, se->discard_map))
2533 		sbi->discard_blks--;
2534 
2535 	/*
2536 	 * SSR should never reuse block which is checkpointed
2537 	 * or newly invalidated.
2538 	 */
2539 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2540 		if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) {
2541 			se->ckpt_valid_blocks++;
2542 			if (__is_large_section(sbi))
2543 				android_get_sec_entry(sbi, segno)->
2544 						ckpt_valid_blocks++;
2545 		}
2546 	}
2547 
2548 	if (!f2fs_test_bit(offset, se->ckpt_valid_map)) {
2549 		se->ckpt_valid_blocks += del;
2550 		if (__is_large_section(sbi))
2551 			android_get_sec_entry(sbi, segno)->
2552 						ckpt_valid_blocks += del;
2553 	}
2554 
2555 	if (__is_large_section(sbi))
2556 		sanity_check_valid_blocks(sbi, segno);
2557 
2558 	return del;
2559 }
2560 
2561 /*
2562  * If releasing blocks, this function supports updating multiple consecutive blocks
2563  * at one time, but please note that these consecutive blocks need to belong to the
2564  * same segment.
2565  */
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2566 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2567 {
2568 	struct seg_entry *se;
2569 	unsigned int segno, offset;
2570 	long int new_vblocks;
2571 
2572 	segno = GET_SEGNO(sbi, blkaddr);
2573 	if (segno == NULL_SEGNO)
2574 		return;
2575 
2576 	se = get_seg_entry(sbi, segno);
2577 	new_vblocks = se->valid_blocks + del;
2578 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2579 
2580 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2581 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2582 
2583 	se->valid_blocks = new_vblocks;
2584 
2585 	/* Update valid block bitmap */
2586 	if (del > 0) {
2587 		del = update_sit_entry_for_alloc(sbi, se, segno, blkaddr, offset, del);
2588 	} else {
2589 		del = update_sit_entry_for_release(sbi, se, segno, blkaddr, offset, del);
2590 	}
2591 
2592 	__mark_sit_entry_dirty(sbi, segno);
2593 
2594 	/* update total number of valid blocks to be written in ckpt area */
2595 	SIT_I(sbi)->written_valid_blocks += del;
2596 
2597 	if (__is_large_section(sbi))
2598 		get_sec_entry(sbi, segno)->valid_blocks += del;
2599 }
2600 
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr,unsigned int len)2601 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr,
2602 				unsigned int len)
2603 {
2604 	unsigned int segno = GET_SEGNO(sbi, addr);
2605 	struct sit_info *sit_i = SIT_I(sbi);
2606 	block_t addr_start = addr, addr_end = addr + len - 1;
2607 	unsigned int seg_num = GET_SEGNO(sbi, addr_end) - segno + 1;
2608 	unsigned int i = 1, max_blocks = sbi->blocks_per_seg, cnt;
2609 
2610 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2611 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2612 		return;
2613 
2614 	f2fs_invalidate_internal_cache(sbi, addr, len);
2615 
2616 	/* add it into sit main buffer */
2617 	down_write(&sit_i->sentry_lock);
2618 
2619 	if (seg_num == 1)
2620 		cnt = len;
2621 	else
2622 		cnt = max_blocks - GET_BLKOFF_FROM_SEG0(sbi, addr);
2623 
2624 	do {
2625 		update_segment_mtime(sbi, addr_start, 0);
2626 		update_sit_entry(sbi, addr_start, -cnt);
2627 
2628 		/* add it into dirty seglist */
2629 		locate_dirty_segment(sbi, segno);
2630 
2631 		/* update @addr_start and @cnt and @segno */
2632 		addr_start = START_BLOCK(sbi, ++segno);
2633 		if (++i == seg_num)
2634 			cnt = GET_BLKOFF_FROM_SEG0(sbi, addr_end) + 1;
2635 		else
2636 			cnt = max_blocks;
2637 	} while (i <= seg_num);
2638 
2639 	up_write(&sit_i->sentry_lock);
2640 }
2641 
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2642 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2643 {
2644 	struct sit_info *sit_i = SIT_I(sbi);
2645 	unsigned int segno, offset;
2646 	struct seg_entry *se;
2647 	bool is_cp = false;
2648 
2649 	if (!__is_valid_data_blkaddr(blkaddr))
2650 		return true;
2651 
2652 	down_read(&sit_i->sentry_lock);
2653 
2654 	segno = GET_SEGNO(sbi, blkaddr);
2655 	se = get_seg_entry(sbi, segno);
2656 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2657 
2658 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2659 		is_cp = true;
2660 
2661 	up_read(&sit_i->sentry_lock);
2662 
2663 	return is_cp;
2664 }
2665 
f2fs_curseg_valid_blocks(struct f2fs_sb_info * sbi,int type)2666 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2667 {
2668 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2669 
2670 	if (sbi->ckpt->alloc_type[type] == SSR)
2671 		return BLKS_PER_SEG(sbi);
2672 	return curseg->next_blkoff;
2673 }
2674 
2675 /*
2676  * Calculate the number of current summary pages for writing
2677  */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2678 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2679 {
2680 	int valid_sum_count = 0;
2681 	int i, sum_in_page;
2682 
2683 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2684 		if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2685 			valid_sum_count +=
2686 				le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2687 		else
2688 			valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2689 	}
2690 
2691 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2692 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2693 	if (valid_sum_count <= sum_in_page)
2694 		return 1;
2695 	else if ((valid_sum_count - sum_in_page) <=
2696 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2697 		return 2;
2698 	return 3;
2699 }
2700 
2701 /*
2702  * Caller should put this summary page
2703  */
f2fs_get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2704 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2705 {
2706 	if (unlikely(f2fs_cp_error(sbi)))
2707 		return ERR_PTR(-EIO);
2708 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2709 }
2710 
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2711 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2712 					void *src, block_t blk_addr)
2713 {
2714 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2715 
2716 	memcpy(page_address(page), src, PAGE_SIZE);
2717 	set_page_dirty(page);
2718 	f2fs_put_page(page, 1);
2719 }
2720 
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2721 static void write_sum_page(struct f2fs_sb_info *sbi,
2722 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2723 {
2724 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2725 }
2726 
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2727 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2728 						int type, block_t blk_addr)
2729 {
2730 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2731 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2732 	struct f2fs_summary_block *src = curseg->sum_blk;
2733 	struct f2fs_summary_block *dst;
2734 
2735 	dst = (struct f2fs_summary_block *)page_address(page);
2736 	memset(dst, 0, PAGE_SIZE);
2737 
2738 	mutex_lock(&curseg->curseg_mutex);
2739 
2740 	down_read(&curseg->journal_rwsem);
2741 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2742 	up_read(&curseg->journal_rwsem);
2743 
2744 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2745 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2746 
2747 	mutex_unlock(&curseg->curseg_mutex);
2748 
2749 	set_page_dirty(page);
2750 	f2fs_put_page(page, 1);
2751 }
2752 
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg)2753 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2754 				struct curseg_info *curseg)
2755 {
2756 	unsigned int segno = curseg->segno + 1;
2757 	struct free_segmap_info *free_i = FREE_I(sbi);
2758 
2759 	if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2760 		return !test_bit(segno, free_i->free_segmap);
2761 	return 0;
2762 }
2763 
2764 /*
2765  * Find a new segment from the free segments bitmap to right order
2766  * This function should be returned with success, otherwise BUG
2767  */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,bool pinning)2768 static int get_new_segment(struct f2fs_sb_info *sbi,
2769 			unsigned int *newseg, bool new_sec, bool pinning)
2770 {
2771 	struct free_segmap_info *free_i = FREE_I(sbi);
2772 	unsigned int segno, secno, zoneno;
2773 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2774 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2775 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2776 	bool init = true;
2777 	int i;
2778 	int ret = 0;
2779 
2780 	spin_lock(&free_i->segmap_lock);
2781 
2782 	if (time_to_inject(sbi, FAULT_NO_SEGMENT)) {
2783 		ret = -ENOSPC;
2784 		goto out_unlock;
2785 	}
2786 
2787 	if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2788 		segno = find_next_zero_bit(free_i->free_segmap,
2789 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2790 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2791 			goto got_it;
2792 	}
2793 
2794 #ifdef CONFIG_BLK_DEV_ZONED
2795 	/*
2796 	 * If we format f2fs on zoned storage, let's try to get pinned sections
2797 	 * from beginning of the storage, which should be a conventional one.
2798 	 */
2799 	if (f2fs_sb_has_blkzoned(sbi)) {
2800 		/* Prioritize writing to conventional zones */
2801 		if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_PRIOR_CONV || pinning)
2802 			segno = 0;
2803 		else
2804 			segno = max(sbi->first_zoned_segno, *newseg);
2805 		hint = GET_SEC_FROM_SEG(sbi, segno);
2806 	}
2807 #endif
2808 
2809 find_other_zone:
2810 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2811 
2812 #ifdef CONFIG_BLK_DEV_ZONED
2813 	if (secno >= MAIN_SECS(sbi) && f2fs_sb_has_blkzoned(sbi)) {
2814 		/* Write only to sequential zones */
2815 		if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_ONLY_SEQ) {
2816 			hint = GET_SEC_FROM_SEG(sbi, sbi->first_zoned_segno);
2817 			secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2818 		} else
2819 			secno = find_first_zero_bit(free_i->free_secmap,
2820 								MAIN_SECS(sbi));
2821 		if (secno >= MAIN_SECS(sbi)) {
2822 			ret = -ENOSPC;
2823 			f2fs_bug_on(sbi, 1);
2824 			goto out_unlock;
2825 		}
2826 	}
2827 #endif
2828 
2829 	if (secno >= MAIN_SECS(sbi)) {
2830 		secno = find_first_zero_bit(free_i->free_secmap,
2831 							MAIN_SECS(sbi));
2832 		if (secno >= MAIN_SECS(sbi)) {
2833 			ret = -ENOSPC;
2834 			f2fs_bug_on(sbi, !pinning);
2835 			goto out_unlock;
2836 		}
2837 	}
2838 	segno = GET_SEG_FROM_SEC(sbi, secno);
2839 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2840 
2841 	/* give up on finding another zone */
2842 	if (!init)
2843 		goto got_it;
2844 	if (sbi->secs_per_zone == 1)
2845 		goto got_it;
2846 	if (zoneno == old_zoneno)
2847 		goto got_it;
2848 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2849 		if (CURSEG_I(sbi, i)->zone == zoneno)
2850 			break;
2851 
2852 	if (i < NR_CURSEG_TYPE) {
2853 		/* zone is in user, try another */
2854 		if (zoneno + 1 >= total_zones)
2855 			hint = 0;
2856 		else
2857 			hint = (zoneno + 1) * sbi->secs_per_zone;
2858 		init = false;
2859 		goto find_other_zone;
2860 	}
2861 got_it:
2862 	/* set it as dirty segment in free segmap */
2863 	if (test_bit(segno, free_i->free_segmap)) {
2864 		ret = -EFSCORRUPTED;
2865 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_CORRUPTED_FREE_BITMAP);
2866 		goto out_unlock;
2867 	}
2868 
2869 	/* no free section in conventional device or conventional zone */
2870 	if (new_sec && pinning &&
2871 		f2fs_is_sequential_zone_area(sbi, START_BLOCK(sbi, segno))) {
2872 		ret = -EAGAIN;
2873 		goto out_unlock;
2874 	}
2875 	__set_inuse(sbi, segno);
2876 	*newseg = segno;
2877 out_unlock:
2878 	spin_unlock(&free_i->segmap_lock);
2879 
2880 	if (ret == -ENOSPC && !pinning)
2881 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2882 	return ret;
2883 }
2884 
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2885 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2886 {
2887 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2888 	struct summary_footer *sum_footer;
2889 	unsigned short seg_type = curseg->seg_type;
2890 
2891 	/* only happen when get_new_segment() fails */
2892 	if (curseg->next_segno == NULL_SEGNO)
2893 		return;
2894 
2895 	curseg->inited = true;
2896 	curseg->segno = curseg->next_segno;
2897 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2898 	curseg->next_blkoff = 0;
2899 	curseg->next_segno = NULL_SEGNO;
2900 
2901 	sum_footer = &(curseg->sum_blk->footer);
2902 	memset(sum_footer, 0, sizeof(struct summary_footer));
2903 
2904 	sanity_check_seg_type(sbi, seg_type);
2905 
2906 	if (IS_DATASEG(seg_type))
2907 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2908 	if (IS_NODESEG(seg_type))
2909 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2910 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2911 }
2912 
__get_next_segno(struct f2fs_sb_info * sbi,int type)2913 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2914 {
2915 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2916 	unsigned short seg_type = curseg->seg_type;
2917 
2918 	sanity_check_seg_type(sbi, seg_type);
2919 	if (__is_large_section(sbi)) {
2920 		if (f2fs_need_rand_seg(sbi)) {
2921 			unsigned int hint = GET_SEC_FROM_SEG(sbi, curseg->segno);
2922 
2923 			if (GET_SEC_FROM_SEG(sbi, curseg->segno + 1) != hint)
2924 				return curseg->segno;
2925 			return get_random_u32_inclusive(curseg->segno + 1,
2926 					GET_SEG_FROM_SEC(sbi, hint + 1) - 1);
2927 		}
2928 		return curseg->segno;
2929 	} else if (f2fs_need_rand_seg(sbi)) {
2930 		return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2931 	}
2932 
2933 	/* inmem log may not locate on any segment after mount */
2934 	if (!curseg->inited)
2935 		return 0;
2936 
2937 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2938 		return 0;
2939 
2940 	if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2941 		return 0;
2942 
2943 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2944 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2945 
2946 	/* find segments from 0 to reuse freed segments */
2947 	if (f2fs_get_alloc_mode(sbi) == ALLOC_MODE_REUSE)
2948 		return 0;
2949 
2950 	return curseg->segno;
2951 }
2952 
reset_curseg_fields(struct curseg_info * curseg)2953 static void reset_curseg_fields(struct curseg_info *curseg)
2954 {
2955 	curseg->inited = false;
2956 	curseg->segno = NULL_SEGNO;
2957 	curseg->next_segno = 0;
2958 }
2959 
2960 /*
2961  * Allocate a current working segment.
2962  * This function always allocates a free segment in LFS manner.
2963  */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2964 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2965 {
2966 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2967 	unsigned int segno = curseg->segno;
2968 	bool pinning = type == CURSEG_COLD_DATA_PINNED;
2969 	int ret;
2970 
2971 	if (curseg->inited)
2972 		write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno));
2973 
2974 	segno = __get_next_segno(sbi, type);
2975 	ret = get_new_segment(sbi, &segno, new_sec, pinning);
2976 	if (ret) {
2977 		if (ret == -ENOSPC)
2978 			reset_curseg_fields(curseg);
2979 		return ret;
2980 	}
2981 
2982 	curseg->next_segno = segno;
2983 	reset_curseg(sbi, type, 1);
2984 	curseg->alloc_type = LFS;
2985 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2986 		curseg->fragment_remained_chunk =
2987 				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2988 	return 0;
2989 }
2990 
__next_free_blkoff(struct f2fs_sb_info * sbi,int segno,block_t start)2991 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2992 					int segno, block_t start)
2993 {
2994 	struct seg_entry *se = get_seg_entry(sbi, segno);
2995 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2996 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2997 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2998 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2999 	int i;
3000 
3001 	for (i = 0; i < entries; i++)
3002 		target_map[i] = ckpt_map[i] | cur_map[i];
3003 
3004 	return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
3005 }
3006 
f2fs_find_next_ssr_block(struct f2fs_sb_info * sbi,struct curseg_info * seg)3007 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
3008 		struct curseg_info *seg)
3009 {
3010 	return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
3011 }
3012 
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)3013 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
3014 {
3015 	return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
3016 }
3017 
3018 /*
3019  * This function always allocates a used segment(from dirty seglist) by SSR
3020  * manner, so it should recover the existing segment information of valid blocks
3021  */
change_curseg(struct f2fs_sb_info * sbi,int type)3022 static int change_curseg(struct f2fs_sb_info *sbi, int type)
3023 {
3024 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3025 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3026 	unsigned int new_segno = curseg->next_segno;
3027 	struct f2fs_summary_block *sum_node;
3028 	struct page *sum_page;
3029 
3030 	if (curseg->inited)
3031 		write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
3032 
3033 	__set_test_and_inuse(sbi, new_segno);
3034 
3035 	mutex_lock(&dirty_i->seglist_lock);
3036 	__remove_dirty_segment(sbi, new_segno, PRE);
3037 	__remove_dirty_segment(sbi, new_segno, DIRTY);
3038 	mutex_unlock(&dirty_i->seglist_lock);
3039 
3040 	reset_curseg(sbi, type, 1);
3041 	curseg->alloc_type = SSR;
3042 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
3043 
3044 	sum_page = f2fs_get_sum_page(sbi, new_segno);
3045 	if (IS_ERR(sum_page)) {
3046 		/* GC won't be able to use stale summary pages by cp_error */
3047 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
3048 		return PTR_ERR(sum_page);
3049 	}
3050 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
3051 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
3052 	f2fs_put_page(sum_page, 1);
3053 	return 0;
3054 }
3055 
3056 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3057 				int alloc_mode, unsigned long long age);
3058 
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)3059 static int get_atssr_segment(struct f2fs_sb_info *sbi, int type,
3060 					int target_type, int alloc_mode,
3061 					unsigned long long age)
3062 {
3063 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3064 	int ret = 0;
3065 
3066 	curseg->seg_type = target_type;
3067 
3068 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
3069 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
3070 
3071 		curseg->seg_type = se->type;
3072 		ret = change_curseg(sbi, type);
3073 	} else {
3074 		/* allocate cold segment by default */
3075 		curseg->seg_type = CURSEG_COLD_DATA;
3076 		ret = new_curseg(sbi, type, true);
3077 	}
3078 	stat_inc_seg_type(sbi, curseg);
3079 	return ret;
3080 }
3081 
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi,bool force)3082 static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi, bool force)
3083 {
3084 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
3085 	int ret = 0;
3086 
3087 	if (!sbi->am.atgc_enabled && !force)
3088 		return 0;
3089 
3090 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3091 
3092 	mutex_lock(&curseg->curseg_mutex);
3093 	down_write(&SIT_I(sbi)->sentry_lock);
3094 
3095 	ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC,
3096 					CURSEG_COLD_DATA, SSR, 0);
3097 
3098 	up_write(&SIT_I(sbi)->sentry_lock);
3099 	mutex_unlock(&curseg->curseg_mutex);
3100 
3101 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3102 	return ret;
3103 }
3104 
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)3105 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
3106 {
3107 	return __f2fs_init_atgc_curseg(sbi, false);
3108 }
3109 
f2fs_reinit_atgc_curseg(struct f2fs_sb_info * sbi)3110 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi)
3111 {
3112 	int ret;
3113 
3114 	if (!test_opt(sbi, ATGC))
3115 		return 0;
3116 	if (sbi->am.atgc_enabled)
3117 		return 0;
3118 	if (le64_to_cpu(F2FS_CKPT(sbi)->elapsed_time) <
3119 			sbi->am.age_threshold)
3120 		return 0;
3121 
3122 	ret = __f2fs_init_atgc_curseg(sbi, true);
3123 	if (!ret) {
3124 		sbi->am.atgc_enabled = true;
3125 		f2fs_info(sbi, "reenabled age threshold GC");
3126 	}
3127 	return ret;
3128 }
3129 
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)3130 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3131 {
3132 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3133 
3134 	mutex_lock(&curseg->curseg_mutex);
3135 	if (!curseg->inited)
3136 		goto out;
3137 
3138 	if (get_valid_blocks(sbi, curseg->segno, false)) {
3139 		write_sum_page(sbi, curseg->sum_blk,
3140 				GET_SUM_BLOCK(sbi, curseg->segno));
3141 	} else {
3142 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3143 		__set_test_and_free(sbi, curseg->segno, true);
3144 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3145 	}
3146 out:
3147 	mutex_unlock(&curseg->curseg_mutex);
3148 }
3149 
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)3150 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
3151 {
3152 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3153 
3154 	if (sbi->am.atgc_enabled)
3155 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3156 }
3157 
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)3158 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3159 {
3160 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3161 
3162 	mutex_lock(&curseg->curseg_mutex);
3163 	if (!curseg->inited)
3164 		goto out;
3165 	if (get_valid_blocks(sbi, curseg->segno, false))
3166 		goto out;
3167 
3168 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3169 	__set_test_and_inuse(sbi, curseg->segno);
3170 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3171 out:
3172 	mutex_unlock(&curseg->curseg_mutex);
3173 }
3174 
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)3175 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
3176 {
3177 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3178 
3179 	if (sbi->am.atgc_enabled)
3180 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3181 }
3182 
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)3183 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3184 				int alloc_mode, unsigned long long age)
3185 {
3186 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3187 	unsigned segno = NULL_SEGNO;
3188 	unsigned short seg_type = curseg->seg_type;
3189 	int i, cnt;
3190 	bool reversed = false;
3191 
3192 	sanity_check_seg_type(sbi, seg_type);
3193 
3194 	/* f2fs_need_SSR() already forces to do this */
3195 	if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type,
3196 				alloc_mode, age, false)) {
3197 		curseg->next_segno = segno;
3198 		return 1;
3199 	}
3200 
3201 	/* For node segments, let's do SSR more intensively */
3202 	if (IS_NODESEG(seg_type)) {
3203 		if (seg_type >= CURSEG_WARM_NODE) {
3204 			reversed = true;
3205 			i = CURSEG_COLD_NODE;
3206 		} else {
3207 			i = CURSEG_HOT_NODE;
3208 		}
3209 		cnt = NR_CURSEG_NODE_TYPE;
3210 	} else {
3211 		if (seg_type >= CURSEG_WARM_DATA) {
3212 			reversed = true;
3213 			i = CURSEG_COLD_DATA;
3214 		} else {
3215 			i = CURSEG_HOT_DATA;
3216 		}
3217 		cnt = NR_CURSEG_DATA_TYPE;
3218 	}
3219 
3220 	for (; cnt-- > 0; reversed ? i-- : i++) {
3221 		if (i == seg_type)
3222 			continue;
3223 		if (!f2fs_get_victim(sbi, &segno, BG_GC, i,
3224 					alloc_mode, age, false)) {
3225 			curseg->next_segno = segno;
3226 			return 1;
3227 		}
3228 	}
3229 
3230 	/* find valid_blocks=0 in dirty list */
3231 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3232 		segno = get_free_segment(sbi);
3233 		if (segno != NULL_SEGNO) {
3234 			curseg->next_segno = segno;
3235 			return 1;
3236 		}
3237 	}
3238 	return 0;
3239 }
3240 
need_new_seg(struct f2fs_sb_info * sbi,int type)3241 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3242 {
3243 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3244 
3245 	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3246 	    curseg->seg_type == CURSEG_WARM_NODE)
3247 		return true;
3248 	if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) &&
3249 	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3250 		return true;
3251 	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3252 		return true;
3253 	return false;
3254 }
3255 
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)3256 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3257 					unsigned int start, unsigned int end)
3258 {
3259 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3260 	unsigned int segno;
3261 	int ret = 0;
3262 
3263 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3264 	mutex_lock(&curseg->curseg_mutex);
3265 	down_write(&SIT_I(sbi)->sentry_lock);
3266 
3267 	segno = CURSEG_I(sbi, type)->segno;
3268 	if (segno < start || segno > end)
3269 		goto unlock;
3270 
3271 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3272 		ret = change_curseg(sbi, type);
3273 	else
3274 		ret = new_curseg(sbi, type, true);
3275 
3276 	stat_inc_seg_type(sbi, curseg);
3277 
3278 	locate_dirty_segment(sbi, segno);
3279 unlock:
3280 	up_write(&SIT_I(sbi)->sentry_lock);
3281 
3282 	if (segno != curseg->segno)
3283 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3284 			    type, segno, curseg->segno);
3285 
3286 	mutex_unlock(&curseg->curseg_mutex);
3287 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3288 	return ret;
3289 }
3290 
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec,bool force)3291 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3292 						bool new_sec, bool force)
3293 {
3294 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3295 	unsigned int old_segno;
3296 	int err = 0;
3297 
3298 	if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited)
3299 		goto allocate;
3300 
3301 	if (!force && curseg->inited &&
3302 	    !curseg->next_blkoff &&
3303 	    !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3304 	    !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3305 		return 0;
3306 
3307 allocate:
3308 	old_segno = curseg->segno;
3309 	err = new_curseg(sbi, type, true);
3310 	if (err)
3311 		return err;
3312 	stat_inc_seg_type(sbi, curseg);
3313 	locate_dirty_segment(sbi, old_segno);
3314 	return 0;
3315 }
3316 
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)3317 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3318 {
3319 	int ret;
3320 
3321 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3322 	down_write(&SIT_I(sbi)->sentry_lock);
3323 	ret = __allocate_new_segment(sbi, type, true, force);
3324 	up_write(&SIT_I(sbi)->sentry_lock);
3325 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3326 
3327 	return ret;
3328 }
3329 
f2fs_allocate_pinning_section(struct f2fs_sb_info * sbi)3330 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3331 {
3332 	int err;
3333 	bool gc_required = true;
3334 
3335 retry:
3336 	f2fs_lock_op(sbi);
3337 	err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3338 	f2fs_unlock_op(sbi);
3339 
3340 	if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) {
3341 		f2fs_down_write(&sbi->gc_lock);
3342 		err = f2fs_gc_range(sbi, 0, sbi->first_zoned_segno - 1,
3343 				true, ZONED_PIN_SEC_REQUIRED_COUNT);
3344 		f2fs_up_write(&sbi->gc_lock);
3345 
3346 		gc_required = false;
3347 		if (!err)
3348 			goto retry;
3349 	}
3350 
3351 	return err;
3352 }
3353 
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)3354 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3355 {
3356 	int i;
3357 	int err = 0;
3358 
3359 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3360 	down_write(&SIT_I(sbi)->sentry_lock);
3361 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3362 		err += __allocate_new_segment(sbi, i, false, false);
3363 	up_write(&SIT_I(sbi)->sentry_lock);
3364 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3365 
3366 	return err;
3367 }
3368 
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)3369 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3370 						struct cp_control *cpc)
3371 {
3372 	__u64 trim_start = cpc->trim_start;
3373 	bool has_candidate = false;
3374 
3375 	down_write(&SIT_I(sbi)->sentry_lock);
3376 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3377 		if (add_discard_addrs(sbi, cpc, true)) {
3378 			has_candidate = true;
3379 			break;
3380 		}
3381 	}
3382 	up_write(&SIT_I(sbi)->sentry_lock);
3383 
3384 	cpc->trim_start = trim_start;
3385 	return has_candidate;
3386 }
3387 
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)3388 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3389 					struct discard_policy *dpolicy,
3390 					unsigned int start, unsigned int end)
3391 {
3392 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3393 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3394 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3395 	struct discard_cmd *dc;
3396 	struct blk_plug plug;
3397 	int issued;
3398 	unsigned int trimmed = 0;
3399 
3400 next:
3401 	issued = 0;
3402 
3403 	mutex_lock(&dcc->cmd_lock);
3404 	if (unlikely(dcc->rbtree_check))
3405 		f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3406 
3407 	dc = __lookup_discard_cmd_ret(&dcc->root, start,
3408 				&prev_dc, &next_dc, &insert_p, &insert_parent);
3409 	if (!dc)
3410 		dc = next_dc;
3411 
3412 	blk_start_plug(&plug);
3413 
3414 	while (dc && dc->di.lstart <= end) {
3415 		struct rb_node *node;
3416 		int err = 0;
3417 
3418 		if (dc->di.len < dpolicy->granularity)
3419 			goto skip;
3420 
3421 		if (dc->state != D_PREP) {
3422 			list_move_tail(&dc->list, &dcc->fstrim_list);
3423 			goto skip;
3424 		}
3425 
3426 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3427 
3428 		if (issued >= dpolicy->max_requests) {
3429 			start = dc->di.lstart + dc->di.len;
3430 
3431 			if (err)
3432 				__remove_discard_cmd(sbi, dc);
3433 
3434 			blk_finish_plug(&plug);
3435 			mutex_unlock(&dcc->cmd_lock);
3436 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3437 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3438 			goto next;
3439 		}
3440 skip:
3441 		node = rb_next(&dc->rb_node);
3442 		if (err)
3443 			__remove_discard_cmd(sbi, dc);
3444 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3445 
3446 		if (fatal_signal_pending(current))
3447 			break;
3448 	}
3449 
3450 	blk_finish_plug(&plug);
3451 	mutex_unlock(&dcc->cmd_lock);
3452 
3453 	return trimmed;
3454 }
3455 
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3456 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3457 {
3458 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3459 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3460 	unsigned int start_segno, end_segno;
3461 	block_t start_block, end_block;
3462 	struct cp_control cpc;
3463 	struct discard_policy dpolicy;
3464 	unsigned long long trimmed = 0;
3465 	int err = 0;
3466 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3467 
3468 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3469 		return -EINVAL;
3470 
3471 	if (end < MAIN_BLKADDR(sbi))
3472 		goto out;
3473 
3474 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3475 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3476 		return -EFSCORRUPTED;
3477 	}
3478 
3479 	/* start/end segment number in main_area */
3480 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3481 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3482 						GET_SEGNO(sbi, end);
3483 	if (need_align) {
3484 		start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3485 		end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3486 	}
3487 
3488 	cpc.reason = CP_DISCARD;
3489 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3490 	cpc.trim_start = start_segno;
3491 	cpc.trim_end = end_segno;
3492 
3493 	if (sbi->discard_blks == 0)
3494 		goto out;
3495 
3496 	f2fs_down_write(&sbi->gc_lock);
3497 	stat_inc_cp_call_count(sbi, TOTAL_CALL);
3498 	err = f2fs_write_checkpoint(sbi, &cpc);
3499 	f2fs_up_write(&sbi->gc_lock);
3500 	if (err)
3501 		goto out;
3502 
3503 	/*
3504 	 * We filed discard candidates, but actually we don't need to wait for
3505 	 * all of them, since they'll be issued in idle time along with runtime
3506 	 * discard option. User configuration looks like using runtime discard
3507 	 * or periodic fstrim instead of it.
3508 	 */
3509 	if (f2fs_realtime_discard_enable(sbi))
3510 		goto out;
3511 
3512 	start_block = START_BLOCK(sbi, start_segno);
3513 	end_block = START_BLOCK(sbi, end_segno + 1);
3514 
3515 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3516 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3517 					start_block, end_block);
3518 
3519 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3520 					start_block, end_block);
3521 out:
3522 	if (!err)
3523 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3524 	return err;
3525 }
3526 
f2fs_rw_hint_to_seg_type(struct f2fs_sb_info * sbi,enum rw_hint hint)3527 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint)
3528 {
3529 	if (F2FS_OPTION(sbi).active_logs == 2)
3530 		return CURSEG_HOT_DATA;
3531 	else if (F2FS_OPTION(sbi).active_logs == 4)
3532 		return CURSEG_COLD_DATA;
3533 
3534 	/* active_log == 6 */
3535 	switch (hint) {
3536 	case WRITE_LIFE_SHORT:
3537 		return CURSEG_HOT_DATA;
3538 	case WRITE_LIFE_EXTREME:
3539 		return CURSEG_COLD_DATA;
3540 	default:
3541 		return CURSEG_WARM_DATA;
3542 	}
3543 }
3544 
3545 /*
3546  * This returns write hints for each segment type. This hints will be
3547  * passed down to block layer as below by default.
3548  *
3549  * User                  F2FS                     Block
3550  * ----                  ----                     -----
3551  *                       META                     WRITE_LIFE_NONE|REQ_META
3552  *                       HOT_NODE                 WRITE_LIFE_NONE
3553  *                       WARM_NODE                WRITE_LIFE_MEDIUM
3554  *                       COLD_NODE                WRITE_LIFE_LONG
3555  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3556  * extension list        "                        "
3557  *
3558  * -- buffered io
3559  *                       COLD_DATA                WRITE_LIFE_EXTREME
3560  *                       HOT_DATA                 WRITE_LIFE_SHORT
3561  *                       WARM_DATA                WRITE_LIFE_NOT_SET
3562  *
3563  * -- direct io
3564  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3565  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3566  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3567  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3568  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3569  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3570  */
f2fs_io_type_to_rw_hint(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)3571 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3572 				enum page_type type, enum temp_type temp)
3573 {
3574 	switch (type) {
3575 	case DATA:
3576 		switch (temp) {
3577 		case WARM:
3578 			return WRITE_LIFE_NOT_SET;
3579 		case HOT:
3580 			return WRITE_LIFE_SHORT;
3581 		case COLD:
3582 			return WRITE_LIFE_EXTREME;
3583 		default:
3584 			return WRITE_LIFE_NONE;
3585 		}
3586 	case NODE:
3587 		switch (temp) {
3588 		case WARM:
3589 			return WRITE_LIFE_MEDIUM;
3590 		case HOT:
3591 			return WRITE_LIFE_NONE;
3592 		case COLD:
3593 			return WRITE_LIFE_LONG;
3594 		default:
3595 			return WRITE_LIFE_NONE;
3596 		}
3597 	case META:
3598 		return WRITE_LIFE_NONE;
3599 	default:
3600 		return WRITE_LIFE_NONE;
3601 	}
3602 }
3603 
__get_segment_type_2(struct f2fs_io_info * fio)3604 static int __get_segment_type_2(struct f2fs_io_info *fio)
3605 {
3606 	if (fio->type == DATA)
3607 		return CURSEG_HOT_DATA;
3608 	else
3609 		return CURSEG_HOT_NODE;
3610 }
3611 
__get_segment_type_4(struct f2fs_io_info * fio)3612 static int __get_segment_type_4(struct f2fs_io_info *fio)
3613 {
3614 	if (fio->type == DATA) {
3615 		struct inode *inode = fio->page->mapping->host;
3616 
3617 		if (S_ISDIR(inode->i_mode))
3618 			return CURSEG_HOT_DATA;
3619 		else
3620 			return CURSEG_COLD_DATA;
3621 	} else {
3622 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3623 			return CURSEG_WARM_NODE;
3624 		else
3625 			return CURSEG_COLD_NODE;
3626 	}
3627 }
3628 
__get_age_segment_type(struct inode * inode,pgoff_t pgofs)3629 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3630 {
3631 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3632 	struct extent_info ei = {};
3633 
3634 	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3635 		if (!ei.age)
3636 			return NO_CHECK_TYPE;
3637 		if (ei.age <= sbi->hot_data_age_threshold)
3638 			return CURSEG_HOT_DATA;
3639 		if (ei.age <= sbi->warm_data_age_threshold)
3640 			return CURSEG_WARM_DATA;
3641 		return CURSEG_COLD_DATA;
3642 	}
3643 	return NO_CHECK_TYPE;
3644 }
3645 
__get_segment_type_6(struct f2fs_io_info * fio)3646 static int __get_segment_type_6(struct f2fs_io_info *fio)
3647 {
3648 	if (fio->type == DATA) {
3649 		struct inode *inode = fio->page->mapping->host;
3650 		int type;
3651 
3652 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3653 			return CURSEG_COLD_DATA_PINNED;
3654 
3655 		if (page_private_gcing(fio->page)) {
3656 			if (fio->sbi->am.atgc_enabled &&
3657 				(fio->io_type == FS_DATA_IO) &&
3658 				(fio->sbi->gc_mode != GC_URGENT_HIGH) &&
3659 				__is_valid_data_blkaddr(fio->old_blkaddr) &&
3660 				!is_inode_flag_set(inode, FI_OPU_WRITE))
3661 				return CURSEG_ALL_DATA_ATGC;
3662 			else
3663 				return CURSEG_COLD_DATA;
3664 		}
3665 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3666 			return CURSEG_COLD_DATA;
3667 
3668 		type = __get_age_segment_type(inode,
3669 				page_folio(fio->page)->index);
3670 		if (type != NO_CHECK_TYPE)
3671 			return type;
3672 
3673 		if (file_is_hot(inode) ||
3674 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3675 				f2fs_is_cow_file(inode))
3676 			return CURSEG_HOT_DATA;
3677 		return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
3678 						inode->i_write_hint);
3679 	} else {
3680 		if (IS_DNODE(fio->page))
3681 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3682 						CURSEG_HOT_NODE;
3683 		return CURSEG_COLD_NODE;
3684 	}
3685 }
3686 
f2fs_get_segment_temp(struct f2fs_sb_info * sbi,enum log_type type)3687 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3688 						enum log_type type)
3689 {
3690 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3691 	enum temp_type temp = COLD;
3692 
3693 	switch (curseg->seg_type) {
3694 	case CURSEG_HOT_NODE:
3695 	case CURSEG_HOT_DATA:
3696 		temp = HOT;
3697 		break;
3698 	case CURSEG_WARM_NODE:
3699 	case CURSEG_WARM_DATA:
3700 		temp = WARM;
3701 		break;
3702 	case CURSEG_COLD_NODE:
3703 	case CURSEG_COLD_DATA:
3704 		temp = COLD;
3705 		break;
3706 	default:
3707 		f2fs_bug_on(sbi, 1);
3708 	}
3709 
3710 	return temp;
3711 }
3712 
__get_segment_type(struct f2fs_io_info * fio)3713 static int __get_segment_type(struct f2fs_io_info *fio)
3714 {
3715 	enum log_type type = CURSEG_HOT_DATA;
3716 
3717 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3718 	case 2:
3719 		type = __get_segment_type_2(fio);
3720 		break;
3721 	case 4:
3722 		type = __get_segment_type_4(fio);
3723 		break;
3724 	case 6:
3725 		type = __get_segment_type_6(fio);
3726 		break;
3727 	default:
3728 		f2fs_bug_on(fio->sbi, true);
3729 	}
3730 
3731 	fio->temp = f2fs_get_segment_temp(fio->sbi, type);
3732 
3733 	return type;
3734 }
3735 
f2fs_randomize_chunk(struct f2fs_sb_info * sbi,struct curseg_info * seg)3736 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3737 		struct curseg_info *seg)
3738 {
3739 	/* To allocate block chunks in different sizes, use random number */
3740 	if (--seg->fragment_remained_chunk > 0)
3741 		return;
3742 
3743 	seg->fragment_remained_chunk =
3744 		get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3745 	seg->next_blkoff +=
3746 		get_random_u32_inclusive(1, sbi->max_fragment_hole);
3747 }
3748 
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio)3749 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3750 		block_t old_blkaddr, block_t *new_blkaddr,
3751 		struct f2fs_summary *sum, int type,
3752 		struct f2fs_io_info *fio)
3753 {
3754 	struct sit_info *sit_i = SIT_I(sbi);
3755 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3756 	unsigned long long old_mtime;
3757 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3758 	struct seg_entry *se = NULL;
3759 	bool segment_full = false;
3760 	int ret = 0;
3761 
3762 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3763 
3764 	mutex_lock(&curseg->curseg_mutex);
3765 	down_write(&sit_i->sentry_lock);
3766 
3767 	if (curseg->segno == NULL_SEGNO) {
3768 		ret = -ENOSPC;
3769 		goto out_err;
3770 	}
3771 
3772 	if (from_gc) {
3773 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3774 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3775 		sanity_check_seg_type(sbi, se->type);
3776 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3777 	}
3778 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3779 
3780 	f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3781 
3782 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3783 
3784 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3785 	if (curseg->alloc_type == SSR) {
3786 		curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3787 	} else {
3788 		curseg->next_blkoff++;
3789 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3790 			f2fs_randomize_chunk(sbi, curseg);
3791 	}
3792 	if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3793 		segment_full = true;
3794 	stat_inc_block_count(sbi, curseg);
3795 
3796 	if (from_gc) {
3797 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3798 	} else {
3799 		update_segment_mtime(sbi, old_blkaddr, 0);
3800 		old_mtime = 0;
3801 	}
3802 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3803 
3804 	/*
3805 	 * SIT information should be updated before segment allocation,
3806 	 * since SSR needs latest valid block information.
3807 	 */
3808 	update_sit_entry(sbi, *new_blkaddr, 1);
3809 	update_sit_entry(sbi, old_blkaddr, -1);
3810 
3811 	/*
3812 	 * If the current segment is full, flush it out and replace it with a
3813 	 * new segment.
3814 	 */
3815 	if (segment_full) {
3816 		if (type == CURSEG_COLD_DATA_PINNED &&
3817 		    !((curseg->segno + 1) % sbi->segs_per_sec)) {
3818 			write_sum_page(sbi, curseg->sum_blk,
3819 					GET_SUM_BLOCK(sbi, curseg->segno));
3820 			reset_curseg_fields(curseg);
3821 			goto skip_new_segment;
3822 		}
3823 
3824 		if (from_gc) {
3825 			ret = get_atssr_segment(sbi, type, se->type,
3826 						AT_SSR, se->mtime);
3827 		} else {
3828 			if (need_new_seg(sbi, type))
3829 				ret = new_curseg(sbi, type, false);
3830 			else
3831 				ret = change_curseg(sbi, type);
3832 			stat_inc_seg_type(sbi, curseg);
3833 		}
3834 
3835 		if (ret)
3836 			goto out_err;
3837 	}
3838 
3839 skip_new_segment:
3840 	/*
3841 	 * segment dirty status should be updated after segment allocation,
3842 	 * so we just need to update status only one time after previous
3843 	 * segment being closed.
3844 	 */
3845 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3846 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3847 
3848 	if (IS_DATASEG(curseg->seg_type))
3849 		atomic64_inc(&sbi->allocated_data_blocks);
3850 
3851 	up_write(&sit_i->sentry_lock);
3852 
3853 	if (page && IS_NODESEG(curseg->seg_type)) {
3854 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3855 
3856 		f2fs_inode_chksum_set(sbi, page);
3857 	}
3858 
3859 	if (fio) {
3860 		struct f2fs_bio_info *io;
3861 
3862 		INIT_LIST_HEAD(&fio->list);
3863 		fio->in_list = 1;
3864 		io = sbi->write_io[fio->type] + fio->temp;
3865 		spin_lock(&io->io_lock);
3866 		list_add_tail(&fio->list, &io->io_list);
3867 		spin_unlock(&io->io_lock);
3868 	}
3869 
3870 	mutex_unlock(&curseg->curseg_mutex);
3871 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3872 	return 0;
3873 
3874 out_err:
3875 	*new_blkaddr = NULL_ADDR;
3876 	up_write(&sit_i->sentry_lock);
3877 	mutex_unlock(&curseg->curseg_mutex);
3878 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3879 	return ret;
3880 }
3881 
f2fs_update_device_state(struct f2fs_sb_info * sbi,nid_t ino,block_t blkaddr,unsigned int blkcnt)3882 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3883 					block_t blkaddr, unsigned int blkcnt)
3884 {
3885 	if (!f2fs_is_multi_device(sbi))
3886 		return;
3887 
3888 	while (1) {
3889 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3890 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3891 
3892 		/* update device state for fsync */
3893 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3894 
3895 		/* update device state for checkpoint */
3896 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3897 			spin_lock(&sbi->dev_lock);
3898 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3899 			spin_unlock(&sbi->dev_lock);
3900 		}
3901 
3902 		if (blkcnt <= blks)
3903 			break;
3904 		blkcnt -= blks;
3905 		blkaddr += blks;
3906 	}
3907 }
3908 
log_type_to_seg_type(enum log_type type)3909 static int log_type_to_seg_type(enum log_type type)
3910 {
3911 	int seg_type = CURSEG_COLD_DATA;
3912 
3913 	switch (type) {
3914 	case CURSEG_HOT_DATA:
3915 	case CURSEG_WARM_DATA:
3916 	case CURSEG_COLD_DATA:
3917 	case CURSEG_HOT_NODE:
3918 	case CURSEG_WARM_NODE:
3919 	case CURSEG_COLD_NODE:
3920 		seg_type = (int)type;
3921 		break;
3922 	case CURSEG_COLD_DATA_PINNED:
3923 	case CURSEG_ALL_DATA_ATGC:
3924 		seg_type = CURSEG_COLD_DATA;
3925 		break;
3926 	default:
3927 		break;
3928 	}
3929 	return seg_type;
3930 }
3931 
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3932 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3933 {
3934 	struct folio *folio = page_folio(fio->page);
3935 	enum log_type type = __get_segment_type(fio);
3936 	int seg_type = log_type_to_seg_type(type);
3937 	bool keep_order = (f2fs_lfs_mode(fio->sbi) &&
3938 				seg_type == CURSEG_COLD_DATA);
3939 
3940 	if (keep_order)
3941 		f2fs_down_read(&fio->sbi->io_order_lock);
3942 
3943 	if (f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3944 			&fio->new_blkaddr, sum, type, fio)) {
3945 		if (fscrypt_inode_uses_fs_layer_crypto(folio->mapping->host))
3946 			fscrypt_finalize_bounce_page(&fio->encrypted_page);
3947 		folio_end_writeback(folio);
3948 		if (f2fs_in_warm_node_list(fio->sbi, folio))
3949 			f2fs_del_fsync_node_entry(fio->sbi, fio->page);
3950 		goto out;
3951 	}
3952 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3953 		f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr, 1);
3954 
3955 	/* writeout dirty page into bdev */
3956 	f2fs_submit_page_write(fio);
3957 
3958 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3959 out:
3960 	if (keep_order)
3961 		f2fs_up_read(&fio->sbi->io_order_lock);
3962 }
3963 
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct folio * folio,enum iostat_type io_type)3964 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3965 					enum iostat_type io_type)
3966 {
3967 	struct f2fs_io_info fio = {
3968 		.sbi = sbi,
3969 		.type = META,
3970 		.temp = HOT,
3971 		.op = REQ_OP_WRITE,
3972 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3973 		.old_blkaddr = folio->index,
3974 		.new_blkaddr = folio->index,
3975 		.page = folio_page(folio, 0),
3976 		.encrypted_page = NULL,
3977 		.in_list = 0,
3978 	};
3979 
3980 	if (unlikely(folio->index >= MAIN_BLKADDR(sbi)))
3981 		fio.op_flags &= ~REQ_META;
3982 
3983 	folio_start_writeback(folio);
3984 	f2fs_submit_page_write(&fio);
3985 
3986 	stat_inc_meta_count(sbi, folio->index);
3987 	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3988 }
3989 
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3990 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3991 {
3992 	struct f2fs_summary sum;
3993 
3994 	set_summary(&sum, nid, 0, 0);
3995 	do_write_page(&sum, fio);
3996 
3997 	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3998 }
3999 
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)4000 void f2fs_outplace_write_data(struct dnode_of_data *dn,
4001 					struct f2fs_io_info *fio)
4002 {
4003 	struct f2fs_sb_info *sbi = fio->sbi;
4004 	struct f2fs_summary sum;
4005 
4006 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
4007 	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
4008 		f2fs_update_age_extent_cache(dn);
4009 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
4010 	do_write_page(&sum, fio);
4011 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
4012 
4013 	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
4014 }
4015 
f2fs_inplace_write_data(struct f2fs_io_info * fio)4016 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
4017 {
4018 	int err;
4019 	struct f2fs_sb_info *sbi = fio->sbi;
4020 	unsigned int segno;
4021 
4022 	fio->new_blkaddr = fio->old_blkaddr;
4023 	/* i/o temperature is needed for passing down write hints */
4024 	__get_segment_type(fio);
4025 
4026 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
4027 
4028 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
4029 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4030 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
4031 			  __func__, segno);
4032 		err = -EFSCORRUPTED;
4033 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4034 		goto drop_bio;
4035 	}
4036 
4037 	if (f2fs_cp_error(sbi)) {
4038 		err = -EIO;
4039 		goto drop_bio;
4040 	}
4041 
4042 	if (fio->meta_gc)
4043 		f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
4044 
4045 	stat_inc_inplace_blocks(fio->sbi);
4046 
4047 	if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
4048 		err = f2fs_merge_page_bio(fio);
4049 	else
4050 		err = f2fs_submit_page_bio(fio);
4051 	if (!err) {
4052 		f2fs_update_device_state(fio->sbi, fio->ino,
4053 						fio->new_blkaddr, 1);
4054 		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
4055 						fio->io_type, F2FS_BLKSIZE);
4056 	}
4057 
4058 	return err;
4059 drop_bio:
4060 	if (fio->bio && *(fio->bio)) {
4061 		struct bio *bio = *(fio->bio);
4062 
4063 		bio->bi_status = BLK_STS_IOERR;
4064 		bio_endio(bio);
4065 		*(fio->bio) = NULL;
4066 	}
4067 	return err;
4068 }
4069 
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)4070 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
4071 						unsigned int segno)
4072 {
4073 	int i;
4074 
4075 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
4076 		if (CURSEG_I(sbi, i)->segno == segno)
4077 			break;
4078 	}
4079 	return i;
4080 }
4081 
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)4082 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
4083 				block_t old_blkaddr, block_t new_blkaddr,
4084 				bool recover_curseg, bool recover_newaddr,
4085 				bool from_gc)
4086 {
4087 	struct sit_info *sit_i = SIT_I(sbi);
4088 	struct curseg_info *curseg;
4089 	unsigned int segno, old_cursegno;
4090 	struct seg_entry *se;
4091 	int type;
4092 	unsigned short old_blkoff;
4093 	unsigned char old_alloc_type;
4094 
4095 	segno = GET_SEGNO(sbi, new_blkaddr);
4096 	se = get_seg_entry(sbi, segno);
4097 	type = se->type;
4098 
4099 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
4100 
4101 	if (!recover_curseg) {
4102 		/* for recovery flow */
4103 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
4104 			if (old_blkaddr == NULL_ADDR)
4105 				type = CURSEG_COLD_DATA;
4106 			else
4107 				type = CURSEG_WARM_DATA;
4108 		}
4109 	} else {
4110 		if (IS_CURSEG(sbi, segno)) {
4111 			/* se->type is volatile as SSR allocation */
4112 			type = __f2fs_get_curseg(sbi, segno);
4113 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
4114 		} else {
4115 			type = CURSEG_WARM_DATA;
4116 		}
4117 	}
4118 
4119 	curseg = CURSEG_I(sbi, type);
4120 	f2fs_bug_on(sbi, !IS_DATASEG(curseg->seg_type));
4121 
4122 	mutex_lock(&curseg->curseg_mutex);
4123 	down_write(&sit_i->sentry_lock);
4124 
4125 	old_cursegno = curseg->segno;
4126 	old_blkoff = curseg->next_blkoff;
4127 	old_alloc_type = curseg->alloc_type;
4128 
4129 	/* change the current segment */
4130 	if (segno != curseg->segno) {
4131 		curseg->next_segno = segno;
4132 		if (change_curseg(sbi, type))
4133 			goto out_unlock;
4134 	}
4135 
4136 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
4137 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
4138 
4139 	if (!recover_curseg || recover_newaddr) {
4140 		if (!from_gc)
4141 			update_segment_mtime(sbi, new_blkaddr, 0);
4142 		update_sit_entry(sbi, new_blkaddr, 1);
4143 	}
4144 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
4145 		f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1);
4146 		if (!from_gc)
4147 			update_segment_mtime(sbi, old_blkaddr, 0);
4148 		update_sit_entry(sbi, old_blkaddr, -1);
4149 	}
4150 
4151 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
4152 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
4153 
4154 	locate_dirty_segment(sbi, old_cursegno);
4155 
4156 	if (recover_curseg) {
4157 		if (old_cursegno != curseg->segno) {
4158 			curseg->next_segno = old_cursegno;
4159 			if (change_curseg(sbi, type))
4160 				goto out_unlock;
4161 		}
4162 		curseg->next_blkoff = old_blkoff;
4163 		curseg->alloc_type = old_alloc_type;
4164 	}
4165 
4166 out_unlock:
4167 	up_write(&sit_i->sentry_lock);
4168 	mutex_unlock(&curseg->curseg_mutex);
4169 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
4170 }
4171 
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)4172 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
4173 				block_t old_addr, block_t new_addr,
4174 				unsigned char version, bool recover_curseg,
4175 				bool recover_newaddr)
4176 {
4177 	struct f2fs_summary sum;
4178 
4179 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
4180 
4181 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
4182 					recover_curseg, recover_newaddr, false);
4183 
4184 	f2fs_update_data_blkaddr(dn, new_addr);
4185 }
4186 
f2fs_folio_wait_writeback(struct folio * folio,enum page_type type,bool ordered,bool locked)4187 void f2fs_folio_wait_writeback(struct folio *folio, enum page_type type,
4188 		bool ordered, bool locked)
4189 {
4190 	if (folio_test_writeback(folio)) {
4191 		struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
4192 
4193 		/* submit cached LFS IO */
4194 		f2fs_submit_merged_write_cond(sbi, NULL, &folio->page, 0, type);
4195 		/* submit cached IPU IO */
4196 		f2fs_submit_merged_ipu_write(sbi, NULL, &folio->page);
4197 		if (ordered) {
4198 			folio_wait_writeback(folio);
4199 			f2fs_bug_on(sbi, locked && folio_test_writeback(folio));
4200 		} else {
4201 			folio_wait_stable(folio);
4202 		}
4203 	}
4204 }
4205 
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)4206 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
4207 {
4208 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4209 	struct page *cpage;
4210 
4211 	if (!f2fs_meta_inode_gc_required(inode))
4212 		return;
4213 
4214 	if (!__is_valid_data_blkaddr(blkaddr))
4215 		return;
4216 
4217 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
4218 	if (cpage) {
4219 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
4220 		f2fs_put_page(cpage, 1);
4221 	}
4222 }
4223 
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)4224 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
4225 								block_t len)
4226 {
4227 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4228 	block_t i;
4229 
4230 	if (!f2fs_meta_inode_gc_required(inode))
4231 		return;
4232 
4233 	for (i = 0; i < len; i++)
4234 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
4235 
4236 	f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4237 }
4238 
read_compacted_summaries(struct f2fs_sb_info * sbi)4239 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
4240 {
4241 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4242 	struct curseg_info *seg_i;
4243 	unsigned char *kaddr;
4244 	struct page *page;
4245 	block_t start;
4246 	int i, j, offset;
4247 
4248 	start = start_sum_block(sbi);
4249 
4250 	page = f2fs_get_meta_page(sbi, start++);
4251 	if (IS_ERR(page))
4252 		return PTR_ERR(page);
4253 	kaddr = (unsigned char *)page_address(page);
4254 
4255 	/* Step 1: restore nat cache */
4256 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4257 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
4258 
4259 	/* Step 2: restore sit cache */
4260 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4261 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
4262 	offset = 2 * SUM_JOURNAL_SIZE;
4263 
4264 	/* Step 3: restore summary entries */
4265 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4266 		unsigned short blk_off;
4267 		unsigned int segno;
4268 
4269 		seg_i = CURSEG_I(sbi, i);
4270 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
4271 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
4272 		seg_i->next_segno = segno;
4273 		reset_curseg(sbi, i, 0);
4274 		seg_i->alloc_type = ckpt->alloc_type[i];
4275 		seg_i->next_blkoff = blk_off;
4276 
4277 		if (seg_i->alloc_type == SSR)
4278 			blk_off = BLKS_PER_SEG(sbi);
4279 
4280 		for (j = 0; j < blk_off; j++) {
4281 			struct f2fs_summary *s;
4282 
4283 			s = (struct f2fs_summary *)(kaddr + offset);
4284 			seg_i->sum_blk->entries[j] = *s;
4285 			offset += SUMMARY_SIZE;
4286 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
4287 						SUM_FOOTER_SIZE)
4288 				continue;
4289 
4290 			f2fs_put_page(page, 1);
4291 			page = NULL;
4292 
4293 			page = f2fs_get_meta_page(sbi, start++);
4294 			if (IS_ERR(page))
4295 				return PTR_ERR(page);
4296 			kaddr = (unsigned char *)page_address(page);
4297 			offset = 0;
4298 		}
4299 	}
4300 	f2fs_put_page(page, 1);
4301 	return 0;
4302 }
4303 
read_normal_summaries(struct f2fs_sb_info * sbi,int type)4304 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
4305 {
4306 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4307 	struct f2fs_summary_block *sum;
4308 	struct curseg_info *curseg;
4309 	struct page *new;
4310 	unsigned short blk_off;
4311 	unsigned int segno = 0;
4312 	block_t blk_addr = 0;
4313 	int err = 0;
4314 
4315 	/* get segment number and block addr */
4316 	if (IS_DATASEG(type)) {
4317 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
4318 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
4319 							CURSEG_HOT_DATA]);
4320 		if (__exist_node_summaries(sbi))
4321 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
4322 		else
4323 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
4324 	} else {
4325 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
4326 							CURSEG_HOT_NODE]);
4327 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
4328 							CURSEG_HOT_NODE]);
4329 		if (__exist_node_summaries(sbi))
4330 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
4331 							type - CURSEG_HOT_NODE);
4332 		else
4333 			blk_addr = GET_SUM_BLOCK(sbi, segno);
4334 	}
4335 
4336 	new = f2fs_get_meta_page(sbi, blk_addr);
4337 	if (IS_ERR(new))
4338 		return PTR_ERR(new);
4339 	sum = (struct f2fs_summary_block *)page_address(new);
4340 
4341 	if (IS_NODESEG(type)) {
4342 		if (__exist_node_summaries(sbi)) {
4343 			struct f2fs_summary *ns = &sum->entries[0];
4344 			int i;
4345 
4346 			for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
4347 				ns->version = 0;
4348 				ns->ofs_in_node = 0;
4349 			}
4350 		} else {
4351 			err = f2fs_restore_node_summary(sbi, segno, sum);
4352 			if (err)
4353 				goto out;
4354 		}
4355 	}
4356 
4357 	/* set uncompleted segment to curseg */
4358 	curseg = CURSEG_I(sbi, type);
4359 	mutex_lock(&curseg->curseg_mutex);
4360 
4361 	/* update journal info */
4362 	down_write(&curseg->journal_rwsem);
4363 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4364 	up_write(&curseg->journal_rwsem);
4365 
4366 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4367 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4368 	curseg->next_segno = segno;
4369 	reset_curseg(sbi, type, 0);
4370 	curseg->alloc_type = ckpt->alloc_type[type];
4371 	curseg->next_blkoff = blk_off;
4372 	mutex_unlock(&curseg->curseg_mutex);
4373 out:
4374 	f2fs_put_page(new, 1);
4375 	return err;
4376 }
4377 
restore_curseg_summaries(struct f2fs_sb_info * sbi)4378 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4379 {
4380 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4381 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4382 	int type = CURSEG_HOT_DATA;
4383 	int err;
4384 
4385 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4386 		int npages = f2fs_npages_for_summary_flush(sbi, true);
4387 
4388 		if (npages >= 2)
4389 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4390 							META_CP, true);
4391 
4392 		/* restore for compacted data summary */
4393 		err = read_compacted_summaries(sbi);
4394 		if (err)
4395 			return err;
4396 		type = CURSEG_HOT_NODE;
4397 	}
4398 
4399 	if (__exist_node_summaries(sbi))
4400 		f2fs_ra_meta_pages(sbi,
4401 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4402 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4403 
4404 	for (; type <= CURSEG_COLD_NODE; type++) {
4405 		err = read_normal_summaries(sbi, type);
4406 		if (err)
4407 			return err;
4408 	}
4409 
4410 	/* sanity check for summary blocks */
4411 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4412 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4413 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4414 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4415 		return -EINVAL;
4416 	}
4417 
4418 	return 0;
4419 }
4420 
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)4421 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4422 {
4423 	struct page *page;
4424 	unsigned char *kaddr;
4425 	struct f2fs_summary *summary;
4426 	struct curseg_info *seg_i;
4427 	int written_size = 0;
4428 	int i, j;
4429 
4430 	page = f2fs_grab_meta_page(sbi, blkaddr++);
4431 	kaddr = (unsigned char *)page_address(page);
4432 	memset(kaddr, 0, PAGE_SIZE);
4433 
4434 	/* Step 1: write nat cache */
4435 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4436 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4437 	written_size += SUM_JOURNAL_SIZE;
4438 
4439 	/* Step 2: write sit cache */
4440 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4441 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4442 	written_size += SUM_JOURNAL_SIZE;
4443 
4444 	/* Step 3: write summary entries */
4445 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4446 		seg_i = CURSEG_I(sbi, i);
4447 		for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4448 			if (!page) {
4449 				page = f2fs_grab_meta_page(sbi, blkaddr++);
4450 				kaddr = (unsigned char *)page_address(page);
4451 				memset(kaddr, 0, PAGE_SIZE);
4452 				written_size = 0;
4453 			}
4454 			summary = (struct f2fs_summary *)(kaddr + written_size);
4455 			*summary = seg_i->sum_blk->entries[j];
4456 			written_size += SUMMARY_SIZE;
4457 
4458 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4459 							SUM_FOOTER_SIZE)
4460 				continue;
4461 
4462 			set_page_dirty(page);
4463 			f2fs_put_page(page, 1);
4464 			page = NULL;
4465 		}
4466 	}
4467 	if (page) {
4468 		set_page_dirty(page);
4469 		f2fs_put_page(page, 1);
4470 	}
4471 }
4472 
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)4473 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4474 					block_t blkaddr, int type)
4475 {
4476 	int i, end;
4477 
4478 	if (IS_DATASEG(type))
4479 		end = type + NR_CURSEG_DATA_TYPE;
4480 	else
4481 		end = type + NR_CURSEG_NODE_TYPE;
4482 
4483 	for (i = type; i < end; i++)
4484 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4485 }
4486 
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4487 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4488 {
4489 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4490 		write_compacted_summaries(sbi, start_blk);
4491 	else
4492 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4493 }
4494 
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4495 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4496 {
4497 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4498 }
4499 
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)4500 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4501 					unsigned int val, int alloc)
4502 {
4503 	int i;
4504 
4505 	if (type == NAT_JOURNAL) {
4506 		for (i = 0; i < nats_in_cursum(journal); i++) {
4507 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4508 				return i;
4509 		}
4510 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4511 			return update_nats_in_cursum(journal, 1);
4512 	} else if (type == SIT_JOURNAL) {
4513 		for (i = 0; i < sits_in_cursum(journal); i++)
4514 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4515 				return i;
4516 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4517 			return update_sits_in_cursum(journal, 1);
4518 	}
4519 	return -1;
4520 }
4521 
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)4522 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4523 					unsigned int segno)
4524 {
4525 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4526 }
4527 
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)4528 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4529 					unsigned int start)
4530 {
4531 	struct sit_info *sit_i = SIT_I(sbi);
4532 	struct page *page;
4533 	pgoff_t src_off, dst_off;
4534 
4535 	src_off = current_sit_addr(sbi, start);
4536 	dst_off = next_sit_addr(sbi, src_off);
4537 
4538 	page = f2fs_grab_meta_page(sbi, dst_off);
4539 	seg_info_to_sit_page(sbi, page, start);
4540 
4541 	set_page_dirty(page);
4542 	set_to_next_sit(sit_i, start);
4543 
4544 	return page;
4545 }
4546 
grab_sit_entry_set(void)4547 static struct sit_entry_set *grab_sit_entry_set(void)
4548 {
4549 	struct sit_entry_set *ses =
4550 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4551 						GFP_NOFS, true, NULL);
4552 
4553 	ses->entry_cnt = 0;
4554 	INIT_LIST_HEAD(&ses->set_list);
4555 	return ses;
4556 }
4557 
release_sit_entry_set(struct sit_entry_set * ses)4558 static void release_sit_entry_set(struct sit_entry_set *ses)
4559 {
4560 	list_del(&ses->set_list);
4561 	kmem_cache_free(sit_entry_set_slab, ses);
4562 }
4563 
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)4564 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4565 						struct list_head *head)
4566 {
4567 	struct sit_entry_set *next = ses;
4568 
4569 	if (list_is_last(&ses->set_list, head))
4570 		return;
4571 
4572 	list_for_each_entry_continue(next, head, set_list)
4573 		if (ses->entry_cnt <= next->entry_cnt) {
4574 			list_move_tail(&ses->set_list, &next->set_list);
4575 			return;
4576 		}
4577 
4578 	list_move_tail(&ses->set_list, head);
4579 }
4580 
add_sit_entry(unsigned int segno,struct list_head * head)4581 static void add_sit_entry(unsigned int segno, struct list_head *head)
4582 {
4583 	struct sit_entry_set *ses;
4584 	unsigned int start_segno = START_SEGNO(segno);
4585 
4586 	list_for_each_entry(ses, head, set_list) {
4587 		if (ses->start_segno == start_segno) {
4588 			ses->entry_cnt++;
4589 			adjust_sit_entry_set(ses, head);
4590 			return;
4591 		}
4592 	}
4593 
4594 	ses = grab_sit_entry_set();
4595 
4596 	ses->start_segno = start_segno;
4597 	ses->entry_cnt++;
4598 	list_add(&ses->set_list, head);
4599 }
4600 
add_sits_in_set(struct f2fs_sb_info * sbi)4601 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4602 {
4603 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4604 	struct list_head *set_list = &sm_info->sit_entry_set;
4605 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4606 	unsigned int segno;
4607 
4608 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4609 		add_sit_entry(segno, set_list);
4610 }
4611 
remove_sits_in_journal(struct f2fs_sb_info * sbi)4612 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4613 {
4614 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4615 	struct f2fs_journal *journal = curseg->journal;
4616 	int i;
4617 
4618 	down_write(&curseg->journal_rwsem);
4619 	for (i = 0; i < sits_in_cursum(journal); i++) {
4620 		unsigned int segno;
4621 		bool dirtied;
4622 
4623 		segno = le32_to_cpu(segno_in_journal(journal, i));
4624 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4625 
4626 		if (!dirtied)
4627 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4628 	}
4629 	update_sits_in_cursum(journal, -i);
4630 	up_write(&curseg->journal_rwsem);
4631 }
4632 
4633 /*
4634  * CP calls this function, which flushes SIT entries including sit_journal,
4635  * and moves prefree segs to free segs.
4636  */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4637 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4638 {
4639 	struct sit_info *sit_i = SIT_I(sbi);
4640 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4641 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4642 	struct f2fs_journal *journal = curseg->journal;
4643 	struct sit_entry_set *ses, *tmp;
4644 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4645 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4646 	struct seg_entry *se;
4647 
4648 	down_write(&sit_i->sentry_lock);
4649 
4650 	if (!sit_i->dirty_sentries)
4651 		goto out;
4652 
4653 	/*
4654 	 * add and account sit entries of dirty bitmap in sit entry
4655 	 * set temporarily
4656 	 */
4657 	add_sits_in_set(sbi);
4658 
4659 	/*
4660 	 * if there are no enough space in journal to store dirty sit
4661 	 * entries, remove all entries from journal and add and account
4662 	 * them in sit entry set.
4663 	 */
4664 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4665 								!to_journal)
4666 		remove_sits_in_journal(sbi);
4667 
4668 	/*
4669 	 * there are two steps to flush sit entries:
4670 	 * #1, flush sit entries to journal in current cold data summary block.
4671 	 * #2, flush sit entries to sit page.
4672 	 */
4673 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4674 		struct page *page = NULL;
4675 		struct f2fs_sit_block *raw_sit = NULL;
4676 		unsigned int start_segno = ses->start_segno;
4677 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4678 						(unsigned long)MAIN_SEGS(sbi));
4679 		unsigned int segno = start_segno;
4680 
4681 		if (to_journal &&
4682 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4683 			to_journal = false;
4684 
4685 		if (to_journal) {
4686 			down_write(&curseg->journal_rwsem);
4687 		} else {
4688 			page = get_next_sit_page(sbi, start_segno);
4689 			raw_sit = page_address(page);
4690 		}
4691 
4692 		/* flush dirty sit entries in region of current sit set */
4693 		for_each_set_bit_from(segno, bitmap, end) {
4694 			int offset, sit_offset;
4695 
4696 			se = get_seg_entry(sbi, segno);
4697 #ifdef CONFIG_F2FS_CHECK_FS
4698 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4699 						SIT_VBLOCK_MAP_SIZE))
4700 				f2fs_bug_on(sbi, 1);
4701 #endif
4702 
4703 			/* add discard candidates */
4704 			if (!(cpc->reason & CP_DISCARD)) {
4705 				cpc->trim_start = segno;
4706 				add_discard_addrs(sbi, cpc, false);
4707 			}
4708 
4709 			if (to_journal) {
4710 				offset = f2fs_lookup_journal_in_cursum(journal,
4711 							SIT_JOURNAL, segno, 1);
4712 				f2fs_bug_on(sbi, offset < 0);
4713 				segno_in_journal(journal, offset) =
4714 							cpu_to_le32(segno);
4715 				seg_info_to_raw_sit(se,
4716 					&sit_in_journal(journal, offset));
4717 				check_block_count(sbi, segno,
4718 					&sit_in_journal(journal, offset));
4719 			} else {
4720 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4721 				seg_info_to_raw_sit(se,
4722 						&raw_sit->entries[sit_offset]);
4723 				check_block_count(sbi, segno,
4724 						&raw_sit->entries[sit_offset]);
4725 			}
4726 
4727 			/* update ckpt_valid_block */
4728 			if (__is_large_section(sbi)) {
4729 				set_ckpt_valid_blocks(sbi, segno);
4730 				sanity_check_valid_blocks(sbi, segno);
4731 			}
4732 
4733 			__clear_bit(segno, bitmap);
4734 			sit_i->dirty_sentries--;
4735 			ses->entry_cnt--;
4736 		}
4737 
4738 		if (to_journal)
4739 			up_write(&curseg->journal_rwsem);
4740 		else
4741 			f2fs_put_page(page, 1);
4742 
4743 		f2fs_bug_on(sbi, ses->entry_cnt);
4744 		release_sit_entry_set(ses);
4745 	}
4746 
4747 	f2fs_bug_on(sbi, !list_empty(head));
4748 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4749 out:
4750 	if (cpc->reason & CP_DISCARD) {
4751 		__u64 trim_start = cpc->trim_start;
4752 
4753 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4754 			add_discard_addrs(sbi, cpc, false);
4755 
4756 		cpc->trim_start = trim_start;
4757 	}
4758 	up_write(&sit_i->sentry_lock);
4759 
4760 	set_prefree_as_free_segments(sbi);
4761 }
4762 
build_sit_info(struct f2fs_sb_info * sbi)4763 static int build_sit_info(struct f2fs_sb_info *sbi)
4764 {
4765 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4766 	struct sit_info *sit_i;
4767 	unsigned int sit_segs, start;
4768 	char *src_bitmap, *bitmap;
4769 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4770 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4771 
4772 	/* allocate memory for SIT information */
4773 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4774 	if (!sit_i)
4775 		return -ENOMEM;
4776 
4777 	SM_I(sbi)->sit_info = sit_i;
4778 
4779 	sit_i->sentries =
4780 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4781 					      MAIN_SEGS(sbi)),
4782 			      GFP_KERNEL);
4783 	if (!sit_i->sentries)
4784 		return -ENOMEM;
4785 
4786 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4787 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4788 								GFP_KERNEL);
4789 	if (!sit_i->dirty_sentries_bitmap)
4790 		return -ENOMEM;
4791 
4792 #ifdef CONFIG_F2FS_CHECK_FS
4793 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4794 #else
4795 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4796 #endif
4797 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4798 	if (!sit_i->bitmap)
4799 		return -ENOMEM;
4800 
4801 	bitmap = sit_i->bitmap;
4802 
4803 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4804 		sit_i->sentries[start].cur_valid_map = bitmap;
4805 		bitmap += SIT_VBLOCK_MAP_SIZE;
4806 
4807 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4808 		bitmap += SIT_VBLOCK_MAP_SIZE;
4809 
4810 #ifdef CONFIG_F2FS_CHECK_FS
4811 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4812 		bitmap += SIT_VBLOCK_MAP_SIZE;
4813 #endif
4814 
4815 		if (discard_map) {
4816 			sit_i->sentries[start].discard_map = bitmap;
4817 			bitmap += SIT_VBLOCK_MAP_SIZE;
4818 		}
4819 	}
4820 
4821 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4822 	if (!sit_i->tmp_map)
4823 		return -ENOMEM;
4824 
4825 	if (__is_large_section(sbi)) {
4826 		sit_i->sec_entries =
4827 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4828 						      MAIN_SECS(sbi)),
4829 				      GFP_KERNEL);
4830 		if (!sit_i->sec_entries)
4831 			return -ENOMEM;
4832 
4833 		f2fs_bug_on(sbi, android_sec_entries);
4834 		android_sec_entries =
4835 			f2fs_kvzalloc(sbi, array_size(sizeof(struct android_sec_entry),
4836 						      MAIN_SECS(sbi)),
4837 				      GFP_KERNEL);
4838 		if (!android_sec_entries)
4839 			return -ENOMEM;
4840 	}
4841 
4842 	/* get information related with SIT */
4843 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4844 
4845 	/* setup SIT bitmap from ckeckpoint pack */
4846 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4847 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4848 
4849 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4850 	if (!sit_i->sit_bitmap)
4851 		return -ENOMEM;
4852 
4853 #ifdef CONFIG_F2FS_CHECK_FS
4854 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4855 					sit_bitmap_size, GFP_KERNEL);
4856 	if (!sit_i->sit_bitmap_mir)
4857 		return -ENOMEM;
4858 
4859 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4860 					main_bitmap_size, GFP_KERNEL);
4861 	if (!sit_i->invalid_segmap)
4862 		return -ENOMEM;
4863 #endif
4864 
4865 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4866 	sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs);
4867 	sit_i->written_valid_blocks = 0;
4868 	sit_i->bitmap_size = sit_bitmap_size;
4869 	sit_i->dirty_sentries = 0;
4870 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4871 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4872 	sit_i->mounted_time = ktime_get_boottime_seconds();
4873 	init_rwsem(&sit_i->sentry_lock);
4874 	return 0;
4875 }
4876 
build_free_segmap(struct f2fs_sb_info * sbi)4877 static int build_free_segmap(struct f2fs_sb_info *sbi)
4878 {
4879 	struct free_segmap_info *free_i;
4880 	unsigned int bitmap_size, sec_bitmap_size;
4881 
4882 	/* allocate memory for free segmap information */
4883 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4884 	if (!free_i)
4885 		return -ENOMEM;
4886 
4887 	SM_I(sbi)->free_info = free_i;
4888 
4889 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4890 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4891 	if (!free_i->free_segmap)
4892 		return -ENOMEM;
4893 
4894 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4895 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4896 	if (!free_i->free_secmap)
4897 		return -ENOMEM;
4898 
4899 	/* set all segments as dirty temporarily */
4900 	memset(free_i->free_segmap, 0xff, bitmap_size);
4901 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4902 
4903 	/* init free segmap information */
4904 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4905 	free_i->free_segments = 0;
4906 	free_i->free_sections = 0;
4907 	spin_lock_init(&free_i->segmap_lock);
4908 	return 0;
4909 }
4910 
build_curseg(struct f2fs_sb_info * sbi)4911 static int build_curseg(struct f2fs_sb_info *sbi)
4912 {
4913 	struct curseg_info *array;
4914 	int i;
4915 
4916 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4917 					sizeof(*array)), GFP_KERNEL);
4918 	if (!array)
4919 		return -ENOMEM;
4920 
4921 	SM_I(sbi)->curseg_array = array;
4922 
4923 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4924 		mutex_init(&array[i].curseg_mutex);
4925 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4926 		if (!array[i].sum_blk)
4927 			return -ENOMEM;
4928 		init_rwsem(&array[i].journal_rwsem);
4929 		array[i].journal = f2fs_kzalloc(sbi,
4930 				sizeof(struct f2fs_journal), GFP_KERNEL);
4931 		if (!array[i].journal)
4932 			return -ENOMEM;
4933 		array[i].seg_type = log_type_to_seg_type(i);
4934 		reset_curseg_fields(&array[i]);
4935 	}
4936 	return restore_curseg_summaries(sbi);
4937 }
4938 
build_sit_entries(struct f2fs_sb_info * sbi)4939 static int build_sit_entries(struct f2fs_sb_info *sbi)
4940 {
4941 	struct sit_info *sit_i = SIT_I(sbi);
4942 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4943 	struct f2fs_journal *journal = curseg->journal;
4944 	struct seg_entry *se;
4945 	struct f2fs_sit_entry sit;
4946 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4947 	unsigned int i, start, end;
4948 	unsigned int readed, start_blk = 0;
4949 	int err = 0;
4950 	block_t sit_valid_blocks[2] = {0, 0};
4951 
4952 	do {
4953 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4954 							META_SIT, true);
4955 
4956 		start = start_blk * sit_i->sents_per_block;
4957 		end = (start_blk + readed) * sit_i->sents_per_block;
4958 
4959 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4960 			struct f2fs_sit_block *sit_blk;
4961 			struct page *page;
4962 
4963 			se = &sit_i->sentries[start];
4964 			page = get_current_sit_page(sbi, start);
4965 			if (IS_ERR(page))
4966 				return PTR_ERR(page);
4967 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4968 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4969 			f2fs_put_page(page, 1);
4970 
4971 			err = check_block_count(sbi, start, &sit);
4972 			if (err)
4973 				return err;
4974 			seg_info_from_raw_sit(se, &sit);
4975 
4976 			if (se->type >= NR_PERSISTENT_LOG) {
4977 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4978 							se->type, start);
4979 				f2fs_handle_error(sbi,
4980 						ERROR_INCONSISTENT_SUM_TYPE);
4981 				return -EFSCORRUPTED;
4982 			}
4983 
4984 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4985 
4986 			if (!f2fs_block_unit_discard(sbi))
4987 				goto init_discard_map_done;
4988 
4989 			/* build discard map only one time */
4990 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4991 				memset(se->discard_map, 0xff,
4992 						SIT_VBLOCK_MAP_SIZE);
4993 				goto init_discard_map_done;
4994 			}
4995 			memcpy(se->discard_map, se->cur_valid_map,
4996 						SIT_VBLOCK_MAP_SIZE);
4997 			sbi->discard_blks += BLKS_PER_SEG(sbi) -
4998 						se->valid_blocks;
4999 init_discard_map_done:
5000 			if (__is_large_section(sbi))
5001 				get_sec_entry(sbi, start)->valid_blocks +=
5002 							se->valid_blocks;
5003 		}
5004 		start_blk += readed;
5005 	} while (start_blk < sit_blk_cnt);
5006 
5007 	down_read(&curseg->journal_rwsem);
5008 	for (i = 0; i < sits_in_cursum(journal); i++) {
5009 		unsigned int old_valid_blocks;
5010 
5011 		start = le32_to_cpu(segno_in_journal(journal, i));
5012 		if (start >= MAIN_SEGS(sbi)) {
5013 			f2fs_err(sbi, "Wrong journal entry on segno %u",
5014 				 start);
5015 			err = -EFSCORRUPTED;
5016 			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
5017 			break;
5018 		}
5019 
5020 		se = &sit_i->sentries[start];
5021 		sit = sit_in_journal(journal, i);
5022 
5023 		old_valid_blocks = se->valid_blocks;
5024 
5025 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
5026 
5027 		err = check_block_count(sbi, start, &sit);
5028 		if (err)
5029 			break;
5030 		seg_info_from_raw_sit(se, &sit);
5031 
5032 		if (se->type >= NR_PERSISTENT_LOG) {
5033 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
5034 							se->type, start);
5035 			err = -EFSCORRUPTED;
5036 			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
5037 			break;
5038 		}
5039 
5040 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
5041 
5042 		if (f2fs_block_unit_discard(sbi)) {
5043 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
5044 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
5045 			} else {
5046 				memcpy(se->discard_map, se->cur_valid_map,
5047 							SIT_VBLOCK_MAP_SIZE);
5048 				sbi->discard_blks += old_valid_blocks;
5049 				sbi->discard_blks -= se->valid_blocks;
5050 			}
5051 		}
5052 
5053 		if (__is_large_section(sbi)) {
5054 			get_sec_entry(sbi, start)->valid_blocks +=
5055 							se->valid_blocks;
5056 			get_sec_entry(sbi, start)->valid_blocks -=
5057 							old_valid_blocks;
5058 		}
5059 	}
5060 	up_read(&curseg->journal_rwsem);
5061 
5062 	/* update ckpt_valid_block */
5063 	if (__is_large_section(sbi)) {
5064 		unsigned int segno;
5065 
5066 		for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5067 			set_ckpt_valid_blocks(sbi, segno);
5068 			sanity_check_valid_blocks(sbi, segno);
5069 		}
5070 	}
5071 
5072 	if (err)
5073 		return err;
5074 
5075 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
5076 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
5077 			 sit_valid_blocks[NODE], valid_node_count(sbi));
5078 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
5079 		return -EFSCORRUPTED;
5080 	}
5081 
5082 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
5083 				valid_user_blocks(sbi)) {
5084 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
5085 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
5086 			 valid_user_blocks(sbi));
5087 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
5088 		return -EFSCORRUPTED;
5089 	}
5090 
5091 	return 0;
5092 }
5093 
init_free_segmap(struct f2fs_sb_info * sbi)5094 static void init_free_segmap(struct f2fs_sb_info *sbi)
5095 {
5096 	unsigned int start;
5097 	int type;
5098 	struct seg_entry *sentry;
5099 
5100 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
5101 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
5102 			continue;
5103 		sentry = get_seg_entry(sbi, start);
5104 		if (!sentry->valid_blocks)
5105 			__set_free(sbi, start);
5106 		else
5107 			SIT_I(sbi)->written_valid_blocks +=
5108 						sentry->valid_blocks;
5109 	}
5110 
5111 	/* set use the current segments */
5112 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
5113 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
5114 
5115 		__set_test_and_inuse(sbi, curseg_t->segno);
5116 	}
5117 }
5118 
init_dirty_segmap(struct f2fs_sb_info * sbi)5119 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
5120 {
5121 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5122 	struct free_segmap_info *free_i = FREE_I(sbi);
5123 	unsigned int segno = 0, offset = 0, secno;
5124 	block_t valid_blocks, usable_blks_in_seg;
5125 
5126 	while (1) {
5127 		/* find dirty segment based on free segmap */
5128 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
5129 		if (segno >= MAIN_SEGS(sbi))
5130 			break;
5131 		offset = segno + 1;
5132 		valid_blocks = get_valid_blocks(sbi, segno, false);
5133 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
5134 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
5135 			continue;
5136 		if (valid_blocks > usable_blks_in_seg) {
5137 			f2fs_bug_on(sbi, 1);
5138 			continue;
5139 		}
5140 		mutex_lock(&dirty_i->seglist_lock);
5141 		__locate_dirty_segment(sbi, segno, DIRTY);
5142 		mutex_unlock(&dirty_i->seglist_lock);
5143 	}
5144 
5145 	if (!__is_large_section(sbi))
5146 		return;
5147 
5148 	mutex_lock(&dirty_i->seglist_lock);
5149 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5150 		valid_blocks = get_valid_blocks(sbi, segno, true);
5151 		secno = GET_SEC_FROM_SEG(sbi, segno);
5152 
5153 		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
5154 			continue;
5155 		if (IS_CURSEC(sbi, secno))
5156 			continue;
5157 		set_bit(secno, dirty_i->dirty_secmap);
5158 	}
5159 	mutex_unlock(&dirty_i->seglist_lock);
5160 }
5161 
init_victim_secmap(struct f2fs_sb_info * sbi)5162 static int init_victim_secmap(struct f2fs_sb_info *sbi)
5163 {
5164 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5165 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5166 
5167 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5168 	if (!dirty_i->victim_secmap)
5169 		return -ENOMEM;
5170 
5171 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5172 	if (!dirty_i->pinned_secmap)
5173 		return -ENOMEM;
5174 
5175 	dirty_i->pinned_secmap_cnt = 0;
5176 	dirty_i->enable_pin_section = true;
5177 	return 0;
5178 }
5179 
build_dirty_segmap(struct f2fs_sb_info * sbi)5180 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
5181 {
5182 	struct dirty_seglist_info *dirty_i;
5183 	unsigned int bitmap_size, i;
5184 
5185 	/* allocate memory for dirty segments list information */
5186 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
5187 								GFP_KERNEL);
5188 	if (!dirty_i)
5189 		return -ENOMEM;
5190 
5191 	SM_I(sbi)->dirty_info = dirty_i;
5192 	mutex_init(&dirty_i->seglist_lock);
5193 
5194 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
5195 
5196 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
5197 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
5198 								GFP_KERNEL);
5199 		if (!dirty_i->dirty_segmap[i])
5200 			return -ENOMEM;
5201 	}
5202 
5203 	if (__is_large_section(sbi)) {
5204 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5205 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
5206 						bitmap_size, GFP_KERNEL);
5207 		if (!dirty_i->dirty_secmap)
5208 			return -ENOMEM;
5209 	}
5210 
5211 	init_dirty_segmap(sbi);
5212 	return init_victim_secmap(sbi);
5213 }
5214 
sanity_check_curseg(struct f2fs_sb_info * sbi)5215 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
5216 {
5217 	int i;
5218 
5219 	/*
5220 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
5221 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
5222 	 */
5223 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5224 		struct curseg_info *curseg = CURSEG_I(sbi, i);
5225 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
5226 		unsigned int blkofs = curseg->next_blkoff;
5227 
5228 		if (f2fs_sb_has_readonly(sbi) &&
5229 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
5230 			continue;
5231 
5232 		sanity_check_seg_type(sbi, curseg->seg_type);
5233 
5234 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
5235 			f2fs_err(sbi,
5236 				 "Current segment has invalid alloc_type:%d",
5237 				 curseg->alloc_type);
5238 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5239 			return -EFSCORRUPTED;
5240 		}
5241 
5242 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
5243 			goto out;
5244 
5245 		if (curseg->alloc_type == SSR)
5246 			continue;
5247 
5248 		for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
5249 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
5250 				continue;
5251 out:
5252 			f2fs_err(sbi,
5253 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
5254 				 i, curseg->segno, curseg->alloc_type,
5255 				 curseg->next_blkoff, blkofs);
5256 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5257 			return -EFSCORRUPTED;
5258 		}
5259 	}
5260 	return 0;
5261 }
5262 
5263 #ifdef CONFIG_BLK_DEV_ZONED
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)5264 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
5265 				    struct f2fs_dev_info *fdev,
5266 				    struct blk_zone *zone)
5267 {
5268 	unsigned int zone_segno;
5269 	block_t zone_block, valid_block_cnt;
5270 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5271 	int ret;
5272 	unsigned int nofs_flags;
5273 
5274 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5275 		return 0;
5276 
5277 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
5278 	zone_segno = GET_SEGNO(sbi, zone_block);
5279 
5280 	/*
5281 	 * Skip check of zones cursegs point to, since
5282 	 * fix_curseg_write_pointer() checks them.
5283 	 */
5284 	if (zone_segno >= MAIN_SEGS(sbi))
5285 		return 0;
5286 
5287 	/*
5288 	 * Get # of valid block of the zone.
5289 	 */
5290 	valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
5291 	if (IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) {
5292 		f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]",
5293 				zone_segno, valid_block_cnt,
5294 				blk_zone_cond_str(zone->cond));
5295 		return 0;
5296 	}
5297 
5298 	if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
5299 	    (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
5300 		return 0;
5301 
5302 	if (!valid_block_cnt) {
5303 		f2fs_notice(sbi, "Zone without valid block has non-zero write "
5304 			    "pointer. Reset the write pointer: cond[%s]",
5305 			    blk_zone_cond_str(zone->cond));
5306 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
5307 					zone->len >> log_sectors_per_block);
5308 		if (ret)
5309 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5310 				 fdev->path, ret);
5311 		return ret;
5312 	}
5313 
5314 	/*
5315 	 * If there are valid blocks and the write pointer doesn't match
5316 	 * with them, we need to report the inconsistency and fill
5317 	 * the zone till the end to close the zone. This inconsistency
5318 	 * does not cause write error because the zone will not be
5319 	 * selected for write operation until it get discarded.
5320 	 */
5321 	f2fs_notice(sbi, "Valid blocks are not aligned with write "
5322 		    "pointer: valid block[0x%x,0x%x] cond[%s]",
5323 		    zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond));
5324 
5325 	nofs_flags = memalloc_nofs_save();
5326 	ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
5327 				zone->start, zone->len);
5328 	memalloc_nofs_restore(nofs_flags);
5329 	if (ret == -EOPNOTSUPP) {
5330 		ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
5331 					zone->len - (zone->wp - zone->start),
5332 					GFP_NOFS, 0);
5333 		if (ret)
5334 			f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
5335 					fdev->path, ret);
5336 	} else if (ret) {
5337 		f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
5338 				fdev->path, ret);
5339 	}
5340 
5341 	return ret;
5342 }
5343 
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)5344 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5345 						  block_t zone_blkaddr)
5346 {
5347 	int i;
5348 
5349 	for (i = 0; i < sbi->s_ndevs; i++) {
5350 		if (!bdev_is_zoned(FDEV(i).bdev))
5351 			continue;
5352 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5353 				zone_blkaddr <= FDEV(i).end_blk))
5354 			return &FDEV(i);
5355 	}
5356 
5357 	return NULL;
5358 }
5359 
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)5360 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5361 			      void *data)
5362 {
5363 	memcpy(data, zone, sizeof(struct blk_zone));
5364 	return 0;
5365 }
5366 
do_fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)5367 static int do_fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5368 {
5369 	struct curseg_info *cs = CURSEG_I(sbi, type);
5370 	struct f2fs_dev_info *zbd;
5371 	struct blk_zone zone;
5372 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5373 	block_t cs_zone_block, wp_block;
5374 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5375 	sector_t zone_sector;
5376 	int err;
5377 
5378 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5379 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5380 
5381 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5382 	if (!zbd)
5383 		return 0;
5384 
5385 	/* report zone for the sector the curseg points to */
5386 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5387 		<< log_sectors_per_block;
5388 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5389 				  report_one_zone_cb, &zone);
5390 	if (err != 1) {
5391 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5392 			 zbd->path, err);
5393 		return err;
5394 	}
5395 
5396 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5397 		return 0;
5398 
5399 	/*
5400 	 * When safely unmounted in the previous mount, we could use current
5401 	 * segments. Otherwise, allocate new sections.
5402 	 */
5403 	if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5404 		wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5405 		wp_segno = GET_SEGNO(sbi, wp_block);
5406 		wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5407 		wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5408 
5409 		if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5410 				wp_sector_off == 0)
5411 			return 0;
5412 
5413 		f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5414 			    "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5415 			    cs->next_blkoff, wp_segno, wp_blkoff);
5416 	}
5417 
5418 	/* Allocate a new section if it's not new. */
5419 	if (cs->next_blkoff ||
5420 	    cs->segno != GET_SEG_FROM_SEC(sbi, GET_ZONE_FROM_SEC(sbi, cs_section))) {
5421 		unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5422 
5423 		f2fs_allocate_new_section(sbi, type, true);
5424 		f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5425 				"[0x%x,0x%x] -> [0x%x,0x%x]",
5426 				type, old_segno, old_blkoff,
5427 				cs->segno, cs->next_blkoff);
5428 	}
5429 
5430 	/* check consistency of the zone curseg pointed to */
5431 	if (check_zone_write_pointer(sbi, zbd, &zone))
5432 		return -EIO;
5433 
5434 	/* check newly assigned zone */
5435 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5436 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5437 
5438 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5439 	if (!zbd)
5440 		return 0;
5441 
5442 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5443 		<< log_sectors_per_block;
5444 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5445 				  report_one_zone_cb, &zone);
5446 	if (err != 1) {
5447 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5448 			 zbd->path, err);
5449 		return err;
5450 	}
5451 
5452 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5453 		return 0;
5454 
5455 	if (zone.wp != zone.start) {
5456 		f2fs_notice(sbi,
5457 			    "New zone for curseg[%d] is not yet discarded. "
5458 			    "Reset the zone: curseg[0x%x,0x%x]",
5459 			    type, cs->segno, cs->next_blkoff);
5460 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,	cs_zone_block,
5461 					zone.len >> log_sectors_per_block);
5462 		if (err) {
5463 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5464 				 zbd->path, err);
5465 			return err;
5466 		}
5467 	}
5468 
5469 	return 0;
5470 }
5471 
fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5472 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5473 {
5474 	int i, ret;
5475 
5476 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5477 		ret = do_fix_curseg_write_pointer(sbi, i);
5478 		if (ret)
5479 			return ret;
5480 	}
5481 
5482 	return 0;
5483 }
5484 
5485 struct check_zone_write_pointer_args {
5486 	struct f2fs_sb_info *sbi;
5487 	struct f2fs_dev_info *fdev;
5488 };
5489 
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)5490 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5491 				      void *data)
5492 {
5493 	struct check_zone_write_pointer_args *args;
5494 
5495 	args = (struct check_zone_write_pointer_args *)data;
5496 
5497 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5498 }
5499 
check_write_pointer(struct f2fs_sb_info * sbi)5500 static int check_write_pointer(struct f2fs_sb_info *sbi)
5501 {
5502 	int i, ret;
5503 	struct check_zone_write_pointer_args args;
5504 
5505 	for (i = 0; i < sbi->s_ndevs; i++) {
5506 		if (!bdev_is_zoned(FDEV(i).bdev))
5507 			continue;
5508 
5509 		args.sbi = sbi;
5510 		args.fdev = &FDEV(i);
5511 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5512 					  check_zone_write_pointer_cb, &args);
5513 		if (ret < 0)
5514 			return ret;
5515 	}
5516 
5517 	return 0;
5518 }
5519 
f2fs_check_and_fix_write_pointer(struct f2fs_sb_info * sbi)5520 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5521 {
5522 	int ret;
5523 
5524 	if (!f2fs_sb_has_blkzoned(sbi) || f2fs_readonly(sbi->sb) ||
5525 	    f2fs_hw_is_readonly(sbi))
5526 		return 0;
5527 
5528 	f2fs_notice(sbi, "Checking entire write pointers");
5529 	ret = fix_curseg_write_pointer(sbi);
5530 	if (!ret)
5531 		ret = check_write_pointer(sbi);
5532 	return ret;
5533 }
5534 
5535 /*
5536  * Return the number of usable blocks in a segment. The number of blocks
5537  * returned is always equal to the number of blocks in a segment for
5538  * segments fully contained within a sequential zone capacity or a
5539  * conventional zone. For segments partially contained in a sequential
5540  * zone capacity, the number of usable blocks up to the zone capacity
5541  * is returned. 0 is returned in all other cases.
5542  */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5543 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5544 			struct f2fs_sb_info *sbi, unsigned int segno)
5545 {
5546 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5547 	unsigned int secno;
5548 
5549 	if (!sbi->unusable_blocks_per_sec)
5550 		return BLKS_PER_SEG(sbi);
5551 
5552 	secno = GET_SEC_FROM_SEG(sbi, segno);
5553 	seg_start = START_BLOCK(sbi, segno);
5554 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5555 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5556 
5557 	/*
5558 	 * If segment starts before zone capacity and spans beyond
5559 	 * zone capacity, then usable blocks are from seg start to
5560 	 * zone capacity. If the segment starts after the zone capacity,
5561 	 * then there are no usable blocks.
5562 	 */
5563 	if (seg_start >= sec_cap_blkaddr)
5564 		return 0;
5565 	if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5566 		return sec_cap_blkaddr - seg_start;
5567 
5568 	return BLKS_PER_SEG(sbi);
5569 }
5570 #else
f2fs_check_and_fix_write_pointer(struct f2fs_sb_info * sbi)5571 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5572 {
5573 	return 0;
5574 }
5575 
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5576 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5577 							unsigned int segno)
5578 {
5579 	return 0;
5580 }
5581 
5582 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5583 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5584 					unsigned int segno)
5585 {
5586 	if (f2fs_sb_has_blkzoned(sbi))
5587 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5588 
5589 	return BLKS_PER_SEG(sbi);
5590 }
5591 
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi)5592 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi)
5593 {
5594 	if (f2fs_sb_has_blkzoned(sbi))
5595 		return CAP_SEGS_PER_SEC(sbi);
5596 
5597 	return SEGS_PER_SEC(sbi);
5598 }
5599 
f2fs_get_section_mtime(struct f2fs_sb_info * sbi,unsigned int segno)5600 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
5601 	unsigned int segno)
5602 {
5603 	unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi);
5604 	unsigned int secno = 0, start = 0;
5605 	unsigned int total_valid_blocks = 0;
5606 	unsigned long long mtime = 0;
5607 	unsigned int i = 0;
5608 
5609 	secno = GET_SEC_FROM_SEG(sbi, segno);
5610 	start = GET_SEG_FROM_SEC(sbi, secno);
5611 
5612 	if (!__is_large_section(sbi)) {
5613 		mtime = get_seg_entry(sbi, start + i)->mtime;
5614 		goto out;
5615 	}
5616 
5617 	for (i = 0; i < usable_segs_per_sec; i++) {
5618 		/* for large section, only check the mtime of valid segments */
5619 		struct seg_entry *se = get_seg_entry(sbi, start+i);
5620 
5621 		mtime += se->mtime * se->valid_blocks;
5622 		total_valid_blocks += se->valid_blocks;
5623 	}
5624 
5625 	if (total_valid_blocks == 0)
5626 		return INVALID_MTIME;
5627 
5628 	mtime = div_u64(mtime, total_valid_blocks);
5629 out:
5630 	if (unlikely(mtime == INVALID_MTIME))
5631 		mtime -= 1;
5632 	return mtime;
5633 }
5634 
5635 /*
5636  * Update min, max modified time for cost-benefit GC algorithm
5637  */
init_min_max_mtime(struct f2fs_sb_info * sbi)5638 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5639 {
5640 	struct sit_info *sit_i = SIT_I(sbi);
5641 	unsigned int segno;
5642 
5643 	down_write(&sit_i->sentry_lock);
5644 
5645 	sit_i->min_mtime = ULLONG_MAX;
5646 
5647 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5648 		unsigned long long mtime = 0;
5649 
5650 		mtime = f2fs_get_section_mtime(sbi, segno);
5651 
5652 		if (sit_i->min_mtime > mtime)
5653 			sit_i->min_mtime = mtime;
5654 	}
5655 	sit_i->max_mtime = get_mtime(sbi, false);
5656 	sit_i->dirty_max_mtime = 0;
5657 	up_write(&sit_i->sentry_lock);
5658 }
5659 
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5660 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5661 {
5662 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5663 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5664 	struct f2fs_sm_info *sm_info;
5665 	int err;
5666 
5667 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5668 	if (!sm_info)
5669 		return -ENOMEM;
5670 
5671 	/* init sm info */
5672 	sbi->sm_info = sm_info;
5673 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5674 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5675 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5676 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5677 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5678 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5679 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5680 	sm_info->rec_prefree_segments = sm_info->main_segments *
5681 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5682 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5683 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5684 
5685 	if (!f2fs_lfs_mode(sbi))
5686 		sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5687 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5688 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5689 	sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5690 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5691 	sm_info->min_ssr_sections = reserved_sections(sbi);
5692 
5693 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5694 
5695 	init_f2fs_rwsem(&sm_info->curseg_lock);
5696 
5697 	err = f2fs_create_flush_cmd_control(sbi);
5698 	if (err)
5699 		return err;
5700 
5701 	err = create_discard_cmd_control(sbi);
5702 	if (err)
5703 		return err;
5704 
5705 	err = build_sit_info(sbi);
5706 	if (err)
5707 		return err;
5708 	err = build_free_segmap(sbi);
5709 	if (err)
5710 		return err;
5711 	err = build_curseg(sbi);
5712 	if (err)
5713 		return err;
5714 
5715 	/* reinit free segmap based on SIT */
5716 	err = build_sit_entries(sbi);
5717 	if (err)
5718 		return err;
5719 
5720 	init_free_segmap(sbi);
5721 	err = build_dirty_segmap(sbi);
5722 	if (err)
5723 		return err;
5724 
5725 	err = sanity_check_curseg(sbi);
5726 	if (err)
5727 		return err;
5728 
5729 	init_min_max_mtime(sbi);
5730 	return 0;
5731 }
5732 
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5733 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5734 		enum dirty_type dirty_type)
5735 {
5736 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5737 
5738 	mutex_lock(&dirty_i->seglist_lock);
5739 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5740 	dirty_i->nr_dirty[dirty_type] = 0;
5741 	mutex_unlock(&dirty_i->seglist_lock);
5742 }
5743 
destroy_victim_secmap(struct f2fs_sb_info * sbi)5744 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5745 {
5746 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5747 
5748 	kvfree(dirty_i->pinned_secmap);
5749 	kvfree(dirty_i->victim_secmap);
5750 }
5751 
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5752 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5753 {
5754 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5755 	int i;
5756 
5757 	if (!dirty_i)
5758 		return;
5759 
5760 	/* discard pre-free/dirty segments list */
5761 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5762 		discard_dirty_segmap(sbi, i);
5763 
5764 	if (__is_large_section(sbi)) {
5765 		mutex_lock(&dirty_i->seglist_lock);
5766 		kvfree(dirty_i->dirty_secmap);
5767 		mutex_unlock(&dirty_i->seglist_lock);
5768 	}
5769 
5770 	destroy_victim_secmap(sbi);
5771 	SM_I(sbi)->dirty_info = NULL;
5772 	kfree(dirty_i);
5773 }
5774 
destroy_curseg(struct f2fs_sb_info * sbi)5775 static void destroy_curseg(struct f2fs_sb_info *sbi)
5776 {
5777 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5778 	int i;
5779 
5780 	if (!array)
5781 		return;
5782 	SM_I(sbi)->curseg_array = NULL;
5783 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5784 		kfree(array[i].sum_blk);
5785 		kfree(array[i].journal);
5786 	}
5787 	kfree(array);
5788 }
5789 
destroy_free_segmap(struct f2fs_sb_info * sbi)5790 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5791 {
5792 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5793 
5794 	if (!free_i)
5795 		return;
5796 	SM_I(sbi)->free_info = NULL;
5797 	kvfree(free_i->free_segmap);
5798 	kvfree(free_i->free_secmap);
5799 	kfree(free_i);
5800 }
5801 
destroy_sit_info(struct f2fs_sb_info * sbi)5802 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5803 {
5804 	struct sit_info *sit_i = SIT_I(sbi);
5805 
5806 	if (!sit_i)
5807 		return;
5808 
5809 	if (sit_i->sentries)
5810 		kvfree(sit_i->bitmap);
5811 	kfree(sit_i->tmp_map);
5812 
5813 	kvfree(sit_i->sentries);
5814 	if (__is_large_section(sbi)) {
5815 		kvfree(android_sec_entries);
5816 		android_sec_entries = NULL;
5817 	}
5818 	kvfree(sit_i->sec_entries);
5819 	kvfree(sit_i->dirty_sentries_bitmap);
5820 
5821 	SM_I(sbi)->sit_info = NULL;
5822 	kvfree(sit_i->sit_bitmap);
5823 #ifdef CONFIG_F2FS_CHECK_FS
5824 	kvfree(sit_i->sit_bitmap_mir);
5825 	kvfree(sit_i->invalid_segmap);
5826 #endif
5827 	kfree(sit_i);
5828 }
5829 
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5830 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5831 {
5832 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5833 
5834 	if (!sm_info)
5835 		return;
5836 	f2fs_destroy_flush_cmd_control(sbi, true);
5837 	destroy_discard_cmd_control(sbi);
5838 	destroy_dirty_segmap(sbi);
5839 	destroy_curseg(sbi);
5840 	destroy_free_segmap(sbi);
5841 	destroy_sit_info(sbi);
5842 	sbi->sm_info = NULL;
5843 	kfree(sm_info);
5844 }
5845 
f2fs_create_segment_manager_caches(void)5846 int __init f2fs_create_segment_manager_caches(void)
5847 {
5848 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5849 			sizeof(struct discard_entry));
5850 	if (!discard_entry_slab)
5851 		goto fail;
5852 
5853 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5854 			sizeof(struct discard_cmd));
5855 	if (!discard_cmd_slab)
5856 		goto destroy_discard_entry;
5857 
5858 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5859 			sizeof(struct sit_entry_set));
5860 	if (!sit_entry_set_slab)
5861 		goto destroy_discard_cmd;
5862 
5863 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5864 			sizeof(struct revoke_entry));
5865 	if (!revoke_entry_slab)
5866 		goto destroy_sit_entry_set;
5867 	return 0;
5868 
5869 destroy_sit_entry_set:
5870 	kmem_cache_destroy(sit_entry_set_slab);
5871 destroy_discard_cmd:
5872 	kmem_cache_destroy(discard_cmd_slab);
5873 destroy_discard_entry:
5874 	kmem_cache_destroy(discard_entry_slab);
5875 fail:
5876 	return -ENOMEM;
5877 }
5878 
f2fs_destroy_segment_manager_caches(void)5879 void f2fs_destroy_segment_manager_caches(void)
5880 {
5881 	kmem_cache_destroy(sit_entry_set_slab);
5882 	kmem_cache_destroy(discard_cmd_slab);
5883 	kmem_cache_destroy(discard_entry_slab);
5884 	kmem_cache_destroy(revoke_entry_slab);
5885 }
5886