1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nm_i) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 /*
31  * Check whether the given nid is within node id range.
32  */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 		set_sbi_flag(sbi, SBI_NEED_FSCK);
37 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 			  __func__, nid);
39 		f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 		return -EFSCORRUPTED;
41 	}
42 	return 0;
43 }
44 
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 	struct f2fs_nm_info *nm_i = NM_I(sbi);
48 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 	struct sysinfo val;
50 	unsigned long avail_ram;
51 	unsigned long mem_size = 0;
52 	bool res = false;
53 
54 	if (!nm_i)
55 		return true;
56 
57 	si_meminfo(&val);
58 
59 	/* only uses low memory */
60 	avail_ram = val.totalram - val.totalhigh;
61 
62 	/*
63 	 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64 	 */
65 	if (type == FREE_NIDS) {
66 		mem_size = (nm_i->nid_cnt[FREE_NID] *
67 				sizeof(struct free_nid)) >> PAGE_SHIFT;
68 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 	} else if (type == NAT_ENTRIES) {
70 		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 				sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 		if (excess_cached_nats(sbi))
74 			res = false;
75 	} else if (type == DIRTY_DENTS) {
76 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 			return false;
78 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 	} else if (type == INO_ENTRIES) {
81 		int i;
82 
83 		for (i = 0; i < MAX_INO_ENTRY; i++)
84 			mem_size += sbi->im[i].ino_num *
85 						sizeof(struct ino_entry);
86 		mem_size >>= PAGE_SHIFT;
87 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 	} else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89 		enum extent_type etype = type == READ_EXTENT_CACHE ?
90 						EX_READ : EX_BLOCK_AGE;
91 		struct extent_tree_info *eti = &sbi->extent_tree[etype];
92 
93 		mem_size = (atomic_read(&eti->total_ext_tree) *
94 				sizeof(struct extent_tree) +
95 				atomic_read(&eti->total_ext_node) *
96 				sizeof(struct extent_node)) >> PAGE_SHIFT;
97 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98 	} else if (type == DISCARD_CACHE) {
99 		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100 				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101 		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102 	} else if (type == COMPRESS_PAGE) {
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 		unsigned long free_ram = val.freeram;
105 
106 		/*
107 		 * free memory is lower than watermark or cached page count
108 		 * exceed threshold, deny caching compress page.
109 		 */
110 		res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111 			(COMPRESS_MAPPING(sbi)->nrpages <
112 			 free_ram * sbi->compress_percent / 100);
113 #else
114 		res = false;
115 #endif
116 	} else {
117 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118 			return true;
119 	}
120 	return res;
121 }
122 
clear_node_page_dirty(struct page * page)123 static void clear_node_page_dirty(struct page *page)
124 {
125 	if (PageDirty(page)) {
126 		f2fs_clear_page_cache_dirty_tag(page_folio(page));
127 		clear_page_dirty_for_io(page);
128 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129 	}
130 	ClearPageUptodate(page);
131 }
132 
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135 	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136 }
137 
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140 	struct page *src_page;
141 	struct page *dst_page;
142 	pgoff_t dst_off;
143 	void *src_addr;
144 	void *dst_addr;
145 	struct f2fs_nm_info *nm_i = NM_I(sbi);
146 
147 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148 
149 	/* get current nat block page with lock */
150 	src_page = get_current_nat_page(sbi, nid);
151 	if (IS_ERR(src_page))
152 		return src_page;
153 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
154 	f2fs_bug_on(sbi, PageDirty(src_page));
155 
156 	src_addr = page_address(src_page);
157 	dst_addr = page_address(dst_page);
158 	memcpy(dst_addr, src_addr, PAGE_SIZE);
159 	set_page_dirty(dst_page);
160 	f2fs_put_page(src_page, 1);
161 
162 	set_to_next_nat(nm_i, nid);
163 
164 	return dst_page;
165 }
166 
__alloc_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,bool no_fail)167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168 						nid_t nid, bool no_fail)
169 {
170 	struct nat_entry *new;
171 
172 	new = f2fs_kmem_cache_alloc(nat_entry_slab,
173 					GFP_F2FS_ZERO, no_fail, sbi);
174 	if (new) {
175 		nat_set_nid(new, nid);
176 		nat_reset_flag(new);
177 	}
178 	return new;
179 }
180 
__free_nat_entry(struct nat_entry * e)181 static void __free_nat_entry(struct nat_entry *e)
182 {
183 	kmem_cache_free(nat_entry_slab, e);
184 }
185 
186 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189 {
190 	if (no_fail)
191 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193 		return NULL;
194 
195 	if (raw_ne)
196 		node_info_from_raw_nat(&ne->ni, raw_ne);
197 
198 	spin_lock(&nm_i->nat_list_lock);
199 	list_add_tail(&ne->list, &nm_i->nat_entries);
200 	spin_unlock(&nm_i->nat_list_lock);
201 
202 	nm_i->nat_cnt[TOTAL_NAT]++;
203 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204 	return ne;
205 }
206 
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208 {
209 	struct nat_entry *ne;
210 
211 	ne = radix_tree_lookup(&nm_i->nat_root, n);
212 
213 	/* for recent accessed nat entry, move it to tail of lru list */
214 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215 		spin_lock(&nm_i->nat_list_lock);
216 		if (!list_empty(&ne->list))
217 			list_move_tail(&ne->list, &nm_i->nat_entries);
218 		spin_unlock(&nm_i->nat_list_lock);
219 	}
220 
221 	return ne;
222 }
223 
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225 		nid_t start, unsigned int nr, struct nat_entry **ep)
226 {
227 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228 }
229 
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231 {
232 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233 	nm_i->nat_cnt[TOTAL_NAT]--;
234 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235 	__free_nat_entry(e);
236 }
237 
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239 							struct nat_entry *ne)
240 {
241 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242 	struct nat_entry_set *head;
243 
244 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
245 	if (!head) {
246 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247 						GFP_NOFS, true, NULL);
248 
249 		INIT_LIST_HEAD(&head->entry_list);
250 		INIT_LIST_HEAD(&head->set_list);
251 		head->set = set;
252 		head->entry_cnt = 0;
253 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254 	}
255 	return head;
256 }
257 
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259 						struct nat_entry *ne)
260 {
261 	struct nat_entry_set *head;
262 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263 
264 	if (!new_ne)
265 		head = __grab_nat_entry_set(nm_i, ne);
266 
267 	/*
268 	 * update entry_cnt in below condition:
269 	 * 1. update NEW_ADDR to valid block address;
270 	 * 2. update old block address to new one;
271 	 */
272 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273 				!get_nat_flag(ne, IS_DIRTY)))
274 		head->entry_cnt++;
275 
276 	set_nat_flag(ne, IS_PREALLOC, new_ne);
277 
278 	if (get_nat_flag(ne, IS_DIRTY))
279 		goto refresh_list;
280 
281 	nm_i->nat_cnt[DIRTY_NAT]++;
282 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283 	set_nat_flag(ne, IS_DIRTY, true);
284 refresh_list:
285 	spin_lock(&nm_i->nat_list_lock);
286 	if (new_ne)
287 		list_del_init(&ne->list);
288 	else
289 		list_move_tail(&ne->list, &head->entry_list);
290 	spin_unlock(&nm_i->nat_list_lock);
291 }
292 
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294 		struct nat_entry_set *set, struct nat_entry *ne)
295 {
296 	spin_lock(&nm_i->nat_list_lock);
297 	list_move_tail(&ne->list, &nm_i->nat_entries);
298 	spin_unlock(&nm_i->nat_list_lock);
299 
300 	set_nat_flag(ne, IS_DIRTY, false);
301 	set->entry_cnt--;
302 	nm_i->nat_cnt[DIRTY_NAT]--;
303 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304 }
305 
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
308 {
309 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310 							start, nr);
311 }
312 
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,const struct folio * folio)313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, const struct folio *folio)
314 {
315 	return NODE_MAPPING(sbi) == folio->mapping &&
316 			IS_DNODE(&folio->page) && is_cold_node(&folio->page);
317 }
318 
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320 {
321 	spin_lock_init(&sbi->fsync_node_lock);
322 	INIT_LIST_HEAD(&sbi->fsync_node_list);
323 	sbi->fsync_seg_id = 0;
324 	sbi->fsync_node_num = 0;
325 }
326 
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328 							struct page *page)
329 {
330 	struct fsync_node_entry *fn;
331 	unsigned long flags;
332 	unsigned int seq_id;
333 
334 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335 					GFP_NOFS, true, NULL);
336 
337 	get_page(page);
338 	fn->page = page;
339 	INIT_LIST_HEAD(&fn->list);
340 
341 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342 	list_add_tail(&fn->list, &sbi->fsync_node_list);
343 	fn->seq_id = sbi->fsync_seg_id++;
344 	seq_id = fn->seq_id;
345 	sbi->fsync_node_num++;
346 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347 
348 	return seq_id;
349 }
350 
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352 {
353 	struct fsync_node_entry *fn;
354 	unsigned long flags;
355 
356 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358 		if (fn->page == page) {
359 			list_del(&fn->list);
360 			sbi->fsync_node_num--;
361 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362 			kmem_cache_free(fsync_node_entry_slab, fn);
363 			put_page(page);
364 			return;
365 		}
366 	}
367 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368 	f2fs_bug_on(sbi, 1);
369 }
370 
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372 {
373 	unsigned long flags;
374 
375 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376 	sbi->fsync_seg_id = 0;
377 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378 }
379 
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381 {
382 	struct f2fs_nm_info *nm_i = NM_I(sbi);
383 	struct nat_entry *e;
384 	bool need = false;
385 
386 	f2fs_down_read(&nm_i->nat_tree_lock);
387 	e = __lookup_nat_cache(nm_i, nid);
388 	if (e) {
389 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390 				!get_nat_flag(e, HAS_FSYNCED_INODE))
391 			need = true;
392 	}
393 	f2fs_up_read(&nm_i->nat_tree_lock);
394 	return need;
395 }
396 
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398 {
399 	struct f2fs_nm_info *nm_i = NM_I(sbi);
400 	struct nat_entry *e;
401 	bool is_cp = true;
402 
403 	f2fs_down_read(&nm_i->nat_tree_lock);
404 	e = __lookup_nat_cache(nm_i, nid);
405 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406 		is_cp = false;
407 	f2fs_up_read(&nm_i->nat_tree_lock);
408 	return is_cp;
409 }
410 
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412 {
413 	struct f2fs_nm_info *nm_i = NM_I(sbi);
414 	struct nat_entry *e;
415 	bool need_update = true;
416 
417 	f2fs_down_read(&nm_i->nat_tree_lock);
418 	e = __lookup_nat_cache(nm_i, ino);
419 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420 			(get_nat_flag(e, IS_CHECKPOINTED) ||
421 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
422 		need_update = false;
423 	f2fs_up_read(&nm_i->nat_tree_lock);
424 	return need_update;
425 }
426 
427 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429 						struct f2fs_nat_entry *ne)
430 {
431 	struct f2fs_nm_info *nm_i = NM_I(sbi);
432 	struct nat_entry *new, *e;
433 
434 	/* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435 	if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436 		return;
437 
438 	new = __alloc_nat_entry(sbi, nid, false);
439 	if (!new)
440 		return;
441 
442 	f2fs_down_write(&nm_i->nat_tree_lock);
443 	e = __lookup_nat_cache(nm_i, nid);
444 	if (!e)
445 		e = __init_nat_entry(nm_i, new, ne, false);
446 	else
447 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448 				nat_get_blkaddr(e) !=
449 					le32_to_cpu(ne->block_addr) ||
450 				nat_get_version(e) != ne->version);
451 	f2fs_up_write(&nm_i->nat_tree_lock);
452 	if (e != new)
453 		__free_nat_entry(new);
454 }
455 
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457 			block_t new_blkaddr, bool fsync_done)
458 {
459 	struct f2fs_nm_info *nm_i = NM_I(sbi);
460 	struct nat_entry *e;
461 	struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462 
463 	f2fs_down_write(&nm_i->nat_tree_lock);
464 	e = __lookup_nat_cache(nm_i, ni->nid);
465 	if (!e) {
466 		e = __init_nat_entry(nm_i, new, NULL, true);
467 		copy_node_info(&e->ni, ni);
468 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469 	} else if (new_blkaddr == NEW_ADDR) {
470 		/*
471 		 * when nid is reallocated,
472 		 * previous nat entry can be remained in nat cache.
473 		 * So, reinitialize it with new information.
474 		 */
475 		copy_node_info(&e->ni, ni);
476 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477 	}
478 	/* let's free early to reduce memory consumption */
479 	if (e != new)
480 		__free_nat_entry(new);
481 
482 	/* sanity check */
483 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485 			new_blkaddr == NULL_ADDR);
486 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487 			new_blkaddr == NEW_ADDR);
488 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489 			new_blkaddr == NEW_ADDR);
490 
491 	/* increment version no as node is removed */
492 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493 		unsigned char version = nat_get_version(e);
494 
495 		nat_set_version(e, inc_node_version(version));
496 	}
497 
498 	/* change address */
499 	nat_set_blkaddr(e, new_blkaddr);
500 	if (!__is_valid_data_blkaddr(new_blkaddr))
501 		set_nat_flag(e, IS_CHECKPOINTED, false);
502 	__set_nat_cache_dirty(nm_i, e);
503 
504 	/* update fsync_mark if its inode nat entry is still alive */
505 	if (ni->nid != ni->ino)
506 		e = __lookup_nat_cache(nm_i, ni->ino);
507 	if (e) {
508 		if (fsync_done && ni->nid == ni->ino)
509 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
510 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511 	}
512 	f2fs_up_write(&nm_i->nat_tree_lock);
513 }
514 
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516 {
517 	struct f2fs_nm_info *nm_i = NM_I(sbi);
518 	int nr = nr_shrink;
519 
520 	if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521 		return 0;
522 
523 	spin_lock(&nm_i->nat_list_lock);
524 	while (nr_shrink) {
525 		struct nat_entry *ne;
526 
527 		if (list_empty(&nm_i->nat_entries))
528 			break;
529 
530 		ne = list_first_entry(&nm_i->nat_entries,
531 					struct nat_entry, list);
532 		list_del(&ne->list);
533 		spin_unlock(&nm_i->nat_list_lock);
534 
535 		__del_from_nat_cache(nm_i, ne);
536 		nr_shrink--;
537 
538 		spin_lock(&nm_i->nat_list_lock);
539 	}
540 	spin_unlock(&nm_i->nat_list_lock);
541 
542 	f2fs_up_write(&nm_i->nat_tree_lock);
543 	return nr - nr_shrink;
544 }
545 
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni,bool checkpoint_context)546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547 				struct node_info *ni, bool checkpoint_context)
548 {
549 	struct f2fs_nm_info *nm_i = NM_I(sbi);
550 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551 	struct f2fs_journal *journal = curseg->journal;
552 	nid_t start_nid = START_NID(nid);
553 	struct f2fs_nat_block *nat_blk;
554 	struct page *page = NULL;
555 	struct f2fs_nat_entry ne;
556 	struct nat_entry *e;
557 	pgoff_t index;
558 	block_t blkaddr;
559 	int i;
560 
561 	ni->flag = 0;
562 	ni->nid = nid;
563 retry:
564 	/* Check nat cache */
565 	f2fs_down_read(&nm_i->nat_tree_lock);
566 	e = __lookup_nat_cache(nm_i, nid);
567 	if (e) {
568 		ni->ino = nat_get_ino(e);
569 		ni->blk_addr = nat_get_blkaddr(e);
570 		ni->version = nat_get_version(e);
571 		f2fs_up_read(&nm_i->nat_tree_lock);
572 		return 0;
573 	}
574 
575 	/*
576 	 * Check current segment summary by trying to grab journal_rwsem first.
577 	 * This sem is on the critical path on the checkpoint requiring the above
578 	 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
579 	 * while not bothering checkpoint.
580 	 */
581 	if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
582 		down_read(&curseg->journal_rwsem);
583 	} else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
584 				!down_read_trylock(&curseg->journal_rwsem)) {
585 		f2fs_up_read(&nm_i->nat_tree_lock);
586 		goto retry;
587 	}
588 
589 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
590 	if (i >= 0) {
591 		ne = nat_in_journal(journal, i);
592 		node_info_from_raw_nat(ni, &ne);
593 	}
594 	up_read(&curseg->journal_rwsem);
595 	if (i >= 0) {
596 		f2fs_up_read(&nm_i->nat_tree_lock);
597 		goto cache;
598 	}
599 
600 	/* Fill node_info from nat page */
601 	index = current_nat_addr(sbi, nid);
602 	f2fs_up_read(&nm_i->nat_tree_lock);
603 
604 	page = f2fs_get_meta_page(sbi, index);
605 	if (IS_ERR(page))
606 		return PTR_ERR(page);
607 
608 	nat_blk = (struct f2fs_nat_block *)page_address(page);
609 	ne = nat_blk->entries[nid - start_nid];
610 	node_info_from_raw_nat(ni, &ne);
611 	f2fs_put_page(page, 1);
612 cache:
613 	blkaddr = le32_to_cpu(ne.block_addr);
614 	if (__is_valid_data_blkaddr(blkaddr) &&
615 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
616 		return -EFAULT;
617 
618 	/* cache nat entry */
619 	cache_nat_entry(sbi, nid, &ne);
620 	return 0;
621 }
622 
623 /*
624  * readahead MAX_RA_NODE number of node pages.
625  */
f2fs_ra_node_pages(struct page * parent,int start,int n)626 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
627 {
628 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
629 	struct blk_plug plug;
630 	int i, end;
631 	nid_t nid;
632 
633 	blk_start_plug(&plug);
634 
635 	/* Then, try readahead for siblings of the desired node */
636 	end = start + n;
637 	end = min(end, (int)NIDS_PER_BLOCK);
638 	for (i = start; i < end; i++) {
639 		nid = get_nid(parent, i, false);
640 		f2fs_ra_node_page(sbi, nid);
641 	}
642 
643 	blk_finish_plug(&plug);
644 }
645 
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)646 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
647 {
648 	const long direct_index = ADDRS_PER_INODE(dn->inode);
649 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
650 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
651 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
652 	int cur_level = dn->cur_level;
653 	int max_level = dn->max_level;
654 	pgoff_t base = 0;
655 
656 	if (!dn->max_level)
657 		return pgofs + 1;
658 
659 	while (max_level-- > cur_level)
660 		skipped_unit *= NIDS_PER_BLOCK;
661 
662 	switch (dn->max_level) {
663 	case 3:
664 		base += 2 * indirect_blks;
665 		fallthrough;
666 	case 2:
667 		base += 2 * direct_blks;
668 		fallthrough;
669 	case 1:
670 		base += direct_index;
671 		break;
672 	default:
673 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
674 	}
675 
676 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
677 }
678 
679 /*
680  * The maximum depth is four.
681  * Offset[0] will have raw inode offset.
682  */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])683 static int get_node_path(struct inode *inode, long block,
684 				int offset[4], unsigned int noffset[4])
685 {
686 	const long direct_index = ADDRS_PER_INODE(inode);
687 	const long direct_blks = ADDRS_PER_BLOCK(inode);
688 	const long dptrs_per_blk = NIDS_PER_BLOCK;
689 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
690 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
691 	int n = 0;
692 	int level = 0;
693 
694 	noffset[0] = 0;
695 
696 	if (block < direct_index) {
697 		offset[n] = block;
698 		goto got;
699 	}
700 	block -= direct_index;
701 	if (block < direct_blks) {
702 		offset[n++] = NODE_DIR1_BLOCK;
703 		noffset[n] = 1;
704 		offset[n] = block;
705 		level = 1;
706 		goto got;
707 	}
708 	block -= direct_blks;
709 	if (block < direct_blks) {
710 		offset[n++] = NODE_DIR2_BLOCK;
711 		noffset[n] = 2;
712 		offset[n] = block;
713 		level = 1;
714 		goto got;
715 	}
716 	block -= direct_blks;
717 	if (block < indirect_blks) {
718 		offset[n++] = NODE_IND1_BLOCK;
719 		noffset[n] = 3;
720 		offset[n++] = block / direct_blks;
721 		noffset[n] = 4 + offset[n - 1];
722 		offset[n] = block % direct_blks;
723 		level = 2;
724 		goto got;
725 	}
726 	block -= indirect_blks;
727 	if (block < indirect_blks) {
728 		offset[n++] = NODE_IND2_BLOCK;
729 		noffset[n] = 4 + dptrs_per_blk;
730 		offset[n++] = block / direct_blks;
731 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
732 		offset[n] = block % direct_blks;
733 		level = 2;
734 		goto got;
735 	}
736 	block -= indirect_blks;
737 	if (block < dindirect_blks) {
738 		offset[n++] = NODE_DIND_BLOCK;
739 		noffset[n] = 5 + (dptrs_per_blk * 2);
740 		offset[n++] = block / indirect_blks;
741 		noffset[n] = 6 + (dptrs_per_blk * 2) +
742 			      offset[n - 1] * (dptrs_per_blk + 1);
743 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
744 		noffset[n] = 7 + (dptrs_per_blk * 2) +
745 			      offset[n - 2] * (dptrs_per_blk + 1) +
746 			      offset[n - 1];
747 		offset[n] = block % direct_blks;
748 		level = 3;
749 		goto got;
750 	} else {
751 		return -E2BIG;
752 	}
753 got:
754 	return level;
755 }
756 
757 /*
758  * Caller should call f2fs_put_dnode(dn).
759  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
760  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
761  */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)762 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
763 {
764 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
765 	struct page *npage[4];
766 	struct page *parent = NULL;
767 	int offset[4];
768 	unsigned int noffset[4];
769 	nid_t nids[4];
770 	int level, i = 0;
771 	int err = 0;
772 
773 	level = get_node_path(dn->inode, index, offset, noffset);
774 	if (level < 0)
775 		return level;
776 
777 	nids[0] = dn->inode->i_ino;
778 	npage[0] = dn->inode_page;
779 
780 	if (!npage[0]) {
781 		npage[0] = f2fs_get_inode_page(sbi, nids[0]);
782 		if (IS_ERR(npage[0]))
783 			return PTR_ERR(npage[0]);
784 	}
785 
786 	/* if inline_data is set, should not report any block indices */
787 	if (f2fs_has_inline_data(dn->inode) && index) {
788 		err = -ENOENT;
789 		f2fs_put_page(npage[0], 1);
790 		goto release_out;
791 	}
792 
793 	parent = npage[0];
794 	if (level != 0)
795 		nids[1] = get_nid(parent, offset[0], true);
796 	dn->inode_page = npage[0];
797 	dn->inode_page_locked = true;
798 
799 	/* get indirect or direct nodes */
800 	for (i = 1; i <= level; i++) {
801 		bool done = false;
802 
803 		if (nids[i] && nids[i] == dn->inode->i_ino) {
804 			err = -EFSCORRUPTED;
805 			f2fs_err_ratelimited(sbi,
806 				"inode mapping table is corrupted, run fsck to fix it, "
807 				"ino:%lu, nid:%u, level:%d, offset:%d",
808 				dn->inode->i_ino, nids[i], level, offset[level]);
809 			set_sbi_flag(sbi, SBI_NEED_FSCK);
810 			goto release_pages;
811 		}
812 
813 		if (!nids[i] && mode == ALLOC_NODE) {
814 			/* alloc new node */
815 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
816 				err = -ENOSPC;
817 				goto release_pages;
818 			}
819 
820 			dn->nid = nids[i];
821 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
822 			if (IS_ERR(npage[i])) {
823 				f2fs_alloc_nid_failed(sbi, nids[i]);
824 				err = PTR_ERR(npage[i]);
825 				goto release_pages;
826 			}
827 
828 			set_nid(parent, offset[i - 1], nids[i], i == 1);
829 			f2fs_alloc_nid_done(sbi, nids[i]);
830 			done = true;
831 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
832 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
833 			if (IS_ERR(npage[i])) {
834 				err = PTR_ERR(npage[i]);
835 				goto release_pages;
836 			}
837 			done = true;
838 		}
839 		if (i == 1) {
840 			dn->inode_page_locked = false;
841 			unlock_page(parent);
842 		} else {
843 			f2fs_put_page(parent, 1);
844 		}
845 
846 		if (!done) {
847 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
848 			if (IS_ERR(npage[i])) {
849 				err = PTR_ERR(npage[i]);
850 				f2fs_put_page(npage[0], 0);
851 				goto release_out;
852 			}
853 		}
854 		if (i < level) {
855 			parent = npage[i];
856 			nids[i + 1] = get_nid(parent, offset[i], false);
857 		}
858 	}
859 	dn->nid = nids[level];
860 	dn->ofs_in_node = offset[level];
861 	dn->node_page = npage[level];
862 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
863 
864 	if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
865 					f2fs_sb_has_readonly(sbi)) {
866 		unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
867 		unsigned int ofs_in_node = dn->ofs_in_node;
868 		pgoff_t fofs = index;
869 		unsigned int c_len;
870 		block_t blkaddr;
871 
872 		/* should align fofs and ofs_in_node to cluster_size */
873 		if (fofs % cluster_size) {
874 			fofs = round_down(fofs, cluster_size);
875 			ofs_in_node = round_down(ofs_in_node, cluster_size);
876 		}
877 
878 		c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
879 		if (!c_len)
880 			goto out;
881 
882 		blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
883 		if (blkaddr == COMPRESS_ADDR)
884 			blkaddr = data_blkaddr(dn->inode, dn->node_page,
885 						ofs_in_node + 1);
886 
887 		f2fs_update_read_extent_tree_range_compressed(dn->inode,
888 					fofs, blkaddr, cluster_size, c_len);
889 	}
890 out:
891 	return 0;
892 
893 release_pages:
894 	f2fs_put_page(parent, 1);
895 	if (i > 1)
896 		f2fs_put_page(npage[0], 0);
897 release_out:
898 	dn->inode_page = NULL;
899 	dn->node_page = NULL;
900 	if (err == -ENOENT) {
901 		dn->cur_level = i;
902 		dn->max_level = level;
903 		dn->ofs_in_node = offset[level];
904 	}
905 	return err;
906 }
907 
truncate_node(struct dnode_of_data * dn)908 static int truncate_node(struct dnode_of_data *dn)
909 {
910 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
911 	struct node_info ni;
912 	int err;
913 	pgoff_t index;
914 
915 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
916 	if (err)
917 		return err;
918 
919 	if (ni.blk_addr != NEW_ADDR &&
920 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) {
921 		f2fs_err_ratelimited(sbi,
922 			"nat entry is corrupted, run fsck to fix it, ino:%u, "
923 			"nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr);
924 		set_sbi_flag(sbi, SBI_NEED_FSCK);
925 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
926 		return -EFSCORRUPTED;
927 	}
928 
929 	/* Deallocate node address */
930 	f2fs_invalidate_blocks(sbi, ni.blk_addr, 1);
931 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
932 	set_node_addr(sbi, &ni, NULL_ADDR, false);
933 
934 	if (dn->nid == dn->inode->i_ino) {
935 		f2fs_remove_orphan_inode(sbi, dn->nid);
936 		dec_valid_inode_count(sbi);
937 		f2fs_inode_synced(dn->inode);
938 	}
939 
940 	clear_node_page_dirty(dn->node_page);
941 	set_sbi_flag(sbi, SBI_IS_DIRTY);
942 
943 	index = page_folio(dn->node_page)->index;
944 	f2fs_put_page(dn->node_page, 1);
945 
946 	invalidate_mapping_pages(NODE_MAPPING(sbi),
947 			index, index);
948 
949 	dn->node_page = NULL;
950 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
951 
952 	return 0;
953 }
954 
truncate_dnode(struct dnode_of_data * dn)955 static int truncate_dnode(struct dnode_of_data *dn)
956 {
957 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
958 	struct page *page;
959 	int err;
960 
961 	if (dn->nid == 0)
962 		return 1;
963 
964 	/* get direct node */
965 	page = f2fs_get_node_page(sbi, dn->nid);
966 	if (PTR_ERR(page) == -ENOENT)
967 		return 1;
968 	else if (IS_ERR(page))
969 		return PTR_ERR(page);
970 
971 	if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
972 		f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
973 				dn->inode->i_ino, dn->nid, ino_of_node(page));
974 		set_sbi_flag(sbi, SBI_NEED_FSCK);
975 		f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
976 		f2fs_put_page(page, 1);
977 		return -EFSCORRUPTED;
978 	}
979 
980 	/* Make dnode_of_data for parameter */
981 	dn->node_page = page;
982 	dn->ofs_in_node = 0;
983 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
984 	err = truncate_node(dn);
985 	if (err) {
986 		f2fs_put_page(page, 1);
987 		return err;
988 	}
989 
990 	return 1;
991 }
992 
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)993 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
994 						int ofs, int depth)
995 {
996 	struct dnode_of_data rdn = *dn;
997 	struct page *page;
998 	struct f2fs_node *rn;
999 	nid_t child_nid;
1000 	unsigned int child_nofs;
1001 	int freed = 0;
1002 	int i, ret;
1003 
1004 	if (dn->nid == 0)
1005 		return NIDS_PER_BLOCK + 1;
1006 
1007 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
1008 
1009 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
1010 	if (IS_ERR(page)) {
1011 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
1012 		return PTR_ERR(page);
1013 	}
1014 
1015 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
1016 
1017 	rn = F2FS_NODE(page);
1018 	if (depth < 3) {
1019 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
1020 			child_nid = le32_to_cpu(rn->in.nid[i]);
1021 			if (child_nid == 0)
1022 				continue;
1023 			rdn.nid = child_nid;
1024 			ret = truncate_dnode(&rdn);
1025 			if (ret < 0)
1026 				goto out_err;
1027 			if (set_nid(page, i, 0, false))
1028 				dn->node_changed = true;
1029 		}
1030 	} else {
1031 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1032 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1033 			child_nid = le32_to_cpu(rn->in.nid[i]);
1034 			if (child_nid == 0) {
1035 				child_nofs += NIDS_PER_BLOCK + 1;
1036 				continue;
1037 			}
1038 			rdn.nid = child_nid;
1039 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1040 			if (ret == (NIDS_PER_BLOCK + 1)) {
1041 				if (set_nid(page, i, 0, false))
1042 					dn->node_changed = true;
1043 				child_nofs += ret;
1044 			} else if (ret < 0 && ret != -ENOENT) {
1045 				goto out_err;
1046 			}
1047 		}
1048 		freed = child_nofs;
1049 	}
1050 
1051 	if (!ofs) {
1052 		/* remove current indirect node */
1053 		dn->node_page = page;
1054 		ret = truncate_node(dn);
1055 		if (ret)
1056 			goto out_err;
1057 		freed++;
1058 	} else {
1059 		f2fs_put_page(page, 1);
1060 	}
1061 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1062 	return freed;
1063 
1064 out_err:
1065 	f2fs_put_page(page, 1);
1066 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1067 	return ret;
1068 }
1069 
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)1070 static int truncate_partial_nodes(struct dnode_of_data *dn,
1071 			struct f2fs_inode *ri, int *offset, int depth)
1072 {
1073 	struct page *pages[2];
1074 	nid_t nid[3];
1075 	nid_t child_nid;
1076 	int err = 0;
1077 	int i;
1078 	int idx = depth - 2;
1079 
1080 	nid[0] = get_nid(dn->inode_page, offset[0], true);
1081 	if (!nid[0])
1082 		return 0;
1083 
1084 	/* get indirect nodes in the path */
1085 	for (i = 0; i < idx + 1; i++) {
1086 		/* reference count'll be increased */
1087 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1088 		if (IS_ERR(pages[i])) {
1089 			err = PTR_ERR(pages[i]);
1090 			idx = i - 1;
1091 			goto fail;
1092 		}
1093 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1094 	}
1095 
1096 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1097 
1098 	/* free direct nodes linked to a partial indirect node */
1099 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1100 		child_nid = get_nid(pages[idx], i, false);
1101 		if (!child_nid)
1102 			continue;
1103 		dn->nid = child_nid;
1104 		err = truncate_dnode(dn);
1105 		if (err < 0)
1106 			goto fail;
1107 		if (set_nid(pages[idx], i, 0, false))
1108 			dn->node_changed = true;
1109 	}
1110 
1111 	if (offset[idx + 1] == 0) {
1112 		dn->node_page = pages[idx];
1113 		dn->nid = nid[idx];
1114 		err = truncate_node(dn);
1115 		if (err)
1116 			goto fail;
1117 	} else {
1118 		f2fs_put_page(pages[idx], 1);
1119 	}
1120 	offset[idx]++;
1121 	offset[idx + 1] = 0;
1122 	idx--;
1123 fail:
1124 	for (i = idx; i >= 0; i--)
1125 		f2fs_put_page(pages[i], 1);
1126 
1127 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1128 
1129 	return err;
1130 }
1131 
1132 /*
1133  * All the block addresses of data and nodes should be nullified.
1134  */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1135 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1136 {
1137 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1138 	int err = 0, cont = 1;
1139 	int level, offset[4], noffset[4];
1140 	unsigned int nofs = 0;
1141 	struct f2fs_inode *ri;
1142 	struct dnode_of_data dn;
1143 	struct folio *folio;
1144 
1145 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1146 
1147 	level = get_node_path(inode, from, offset, noffset);
1148 	if (level <= 0) {
1149 		if (!level) {
1150 			level = -EFSCORRUPTED;
1151 			f2fs_err(sbi, "%s: inode ino=%lx has corrupted node block, from:%lu addrs:%u",
1152 					__func__, inode->i_ino,
1153 					from, ADDRS_PER_INODE(inode));
1154 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1155 		}
1156 		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1157 		return level;
1158 	}
1159 
1160 	folio = f2fs_get_inode_folio(sbi, inode->i_ino);
1161 	if (IS_ERR(folio)) {
1162 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(folio));
1163 		return PTR_ERR(folio);
1164 	}
1165 
1166 	set_new_dnode(&dn, inode, &folio->page, NULL, 0);
1167 	folio_unlock(folio);
1168 
1169 	ri = F2FS_INODE(&folio->page);
1170 	switch (level) {
1171 	case 0:
1172 	case 1:
1173 		nofs = noffset[1];
1174 		break;
1175 	case 2:
1176 		nofs = noffset[1];
1177 		if (!offset[level - 1])
1178 			goto skip_partial;
1179 		err = truncate_partial_nodes(&dn, ri, offset, level);
1180 		if (err < 0 && err != -ENOENT)
1181 			goto fail;
1182 		nofs += 1 + NIDS_PER_BLOCK;
1183 		break;
1184 	case 3:
1185 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1186 		if (!offset[level - 1])
1187 			goto skip_partial;
1188 		err = truncate_partial_nodes(&dn, ri, offset, level);
1189 		if (err < 0 && err != -ENOENT)
1190 			goto fail;
1191 		break;
1192 	default:
1193 		BUG();
1194 	}
1195 
1196 skip_partial:
1197 	while (cont) {
1198 		dn.nid = get_nid(&folio->page, offset[0], true);
1199 		switch (offset[0]) {
1200 		case NODE_DIR1_BLOCK:
1201 		case NODE_DIR2_BLOCK:
1202 			err = truncate_dnode(&dn);
1203 			break;
1204 
1205 		case NODE_IND1_BLOCK:
1206 		case NODE_IND2_BLOCK:
1207 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1208 			break;
1209 
1210 		case NODE_DIND_BLOCK:
1211 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1212 			cont = 0;
1213 			break;
1214 
1215 		default:
1216 			BUG();
1217 		}
1218 		if (err == -ENOENT) {
1219 			set_sbi_flag(F2FS_F_SB(folio), SBI_NEED_FSCK);
1220 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1221 			f2fs_err_ratelimited(sbi,
1222 				"truncate node fail, ino:%lu, nid:%u, "
1223 				"offset[0]:%d, offset[1]:%d, nofs:%d",
1224 				inode->i_ino, dn.nid, offset[0],
1225 				offset[1], nofs);
1226 			err = 0;
1227 		}
1228 		if (err < 0)
1229 			goto fail;
1230 		if (offset[1] == 0 && get_nid(&folio->page, offset[0], true)) {
1231 			folio_lock(folio);
1232 			BUG_ON(folio->mapping != NODE_MAPPING(sbi));
1233 			set_nid(&folio->page, offset[0], 0, true);
1234 			folio_unlock(folio);
1235 		}
1236 		offset[1] = 0;
1237 		offset[0]++;
1238 		nofs += err;
1239 	}
1240 fail:
1241 	f2fs_folio_put(folio, false);
1242 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1243 	return err > 0 ? 0 : err;
1244 }
1245 
1246 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1247 int f2fs_truncate_xattr_node(struct inode *inode)
1248 {
1249 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1250 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1251 	struct dnode_of_data dn;
1252 	struct page *npage;
1253 	int err;
1254 
1255 	if (!nid)
1256 		return 0;
1257 
1258 	npage = f2fs_get_xnode_page(sbi, nid);
1259 	if (IS_ERR(npage))
1260 		return PTR_ERR(npage);
1261 
1262 	set_new_dnode(&dn, inode, NULL, npage, nid);
1263 	err = truncate_node(&dn);
1264 	if (err) {
1265 		f2fs_put_page(npage, 1);
1266 		return err;
1267 	}
1268 
1269 	f2fs_i_xnid_write(inode, 0);
1270 
1271 	return 0;
1272 }
1273 
1274 /*
1275  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1276  * f2fs_unlock_op().
1277  */
f2fs_remove_inode_page(struct inode * inode)1278 int f2fs_remove_inode_page(struct inode *inode)
1279 {
1280 	struct dnode_of_data dn;
1281 	int err;
1282 
1283 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1284 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1285 	if (err)
1286 		return err;
1287 
1288 	err = f2fs_truncate_xattr_node(inode);
1289 	if (err) {
1290 		f2fs_put_dnode(&dn);
1291 		return err;
1292 	}
1293 
1294 	/* remove potential inline_data blocks */
1295 	if (!IS_DEVICE_ALIASING(inode) &&
1296 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1297 	     S_ISLNK(inode->i_mode)))
1298 		f2fs_truncate_data_blocks_range(&dn, 1);
1299 
1300 	/* 0 is possible, after f2fs_new_inode() has failed */
1301 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1302 		f2fs_put_dnode(&dn);
1303 		return -EIO;
1304 	}
1305 
1306 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1307 		f2fs_warn(F2FS_I_SB(inode),
1308 			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1309 			inode->i_ino, (unsigned long long)inode->i_blocks);
1310 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1311 	}
1312 
1313 	/* will put inode & node pages */
1314 	err = truncate_node(&dn);
1315 	if (err) {
1316 		f2fs_put_dnode(&dn);
1317 		return err;
1318 	}
1319 	return 0;
1320 }
1321 
f2fs_new_inode_page(struct inode * inode)1322 struct page *f2fs_new_inode_page(struct inode *inode)
1323 {
1324 	struct dnode_of_data dn;
1325 
1326 	/* allocate inode page for new inode */
1327 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1328 
1329 	/* caller should f2fs_put_page(page, 1); */
1330 	return f2fs_new_node_page(&dn, 0);
1331 }
1332 
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1333 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1334 {
1335 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1336 	struct node_info new_ni;
1337 	struct page *page;
1338 	int err;
1339 
1340 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1341 		return ERR_PTR(-EPERM);
1342 
1343 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1344 	if (!page)
1345 		return ERR_PTR(-ENOMEM);
1346 
1347 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1348 		goto fail;
1349 
1350 #ifdef CONFIG_F2FS_CHECK_FS
1351 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1352 	if (err) {
1353 		dec_valid_node_count(sbi, dn->inode, !ofs);
1354 		goto fail;
1355 	}
1356 	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1357 		err = -EFSCORRUPTED;
1358 		dec_valid_node_count(sbi, dn->inode, !ofs);
1359 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1360 		f2fs_warn_ratelimited(sbi,
1361 			"f2fs_new_node_page: inconsistent nat entry, "
1362 			"ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u",
1363 			new_ni.ino, new_ni.nid, new_ni.blk_addr,
1364 			new_ni.version, new_ni.flag);
1365 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
1366 		goto fail;
1367 	}
1368 #endif
1369 	new_ni.nid = dn->nid;
1370 	new_ni.ino = dn->inode->i_ino;
1371 	new_ni.blk_addr = NULL_ADDR;
1372 	new_ni.flag = 0;
1373 	new_ni.version = 0;
1374 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1375 
1376 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1377 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1378 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1379 	if (!PageUptodate(page))
1380 		SetPageUptodate(page);
1381 	if (set_page_dirty(page))
1382 		dn->node_changed = true;
1383 
1384 	if (f2fs_has_xattr_block(ofs))
1385 		f2fs_i_xnid_write(dn->inode, dn->nid);
1386 
1387 	if (ofs == 0)
1388 		inc_valid_inode_count(sbi);
1389 	return page;
1390 fail:
1391 	clear_node_page_dirty(page);
1392 	f2fs_put_page(page, 1);
1393 	return ERR_PTR(err);
1394 }
1395 
1396 /*
1397  * Caller should do after getting the following values.
1398  * 0: f2fs_put_page(page, 0)
1399  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1400  */
read_node_page(struct page * page,blk_opf_t op_flags)1401 static int read_node_page(struct page *page, blk_opf_t op_flags)
1402 {
1403 	struct folio *folio = page_folio(page);
1404 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1405 	struct node_info ni;
1406 	struct f2fs_io_info fio = {
1407 		.sbi = sbi,
1408 		.type = NODE,
1409 		.op = REQ_OP_READ,
1410 		.op_flags = op_flags,
1411 		.page = page,
1412 		.encrypted_page = NULL,
1413 	};
1414 	int err;
1415 
1416 	if (folio_test_uptodate(folio)) {
1417 		if (!f2fs_inode_chksum_verify(sbi, page)) {
1418 			folio_clear_uptodate(folio);
1419 			return -EFSBADCRC;
1420 		}
1421 		return LOCKED_PAGE;
1422 	}
1423 
1424 	err = f2fs_get_node_info(sbi, folio->index, &ni, false);
1425 	if (err)
1426 		return err;
1427 
1428 	/* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1429 	if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1430 		folio_clear_uptodate(folio);
1431 		return -ENOENT;
1432 	}
1433 
1434 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1435 
1436 	err = f2fs_submit_page_bio(&fio);
1437 
1438 	if (!err)
1439 		f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1440 
1441 	return err;
1442 }
1443 
1444 /*
1445  * Readahead a node page
1446  */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1447 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1448 {
1449 	struct page *apage;
1450 	int err;
1451 
1452 	if (!nid)
1453 		return;
1454 	if (f2fs_check_nid_range(sbi, nid))
1455 		return;
1456 
1457 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1458 	if (apage)
1459 		return;
1460 
1461 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1462 	if (!apage)
1463 		return;
1464 
1465 	err = read_node_page(apage, REQ_RAHEAD);
1466 	f2fs_put_page(apage, err ? 1 : 0);
1467 }
1468 
sanity_check_node_footer(struct f2fs_sb_info * sbi,struct page * page,pgoff_t nid,enum node_type ntype)1469 static int sanity_check_node_footer(struct f2fs_sb_info *sbi,
1470 					struct page *page, pgoff_t nid,
1471 					enum node_type ntype)
1472 {
1473 	if (unlikely(nid != nid_of_node(page) ||
1474 		(ntype == NODE_TYPE_INODE && !IS_INODE(page)) ||
1475 		(ntype == NODE_TYPE_XATTR &&
1476 		!f2fs_has_xattr_block(ofs_of_node(page))) ||
1477 		time_to_inject(sbi, FAULT_INCONSISTENT_FOOTER))) {
1478 		f2fs_warn(sbi, "inconsistent node block, node_type:%d, nid:%lu, "
1479 			  "node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1480 			  ntype, nid, nid_of_node(page), ino_of_node(page),
1481 			  ofs_of_node(page), cpver_of_node(page),
1482 			  next_blkaddr_of_node(page));
1483 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1484 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1485 		return -EFSCORRUPTED;
1486 	}
1487 	return 0;
1488 }
1489 
__get_node_folio(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start,enum node_type ntype)1490 static struct folio *__get_node_folio(struct f2fs_sb_info *sbi, pgoff_t nid,
1491 					struct page *parent, int start,
1492 					enum node_type ntype)
1493 {
1494 	struct folio *folio;
1495 	int err;
1496 
1497 	if (!nid)
1498 		return ERR_PTR(-ENOENT);
1499 	if (f2fs_check_nid_range(sbi, nid))
1500 		return ERR_PTR(-EINVAL);
1501 repeat:
1502 	folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), nid, false);
1503 	if (IS_ERR(folio))
1504 		return folio;
1505 
1506 	err = read_node_page(&folio->page, 0);
1507 	if (err < 0)
1508 		goto out_put_err;
1509 	if (err == LOCKED_PAGE)
1510 		goto page_hit;
1511 
1512 	if (parent)
1513 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1514 
1515 	folio_lock(folio);
1516 
1517 	if (unlikely(folio->mapping != NODE_MAPPING(sbi))) {
1518 		f2fs_folio_put(folio, true);
1519 		goto repeat;
1520 	}
1521 
1522 	if (unlikely(!folio_test_uptodate(folio))) {
1523 		err = -EIO;
1524 		goto out_err;
1525 	}
1526 
1527 	if (!f2fs_inode_chksum_verify(sbi, &folio->page)) {
1528 		err = -EFSBADCRC;
1529 		goto out_err;
1530 	}
1531 page_hit:
1532 	err = sanity_check_node_footer(sbi, &folio->page, nid, ntype);
1533 	if (!err)
1534 		return folio;
1535 out_err:
1536 	folio_clear_uptodate(folio);
1537 out_put_err:
1538 	/* ENOENT comes from read_node_page which is not an error. */
1539 	if (err != -ENOENT)
1540 		f2fs_handle_page_eio(sbi, folio, NODE);
1541 	f2fs_folio_put(folio, true);
1542 	return ERR_PTR(err);
1543 }
1544 
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1545 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1546 {
1547 	struct folio *folio = __get_node_folio(sbi, nid, NULL, 0,
1548 						NODE_TYPE_REGULAR);
1549 
1550 	return &folio->page;
1551 }
1552 
f2fs_get_inode_folio(struct f2fs_sb_info * sbi,pgoff_t ino)1553 struct folio *f2fs_get_inode_folio(struct f2fs_sb_info *sbi, pgoff_t ino)
1554 {
1555 	return __get_node_folio(sbi, ino, NULL, 0, NODE_TYPE_INODE);
1556 }
1557 
f2fs_get_inode_page(struct f2fs_sb_info * sbi,pgoff_t ino)1558 struct page *f2fs_get_inode_page(struct f2fs_sb_info *sbi, pgoff_t ino)
1559 {
1560 	struct folio *folio = f2fs_get_inode_folio(sbi, ino);
1561 
1562 	return &folio->page;
1563 }
1564 
f2fs_get_xnode_page(struct f2fs_sb_info * sbi,pgoff_t xnid)1565 struct page *f2fs_get_xnode_page(struct f2fs_sb_info *sbi, pgoff_t xnid)
1566 {
1567 	struct folio *folio = __get_node_folio(sbi, xnid, NULL, 0,
1568 						NODE_TYPE_XATTR);
1569 
1570 	return &folio->page;
1571 }
1572 
f2fs_get_node_page_ra(struct page * parent,int start)1573 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1574 {
1575 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1576 	nid_t nid = get_nid(parent, start, false);
1577 	struct folio *folio = __get_node_folio(sbi, nid, parent, start,
1578 							NODE_TYPE_REGULAR);
1579 
1580 	return &folio->page;
1581 }
1582 
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1583 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1584 {
1585 	struct inode *inode;
1586 	struct page *page;
1587 	int ret;
1588 
1589 	/* should flush inline_data before evict_inode */
1590 	inode = ilookup(sbi->sb, ino);
1591 	if (!inode)
1592 		return;
1593 
1594 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1595 					FGP_LOCK|FGP_NOWAIT, 0);
1596 	if (!page)
1597 		goto iput_out;
1598 
1599 	if (!PageUptodate(page))
1600 		goto page_out;
1601 
1602 	if (!PageDirty(page))
1603 		goto page_out;
1604 
1605 	if (!clear_page_dirty_for_io(page))
1606 		goto page_out;
1607 
1608 	ret = f2fs_write_inline_data(inode, page_folio(page));
1609 	inode_dec_dirty_pages(inode);
1610 	f2fs_remove_dirty_inode(inode);
1611 	if (ret)
1612 		set_page_dirty(page);
1613 page_out:
1614 	f2fs_put_page(page, 1);
1615 iput_out:
1616 	iput(inode);
1617 }
1618 
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1619 static struct folio *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1620 {
1621 	pgoff_t index;
1622 	struct folio_batch fbatch;
1623 	struct folio *last_folio = NULL;
1624 	int nr_folios;
1625 
1626 	folio_batch_init(&fbatch);
1627 	index = 0;
1628 
1629 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1630 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1631 					&fbatch))) {
1632 		int i;
1633 
1634 		for (i = 0; i < nr_folios; i++) {
1635 			struct folio *folio = fbatch.folios[i];
1636 
1637 			if (unlikely(f2fs_cp_error(sbi))) {
1638 				f2fs_folio_put(last_folio, false);
1639 				folio_batch_release(&fbatch);
1640 				return ERR_PTR(-EIO);
1641 			}
1642 
1643 			if (!IS_DNODE(&folio->page) || !is_cold_node(&folio->page))
1644 				continue;
1645 			if (ino_of_node(&folio->page) != ino)
1646 				continue;
1647 
1648 			folio_lock(folio);
1649 
1650 			if (unlikely(folio->mapping != NODE_MAPPING(sbi))) {
1651 continue_unlock:
1652 				folio_unlock(folio);
1653 				continue;
1654 			}
1655 			if (ino_of_node(&folio->page) != ino)
1656 				goto continue_unlock;
1657 
1658 			if (!folio_test_dirty(folio)) {
1659 				/* someone wrote it for us */
1660 				goto continue_unlock;
1661 			}
1662 
1663 			if (last_folio)
1664 				f2fs_folio_put(last_folio, false);
1665 
1666 			folio_get(folio);
1667 			last_folio = folio;
1668 			folio_unlock(folio);
1669 		}
1670 		folio_batch_release(&fbatch);
1671 		cond_resched();
1672 	}
1673 	return last_folio;
1674 }
1675 
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1676 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1677 				struct writeback_control *wbc, bool do_balance,
1678 				enum iostat_type io_type, unsigned int *seq_id)
1679 {
1680 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1681 	struct folio *folio = page_folio(page);
1682 	nid_t nid;
1683 	struct node_info ni;
1684 	struct f2fs_io_info fio = {
1685 		.sbi = sbi,
1686 		.ino = ino_of_node(page),
1687 		.type = NODE,
1688 		.op = REQ_OP_WRITE,
1689 		.op_flags = wbc_to_write_flags(wbc),
1690 		.page = page,
1691 		.encrypted_page = NULL,
1692 		.submitted = 0,
1693 		.io_type = io_type,
1694 		.io_wbc = wbc,
1695 	};
1696 	unsigned int seq;
1697 
1698 	trace_f2fs_writepage(folio, NODE);
1699 
1700 	if (unlikely(f2fs_cp_error(sbi))) {
1701 		/* keep node pages in remount-ro mode */
1702 		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1703 			goto redirty_out;
1704 		folio_clear_uptodate(folio);
1705 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1706 		folio_unlock(folio);
1707 		return 0;
1708 	}
1709 
1710 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1711 		goto redirty_out;
1712 
1713 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1714 			wbc->sync_mode == WB_SYNC_NONE &&
1715 			IS_DNODE(page) && is_cold_node(page))
1716 		goto redirty_out;
1717 
1718 	/* get old block addr of this node page */
1719 	nid = nid_of_node(page);
1720 	f2fs_bug_on(sbi, folio->index != nid);
1721 
1722 	if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1723 		goto redirty_out;
1724 
1725 	if (wbc->for_reclaim) {
1726 		if (!f2fs_down_read_trylock(&sbi->node_write))
1727 			goto redirty_out;
1728 	} else {
1729 		f2fs_down_read(&sbi->node_write);
1730 	}
1731 
1732 	/* This page is already truncated */
1733 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1734 		folio_clear_uptodate(folio);
1735 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1736 		f2fs_up_read(&sbi->node_write);
1737 		folio_unlock(folio);
1738 		return 0;
1739 	}
1740 
1741 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1742 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1743 					DATA_GENERIC_ENHANCE)) {
1744 		f2fs_up_read(&sbi->node_write);
1745 		goto redirty_out;
1746 	}
1747 
1748 	if (atomic && !test_opt(sbi, NOBARRIER))
1749 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1750 
1751 	/* should add to global list before clearing PAGECACHE status */
1752 	if (f2fs_in_warm_node_list(sbi, folio)) {
1753 		seq = f2fs_add_fsync_node_entry(sbi, page);
1754 		if (seq_id)
1755 			*seq_id = seq;
1756 	}
1757 
1758 	folio_start_writeback(folio);
1759 
1760 	fio.old_blkaddr = ni.blk_addr;
1761 	f2fs_do_write_node_page(nid, &fio);
1762 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1763 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1764 	f2fs_up_read(&sbi->node_write);
1765 
1766 	if (wbc->for_reclaim) {
1767 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1768 		submitted = NULL;
1769 	}
1770 
1771 	folio_unlock(folio);
1772 
1773 	if (unlikely(f2fs_cp_error(sbi))) {
1774 		f2fs_submit_merged_write(sbi, NODE);
1775 		submitted = NULL;
1776 	}
1777 	if (submitted)
1778 		*submitted = fio.submitted;
1779 
1780 	if (do_balance)
1781 		f2fs_balance_fs(sbi, false);
1782 	return 0;
1783 
1784 redirty_out:
1785 	folio_redirty_for_writepage(wbc, folio);
1786 	return AOP_WRITEPAGE_ACTIVATE;
1787 }
1788 
f2fs_move_node_page(struct page * node_page,int gc_type)1789 int f2fs_move_node_page(struct page *node_page, int gc_type)
1790 {
1791 	int err = 0;
1792 
1793 	if (gc_type == FG_GC) {
1794 		struct writeback_control wbc = {
1795 			.sync_mode = WB_SYNC_ALL,
1796 			.nr_to_write = 1,
1797 			.for_reclaim = 0,
1798 		};
1799 
1800 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1801 
1802 		set_page_dirty(node_page);
1803 
1804 		if (!clear_page_dirty_for_io(node_page)) {
1805 			err = -EAGAIN;
1806 			goto out_page;
1807 		}
1808 
1809 		if (__write_node_page(node_page, false, NULL,
1810 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1811 			err = -EAGAIN;
1812 			unlock_page(node_page);
1813 		}
1814 		goto release_page;
1815 	} else {
1816 		/* set page dirty and write it */
1817 		if (!folio_test_writeback(page_folio(node_page)))
1818 			set_page_dirty(node_page);
1819 	}
1820 out_page:
1821 	unlock_page(node_page);
1822 release_page:
1823 	f2fs_put_page(node_page, 0);
1824 	return err;
1825 }
1826 
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1827 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1828 			struct writeback_control *wbc, bool atomic,
1829 			unsigned int *seq_id)
1830 {
1831 	pgoff_t index;
1832 	struct folio_batch fbatch;
1833 	int ret = 0;
1834 	struct folio *last_folio = NULL;
1835 	bool marked = false;
1836 	nid_t ino = inode->i_ino;
1837 	int nr_folios;
1838 	int nwritten = 0;
1839 
1840 	if (atomic) {
1841 		last_folio = last_fsync_dnode(sbi, ino);
1842 		if (IS_ERR_OR_NULL(last_folio))
1843 			return PTR_ERR_OR_ZERO(last_folio);
1844 	}
1845 retry:
1846 	folio_batch_init(&fbatch);
1847 	index = 0;
1848 
1849 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1850 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1851 					&fbatch))) {
1852 		int i;
1853 
1854 		for (i = 0; i < nr_folios; i++) {
1855 			struct folio *folio = fbatch.folios[i];
1856 			bool submitted = false;
1857 
1858 			if (unlikely(f2fs_cp_error(sbi))) {
1859 				f2fs_folio_put(last_folio, false);
1860 				folio_batch_release(&fbatch);
1861 				ret = -EIO;
1862 				goto out;
1863 			}
1864 
1865 			if (!IS_DNODE(&folio->page) || !is_cold_node(&folio->page))
1866 				continue;
1867 			if (ino_of_node(&folio->page) != ino)
1868 				continue;
1869 
1870 			folio_lock(folio);
1871 
1872 			if (unlikely(folio->mapping != NODE_MAPPING(sbi))) {
1873 continue_unlock:
1874 				folio_unlock(folio);
1875 				continue;
1876 			}
1877 			if (ino_of_node(&folio->page) != ino)
1878 				goto continue_unlock;
1879 
1880 			if (!folio_test_dirty(folio) && folio != last_folio) {
1881 				/* someone wrote it for us */
1882 				goto continue_unlock;
1883 			}
1884 
1885 			f2fs_folio_wait_writeback(folio, NODE, true, true);
1886 
1887 			set_fsync_mark(&folio->page, 0);
1888 			set_dentry_mark(&folio->page, 0);
1889 
1890 			if (!atomic || folio == last_folio) {
1891 				set_fsync_mark(&folio->page, 1);
1892 				percpu_counter_inc(&sbi->rf_node_block_count);
1893 				if (IS_INODE(&folio->page)) {
1894 					if (is_inode_flag_set(inode,
1895 								FI_DIRTY_INODE))
1896 						f2fs_update_inode(inode, &folio->page);
1897 					set_dentry_mark(&folio->page,
1898 						f2fs_need_dentry_mark(sbi, ino));
1899 				}
1900 				/* may be written by other thread */
1901 				if (!folio_test_dirty(folio))
1902 					folio_mark_dirty(folio);
1903 			}
1904 
1905 			if (!folio_clear_dirty_for_io(folio))
1906 				goto continue_unlock;
1907 
1908 			ret = __write_node_page(&folio->page, atomic &&
1909 						folio == last_folio,
1910 						&submitted, wbc, true,
1911 						FS_NODE_IO, seq_id);
1912 			if (ret) {
1913 				folio_unlock(folio);
1914 				f2fs_folio_put(last_folio, false);
1915 				break;
1916 			} else if (submitted) {
1917 				nwritten++;
1918 			}
1919 
1920 			if (folio == last_folio) {
1921 				f2fs_folio_put(folio, false);
1922 				marked = true;
1923 				break;
1924 			}
1925 		}
1926 		folio_batch_release(&fbatch);
1927 		cond_resched();
1928 
1929 		if (ret || marked)
1930 			break;
1931 	}
1932 	if (!ret && atomic && !marked) {
1933 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1934 			   ino, last_folio->index);
1935 		folio_lock(last_folio);
1936 		f2fs_folio_wait_writeback(last_folio, NODE, true, true);
1937 		folio_mark_dirty(last_folio);
1938 		folio_unlock(last_folio);
1939 		goto retry;
1940 	}
1941 out:
1942 	if (nwritten)
1943 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1944 	return ret ? -EIO : 0;
1945 }
1946 
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1947 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1948 {
1949 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1950 	bool clean;
1951 
1952 	if (inode->i_ino != ino)
1953 		return 0;
1954 
1955 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1956 		return 0;
1957 
1958 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1959 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1960 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1961 
1962 	if (clean)
1963 		return 0;
1964 
1965 	inode = igrab(inode);
1966 	if (!inode)
1967 		return 0;
1968 	return 1;
1969 }
1970 
flush_dirty_inode(struct folio * folio)1971 static bool flush_dirty_inode(struct folio *folio)
1972 {
1973 	struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
1974 	struct inode *inode;
1975 	nid_t ino = ino_of_node(&folio->page);
1976 
1977 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1978 	if (!inode)
1979 		return false;
1980 
1981 	f2fs_update_inode(inode, &folio->page);
1982 	folio_unlock(folio);
1983 
1984 	iput(inode);
1985 	return true;
1986 }
1987 
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1988 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1989 {
1990 	pgoff_t index = 0;
1991 	struct folio_batch fbatch;
1992 	int nr_folios;
1993 
1994 	folio_batch_init(&fbatch);
1995 
1996 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1997 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1998 					&fbatch))) {
1999 		int i;
2000 
2001 		for (i = 0; i < nr_folios; i++) {
2002 			struct folio *folio = fbatch.folios[i];
2003 
2004 			if (!IS_INODE(&folio->page))
2005 				continue;
2006 
2007 			folio_lock(folio);
2008 
2009 			if (unlikely(folio->mapping != NODE_MAPPING(sbi)))
2010 				goto unlock;
2011 			if (!folio_test_dirty(folio))
2012 				goto unlock;
2013 
2014 			/* flush inline_data, if it's async context. */
2015 			if (page_private_inline(&folio->page)) {
2016 				clear_page_private_inline(&folio->page);
2017 				folio_unlock(folio);
2018 				flush_inline_data(sbi, ino_of_node(&folio->page));
2019 				continue;
2020 			}
2021 unlock:
2022 			folio_unlock(folio);
2023 		}
2024 		folio_batch_release(&fbatch);
2025 		cond_resched();
2026 	}
2027 }
2028 
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)2029 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
2030 				struct writeback_control *wbc,
2031 				bool do_balance, enum iostat_type io_type)
2032 {
2033 	pgoff_t index;
2034 	struct folio_batch fbatch;
2035 	int step = 0;
2036 	int nwritten = 0;
2037 	int ret = 0;
2038 	int nr_folios, done = 0;
2039 
2040 	folio_batch_init(&fbatch);
2041 
2042 next_step:
2043 	index = 0;
2044 
2045 	while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
2046 				&index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
2047 				&fbatch))) {
2048 		int i;
2049 
2050 		for (i = 0; i < nr_folios; i++) {
2051 			struct folio *folio = fbatch.folios[i];
2052 			bool submitted = false;
2053 
2054 			/* give a priority to WB_SYNC threads */
2055 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
2056 					wbc->sync_mode == WB_SYNC_NONE) {
2057 				done = 1;
2058 				break;
2059 			}
2060 
2061 			/*
2062 			 * flushing sequence with step:
2063 			 * 0. indirect nodes
2064 			 * 1. dentry dnodes
2065 			 * 2. file dnodes
2066 			 */
2067 			if (step == 0 && IS_DNODE(&folio->page))
2068 				continue;
2069 			if (step == 1 && (!IS_DNODE(&folio->page) ||
2070 						is_cold_node(&folio->page)))
2071 				continue;
2072 			if (step == 2 && (!IS_DNODE(&folio->page) ||
2073 						!is_cold_node(&folio->page)))
2074 				continue;
2075 lock_node:
2076 			if (wbc->sync_mode == WB_SYNC_ALL)
2077 				folio_lock(folio);
2078 			else if (!folio_trylock(folio))
2079 				continue;
2080 
2081 			if (unlikely(folio->mapping != NODE_MAPPING(sbi))) {
2082 continue_unlock:
2083 				folio_unlock(folio);
2084 				continue;
2085 			}
2086 
2087 			if (!folio_test_dirty(folio)) {
2088 				/* someone wrote it for us */
2089 				goto continue_unlock;
2090 			}
2091 
2092 			/* flush inline_data/inode, if it's async context. */
2093 			if (!do_balance)
2094 				goto write_node;
2095 
2096 			/* flush inline_data */
2097 			if (page_private_inline(&folio->page)) {
2098 				clear_page_private_inline(&folio->page);
2099 				folio_unlock(folio);
2100 				flush_inline_data(sbi, ino_of_node(&folio->page));
2101 				goto lock_node;
2102 			}
2103 
2104 			/* flush dirty inode */
2105 			if (IS_INODE(&folio->page) && flush_dirty_inode(folio))
2106 				goto lock_node;
2107 write_node:
2108 			f2fs_folio_wait_writeback(folio, NODE, true, true);
2109 
2110 			if (!folio_clear_dirty_for_io(folio))
2111 				goto continue_unlock;
2112 
2113 			set_fsync_mark(&folio->page, 0);
2114 			set_dentry_mark(&folio->page, 0);
2115 
2116 			ret = __write_node_page(&folio->page, false, &submitted,
2117 						wbc, do_balance, io_type, NULL);
2118 			if (ret)
2119 				folio_unlock(folio);
2120 			else if (submitted)
2121 				nwritten++;
2122 
2123 			if (--wbc->nr_to_write == 0)
2124 				break;
2125 		}
2126 		folio_batch_release(&fbatch);
2127 		cond_resched();
2128 
2129 		if (wbc->nr_to_write == 0) {
2130 			step = 2;
2131 			break;
2132 		}
2133 	}
2134 
2135 	if (step < 2) {
2136 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2137 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2138 			goto out;
2139 		step++;
2140 		goto next_step;
2141 	}
2142 out:
2143 	if (nwritten)
2144 		f2fs_submit_merged_write(sbi, NODE);
2145 
2146 	if (unlikely(f2fs_cp_error(sbi)))
2147 		return -EIO;
2148 	return ret;
2149 }
2150 
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2151 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2152 						unsigned int seq_id)
2153 {
2154 	struct fsync_node_entry *fn;
2155 	struct page *page;
2156 	struct list_head *head = &sbi->fsync_node_list;
2157 	unsigned long flags;
2158 	unsigned int cur_seq_id = 0;
2159 
2160 	while (seq_id && cur_seq_id < seq_id) {
2161 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2162 		if (list_empty(head)) {
2163 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2164 			break;
2165 		}
2166 		fn = list_first_entry(head, struct fsync_node_entry, list);
2167 		if (fn->seq_id > seq_id) {
2168 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2169 			break;
2170 		}
2171 		cur_seq_id = fn->seq_id;
2172 		page = fn->page;
2173 		get_page(page);
2174 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2175 
2176 		f2fs_wait_on_page_writeback(page, NODE, true, false);
2177 
2178 		put_page(page);
2179 	}
2180 
2181 	return filemap_check_errors(NODE_MAPPING(sbi));
2182 }
2183 
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2184 static int f2fs_write_node_pages(struct address_space *mapping,
2185 			    struct writeback_control *wbc)
2186 {
2187 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2188 	struct blk_plug plug;
2189 	long diff;
2190 
2191 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2192 		goto skip_write;
2193 
2194 	/* balancing f2fs's metadata in background */
2195 	f2fs_balance_fs_bg(sbi, true);
2196 
2197 	/* collect a number of dirty node pages and write together */
2198 	if (wbc->sync_mode != WB_SYNC_ALL &&
2199 			get_pages(sbi, F2FS_DIRTY_NODES) <
2200 					nr_pages_to_skip(sbi, NODE))
2201 		goto skip_write;
2202 
2203 	if (wbc->sync_mode == WB_SYNC_ALL)
2204 		atomic_inc(&sbi->wb_sync_req[NODE]);
2205 	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2206 		/* to avoid potential deadlock */
2207 		if (current->plug)
2208 			blk_finish_plug(current->plug);
2209 		goto skip_write;
2210 	}
2211 
2212 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2213 
2214 	diff = nr_pages_to_write(sbi, NODE, wbc);
2215 	blk_start_plug(&plug);
2216 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2217 	blk_finish_plug(&plug);
2218 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2219 
2220 	if (wbc->sync_mode == WB_SYNC_ALL)
2221 		atomic_dec(&sbi->wb_sync_req[NODE]);
2222 	return 0;
2223 
2224 skip_write:
2225 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2226 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2227 	return 0;
2228 }
2229 
f2fs_dirty_node_folio(struct address_space * mapping,struct folio * folio)2230 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2231 		struct folio *folio)
2232 {
2233 	trace_f2fs_set_page_dirty(folio, NODE);
2234 
2235 	if (!folio_test_uptodate(folio))
2236 		folio_mark_uptodate(folio);
2237 #ifdef CONFIG_F2FS_CHECK_FS
2238 	if (IS_INODE(&folio->page))
2239 		f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2240 #endif
2241 	if (filemap_dirty_folio(mapping, folio)) {
2242 		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2243 		set_page_private_reference(&folio->page);
2244 		return true;
2245 	}
2246 	return false;
2247 }
2248 
2249 /*
2250  * Structure of the f2fs node operations
2251  */
2252 const struct address_space_operations f2fs_node_aops = {
2253 	.writepages	= f2fs_write_node_pages,
2254 	.dirty_folio	= f2fs_dirty_node_folio,
2255 	.invalidate_folio = f2fs_invalidate_folio,
2256 	.release_folio	= f2fs_release_folio,
2257 	.migrate_folio	= filemap_migrate_folio,
2258 };
2259 
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2260 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2261 						nid_t n)
2262 {
2263 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2264 }
2265 
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2266 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2267 				struct free_nid *i)
2268 {
2269 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2270 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2271 
2272 	if (err)
2273 		return err;
2274 
2275 	nm_i->nid_cnt[FREE_NID]++;
2276 	list_add_tail(&i->list, &nm_i->free_nid_list);
2277 	return 0;
2278 }
2279 
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2280 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2281 			struct free_nid *i, enum nid_state state)
2282 {
2283 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2284 
2285 	f2fs_bug_on(sbi, state != i->state);
2286 	nm_i->nid_cnt[state]--;
2287 	if (state == FREE_NID)
2288 		list_del(&i->list);
2289 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2290 }
2291 
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2292 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2293 			enum nid_state org_state, enum nid_state dst_state)
2294 {
2295 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2296 
2297 	f2fs_bug_on(sbi, org_state != i->state);
2298 	i->state = dst_state;
2299 	nm_i->nid_cnt[org_state]--;
2300 	nm_i->nid_cnt[dst_state]++;
2301 
2302 	switch (dst_state) {
2303 	case PREALLOC_NID:
2304 		list_del(&i->list);
2305 		break;
2306 	case FREE_NID:
2307 		list_add_tail(&i->list, &nm_i->free_nid_list);
2308 		break;
2309 	default:
2310 		BUG_ON(1);
2311 	}
2312 }
2313 
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2314 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2315 							bool set, bool build)
2316 {
2317 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2318 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2319 	unsigned int nid_ofs = nid - START_NID(nid);
2320 
2321 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2322 		return;
2323 
2324 	if (set) {
2325 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2326 			return;
2327 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2328 		nm_i->free_nid_count[nat_ofs]++;
2329 	} else {
2330 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2331 			return;
2332 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2333 		if (!build)
2334 			nm_i->free_nid_count[nat_ofs]--;
2335 	}
2336 }
2337 
2338 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2339 static bool add_free_nid(struct f2fs_sb_info *sbi,
2340 				nid_t nid, bool build, bool update)
2341 {
2342 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2343 	struct free_nid *i, *e;
2344 	struct nat_entry *ne;
2345 	int err = -EINVAL;
2346 	bool ret = false;
2347 
2348 	/* 0 nid should not be used */
2349 	if (unlikely(nid == 0))
2350 		return false;
2351 
2352 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2353 		return false;
2354 
2355 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2356 	i->nid = nid;
2357 	i->state = FREE_NID;
2358 
2359 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2360 
2361 	spin_lock(&nm_i->nid_list_lock);
2362 
2363 	if (build) {
2364 		/*
2365 		 *   Thread A             Thread B
2366 		 *  - f2fs_create
2367 		 *   - f2fs_new_inode
2368 		 *    - f2fs_alloc_nid
2369 		 *     - __insert_nid_to_list(PREALLOC_NID)
2370 		 *                     - f2fs_balance_fs_bg
2371 		 *                      - f2fs_build_free_nids
2372 		 *                       - __f2fs_build_free_nids
2373 		 *                        - scan_nat_page
2374 		 *                         - add_free_nid
2375 		 *                          - __lookup_nat_cache
2376 		 *  - f2fs_add_link
2377 		 *   - f2fs_init_inode_metadata
2378 		 *    - f2fs_new_inode_page
2379 		 *     - f2fs_new_node_page
2380 		 *      - set_node_addr
2381 		 *  - f2fs_alloc_nid_done
2382 		 *   - __remove_nid_from_list(PREALLOC_NID)
2383 		 *                         - __insert_nid_to_list(FREE_NID)
2384 		 */
2385 		ne = __lookup_nat_cache(nm_i, nid);
2386 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2387 				nat_get_blkaddr(ne) != NULL_ADDR))
2388 			goto err_out;
2389 
2390 		e = __lookup_free_nid_list(nm_i, nid);
2391 		if (e) {
2392 			if (e->state == FREE_NID)
2393 				ret = true;
2394 			goto err_out;
2395 		}
2396 	}
2397 	ret = true;
2398 	err = __insert_free_nid(sbi, i);
2399 err_out:
2400 	if (update) {
2401 		update_free_nid_bitmap(sbi, nid, ret, build);
2402 		if (!build)
2403 			nm_i->available_nids++;
2404 	}
2405 	spin_unlock(&nm_i->nid_list_lock);
2406 	radix_tree_preload_end();
2407 
2408 	if (err)
2409 		kmem_cache_free(free_nid_slab, i);
2410 	return ret;
2411 }
2412 
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2413 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2414 {
2415 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2416 	struct free_nid *i;
2417 	bool need_free = false;
2418 
2419 	spin_lock(&nm_i->nid_list_lock);
2420 	i = __lookup_free_nid_list(nm_i, nid);
2421 	if (i && i->state == FREE_NID) {
2422 		__remove_free_nid(sbi, i, FREE_NID);
2423 		need_free = true;
2424 	}
2425 	spin_unlock(&nm_i->nid_list_lock);
2426 
2427 	if (need_free)
2428 		kmem_cache_free(free_nid_slab, i);
2429 }
2430 
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2431 static int scan_nat_page(struct f2fs_sb_info *sbi,
2432 			struct page *nat_page, nid_t start_nid)
2433 {
2434 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2435 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2436 	block_t blk_addr;
2437 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2438 	int i;
2439 
2440 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2441 
2442 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2443 
2444 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2445 		if (unlikely(start_nid >= nm_i->max_nid))
2446 			break;
2447 
2448 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2449 
2450 		if (blk_addr == NEW_ADDR)
2451 			return -EFSCORRUPTED;
2452 
2453 		if (blk_addr == NULL_ADDR) {
2454 			add_free_nid(sbi, start_nid, true, true);
2455 		} else {
2456 			spin_lock(&NM_I(sbi)->nid_list_lock);
2457 			update_free_nid_bitmap(sbi, start_nid, false, true);
2458 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2459 		}
2460 	}
2461 
2462 	return 0;
2463 }
2464 
scan_curseg_cache(struct f2fs_sb_info * sbi)2465 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2466 {
2467 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2468 	struct f2fs_journal *journal = curseg->journal;
2469 	int i;
2470 
2471 	down_read(&curseg->journal_rwsem);
2472 	for (i = 0; i < nats_in_cursum(journal); i++) {
2473 		block_t addr;
2474 		nid_t nid;
2475 
2476 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2477 		nid = le32_to_cpu(nid_in_journal(journal, i));
2478 		if (addr == NULL_ADDR)
2479 			add_free_nid(sbi, nid, true, false);
2480 		else
2481 			remove_free_nid(sbi, nid);
2482 	}
2483 	up_read(&curseg->journal_rwsem);
2484 }
2485 
scan_free_nid_bits(struct f2fs_sb_info * sbi)2486 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2487 {
2488 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2489 	unsigned int i, idx;
2490 	nid_t nid;
2491 
2492 	f2fs_down_read(&nm_i->nat_tree_lock);
2493 
2494 	for (i = 0; i < nm_i->nat_blocks; i++) {
2495 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2496 			continue;
2497 		if (!nm_i->free_nid_count[i])
2498 			continue;
2499 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2500 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2501 						NAT_ENTRY_PER_BLOCK, idx);
2502 			if (idx >= NAT_ENTRY_PER_BLOCK)
2503 				break;
2504 
2505 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2506 			add_free_nid(sbi, nid, true, false);
2507 
2508 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2509 				goto out;
2510 		}
2511 	}
2512 out:
2513 	scan_curseg_cache(sbi);
2514 
2515 	f2fs_up_read(&nm_i->nat_tree_lock);
2516 }
2517 
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2518 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2519 						bool sync, bool mount)
2520 {
2521 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2522 	int i = 0, ret;
2523 	nid_t nid = nm_i->next_scan_nid;
2524 
2525 	if (unlikely(nid >= nm_i->max_nid))
2526 		nid = 0;
2527 
2528 	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2529 		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2530 
2531 	/* Enough entries */
2532 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2533 		return 0;
2534 
2535 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2536 		return 0;
2537 
2538 	if (!mount) {
2539 		/* try to find free nids in free_nid_bitmap */
2540 		scan_free_nid_bits(sbi);
2541 
2542 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2543 			return 0;
2544 	}
2545 
2546 	/* readahead nat pages to be scanned */
2547 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2548 							META_NAT, true);
2549 
2550 	f2fs_down_read(&nm_i->nat_tree_lock);
2551 
2552 	while (1) {
2553 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2554 						nm_i->nat_block_bitmap)) {
2555 			struct page *page = get_current_nat_page(sbi, nid);
2556 
2557 			if (IS_ERR(page)) {
2558 				ret = PTR_ERR(page);
2559 			} else {
2560 				ret = scan_nat_page(sbi, page, nid);
2561 				f2fs_put_page(page, 1);
2562 			}
2563 
2564 			if (ret) {
2565 				f2fs_up_read(&nm_i->nat_tree_lock);
2566 
2567 				if (ret == -EFSCORRUPTED) {
2568 					f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2569 					set_sbi_flag(sbi, SBI_NEED_FSCK);
2570 					f2fs_handle_error(sbi,
2571 						ERROR_INCONSISTENT_NAT);
2572 				}
2573 
2574 				return ret;
2575 			}
2576 		}
2577 
2578 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2579 		if (unlikely(nid >= nm_i->max_nid))
2580 			nid = 0;
2581 
2582 		if (++i >= FREE_NID_PAGES)
2583 			break;
2584 	}
2585 
2586 	/* go to the next free nat pages to find free nids abundantly */
2587 	nm_i->next_scan_nid = nid;
2588 
2589 	/* find free nids from current sum_pages */
2590 	scan_curseg_cache(sbi);
2591 
2592 	f2fs_up_read(&nm_i->nat_tree_lock);
2593 
2594 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2595 					nm_i->ra_nid_pages, META_NAT, false);
2596 
2597 	return 0;
2598 }
2599 
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2600 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2601 {
2602 	int ret;
2603 
2604 	mutex_lock(&NM_I(sbi)->build_lock);
2605 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2606 	mutex_unlock(&NM_I(sbi)->build_lock);
2607 
2608 	return ret;
2609 }
2610 
2611 /*
2612  * If this function returns success, caller can obtain a new nid
2613  * from second parameter of this function.
2614  * The returned nid could be used ino as well as nid when inode is created.
2615  */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2616 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2617 {
2618 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2619 	struct free_nid *i = NULL;
2620 retry:
2621 	if (time_to_inject(sbi, FAULT_ALLOC_NID))
2622 		return false;
2623 
2624 	spin_lock(&nm_i->nid_list_lock);
2625 
2626 	if (unlikely(nm_i->available_nids == 0)) {
2627 		spin_unlock(&nm_i->nid_list_lock);
2628 		return false;
2629 	}
2630 
2631 	/* We should not use stale free nids created by f2fs_build_free_nids */
2632 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2633 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2634 		i = list_first_entry(&nm_i->free_nid_list,
2635 					struct free_nid, list);
2636 		*nid = i->nid;
2637 
2638 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2639 		nm_i->available_nids--;
2640 
2641 		update_free_nid_bitmap(sbi, *nid, false, false);
2642 
2643 		spin_unlock(&nm_i->nid_list_lock);
2644 		return true;
2645 	}
2646 	spin_unlock(&nm_i->nid_list_lock);
2647 
2648 	/* Let's scan nat pages and its caches to get free nids */
2649 	if (!f2fs_build_free_nids(sbi, true, false))
2650 		goto retry;
2651 	return false;
2652 }
2653 
2654 /*
2655  * f2fs_alloc_nid() should be called prior to this function.
2656  */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2657 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2658 {
2659 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2660 	struct free_nid *i;
2661 
2662 	spin_lock(&nm_i->nid_list_lock);
2663 	i = __lookup_free_nid_list(nm_i, nid);
2664 	f2fs_bug_on(sbi, !i);
2665 	__remove_free_nid(sbi, i, PREALLOC_NID);
2666 	spin_unlock(&nm_i->nid_list_lock);
2667 
2668 	kmem_cache_free(free_nid_slab, i);
2669 }
2670 
2671 /*
2672  * f2fs_alloc_nid() should be called prior to this function.
2673  */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2674 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2675 {
2676 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2677 	struct free_nid *i;
2678 	bool need_free = false;
2679 
2680 	if (!nid)
2681 		return;
2682 
2683 	spin_lock(&nm_i->nid_list_lock);
2684 	i = __lookup_free_nid_list(nm_i, nid);
2685 	f2fs_bug_on(sbi, !i);
2686 
2687 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2688 		__remove_free_nid(sbi, i, PREALLOC_NID);
2689 		need_free = true;
2690 	} else {
2691 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2692 	}
2693 
2694 	nm_i->available_nids++;
2695 
2696 	update_free_nid_bitmap(sbi, nid, true, false);
2697 
2698 	spin_unlock(&nm_i->nid_list_lock);
2699 
2700 	if (need_free)
2701 		kmem_cache_free(free_nid_slab, i);
2702 }
2703 
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2704 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2705 {
2706 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2707 	int nr = nr_shrink;
2708 
2709 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2710 		return 0;
2711 
2712 	if (!mutex_trylock(&nm_i->build_lock))
2713 		return 0;
2714 
2715 	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2716 		struct free_nid *i, *next;
2717 		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2718 
2719 		spin_lock(&nm_i->nid_list_lock);
2720 		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2721 			if (!nr_shrink || !batch ||
2722 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2723 				break;
2724 			__remove_free_nid(sbi, i, FREE_NID);
2725 			kmem_cache_free(free_nid_slab, i);
2726 			nr_shrink--;
2727 			batch--;
2728 		}
2729 		spin_unlock(&nm_i->nid_list_lock);
2730 	}
2731 
2732 	mutex_unlock(&nm_i->build_lock);
2733 
2734 	return nr - nr_shrink;
2735 }
2736 
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2737 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2738 {
2739 	void *src_addr, *dst_addr;
2740 	size_t inline_size;
2741 	struct page *ipage;
2742 	struct f2fs_inode *ri;
2743 
2744 	ipage = f2fs_get_inode_page(F2FS_I_SB(inode), inode->i_ino);
2745 	if (IS_ERR(ipage))
2746 		return PTR_ERR(ipage);
2747 
2748 	ri = F2FS_INODE(page);
2749 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2750 		if (!f2fs_has_inline_xattr(inode)) {
2751 			set_inode_flag(inode, FI_INLINE_XATTR);
2752 			stat_inc_inline_xattr(inode);
2753 		}
2754 	} else {
2755 		if (f2fs_has_inline_xattr(inode)) {
2756 			stat_dec_inline_xattr(inode);
2757 			clear_inode_flag(inode, FI_INLINE_XATTR);
2758 		}
2759 		goto update_inode;
2760 	}
2761 
2762 	dst_addr = inline_xattr_addr(inode, ipage);
2763 	src_addr = inline_xattr_addr(inode, page);
2764 	inline_size = inline_xattr_size(inode);
2765 
2766 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2767 	memcpy(dst_addr, src_addr, inline_size);
2768 update_inode:
2769 	f2fs_update_inode(inode, ipage);
2770 	f2fs_put_page(ipage, 1);
2771 	return 0;
2772 }
2773 
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2774 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2775 {
2776 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2777 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2778 	nid_t new_xnid;
2779 	struct dnode_of_data dn;
2780 	struct node_info ni;
2781 	struct page *xpage;
2782 	int err;
2783 
2784 	if (!prev_xnid)
2785 		goto recover_xnid;
2786 
2787 	/* 1: invalidate the previous xattr nid */
2788 	err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2789 	if (err)
2790 		return err;
2791 
2792 	f2fs_invalidate_blocks(sbi, ni.blk_addr, 1);
2793 	dec_valid_node_count(sbi, inode, false);
2794 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2795 
2796 recover_xnid:
2797 	/* 2: update xattr nid in inode */
2798 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2799 		return -ENOSPC;
2800 
2801 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2802 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2803 	if (IS_ERR(xpage)) {
2804 		f2fs_alloc_nid_failed(sbi, new_xnid);
2805 		return PTR_ERR(xpage);
2806 	}
2807 
2808 	f2fs_alloc_nid_done(sbi, new_xnid);
2809 	f2fs_update_inode_page(inode);
2810 
2811 	/* 3: update and set xattr node page dirty */
2812 	if (page) {
2813 		memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2814 				VALID_XATTR_BLOCK_SIZE);
2815 		set_page_dirty(xpage);
2816 	}
2817 	f2fs_put_page(xpage, 1);
2818 
2819 	return 0;
2820 }
2821 
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2822 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2823 {
2824 	struct f2fs_inode *src, *dst;
2825 	nid_t ino = ino_of_node(page);
2826 	struct node_info old_ni, new_ni;
2827 	struct page *ipage;
2828 	int err;
2829 
2830 	err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2831 	if (err)
2832 		return err;
2833 
2834 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2835 		return -EINVAL;
2836 retry:
2837 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2838 	if (!ipage) {
2839 		memalloc_retry_wait(GFP_NOFS);
2840 		goto retry;
2841 	}
2842 
2843 	/* Should not use this inode from free nid list */
2844 	remove_free_nid(sbi, ino);
2845 
2846 	if (!PageUptodate(ipage))
2847 		SetPageUptodate(ipage);
2848 	fill_node_footer(ipage, ino, ino, 0, true);
2849 	set_cold_node(ipage, false);
2850 
2851 	src = F2FS_INODE(page);
2852 	dst = F2FS_INODE(ipage);
2853 
2854 	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2855 	dst->i_size = 0;
2856 	dst->i_blocks = cpu_to_le64(1);
2857 	dst->i_links = cpu_to_le32(1);
2858 	dst->i_xattr_nid = 0;
2859 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2860 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2861 		dst->i_extra_isize = src->i_extra_isize;
2862 
2863 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2864 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2865 							i_inline_xattr_size))
2866 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2867 
2868 		if (f2fs_sb_has_project_quota(sbi) &&
2869 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2870 								i_projid))
2871 			dst->i_projid = src->i_projid;
2872 
2873 		if (f2fs_sb_has_inode_crtime(sbi) &&
2874 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2875 							i_crtime_nsec)) {
2876 			dst->i_crtime = src->i_crtime;
2877 			dst->i_crtime_nsec = src->i_crtime_nsec;
2878 		}
2879 	}
2880 
2881 	new_ni = old_ni;
2882 	new_ni.ino = ino;
2883 
2884 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2885 		WARN_ON(1);
2886 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2887 	inc_valid_inode_count(sbi);
2888 	set_page_dirty(ipage);
2889 	f2fs_put_page(ipage, 1);
2890 	return 0;
2891 }
2892 
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2893 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2894 			unsigned int segno, struct f2fs_summary_block *sum)
2895 {
2896 	struct f2fs_node *rn;
2897 	struct f2fs_summary *sum_entry;
2898 	block_t addr;
2899 	int i, idx, last_offset, nrpages;
2900 
2901 	/* scan the node segment */
2902 	last_offset = BLKS_PER_SEG(sbi);
2903 	addr = START_BLOCK(sbi, segno);
2904 	sum_entry = &sum->entries[0];
2905 
2906 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2907 		nrpages = bio_max_segs(last_offset - i);
2908 
2909 		/* readahead node pages */
2910 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2911 
2912 		for (idx = addr; idx < addr + nrpages; idx++) {
2913 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2914 
2915 			if (IS_ERR(page))
2916 				return PTR_ERR(page);
2917 
2918 			rn = F2FS_NODE(page);
2919 			sum_entry->nid = rn->footer.nid;
2920 			sum_entry->version = 0;
2921 			sum_entry->ofs_in_node = 0;
2922 			sum_entry++;
2923 			f2fs_put_page(page, 1);
2924 		}
2925 
2926 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2927 							addr + nrpages);
2928 	}
2929 	return 0;
2930 }
2931 
remove_nats_in_journal(struct f2fs_sb_info * sbi)2932 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2933 {
2934 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2935 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2936 	struct f2fs_journal *journal = curseg->journal;
2937 	int i;
2938 
2939 	down_write(&curseg->journal_rwsem);
2940 	for (i = 0; i < nats_in_cursum(journal); i++) {
2941 		struct nat_entry *ne;
2942 		struct f2fs_nat_entry raw_ne;
2943 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2944 
2945 		if (f2fs_check_nid_range(sbi, nid))
2946 			continue;
2947 
2948 		raw_ne = nat_in_journal(journal, i);
2949 
2950 		ne = __lookup_nat_cache(nm_i, nid);
2951 		if (!ne) {
2952 			ne = __alloc_nat_entry(sbi, nid, true);
2953 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2954 		}
2955 
2956 		/*
2957 		 * if a free nat in journal has not been used after last
2958 		 * checkpoint, we should remove it from available nids,
2959 		 * since later we will add it again.
2960 		 */
2961 		if (!get_nat_flag(ne, IS_DIRTY) &&
2962 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2963 			spin_lock(&nm_i->nid_list_lock);
2964 			nm_i->available_nids--;
2965 			spin_unlock(&nm_i->nid_list_lock);
2966 		}
2967 
2968 		__set_nat_cache_dirty(nm_i, ne);
2969 	}
2970 	update_nats_in_cursum(journal, -i);
2971 	up_write(&curseg->journal_rwsem);
2972 }
2973 
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2974 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2975 						struct list_head *head, int max)
2976 {
2977 	struct nat_entry_set *cur;
2978 
2979 	if (nes->entry_cnt >= max)
2980 		goto add_out;
2981 
2982 	list_for_each_entry(cur, head, set_list) {
2983 		if (cur->entry_cnt >= nes->entry_cnt) {
2984 			list_add(&nes->set_list, cur->set_list.prev);
2985 			return;
2986 		}
2987 	}
2988 add_out:
2989 	list_add_tail(&nes->set_list, head);
2990 }
2991 
__update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2992 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2993 						struct page *page)
2994 {
2995 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2996 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2997 	struct f2fs_nat_block *nat_blk = page_address(page);
2998 	int valid = 0;
2999 	int i = 0;
3000 
3001 	if (!enabled_nat_bits(sbi, NULL))
3002 		return;
3003 
3004 	if (nat_index == 0) {
3005 		valid = 1;
3006 		i = 1;
3007 	}
3008 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
3009 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
3010 			valid++;
3011 	}
3012 	if (valid == 0) {
3013 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
3014 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
3015 		return;
3016 	}
3017 
3018 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
3019 	if (valid == NAT_ENTRY_PER_BLOCK)
3020 		__set_bit_le(nat_index, nm_i->full_nat_bits);
3021 	else
3022 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
3023 }
3024 
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)3025 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3026 		struct nat_entry_set *set, struct cp_control *cpc)
3027 {
3028 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3029 	struct f2fs_journal *journal = curseg->journal;
3030 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3031 	bool to_journal = true;
3032 	struct f2fs_nat_block *nat_blk;
3033 	struct nat_entry *ne, *cur;
3034 	struct page *page = NULL;
3035 
3036 	/*
3037 	 * there are two steps to flush nat entries:
3038 	 * #1, flush nat entries to journal in current hot data summary block.
3039 	 * #2, flush nat entries to nat page.
3040 	 */
3041 	if (enabled_nat_bits(sbi, cpc) ||
3042 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3043 		to_journal = false;
3044 
3045 	if (to_journal) {
3046 		down_write(&curseg->journal_rwsem);
3047 	} else {
3048 		page = get_next_nat_page(sbi, start_nid);
3049 		if (IS_ERR(page))
3050 			return PTR_ERR(page);
3051 
3052 		nat_blk = page_address(page);
3053 		f2fs_bug_on(sbi, !nat_blk);
3054 	}
3055 
3056 	/* flush dirty nats in nat entry set */
3057 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3058 		struct f2fs_nat_entry *raw_ne;
3059 		nid_t nid = nat_get_nid(ne);
3060 		int offset;
3061 
3062 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3063 
3064 		if (to_journal) {
3065 			offset = f2fs_lookup_journal_in_cursum(journal,
3066 							NAT_JOURNAL, nid, 1);
3067 			f2fs_bug_on(sbi, offset < 0);
3068 			raw_ne = &nat_in_journal(journal, offset);
3069 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
3070 		} else {
3071 			raw_ne = &nat_blk->entries[nid - start_nid];
3072 		}
3073 		raw_nat_from_node_info(raw_ne, &ne->ni);
3074 		nat_reset_flag(ne);
3075 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
3076 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
3077 			add_free_nid(sbi, nid, false, true);
3078 		} else {
3079 			spin_lock(&NM_I(sbi)->nid_list_lock);
3080 			update_free_nid_bitmap(sbi, nid, false, false);
3081 			spin_unlock(&NM_I(sbi)->nid_list_lock);
3082 		}
3083 	}
3084 
3085 	if (to_journal) {
3086 		up_write(&curseg->journal_rwsem);
3087 	} else {
3088 		__update_nat_bits(sbi, start_nid, page);
3089 		f2fs_put_page(page, 1);
3090 	}
3091 
3092 	/* Allow dirty nats by node block allocation in write_begin */
3093 	if (!set->entry_cnt) {
3094 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3095 		kmem_cache_free(nat_entry_set_slab, set);
3096 	}
3097 	return 0;
3098 }
3099 
3100 /*
3101  * This function is called during the checkpointing process.
3102  */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)3103 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3104 {
3105 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3106 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3107 	struct f2fs_journal *journal = curseg->journal;
3108 	struct nat_entry_set *setvec[NAT_VEC_SIZE];
3109 	struct nat_entry_set *set, *tmp;
3110 	unsigned int found;
3111 	nid_t set_idx = 0;
3112 	LIST_HEAD(sets);
3113 	int err = 0;
3114 
3115 	/*
3116 	 * during unmount, let's flush nat_bits before checking
3117 	 * nat_cnt[DIRTY_NAT].
3118 	 */
3119 	if (enabled_nat_bits(sbi, cpc)) {
3120 		f2fs_down_write(&nm_i->nat_tree_lock);
3121 		remove_nats_in_journal(sbi);
3122 		f2fs_up_write(&nm_i->nat_tree_lock);
3123 	}
3124 
3125 	if (!nm_i->nat_cnt[DIRTY_NAT])
3126 		return 0;
3127 
3128 	f2fs_down_write(&nm_i->nat_tree_lock);
3129 
3130 	/*
3131 	 * if there are no enough space in journal to store dirty nat
3132 	 * entries, remove all entries from journal and merge them
3133 	 * into nat entry set.
3134 	 */
3135 	if (enabled_nat_bits(sbi, cpc) ||
3136 		!__has_cursum_space(journal,
3137 			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3138 		remove_nats_in_journal(sbi);
3139 
3140 	while ((found = __gang_lookup_nat_set(nm_i,
3141 					set_idx, NAT_VEC_SIZE, setvec))) {
3142 		unsigned idx;
3143 
3144 		set_idx = setvec[found - 1]->set + 1;
3145 		for (idx = 0; idx < found; idx++)
3146 			__adjust_nat_entry_set(setvec[idx], &sets,
3147 						MAX_NAT_JENTRIES(journal));
3148 	}
3149 
3150 	/* flush dirty nats in nat entry set */
3151 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3152 		err = __flush_nat_entry_set(sbi, set, cpc);
3153 		if (err)
3154 			break;
3155 	}
3156 
3157 	f2fs_up_write(&nm_i->nat_tree_lock);
3158 	/* Allow dirty nats by node block allocation in write_begin */
3159 
3160 	return err;
3161 }
3162 
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3163 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3164 {
3165 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3166 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3167 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3168 	unsigned int i;
3169 	__u64 cp_ver = cur_cp_version(ckpt);
3170 	block_t nat_bits_addr;
3171 
3172 	if (!enabled_nat_bits(sbi, NULL))
3173 		return 0;
3174 
3175 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3176 	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3177 			F2FS_BLK_TO_BYTES(nm_i->nat_bits_blocks), GFP_KERNEL);
3178 	if (!nm_i->nat_bits)
3179 		return -ENOMEM;
3180 
3181 	nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3182 						nm_i->nat_bits_blocks;
3183 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3184 		struct page *page;
3185 
3186 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3187 		if (IS_ERR(page))
3188 			return PTR_ERR(page);
3189 
3190 		memcpy(nm_i->nat_bits + F2FS_BLK_TO_BYTES(i),
3191 					page_address(page), F2FS_BLKSIZE);
3192 		f2fs_put_page(page, 1);
3193 	}
3194 
3195 	cp_ver |= (cur_cp_crc(ckpt) << 32);
3196 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3197 		disable_nat_bits(sbi, true);
3198 		return 0;
3199 	}
3200 
3201 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3202 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3203 
3204 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3205 	return 0;
3206 }
3207 
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3208 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3209 {
3210 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3211 	unsigned int i = 0;
3212 	nid_t nid, last_nid;
3213 
3214 	if (!enabled_nat_bits(sbi, NULL))
3215 		return;
3216 
3217 	for (i = 0; i < nm_i->nat_blocks; i++) {
3218 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3219 		if (i >= nm_i->nat_blocks)
3220 			break;
3221 
3222 		__set_bit_le(i, nm_i->nat_block_bitmap);
3223 
3224 		nid = i * NAT_ENTRY_PER_BLOCK;
3225 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3226 
3227 		spin_lock(&NM_I(sbi)->nid_list_lock);
3228 		for (; nid < last_nid; nid++)
3229 			update_free_nid_bitmap(sbi, nid, true, true);
3230 		spin_unlock(&NM_I(sbi)->nid_list_lock);
3231 	}
3232 
3233 	for (i = 0; i < nm_i->nat_blocks; i++) {
3234 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3235 		if (i >= nm_i->nat_blocks)
3236 			break;
3237 
3238 		__set_bit_le(i, nm_i->nat_block_bitmap);
3239 	}
3240 }
3241 
init_node_manager(struct f2fs_sb_info * sbi)3242 static int init_node_manager(struct f2fs_sb_info *sbi)
3243 {
3244 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3245 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3246 	unsigned char *version_bitmap;
3247 	unsigned int nat_segs;
3248 	int err;
3249 
3250 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3251 
3252 	/* segment_count_nat includes pair segment so divide to 2. */
3253 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3254 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3255 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3256 
3257 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3258 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3259 						F2FS_RESERVED_NODE_NUM;
3260 	nm_i->nid_cnt[FREE_NID] = 0;
3261 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3262 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3263 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3264 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3265 	nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3266 
3267 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3268 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3269 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3270 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3271 	INIT_LIST_HEAD(&nm_i->nat_entries);
3272 	spin_lock_init(&nm_i->nat_list_lock);
3273 
3274 	mutex_init(&nm_i->build_lock);
3275 	spin_lock_init(&nm_i->nid_list_lock);
3276 	init_f2fs_rwsem(&nm_i->nat_tree_lock);
3277 
3278 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3279 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3280 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3281 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3282 					GFP_KERNEL);
3283 	if (!nm_i->nat_bitmap)
3284 		return -ENOMEM;
3285 
3286 	if (!test_opt(sbi, NAT_BITS))
3287 		disable_nat_bits(sbi, true);
3288 
3289 	err = __get_nat_bitmaps(sbi);
3290 	if (err)
3291 		return err;
3292 
3293 #ifdef CONFIG_F2FS_CHECK_FS
3294 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3295 					GFP_KERNEL);
3296 	if (!nm_i->nat_bitmap_mir)
3297 		return -ENOMEM;
3298 #endif
3299 
3300 	return 0;
3301 }
3302 
init_free_nid_cache(struct f2fs_sb_info * sbi)3303 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3304 {
3305 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3306 	int i;
3307 
3308 	nm_i->free_nid_bitmap =
3309 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3310 					      nm_i->nat_blocks),
3311 			      GFP_KERNEL);
3312 	if (!nm_i->free_nid_bitmap)
3313 		return -ENOMEM;
3314 
3315 	for (i = 0; i < nm_i->nat_blocks; i++) {
3316 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3317 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3318 		if (!nm_i->free_nid_bitmap[i])
3319 			return -ENOMEM;
3320 	}
3321 
3322 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3323 								GFP_KERNEL);
3324 	if (!nm_i->nat_block_bitmap)
3325 		return -ENOMEM;
3326 
3327 	nm_i->free_nid_count =
3328 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3329 					      nm_i->nat_blocks),
3330 			      GFP_KERNEL);
3331 	if (!nm_i->free_nid_count)
3332 		return -ENOMEM;
3333 	return 0;
3334 }
3335 
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3336 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3337 {
3338 	int err;
3339 
3340 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3341 							GFP_KERNEL);
3342 	if (!sbi->nm_info)
3343 		return -ENOMEM;
3344 
3345 	err = init_node_manager(sbi);
3346 	if (err)
3347 		return err;
3348 
3349 	err = init_free_nid_cache(sbi);
3350 	if (err)
3351 		return err;
3352 
3353 	/* load free nid status from nat_bits table */
3354 	load_free_nid_bitmap(sbi);
3355 
3356 	return f2fs_build_free_nids(sbi, true, true);
3357 }
3358 
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3359 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3360 {
3361 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3362 	struct free_nid *i, *next_i;
3363 	void *vec[NAT_VEC_SIZE];
3364 	struct nat_entry **natvec = (struct nat_entry **)vec;
3365 	struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3366 	nid_t nid = 0;
3367 	unsigned int found;
3368 
3369 	if (!nm_i)
3370 		return;
3371 
3372 	/* destroy free nid list */
3373 	spin_lock(&nm_i->nid_list_lock);
3374 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3375 		__remove_free_nid(sbi, i, FREE_NID);
3376 		spin_unlock(&nm_i->nid_list_lock);
3377 		kmem_cache_free(free_nid_slab, i);
3378 		spin_lock(&nm_i->nid_list_lock);
3379 	}
3380 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3381 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3382 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3383 	spin_unlock(&nm_i->nid_list_lock);
3384 
3385 	/* destroy nat cache */
3386 	f2fs_down_write(&nm_i->nat_tree_lock);
3387 	while ((found = __gang_lookup_nat_cache(nm_i,
3388 					nid, NAT_VEC_SIZE, natvec))) {
3389 		unsigned idx;
3390 
3391 		nid = nat_get_nid(natvec[found - 1]) + 1;
3392 		for (idx = 0; idx < found; idx++) {
3393 			spin_lock(&nm_i->nat_list_lock);
3394 			list_del(&natvec[idx]->list);
3395 			spin_unlock(&nm_i->nat_list_lock);
3396 
3397 			__del_from_nat_cache(nm_i, natvec[idx]);
3398 		}
3399 	}
3400 	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3401 
3402 	/* destroy nat set cache */
3403 	nid = 0;
3404 	memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3405 	while ((found = __gang_lookup_nat_set(nm_i,
3406 					nid, NAT_VEC_SIZE, setvec))) {
3407 		unsigned idx;
3408 
3409 		nid = setvec[found - 1]->set + 1;
3410 		for (idx = 0; idx < found; idx++) {
3411 			/* entry_cnt is not zero, when cp_error was occurred */
3412 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3413 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3414 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3415 		}
3416 	}
3417 	f2fs_up_write(&nm_i->nat_tree_lock);
3418 
3419 	kvfree(nm_i->nat_block_bitmap);
3420 	if (nm_i->free_nid_bitmap) {
3421 		int i;
3422 
3423 		for (i = 0; i < nm_i->nat_blocks; i++)
3424 			kvfree(nm_i->free_nid_bitmap[i]);
3425 		kvfree(nm_i->free_nid_bitmap);
3426 	}
3427 	kvfree(nm_i->free_nid_count);
3428 
3429 	kvfree(nm_i->nat_bitmap);
3430 	kvfree(nm_i->nat_bits);
3431 #ifdef CONFIG_F2FS_CHECK_FS
3432 	kvfree(nm_i->nat_bitmap_mir);
3433 #endif
3434 	sbi->nm_info = NULL;
3435 	kfree(nm_i);
3436 }
3437 
f2fs_create_node_manager_caches(void)3438 int __init f2fs_create_node_manager_caches(void)
3439 {
3440 	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3441 			sizeof(struct nat_entry));
3442 	if (!nat_entry_slab)
3443 		goto fail;
3444 
3445 	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3446 			sizeof(struct free_nid));
3447 	if (!free_nid_slab)
3448 		goto destroy_nat_entry;
3449 
3450 	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3451 			sizeof(struct nat_entry_set));
3452 	if (!nat_entry_set_slab)
3453 		goto destroy_free_nid;
3454 
3455 	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3456 			sizeof(struct fsync_node_entry));
3457 	if (!fsync_node_entry_slab)
3458 		goto destroy_nat_entry_set;
3459 	return 0;
3460 
3461 destroy_nat_entry_set:
3462 	kmem_cache_destroy(nat_entry_set_slab);
3463 destroy_free_nid:
3464 	kmem_cache_destroy(free_nid_slab);
3465 destroy_nat_entry:
3466 	kmem_cache_destroy(nat_entry_slab);
3467 fail:
3468 	return -ENOMEM;
3469 }
3470 
f2fs_destroy_node_manager_caches(void)3471 void f2fs_destroy_node_manager_caches(void)
3472 {
3473 	kmem_cache_destroy(fsync_node_entry_slab);
3474 	kmem_cache_destroy(nat_entry_set_slab);
3475 	kmem_cache_destroy(free_nid_slab);
3476 	kmem_cache_destroy(nat_entry_slab);
3477 }
3478