1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/sched/mm.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/blkdev.h>
15 #include <linux/bio.h>
16 #include <linux/blk-crypto.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/cleancache.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30 #include <trace/hooks/blk.h>
31 #undef CREATE_TRACE_POINTS
32 #include <trace/hooks/fs.h>
33 
34 #define NUM_PREALLOC_POST_READ_CTXS	128
35 
36 static struct kmem_cache *bio_post_read_ctx_cache;
37 static struct kmem_cache *bio_entry_slab;
38 static mempool_t *bio_post_read_ctx_pool;
39 static struct bio_set f2fs_bioset;
40 
41 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
42 
43 EXPORT_TRACEPOINT_SYMBOL_GPL(f2fs_write_begin);
44 
f2fs_init_bioset(void)45 int __init f2fs_init_bioset(void)
46 {
47 	return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
48 					0, BIOSET_NEED_BVECS);
49 }
50 
f2fs_destroy_bioset(void)51 void f2fs_destroy_bioset(void)
52 {
53 	bioset_exit(&f2fs_bioset);
54 }
55 
f2fs_is_cp_guaranteed(struct page * page)56 bool f2fs_is_cp_guaranteed(struct page *page)
57 {
58 	struct address_space *mapping = page->mapping;
59 	struct inode *inode;
60 	struct f2fs_sb_info *sbi;
61 
62 	if (fscrypt_is_bounce_page(page))
63 		return page_private_gcing(fscrypt_pagecache_page(page));
64 
65 	inode = mapping->host;
66 	sbi = F2FS_I_SB(inode);
67 
68 	if (inode->i_ino == F2FS_META_INO(sbi) ||
69 			inode->i_ino == F2FS_NODE_INO(sbi) ||
70 			S_ISDIR(inode->i_mode))
71 		return true;
72 
73 	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
74 			page_private_gcing(page))
75 		return true;
76 	return false;
77 }
78 
__read_io_type(struct folio * folio)79 static enum count_type __read_io_type(struct folio *folio)
80 {
81 	struct address_space *mapping = folio->mapping;
82 
83 	if (mapping) {
84 		struct inode *inode = mapping->host;
85 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
86 
87 		if (inode->i_ino == F2FS_META_INO(sbi))
88 			return F2FS_RD_META;
89 
90 		if (inode->i_ino == F2FS_NODE_INO(sbi))
91 			return F2FS_RD_NODE;
92 	}
93 	return F2FS_RD_DATA;
94 }
95 
96 /* postprocessing steps for read bios */
97 enum bio_post_read_step {
98 #ifdef CONFIG_FS_ENCRYPTION
99 	STEP_DECRYPT	= BIT(0),
100 #else
101 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
102 #endif
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 	STEP_DECOMPRESS	= BIT(1),
105 #else
106 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
107 #endif
108 #ifdef CONFIG_FS_VERITY
109 	STEP_VERITY	= BIT(2),
110 #else
111 	STEP_VERITY	= 0,	/* compile out the verity-related code */
112 #endif
113 };
114 
115 struct bio_post_read_ctx {
116 	struct bio *bio;
117 	struct f2fs_sb_info *sbi;
118 	struct work_struct work;
119 	unsigned int enabled_steps;
120 	/*
121 	 * decompression_attempted keeps track of whether
122 	 * f2fs_end_read_compressed_page() has been called on the pages in the
123 	 * bio that belong to a compressed cluster yet.
124 	 */
125 	bool decompression_attempted;
126 	block_t fs_blkaddr;
127 };
128 
129 /*
130  * Update and unlock a bio's pages, and free the bio.
131  *
132  * This marks pages up-to-date only if there was no error in the bio (I/O error,
133  * decryption error, or verity error), as indicated by bio->bi_status.
134  *
135  * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
136  * aren't marked up-to-date here, as decompression is done on a per-compression-
137  * cluster basis rather than a per-bio basis.  Instead, we only must do two
138  * things for each compressed page here: call f2fs_end_read_compressed_page()
139  * with failed=true if an error occurred before it would have normally gotten
140  * called (i.e., I/O error or decryption error, but *not* verity error), and
141  * release the bio's reference to the decompress_io_ctx of the page's cluster.
142  */
f2fs_finish_read_bio(struct bio * bio,bool in_task)143 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
144 {
145 	struct folio_iter fi;
146 	struct bio_post_read_ctx *ctx = bio->bi_private;
147 
148 	bio_for_each_folio_all(fi, bio) {
149 		struct folio *folio = fi.folio;
150 
151 		if (f2fs_is_compressed_page(&folio->page)) {
152 			if (ctx && !ctx->decompression_attempted)
153 				f2fs_end_read_compressed_page(&folio->page, true, 0,
154 							in_task);
155 			f2fs_put_page_dic(&folio->page, in_task);
156 			continue;
157 		}
158 
159 		dec_page_count(F2FS_F_SB(folio), __read_io_type(folio));
160 		folio_end_read(folio, bio->bi_status == 0);
161 	}
162 
163 	if (ctx)
164 		mempool_free(ctx, bio_post_read_ctx_pool);
165 	bio_put(bio);
166 }
167 
f2fs_verify_bio(struct work_struct * work)168 static void f2fs_verify_bio(struct work_struct *work)
169 {
170 	struct bio_post_read_ctx *ctx =
171 		container_of(work, struct bio_post_read_ctx, work);
172 	struct bio *bio = ctx->bio;
173 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
174 
175 	/*
176 	 * fsverity_verify_bio() may call readahead() again, and while verity
177 	 * will be disabled for this, decryption and/or decompression may still
178 	 * be needed, resulting in another bio_post_read_ctx being allocated.
179 	 * So to prevent deadlocks we need to release the current ctx to the
180 	 * mempool first.  This assumes that verity is the last post-read step.
181 	 */
182 	mempool_free(ctx, bio_post_read_ctx_pool);
183 	bio->bi_private = NULL;
184 
185 	/*
186 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
187 	 * as those were handled separately by f2fs_end_read_compressed_page().
188 	 */
189 	if (may_have_compressed_pages) {
190 		struct bio_vec *bv;
191 		struct bvec_iter_all iter_all;
192 
193 		bio_for_each_segment_all(bv, bio, iter_all) {
194 			struct page *page = bv->bv_page;
195 
196 			if (!f2fs_is_compressed_page(page) &&
197 			    !fsverity_verify_page(page)) {
198 				bio->bi_status = BLK_STS_IOERR;
199 				break;
200 			}
201 		}
202 	} else {
203 		fsverity_verify_bio(bio);
204 	}
205 
206 	f2fs_finish_read_bio(bio, true);
207 }
208 
209 /*
210  * If the bio's data needs to be verified with fs-verity, then enqueue the
211  * verity work for the bio.  Otherwise finish the bio now.
212  *
213  * Note that to avoid deadlocks, the verity work can't be done on the
214  * decryption/decompression workqueue.  This is because verifying the data pages
215  * can involve reading verity metadata pages from the file, and these verity
216  * metadata pages may be encrypted and/or compressed.
217  */
f2fs_verify_and_finish_bio(struct bio * bio,bool in_task)218 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
219 {
220 	struct bio_post_read_ctx *ctx = bio->bi_private;
221 
222 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
223 		INIT_WORK(&ctx->work, f2fs_verify_bio);
224 		fsverity_enqueue_verify_work(&ctx->work);
225 	} else {
226 		f2fs_finish_read_bio(bio, in_task);
227 	}
228 }
229 
230 /*
231  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
232  * remaining page was read by @ctx->bio.
233  *
234  * Note that a bio may span clusters (even a mix of compressed and uncompressed
235  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
236  * that the bio includes at least one compressed page.  The actual decompression
237  * is done on a per-cluster basis, not a per-bio basis.
238  */
f2fs_handle_step_decompress(struct bio_post_read_ctx * ctx,bool in_task)239 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
240 		bool in_task)
241 {
242 	struct bio_vec *bv;
243 	struct bvec_iter_all iter_all;
244 	bool all_compressed = true;
245 	block_t blkaddr = ctx->fs_blkaddr;
246 
247 	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
248 		struct page *page = bv->bv_page;
249 
250 		if (f2fs_is_compressed_page(page))
251 			f2fs_end_read_compressed_page(page, false, blkaddr,
252 						      in_task);
253 		else
254 			all_compressed = false;
255 
256 		blkaddr++;
257 	}
258 
259 	ctx->decompression_attempted = true;
260 
261 	/*
262 	 * Optimization: if all the bio's pages are compressed, then scheduling
263 	 * the per-bio verity work is unnecessary, as verity will be fully
264 	 * handled at the compression cluster level.
265 	 */
266 	if (all_compressed)
267 		ctx->enabled_steps &= ~STEP_VERITY;
268 }
269 
f2fs_post_read_work(struct work_struct * work)270 static void f2fs_post_read_work(struct work_struct *work)
271 {
272 	struct bio_post_read_ctx *ctx =
273 		container_of(work, struct bio_post_read_ctx, work);
274 	struct bio *bio = ctx->bio;
275 
276 	if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
277 		f2fs_finish_read_bio(bio, true);
278 		return;
279 	}
280 
281 	if (ctx->enabled_steps & STEP_DECOMPRESS)
282 		f2fs_handle_step_decompress(ctx, true);
283 
284 	f2fs_verify_and_finish_bio(bio, true);
285 }
286 
f2fs_read_end_io(struct bio * bio)287 static void f2fs_read_end_io(struct bio *bio)
288 {
289 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
290 	struct bio_post_read_ctx *ctx;
291 	bool intask = in_task() && !irqs_disabled();
292 
293 	iostat_update_and_unbind_ctx(bio);
294 	ctx = bio->bi_private;
295 
296 	if (time_to_inject(sbi, FAULT_READ_IO))
297 		bio->bi_status = BLK_STS_IOERR;
298 
299 	if (bio->bi_status) {
300 		f2fs_finish_read_bio(bio, intask);
301 		return;
302 	}
303 
304 	if (ctx) {
305 		unsigned int enabled_steps = ctx->enabled_steps &
306 					(STEP_DECRYPT | STEP_DECOMPRESS);
307 
308 		/*
309 		 * If we have only decompression step between decompression and
310 		 * decrypt, we don't need post processing for this.
311 		 */
312 		if (enabled_steps == STEP_DECOMPRESS &&
313 				!f2fs_low_mem_mode(sbi)) {
314 			f2fs_handle_step_decompress(ctx, intask);
315 		} else if (enabled_steps) {
316 			INIT_WORK(&ctx->work, f2fs_post_read_work);
317 			queue_work(ctx->sbi->post_read_wq, &ctx->work);
318 			return;
319 		}
320 	}
321 
322 	f2fs_verify_and_finish_bio(bio, intask);
323 }
324 
f2fs_write_end_io(struct bio * bio)325 static void f2fs_write_end_io(struct bio *bio)
326 {
327 	struct f2fs_sb_info *sbi;
328 	struct folio_iter fi;
329 
330 	iostat_update_and_unbind_ctx(bio);
331 	sbi = bio->bi_private;
332 
333 	if (time_to_inject(sbi, FAULT_WRITE_IO))
334 		bio->bi_status = BLK_STS_IOERR;
335 
336 	bio_for_each_folio_all(fi, bio) {
337 		struct folio *folio = fi.folio;
338 		enum count_type type;
339 
340 		if (fscrypt_is_bounce_folio(folio)) {
341 			struct folio *io_folio = folio;
342 
343 			folio = fscrypt_pagecache_folio(io_folio);
344 			fscrypt_free_bounce_page(&io_folio->page);
345 		}
346 
347 #ifdef CONFIG_F2FS_FS_COMPRESSION
348 		if (f2fs_is_compressed_page(&folio->page)) {
349 			f2fs_compress_write_end_io(bio, &folio->page);
350 			continue;
351 		}
352 #endif
353 
354 		type = WB_DATA_TYPE(&folio->page, false);
355 
356 		if (unlikely(bio->bi_status)) {
357 			mapping_set_error(folio->mapping, -EIO);
358 			if (type == F2FS_WB_CP_DATA)
359 				f2fs_stop_checkpoint(sbi, true,
360 						STOP_CP_REASON_WRITE_FAIL);
361 		}
362 
363 		f2fs_bug_on(sbi, folio->mapping == NODE_MAPPING(sbi) &&
364 				folio->index != nid_of_node(&folio->page));
365 
366 		dec_page_count(sbi, type);
367 		if (f2fs_in_warm_node_list(sbi, folio))
368 			f2fs_del_fsync_node_entry(sbi, &folio->page);
369 		clear_page_private_gcing(&folio->page);
370 		folio_end_writeback(folio);
371 	}
372 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
373 				wq_has_sleeper(&sbi->cp_wait))
374 		wake_up(&sbi->cp_wait);
375 
376 	bio_put(bio);
377 }
378 
379 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_zone_write_end_io(struct bio * bio)380 static void f2fs_zone_write_end_io(struct bio *bio)
381 {
382 	struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
383 
384 	bio->bi_private = io->bi_private;
385 	complete(&io->zone_wait);
386 	f2fs_write_end_io(bio);
387 }
388 #endif
389 
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,sector_t * sector)390 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
391 		block_t blk_addr, sector_t *sector)
392 {
393 	struct block_device *bdev = sbi->sb->s_bdev;
394 	int i;
395 
396 	if (f2fs_is_multi_device(sbi)) {
397 		for (i = 0; i < sbi->s_ndevs; i++) {
398 			if (FDEV(i).start_blk <= blk_addr &&
399 			    FDEV(i).end_blk >= blk_addr) {
400 				blk_addr -= FDEV(i).start_blk;
401 				bdev = FDEV(i).bdev;
402 				break;
403 			}
404 		}
405 	}
406 
407 	if (sector)
408 		*sector = SECTOR_FROM_BLOCK(blk_addr);
409 	return bdev;
410 }
411 
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)412 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
413 {
414 	int i;
415 
416 	if (!f2fs_is_multi_device(sbi))
417 		return 0;
418 
419 	for (i = 0; i < sbi->s_ndevs; i++)
420 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
421 			return i;
422 	return 0;
423 }
424 
f2fs_io_flags(struct f2fs_io_info * fio)425 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
426 {
427 	unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
428 	struct folio *fio_folio = page_folio(fio->page);
429 	unsigned int fua_flag, meta_flag, io_flag;
430 	blk_opf_t op_flags = 0;
431 
432 	if (fio->op != REQ_OP_WRITE)
433 		return 0;
434 	if (fio->type == DATA)
435 		io_flag = fio->sbi->data_io_flag;
436 	else if (fio->type == NODE)
437 		io_flag = fio->sbi->node_io_flag;
438 	else
439 		return 0;
440 
441 	fua_flag = io_flag & temp_mask;
442 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
443 
444 	/*
445 	 * data/node io flag bits per temp:
446 	 *      REQ_META     |      REQ_FUA      |
447 	 *    5 |    4 |   3 |    2 |    1 |   0 |
448 	 * Cold | Warm | Hot | Cold | Warm | Hot |
449 	 */
450 	if (BIT(fio->temp) & meta_flag)
451 		op_flags |= REQ_META;
452 	if (BIT(fio->temp) & fua_flag)
453 		op_flags |= REQ_FUA;
454 
455 	if (fio->type == DATA &&
456 	    F2FS_I(fio_folio->mapping->host)->ioprio_hint == F2FS_IOPRIO_WRITE)
457 		op_flags |= REQ_PRIO;
458 
459 	return op_flags;
460 }
461 
__bio_alloc(struct f2fs_io_info * fio,int npages)462 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
463 {
464 	struct f2fs_sb_info *sbi = fio->sbi;
465 	struct block_device *bdev;
466 	sector_t sector;
467 	struct bio *bio;
468 
469 	bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or);
470 	bio = bio_alloc_bioset(bdev, npages,
471 				fio->op | fio->op_flags | f2fs_io_flags(fio),
472 				GFP_NOIO, &f2fs_bioset);
473 	bio->bi_iter.bi_sector = sector;
474 	if (is_read_io(fio->op)) {
475 		bio->bi_end_io = f2fs_read_end_io;
476 		bio->bi_private = NULL;
477 	} else {
478 		bio->bi_end_io = f2fs_write_end_io;
479 		bio->bi_private = sbi;
480 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
481 						fio->type, fio->temp);
482 	}
483 	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
484 
485 	if (fio->io_wbc)
486 		wbc_init_bio(fio->io_wbc, bio);
487 
488 	return bio;
489 }
490 
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)491 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
492 				  pgoff_t first_idx,
493 				  const struct f2fs_io_info *fio,
494 				  gfp_t gfp_mask)
495 {
496 	/*
497 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
498 	 * read/write raw data without encryption.
499 	 */
500 	if (!fio || !fio->encrypted_page)
501 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
502 	else if (fscrypt_inode_should_skip_dm_default_key(inode))
503 		bio_set_skip_dm_default_key(bio);
504 }
505 
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)506 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
507 				     pgoff_t next_idx,
508 				     const struct f2fs_io_info *fio)
509 {
510 	/*
511 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
512 	 * read/write raw data without encryption.
513 	 */
514 	if (fio && fio->encrypted_page)
515 		return !bio_has_crypt_ctx(bio) &&
516 			(bio_should_skip_dm_default_key(bio) ==
517 			 fscrypt_inode_should_skip_dm_default_key(inode));
518 
519 	return fscrypt_mergeable_bio(bio, inode, next_idx);
520 }
521 
f2fs_submit_read_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)522 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
523 				 enum page_type type)
524 {
525 	WARN_ON_ONCE(!is_read_io(bio_op(bio)));
526 	trace_f2fs_submit_read_bio(sbi->sb, type, bio);
527 
528 	iostat_update_submit_ctx(bio, type);
529 	submit_bio(bio);
530 }
531 
f2fs_submit_write_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)532 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
533 				  enum page_type type)
534 {
535 	WARN_ON_ONCE(is_read_io(bio_op(bio)));
536 	trace_f2fs_submit_write_bio(sbi->sb, type, bio);
537 	iostat_update_submit_ctx(bio, type);
538 	submit_bio(bio);
539 }
540 
__submit_merged_bio(struct f2fs_bio_info * io)541 static void __submit_merged_bio(struct f2fs_bio_info *io)
542 {
543 	struct f2fs_io_info *fio = &io->fio;
544 
545 	if (!io->bio)
546 		return;
547 
548 	if (is_read_io(fio->op)) {
549 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
550 		f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
551 	} else {
552 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
553 		f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
554 	}
555 	io->bio = NULL;
556 }
557 
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)558 static bool __has_merged_page(struct bio *bio, struct inode *inode,
559 						struct page *page, nid_t ino)
560 {
561 	struct bio_vec *bvec;
562 	struct bvec_iter_all iter_all;
563 
564 	if (!bio)
565 		return false;
566 
567 	if (!inode && !page && !ino)
568 		return true;
569 
570 	bio_for_each_segment_all(bvec, bio, iter_all) {
571 		struct page *target = bvec->bv_page;
572 
573 		if (fscrypt_is_bounce_page(target)) {
574 			target = fscrypt_pagecache_page(target);
575 			if (IS_ERR(target))
576 				continue;
577 		}
578 		if (f2fs_is_compressed_page(target)) {
579 			target = f2fs_compress_control_page(target);
580 			if (IS_ERR(target))
581 				continue;
582 		}
583 
584 		if (inode && inode == target->mapping->host)
585 			return true;
586 		if (page && page == target)
587 			return true;
588 		if (ino && ino == ino_of_node(target))
589 			return true;
590 	}
591 
592 	return false;
593 }
594 
f2fs_init_write_merge_io(struct f2fs_sb_info * sbi)595 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
596 {
597 	int i;
598 
599 	for (i = 0; i < NR_PAGE_TYPE; i++) {
600 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
601 		int j;
602 
603 		sbi->write_io[i] = f2fs_kmalloc(sbi,
604 				array_size(n, sizeof(struct f2fs_bio_info)),
605 				GFP_KERNEL);
606 		if (!sbi->write_io[i])
607 			return -ENOMEM;
608 
609 		for (j = HOT; j < n; j++) {
610 			struct f2fs_bio_info *io = &sbi->write_io[i][j];
611 
612 			init_f2fs_rwsem(&io->io_rwsem);
613 			io->sbi = sbi;
614 			io->bio = NULL;
615 			io->last_block_in_bio = 0;
616 			spin_lock_init(&io->io_lock);
617 			INIT_LIST_HEAD(&io->io_list);
618 			INIT_LIST_HEAD(&io->bio_list);
619 			init_f2fs_rwsem(&io->bio_list_lock);
620 #ifdef CONFIG_BLK_DEV_ZONED
621 			init_completion(&io->zone_wait);
622 			io->zone_pending_bio = NULL;
623 			io->bi_private = NULL;
624 #endif
625 		}
626 	}
627 
628 	return 0;
629 }
630 
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)631 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
632 				enum page_type type, enum temp_type temp)
633 {
634 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
635 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
636 
637 	f2fs_down_write(&io->io_rwsem);
638 
639 	if (!io->bio)
640 		goto unlock_out;
641 
642 	/* change META to META_FLUSH in the checkpoint procedure */
643 	if (type >= META_FLUSH) {
644 		io->fio.type = META_FLUSH;
645 		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
646 		if (!test_opt(sbi, NOBARRIER))
647 			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
648 	}
649 	__submit_merged_bio(io);
650 unlock_out:
651 	f2fs_up_write(&io->io_rwsem);
652 }
653 
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)654 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
655 				struct inode *inode, struct page *page,
656 				nid_t ino, enum page_type type, bool force)
657 {
658 	enum temp_type temp;
659 	bool ret = true;
660 
661 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
662 		if (!force)	{
663 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
664 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
665 
666 			f2fs_down_read(&io->io_rwsem);
667 			ret = __has_merged_page(io->bio, inode, page, ino);
668 			f2fs_up_read(&io->io_rwsem);
669 		}
670 		if (ret)
671 			__f2fs_submit_merged_write(sbi, type, temp);
672 
673 		/* TODO: use HOT temp only for meta pages now. */
674 		if (type >= META)
675 			break;
676 	}
677 }
678 
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)679 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
680 {
681 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
682 }
683 
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)684 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
685 				struct inode *inode, struct page *page,
686 				nid_t ino, enum page_type type)
687 {
688 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
689 }
690 
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)691 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
692 {
693 	f2fs_submit_merged_write(sbi, DATA);
694 	f2fs_submit_merged_write(sbi, NODE);
695 	f2fs_submit_merged_write(sbi, META);
696 }
697 
698 /*
699  * Fill the locked page with data located in the block address.
700  * A caller needs to unlock the page on failure.
701  */
f2fs_submit_page_bio(struct f2fs_io_info * fio)702 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
703 {
704 	struct bio *bio;
705 	struct folio *fio_folio = page_folio(fio->page);
706 	struct folio *data_folio = fio->encrypted_page ?
707 			page_folio(fio->encrypted_page) : fio_folio;
708 
709 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
710 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
711 			META_GENERIC : DATA_GENERIC_ENHANCE)))
712 		return -EFSCORRUPTED;
713 
714 	trace_f2fs_submit_folio_bio(data_folio, fio);
715 
716 	/* Allocate a new bio */
717 	bio = __bio_alloc(fio, 1);
718 
719 	f2fs_set_bio_crypt_ctx(bio, fio_folio->mapping->host,
720 			fio_folio->index, fio, GFP_NOIO);
721 	bio_add_folio_nofail(bio, data_folio, folio_size(data_folio), 0);
722 
723 	if (fio->io_wbc && !is_read_io(fio->op))
724 		wbc_account_cgroup_owner(fio->io_wbc, fio_folio, PAGE_SIZE);
725 
726 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
727 			__read_io_type(data_folio) : WB_DATA_TYPE(fio->page, false));
728 
729 	if (is_read_io(bio_op(bio)))
730 		f2fs_submit_read_bio(fio->sbi, bio, fio->type);
731 	else
732 		f2fs_submit_write_bio(fio->sbi, bio, fio->type);
733 	return 0;
734 }
735 
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)736 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
737 				block_t last_blkaddr, block_t cur_blkaddr)
738 {
739 	if (unlikely(sbi->max_io_bytes &&
740 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
741 		return false;
742 	if (last_blkaddr + 1 != cur_blkaddr)
743 		return false;
744 	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
745 }
746 
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)747 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
748 						struct f2fs_io_info *fio)
749 {
750 	if (io->fio.op != fio->op)
751 		return false;
752 	return io->fio.op_flags == fio->op_flags;
753 }
754 
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)755 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
756 					struct f2fs_bio_info *io,
757 					struct f2fs_io_info *fio,
758 					block_t last_blkaddr,
759 					block_t cur_blkaddr)
760 {
761 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
762 		return false;
763 	return io_type_is_mergeable(io, fio);
764 }
765 
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)766 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
767 				struct page *page, enum temp_type temp)
768 {
769 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
770 	struct bio_entry *be;
771 
772 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
773 	be->bio = bio;
774 	bio_get(bio);
775 
776 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
777 		f2fs_bug_on(sbi, 1);
778 
779 	f2fs_down_write(&io->bio_list_lock);
780 	list_add_tail(&be->list, &io->bio_list);
781 	f2fs_up_write(&io->bio_list_lock);
782 }
783 
del_bio_entry(struct bio_entry * be)784 static void del_bio_entry(struct bio_entry *be)
785 {
786 	list_del(&be->list);
787 	kmem_cache_free(bio_entry_slab, be);
788 }
789 
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)790 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
791 							struct page *page)
792 {
793 	struct f2fs_sb_info *sbi = fio->sbi;
794 	enum temp_type temp;
795 	bool found = false;
796 	int ret = -EAGAIN;
797 
798 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
799 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
800 		struct list_head *head = &io->bio_list;
801 		struct bio_entry *be;
802 
803 		f2fs_down_write(&io->bio_list_lock);
804 		list_for_each_entry(be, head, list) {
805 			if (be->bio != *bio)
806 				continue;
807 
808 			found = true;
809 
810 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
811 							    *fio->last_block,
812 							    fio->new_blkaddr));
813 			if (f2fs_crypt_mergeable_bio(*bio,
814 					fio->page->mapping->host,
815 					page_folio(fio->page)->index, fio) &&
816 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
817 					PAGE_SIZE) {
818 				ret = 0;
819 				break;
820 			}
821 
822 			/* page can't be merged into bio; submit the bio */
823 			del_bio_entry(be);
824 			f2fs_submit_write_bio(sbi, *bio, DATA);
825 			break;
826 		}
827 		f2fs_up_write(&io->bio_list_lock);
828 	}
829 
830 	if (ret) {
831 		bio_put(*bio);
832 		*bio = NULL;
833 	}
834 
835 	return ret;
836 }
837 
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)838 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
839 					struct bio **bio, struct page *page)
840 {
841 	enum temp_type temp;
842 	bool found = false;
843 	struct bio *target = bio ? *bio : NULL;
844 
845 	f2fs_bug_on(sbi, !target && !page);
846 
847 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
848 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
849 		struct list_head *head = &io->bio_list;
850 		struct bio_entry *be;
851 
852 		if (list_empty(head))
853 			continue;
854 
855 		f2fs_down_read(&io->bio_list_lock);
856 		list_for_each_entry(be, head, list) {
857 			if (target)
858 				found = (target == be->bio);
859 			else
860 				found = __has_merged_page(be->bio, NULL,
861 								page, 0);
862 			if (found)
863 				break;
864 		}
865 		f2fs_up_read(&io->bio_list_lock);
866 
867 		if (!found)
868 			continue;
869 
870 		found = false;
871 
872 		f2fs_down_write(&io->bio_list_lock);
873 		list_for_each_entry(be, head, list) {
874 			if (target)
875 				found = (target == be->bio);
876 			else
877 				found = __has_merged_page(be->bio, NULL,
878 								page, 0);
879 			if (found) {
880 				target = be->bio;
881 				del_bio_entry(be);
882 				break;
883 			}
884 		}
885 		f2fs_up_write(&io->bio_list_lock);
886 	}
887 
888 	if (found)
889 		f2fs_submit_write_bio(sbi, target, DATA);
890 	if (bio && *bio) {
891 		bio_put(*bio);
892 		*bio = NULL;
893 	}
894 }
895 
f2fs_merge_page_bio(struct f2fs_io_info * fio)896 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
897 {
898 	struct bio *bio = *fio->bio;
899 	struct page *page = fio->encrypted_page ?
900 			fio->encrypted_page : fio->page;
901 	struct folio *folio = page_folio(fio->page);
902 
903 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
904 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
905 		return -EFSCORRUPTED;
906 
907 	trace_f2fs_submit_folio_bio(page_folio(page), fio);
908 
909 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
910 						fio->new_blkaddr))
911 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
912 alloc_new:
913 	if (!bio) {
914 		bio = __bio_alloc(fio, BIO_MAX_VECS);
915 		f2fs_set_bio_crypt_ctx(bio, folio->mapping->host,
916 				folio->index, fio, GFP_NOIO);
917 
918 		add_bio_entry(fio->sbi, bio, page, fio->temp);
919 	} else {
920 		if (add_ipu_page(fio, &bio, page))
921 			goto alloc_new;
922 	}
923 
924 	if (fio->io_wbc)
925 		wbc_account_cgroup_owner(fio->io_wbc, folio, folio_size(folio));
926 
927 	inc_page_count(fio->sbi, WB_DATA_TYPE(page, false));
928 
929 	*fio->last_block = fio->new_blkaddr;
930 	*fio->bio = bio;
931 
932 	return 0;
933 }
934 
935 #ifdef CONFIG_BLK_DEV_ZONED
is_end_zone_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr)936 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
937 {
938 	struct block_device *bdev = sbi->sb->s_bdev;
939 	int devi = 0;
940 
941 	if (f2fs_is_multi_device(sbi)) {
942 		devi = f2fs_target_device_index(sbi, blkaddr);
943 		if (blkaddr < FDEV(devi).start_blk ||
944 		    blkaddr > FDEV(devi).end_blk) {
945 			f2fs_err(sbi, "Invalid block %x", blkaddr);
946 			return false;
947 		}
948 		blkaddr -= FDEV(devi).start_blk;
949 		bdev = FDEV(devi).bdev;
950 	}
951 	return bdev_is_zoned(bdev) &&
952 		f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
953 		(blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
954 }
955 #endif
956 
f2fs_submit_page_write(struct f2fs_io_info * fio)957 void f2fs_submit_page_write(struct f2fs_io_info *fio)
958 {
959 	struct f2fs_sb_info *sbi = fio->sbi;
960 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
961 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
962 	struct page *bio_page;
963 	enum count_type type;
964 
965 	f2fs_bug_on(sbi, is_read_io(fio->op));
966 
967 	f2fs_down_write(&io->io_rwsem);
968 next:
969 #ifdef CONFIG_BLK_DEV_ZONED
970 	if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
971 		wait_for_completion_io(&io->zone_wait);
972 		bio_put(io->zone_pending_bio);
973 		io->zone_pending_bio = NULL;
974 		io->bi_private = NULL;
975 	}
976 #endif
977 
978 	if (fio->in_list) {
979 		spin_lock(&io->io_lock);
980 		if (list_empty(&io->io_list)) {
981 			spin_unlock(&io->io_lock);
982 			goto out;
983 		}
984 		fio = list_first_entry(&io->io_list,
985 						struct f2fs_io_info, list);
986 		list_del(&fio->list);
987 		spin_unlock(&io->io_lock);
988 	}
989 
990 	verify_fio_blkaddr(fio);
991 
992 	if (fio->encrypted_page)
993 		bio_page = fio->encrypted_page;
994 	else if (fio->compressed_page)
995 		bio_page = fio->compressed_page;
996 	else
997 		bio_page = fio->page;
998 
999 	/* set submitted = true as a return value */
1000 	fio->submitted = 1;
1001 
1002 	type = WB_DATA_TYPE(bio_page, fio->compressed_page);
1003 	inc_page_count(sbi, type);
1004 
1005 	if (io->bio &&
1006 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
1007 			      fio->new_blkaddr) ||
1008 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1009 				page_folio(bio_page)->index, fio)))
1010 		__submit_merged_bio(io);
1011 alloc_new:
1012 	if (io->bio == NULL) {
1013 		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1014 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1015 				page_folio(bio_page)->index, fio, GFP_NOIO);
1016 		io->fio = *fio;
1017 	}
1018 
1019 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1020 		__submit_merged_bio(io);
1021 		goto alloc_new;
1022 	}
1023 
1024 	if (fio->io_wbc)
1025 		wbc_account_cgroup_owner(fio->io_wbc, page_folio(fio->page),
1026 					 PAGE_SIZE);
1027 
1028 	io->last_block_in_bio = fio->new_blkaddr;
1029 
1030 	trace_f2fs_submit_folio_write(page_folio(fio->page), fio);
1031 	trace_android_vh_f2fs_set_bio_flag(page_folio(fio->page), io->bio);
1032 #ifdef CONFIG_BLK_DEV_ZONED
1033 	if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1034 			is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1035 		bio_get(io->bio);
1036 		reinit_completion(&io->zone_wait);
1037 		io->bi_private = io->bio->bi_private;
1038 		io->bio->bi_private = io;
1039 		io->bio->bi_end_io = f2fs_zone_write_end_io;
1040 		io->zone_pending_bio = io->bio;
1041 		__submit_merged_bio(io);
1042 	}
1043 #endif
1044 	if (fio->in_list)
1045 		goto next;
1046 out:
1047 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1048 				!f2fs_is_checkpoint_ready(sbi))
1049 		__submit_merged_bio(io);
1050 	f2fs_up_write(&io->io_rwsem);
1051 }
1052 
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,blk_opf_t op_flag,pgoff_t first_idx,bool for_write)1053 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1054 				      unsigned nr_pages, blk_opf_t op_flag,
1055 				      pgoff_t first_idx, bool for_write)
1056 {
1057 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1058 	struct bio *bio;
1059 	struct bio_post_read_ctx *ctx = NULL;
1060 	unsigned int post_read_steps = 0;
1061 	sector_t sector;
1062 	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or);
1063 
1064 	bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1065 			       REQ_OP_READ | op_flag,
1066 			       for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1067 	bio->bi_iter.bi_sector = sector;
1068 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1069 	bio->bi_end_io = f2fs_read_end_io;
1070 
1071 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1072 		post_read_steps |= STEP_DECRYPT;
1073 
1074 	if (f2fs_need_verity(inode, first_idx))
1075 		post_read_steps |= STEP_VERITY;
1076 
1077 	/*
1078 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1079 	 * contain both compressed and uncompressed clusters.  We'll allocate a
1080 	 * bio_post_read_ctx if the file is compressed, but the caller is
1081 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1082 	 */
1083 
1084 	if (post_read_steps || f2fs_compressed_file(inode)) {
1085 		/* Due to the mempool, this never fails. */
1086 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1087 		ctx->bio = bio;
1088 		ctx->sbi = sbi;
1089 		ctx->enabled_steps = post_read_steps;
1090 		ctx->fs_blkaddr = blkaddr;
1091 		ctx->decompression_attempted = false;
1092 		bio->bi_private = ctx;
1093 	}
1094 	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1095 
1096 	return bio;
1097 }
1098 
1099 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct folio * folio,block_t blkaddr,blk_opf_t op_flags,bool for_write)1100 static int f2fs_submit_page_read(struct inode *inode, struct folio *folio,
1101 				 block_t blkaddr, blk_opf_t op_flags,
1102 				 bool for_write)
1103 {
1104 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1105 	struct bio *bio;
1106 
1107 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1108 					folio->index, for_write);
1109 	if (IS_ERR(bio))
1110 		return PTR_ERR(bio);
1111 
1112 	/* wait for GCed page writeback via META_MAPPING */
1113 	f2fs_wait_on_block_writeback(inode, blkaddr);
1114 
1115 	if (!bio_add_folio(bio, folio, PAGE_SIZE, 0)) {
1116 		iostat_update_and_unbind_ctx(bio);
1117 		if (bio->bi_private)
1118 			mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1119 		bio_put(bio);
1120 		return -EFAULT;
1121 	}
1122 	inc_page_count(sbi, F2FS_RD_DATA);
1123 	f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1124 	f2fs_submit_read_bio(sbi, bio, DATA);
1125 	return 0;
1126 }
1127 
__set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1128 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1129 {
1130 	__le32 *addr = get_dnode_addr(dn->inode, dn->node_page);
1131 
1132 	dn->data_blkaddr = blkaddr;
1133 	addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1134 }
1135 
1136 /*
1137  * Lock ordering for the change of data block address:
1138  * ->data_page
1139  *  ->node_page
1140  *    update block addresses in the node page
1141  */
f2fs_set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1142 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1143 {
1144 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1145 	__set_data_blkaddr(dn, blkaddr);
1146 	if (set_page_dirty(dn->node_page))
1147 		dn->node_changed = true;
1148 }
1149 
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1150 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1151 {
1152 	f2fs_set_data_blkaddr(dn, blkaddr);
1153 	f2fs_update_read_extent_cache(dn);
1154 }
1155 
1156 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1157 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1158 {
1159 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1160 	int err;
1161 
1162 	if (!count)
1163 		return 0;
1164 
1165 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1166 		return -EPERM;
1167 	err = inc_valid_block_count(sbi, dn->inode, &count, true);
1168 	if (unlikely(err))
1169 		return err;
1170 
1171 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1172 						dn->ofs_in_node, count);
1173 
1174 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1175 
1176 	for (; count > 0; dn->ofs_in_node++) {
1177 		block_t blkaddr = f2fs_data_blkaddr(dn);
1178 
1179 		if (blkaddr == NULL_ADDR) {
1180 			__set_data_blkaddr(dn, NEW_ADDR);
1181 			count--;
1182 		}
1183 	}
1184 
1185 	if (set_page_dirty(dn->node_page))
1186 		dn->node_changed = true;
1187 	return 0;
1188 }
1189 
1190 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1191 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1192 {
1193 	unsigned int ofs_in_node = dn->ofs_in_node;
1194 	int ret;
1195 
1196 	ret = f2fs_reserve_new_blocks(dn, 1);
1197 	dn->ofs_in_node = ofs_in_node;
1198 	return ret;
1199 }
1200 
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1201 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1202 {
1203 	bool need_put = dn->inode_page ? false : true;
1204 	int err;
1205 
1206 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1207 	if (err)
1208 		return err;
1209 
1210 	if (dn->data_blkaddr == NULL_ADDR)
1211 		err = f2fs_reserve_new_block(dn);
1212 	if (err || need_put)
1213 		f2fs_put_dnode(dn);
1214 	return err;
1215 }
1216 
f2fs_get_read_data_folio(struct inode * inode,pgoff_t index,blk_opf_t op_flags,bool for_write,pgoff_t * next_pgofs)1217 struct folio *f2fs_get_read_data_folio(struct inode *inode, pgoff_t index,
1218 		blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs)
1219 {
1220 	struct address_space *mapping = inode->i_mapping;
1221 	struct dnode_of_data dn;
1222 	struct folio *folio;
1223 	int err;
1224 
1225 	folio = f2fs_grab_cache_folio(mapping, index, for_write);
1226 	if (IS_ERR(folio))
1227 		return folio;
1228 
1229 	if (f2fs_lookup_read_extent_cache_block(inode, index,
1230 						&dn.data_blkaddr)) {
1231 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1232 						DATA_GENERIC_ENHANCE_READ)) {
1233 			err = -EFSCORRUPTED;
1234 			goto put_err;
1235 		}
1236 		goto got_it;
1237 	}
1238 
1239 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1240 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1241 	if (err) {
1242 		if (err == -ENOENT && next_pgofs)
1243 			*next_pgofs = f2fs_get_next_page_offset(&dn, index);
1244 		goto put_err;
1245 	}
1246 	f2fs_put_dnode(&dn);
1247 
1248 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1249 		err = -ENOENT;
1250 		if (next_pgofs)
1251 			*next_pgofs = index + 1;
1252 		goto put_err;
1253 	}
1254 	if (dn.data_blkaddr != NEW_ADDR &&
1255 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1256 						dn.data_blkaddr,
1257 						DATA_GENERIC_ENHANCE)) {
1258 		err = -EFSCORRUPTED;
1259 		goto put_err;
1260 	}
1261 got_it:
1262 	if (folio_test_uptodate(folio)) {
1263 		folio_unlock(folio);
1264 		return folio;
1265 	}
1266 
1267 	/*
1268 	 * A new dentry page is allocated but not able to be written, since its
1269 	 * new inode page couldn't be allocated due to -ENOSPC.
1270 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1271 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1272 	 * f2fs_init_inode_metadata.
1273 	 */
1274 	if (dn.data_blkaddr == NEW_ADDR) {
1275 		folio_zero_segment(folio, 0, folio_size(folio));
1276 		if (!folio_test_uptodate(folio))
1277 			folio_mark_uptodate(folio);
1278 		folio_unlock(folio);
1279 		return folio;
1280 	}
1281 
1282 	err = f2fs_submit_page_read(inode, folio, dn.data_blkaddr,
1283 						op_flags, for_write);
1284 	if (err)
1285 		goto put_err;
1286 	return folio;
1287 
1288 put_err:
1289 	f2fs_folio_put(folio, true);
1290 	return ERR_PTR(err);
1291 }
1292 
f2fs_find_data_folio(struct inode * inode,pgoff_t index,pgoff_t * next_pgofs)1293 struct folio *f2fs_find_data_folio(struct inode *inode, pgoff_t index,
1294 					pgoff_t *next_pgofs)
1295 {
1296 	struct address_space *mapping = inode->i_mapping;
1297 	struct folio *folio;
1298 
1299 	folio = __filemap_get_folio(mapping, index, FGP_ACCESSED, 0);
1300 	if (IS_ERR(folio))
1301 		goto read;
1302 	if (folio_test_uptodate(folio))
1303 		return folio;
1304 	f2fs_folio_put(folio, false);
1305 
1306 read:
1307 	folio = f2fs_get_read_data_folio(inode, index, 0, false, next_pgofs);
1308 	if (IS_ERR(folio))
1309 		return folio;
1310 
1311 	if (folio_test_uptodate(folio))
1312 		return folio;
1313 
1314 	folio_wait_locked(folio);
1315 	if (unlikely(!folio_test_uptodate(folio))) {
1316 		f2fs_folio_put(folio, false);
1317 		return ERR_PTR(-EIO);
1318 	}
1319 	return folio;
1320 }
1321 
1322 /*
1323  * If it tries to access a hole, return an error.
1324  * Because, the callers, functions in dir.c and GC, should be able to know
1325  * whether this page exists or not.
1326  */
f2fs_get_lock_data_folio(struct inode * inode,pgoff_t index,bool for_write)1327 struct folio *f2fs_get_lock_data_folio(struct inode *inode, pgoff_t index,
1328 							bool for_write)
1329 {
1330 	struct address_space *mapping = inode->i_mapping;
1331 	struct folio *folio;
1332 
1333 	folio = f2fs_get_read_data_folio(inode, index, 0, for_write, NULL);
1334 	if (IS_ERR(folio))
1335 		return folio;
1336 
1337 	/* wait for read completion */
1338 	folio_lock(folio);
1339 	if (unlikely(folio->mapping != mapping || !folio_test_uptodate(folio))) {
1340 		f2fs_folio_put(folio, true);
1341 		return ERR_PTR(-EIO);
1342 	}
1343 	return folio;
1344 }
1345 
1346 /*
1347  * Caller ensures that this data page is never allocated.
1348  * A new zero-filled data page is allocated in the page cache.
1349  *
1350  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1351  * f2fs_unlock_op().
1352  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1353  * ipage should be released by this function.
1354  */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1355 struct page *f2fs_get_new_data_page(struct inode *inode,
1356 		struct page *ipage, pgoff_t index, bool new_i_size)
1357 {
1358 	struct address_space *mapping = inode->i_mapping;
1359 	struct page *page;
1360 	struct dnode_of_data dn;
1361 	int err;
1362 
1363 	page = f2fs_grab_cache_page(mapping, index, true);
1364 	if (!page) {
1365 		/*
1366 		 * before exiting, we should make sure ipage will be released
1367 		 * if any error occur.
1368 		 */
1369 		f2fs_put_page(ipage, 1);
1370 		return ERR_PTR(-ENOMEM);
1371 	}
1372 
1373 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1374 	err = f2fs_reserve_block(&dn, index);
1375 	if (err) {
1376 		f2fs_put_page(page, 1);
1377 		return ERR_PTR(err);
1378 	}
1379 	if (!ipage)
1380 		f2fs_put_dnode(&dn);
1381 
1382 	if (PageUptodate(page))
1383 		goto got_it;
1384 
1385 	if (dn.data_blkaddr == NEW_ADDR) {
1386 		zero_user_segment(page, 0, PAGE_SIZE);
1387 		if (!PageUptodate(page))
1388 			SetPageUptodate(page);
1389 	} else {
1390 		f2fs_put_page(page, 1);
1391 
1392 		/* if ipage exists, blkaddr should be NEW_ADDR */
1393 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1394 		page = f2fs_get_lock_data_page(inode, index, true);
1395 		if (IS_ERR(page))
1396 			return page;
1397 	}
1398 got_it:
1399 	if (new_i_size && i_size_read(inode) <
1400 				((loff_t)(index + 1) << PAGE_SHIFT))
1401 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1402 	return page;
1403 }
1404 
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1405 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1406 {
1407 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1408 	struct f2fs_summary sum;
1409 	struct node_info ni;
1410 	block_t old_blkaddr;
1411 	blkcnt_t count = 1;
1412 	int err;
1413 
1414 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1415 		return -EPERM;
1416 
1417 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1418 	if (err)
1419 		return err;
1420 
1421 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1422 	if (dn->data_blkaddr == NULL_ADDR) {
1423 		err = inc_valid_block_count(sbi, dn->inode, &count, true);
1424 		if (unlikely(err))
1425 			return err;
1426 	}
1427 
1428 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1429 	old_blkaddr = dn->data_blkaddr;
1430 	err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr,
1431 				&dn->data_blkaddr, &sum, seg_type, NULL);
1432 	if (err)
1433 		return err;
1434 
1435 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1436 		f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1);
1437 
1438 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1439 	return 0;
1440 }
1441 
f2fs_map_lock(struct f2fs_sb_info * sbi,int flag)1442 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1443 {
1444 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1445 		f2fs_down_read(&sbi->node_change);
1446 	else
1447 		f2fs_lock_op(sbi);
1448 }
1449 
f2fs_map_unlock(struct f2fs_sb_info * sbi,int flag)1450 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1451 {
1452 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1453 		f2fs_up_read(&sbi->node_change);
1454 	else
1455 		f2fs_unlock_op(sbi);
1456 }
1457 
f2fs_get_block_locked(struct dnode_of_data * dn,pgoff_t index)1458 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1459 {
1460 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1461 	int err = 0;
1462 
1463 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1464 	if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1465 						&dn->data_blkaddr))
1466 		err = f2fs_reserve_block(dn, index);
1467 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1468 
1469 	return err;
1470 }
1471 
f2fs_map_no_dnode(struct inode * inode,struct f2fs_map_blocks * map,struct dnode_of_data * dn,pgoff_t pgoff)1472 static int f2fs_map_no_dnode(struct inode *inode,
1473 		struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1474 		pgoff_t pgoff)
1475 {
1476 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1477 
1478 	/*
1479 	 * There is one exceptional case that read_node_page() may return
1480 	 * -ENOENT due to filesystem has been shutdown or cp_error, return
1481 	 * -EIO in that case.
1482 	 */
1483 	if (map->m_may_create &&
1484 	    (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1485 		return -EIO;
1486 
1487 	if (map->m_next_pgofs)
1488 		*map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1489 	if (map->m_next_extent)
1490 		*map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1491 	return 0;
1492 }
1493 
f2fs_map_blocks_cached(struct inode * inode,struct f2fs_map_blocks * map,int flag)1494 static bool f2fs_map_blocks_cached(struct inode *inode,
1495 		struct f2fs_map_blocks *map, int flag)
1496 {
1497 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1498 	unsigned int maxblocks = map->m_len;
1499 	pgoff_t pgoff = (pgoff_t)map->m_lblk;
1500 	struct extent_info ei = {};
1501 
1502 	if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1503 		return false;
1504 
1505 	map->m_pblk = ei.blk + pgoff - ei.fofs;
1506 	map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1507 	map->m_flags = F2FS_MAP_MAPPED;
1508 	if (map->m_next_extent)
1509 		*map->m_next_extent = pgoff + map->m_len;
1510 
1511 	/* for hardware encryption, but to avoid potential issue in future */
1512 	if (flag == F2FS_GET_BLOCK_DIO)
1513 		f2fs_wait_on_block_writeback_range(inode,
1514 					map->m_pblk, map->m_len);
1515 
1516 	if (f2fs_allow_multi_device_dio(sbi, flag)) {
1517 		int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1518 		struct f2fs_dev_info *dev = &sbi->devs[bidx];
1519 
1520 		map->m_bdev = dev->bdev;
1521 		map->m_pblk -= dev->start_blk;
1522 		map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1523 	} else {
1524 		map->m_bdev = inode->i_sb->s_bdev;
1525 	}
1526 	return true;
1527 }
1528 
map_is_mergeable(struct f2fs_sb_info * sbi,struct f2fs_map_blocks * map,block_t blkaddr,int flag,int bidx,int ofs)1529 static bool map_is_mergeable(struct f2fs_sb_info *sbi,
1530 				struct f2fs_map_blocks *map,
1531 				block_t blkaddr, int flag, int bidx,
1532 				int ofs)
1533 {
1534 	if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1535 		return false;
1536 	if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs))
1537 		return true;
1538 	if (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR)
1539 		return true;
1540 	if (flag == F2FS_GET_BLOCK_PRE_DIO)
1541 		return true;
1542 	if (flag == F2FS_GET_BLOCK_DIO &&
1543 		map->m_pblk == NULL_ADDR && blkaddr == NULL_ADDR)
1544 		return true;
1545 	return false;
1546 }
1547 
1548 /*
1549  * f2fs_map_blocks() tries to find or build mapping relationship which
1550  * maps continuous logical blocks to physical blocks, and return such
1551  * info via f2fs_map_blocks structure.
1552  */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int flag)1553 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1554 {
1555 	unsigned int maxblocks = map->m_len;
1556 	struct dnode_of_data dn;
1557 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1558 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1559 	pgoff_t pgofs, end_offset, end;
1560 	int err = 0, ofs = 1;
1561 	unsigned int ofs_in_node, last_ofs_in_node;
1562 	blkcnt_t prealloc;
1563 	block_t blkaddr;
1564 	unsigned int start_pgofs;
1565 	int bidx = 0;
1566 	bool is_hole;
1567 
1568 	if (!maxblocks)
1569 		return 0;
1570 
1571 	if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1572 		goto out;
1573 
1574 	map->m_bdev = inode->i_sb->s_bdev;
1575 	map->m_multidev_dio =
1576 		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1577 
1578 	map->m_len = 0;
1579 	map->m_flags = 0;
1580 
1581 	/* it only supports block size == page size */
1582 	pgofs =	(pgoff_t)map->m_lblk;
1583 	end = pgofs + maxblocks;
1584 
1585 next_dnode:
1586 	if (map->m_may_create) {
1587 		if (f2fs_lfs_mode(sbi))
1588 			f2fs_balance_fs(sbi, true);
1589 		f2fs_map_lock(sbi, flag);
1590 	}
1591 
1592 	/* When reading holes, we need its node page */
1593 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1594 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1595 	if (err) {
1596 		if (flag == F2FS_GET_BLOCK_BMAP)
1597 			map->m_pblk = 0;
1598 		if (err == -ENOENT)
1599 			err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1600 		goto unlock_out;
1601 	}
1602 
1603 	start_pgofs = pgofs;
1604 	prealloc = 0;
1605 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1606 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1607 
1608 next_block:
1609 	blkaddr = f2fs_data_blkaddr(&dn);
1610 	is_hole = !__is_valid_data_blkaddr(blkaddr);
1611 	if (!is_hole &&
1612 	    !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1613 		err = -EFSCORRUPTED;
1614 		goto sync_out;
1615 	}
1616 
1617 	/* use out-place-update for direct IO under LFS mode */
1618 	if (map->m_may_create && (is_hole ||
1619 		(flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1620 		!f2fs_is_pinned_file(inode)))) {
1621 		if (unlikely(f2fs_cp_error(sbi))) {
1622 			err = -EIO;
1623 			goto sync_out;
1624 		}
1625 
1626 		switch (flag) {
1627 		case F2FS_GET_BLOCK_PRE_AIO:
1628 			if (blkaddr == NULL_ADDR) {
1629 				prealloc++;
1630 				last_ofs_in_node = dn.ofs_in_node;
1631 			}
1632 			break;
1633 		case F2FS_GET_BLOCK_PRE_DIO:
1634 		case F2FS_GET_BLOCK_DIO:
1635 			err = __allocate_data_block(&dn, map->m_seg_type);
1636 			if (err)
1637 				goto sync_out;
1638 			if (flag == F2FS_GET_BLOCK_PRE_DIO)
1639 				file_need_truncate(inode);
1640 			set_inode_flag(inode, FI_APPEND_WRITE);
1641 			break;
1642 		default:
1643 			WARN_ON_ONCE(1);
1644 			err = -EIO;
1645 			goto sync_out;
1646 		}
1647 
1648 		blkaddr = dn.data_blkaddr;
1649 		if (is_hole)
1650 			map->m_flags |= F2FS_MAP_NEW;
1651 	} else if (is_hole) {
1652 		if (f2fs_compressed_file(inode) &&
1653 		    f2fs_sanity_check_cluster(&dn)) {
1654 			err = -EFSCORRUPTED;
1655 			f2fs_handle_error(sbi,
1656 					ERROR_CORRUPTED_CLUSTER);
1657 			goto sync_out;
1658 		}
1659 
1660 		switch (flag) {
1661 		case F2FS_GET_BLOCK_PRECACHE:
1662 			goto sync_out;
1663 		case F2FS_GET_BLOCK_BMAP:
1664 			map->m_pblk = 0;
1665 			goto sync_out;
1666 		case F2FS_GET_BLOCK_FIEMAP:
1667 			if (blkaddr == NULL_ADDR) {
1668 				if (map->m_next_pgofs)
1669 					*map->m_next_pgofs = pgofs + 1;
1670 				goto sync_out;
1671 			}
1672 			break;
1673 		case F2FS_GET_BLOCK_DIO:
1674 			if (map->m_next_pgofs)
1675 				*map->m_next_pgofs = pgofs + 1;
1676 			break;
1677 		default:
1678 			/* for defragment case */
1679 			if (map->m_next_pgofs)
1680 				*map->m_next_pgofs = pgofs + 1;
1681 			goto sync_out;
1682 		}
1683 	}
1684 
1685 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1686 		goto skip;
1687 
1688 	if (map->m_multidev_dio)
1689 		bidx = f2fs_target_device_index(sbi, blkaddr);
1690 
1691 	if (map->m_len == 0) {
1692 		/* reserved delalloc block should be mapped for fiemap. */
1693 		if (blkaddr == NEW_ADDR)
1694 			map->m_flags |= F2FS_MAP_DELALLOC;
1695 		/* DIO READ and hole case, should not map the blocks. */
1696 		if (!(flag == F2FS_GET_BLOCK_DIO && is_hole && !map->m_may_create))
1697 			map->m_flags |= F2FS_MAP_MAPPED;
1698 
1699 		map->m_pblk = blkaddr;
1700 		map->m_len = 1;
1701 
1702 		if (map->m_multidev_dio)
1703 			map->m_bdev = FDEV(bidx).bdev;
1704 	} else if (map_is_mergeable(sbi, map, blkaddr, flag, bidx, ofs)) {
1705 		ofs++;
1706 		map->m_len++;
1707 	} else {
1708 		goto sync_out;
1709 	}
1710 
1711 skip:
1712 	dn.ofs_in_node++;
1713 	pgofs++;
1714 
1715 	/* preallocate blocks in batch for one dnode page */
1716 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1717 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1718 
1719 		dn.ofs_in_node = ofs_in_node;
1720 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1721 		if (err)
1722 			goto sync_out;
1723 
1724 		map->m_len += dn.ofs_in_node - ofs_in_node;
1725 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1726 			err = -ENOSPC;
1727 			goto sync_out;
1728 		}
1729 		dn.ofs_in_node = end_offset;
1730 	}
1731 
1732 	if (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1733 	    map->m_may_create) {
1734 		/* the next block to be allocated may not be contiguous. */
1735 		if (GET_SEGOFF_FROM_SEG0(sbi, blkaddr) % BLKS_PER_SEC(sbi) ==
1736 		    CAP_BLKS_PER_SEC(sbi) - 1)
1737 			goto sync_out;
1738 	}
1739 
1740 	if (pgofs >= end)
1741 		goto sync_out;
1742 	else if (dn.ofs_in_node < end_offset)
1743 		goto next_block;
1744 
1745 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1746 		if (map->m_flags & F2FS_MAP_MAPPED) {
1747 			unsigned int ofs = start_pgofs - map->m_lblk;
1748 
1749 			f2fs_update_read_extent_cache_range(&dn,
1750 				start_pgofs, map->m_pblk + ofs,
1751 				map->m_len - ofs);
1752 		}
1753 	}
1754 
1755 	f2fs_put_dnode(&dn);
1756 
1757 	if (map->m_may_create) {
1758 		f2fs_map_unlock(sbi, flag);
1759 		f2fs_balance_fs(sbi, dn.node_changed);
1760 	}
1761 	goto next_dnode;
1762 
1763 sync_out:
1764 
1765 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1766 		/*
1767 		 * for hardware encryption, but to avoid potential issue
1768 		 * in future
1769 		 */
1770 		f2fs_wait_on_block_writeback_range(inode,
1771 						map->m_pblk, map->m_len);
1772 
1773 		if (map->m_multidev_dio) {
1774 			block_t blk_addr = map->m_pblk;
1775 
1776 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1777 
1778 			map->m_bdev = FDEV(bidx).bdev;
1779 			map->m_pblk -= FDEV(bidx).start_blk;
1780 
1781 			if (map->m_may_create)
1782 				f2fs_update_device_state(sbi, inode->i_ino,
1783 							blk_addr, map->m_len);
1784 
1785 			f2fs_bug_on(sbi, blk_addr + map->m_len >
1786 						FDEV(bidx).end_blk + 1);
1787 		}
1788 	}
1789 
1790 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1791 		if (map->m_flags & F2FS_MAP_MAPPED) {
1792 			unsigned int ofs = start_pgofs - map->m_lblk;
1793 
1794 			f2fs_update_read_extent_cache_range(&dn,
1795 				start_pgofs, map->m_pblk + ofs,
1796 				map->m_len - ofs);
1797 		}
1798 		if (map->m_next_extent)
1799 			*map->m_next_extent = pgofs + 1;
1800 	}
1801 	f2fs_put_dnode(&dn);
1802 unlock_out:
1803 	if (map->m_may_create) {
1804 		f2fs_map_unlock(sbi, flag);
1805 		f2fs_balance_fs(sbi, dn.node_changed);
1806 	}
1807 out:
1808 	trace_f2fs_map_blocks(inode, map, flag, err);
1809 	return err;
1810 }
1811 
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1812 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1813 {
1814 	struct f2fs_map_blocks map;
1815 	block_t last_lblk;
1816 	int err;
1817 
1818 	if (pos + len > i_size_read(inode))
1819 		return false;
1820 
1821 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1822 	map.m_next_pgofs = NULL;
1823 	map.m_next_extent = NULL;
1824 	map.m_seg_type = NO_CHECK_TYPE;
1825 	map.m_may_create = false;
1826 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1827 
1828 	while (map.m_lblk < last_lblk) {
1829 		map.m_len = last_lblk - map.m_lblk;
1830 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1831 		if (err || map.m_len == 0)
1832 			return false;
1833 		map.m_lblk += map.m_len;
1834 	}
1835 	return true;
1836 }
1837 
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1838 static int f2fs_xattr_fiemap(struct inode *inode,
1839 				struct fiemap_extent_info *fieinfo)
1840 {
1841 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1842 	struct page *page;
1843 	struct node_info ni;
1844 	__u64 phys = 0, len;
1845 	__u32 flags;
1846 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1847 	int err = 0;
1848 
1849 	if (f2fs_has_inline_xattr(inode)) {
1850 		int offset;
1851 
1852 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1853 						inode->i_ino, false);
1854 		if (!page)
1855 			return -ENOMEM;
1856 
1857 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1858 		if (err) {
1859 			f2fs_put_page(page, 1);
1860 			return err;
1861 		}
1862 
1863 		phys = F2FS_BLK_TO_BYTES(ni.blk_addr);
1864 		offset = offsetof(struct f2fs_inode, i_addr) +
1865 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1866 					get_inline_xattr_addrs(inode));
1867 
1868 		phys += offset;
1869 		len = inline_xattr_size(inode);
1870 
1871 		f2fs_put_page(page, 1);
1872 
1873 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1874 
1875 		if (!xnid)
1876 			flags |= FIEMAP_EXTENT_LAST;
1877 
1878 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1879 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1880 		if (err)
1881 			return err;
1882 	}
1883 
1884 	if (xnid) {
1885 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1886 		if (!page)
1887 			return -ENOMEM;
1888 
1889 		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1890 		if (err) {
1891 			f2fs_put_page(page, 1);
1892 			return err;
1893 		}
1894 
1895 		phys = F2FS_BLK_TO_BYTES(ni.blk_addr);
1896 		len = inode->i_sb->s_blocksize;
1897 
1898 		f2fs_put_page(page, 1);
1899 
1900 		flags = FIEMAP_EXTENT_LAST;
1901 	}
1902 
1903 	if (phys) {
1904 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1905 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1906 	}
1907 
1908 	return (err < 0 ? err : 0);
1909 }
1910 
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1911 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1912 		u64 start, u64 len)
1913 {
1914 	struct f2fs_map_blocks map;
1915 	sector_t start_blk, last_blk, blk_len, max_len;
1916 	pgoff_t next_pgofs;
1917 	u64 logical = 0, phys = 0, size = 0;
1918 	u32 flags = 0;
1919 	int ret = 0;
1920 	bool compr_cluster = false, compr_appended;
1921 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1922 	unsigned int count_in_cluster = 0;
1923 	loff_t maxbytes;
1924 
1925 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1926 		ret = f2fs_precache_extents(inode);
1927 		if (ret)
1928 			return ret;
1929 	}
1930 
1931 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1932 	if (ret)
1933 		return ret;
1934 
1935 	inode_lock_shared(inode);
1936 
1937 	maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
1938 	if (start > maxbytes) {
1939 		ret = -EFBIG;
1940 		goto out;
1941 	}
1942 
1943 	if (len > maxbytes || (maxbytes - len) < start)
1944 		len = maxbytes - start;
1945 
1946 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1947 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1948 		goto out;
1949 	}
1950 
1951 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1952 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1953 		if (ret != -EAGAIN)
1954 			goto out;
1955 	}
1956 
1957 	start_blk = F2FS_BYTES_TO_BLK(start);
1958 	last_blk = F2FS_BYTES_TO_BLK(start + len - 1);
1959 	blk_len = last_blk - start_blk + 1;
1960 	max_len = F2FS_BYTES_TO_BLK(maxbytes) - start_blk;
1961 
1962 next:
1963 	memset(&map, 0, sizeof(map));
1964 	map.m_lblk = start_blk;
1965 	map.m_len = blk_len;
1966 	map.m_next_pgofs = &next_pgofs;
1967 	map.m_seg_type = NO_CHECK_TYPE;
1968 
1969 	if (compr_cluster) {
1970 		map.m_lblk += 1;
1971 		map.m_len = cluster_size - count_in_cluster;
1972 	}
1973 
1974 	ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1975 	if (ret)
1976 		goto out;
1977 
1978 	/* HOLE */
1979 	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1980 		start_blk = next_pgofs;
1981 
1982 		if (F2FS_BLK_TO_BYTES(start_blk) < maxbytes)
1983 			goto prep_next;
1984 
1985 		flags |= FIEMAP_EXTENT_LAST;
1986 	}
1987 
1988 	/*
1989 	 * current extent may cross boundary of inquiry, increase len to
1990 	 * requery.
1991 	 */
1992 	if (!compr_cluster && (map.m_flags & F2FS_MAP_MAPPED) &&
1993 				map.m_lblk + map.m_len - 1 == last_blk &&
1994 				blk_len != max_len) {
1995 		blk_len = max_len;
1996 		goto next;
1997 	}
1998 
1999 	compr_appended = false;
2000 	/* In a case of compressed cluster, append this to the last extent */
2001 	if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
2002 			!(map.m_flags & F2FS_MAP_FLAGS))) {
2003 		compr_appended = true;
2004 		goto skip_fill;
2005 	}
2006 
2007 	if (size) {
2008 		flags |= FIEMAP_EXTENT_MERGED;
2009 		if (IS_ENCRYPTED(inode))
2010 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2011 
2012 		ret = fiemap_fill_next_extent(fieinfo, logical,
2013 				phys, size, flags);
2014 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2015 		if (ret)
2016 			goto out;
2017 		size = 0;
2018 	}
2019 
2020 	if (start_blk > last_blk)
2021 		goto out;
2022 
2023 skip_fill:
2024 	if (map.m_pblk == COMPRESS_ADDR) {
2025 		compr_cluster = true;
2026 		count_in_cluster = 1;
2027 	} else if (compr_appended) {
2028 		unsigned int appended_blks = cluster_size -
2029 						count_in_cluster + 1;
2030 		size += F2FS_BLK_TO_BYTES(appended_blks);
2031 		start_blk += appended_blks;
2032 		compr_cluster = false;
2033 	} else {
2034 		logical = F2FS_BLK_TO_BYTES(start_blk);
2035 		phys = __is_valid_data_blkaddr(map.m_pblk) ?
2036 			F2FS_BLK_TO_BYTES(map.m_pblk) : 0;
2037 		size = F2FS_BLK_TO_BYTES(map.m_len);
2038 		flags = 0;
2039 
2040 		if (compr_cluster) {
2041 			flags = FIEMAP_EXTENT_ENCODED;
2042 			count_in_cluster += map.m_len;
2043 			if (count_in_cluster == cluster_size) {
2044 				compr_cluster = false;
2045 				size += F2FS_BLKSIZE;
2046 			}
2047 		} else if (map.m_flags & F2FS_MAP_DELALLOC) {
2048 			flags = FIEMAP_EXTENT_UNWRITTEN;
2049 		}
2050 
2051 		start_blk += F2FS_BYTES_TO_BLK(size);
2052 	}
2053 
2054 prep_next:
2055 	cond_resched();
2056 	if (fatal_signal_pending(current))
2057 		ret = -EINTR;
2058 	else
2059 		goto next;
2060 out:
2061 	if (ret == 1)
2062 		ret = 0;
2063 
2064 	inode_unlock_shared(inode);
2065 	return ret;
2066 }
2067 
f2fs_readpage_limit(struct inode * inode)2068 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2069 {
2070 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2071 		return F2FS_BLK_TO_BYTES(max_file_blocks(inode));
2072 
2073 	return i_size_read(inode);
2074 }
2075 
f2fs_ra_op_flags(struct readahead_control * rac)2076 static inline blk_opf_t f2fs_ra_op_flags(struct readahead_control *rac)
2077 {
2078 	blk_opf_t op_flag = rac ? REQ_RAHEAD : 0;
2079 
2080 	trace_android_vh_f2fs_ra_op_flags(&op_flag, rac);
2081 	return op_flag;
2082 }
2083 
f2fs_read_single_page(struct inode * inode,struct folio * folio,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,struct readahead_control * rac)2084 static int f2fs_read_single_page(struct inode *inode, struct folio *folio,
2085 					unsigned nr_pages,
2086 					struct f2fs_map_blocks *map,
2087 					struct bio **bio_ret,
2088 					sector_t *last_block_in_bio,
2089 					struct readahead_control *rac)
2090 {
2091 	struct bio *bio = *bio_ret;
2092 	const unsigned int blocksize = F2FS_BLKSIZE;
2093 	sector_t block_in_file;
2094 	sector_t last_block;
2095 	sector_t last_block_in_file;
2096 	sector_t block_nr;
2097 	pgoff_t index = folio_index(folio);
2098 	int ret = 0;
2099 
2100 	block_in_file = (sector_t)index;
2101 	last_block = block_in_file + nr_pages;
2102 	last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) +
2103 							blocksize - 1);
2104 	if (last_block > last_block_in_file)
2105 		last_block = last_block_in_file;
2106 
2107 	/* just zeroing out page which is beyond EOF */
2108 	if (block_in_file >= last_block)
2109 		goto zero_out;
2110 	/*
2111 	 * Map blocks using the previous result first.
2112 	 */
2113 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2114 			block_in_file > map->m_lblk &&
2115 			block_in_file < (map->m_lblk + map->m_len))
2116 		goto got_it;
2117 
2118 	/*
2119 	 * Then do more f2fs_map_blocks() calls until we are
2120 	 * done with this page.
2121 	 */
2122 	map->m_lblk = block_in_file;
2123 	map->m_len = last_block - block_in_file;
2124 
2125 	ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2126 	if (ret)
2127 		goto out;
2128 got_it:
2129 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2130 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2131 		folio_set_mappedtodisk(folio);
2132 
2133 		if (!!folio_test_uptodate(folio) && (!folio_test_swapcache(folio) &&
2134 					!cleancache_get_page(&folio->page))) {
2135 			folio_mark_uptodate(folio);
2136 			goto confused;
2137 		}
2138 
2139 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2140 						DATA_GENERIC_ENHANCE_READ)) {
2141 			ret = -EFSCORRUPTED;
2142 			goto out;
2143 		}
2144 	} else {
2145 zero_out:
2146 		folio_zero_segment(folio, 0, folio_size(folio));
2147 		if (f2fs_need_verity(inode, index) &&
2148 		    !fsverity_verify_folio(folio)) {
2149 			ret = -EIO;
2150 			goto out;
2151 		}
2152 		if (!folio_test_uptodate(folio))
2153 			folio_mark_uptodate(folio);
2154 		folio_unlock(folio);
2155 		goto out;
2156 	}
2157 
2158 	/*
2159 	 * This page will go to BIO.  Do we need to send this
2160 	 * BIO off first?
2161 	 */
2162 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2163 				       *last_block_in_bio, block_nr) ||
2164 		    !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) {
2165 submit_and_realloc:
2166 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2167 		bio = NULL;
2168 	}
2169 	if (bio == NULL) {
2170 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2171 				f2fs_ra_op_flags(rac), index,
2172 				false);
2173 		if (IS_ERR(bio)) {
2174 			ret = PTR_ERR(bio);
2175 			bio = NULL;
2176 			goto out;
2177 		}
2178 	}
2179 
2180 	/*
2181 	 * If the page is under writeback, we need to wait for
2182 	 * its completion to see the correct decrypted data.
2183 	 */
2184 	f2fs_wait_on_block_writeback(inode, block_nr);
2185 
2186 	if (!bio_add_folio(bio, folio, blocksize, 0))
2187 		goto submit_and_realloc;
2188 
2189 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2190 	f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2191 							F2FS_BLKSIZE);
2192 	*last_block_in_bio = block_nr;
2193 	goto out;
2194 confused:
2195 	if (bio) {
2196 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2197 		bio = NULL;
2198 	}
2199 	folio_unlock(folio);
2200 out:
2201 	*bio_ret = bio;
2202 	return ret;
2203 }
2204 
2205 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,struct readahead_control * rac,bool for_write)2206 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2207 				unsigned nr_pages, sector_t *last_block_in_bio,
2208 				struct readahead_control *rac, bool for_write)
2209 {
2210 	struct dnode_of_data dn;
2211 	struct inode *inode = cc->inode;
2212 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2213 	struct bio *bio = *bio_ret;
2214 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2215 	sector_t last_block_in_file;
2216 	const unsigned int blocksize = F2FS_BLKSIZE;
2217 	struct decompress_io_ctx *dic = NULL;
2218 	struct extent_info ei = {};
2219 	bool from_dnode = true;
2220 	int i;
2221 	int ret = 0;
2222 
2223 	if (unlikely(f2fs_cp_error(sbi))) {
2224 		ret = -EIO;
2225 		from_dnode = false;
2226 		goto out_put_dnode;
2227 	}
2228 
2229 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2230 
2231 	last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) +
2232 							blocksize - 1);
2233 
2234 	/* get rid of pages beyond EOF */
2235 	for (i = 0; i < cc->cluster_size; i++) {
2236 		struct page *page = cc->rpages[i];
2237 		struct folio *folio;
2238 
2239 		if (!page)
2240 			continue;
2241 
2242 		folio = page_folio(page);
2243 		if ((sector_t)folio->index >= last_block_in_file) {
2244 			folio_zero_segment(folio, 0, folio_size(folio));
2245 			if (!folio_test_uptodate(folio))
2246 				folio_mark_uptodate(folio);
2247 		} else if (!folio_test_uptodate(folio)) {
2248 			continue;
2249 		}
2250 		folio_unlock(folio);
2251 		if (for_write)
2252 			folio_put(folio);
2253 		cc->rpages[i] = NULL;
2254 		cc->nr_rpages--;
2255 	}
2256 
2257 	/* we are done since all pages are beyond EOF */
2258 	if (f2fs_cluster_is_empty(cc))
2259 		goto out;
2260 
2261 	if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2262 		from_dnode = false;
2263 
2264 	if (!from_dnode)
2265 		goto skip_reading_dnode;
2266 
2267 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2268 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2269 	if (ret)
2270 		goto out;
2271 
2272 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2273 
2274 skip_reading_dnode:
2275 	for (i = 1; i < cc->cluster_size; i++) {
2276 		block_t blkaddr;
2277 
2278 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2279 					dn.ofs_in_node + i) :
2280 					ei.blk + i - 1;
2281 
2282 		if (!__is_valid_data_blkaddr(blkaddr))
2283 			break;
2284 
2285 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2286 			ret = -EFAULT;
2287 			goto out_put_dnode;
2288 		}
2289 		cc->nr_cpages++;
2290 
2291 		if (!from_dnode && i >= ei.c_len)
2292 			break;
2293 	}
2294 
2295 	/* nothing to decompress */
2296 	if (cc->nr_cpages == 0) {
2297 		ret = 0;
2298 		goto out_put_dnode;
2299 	}
2300 
2301 	dic = f2fs_alloc_dic(cc);
2302 	if (IS_ERR(dic)) {
2303 		ret = PTR_ERR(dic);
2304 		goto out_put_dnode;
2305 	}
2306 
2307 	for (i = 0; i < cc->nr_cpages; i++) {
2308 		struct folio *folio = page_folio(dic->cpages[i]);
2309 		block_t blkaddr;
2310 		struct bio_post_read_ctx *ctx;
2311 
2312 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2313 					dn.ofs_in_node + i + 1) :
2314 					ei.blk + i;
2315 
2316 		f2fs_wait_on_block_writeback(inode, blkaddr);
2317 
2318 		if (f2fs_load_compressed_page(sbi, folio_page(folio, 0),
2319 								blkaddr)) {
2320 			if (atomic_dec_and_test(&dic->remaining_pages)) {
2321 				f2fs_decompress_cluster(dic, true);
2322 				break;
2323 			}
2324 			continue;
2325 		}
2326 
2327 		if (bio && (!page_is_mergeable(sbi, bio,
2328 					*last_block_in_bio, blkaddr) ||
2329 		    !f2fs_crypt_mergeable_bio(bio, inode, folio->index, NULL))) {
2330 submit_and_realloc:
2331 			f2fs_submit_read_bio(sbi, bio, DATA);
2332 			bio = NULL;
2333 		}
2334 
2335 		if (!bio) {
2336 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2337 					f2fs_ra_op_flags(rac),
2338 					folio->index, for_write);
2339 			if (IS_ERR(bio)) {
2340 				ret = PTR_ERR(bio);
2341 				f2fs_decompress_end_io(dic, ret, true);
2342 				f2fs_put_dnode(&dn);
2343 				*bio_ret = NULL;
2344 				return ret;
2345 			}
2346 		}
2347 
2348 		if (!bio_add_folio(bio, folio, blocksize, 0))
2349 			goto submit_and_realloc;
2350 
2351 		ctx = get_post_read_ctx(bio);
2352 		ctx->enabled_steps |= STEP_DECOMPRESS;
2353 		refcount_inc(&dic->refcnt);
2354 
2355 		inc_page_count(sbi, F2FS_RD_DATA);
2356 		f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2357 		*last_block_in_bio = blkaddr;
2358 	}
2359 
2360 	if (from_dnode)
2361 		f2fs_put_dnode(&dn);
2362 
2363 	*bio_ret = bio;
2364 	return 0;
2365 
2366 out_put_dnode:
2367 	if (from_dnode)
2368 		f2fs_put_dnode(&dn);
2369 out:
2370 	for (i = 0; i < cc->cluster_size; i++) {
2371 		if (cc->rpages[i]) {
2372 			ClearPageUptodate(cc->rpages[i]);
2373 			unlock_page(cc->rpages[i]);
2374 		}
2375 	}
2376 	*bio_ret = bio;
2377 	return ret;
2378 }
2379 #endif
2380 
2381 /*
2382  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2383  * Major change was from block_size == page_size in f2fs by default.
2384  */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct folio * folio)2385 static int f2fs_mpage_readpages(struct inode *inode,
2386 		struct readahead_control *rac, struct folio *folio)
2387 {
2388 	struct bio *bio = NULL;
2389 	sector_t last_block_in_bio = 0;
2390 	struct f2fs_map_blocks map;
2391 #ifdef CONFIG_F2FS_FS_COMPRESSION
2392 	struct compress_ctx cc = {
2393 		.inode = inode,
2394 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2395 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2396 		.cluster_idx = NULL_CLUSTER,
2397 		.rpages = NULL,
2398 		.cpages = NULL,
2399 		.nr_rpages = 0,
2400 		.nr_cpages = 0,
2401 	};
2402 	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2403 	pgoff_t index;
2404 #endif
2405 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2406 	unsigned max_nr_pages = nr_pages;
2407 	int ret = 0;
2408 
2409 	map.m_pblk = 0;
2410 	map.m_lblk = 0;
2411 	map.m_len = 0;
2412 	map.m_flags = 0;
2413 	map.m_next_pgofs = NULL;
2414 	map.m_next_extent = NULL;
2415 	map.m_seg_type = NO_CHECK_TYPE;
2416 	map.m_may_create = false;
2417 
2418 	for (; nr_pages; nr_pages--) {
2419 		if (rac) {
2420 			folio = readahead_folio(rac);
2421 			prefetchw(&folio->flags);
2422 		}
2423 
2424 #ifdef CONFIG_F2FS_FS_COMPRESSION
2425 		index = folio_index(folio);
2426 
2427 		if (!f2fs_compressed_file(inode))
2428 			goto read_single_page;
2429 
2430 		/* there are remained compressed pages, submit them */
2431 		if (!f2fs_cluster_can_merge_page(&cc, index)) {
2432 			ret = f2fs_read_multi_pages(&cc, &bio,
2433 						max_nr_pages,
2434 						&last_block_in_bio,
2435 						rac, false);
2436 			f2fs_destroy_compress_ctx(&cc, false);
2437 			if (ret)
2438 				goto set_error_page;
2439 		}
2440 		if (cc.cluster_idx == NULL_CLUSTER) {
2441 			if (nc_cluster_idx == index >> cc.log_cluster_size)
2442 				goto read_single_page;
2443 
2444 			ret = f2fs_is_compressed_cluster(inode, index);
2445 			if (ret < 0)
2446 				goto set_error_page;
2447 			else if (!ret) {
2448 				nc_cluster_idx =
2449 					index >> cc.log_cluster_size;
2450 				goto read_single_page;
2451 			}
2452 
2453 			nc_cluster_idx = NULL_CLUSTER;
2454 		}
2455 		ret = f2fs_init_compress_ctx(&cc);
2456 		if (ret)
2457 			goto set_error_page;
2458 
2459 		f2fs_compress_ctx_add_page(&cc, folio);
2460 
2461 		goto next_page;
2462 read_single_page:
2463 #endif
2464 
2465 		ret = f2fs_read_single_page(inode, folio, max_nr_pages, &map,
2466 					&bio, &last_block_in_bio, rac);
2467 		if (ret) {
2468 #ifdef CONFIG_F2FS_FS_COMPRESSION
2469 set_error_page:
2470 #endif
2471 			folio_zero_segment(folio, 0, folio_size(folio));
2472 			folio_unlock(folio);
2473 		}
2474 #ifdef CONFIG_F2FS_FS_COMPRESSION
2475 next_page:
2476 #endif
2477 
2478 #ifdef CONFIG_F2FS_FS_COMPRESSION
2479 		if (f2fs_compressed_file(inode)) {
2480 			/* last page */
2481 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2482 				ret = f2fs_read_multi_pages(&cc, &bio,
2483 							max_nr_pages,
2484 							&last_block_in_bio,
2485 							rac, false);
2486 				f2fs_destroy_compress_ctx(&cc, false);
2487 			}
2488 		}
2489 #endif
2490 	}
2491 	if (bio)
2492 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2493 	return ret;
2494 }
2495 
f2fs_read_data_folio(struct file * file,struct folio * folio)2496 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2497 {
2498 	struct inode *inode = folio->mapping->host;
2499 	int ret = -EAGAIN;
2500 
2501 	trace_f2fs_readpage(folio, DATA);
2502 
2503 	if (!f2fs_is_compress_backend_ready(inode)) {
2504 		folio_unlock(folio);
2505 		return -EOPNOTSUPP;
2506 	}
2507 
2508 	/* If the file has inline data, try to read it directly */
2509 	if (f2fs_has_inline_data(inode))
2510 		ret = f2fs_read_inline_data(inode, folio);
2511 	if (ret == -EAGAIN)
2512 		ret = f2fs_mpage_readpages(inode, NULL, folio);
2513 	return ret;
2514 }
2515 
f2fs_readahead(struct readahead_control * rac)2516 static void f2fs_readahead(struct readahead_control *rac)
2517 {
2518 	struct inode *inode = rac->mapping->host;
2519 
2520 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2521 
2522 	if (!f2fs_is_compress_backend_ready(inode))
2523 		return;
2524 
2525 	/* If the file has inline data, skip readahead */
2526 	if (f2fs_has_inline_data(inode))
2527 		return;
2528 
2529 	f2fs_mpage_readpages(inode, rac, NULL);
2530 }
2531 
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2532 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2533 {
2534 	struct inode *inode = fio->page->mapping->host;
2535 	struct page *mpage, *page;
2536 	gfp_t gfp_flags = GFP_NOFS;
2537 
2538 	if (!f2fs_encrypted_file(inode))
2539 		return 0;
2540 
2541 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2542 
2543 	if (fscrypt_inode_uses_inline_crypto(inode))
2544 		return 0;
2545 
2546 retry_encrypt:
2547 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2548 					PAGE_SIZE, 0, gfp_flags);
2549 	if (IS_ERR(fio->encrypted_page)) {
2550 		/* flush pending IOs and wait for a while in the ENOMEM case */
2551 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2552 			f2fs_flush_merged_writes(fio->sbi);
2553 			memalloc_retry_wait(GFP_NOFS);
2554 			gfp_flags |= __GFP_NOFAIL;
2555 			goto retry_encrypt;
2556 		}
2557 		return PTR_ERR(fio->encrypted_page);
2558 	}
2559 
2560 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2561 	if (mpage) {
2562 		if (PageUptodate(mpage))
2563 			memcpy(page_address(mpage),
2564 				page_address(fio->encrypted_page), PAGE_SIZE);
2565 		f2fs_put_page(mpage, 1);
2566 	}
2567 	return 0;
2568 }
2569 
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2570 static inline bool check_inplace_update_policy(struct inode *inode,
2571 				struct f2fs_io_info *fio)
2572 {
2573 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2574 
2575 	if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2576 	    is_inode_flag_set(inode, FI_OPU_WRITE))
2577 		return false;
2578 	if (IS_F2FS_IPU_FORCE(sbi))
2579 		return true;
2580 	if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2581 		return true;
2582 	if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2583 		return true;
2584 	if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2585 	    utilization(sbi) > SM_I(sbi)->min_ipu_util)
2586 		return true;
2587 
2588 	/*
2589 	 * IPU for rewrite async pages
2590 	 */
2591 	if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2592 	    !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2593 		return true;
2594 
2595 	/* this is only set during fdatasync */
2596 	if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2597 		return true;
2598 
2599 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2600 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2601 		return true;
2602 
2603 	return false;
2604 }
2605 
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2606 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2607 {
2608 	/* swap file is migrating in aligned write mode */
2609 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2610 		return false;
2611 
2612 	if (f2fs_is_pinned_file(inode))
2613 		return true;
2614 
2615 	/* if this is cold file, we should overwrite to avoid fragmentation */
2616 	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2617 		return true;
2618 
2619 	return check_inplace_update_policy(inode, fio);
2620 }
2621 
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2622 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2623 {
2624 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2625 
2626 	/* The below cases were checked when setting it. */
2627 	if (f2fs_is_pinned_file(inode))
2628 		return false;
2629 	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2630 		return true;
2631 	if (f2fs_lfs_mode(sbi))
2632 		return true;
2633 	if (S_ISDIR(inode->i_mode))
2634 		return true;
2635 	if (IS_NOQUOTA(inode))
2636 		return true;
2637 	if (f2fs_used_in_atomic_write(inode))
2638 		return true;
2639 	/* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */
2640 	if (f2fs_compressed_file(inode) &&
2641 		F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER &&
2642 		is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2643 		return true;
2644 
2645 	/* swap file is migrating in aligned write mode */
2646 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2647 		return true;
2648 
2649 	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2650 		return true;
2651 
2652 	if (fio) {
2653 		if (page_private_gcing(fio->page))
2654 			return true;
2655 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2656 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2657 			return true;
2658 	}
2659 	return false;
2660 }
2661 
need_inplace_update(struct f2fs_io_info * fio)2662 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2663 {
2664 	struct inode *inode = fio->page->mapping->host;
2665 
2666 	if (f2fs_should_update_outplace(inode, fio))
2667 		return false;
2668 
2669 	return f2fs_should_update_inplace(inode, fio);
2670 }
2671 
f2fs_do_write_data_page(struct f2fs_io_info * fio)2672 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2673 {
2674 	struct folio *folio = page_folio(fio->page);
2675 	struct inode *inode = folio->mapping->host;
2676 	struct dnode_of_data dn;
2677 	struct node_info ni;
2678 	bool ipu_force = false;
2679 	bool atomic_commit;
2680 	int err = 0;
2681 
2682 	/* Use COW inode to make dnode_of_data for atomic write */
2683 	atomic_commit = f2fs_is_atomic_file(inode) &&
2684 				page_private_atomic(folio_page(folio, 0));
2685 	if (atomic_commit)
2686 		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2687 	else
2688 		set_new_dnode(&dn, inode, NULL, NULL, 0);
2689 
2690 	if (need_inplace_update(fio) &&
2691 	    f2fs_lookup_read_extent_cache_block(inode, folio->index,
2692 						&fio->old_blkaddr)) {
2693 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2694 						DATA_GENERIC_ENHANCE))
2695 			return -EFSCORRUPTED;
2696 
2697 		ipu_force = true;
2698 		fio->need_lock = LOCK_DONE;
2699 		goto got_it;
2700 	}
2701 
2702 	/* Deadlock due to between page->lock and f2fs_lock_op */
2703 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2704 		return -EAGAIN;
2705 
2706 	err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
2707 	if (err)
2708 		goto out;
2709 
2710 	fio->old_blkaddr = dn.data_blkaddr;
2711 
2712 	/* This page is already truncated */
2713 	if (fio->old_blkaddr == NULL_ADDR) {
2714 		folio_clear_uptodate(folio);
2715 		clear_page_private_gcing(folio_page(folio, 0));
2716 		goto out_writepage;
2717 	}
2718 got_it:
2719 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2720 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2721 						DATA_GENERIC_ENHANCE)) {
2722 		err = -EFSCORRUPTED;
2723 		goto out_writepage;
2724 	}
2725 
2726 	/* wait for GCed page writeback via META_MAPPING */
2727 	if (fio->meta_gc)
2728 		f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2729 
2730 	/*
2731 	 * If current allocation needs SSR,
2732 	 * it had better in-place writes for updated data.
2733 	 */
2734 	if (ipu_force ||
2735 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2736 					need_inplace_update(fio))) {
2737 		err = f2fs_encrypt_one_page(fio);
2738 		if (err)
2739 			goto out_writepage;
2740 
2741 		folio_start_writeback(folio);
2742 		f2fs_put_dnode(&dn);
2743 		if (fio->need_lock == LOCK_REQ)
2744 			f2fs_unlock_op(fio->sbi);
2745 		err = f2fs_inplace_write_data(fio);
2746 		if (err) {
2747 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2748 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2749 			folio_end_writeback(folio);
2750 		} else {
2751 			set_inode_flag(inode, FI_UPDATE_WRITE);
2752 		}
2753 		trace_f2fs_do_write_data_page(folio, IPU);
2754 		return err;
2755 	}
2756 
2757 	if (fio->need_lock == LOCK_RETRY) {
2758 		if (!f2fs_trylock_op(fio->sbi)) {
2759 			err = -EAGAIN;
2760 			goto out_writepage;
2761 		}
2762 		fio->need_lock = LOCK_REQ;
2763 	}
2764 
2765 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2766 	if (err)
2767 		goto out_writepage;
2768 
2769 	fio->version = ni.version;
2770 
2771 	err = f2fs_encrypt_one_page(fio);
2772 	if (err)
2773 		goto out_writepage;
2774 
2775 	folio_start_writeback(folio);
2776 
2777 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2778 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2779 
2780 	/* LFS mode write path */
2781 	f2fs_outplace_write_data(&dn, fio);
2782 	trace_f2fs_do_write_data_page(folio, OPU);
2783 	set_inode_flag(inode, FI_APPEND_WRITE);
2784 	if (atomic_commit)
2785 		clear_page_private_atomic(folio_page(folio, 0));
2786 out_writepage:
2787 	f2fs_put_dnode(&dn);
2788 out:
2789 	if (fio->need_lock == LOCK_REQ)
2790 		f2fs_unlock_op(fio->sbi);
2791 	return err;
2792 }
2793 
f2fs_write_single_data_page(struct folio * folio,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2794 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
2795 				struct bio **bio,
2796 				sector_t *last_block,
2797 				struct writeback_control *wbc,
2798 				enum iostat_type io_type,
2799 				int compr_blocks,
2800 				bool allow_balance)
2801 {
2802 	struct inode *inode = folio->mapping->host;
2803 	struct page *page = folio_page(folio, 0);
2804 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2805 	loff_t i_size = i_size_read(inode);
2806 	const pgoff_t end_index = ((unsigned long long)i_size)
2807 							>> PAGE_SHIFT;
2808 	loff_t psize = (loff_t)(folio->index + 1) << PAGE_SHIFT;
2809 	unsigned offset = 0;
2810 	bool need_balance_fs = false;
2811 	bool quota_inode = IS_NOQUOTA(inode);
2812 	int err = 0;
2813 	struct f2fs_io_info fio = {
2814 		.sbi = sbi,
2815 		.ino = inode->i_ino,
2816 		.type = DATA,
2817 		.op = REQ_OP_WRITE,
2818 		.op_flags = wbc_to_write_flags(wbc),
2819 		.old_blkaddr = NULL_ADDR,
2820 		.page = page,
2821 		.encrypted_page = NULL,
2822 		.submitted = 0,
2823 		.compr_blocks = compr_blocks,
2824 		.need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2825 		.meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0,
2826 		.io_type = io_type,
2827 		.io_wbc = wbc,
2828 		.bio = bio,
2829 		.last_block = last_block,
2830 	};
2831 
2832 	trace_f2fs_writepage(folio, DATA);
2833 
2834 	/* we should bypass data pages to proceed the kworker jobs */
2835 	if (unlikely(f2fs_cp_error(sbi))) {
2836 		mapping_set_error(folio->mapping, -EIO);
2837 		/*
2838 		 * don't drop any dirty dentry pages for keeping lastest
2839 		 * directory structure.
2840 		 */
2841 		if (S_ISDIR(inode->i_mode) &&
2842 				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2843 			goto redirty_out;
2844 
2845 		/* keep data pages in remount-ro mode */
2846 		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2847 			goto redirty_out;
2848 		goto out;
2849 	}
2850 
2851 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2852 		goto redirty_out;
2853 
2854 	if (folio->index < end_index ||
2855 			f2fs_verity_in_progress(inode) ||
2856 			compr_blocks)
2857 		goto write;
2858 
2859 	/*
2860 	 * If the offset is out-of-range of file size,
2861 	 * this page does not have to be written to disk.
2862 	 */
2863 	offset = i_size & (PAGE_SIZE - 1);
2864 	if ((folio->index >= end_index + 1) || !offset)
2865 		goto out;
2866 
2867 	folio_zero_segment(folio, offset, folio_size(folio));
2868 write:
2869 	/* Dentry/quota blocks are controlled by checkpoint */
2870 	if (S_ISDIR(inode->i_mode) || quota_inode) {
2871 		/*
2872 		 * We need to wait for node_write to avoid block allocation during
2873 		 * checkpoint. This can only happen to quota writes which can cause
2874 		 * the below discard race condition.
2875 		 */
2876 		if (quota_inode)
2877 			f2fs_down_read(&sbi->node_write);
2878 
2879 		fio.need_lock = LOCK_DONE;
2880 		err = f2fs_do_write_data_page(&fio);
2881 
2882 		if (quota_inode)
2883 			f2fs_up_read(&sbi->node_write);
2884 
2885 		goto done;
2886 	}
2887 
2888 	if (!wbc->for_reclaim)
2889 		need_balance_fs = true;
2890 	else if (has_not_enough_free_secs(sbi, 0, 0))
2891 		goto redirty_out;
2892 	else
2893 		set_inode_flag(inode, FI_HOT_DATA);
2894 
2895 	err = -EAGAIN;
2896 	if (f2fs_has_inline_data(inode)) {
2897 		err = f2fs_write_inline_data(inode, folio);
2898 		if (!err)
2899 			goto out;
2900 	}
2901 
2902 	if (err == -EAGAIN) {
2903 		err = f2fs_do_write_data_page(&fio);
2904 		if (err == -EAGAIN) {
2905 			f2fs_bug_on(sbi, compr_blocks);
2906 			fio.need_lock = LOCK_REQ;
2907 			err = f2fs_do_write_data_page(&fio);
2908 		}
2909 	}
2910 
2911 	if (err) {
2912 		file_set_keep_isize(inode);
2913 	} else {
2914 		spin_lock(&F2FS_I(inode)->i_size_lock);
2915 		if (F2FS_I(inode)->last_disk_size < psize)
2916 			F2FS_I(inode)->last_disk_size = psize;
2917 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2918 	}
2919 
2920 done:
2921 	if (err && err != -ENOENT)
2922 		goto redirty_out;
2923 
2924 out:
2925 	inode_dec_dirty_pages(inode);
2926 	if (err) {
2927 		folio_clear_uptodate(folio);
2928 		clear_page_private_gcing(page);
2929 	}
2930 
2931 	if (wbc->for_reclaim) {
2932 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2933 		clear_inode_flag(inode, FI_HOT_DATA);
2934 		f2fs_remove_dirty_inode(inode);
2935 		submitted = NULL;
2936 	}
2937 	folio_unlock(folio);
2938 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2939 			!F2FS_I(inode)->wb_task && allow_balance)
2940 		f2fs_balance_fs(sbi, need_balance_fs);
2941 
2942 	if (unlikely(f2fs_cp_error(sbi))) {
2943 		f2fs_submit_merged_write(sbi, DATA);
2944 		if (bio && *bio)
2945 			f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2946 		submitted = NULL;
2947 	}
2948 
2949 	if (submitted)
2950 		*submitted = fio.submitted;
2951 
2952 	return 0;
2953 
2954 redirty_out:
2955 	folio_redirty_for_writepage(wbc, folio);
2956 	/*
2957 	 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2958 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2959 	 * file_write_and_wait_range() will see EIO error, which is critical
2960 	 * to return value of fsync() followed by atomic_write failure to user.
2961 	 */
2962 	if (!err || wbc->for_reclaim)
2963 		return AOP_WRITEPAGE_ACTIVATE;
2964 	folio_unlock(folio);
2965 	return err;
2966 }
2967 
2968 /*
2969  * This function was copied from write_cache_pages from mm/page-writeback.c.
2970  * The major change is making write step of cold data page separately from
2971  * warm/hot data page.
2972  */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2973 static int f2fs_write_cache_pages(struct address_space *mapping,
2974 					struct writeback_control *wbc,
2975 					enum iostat_type io_type)
2976 {
2977 	int ret = 0;
2978 	int done = 0, retry = 0;
2979 	struct page *pages_local[F2FS_ONSTACK_PAGES];
2980 	struct page **pages = pages_local;
2981 	struct folio_batch fbatch;
2982 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2983 	struct bio *bio = NULL;
2984 	sector_t last_block;
2985 #ifdef CONFIG_F2FS_FS_COMPRESSION
2986 	struct inode *inode = mapping->host;
2987 	struct compress_ctx cc = {
2988 		.inode = inode,
2989 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2990 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2991 		.cluster_idx = NULL_CLUSTER,
2992 		.rpages = NULL,
2993 		.nr_rpages = 0,
2994 		.cpages = NULL,
2995 		.valid_nr_cpages = 0,
2996 		.rbuf = NULL,
2997 		.cbuf = NULL,
2998 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2999 		.private = NULL,
3000 	};
3001 #endif
3002 	int nr_folios, p, idx;
3003 	int nr_pages;
3004 	unsigned int max_pages = F2FS_ONSTACK_PAGES;
3005 	pgoff_t index;
3006 	pgoff_t end;		/* Inclusive */
3007 	pgoff_t done_index;
3008 	int range_whole = 0;
3009 	xa_mark_t tag;
3010 	int nwritten = 0;
3011 	int submitted = 0;
3012 	int i;
3013 
3014 #ifdef CONFIG_F2FS_FS_COMPRESSION
3015 	if (f2fs_compressed_file(inode) &&
3016 		1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
3017 		pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
3018 				cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
3019 		max_pages = 1 << cc.log_cluster_size;
3020 	}
3021 #endif
3022 
3023 	folio_batch_init(&fbatch);
3024 
3025 	if (get_dirty_pages(mapping->host) <=
3026 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3027 		set_inode_flag(mapping->host, FI_HOT_DATA);
3028 	else
3029 		clear_inode_flag(mapping->host, FI_HOT_DATA);
3030 
3031 	if (wbc->range_cyclic) {
3032 		index = mapping->writeback_index; /* prev offset */
3033 		end = -1;
3034 	} else {
3035 		index = wbc->range_start >> PAGE_SHIFT;
3036 		end = wbc->range_end >> PAGE_SHIFT;
3037 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3038 			range_whole = 1;
3039 	}
3040 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3041 		tag = PAGECACHE_TAG_TOWRITE;
3042 	else
3043 		tag = PAGECACHE_TAG_DIRTY;
3044 retry:
3045 	retry = 0;
3046 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3047 		tag_pages_for_writeback(mapping, index, end);
3048 	done_index = index;
3049 	while (!done && !retry && (index <= end)) {
3050 		nr_pages = 0;
3051 again:
3052 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
3053 				tag, &fbatch);
3054 		if (nr_folios == 0) {
3055 			if (nr_pages)
3056 				goto write;
3057 			break;
3058 		}
3059 
3060 		for (i = 0; i < nr_folios; i++) {
3061 			struct folio *folio = fbatch.folios[i];
3062 
3063 			idx = 0;
3064 			p = folio_nr_pages(folio);
3065 add_more:
3066 			pages[nr_pages] = folio_page(folio, idx);
3067 			folio_get(folio);
3068 			if (++nr_pages == max_pages) {
3069 				index = folio->index + idx + 1;
3070 				folio_batch_release(&fbatch);
3071 				goto write;
3072 			}
3073 			if (++idx < p)
3074 				goto add_more;
3075 		}
3076 		folio_batch_release(&fbatch);
3077 		goto again;
3078 write:
3079 		for (i = 0; i < nr_pages; i++) {
3080 			struct page *page = pages[i];
3081 			struct folio *folio = page_folio(page);
3082 			bool need_readd;
3083 readd:
3084 			need_readd = false;
3085 #ifdef CONFIG_F2FS_FS_COMPRESSION
3086 			if (f2fs_compressed_file(inode)) {
3087 				void *fsdata = NULL;
3088 				struct page *pagep;
3089 				int ret2;
3090 
3091 				ret = f2fs_init_compress_ctx(&cc);
3092 				if (ret) {
3093 					done = 1;
3094 					break;
3095 				}
3096 
3097 				if (!f2fs_cluster_can_merge_page(&cc,
3098 								folio->index)) {
3099 					ret = f2fs_write_multi_pages(&cc,
3100 						&submitted, wbc, io_type);
3101 					if (!ret)
3102 						need_readd = true;
3103 					goto result;
3104 				}
3105 
3106 				if (unlikely(f2fs_cp_error(sbi)))
3107 					goto lock_folio;
3108 
3109 				if (!f2fs_cluster_is_empty(&cc))
3110 					goto lock_folio;
3111 
3112 				if (f2fs_all_cluster_page_ready(&cc,
3113 					pages, i, nr_pages, true))
3114 					goto lock_folio;
3115 
3116 				ret2 = f2fs_prepare_compress_overwrite(
3117 							inode, &pagep,
3118 							folio->index, &fsdata);
3119 				if (ret2 < 0) {
3120 					ret = ret2;
3121 					done = 1;
3122 					break;
3123 				} else if (ret2 &&
3124 					(!f2fs_compress_write_end(inode,
3125 						fsdata, folio->index, 1) ||
3126 					 !f2fs_all_cluster_page_ready(&cc,
3127 						pages, i, nr_pages,
3128 						false))) {
3129 					retry = 1;
3130 					break;
3131 				}
3132 			}
3133 #endif
3134 			/* give a priority to WB_SYNC threads */
3135 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3136 					wbc->sync_mode == WB_SYNC_NONE) {
3137 				done = 1;
3138 				break;
3139 			}
3140 #ifdef CONFIG_F2FS_FS_COMPRESSION
3141 lock_folio:
3142 #endif
3143 			done_index = folio->index;
3144 retry_write:
3145 			folio_lock(folio);
3146 
3147 			if (unlikely(folio->mapping != mapping)) {
3148 continue_unlock:
3149 				folio_unlock(folio);
3150 				continue;
3151 			}
3152 
3153 			if (!folio_test_dirty(folio)) {
3154 				/* someone wrote it for us */
3155 				goto continue_unlock;
3156 			}
3157 
3158 			if (folio_test_writeback(folio)) {
3159 				if (wbc->sync_mode == WB_SYNC_NONE)
3160 					goto continue_unlock;
3161 				f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3162 			}
3163 
3164 			if (!folio_clear_dirty_for_io(folio))
3165 				goto continue_unlock;
3166 
3167 #ifdef CONFIG_F2FS_FS_COMPRESSION
3168 			if (f2fs_compressed_file(inode)) {
3169 				folio_get(folio);
3170 				f2fs_compress_ctx_add_page(&cc, folio);
3171 				continue;
3172 			}
3173 #endif
3174 			submitted = 0;
3175 			ret = f2fs_write_single_data_page(folio,
3176 					&submitted, &bio, &last_block,
3177 					wbc, io_type, 0, true);
3178 			if (ret == AOP_WRITEPAGE_ACTIVATE)
3179 				folio_unlock(folio);
3180 #ifdef CONFIG_F2FS_FS_COMPRESSION
3181 result:
3182 #endif
3183 			nwritten += submitted;
3184 			wbc->nr_to_write -= submitted;
3185 
3186 			if (unlikely(ret)) {
3187 				/*
3188 				 * keep nr_to_write, since vfs uses this to
3189 				 * get # of written pages.
3190 				 */
3191 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3192 					ret = 0;
3193 					goto next;
3194 				} else if (ret == -EAGAIN) {
3195 					ret = 0;
3196 					if (wbc->sync_mode == WB_SYNC_ALL) {
3197 						f2fs_io_schedule_timeout(
3198 							DEFAULT_IO_TIMEOUT);
3199 						goto retry_write;
3200 					}
3201 					goto next;
3202 				}
3203 				done_index = folio_next_index(folio);
3204 				done = 1;
3205 				break;
3206 			}
3207 
3208 			if (wbc->nr_to_write <= 0 &&
3209 					wbc->sync_mode == WB_SYNC_NONE) {
3210 				done = 1;
3211 				break;
3212 			}
3213 next:
3214 			if (need_readd)
3215 				goto readd;
3216 		}
3217 		release_pages(pages, nr_pages);
3218 		cond_resched();
3219 	}
3220 #ifdef CONFIG_F2FS_FS_COMPRESSION
3221 	/* flush remained pages in compress cluster */
3222 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3223 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3224 		nwritten += submitted;
3225 		wbc->nr_to_write -= submitted;
3226 		if (ret) {
3227 			done = 1;
3228 			retry = 0;
3229 		}
3230 	}
3231 	if (f2fs_compressed_file(inode))
3232 		f2fs_destroy_compress_ctx(&cc, false);
3233 #endif
3234 	if (retry) {
3235 		index = 0;
3236 		end = -1;
3237 		goto retry;
3238 	}
3239 	if (wbc->range_cyclic && !done)
3240 		done_index = 0;
3241 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3242 		mapping->writeback_index = done_index;
3243 
3244 	if (nwritten)
3245 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3246 								NULL, 0, DATA);
3247 	/* submit cached bio of IPU write */
3248 	if (bio)
3249 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3250 
3251 #ifdef CONFIG_F2FS_FS_COMPRESSION
3252 	if (pages != pages_local)
3253 		kfree(pages);
3254 #endif
3255 
3256 	return ret;
3257 }
3258 
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3259 static inline bool __should_serialize_io(struct inode *inode,
3260 					struct writeback_control *wbc)
3261 {
3262 	/* to avoid deadlock in path of data flush */
3263 	if (F2FS_I(inode)->wb_task)
3264 		return false;
3265 
3266 	if (!S_ISREG(inode->i_mode))
3267 		return false;
3268 	if (IS_NOQUOTA(inode))
3269 		return false;
3270 
3271 	if (f2fs_need_compress_data(inode))
3272 		return true;
3273 	if (wbc->sync_mode != WB_SYNC_ALL)
3274 		return true;
3275 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3276 		return true;
3277 	return false;
3278 }
3279 
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3280 static int __f2fs_write_data_pages(struct address_space *mapping,
3281 						struct writeback_control *wbc,
3282 						enum iostat_type io_type)
3283 {
3284 	struct inode *inode = mapping->host;
3285 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3286 	struct blk_plug plug;
3287 	int ret;
3288 	bool locked = false;
3289 
3290 	/* skip writing if there is no dirty page in this inode */
3291 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3292 		return 0;
3293 
3294 	/* during POR, we don't need to trigger writepage at all. */
3295 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3296 		goto skip_write;
3297 
3298 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3299 			wbc->sync_mode == WB_SYNC_NONE &&
3300 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3301 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3302 		goto skip_write;
3303 
3304 	/* skip writing in file defragment preparing stage */
3305 	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3306 		goto skip_write;
3307 
3308 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3309 
3310 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3311 	if (wbc->sync_mode == WB_SYNC_ALL)
3312 		atomic_inc(&sbi->wb_sync_req[DATA]);
3313 	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3314 		/* to avoid potential deadlock */
3315 		if (current->plug)
3316 			blk_finish_plug(current->plug);
3317 		goto skip_write;
3318 	}
3319 
3320 	if (__should_serialize_io(inode, wbc)) {
3321 		mutex_lock(&sbi->writepages);
3322 		locked = true;
3323 	}
3324 
3325 	blk_start_plug(&plug);
3326 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3327 	blk_finish_plug(&plug);
3328 
3329 	if (locked)
3330 		mutex_unlock(&sbi->writepages);
3331 
3332 	if (wbc->sync_mode == WB_SYNC_ALL)
3333 		atomic_dec(&sbi->wb_sync_req[DATA]);
3334 	/*
3335 	 * if some pages were truncated, we cannot guarantee its mapping->host
3336 	 * to detect pending bios.
3337 	 */
3338 
3339 	f2fs_remove_dirty_inode(inode);
3340 	return ret;
3341 
3342 skip_write:
3343 	wbc->pages_skipped += get_dirty_pages(inode);
3344 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3345 	return 0;
3346 }
3347 
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3348 static int f2fs_write_data_pages(struct address_space *mapping,
3349 			    struct writeback_control *wbc)
3350 {
3351 	struct inode *inode = mapping->host;
3352 
3353 	return __f2fs_write_data_pages(mapping, wbc,
3354 			F2FS_I(inode)->cp_task == current ?
3355 			FS_CP_DATA_IO : FS_DATA_IO);
3356 }
3357 
f2fs_write_failed(struct inode * inode,loff_t to)3358 void f2fs_write_failed(struct inode *inode, loff_t to)
3359 {
3360 	loff_t i_size = i_size_read(inode);
3361 
3362 	if (IS_NOQUOTA(inode))
3363 		return;
3364 
3365 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3366 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3367 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3368 		filemap_invalidate_lock(inode->i_mapping);
3369 
3370 		truncate_pagecache(inode, i_size);
3371 		f2fs_truncate_blocks(inode, i_size, true);
3372 
3373 		filemap_invalidate_unlock(inode->i_mapping);
3374 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3375 	}
3376 }
3377 
prepare_write_begin(struct f2fs_sb_info * sbi,struct folio * folio,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed)3378 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3379 			struct folio *folio, loff_t pos, unsigned int len,
3380 			block_t *blk_addr, bool *node_changed)
3381 {
3382 	struct inode *inode = folio->mapping->host;
3383 	pgoff_t index = folio->index;
3384 	struct dnode_of_data dn;
3385 	struct page *ipage;
3386 	bool locked = false;
3387 	int flag = F2FS_GET_BLOCK_PRE_AIO;
3388 	int err = 0;
3389 
3390 	/*
3391 	 * If a whole page is being written and we already preallocated all the
3392 	 * blocks, then there is no need to get a block address now.
3393 	 */
3394 	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3395 		return 0;
3396 
3397 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3398 	if (f2fs_has_inline_data(inode)) {
3399 		if (pos + len > MAX_INLINE_DATA(inode))
3400 			flag = F2FS_GET_BLOCK_DEFAULT;
3401 		f2fs_map_lock(sbi, flag);
3402 		locked = true;
3403 	} else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3404 		f2fs_map_lock(sbi, flag);
3405 		locked = true;
3406 	}
3407 
3408 restart:
3409 	/* check inline_data */
3410 	ipage = f2fs_get_inode_page(sbi, inode->i_ino);
3411 	if (IS_ERR(ipage)) {
3412 		err = PTR_ERR(ipage);
3413 		goto unlock_out;
3414 	}
3415 
3416 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3417 
3418 	if (f2fs_has_inline_data(inode)) {
3419 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3420 			f2fs_do_read_inline_data(folio, ipage);
3421 			set_inode_flag(inode, FI_DATA_EXIST);
3422 			if (inode->i_nlink)
3423 				set_page_private_inline(ipage);
3424 			goto out;
3425 		}
3426 		err = f2fs_convert_inline_page(&dn, folio_page(folio, 0));
3427 		if (err || dn.data_blkaddr != NULL_ADDR)
3428 			goto out;
3429 	}
3430 
3431 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3432 						 &dn.data_blkaddr)) {
3433 		if (IS_DEVICE_ALIASING(inode)) {
3434 			err = -ENODATA;
3435 			goto out;
3436 		}
3437 
3438 		if (locked) {
3439 			err = f2fs_reserve_block(&dn, index);
3440 			goto out;
3441 		}
3442 
3443 		/* hole case */
3444 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3445 		if (!err && dn.data_blkaddr != NULL_ADDR)
3446 			goto out;
3447 		f2fs_put_dnode(&dn);
3448 		f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3449 		WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3450 		locked = true;
3451 		goto restart;
3452 	}
3453 out:
3454 	if (!err) {
3455 		/* convert_inline_page can make node_changed */
3456 		*blk_addr = dn.data_blkaddr;
3457 		*node_changed = dn.node_changed;
3458 	}
3459 	f2fs_put_dnode(&dn);
3460 unlock_out:
3461 	if (locked)
3462 		f2fs_map_unlock(sbi, flag);
3463 	return err;
3464 }
3465 
__find_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr)3466 static int __find_data_block(struct inode *inode, pgoff_t index,
3467 				block_t *blk_addr)
3468 {
3469 	struct dnode_of_data dn;
3470 	struct page *ipage;
3471 	int err = 0;
3472 
3473 	ipage = f2fs_get_inode_page(F2FS_I_SB(inode), inode->i_ino);
3474 	if (IS_ERR(ipage))
3475 		return PTR_ERR(ipage);
3476 
3477 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3478 
3479 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3480 						 &dn.data_blkaddr)) {
3481 		/* hole case */
3482 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3483 		if (err) {
3484 			dn.data_blkaddr = NULL_ADDR;
3485 			err = 0;
3486 		}
3487 	}
3488 	*blk_addr = dn.data_blkaddr;
3489 	f2fs_put_dnode(&dn);
3490 	return err;
3491 }
3492 
__reserve_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr,bool * node_changed)3493 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3494 				block_t *blk_addr, bool *node_changed)
3495 {
3496 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3497 	struct dnode_of_data dn;
3498 	struct page *ipage;
3499 	int err = 0;
3500 
3501 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3502 
3503 	ipage = f2fs_get_inode_page(sbi, inode->i_ino);
3504 	if (IS_ERR(ipage)) {
3505 		err = PTR_ERR(ipage);
3506 		goto unlock_out;
3507 	}
3508 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3509 
3510 	if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3511 						&dn.data_blkaddr))
3512 		err = f2fs_reserve_block(&dn, index);
3513 
3514 	*blk_addr = dn.data_blkaddr;
3515 	*node_changed = dn.node_changed;
3516 	f2fs_put_dnode(&dn);
3517 
3518 unlock_out:
3519 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3520 	return err;
3521 }
3522 
prepare_atomic_write_begin(struct f2fs_sb_info * sbi,struct folio * folio,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed,bool * use_cow)3523 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3524 			struct folio *folio, loff_t pos, unsigned int len,
3525 			block_t *blk_addr, bool *node_changed, bool *use_cow)
3526 {
3527 	struct inode *inode = folio->mapping->host;
3528 	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3529 	pgoff_t index = folio->index;
3530 	int err = 0;
3531 	block_t ori_blk_addr = NULL_ADDR;
3532 
3533 	/* If pos is beyond the end of file, reserve a new block in COW inode */
3534 	if ((pos & PAGE_MASK) >= i_size_read(inode))
3535 		goto reserve_block;
3536 
3537 	/* Look for the block in COW inode first */
3538 	err = __find_data_block(cow_inode, index, blk_addr);
3539 	if (err) {
3540 		return err;
3541 	} else if (*blk_addr != NULL_ADDR) {
3542 		*use_cow = true;
3543 		return 0;
3544 	}
3545 
3546 	if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3547 		goto reserve_block;
3548 
3549 	/* Look for the block in the original inode */
3550 	err = __find_data_block(inode, index, &ori_blk_addr);
3551 	if (err)
3552 		return err;
3553 
3554 reserve_block:
3555 	/* Finally, we should reserve a new block in COW inode for the update */
3556 	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3557 	if (err)
3558 		return err;
3559 	inc_atomic_write_cnt(inode);
3560 
3561 	if (ori_blk_addr != NULL_ADDR)
3562 		*blk_addr = ori_blk_addr;
3563 	return 0;
3564 }
3565 
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3566 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3567 		loff_t pos, unsigned len, struct folio **foliop, void **fsdata)
3568 {
3569 	struct inode *inode = mapping->host;
3570 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3571 	struct folio *folio;
3572 	pgoff_t index = pos >> PAGE_SHIFT;
3573 	bool need_balance = false;
3574 	bool use_cow = false;
3575 	block_t blkaddr = NULL_ADDR;
3576 	int err = 0;
3577 
3578 	trace_f2fs_write_begin(inode, pos, len);
3579 
3580 	if (!f2fs_is_checkpoint_ready(sbi)) {
3581 		err = -ENOSPC;
3582 		goto fail;
3583 	}
3584 
3585 	/*
3586 	 * We should check this at this moment to avoid deadlock on inode page
3587 	 * and #0 page. The locking rule for inline_data conversion should be:
3588 	 * folio_lock(folio #0) -> folio_lock(inode_page)
3589 	 */
3590 	if (index != 0) {
3591 		err = f2fs_convert_inline_inode(inode);
3592 		if (err)
3593 			goto fail;
3594 	}
3595 
3596 #ifdef CONFIG_F2FS_FS_COMPRESSION
3597 	if (f2fs_compressed_file(inode)) {
3598 		int ret;
3599 		struct page *page;
3600 
3601 		*fsdata = NULL;
3602 
3603 		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3604 			goto repeat;
3605 
3606 		ret = f2fs_prepare_compress_overwrite(inode, &page,
3607 							index, fsdata);
3608 		if (ret < 0) {
3609 			err = ret;
3610 			goto fail;
3611 		} else if (ret) {
3612 			*foliop = page_folio(page);
3613 			return 0;
3614 		}
3615 	}
3616 #endif
3617 
3618 repeat:
3619 	/*
3620 	 * Do not use FGP_STABLE to avoid deadlock.
3621 	 * Will wait that below with our IO control.
3622 	 */
3623 	folio = __filemap_get_folio(mapping, index,
3624 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3625 	if (IS_ERR(folio)) {
3626 		err = PTR_ERR(folio);
3627 		goto fail;
3628 	}
3629 
3630 	/* TODO: cluster can be compressed due to race with .writepage */
3631 
3632 	*foliop = folio;
3633 
3634 	if (f2fs_is_atomic_file(inode))
3635 		err = prepare_atomic_write_begin(sbi, folio, pos, len,
3636 					&blkaddr, &need_balance, &use_cow);
3637 	else
3638 		err = prepare_write_begin(sbi, folio, pos, len,
3639 					&blkaddr, &need_balance);
3640 	if (err)
3641 		goto put_folio;
3642 
3643 	if (need_balance && !IS_NOQUOTA(inode) &&
3644 			has_not_enough_free_secs(sbi, 0, 0)) {
3645 		folio_unlock(folio);
3646 		f2fs_balance_fs(sbi, true);
3647 		folio_lock(folio);
3648 		if (folio->mapping != mapping) {
3649 			/* The folio got truncated from under us */
3650 			folio_unlock(folio);
3651 			folio_put(folio);
3652 			goto repeat;
3653 		}
3654 	}
3655 
3656 	f2fs_wait_on_page_writeback(&folio->page, DATA, false, true);
3657 
3658 	if (len == folio_size(folio) || folio_test_uptodate(folio))
3659 		return 0;
3660 
3661 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3662 	    !f2fs_verity_in_progress(inode)) {
3663 		folio_zero_segment(folio, len, folio_size(folio));
3664 		return 0;
3665 	}
3666 
3667 	if (blkaddr == NEW_ADDR) {
3668 		folio_zero_segment(folio, 0, folio_size(folio));
3669 		folio_mark_uptodate(folio);
3670 	} else {
3671 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3672 				DATA_GENERIC_ENHANCE_READ)) {
3673 			err = -EFSCORRUPTED;
3674 			goto put_folio;
3675 		}
3676 		err = f2fs_submit_page_read(use_cow ?
3677 				F2FS_I(inode)->cow_inode : inode,
3678 				folio, blkaddr, 0, true);
3679 		if (err)
3680 			goto put_folio;
3681 
3682 		folio_lock(folio);
3683 		if (unlikely(folio->mapping != mapping)) {
3684 			folio_unlock(folio);
3685 			folio_put(folio);
3686 			goto repeat;
3687 		}
3688 		if (unlikely(!folio_test_uptodate(folio))) {
3689 			err = -EIO;
3690 			goto put_folio;
3691 		}
3692 	}
3693 	return 0;
3694 
3695 put_folio:
3696 	folio_unlock(folio);
3697 	folio_put(folio);
3698 fail:
3699 	f2fs_write_failed(inode, pos + len);
3700 	return err;
3701 }
3702 
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3703 static int f2fs_write_end(struct file *file,
3704 			struct address_space *mapping,
3705 			loff_t pos, unsigned len, unsigned copied,
3706 			struct folio *folio, void *fsdata)
3707 {
3708 	struct inode *inode = folio->mapping->host;
3709 
3710 	trace_f2fs_write_end(inode, pos, len, copied);
3711 
3712 	/*
3713 	 * This should be come from len == PAGE_SIZE, and we expect copied
3714 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3715 	 * let generic_perform_write() try to copy data again through copied=0.
3716 	 */
3717 	if (!folio_test_uptodate(folio)) {
3718 		if (unlikely(copied != len))
3719 			copied = 0;
3720 		else
3721 			folio_mark_uptodate(folio);
3722 	}
3723 
3724 #ifdef CONFIG_F2FS_FS_COMPRESSION
3725 	/* overwrite compressed file */
3726 	if (f2fs_compressed_file(inode) && fsdata) {
3727 		f2fs_compress_write_end(inode, fsdata, folio->index, copied);
3728 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3729 
3730 		if (pos + copied > i_size_read(inode) &&
3731 				!f2fs_verity_in_progress(inode))
3732 			f2fs_i_size_write(inode, pos + copied);
3733 		return copied;
3734 	}
3735 #endif
3736 
3737 	if (!copied)
3738 		goto unlock_out;
3739 
3740 	folio_mark_dirty(folio);
3741 
3742 	if (f2fs_is_atomic_file(inode))
3743 		set_page_private_atomic(folio_page(folio, 0));
3744 
3745 	if (pos + copied > i_size_read(inode) &&
3746 	    !f2fs_verity_in_progress(inode)) {
3747 		f2fs_i_size_write(inode, pos + copied);
3748 		if (f2fs_is_atomic_file(inode))
3749 			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3750 					pos + copied);
3751 	}
3752 unlock_out:
3753 	folio_unlock(folio);
3754 	folio_put(folio);
3755 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3756 	return copied;
3757 }
3758 
f2fs_invalidate_folio(struct folio * folio,size_t offset,size_t length)3759 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3760 {
3761 	struct inode *inode = folio->mapping->host;
3762 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3763 
3764 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3765 				(offset || length != folio_size(folio)))
3766 		return;
3767 
3768 	if (folio_test_dirty(folio)) {
3769 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3770 			dec_page_count(sbi, F2FS_DIRTY_META);
3771 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3772 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3773 		} else {
3774 			inode_dec_dirty_pages(inode);
3775 			f2fs_remove_dirty_inode(inode);
3776 		}
3777 	}
3778 	clear_page_private_all(&folio->page);
3779 }
3780 
f2fs_release_folio(struct folio * folio,gfp_t wait)3781 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3782 {
3783 	/* If this is dirty folio, keep private data */
3784 	if (folio_test_dirty(folio))
3785 		return false;
3786 
3787 	clear_page_private_all(&folio->page);
3788 	return true;
3789 }
3790 
f2fs_dirty_data_folio(struct address_space * mapping,struct folio * folio)3791 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3792 		struct folio *folio)
3793 {
3794 	struct inode *inode = mapping->host;
3795 
3796 	trace_f2fs_set_page_dirty(folio, DATA);
3797 
3798 	if (!folio_test_uptodate(folio))
3799 		folio_mark_uptodate(folio);
3800 	BUG_ON(folio_test_swapcache(folio));
3801 
3802 	if (filemap_dirty_folio(mapping, folio)) {
3803 		f2fs_update_dirty_folio(inode, folio);
3804 		return true;
3805 	}
3806 	return false;
3807 }
3808 
3809 
f2fs_bmap_compress(struct inode * inode,sector_t block)3810 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3811 {
3812 #ifdef CONFIG_F2FS_FS_COMPRESSION
3813 	struct dnode_of_data dn;
3814 	sector_t start_idx, blknr = 0;
3815 	int ret;
3816 
3817 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3818 
3819 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3820 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3821 	if (ret)
3822 		return 0;
3823 
3824 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3825 		dn.ofs_in_node += block - start_idx;
3826 		blknr = f2fs_data_blkaddr(&dn);
3827 		if (!__is_valid_data_blkaddr(blknr))
3828 			blknr = 0;
3829 	}
3830 
3831 	f2fs_put_dnode(&dn);
3832 	return blknr;
3833 #else
3834 	return 0;
3835 #endif
3836 }
3837 
3838 
f2fs_bmap(struct address_space * mapping,sector_t block)3839 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3840 {
3841 	struct inode *inode = mapping->host;
3842 	sector_t blknr = 0;
3843 
3844 	if (f2fs_has_inline_data(inode))
3845 		goto out;
3846 
3847 	/* make sure allocating whole blocks */
3848 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3849 		filemap_write_and_wait(mapping);
3850 
3851 	/* Block number less than F2FS MAX BLOCKS */
3852 	if (unlikely(block >= max_file_blocks(inode)))
3853 		goto out;
3854 
3855 	if (f2fs_compressed_file(inode)) {
3856 		blknr = f2fs_bmap_compress(inode, block);
3857 	} else {
3858 		struct f2fs_map_blocks map;
3859 
3860 		memset(&map, 0, sizeof(map));
3861 		map.m_lblk = block;
3862 		map.m_len = 1;
3863 		map.m_next_pgofs = NULL;
3864 		map.m_seg_type = NO_CHECK_TYPE;
3865 
3866 		if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3867 			blknr = map.m_pblk;
3868 	}
3869 out:
3870 	trace_f2fs_bmap(inode, block, blknr);
3871 	return blknr;
3872 }
3873 
3874 #ifdef CONFIG_SWAP
f2fs_migrate_blocks(struct inode * inode,block_t start_blk,unsigned int blkcnt)3875 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3876 							unsigned int blkcnt)
3877 {
3878 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3879 	unsigned int blkofs;
3880 	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3881 	unsigned int end_blk = start_blk + blkcnt - 1;
3882 	unsigned int secidx = start_blk / blk_per_sec;
3883 	unsigned int end_sec;
3884 	int ret = 0;
3885 
3886 	if (!blkcnt)
3887 		return 0;
3888 	end_sec = end_blk / blk_per_sec;
3889 
3890 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3891 	filemap_invalidate_lock(inode->i_mapping);
3892 
3893 	set_inode_flag(inode, FI_ALIGNED_WRITE);
3894 	set_inode_flag(inode, FI_OPU_WRITE);
3895 
3896 	for (; secidx <= end_sec; secidx++) {
3897 		unsigned int blkofs_end = secidx == end_sec ?
3898 				end_blk % blk_per_sec : blk_per_sec - 1;
3899 
3900 		f2fs_down_write(&sbi->pin_sem);
3901 
3902 		ret = f2fs_allocate_pinning_section(sbi);
3903 		if (ret) {
3904 			f2fs_up_write(&sbi->pin_sem);
3905 			break;
3906 		}
3907 
3908 		set_inode_flag(inode, FI_SKIP_WRITES);
3909 
3910 		for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3911 			struct page *page;
3912 			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3913 
3914 			page = f2fs_get_lock_data_page(inode, blkidx, true);
3915 			if (IS_ERR(page)) {
3916 				f2fs_up_write(&sbi->pin_sem);
3917 				ret = PTR_ERR(page);
3918 				goto done;
3919 			}
3920 
3921 			set_page_dirty(page);
3922 			f2fs_put_page(page, 1);
3923 		}
3924 
3925 		clear_inode_flag(inode, FI_SKIP_WRITES);
3926 
3927 		ret = filemap_fdatawrite(inode->i_mapping);
3928 
3929 		f2fs_up_write(&sbi->pin_sem);
3930 
3931 		if (ret)
3932 			break;
3933 	}
3934 
3935 done:
3936 	clear_inode_flag(inode, FI_SKIP_WRITES);
3937 	clear_inode_flag(inode, FI_OPU_WRITE);
3938 	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3939 
3940 	filemap_invalidate_unlock(inode->i_mapping);
3941 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3942 
3943 	return ret;
3944 }
3945 
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3946 static int check_swap_activate(struct swap_info_struct *sis,
3947 				struct file *swap_file, sector_t *span)
3948 {
3949 	struct address_space *mapping = swap_file->f_mapping;
3950 	struct inode *inode = mapping->host;
3951 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3952 	block_t cur_lblock;
3953 	block_t last_lblock;
3954 	block_t pblock;
3955 	block_t lowest_pblock = -1;
3956 	block_t highest_pblock = 0;
3957 	int nr_extents = 0;
3958 	unsigned int nr_pblocks;
3959 	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3960 	unsigned int not_aligned = 0;
3961 	int ret = 0;
3962 
3963 	/*
3964 	 * Map all the blocks into the extent list.  This code doesn't try
3965 	 * to be very smart.
3966 	 */
3967 	cur_lblock = 0;
3968 	last_lblock = F2FS_BYTES_TO_BLK(i_size_read(inode));
3969 
3970 	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3971 		struct f2fs_map_blocks map;
3972 retry:
3973 		cond_resched();
3974 
3975 		memset(&map, 0, sizeof(map));
3976 		map.m_lblk = cur_lblock;
3977 		map.m_len = last_lblock - cur_lblock;
3978 		map.m_next_pgofs = NULL;
3979 		map.m_next_extent = NULL;
3980 		map.m_seg_type = NO_CHECK_TYPE;
3981 		map.m_may_create = false;
3982 
3983 		ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3984 		if (ret)
3985 			goto out;
3986 
3987 		/* hole */
3988 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3989 			f2fs_err(sbi, "Swapfile has holes");
3990 			ret = -EINVAL;
3991 			goto out;
3992 		}
3993 
3994 		pblock = map.m_pblk;
3995 		nr_pblocks = map.m_len;
3996 
3997 		if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec ||
3998 				nr_pblocks % blks_per_sec ||
3999 				f2fs_is_sequential_zone_area(sbi, pblock)) {
4000 			bool last_extent = false;
4001 
4002 			not_aligned++;
4003 
4004 			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4005 			if (cur_lblock + nr_pblocks > sis->max)
4006 				nr_pblocks -= blks_per_sec;
4007 
4008 			/* this extent is last one */
4009 			if (!nr_pblocks) {
4010 				nr_pblocks = last_lblock - cur_lblock;
4011 				last_extent = true;
4012 			}
4013 
4014 			ret = f2fs_migrate_blocks(inode, cur_lblock,
4015 							nr_pblocks);
4016 			if (ret) {
4017 				if (ret == -ENOENT)
4018 					ret = -EINVAL;
4019 				goto out;
4020 			}
4021 
4022 			if (!last_extent)
4023 				goto retry;
4024 		}
4025 
4026 		if (cur_lblock + nr_pblocks >= sis->max)
4027 			nr_pblocks = sis->max - cur_lblock;
4028 
4029 		if (cur_lblock) {	/* exclude the header page */
4030 			if (pblock < lowest_pblock)
4031 				lowest_pblock = pblock;
4032 			if (pblock + nr_pblocks - 1 > highest_pblock)
4033 				highest_pblock = pblock + nr_pblocks - 1;
4034 		}
4035 
4036 		/*
4037 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4038 		 */
4039 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4040 		if (ret < 0)
4041 			goto out;
4042 		nr_extents += ret;
4043 		cur_lblock += nr_pblocks;
4044 	}
4045 	ret = nr_extents;
4046 	*span = 1 + highest_pblock - lowest_pblock;
4047 	if (cur_lblock == 0)
4048 		cur_lblock = 1;	/* force Empty message */
4049 	sis->max = cur_lblock;
4050 	sis->pages = cur_lblock - 1;
4051 	sis->highest_bit = cur_lblock - 1;
4052 out:
4053 	if (not_aligned)
4054 		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4055 			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4056 	return ret;
4057 }
4058 
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4059 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4060 				sector_t *span)
4061 {
4062 	struct inode *inode = file_inode(file);
4063 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4064 	int ret;
4065 
4066 	if (!S_ISREG(inode->i_mode))
4067 		return -EINVAL;
4068 
4069 	if (f2fs_readonly(sbi->sb))
4070 		return -EROFS;
4071 
4072 	if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4073 		f2fs_err(sbi, "Swapfile not supported in LFS mode");
4074 		return -EINVAL;
4075 	}
4076 
4077 	ret = f2fs_convert_inline_inode(inode);
4078 	if (ret)
4079 		return ret;
4080 
4081 	if (!f2fs_disable_compressed_file(inode))
4082 		return -EINVAL;
4083 
4084 	ret = filemap_fdatawrite(inode->i_mapping);
4085 	if (ret < 0)
4086 		return ret;
4087 
4088 	f2fs_precache_extents(inode);
4089 
4090 	ret = check_swap_activate(sis, file, span);
4091 	if (ret < 0)
4092 		return ret;
4093 
4094 	stat_inc_swapfile_inode(inode);
4095 	set_inode_flag(inode, FI_PIN_FILE);
4096 	f2fs_update_time(sbi, REQ_TIME);
4097 	return ret;
4098 }
4099 
f2fs_swap_deactivate(struct file * file)4100 static void f2fs_swap_deactivate(struct file *file)
4101 {
4102 	struct inode *inode = file_inode(file);
4103 
4104 	stat_dec_swapfile_inode(inode);
4105 	clear_inode_flag(inode, FI_PIN_FILE);
4106 }
4107 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4108 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4109 				sector_t *span)
4110 {
4111 	return -EOPNOTSUPP;
4112 }
4113 
f2fs_swap_deactivate(struct file * file)4114 static void f2fs_swap_deactivate(struct file *file)
4115 {
4116 }
4117 #endif
4118 
4119 const struct address_space_operations f2fs_dblock_aops = {
4120 	.read_folio	= f2fs_read_data_folio,
4121 	.readahead	= f2fs_readahead,
4122 	.writepages	= f2fs_write_data_pages,
4123 	.write_begin	= f2fs_write_begin,
4124 	.write_end	= f2fs_write_end,
4125 	.dirty_folio	= f2fs_dirty_data_folio,
4126 	.migrate_folio	= filemap_migrate_folio,
4127 	.invalidate_folio = f2fs_invalidate_folio,
4128 	.release_folio	= f2fs_release_folio,
4129 	.bmap		= f2fs_bmap,
4130 	.swap_activate  = f2fs_swap_activate,
4131 	.swap_deactivate = f2fs_swap_deactivate,
4132 };
4133 
f2fs_clear_page_cache_dirty_tag(struct folio * folio)4134 void f2fs_clear_page_cache_dirty_tag(struct folio *folio)
4135 {
4136 	struct address_space *mapping = folio->mapping;
4137 	unsigned long flags;
4138 
4139 	xa_lock_irqsave(&mapping->i_pages, flags);
4140 	__xa_clear_mark(&mapping->i_pages, folio->index,
4141 						PAGECACHE_TAG_DIRTY);
4142 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4143 }
4144 
f2fs_init_post_read_processing(void)4145 int __init f2fs_init_post_read_processing(void)
4146 {
4147 	bio_post_read_ctx_cache =
4148 		kmem_cache_create("f2fs_bio_post_read_ctx",
4149 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4150 	if (!bio_post_read_ctx_cache)
4151 		goto fail;
4152 	bio_post_read_ctx_pool =
4153 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4154 					 bio_post_read_ctx_cache);
4155 	if (!bio_post_read_ctx_pool)
4156 		goto fail_free_cache;
4157 	return 0;
4158 
4159 fail_free_cache:
4160 	kmem_cache_destroy(bio_post_read_ctx_cache);
4161 fail:
4162 	return -ENOMEM;
4163 }
4164 
f2fs_destroy_post_read_processing(void)4165 void f2fs_destroy_post_read_processing(void)
4166 {
4167 	mempool_destroy(bio_post_read_ctx_pool);
4168 	kmem_cache_destroy(bio_post_read_ctx_cache);
4169 }
4170 
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4171 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4172 {
4173 	if (!f2fs_sb_has_encrypt(sbi) &&
4174 		!f2fs_sb_has_verity(sbi) &&
4175 		!f2fs_sb_has_compression(sbi))
4176 		return 0;
4177 
4178 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4179 						 WQ_UNBOUND | WQ_HIGHPRI,
4180 						 num_online_cpus());
4181 	return sbi->post_read_wq ? 0 : -ENOMEM;
4182 }
4183 
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4184 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4185 {
4186 	if (sbi->post_read_wq)
4187 		destroy_workqueue(sbi->post_read_wq);
4188 }
4189 
f2fs_init_bio_entry_cache(void)4190 int __init f2fs_init_bio_entry_cache(void)
4191 {
4192 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4193 			sizeof(struct bio_entry));
4194 	return bio_entry_slab ? 0 : -ENOMEM;
4195 }
4196 
f2fs_destroy_bio_entry_cache(void)4197 void f2fs_destroy_bio_entry_cache(void)
4198 {
4199 	kmem_cache_destroy(bio_entry_slab);
4200 }
4201 
f2fs_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)4202 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4203 			    unsigned int flags, struct iomap *iomap,
4204 			    struct iomap *srcmap)
4205 {
4206 	struct f2fs_map_blocks map = {};
4207 	pgoff_t next_pgofs = 0;
4208 	int err;
4209 
4210 	map.m_lblk = F2FS_BYTES_TO_BLK(offset);
4211 	map.m_len = F2FS_BYTES_TO_BLK(offset + length - 1) - map.m_lblk + 1;
4212 	map.m_next_pgofs = &next_pgofs;
4213 	map.m_seg_type = f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
4214 						inode->i_write_hint);
4215 
4216 	/*
4217 	 * If the blocks being overwritten are already allocated,
4218 	 * f2fs_map_lock and f2fs_balance_fs are not necessary.
4219 	 */
4220 	if ((flags & IOMAP_WRITE) &&
4221 		!f2fs_overwrite_io(inode, offset, length))
4222 		map.m_may_create = true;
4223 
4224 	err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4225 	if (err)
4226 		return err;
4227 
4228 	iomap->offset = F2FS_BLK_TO_BYTES(map.m_lblk);
4229 
4230 	/*
4231 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4232 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4233 	 * limiting the length of the mapping returned.
4234 	 */
4235 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4236 
4237 	/*
4238 	 * We should never see delalloc or compressed extents here based on
4239 	 * prior flushing and checks.
4240 	 */
4241 	if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4242 		return -EINVAL;
4243 
4244 	if (map.m_flags & F2FS_MAP_MAPPED) {
4245 		if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4246 			return -EINVAL;
4247 
4248 		iomap->length = F2FS_BLK_TO_BYTES(map.m_len);
4249 		iomap->type = IOMAP_MAPPED;
4250 		iomap->flags |= IOMAP_F_MERGED;
4251 		iomap->bdev = map.m_bdev;
4252 		iomap->addr = F2FS_BLK_TO_BYTES(map.m_pblk);
4253 	} else {
4254 		if (flags & IOMAP_WRITE)
4255 			return -ENOTBLK;
4256 
4257 		if (map.m_pblk == NULL_ADDR) {
4258 			iomap->length = F2FS_BLK_TO_BYTES(next_pgofs) -
4259 							iomap->offset;
4260 			iomap->type = IOMAP_HOLE;
4261 		} else if (map.m_pblk == NEW_ADDR) {
4262 			iomap->length = F2FS_BLK_TO_BYTES(map.m_len);
4263 			iomap->type = IOMAP_UNWRITTEN;
4264 		} else {
4265 			f2fs_bug_on(F2FS_I_SB(inode), 1);
4266 		}
4267 		iomap->addr = IOMAP_NULL_ADDR;
4268 	}
4269 
4270 	if (map.m_flags & F2FS_MAP_NEW)
4271 		iomap->flags |= IOMAP_F_NEW;
4272 	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4273 	    offset + length > i_size_read(inode))
4274 		iomap->flags |= IOMAP_F_DIRTY;
4275 
4276 	return 0;
4277 }
4278 
4279 const struct iomap_ops f2fs_iomap_ops = {
4280 	.iomap_begin	= f2fs_iomap_begin,
4281 };
4282