1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5 * & Swedish University of Agricultural Sciences.
6 *
7 * Jens Laas <jens.laas@data.slu.se> Swedish University of
8 * Agricultural Sciences.
9 *
10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
11 *
12 * This work is based on the LPC-trie which is originally described in:
13 *
14 * An experimental study of compression methods for dynamic tries
15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/
17 *
18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20 *
21 * Code from fib_hash has been reused which includes the following header:
22 *
23 * INET An implementation of the TCP/IP protocol suite for the LINUX
24 * operating system. INET is implemented using the BSD Socket
25 * interface as the means of communication with the user level.
26 *
27 * IPv4 FIB: lookup engine and maintenance routines.
28 *
29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30 *
31 * Substantial contributions to this work comes from:
32 *
33 * David S. Miller, <davem@davemloft.net>
34 * Stephen Hemminger <shemminger@osdl.org>
35 * Paul E. McKenney <paulmck@us.ibm.com>
36 * Patrick McHardy <kaber@trash.net>
37 */
38 #include <linux/cache.h>
39 #include <linux/uaccess.h>
40 #include <linux/bitops.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/mm.h>
44 #include <linux/string.h>
45 #include <linux/socket.h>
46 #include <linux/sockios.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/inet.h>
50 #include <linux/inetdevice.h>
51 #include <linux/netdevice.h>
52 #include <linux/if_arp.h>
53 #include <linux/proc_fs.h>
54 #include <linux/rcupdate.h>
55 #include <linux/rcupdate_wait.h>
56 #include <linux/skbuff.h>
57 #include <linux/netlink.h>
58 #include <linux/init.h>
59 #include <linux/list.h>
60 #include <linux/slab.h>
61 #include <linux/export.h>
62 #include <linux/vmalloc.h>
63 #include <linux/notifier.h>
64 #include <net/net_namespace.h>
65 #include <net/inet_dscp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/tcp.h>
70 #include <net/sock.h>
71 #include <net/ip_fib.h>
72 #include <net/fib_notifier.h>
73 #include <trace/events/fib.h>
74 #include "fib_lookup.h"
75
call_fib_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_alias * fa,struct netlink_ext_ack * extack)76 static int call_fib_entry_notifier(struct notifier_block *nb,
77 enum fib_event_type event_type, u32 dst,
78 int dst_len, struct fib_alias *fa,
79 struct netlink_ext_ack *extack)
80 {
81 struct fib_entry_notifier_info info = {
82 .info.extack = extack,
83 .dst = dst,
84 .dst_len = dst_len,
85 .fi = fa->fa_info,
86 .dscp = fa->fa_dscp,
87 .type = fa->fa_type,
88 .tb_id = fa->tb_id,
89 };
90 return call_fib4_notifier(nb, event_type, &info.info);
91 }
92
call_fib_entry_notifiers(struct net * net,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_alias * fa,struct netlink_ext_ack * extack)93 static int call_fib_entry_notifiers(struct net *net,
94 enum fib_event_type event_type, u32 dst,
95 int dst_len, struct fib_alias *fa,
96 struct netlink_ext_ack *extack)
97 {
98 struct fib_entry_notifier_info info = {
99 .info.extack = extack,
100 .dst = dst,
101 .dst_len = dst_len,
102 .fi = fa->fa_info,
103 .dscp = fa->fa_dscp,
104 .type = fa->fa_type,
105 .tb_id = fa->tb_id,
106 };
107 return call_fib4_notifiers(net, event_type, &info.info);
108 }
109
110 #define MAX_STAT_DEPTH 32
111
112 #define KEYLENGTH (8*sizeof(t_key))
113 #define KEY_MAX ((t_key)~0)
114
115 typedef unsigned int t_key;
116
117 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
118 #define IS_TNODE(n) ((n)->bits)
119 #define IS_LEAF(n) (!(n)->bits)
120
121 struct key_vector {
122 t_key key;
123 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
124 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
125 unsigned char slen;
126 union {
127 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
128 struct hlist_head leaf;
129 /* This array is valid if (pos | bits) > 0 (TNODE) */
130 DECLARE_FLEX_ARRAY(struct key_vector __rcu *, tnode);
131 };
132 };
133
134 struct tnode {
135 struct rcu_head rcu;
136 t_key empty_children; /* KEYLENGTH bits needed */
137 t_key full_children; /* KEYLENGTH bits needed */
138 struct key_vector __rcu *parent;
139 struct key_vector kv[1];
140 #define tn_bits kv[0].bits
141 };
142
143 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
144 #define LEAF_SIZE TNODE_SIZE(1)
145
146 #ifdef CONFIG_IP_FIB_TRIE_STATS
147 struct trie_use_stats {
148 unsigned int gets;
149 unsigned int backtrack;
150 unsigned int semantic_match_passed;
151 unsigned int semantic_match_miss;
152 unsigned int null_node_hit;
153 unsigned int resize_node_skipped;
154 };
155 #endif
156
157 struct trie_stat {
158 unsigned int totdepth;
159 unsigned int maxdepth;
160 unsigned int tnodes;
161 unsigned int leaves;
162 unsigned int nullpointers;
163 unsigned int prefixes;
164 unsigned int nodesizes[MAX_STAT_DEPTH];
165 };
166
167 struct trie {
168 struct key_vector kv[1];
169 #ifdef CONFIG_IP_FIB_TRIE_STATS
170 struct trie_use_stats __percpu *stats;
171 #endif
172 };
173
174 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
175 static unsigned int tnode_free_size;
176
177 /*
178 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
179 * especially useful before resizing the root node with PREEMPT_NONE configs;
180 * the value was obtained experimentally, aiming to avoid visible slowdown.
181 */
182 unsigned int sysctl_fib_sync_mem = 512 * 1024;
183 unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
184 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
185
186 static struct kmem_cache *fn_alias_kmem __ro_after_init;
187 static struct kmem_cache *trie_leaf_kmem __ro_after_init;
188
tn_info(struct key_vector * kv)189 static inline struct tnode *tn_info(struct key_vector *kv)
190 {
191 return container_of(kv, struct tnode, kv[0]);
192 }
193
194 /* caller must hold RTNL */
195 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
196 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
197
198 /* caller must hold RCU read lock or RTNL */
199 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
200 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
201
202 /* wrapper for rcu_assign_pointer */
node_set_parent(struct key_vector * n,struct key_vector * tp)203 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
204 {
205 if (n)
206 rcu_assign_pointer(tn_info(n)->parent, tp);
207 }
208
209 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
210
211 /* This provides us with the number of children in this node, in the case of a
212 * leaf this will return 0 meaning none of the children are accessible.
213 */
child_length(const struct key_vector * tn)214 static inline unsigned long child_length(const struct key_vector *tn)
215 {
216 return (1ul << tn->bits) & ~(1ul);
217 }
218
219 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
220
get_index(t_key key,struct key_vector * kv)221 static inline unsigned long get_index(t_key key, struct key_vector *kv)
222 {
223 unsigned long index = key ^ kv->key;
224
225 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
226 return 0;
227
228 return index >> kv->pos;
229 }
230
231 /* To understand this stuff, an understanding of keys and all their bits is
232 * necessary. Every node in the trie has a key associated with it, but not
233 * all of the bits in that key are significant.
234 *
235 * Consider a node 'n' and its parent 'tp'.
236 *
237 * If n is a leaf, every bit in its key is significant. Its presence is
238 * necessitated by path compression, since during a tree traversal (when
239 * searching for a leaf - unless we are doing an insertion) we will completely
240 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
241 * a potentially successful search, that we have indeed been walking the
242 * correct key path.
243 *
244 * Note that we can never "miss" the correct key in the tree if present by
245 * following the wrong path. Path compression ensures that segments of the key
246 * that are the same for all keys with a given prefix are skipped, but the
247 * skipped part *is* identical for each node in the subtrie below the skipped
248 * bit! trie_insert() in this implementation takes care of that.
249 *
250 * if n is an internal node - a 'tnode' here, the various parts of its key
251 * have many different meanings.
252 *
253 * Example:
254 * _________________________________________________________________
255 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
256 * -----------------------------------------------------------------
257 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
258 *
259 * _________________________________________________________________
260 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
261 * -----------------------------------------------------------------
262 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
263 *
264 * tp->pos = 22
265 * tp->bits = 3
266 * n->pos = 13
267 * n->bits = 4
268 *
269 * First, let's just ignore the bits that come before the parent tp, that is
270 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
271 * point we do not use them for anything.
272 *
273 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
274 * index into the parent's child array. That is, they will be used to find
275 * 'n' among tp's children.
276 *
277 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
278 * for the node n.
279 *
280 * All the bits we have seen so far are significant to the node n. The rest
281 * of the bits are really not needed or indeed known in n->key.
282 *
283 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
284 * n's child array, and will of course be different for each child.
285 *
286 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
287 * at this point.
288 */
289
290 static const int halve_threshold = 25;
291 static const int inflate_threshold = 50;
292 static const int halve_threshold_root = 15;
293 static const int inflate_threshold_root = 30;
294
__alias_free_mem(struct rcu_head * head)295 static void __alias_free_mem(struct rcu_head *head)
296 {
297 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
298 kmem_cache_free(fn_alias_kmem, fa);
299 }
300
alias_free_mem_rcu(struct fib_alias * fa)301 static inline void alias_free_mem_rcu(struct fib_alias *fa)
302 {
303 call_rcu(&fa->rcu, __alias_free_mem);
304 }
305
306 #define TNODE_VMALLOC_MAX \
307 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
308
__node_free_rcu(struct rcu_head * head)309 static void __node_free_rcu(struct rcu_head *head)
310 {
311 struct tnode *n = container_of(head, struct tnode, rcu);
312
313 if (!n->tn_bits)
314 kmem_cache_free(trie_leaf_kmem, n);
315 else
316 kvfree(n);
317 }
318
319 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
320
tnode_alloc(int bits)321 static struct tnode *tnode_alloc(int bits)
322 {
323 size_t size;
324
325 /* verify bits is within bounds */
326 if (bits > TNODE_VMALLOC_MAX)
327 return NULL;
328
329 /* determine size and verify it is non-zero and didn't overflow */
330 size = TNODE_SIZE(1ul << bits);
331
332 if (size <= PAGE_SIZE)
333 return kzalloc(size, GFP_KERNEL);
334 else
335 return vzalloc(size);
336 }
337
empty_child_inc(struct key_vector * n)338 static inline void empty_child_inc(struct key_vector *n)
339 {
340 tn_info(n)->empty_children++;
341
342 if (!tn_info(n)->empty_children)
343 tn_info(n)->full_children++;
344 }
345
empty_child_dec(struct key_vector * n)346 static inline void empty_child_dec(struct key_vector *n)
347 {
348 if (!tn_info(n)->empty_children)
349 tn_info(n)->full_children--;
350
351 tn_info(n)->empty_children--;
352 }
353
leaf_new(t_key key,struct fib_alias * fa)354 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
355 {
356 struct key_vector *l;
357 struct tnode *kv;
358
359 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
360 if (!kv)
361 return NULL;
362
363 /* initialize key vector */
364 l = kv->kv;
365 l->key = key;
366 l->pos = 0;
367 l->bits = 0;
368 l->slen = fa->fa_slen;
369
370 /* link leaf to fib alias */
371 INIT_HLIST_HEAD(&l->leaf);
372 hlist_add_head(&fa->fa_list, &l->leaf);
373
374 return l;
375 }
376
tnode_new(t_key key,int pos,int bits)377 static struct key_vector *tnode_new(t_key key, int pos, int bits)
378 {
379 unsigned int shift = pos + bits;
380 struct key_vector *tn;
381 struct tnode *tnode;
382
383 /* verify bits and pos their msb bits clear and values are valid */
384 BUG_ON(!bits || (shift > KEYLENGTH));
385
386 tnode = tnode_alloc(bits);
387 if (!tnode)
388 return NULL;
389
390 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
391 sizeof(struct key_vector *) << bits);
392
393 if (bits == KEYLENGTH)
394 tnode->full_children = 1;
395 else
396 tnode->empty_children = 1ul << bits;
397
398 tn = tnode->kv;
399 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
400 tn->pos = pos;
401 tn->bits = bits;
402 tn->slen = pos;
403
404 return tn;
405 }
406
407 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
408 * and no bits are skipped. See discussion in dyntree paper p. 6
409 */
tnode_full(struct key_vector * tn,struct key_vector * n)410 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
411 {
412 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
413 }
414
415 /* Add a child at position i overwriting the old value.
416 * Update the value of full_children and empty_children.
417 */
put_child(struct key_vector * tn,unsigned long i,struct key_vector * n)418 static void put_child(struct key_vector *tn, unsigned long i,
419 struct key_vector *n)
420 {
421 struct key_vector *chi = get_child(tn, i);
422 int isfull, wasfull;
423
424 BUG_ON(i >= child_length(tn));
425
426 /* update emptyChildren, overflow into fullChildren */
427 if (!n && chi)
428 empty_child_inc(tn);
429 if (n && !chi)
430 empty_child_dec(tn);
431
432 /* update fullChildren */
433 wasfull = tnode_full(tn, chi);
434 isfull = tnode_full(tn, n);
435
436 if (wasfull && !isfull)
437 tn_info(tn)->full_children--;
438 else if (!wasfull && isfull)
439 tn_info(tn)->full_children++;
440
441 if (n && (tn->slen < n->slen))
442 tn->slen = n->slen;
443
444 rcu_assign_pointer(tn->tnode[i], n);
445 }
446
update_children(struct key_vector * tn)447 static void update_children(struct key_vector *tn)
448 {
449 unsigned long i;
450
451 /* update all of the child parent pointers */
452 for (i = child_length(tn); i;) {
453 struct key_vector *inode = get_child(tn, --i);
454
455 if (!inode)
456 continue;
457
458 /* Either update the children of a tnode that
459 * already belongs to us or update the child
460 * to point to ourselves.
461 */
462 if (node_parent(inode) == tn)
463 update_children(inode);
464 else
465 node_set_parent(inode, tn);
466 }
467 }
468
put_child_root(struct key_vector * tp,t_key key,struct key_vector * n)469 static inline void put_child_root(struct key_vector *tp, t_key key,
470 struct key_vector *n)
471 {
472 if (IS_TRIE(tp))
473 rcu_assign_pointer(tp->tnode[0], n);
474 else
475 put_child(tp, get_index(key, tp), n);
476 }
477
tnode_free_init(struct key_vector * tn)478 static inline void tnode_free_init(struct key_vector *tn)
479 {
480 tn_info(tn)->rcu.next = NULL;
481 }
482
tnode_free_append(struct key_vector * tn,struct key_vector * n)483 static inline void tnode_free_append(struct key_vector *tn,
484 struct key_vector *n)
485 {
486 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
487 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
488 }
489
tnode_free(struct key_vector * tn)490 static void tnode_free(struct key_vector *tn)
491 {
492 struct callback_head *head = &tn_info(tn)->rcu;
493
494 while (head) {
495 head = head->next;
496 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
497 node_free(tn);
498
499 tn = container_of(head, struct tnode, rcu)->kv;
500 }
501
502 if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) {
503 tnode_free_size = 0;
504 synchronize_net();
505 }
506 }
507
replace(struct trie * t,struct key_vector * oldtnode,struct key_vector * tn)508 static struct key_vector *replace(struct trie *t,
509 struct key_vector *oldtnode,
510 struct key_vector *tn)
511 {
512 struct key_vector *tp = node_parent(oldtnode);
513 unsigned long i;
514
515 /* setup the parent pointer out of and back into this node */
516 NODE_INIT_PARENT(tn, tp);
517 put_child_root(tp, tn->key, tn);
518
519 /* update all of the child parent pointers */
520 update_children(tn);
521
522 /* all pointers should be clean so we are done */
523 tnode_free(oldtnode);
524
525 /* resize children now that oldtnode is freed */
526 for (i = child_length(tn); i;) {
527 struct key_vector *inode = get_child(tn, --i);
528
529 /* resize child node */
530 if (tnode_full(tn, inode))
531 tn = resize(t, inode);
532 }
533
534 return tp;
535 }
536
inflate(struct trie * t,struct key_vector * oldtnode)537 static struct key_vector *inflate(struct trie *t,
538 struct key_vector *oldtnode)
539 {
540 struct key_vector *tn;
541 unsigned long i;
542 t_key m;
543
544 pr_debug("In inflate\n");
545
546 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
547 if (!tn)
548 goto notnode;
549
550 /* prepare oldtnode to be freed */
551 tnode_free_init(oldtnode);
552
553 /* Assemble all of the pointers in our cluster, in this case that
554 * represents all of the pointers out of our allocated nodes that
555 * point to existing tnodes and the links between our allocated
556 * nodes.
557 */
558 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
559 struct key_vector *inode = get_child(oldtnode, --i);
560 struct key_vector *node0, *node1;
561 unsigned long j, k;
562
563 /* An empty child */
564 if (!inode)
565 continue;
566
567 /* A leaf or an internal node with skipped bits */
568 if (!tnode_full(oldtnode, inode)) {
569 put_child(tn, get_index(inode->key, tn), inode);
570 continue;
571 }
572
573 /* drop the node in the old tnode free list */
574 tnode_free_append(oldtnode, inode);
575
576 /* An internal node with two children */
577 if (inode->bits == 1) {
578 put_child(tn, 2 * i + 1, get_child(inode, 1));
579 put_child(tn, 2 * i, get_child(inode, 0));
580 continue;
581 }
582
583 /* We will replace this node 'inode' with two new
584 * ones, 'node0' and 'node1', each with half of the
585 * original children. The two new nodes will have
586 * a position one bit further down the key and this
587 * means that the "significant" part of their keys
588 * (see the discussion near the top of this file)
589 * will differ by one bit, which will be "0" in
590 * node0's key and "1" in node1's key. Since we are
591 * moving the key position by one step, the bit that
592 * we are moving away from - the bit at position
593 * (tn->pos) - is the one that will differ between
594 * node0 and node1. So... we synthesize that bit in the
595 * two new keys.
596 */
597 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
598 if (!node1)
599 goto nomem;
600 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
601
602 tnode_free_append(tn, node1);
603 if (!node0)
604 goto nomem;
605 tnode_free_append(tn, node0);
606
607 /* populate child pointers in new nodes */
608 for (k = child_length(inode), j = k / 2; j;) {
609 put_child(node1, --j, get_child(inode, --k));
610 put_child(node0, j, get_child(inode, j));
611 put_child(node1, --j, get_child(inode, --k));
612 put_child(node0, j, get_child(inode, j));
613 }
614
615 /* link new nodes to parent */
616 NODE_INIT_PARENT(node1, tn);
617 NODE_INIT_PARENT(node0, tn);
618
619 /* link parent to nodes */
620 put_child(tn, 2 * i + 1, node1);
621 put_child(tn, 2 * i, node0);
622 }
623
624 /* setup the parent pointers into and out of this node */
625 return replace(t, oldtnode, tn);
626 nomem:
627 /* all pointers should be clean so we are done */
628 tnode_free(tn);
629 notnode:
630 return NULL;
631 }
632
halve(struct trie * t,struct key_vector * oldtnode)633 static struct key_vector *halve(struct trie *t,
634 struct key_vector *oldtnode)
635 {
636 struct key_vector *tn;
637 unsigned long i;
638
639 pr_debug("In halve\n");
640
641 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
642 if (!tn)
643 goto notnode;
644
645 /* prepare oldtnode to be freed */
646 tnode_free_init(oldtnode);
647
648 /* Assemble all of the pointers in our cluster, in this case that
649 * represents all of the pointers out of our allocated nodes that
650 * point to existing tnodes and the links between our allocated
651 * nodes.
652 */
653 for (i = child_length(oldtnode); i;) {
654 struct key_vector *node1 = get_child(oldtnode, --i);
655 struct key_vector *node0 = get_child(oldtnode, --i);
656 struct key_vector *inode;
657
658 /* At least one of the children is empty */
659 if (!node1 || !node0) {
660 put_child(tn, i / 2, node1 ? : node0);
661 continue;
662 }
663
664 /* Two nonempty children */
665 inode = tnode_new(node0->key, oldtnode->pos, 1);
666 if (!inode)
667 goto nomem;
668 tnode_free_append(tn, inode);
669
670 /* initialize pointers out of node */
671 put_child(inode, 1, node1);
672 put_child(inode, 0, node0);
673 NODE_INIT_PARENT(inode, tn);
674
675 /* link parent to node */
676 put_child(tn, i / 2, inode);
677 }
678
679 /* setup the parent pointers into and out of this node */
680 return replace(t, oldtnode, tn);
681 nomem:
682 /* all pointers should be clean so we are done */
683 tnode_free(tn);
684 notnode:
685 return NULL;
686 }
687
collapse(struct trie * t,struct key_vector * oldtnode)688 static struct key_vector *collapse(struct trie *t,
689 struct key_vector *oldtnode)
690 {
691 struct key_vector *n, *tp;
692 unsigned long i;
693
694 /* scan the tnode looking for that one child that might still exist */
695 for (n = NULL, i = child_length(oldtnode); !n && i;)
696 n = get_child(oldtnode, --i);
697
698 /* compress one level */
699 tp = node_parent(oldtnode);
700 put_child_root(tp, oldtnode->key, n);
701 node_set_parent(n, tp);
702
703 /* drop dead node */
704 node_free(oldtnode);
705
706 return tp;
707 }
708
update_suffix(struct key_vector * tn)709 static unsigned char update_suffix(struct key_vector *tn)
710 {
711 unsigned char slen = tn->pos;
712 unsigned long stride, i;
713 unsigned char slen_max;
714
715 /* only vector 0 can have a suffix length greater than or equal to
716 * tn->pos + tn->bits, the second highest node will have a suffix
717 * length at most of tn->pos + tn->bits - 1
718 */
719 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
720
721 /* search though the list of children looking for nodes that might
722 * have a suffix greater than the one we currently have. This is
723 * why we start with a stride of 2 since a stride of 1 would
724 * represent the nodes with suffix length equal to tn->pos
725 */
726 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
727 struct key_vector *n = get_child(tn, i);
728
729 if (!n || (n->slen <= slen))
730 continue;
731
732 /* update stride and slen based on new value */
733 stride <<= (n->slen - slen);
734 slen = n->slen;
735 i &= ~(stride - 1);
736
737 /* stop searching if we have hit the maximum possible value */
738 if (slen >= slen_max)
739 break;
740 }
741
742 tn->slen = slen;
743
744 return slen;
745 }
746
747 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
748 * the Helsinki University of Technology and Matti Tikkanen of Nokia
749 * Telecommunications, page 6:
750 * "A node is doubled if the ratio of non-empty children to all
751 * children in the *doubled* node is at least 'high'."
752 *
753 * 'high' in this instance is the variable 'inflate_threshold'. It
754 * is expressed as a percentage, so we multiply it with
755 * child_length() and instead of multiplying by 2 (since the
756 * child array will be doubled by inflate()) and multiplying
757 * the left-hand side by 100 (to handle the percentage thing) we
758 * multiply the left-hand side by 50.
759 *
760 * The left-hand side may look a bit weird: child_length(tn)
761 * - tn->empty_children is of course the number of non-null children
762 * in the current node. tn->full_children is the number of "full"
763 * children, that is non-null tnodes with a skip value of 0.
764 * All of those will be doubled in the resulting inflated tnode, so
765 * we just count them one extra time here.
766 *
767 * A clearer way to write this would be:
768 *
769 * to_be_doubled = tn->full_children;
770 * not_to_be_doubled = child_length(tn) - tn->empty_children -
771 * tn->full_children;
772 *
773 * new_child_length = child_length(tn) * 2;
774 *
775 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
776 * new_child_length;
777 * if (new_fill_factor >= inflate_threshold)
778 *
779 * ...and so on, tho it would mess up the while () loop.
780 *
781 * anyway,
782 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
783 * inflate_threshold
784 *
785 * avoid a division:
786 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
787 * inflate_threshold * new_child_length
788 *
789 * expand not_to_be_doubled and to_be_doubled, and shorten:
790 * 100 * (child_length(tn) - tn->empty_children +
791 * tn->full_children) >= inflate_threshold * new_child_length
792 *
793 * expand new_child_length:
794 * 100 * (child_length(tn) - tn->empty_children +
795 * tn->full_children) >=
796 * inflate_threshold * child_length(tn) * 2
797 *
798 * shorten again:
799 * 50 * (tn->full_children + child_length(tn) -
800 * tn->empty_children) >= inflate_threshold *
801 * child_length(tn)
802 *
803 */
should_inflate(struct key_vector * tp,struct key_vector * tn)804 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
805 {
806 unsigned long used = child_length(tn);
807 unsigned long threshold = used;
808
809 /* Keep root node larger */
810 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
811 used -= tn_info(tn)->empty_children;
812 used += tn_info(tn)->full_children;
813
814 /* if bits == KEYLENGTH then pos = 0, and will fail below */
815
816 return (used > 1) && tn->pos && ((50 * used) >= threshold);
817 }
818
should_halve(struct key_vector * tp,struct key_vector * tn)819 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
820 {
821 unsigned long used = child_length(tn);
822 unsigned long threshold = used;
823
824 /* Keep root node larger */
825 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
826 used -= tn_info(tn)->empty_children;
827
828 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
829
830 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
831 }
832
should_collapse(struct key_vector * tn)833 static inline bool should_collapse(struct key_vector *tn)
834 {
835 unsigned long used = child_length(tn);
836
837 used -= tn_info(tn)->empty_children;
838
839 /* account for bits == KEYLENGTH case */
840 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
841 used -= KEY_MAX;
842
843 /* One child or none, time to drop us from the trie */
844 return used < 2;
845 }
846
847 #define MAX_WORK 10
resize(struct trie * t,struct key_vector * tn)848 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
849 {
850 #ifdef CONFIG_IP_FIB_TRIE_STATS
851 struct trie_use_stats __percpu *stats = t->stats;
852 #endif
853 struct key_vector *tp = node_parent(tn);
854 unsigned long cindex = get_index(tn->key, tp);
855 int max_work = MAX_WORK;
856
857 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
858 tn, inflate_threshold, halve_threshold);
859
860 /* track the tnode via the pointer from the parent instead of
861 * doing it ourselves. This way we can let RCU fully do its
862 * thing without us interfering
863 */
864 BUG_ON(tn != get_child(tp, cindex));
865
866 /* Double as long as the resulting node has a number of
867 * nonempty nodes that are above the threshold.
868 */
869 while (should_inflate(tp, tn) && max_work) {
870 tp = inflate(t, tn);
871 if (!tp) {
872 #ifdef CONFIG_IP_FIB_TRIE_STATS
873 this_cpu_inc(stats->resize_node_skipped);
874 #endif
875 break;
876 }
877
878 max_work--;
879 tn = get_child(tp, cindex);
880 }
881
882 /* update parent in case inflate failed */
883 tp = node_parent(tn);
884
885 /* Return if at least one inflate is run */
886 if (max_work != MAX_WORK)
887 return tp;
888
889 /* Halve as long as the number of empty children in this
890 * node is above threshold.
891 */
892 while (should_halve(tp, tn) && max_work) {
893 tp = halve(t, tn);
894 if (!tp) {
895 #ifdef CONFIG_IP_FIB_TRIE_STATS
896 this_cpu_inc(stats->resize_node_skipped);
897 #endif
898 break;
899 }
900
901 max_work--;
902 tn = get_child(tp, cindex);
903 }
904
905 /* Only one child remains */
906 if (should_collapse(tn))
907 return collapse(t, tn);
908
909 /* update parent in case halve failed */
910 return node_parent(tn);
911 }
912
node_pull_suffix(struct key_vector * tn,unsigned char slen)913 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
914 {
915 unsigned char node_slen = tn->slen;
916
917 while ((node_slen > tn->pos) && (node_slen > slen)) {
918 slen = update_suffix(tn);
919 if (node_slen == slen)
920 break;
921
922 tn = node_parent(tn);
923 node_slen = tn->slen;
924 }
925 }
926
node_push_suffix(struct key_vector * tn,unsigned char slen)927 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
928 {
929 while (tn->slen < slen) {
930 tn->slen = slen;
931 tn = node_parent(tn);
932 }
933 }
934
935 /* rcu_read_lock needs to be hold by caller from readside */
fib_find_node(struct trie * t,struct key_vector ** tp,u32 key)936 static struct key_vector *fib_find_node(struct trie *t,
937 struct key_vector **tp, u32 key)
938 {
939 struct key_vector *pn, *n = t->kv;
940 unsigned long index = 0;
941
942 do {
943 pn = n;
944 n = get_child_rcu(n, index);
945
946 if (!n)
947 break;
948
949 index = get_cindex(key, n);
950
951 /* This bit of code is a bit tricky but it combines multiple
952 * checks into a single check. The prefix consists of the
953 * prefix plus zeros for the bits in the cindex. The index
954 * is the difference between the key and this value. From
955 * this we can actually derive several pieces of data.
956 * if (index >= (1ul << bits))
957 * we have a mismatch in skip bits and failed
958 * else
959 * we know the value is cindex
960 *
961 * This check is safe even if bits == KEYLENGTH due to the
962 * fact that we can only allocate a node with 32 bits if a
963 * long is greater than 32 bits.
964 */
965 if (index >= (1ul << n->bits)) {
966 n = NULL;
967 break;
968 }
969
970 /* keep searching until we find a perfect match leaf or NULL */
971 } while (IS_TNODE(n));
972
973 *tp = pn;
974
975 return n;
976 }
977
978 /* Return the first fib alias matching DSCP with
979 * priority less than or equal to PRIO.
980 * If 'find_first' is set, return the first matching
981 * fib alias, regardless of DSCP and priority.
982 */
fib_find_alias(struct hlist_head * fah,u8 slen,dscp_t dscp,u32 prio,u32 tb_id,bool find_first)983 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
984 dscp_t dscp, u32 prio, u32 tb_id,
985 bool find_first)
986 {
987 struct fib_alias *fa;
988
989 if (!fah)
990 return NULL;
991
992 hlist_for_each_entry(fa, fah, fa_list) {
993 /* Avoid Sparse warning when using dscp_t in inequalities */
994 u8 __fa_dscp = inet_dscp_to_dsfield(fa->fa_dscp);
995 u8 __dscp = inet_dscp_to_dsfield(dscp);
996
997 if (fa->fa_slen < slen)
998 continue;
999 if (fa->fa_slen != slen)
1000 break;
1001 if (fa->tb_id > tb_id)
1002 continue;
1003 if (fa->tb_id != tb_id)
1004 break;
1005 if (find_first)
1006 return fa;
1007 if (__fa_dscp > __dscp)
1008 continue;
1009 if (fa->fa_info->fib_priority >= prio || __fa_dscp < __dscp)
1010 return fa;
1011 }
1012
1013 return NULL;
1014 }
1015
1016 static struct fib_alias *
fib_find_matching_alias(struct net * net,const struct fib_rt_info * fri)1017 fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1018 {
1019 u8 slen = KEYLENGTH - fri->dst_len;
1020 struct key_vector *l, *tp;
1021 struct fib_table *tb;
1022 struct fib_alias *fa;
1023 struct trie *t;
1024
1025 tb = fib_get_table(net, fri->tb_id);
1026 if (!tb)
1027 return NULL;
1028
1029 t = (struct trie *)tb->tb_data;
1030 l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1031 if (!l)
1032 return NULL;
1033
1034 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1035 if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1036 fa->fa_dscp == fri->dscp && fa->fa_info == fri->fi &&
1037 fa->fa_type == fri->type)
1038 return fa;
1039 }
1040
1041 return NULL;
1042 }
1043
fib_alias_hw_flags_set(struct net * net,const struct fib_rt_info * fri)1044 void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1045 {
1046 u8 fib_notify_on_flag_change;
1047 struct fib_alias *fa_match;
1048 struct sk_buff *skb;
1049 int err;
1050
1051 rcu_read_lock();
1052
1053 fa_match = fib_find_matching_alias(net, fri);
1054 if (!fa_match)
1055 goto out;
1056
1057 /* These are paired with the WRITE_ONCE() happening in this function.
1058 * The reason is that we are only protected by RCU at this point.
1059 */
1060 if (READ_ONCE(fa_match->offload) == fri->offload &&
1061 READ_ONCE(fa_match->trap) == fri->trap &&
1062 READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1063 goto out;
1064
1065 WRITE_ONCE(fa_match->offload, fri->offload);
1066 WRITE_ONCE(fa_match->trap, fri->trap);
1067
1068 fib_notify_on_flag_change = READ_ONCE(net->ipv4.sysctl_fib_notify_on_flag_change);
1069
1070 /* 2 means send notifications only if offload_failed was changed. */
1071 if (fib_notify_on_flag_change == 2 &&
1072 READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1073 goto out;
1074
1075 WRITE_ONCE(fa_match->offload_failed, fri->offload_failed);
1076
1077 if (!fib_notify_on_flag_change)
1078 goto out;
1079
1080 skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1081 if (!skb) {
1082 err = -ENOBUFS;
1083 goto errout;
1084 }
1085
1086 err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1087 if (err < 0) {
1088 /* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1089 WARN_ON(err == -EMSGSIZE);
1090 kfree_skb(skb);
1091 goto errout;
1092 }
1093
1094 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1095 goto out;
1096
1097 errout:
1098 rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1099 out:
1100 rcu_read_unlock();
1101 }
1102 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1103
trie_rebalance(struct trie * t,struct key_vector * tn)1104 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1105 {
1106 while (!IS_TRIE(tn))
1107 tn = resize(t, tn);
1108 }
1109
fib_insert_node(struct trie * t,struct key_vector * tp,struct fib_alias * new,t_key key)1110 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1111 struct fib_alias *new, t_key key)
1112 {
1113 struct key_vector *n, *l;
1114
1115 l = leaf_new(key, new);
1116 if (!l)
1117 goto noleaf;
1118
1119 /* retrieve child from parent node */
1120 n = get_child(tp, get_index(key, tp));
1121
1122 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1123 *
1124 * Add a new tnode here
1125 * first tnode need some special handling
1126 * leaves us in position for handling as case 3
1127 */
1128 if (n) {
1129 struct key_vector *tn;
1130
1131 tn = tnode_new(key, __fls(key ^ n->key), 1);
1132 if (!tn)
1133 goto notnode;
1134
1135 /* initialize routes out of node */
1136 NODE_INIT_PARENT(tn, tp);
1137 put_child(tn, get_index(key, tn) ^ 1, n);
1138
1139 /* start adding routes into the node */
1140 put_child_root(tp, key, tn);
1141 node_set_parent(n, tn);
1142
1143 /* parent now has a NULL spot where the leaf can go */
1144 tp = tn;
1145 }
1146
1147 /* Case 3: n is NULL, and will just insert a new leaf */
1148 node_push_suffix(tp, new->fa_slen);
1149 NODE_INIT_PARENT(l, tp);
1150 put_child_root(tp, key, l);
1151 trie_rebalance(t, tp);
1152
1153 return 0;
1154 notnode:
1155 node_free(l);
1156 noleaf:
1157 return -ENOMEM;
1158 }
1159
fib_insert_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * new,struct fib_alias * fa,t_key key)1160 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1161 struct key_vector *l, struct fib_alias *new,
1162 struct fib_alias *fa, t_key key)
1163 {
1164 if (!l)
1165 return fib_insert_node(t, tp, new, key);
1166
1167 if (fa) {
1168 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1169 } else {
1170 struct fib_alias *last;
1171
1172 hlist_for_each_entry(last, &l->leaf, fa_list) {
1173 if (new->fa_slen < last->fa_slen)
1174 break;
1175 if ((new->fa_slen == last->fa_slen) &&
1176 (new->tb_id > last->tb_id))
1177 break;
1178 fa = last;
1179 }
1180
1181 if (fa)
1182 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1183 else
1184 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1185 }
1186
1187 /* if we added to the tail node then we need to update slen */
1188 if (l->slen < new->fa_slen) {
1189 l->slen = new->fa_slen;
1190 node_push_suffix(tp, new->fa_slen);
1191 }
1192
1193 return 0;
1194 }
1195
1196 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1197 struct key_vector *l, struct fib_alias *old);
1198
1199 /* Caller must hold RTNL. */
fib_table_insert(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1200 int fib_table_insert(struct net *net, struct fib_table *tb,
1201 struct fib_config *cfg, struct netlink_ext_ack *extack)
1202 {
1203 struct trie *t = (struct trie *)tb->tb_data;
1204 struct fib_alias *fa, *new_fa;
1205 struct key_vector *l, *tp;
1206 u16 nlflags = NLM_F_EXCL;
1207 struct fib_info *fi;
1208 u8 plen = cfg->fc_dst_len;
1209 u8 slen = KEYLENGTH - plen;
1210 dscp_t dscp;
1211 u32 key;
1212 int err;
1213
1214 key = ntohl(cfg->fc_dst);
1215
1216 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1217
1218 fi = fib_create_info(cfg, extack);
1219 if (IS_ERR(fi)) {
1220 err = PTR_ERR(fi);
1221 goto err;
1222 }
1223
1224 dscp = cfg->fc_dscp;
1225 l = fib_find_node(t, &tp, key);
1226 fa = l ? fib_find_alias(&l->leaf, slen, dscp, fi->fib_priority,
1227 tb->tb_id, false) : NULL;
1228
1229 /* Now fa, if non-NULL, points to the first fib alias
1230 * with the same keys [prefix,dscp,priority], if such key already
1231 * exists or to the node before which we will insert new one.
1232 *
1233 * If fa is NULL, we will need to allocate a new one and
1234 * insert to the tail of the section matching the suffix length
1235 * of the new alias.
1236 */
1237
1238 if (fa && fa->fa_dscp == dscp &&
1239 fa->fa_info->fib_priority == fi->fib_priority) {
1240 struct fib_alias *fa_first, *fa_match;
1241
1242 err = -EEXIST;
1243 if (cfg->fc_nlflags & NLM_F_EXCL)
1244 goto out;
1245
1246 nlflags &= ~NLM_F_EXCL;
1247
1248 /* We have 2 goals:
1249 * 1. Find exact match for type, scope, fib_info to avoid
1250 * duplicate routes
1251 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1252 */
1253 fa_match = NULL;
1254 fa_first = fa;
1255 hlist_for_each_entry_from(fa, fa_list) {
1256 if ((fa->fa_slen != slen) ||
1257 (fa->tb_id != tb->tb_id) ||
1258 (fa->fa_dscp != dscp))
1259 break;
1260 if (fa->fa_info->fib_priority != fi->fib_priority)
1261 break;
1262 if (fa->fa_type == cfg->fc_type &&
1263 fa->fa_info == fi) {
1264 fa_match = fa;
1265 break;
1266 }
1267 }
1268
1269 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1270 struct fib_info *fi_drop;
1271 u8 state;
1272
1273 nlflags |= NLM_F_REPLACE;
1274 fa = fa_first;
1275 if (fa_match) {
1276 if (fa == fa_match)
1277 err = 0;
1278 goto out;
1279 }
1280 err = -ENOBUFS;
1281 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1282 if (!new_fa)
1283 goto out;
1284
1285 fi_drop = fa->fa_info;
1286 new_fa->fa_dscp = fa->fa_dscp;
1287 new_fa->fa_info = fi;
1288 new_fa->fa_type = cfg->fc_type;
1289 state = fa->fa_state;
1290 new_fa->fa_state = state & ~FA_S_ACCESSED;
1291 new_fa->fa_slen = fa->fa_slen;
1292 new_fa->tb_id = tb->tb_id;
1293 new_fa->fa_default = -1;
1294 new_fa->offload = 0;
1295 new_fa->trap = 0;
1296 new_fa->offload_failed = 0;
1297
1298 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1299
1300 if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1301 tb->tb_id, true) == new_fa) {
1302 enum fib_event_type fib_event;
1303
1304 fib_event = FIB_EVENT_ENTRY_REPLACE;
1305 err = call_fib_entry_notifiers(net, fib_event,
1306 key, plen,
1307 new_fa, extack);
1308 if (err) {
1309 hlist_replace_rcu(&new_fa->fa_list,
1310 &fa->fa_list);
1311 goto out_free_new_fa;
1312 }
1313 }
1314
1315 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1316 tb->tb_id, &cfg->fc_nlinfo, nlflags);
1317
1318 alias_free_mem_rcu(fa);
1319
1320 fib_release_info(fi_drop);
1321 if (state & FA_S_ACCESSED)
1322 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1323
1324 goto succeeded;
1325 }
1326 /* Error if we find a perfect match which
1327 * uses the same scope, type, and nexthop
1328 * information.
1329 */
1330 if (fa_match)
1331 goto out;
1332
1333 if (cfg->fc_nlflags & NLM_F_APPEND)
1334 nlflags |= NLM_F_APPEND;
1335 else
1336 fa = fa_first;
1337 }
1338 err = -ENOENT;
1339 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1340 goto out;
1341
1342 nlflags |= NLM_F_CREATE;
1343 err = -ENOBUFS;
1344 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1345 if (!new_fa)
1346 goto out;
1347
1348 new_fa->fa_info = fi;
1349 new_fa->fa_dscp = dscp;
1350 new_fa->fa_type = cfg->fc_type;
1351 new_fa->fa_state = 0;
1352 new_fa->fa_slen = slen;
1353 new_fa->tb_id = tb->tb_id;
1354 new_fa->fa_default = -1;
1355 new_fa->offload = 0;
1356 new_fa->trap = 0;
1357 new_fa->offload_failed = 0;
1358
1359 /* Insert new entry to the list. */
1360 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1361 if (err)
1362 goto out_free_new_fa;
1363
1364 /* The alias was already inserted, so the node must exist. */
1365 l = l ? l : fib_find_node(t, &tp, key);
1366 if (WARN_ON_ONCE(!l)) {
1367 err = -ENOENT;
1368 goto out_free_new_fa;
1369 }
1370
1371 if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1372 new_fa) {
1373 enum fib_event_type fib_event;
1374
1375 fib_event = FIB_EVENT_ENTRY_REPLACE;
1376 err = call_fib_entry_notifiers(net, fib_event, key, plen,
1377 new_fa, extack);
1378 if (err)
1379 goto out_remove_new_fa;
1380 }
1381
1382 if (!plen)
1383 tb->tb_num_default++;
1384
1385 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1386 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1387 &cfg->fc_nlinfo, nlflags);
1388 succeeded:
1389 return 0;
1390
1391 out_remove_new_fa:
1392 fib_remove_alias(t, tp, l, new_fa);
1393 out_free_new_fa:
1394 kmem_cache_free(fn_alias_kmem, new_fa);
1395 out:
1396 fib_release_info(fi);
1397 err:
1398 return err;
1399 }
1400
prefix_mismatch(t_key key,struct key_vector * n)1401 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1402 {
1403 t_key prefix = n->key;
1404
1405 return (key ^ prefix) & (prefix | -prefix);
1406 }
1407
fib_lookup_good_nhc(const struct fib_nh_common * nhc,int fib_flags,const struct flowi4 * flp)1408 bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1409 const struct flowi4 *flp)
1410 {
1411 if (nhc->nhc_flags & RTNH_F_DEAD)
1412 return false;
1413
1414 if (ip_ignore_linkdown(nhc->nhc_dev) &&
1415 nhc->nhc_flags & RTNH_F_LINKDOWN &&
1416 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1417 return false;
1418
1419 if (flp->flowi4_oif && flp->flowi4_oif != nhc->nhc_oif)
1420 return false;
1421
1422 return true;
1423 }
1424
1425 /* should be called with rcu_read_lock */
fib_table_lookup(struct fib_table * tb,const struct flowi4 * flp,struct fib_result * res,int fib_flags)1426 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1427 struct fib_result *res, int fib_flags)
1428 {
1429 struct trie *t = (struct trie *) tb->tb_data;
1430 #ifdef CONFIG_IP_FIB_TRIE_STATS
1431 struct trie_use_stats __percpu *stats = t->stats;
1432 #endif
1433 const t_key key = ntohl(flp->daddr);
1434 struct key_vector *n, *pn;
1435 struct fib_alias *fa;
1436 unsigned long index;
1437 t_key cindex;
1438
1439 pn = t->kv;
1440 cindex = 0;
1441
1442 n = get_child_rcu(pn, cindex);
1443 if (!n) {
1444 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1445 return -EAGAIN;
1446 }
1447
1448 #ifdef CONFIG_IP_FIB_TRIE_STATS
1449 this_cpu_inc(stats->gets);
1450 #endif
1451
1452 /* Step 1: Travel to the longest prefix match in the trie */
1453 for (;;) {
1454 index = get_cindex(key, n);
1455
1456 /* This bit of code is a bit tricky but it combines multiple
1457 * checks into a single check. The prefix consists of the
1458 * prefix plus zeros for the "bits" in the prefix. The index
1459 * is the difference between the key and this value. From
1460 * this we can actually derive several pieces of data.
1461 * if (index >= (1ul << bits))
1462 * we have a mismatch in skip bits and failed
1463 * else
1464 * we know the value is cindex
1465 *
1466 * This check is safe even if bits == KEYLENGTH due to the
1467 * fact that we can only allocate a node with 32 bits if a
1468 * long is greater than 32 bits.
1469 */
1470 if (index >= (1ul << n->bits))
1471 break;
1472
1473 /* we have found a leaf. Prefixes have already been compared */
1474 if (IS_LEAF(n))
1475 goto found;
1476
1477 /* only record pn and cindex if we are going to be chopping
1478 * bits later. Otherwise we are just wasting cycles.
1479 */
1480 if (n->slen > n->pos) {
1481 pn = n;
1482 cindex = index;
1483 }
1484
1485 n = get_child_rcu(n, index);
1486 if (unlikely(!n))
1487 goto backtrace;
1488 }
1489
1490 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1491 for (;;) {
1492 /* record the pointer where our next node pointer is stored */
1493 struct key_vector __rcu **cptr = n->tnode;
1494
1495 /* This test verifies that none of the bits that differ
1496 * between the key and the prefix exist in the region of
1497 * the lsb and higher in the prefix.
1498 */
1499 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1500 goto backtrace;
1501
1502 /* exit out and process leaf */
1503 if (unlikely(IS_LEAF(n)))
1504 break;
1505
1506 /* Don't bother recording parent info. Since we are in
1507 * prefix match mode we will have to come back to wherever
1508 * we started this traversal anyway
1509 */
1510
1511 while ((n = rcu_dereference(*cptr)) == NULL) {
1512 backtrace:
1513 #ifdef CONFIG_IP_FIB_TRIE_STATS
1514 if (!n)
1515 this_cpu_inc(stats->null_node_hit);
1516 #endif
1517 /* If we are at cindex 0 there are no more bits for
1518 * us to strip at this level so we must ascend back
1519 * up one level to see if there are any more bits to
1520 * be stripped there.
1521 */
1522 while (!cindex) {
1523 t_key pkey = pn->key;
1524
1525 /* If we don't have a parent then there is
1526 * nothing for us to do as we do not have any
1527 * further nodes to parse.
1528 */
1529 if (IS_TRIE(pn)) {
1530 trace_fib_table_lookup(tb->tb_id, flp,
1531 NULL, -EAGAIN);
1532 return -EAGAIN;
1533 }
1534 #ifdef CONFIG_IP_FIB_TRIE_STATS
1535 this_cpu_inc(stats->backtrack);
1536 #endif
1537 /* Get Child's index */
1538 pn = node_parent_rcu(pn);
1539 cindex = get_index(pkey, pn);
1540 }
1541
1542 /* strip the least significant bit from the cindex */
1543 cindex &= cindex - 1;
1544
1545 /* grab pointer for next child node */
1546 cptr = &pn->tnode[cindex];
1547 }
1548 }
1549
1550 found:
1551 /* this line carries forward the xor from earlier in the function */
1552 index = key ^ n->key;
1553
1554 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1555 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1556 struct fib_info *fi = fa->fa_info;
1557 struct fib_nh_common *nhc;
1558 int nhsel, err;
1559
1560 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1561 if (index >= (1ul << fa->fa_slen))
1562 continue;
1563 }
1564 if (fa->fa_dscp && !fib_dscp_masked_match(fa->fa_dscp, flp))
1565 continue;
1566 /* Paired with WRITE_ONCE() in fib_release_info() */
1567 if (READ_ONCE(fi->fib_dead))
1568 continue;
1569 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1570 continue;
1571 fib_alias_accessed(fa);
1572 err = fib_props[fa->fa_type].error;
1573 if (unlikely(err < 0)) {
1574 out_reject:
1575 #ifdef CONFIG_IP_FIB_TRIE_STATS
1576 this_cpu_inc(stats->semantic_match_passed);
1577 #endif
1578 trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1579 return err;
1580 }
1581 if (fi->fib_flags & RTNH_F_DEAD)
1582 continue;
1583
1584 if (unlikely(fi->nh)) {
1585 if (nexthop_is_blackhole(fi->nh)) {
1586 err = fib_props[RTN_BLACKHOLE].error;
1587 goto out_reject;
1588 }
1589
1590 nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1591 &nhsel);
1592 if (nhc)
1593 goto set_result;
1594 goto miss;
1595 }
1596
1597 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1598 nhc = fib_info_nhc(fi, nhsel);
1599
1600 if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1601 continue;
1602 set_result:
1603 if (!(fib_flags & FIB_LOOKUP_NOREF))
1604 refcount_inc(&fi->fib_clntref);
1605
1606 res->prefix = htonl(n->key);
1607 res->prefixlen = KEYLENGTH - fa->fa_slen;
1608 res->nh_sel = nhsel;
1609 res->nhc = nhc;
1610 res->type = fa->fa_type;
1611 res->scope = fi->fib_scope;
1612 res->dscp = fa->fa_dscp;
1613 res->fi = fi;
1614 res->table = tb;
1615 res->fa_head = &n->leaf;
1616 #ifdef CONFIG_IP_FIB_TRIE_STATS
1617 this_cpu_inc(stats->semantic_match_passed);
1618 #endif
1619 trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1620
1621 return err;
1622 }
1623 }
1624 miss:
1625 #ifdef CONFIG_IP_FIB_TRIE_STATS
1626 this_cpu_inc(stats->semantic_match_miss);
1627 #endif
1628 goto backtrace;
1629 }
1630 EXPORT_SYMBOL_GPL(fib_table_lookup);
1631
fib_remove_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * old)1632 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1633 struct key_vector *l, struct fib_alias *old)
1634 {
1635 /* record the location of the previous list_info entry */
1636 struct hlist_node **pprev = old->fa_list.pprev;
1637 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1638
1639 /* remove the fib_alias from the list */
1640 hlist_del_rcu(&old->fa_list);
1641
1642 /* if we emptied the list this leaf will be freed and we can sort
1643 * out parent suffix lengths as a part of trie_rebalance
1644 */
1645 if (hlist_empty(&l->leaf)) {
1646 if (tp->slen == l->slen)
1647 node_pull_suffix(tp, tp->pos);
1648 put_child_root(tp, l->key, NULL);
1649 node_free(l);
1650 trie_rebalance(t, tp);
1651 return;
1652 }
1653
1654 /* only access fa if it is pointing at the last valid hlist_node */
1655 if (*pprev)
1656 return;
1657
1658 /* update the trie with the latest suffix length */
1659 l->slen = fa->fa_slen;
1660 node_pull_suffix(tp, fa->fa_slen);
1661 }
1662
fib_notify_alias_delete(struct net * net,u32 key,struct hlist_head * fah,struct fib_alias * fa_to_delete,struct netlink_ext_ack * extack)1663 static void fib_notify_alias_delete(struct net *net, u32 key,
1664 struct hlist_head *fah,
1665 struct fib_alias *fa_to_delete,
1666 struct netlink_ext_ack *extack)
1667 {
1668 struct fib_alias *fa_next, *fa_to_notify;
1669 u32 tb_id = fa_to_delete->tb_id;
1670 u8 slen = fa_to_delete->fa_slen;
1671 enum fib_event_type fib_event;
1672
1673 /* Do not notify if we do not care about the route. */
1674 if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1675 return;
1676
1677 /* Determine if the route should be replaced by the next route in the
1678 * list.
1679 */
1680 fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1681 struct fib_alias, fa_list);
1682 if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1683 fib_event = FIB_EVENT_ENTRY_REPLACE;
1684 fa_to_notify = fa_next;
1685 } else {
1686 fib_event = FIB_EVENT_ENTRY_DEL;
1687 fa_to_notify = fa_to_delete;
1688 }
1689 call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1690 fa_to_notify, extack);
1691 }
1692
1693 /* Caller must hold RTNL. */
fib_table_delete(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1694 int fib_table_delete(struct net *net, struct fib_table *tb,
1695 struct fib_config *cfg, struct netlink_ext_ack *extack)
1696 {
1697 struct trie *t = (struct trie *) tb->tb_data;
1698 struct fib_alias *fa, *fa_to_delete;
1699 struct key_vector *l, *tp;
1700 u8 plen = cfg->fc_dst_len;
1701 u8 slen = KEYLENGTH - plen;
1702 dscp_t dscp;
1703 u32 key;
1704
1705 key = ntohl(cfg->fc_dst);
1706
1707 l = fib_find_node(t, &tp, key);
1708 if (!l)
1709 return -ESRCH;
1710
1711 dscp = cfg->fc_dscp;
1712 fa = fib_find_alias(&l->leaf, slen, dscp, 0, tb->tb_id, false);
1713 if (!fa)
1714 return -ESRCH;
1715
1716 pr_debug("Deleting %08x/%d dsfield=0x%02x t=%p\n", key, plen,
1717 inet_dscp_to_dsfield(dscp), t);
1718
1719 fa_to_delete = NULL;
1720 hlist_for_each_entry_from(fa, fa_list) {
1721 struct fib_info *fi = fa->fa_info;
1722
1723 if ((fa->fa_slen != slen) ||
1724 (fa->tb_id != tb->tb_id) ||
1725 (fa->fa_dscp != dscp))
1726 break;
1727
1728 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1729 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1730 fa->fa_info->fib_scope == cfg->fc_scope) &&
1731 (!cfg->fc_prefsrc ||
1732 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1733 (!cfg->fc_protocol ||
1734 fi->fib_protocol == cfg->fc_protocol) &&
1735 fib_nh_match(net, cfg, fi, extack) == 0 &&
1736 fib_metrics_match(cfg, fi)) {
1737 fa_to_delete = fa;
1738 break;
1739 }
1740 }
1741
1742 if (!fa_to_delete)
1743 return -ESRCH;
1744
1745 fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1746 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1747 &cfg->fc_nlinfo, 0);
1748
1749 if (!plen)
1750 tb->tb_num_default--;
1751
1752 fib_remove_alias(t, tp, l, fa_to_delete);
1753
1754 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1755 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1756
1757 fib_release_info(fa_to_delete->fa_info);
1758 alias_free_mem_rcu(fa_to_delete);
1759 return 0;
1760 }
1761
1762 /* Scan for the next leaf starting at the provided key value */
leaf_walk_rcu(struct key_vector ** tn,t_key key)1763 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1764 {
1765 struct key_vector *pn, *n = *tn;
1766 unsigned long cindex;
1767
1768 /* this loop is meant to try and find the key in the trie */
1769 do {
1770 /* record parent and next child index */
1771 pn = n;
1772 cindex = (key > pn->key) ? get_index(key, pn) : 0;
1773
1774 if (cindex >> pn->bits)
1775 break;
1776
1777 /* descend into the next child */
1778 n = get_child_rcu(pn, cindex++);
1779 if (!n)
1780 break;
1781
1782 /* guarantee forward progress on the keys */
1783 if (IS_LEAF(n) && (n->key >= key))
1784 goto found;
1785 } while (IS_TNODE(n));
1786
1787 /* this loop will search for the next leaf with a greater key */
1788 while (!IS_TRIE(pn)) {
1789 /* if we exhausted the parent node we will need to climb */
1790 if (cindex >= (1ul << pn->bits)) {
1791 t_key pkey = pn->key;
1792
1793 pn = node_parent_rcu(pn);
1794 cindex = get_index(pkey, pn) + 1;
1795 continue;
1796 }
1797
1798 /* grab the next available node */
1799 n = get_child_rcu(pn, cindex++);
1800 if (!n)
1801 continue;
1802
1803 /* no need to compare keys since we bumped the index */
1804 if (IS_LEAF(n))
1805 goto found;
1806
1807 /* Rescan start scanning in new node */
1808 pn = n;
1809 cindex = 0;
1810 }
1811
1812 *tn = pn;
1813 return NULL; /* Root of trie */
1814 found:
1815 /* if we are at the limit for keys just return NULL for the tnode */
1816 *tn = pn;
1817 return n;
1818 }
1819
fib_trie_free(struct fib_table * tb)1820 static void fib_trie_free(struct fib_table *tb)
1821 {
1822 struct trie *t = (struct trie *)tb->tb_data;
1823 struct key_vector *pn = t->kv;
1824 unsigned long cindex = 1;
1825 struct hlist_node *tmp;
1826 struct fib_alias *fa;
1827
1828 /* walk trie in reverse order and free everything */
1829 for (;;) {
1830 struct key_vector *n;
1831
1832 if (!(cindex--)) {
1833 t_key pkey = pn->key;
1834
1835 if (IS_TRIE(pn))
1836 break;
1837
1838 n = pn;
1839 pn = node_parent(pn);
1840
1841 /* drop emptied tnode */
1842 put_child_root(pn, n->key, NULL);
1843 node_free(n);
1844
1845 cindex = get_index(pkey, pn);
1846
1847 continue;
1848 }
1849
1850 /* grab the next available node */
1851 n = get_child(pn, cindex);
1852 if (!n)
1853 continue;
1854
1855 if (IS_TNODE(n)) {
1856 /* record pn and cindex for leaf walking */
1857 pn = n;
1858 cindex = 1ul << n->bits;
1859
1860 continue;
1861 }
1862
1863 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1864 hlist_del_rcu(&fa->fa_list);
1865 alias_free_mem_rcu(fa);
1866 }
1867
1868 put_child_root(pn, n->key, NULL);
1869 node_free(n);
1870 }
1871
1872 #ifdef CONFIG_IP_FIB_TRIE_STATS
1873 free_percpu(t->stats);
1874 #endif
1875 kfree(tb);
1876 }
1877
fib_trie_unmerge(struct fib_table * oldtb)1878 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1879 {
1880 struct trie *ot = (struct trie *)oldtb->tb_data;
1881 struct key_vector *l, *tp = ot->kv;
1882 struct fib_table *local_tb;
1883 struct fib_alias *fa;
1884 struct trie *lt;
1885 t_key key = 0;
1886
1887 if (oldtb->tb_data == oldtb->__data)
1888 return oldtb;
1889
1890 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1891 if (!local_tb)
1892 return NULL;
1893
1894 lt = (struct trie *)local_tb->tb_data;
1895
1896 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1897 struct key_vector *local_l = NULL, *local_tp;
1898
1899 hlist_for_each_entry(fa, &l->leaf, fa_list) {
1900 struct fib_alias *new_fa;
1901
1902 if (local_tb->tb_id != fa->tb_id)
1903 continue;
1904
1905 /* clone fa for new local table */
1906 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1907 if (!new_fa)
1908 goto out;
1909
1910 memcpy(new_fa, fa, sizeof(*fa));
1911
1912 /* insert clone into table */
1913 if (!local_l)
1914 local_l = fib_find_node(lt, &local_tp, l->key);
1915
1916 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1917 NULL, l->key)) {
1918 kmem_cache_free(fn_alias_kmem, new_fa);
1919 goto out;
1920 }
1921 }
1922
1923 /* stop loop if key wrapped back to 0 */
1924 key = l->key + 1;
1925 if (key < l->key)
1926 break;
1927 }
1928
1929 return local_tb;
1930 out:
1931 fib_trie_free(local_tb);
1932
1933 return NULL;
1934 }
1935
1936 /* Caller must hold RTNL */
fib_table_flush_external(struct fib_table * tb)1937 void fib_table_flush_external(struct fib_table *tb)
1938 {
1939 struct trie *t = (struct trie *)tb->tb_data;
1940 struct key_vector *pn = t->kv;
1941 unsigned long cindex = 1;
1942 struct hlist_node *tmp;
1943 struct fib_alias *fa;
1944
1945 /* walk trie in reverse order */
1946 for (;;) {
1947 unsigned char slen = 0;
1948 struct key_vector *n;
1949
1950 if (!(cindex--)) {
1951 t_key pkey = pn->key;
1952
1953 /* cannot resize the trie vector */
1954 if (IS_TRIE(pn))
1955 break;
1956
1957 /* update the suffix to address pulled leaves */
1958 if (pn->slen > pn->pos)
1959 update_suffix(pn);
1960
1961 /* resize completed node */
1962 pn = resize(t, pn);
1963 cindex = get_index(pkey, pn);
1964
1965 continue;
1966 }
1967
1968 /* grab the next available node */
1969 n = get_child(pn, cindex);
1970 if (!n)
1971 continue;
1972
1973 if (IS_TNODE(n)) {
1974 /* record pn and cindex for leaf walking */
1975 pn = n;
1976 cindex = 1ul << n->bits;
1977
1978 continue;
1979 }
1980
1981 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1982 /* if alias was cloned to local then we just
1983 * need to remove the local copy from main
1984 */
1985 if (tb->tb_id != fa->tb_id) {
1986 hlist_del_rcu(&fa->fa_list);
1987 alias_free_mem_rcu(fa);
1988 continue;
1989 }
1990
1991 /* record local slen */
1992 slen = fa->fa_slen;
1993 }
1994
1995 /* update leaf slen */
1996 n->slen = slen;
1997
1998 if (hlist_empty(&n->leaf)) {
1999 put_child_root(pn, n->key, NULL);
2000 node_free(n);
2001 }
2002 }
2003 }
2004
2005 /* Caller must hold RTNL. */
fib_table_flush(struct net * net,struct fib_table * tb,bool flush_all)2006 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2007 {
2008 struct trie *t = (struct trie *)tb->tb_data;
2009 struct nl_info info = { .nl_net = net };
2010 struct key_vector *pn = t->kv;
2011 unsigned long cindex = 1;
2012 struct hlist_node *tmp;
2013 struct fib_alias *fa;
2014 int found = 0;
2015
2016 /* walk trie in reverse order */
2017 for (;;) {
2018 unsigned char slen = 0;
2019 struct key_vector *n;
2020
2021 if (!(cindex--)) {
2022 t_key pkey = pn->key;
2023
2024 /* cannot resize the trie vector */
2025 if (IS_TRIE(pn))
2026 break;
2027
2028 /* update the suffix to address pulled leaves */
2029 if (pn->slen > pn->pos)
2030 update_suffix(pn);
2031
2032 /* resize completed node */
2033 pn = resize(t, pn);
2034 cindex = get_index(pkey, pn);
2035
2036 continue;
2037 }
2038
2039 /* grab the next available node */
2040 n = get_child(pn, cindex);
2041 if (!n)
2042 continue;
2043
2044 if (IS_TNODE(n)) {
2045 /* record pn and cindex for leaf walking */
2046 pn = n;
2047 cindex = 1ul << n->bits;
2048
2049 continue;
2050 }
2051
2052 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2053 struct fib_info *fi = fa->fa_info;
2054
2055 if (!fi || tb->tb_id != fa->tb_id ||
2056 (!(fi->fib_flags & RTNH_F_DEAD) &&
2057 !fib_props[fa->fa_type].error)) {
2058 slen = fa->fa_slen;
2059 continue;
2060 }
2061
2062 /* Do not flush error routes if network namespace is
2063 * not being dismantled
2064 */
2065 if (!flush_all && fib_props[fa->fa_type].error) {
2066 slen = fa->fa_slen;
2067 continue;
2068 }
2069
2070 fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2071 NULL);
2072 if (fi->pfsrc_removed)
2073 rtmsg_fib(RTM_DELROUTE, htonl(n->key), fa,
2074 KEYLENGTH - fa->fa_slen, tb->tb_id, &info, 0);
2075 hlist_del_rcu(&fa->fa_list);
2076 fib_release_info(fa->fa_info);
2077 alias_free_mem_rcu(fa);
2078 found++;
2079 }
2080
2081 /* update leaf slen */
2082 n->slen = slen;
2083
2084 if (hlist_empty(&n->leaf)) {
2085 put_child_root(pn, n->key, NULL);
2086 node_free(n);
2087 }
2088 }
2089
2090 pr_debug("trie_flush found=%d\n", found);
2091 return found;
2092 }
2093
2094 /* derived from fib_trie_free */
__fib_info_notify_update(struct net * net,struct fib_table * tb,struct nl_info * info)2095 static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2096 struct nl_info *info)
2097 {
2098 struct trie *t = (struct trie *)tb->tb_data;
2099 struct key_vector *pn = t->kv;
2100 unsigned long cindex = 1;
2101 struct fib_alias *fa;
2102
2103 for (;;) {
2104 struct key_vector *n;
2105
2106 if (!(cindex--)) {
2107 t_key pkey = pn->key;
2108
2109 if (IS_TRIE(pn))
2110 break;
2111
2112 pn = node_parent(pn);
2113 cindex = get_index(pkey, pn);
2114 continue;
2115 }
2116
2117 /* grab the next available node */
2118 n = get_child(pn, cindex);
2119 if (!n)
2120 continue;
2121
2122 if (IS_TNODE(n)) {
2123 /* record pn and cindex for leaf walking */
2124 pn = n;
2125 cindex = 1ul << n->bits;
2126
2127 continue;
2128 }
2129
2130 hlist_for_each_entry(fa, &n->leaf, fa_list) {
2131 struct fib_info *fi = fa->fa_info;
2132
2133 if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2134 continue;
2135
2136 rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2137 KEYLENGTH - fa->fa_slen, tb->tb_id,
2138 info, NLM_F_REPLACE);
2139 }
2140 }
2141 }
2142
fib_info_notify_update(struct net * net,struct nl_info * info)2143 void fib_info_notify_update(struct net *net, struct nl_info *info)
2144 {
2145 unsigned int h;
2146
2147 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2148 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2149 struct fib_table *tb;
2150
2151 hlist_for_each_entry_rcu(tb, head, tb_hlist,
2152 lockdep_rtnl_is_held())
2153 __fib_info_notify_update(net, tb, info);
2154 }
2155 }
2156
fib_leaf_notify(struct key_vector * l,struct fib_table * tb,struct notifier_block * nb,struct netlink_ext_ack * extack)2157 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2158 struct notifier_block *nb,
2159 struct netlink_ext_ack *extack)
2160 {
2161 struct fib_alias *fa;
2162 int last_slen = -1;
2163 int err;
2164
2165 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2166 struct fib_info *fi = fa->fa_info;
2167
2168 if (!fi)
2169 continue;
2170
2171 /* local and main table can share the same trie,
2172 * so don't notify twice for the same entry.
2173 */
2174 if (tb->tb_id != fa->tb_id)
2175 continue;
2176
2177 if (fa->fa_slen == last_slen)
2178 continue;
2179
2180 last_slen = fa->fa_slen;
2181 err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2182 l->key, KEYLENGTH - fa->fa_slen,
2183 fa, extack);
2184 if (err)
2185 return err;
2186 }
2187 return 0;
2188 }
2189
fib_table_notify(struct fib_table * tb,struct notifier_block * nb,struct netlink_ext_ack * extack)2190 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2191 struct netlink_ext_ack *extack)
2192 {
2193 struct trie *t = (struct trie *)tb->tb_data;
2194 struct key_vector *l, *tp = t->kv;
2195 t_key key = 0;
2196 int err;
2197
2198 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2199 err = fib_leaf_notify(l, tb, nb, extack);
2200 if (err)
2201 return err;
2202
2203 key = l->key + 1;
2204 /* stop in case of wrap around */
2205 if (key < l->key)
2206 break;
2207 }
2208 return 0;
2209 }
2210
fib_notify(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)2211 int fib_notify(struct net *net, struct notifier_block *nb,
2212 struct netlink_ext_ack *extack)
2213 {
2214 unsigned int h;
2215 int err;
2216
2217 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2218 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2219 struct fib_table *tb;
2220
2221 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2222 err = fib_table_notify(tb, nb, extack);
2223 if (err)
2224 return err;
2225 }
2226 }
2227 return 0;
2228 }
2229
__trie_free_rcu(struct rcu_head * head)2230 static void __trie_free_rcu(struct rcu_head *head)
2231 {
2232 struct fib_table *tb = container_of(head, struct fib_table, rcu);
2233 #ifdef CONFIG_IP_FIB_TRIE_STATS
2234 struct trie *t = (struct trie *)tb->tb_data;
2235
2236 if (tb->tb_data == tb->__data)
2237 free_percpu(t->stats);
2238 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2239 kfree(tb);
2240 }
2241
fib_free_table(struct fib_table * tb)2242 void fib_free_table(struct fib_table *tb)
2243 {
2244 call_rcu(&tb->rcu, __trie_free_rcu);
2245 }
2246
fn_trie_dump_leaf(struct key_vector * l,struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb,struct fib_dump_filter * filter)2247 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2248 struct sk_buff *skb, struct netlink_callback *cb,
2249 struct fib_dump_filter *filter)
2250 {
2251 unsigned int flags = NLM_F_MULTI;
2252 __be32 xkey = htonl(l->key);
2253 int i, s_i, i_fa, s_fa, err;
2254 struct fib_alias *fa;
2255
2256 if (filter->filter_set ||
2257 !filter->dump_exceptions || !filter->dump_routes)
2258 flags |= NLM_F_DUMP_FILTERED;
2259
2260 s_i = cb->args[4];
2261 s_fa = cb->args[5];
2262 i = 0;
2263
2264 /* rcu_read_lock is hold by caller */
2265 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2266 struct fib_info *fi = fa->fa_info;
2267
2268 if (i < s_i)
2269 goto next;
2270
2271 i_fa = 0;
2272
2273 if (tb->tb_id != fa->tb_id)
2274 goto next;
2275
2276 if (filter->filter_set) {
2277 if (filter->rt_type && fa->fa_type != filter->rt_type)
2278 goto next;
2279
2280 if ((filter->protocol &&
2281 fi->fib_protocol != filter->protocol))
2282 goto next;
2283
2284 if (filter->dev &&
2285 !fib_info_nh_uses_dev(fi, filter->dev))
2286 goto next;
2287 }
2288
2289 if (filter->dump_routes) {
2290 if (!s_fa) {
2291 struct fib_rt_info fri;
2292
2293 fri.fi = fi;
2294 fri.tb_id = tb->tb_id;
2295 fri.dst = xkey;
2296 fri.dst_len = KEYLENGTH - fa->fa_slen;
2297 fri.dscp = fa->fa_dscp;
2298 fri.type = fa->fa_type;
2299 fri.offload = READ_ONCE(fa->offload);
2300 fri.trap = READ_ONCE(fa->trap);
2301 fri.offload_failed = READ_ONCE(fa->offload_failed);
2302 err = fib_dump_info(skb,
2303 NETLINK_CB(cb->skb).portid,
2304 cb->nlh->nlmsg_seq,
2305 RTM_NEWROUTE, &fri, flags);
2306 if (err < 0)
2307 goto stop;
2308 }
2309
2310 i_fa++;
2311 }
2312
2313 if (filter->dump_exceptions) {
2314 err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2315 &i_fa, s_fa, flags);
2316 if (err < 0)
2317 goto stop;
2318 }
2319
2320 next:
2321 i++;
2322 }
2323
2324 cb->args[4] = i;
2325 return skb->len;
2326
2327 stop:
2328 cb->args[4] = i;
2329 cb->args[5] = i_fa;
2330 return err;
2331 }
2332
2333 /* rcu_read_lock needs to be hold by caller from readside */
fib_table_dump(struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb,struct fib_dump_filter * filter)2334 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2335 struct netlink_callback *cb, struct fib_dump_filter *filter)
2336 {
2337 struct trie *t = (struct trie *)tb->tb_data;
2338 struct key_vector *l, *tp = t->kv;
2339 /* Dump starting at last key.
2340 * Note: 0.0.0.0/0 (ie default) is first key.
2341 */
2342 int count = cb->args[2];
2343 t_key key = cb->args[3];
2344
2345 /* First time here, count and key are both always 0. Count > 0
2346 * and key == 0 means the dump has wrapped around and we are done.
2347 */
2348 if (count && !key)
2349 return 0;
2350
2351 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2352 int err;
2353
2354 err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2355 if (err < 0) {
2356 cb->args[3] = key;
2357 cb->args[2] = count;
2358 return err;
2359 }
2360
2361 ++count;
2362 key = l->key + 1;
2363
2364 memset(&cb->args[4], 0,
2365 sizeof(cb->args) - 4*sizeof(cb->args[0]));
2366
2367 /* stop loop if key wrapped back to 0 */
2368 if (key < l->key)
2369 break;
2370 }
2371
2372 cb->args[3] = key;
2373 cb->args[2] = count;
2374
2375 return 0;
2376 }
2377
fib_trie_init(void)2378 void __init fib_trie_init(void)
2379 {
2380 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2381 sizeof(struct fib_alias),
2382 0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2383
2384 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2385 LEAF_SIZE,
2386 0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2387 }
2388
fib_trie_table(u32 id,struct fib_table * alias)2389 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2390 {
2391 struct fib_table *tb;
2392 struct trie *t;
2393 size_t sz = sizeof(*tb);
2394
2395 if (!alias)
2396 sz += sizeof(struct trie);
2397
2398 tb = kzalloc(sz, GFP_KERNEL);
2399 if (!tb)
2400 return NULL;
2401
2402 tb->tb_id = id;
2403 tb->tb_num_default = 0;
2404 tb->tb_data = (alias ? alias->__data : tb->__data);
2405
2406 if (alias)
2407 return tb;
2408
2409 t = (struct trie *) tb->tb_data;
2410 t->kv[0].pos = KEYLENGTH;
2411 t->kv[0].slen = KEYLENGTH;
2412 #ifdef CONFIG_IP_FIB_TRIE_STATS
2413 t->stats = alloc_percpu(struct trie_use_stats);
2414 if (!t->stats) {
2415 kfree(tb);
2416 tb = NULL;
2417 }
2418 #endif
2419
2420 return tb;
2421 }
2422
2423 #ifdef CONFIG_PROC_FS
2424 /* Depth first Trie walk iterator */
2425 struct fib_trie_iter {
2426 struct seq_net_private p;
2427 struct fib_table *tb;
2428 struct key_vector *tnode;
2429 unsigned int index;
2430 unsigned int depth;
2431 };
2432
fib_trie_get_next(struct fib_trie_iter * iter)2433 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2434 {
2435 unsigned long cindex = iter->index;
2436 struct key_vector *pn = iter->tnode;
2437 t_key pkey;
2438
2439 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2440 iter->tnode, iter->index, iter->depth);
2441
2442 while (!IS_TRIE(pn)) {
2443 while (cindex < child_length(pn)) {
2444 struct key_vector *n = get_child_rcu(pn, cindex++);
2445
2446 if (!n)
2447 continue;
2448
2449 if (IS_LEAF(n)) {
2450 iter->tnode = pn;
2451 iter->index = cindex;
2452 } else {
2453 /* push down one level */
2454 iter->tnode = n;
2455 iter->index = 0;
2456 ++iter->depth;
2457 }
2458
2459 return n;
2460 }
2461
2462 /* Current node exhausted, pop back up */
2463 pkey = pn->key;
2464 pn = node_parent_rcu(pn);
2465 cindex = get_index(pkey, pn) + 1;
2466 --iter->depth;
2467 }
2468
2469 /* record root node so further searches know we are done */
2470 iter->tnode = pn;
2471 iter->index = 0;
2472
2473 return NULL;
2474 }
2475
fib_trie_get_first(struct fib_trie_iter * iter,struct trie * t)2476 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2477 struct trie *t)
2478 {
2479 struct key_vector *n, *pn;
2480
2481 if (!t)
2482 return NULL;
2483
2484 pn = t->kv;
2485 n = rcu_dereference(pn->tnode[0]);
2486 if (!n)
2487 return NULL;
2488
2489 if (IS_TNODE(n)) {
2490 iter->tnode = n;
2491 iter->index = 0;
2492 iter->depth = 1;
2493 } else {
2494 iter->tnode = pn;
2495 iter->index = 0;
2496 iter->depth = 0;
2497 }
2498
2499 return n;
2500 }
2501
trie_collect_stats(struct trie * t,struct trie_stat * s)2502 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2503 {
2504 struct key_vector *n;
2505 struct fib_trie_iter iter;
2506
2507 memset(s, 0, sizeof(*s));
2508
2509 rcu_read_lock();
2510 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2511 if (IS_LEAF(n)) {
2512 struct fib_alias *fa;
2513
2514 s->leaves++;
2515 s->totdepth += iter.depth;
2516 if (iter.depth > s->maxdepth)
2517 s->maxdepth = iter.depth;
2518
2519 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2520 ++s->prefixes;
2521 } else {
2522 s->tnodes++;
2523 if (n->bits < MAX_STAT_DEPTH)
2524 s->nodesizes[n->bits]++;
2525 s->nullpointers += tn_info(n)->empty_children;
2526 }
2527 }
2528 rcu_read_unlock();
2529 }
2530
2531 /*
2532 * This outputs /proc/net/fib_triestats
2533 */
trie_show_stats(struct seq_file * seq,struct trie_stat * stat)2534 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2535 {
2536 unsigned int i, max, pointers, bytes, avdepth;
2537
2538 if (stat->leaves)
2539 avdepth = stat->totdepth*100 / stat->leaves;
2540 else
2541 avdepth = 0;
2542
2543 seq_printf(seq, "\tAver depth: %u.%02d\n",
2544 avdepth / 100, avdepth % 100);
2545 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2546
2547 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2548 bytes = LEAF_SIZE * stat->leaves;
2549
2550 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2551 bytes += sizeof(struct fib_alias) * stat->prefixes;
2552
2553 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2554 bytes += TNODE_SIZE(0) * stat->tnodes;
2555
2556 max = MAX_STAT_DEPTH;
2557 while (max > 0 && stat->nodesizes[max-1] == 0)
2558 max--;
2559
2560 pointers = 0;
2561 for (i = 1; i < max; i++)
2562 if (stat->nodesizes[i] != 0) {
2563 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2564 pointers += (1<<i) * stat->nodesizes[i];
2565 }
2566 seq_putc(seq, '\n');
2567 seq_printf(seq, "\tPointers: %u\n", pointers);
2568
2569 bytes += sizeof(struct key_vector *) * pointers;
2570 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2571 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2572 }
2573
2574 #ifdef CONFIG_IP_FIB_TRIE_STATS
trie_show_usage(struct seq_file * seq,const struct trie_use_stats __percpu * stats)2575 static void trie_show_usage(struct seq_file *seq,
2576 const struct trie_use_stats __percpu *stats)
2577 {
2578 struct trie_use_stats s = { 0 };
2579 int cpu;
2580
2581 /* loop through all of the CPUs and gather up the stats */
2582 for_each_possible_cpu(cpu) {
2583 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2584
2585 s.gets += pcpu->gets;
2586 s.backtrack += pcpu->backtrack;
2587 s.semantic_match_passed += pcpu->semantic_match_passed;
2588 s.semantic_match_miss += pcpu->semantic_match_miss;
2589 s.null_node_hit += pcpu->null_node_hit;
2590 s.resize_node_skipped += pcpu->resize_node_skipped;
2591 }
2592
2593 seq_printf(seq, "\nCounters:\n---------\n");
2594 seq_printf(seq, "gets = %u\n", s.gets);
2595 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2596 seq_printf(seq, "semantic match passed = %u\n",
2597 s.semantic_match_passed);
2598 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2599 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2600 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2601 }
2602 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2603
fib_table_print(struct seq_file * seq,struct fib_table * tb)2604 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2605 {
2606 if (tb->tb_id == RT_TABLE_LOCAL)
2607 seq_puts(seq, "Local:\n");
2608 else if (tb->tb_id == RT_TABLE_MAIN)
2609 seq_puts(seq, "Main:\n");
2610 else
2611 seq_printf(seq, "Id %d:\n", tb->tb_id);
2612 }
2613
2614
fib_triestat_seq_show(struct seq_file * seq,void * v)2615 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2616 {
2617 struct net *net = seq->private;
2618 unsigned int h;
2619
2620 seq_printf(seq,
2621 "Basic info: size of leaf:"
2622 " %zd bytes, size of tnode: %zd bytes.\n",
2623 LEAF_SIZE, TNODE_SIZE(0));
2624
2625 rcu_read_lock();
2626 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2627 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2628 struct fib_table *tb;
2629
2630 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2631 struct trie *t = (struct trie *) tb->tb_data;
2632 struct trie_stat stat;
2633
2634 if (!t)
2635 continue;
2636
2637 fib_table_print(seq, tb);
2638
2639 trie_collect_stats(t, &stat);
2640 trie_show_stats(seq, &stat);
2641 #ifdef CONFIG_IP_FIB_TRIE_STATS
2642 trie_show_usage(seq, t->stats);
2643 #endif
2644 }
2645 cond_resched_rcu();
2646 }
2647 rcu_read_unlock();
2648
2649 return 0;
2650 }
2651
fib_trie_get_idx(struct seq_file * seq,loff_t pos)2652 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2653 {
2654 struct fib_trie_iter *iter = seq->private;
2655 struct net *net = seq_file_net(seq);
2656 loff_t idx = 0;
2657 unsigned int h;
2658
2659 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2660 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2661 struct fib_table *tb;
2662
2663 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2664 struct key_vector *n;
2665
2666 for (n = fib_trie_get_first(iter,
2667 (struct trie *) tb->tb_data);
2668 n; n = fib_trie_get_next(iter))
2669 if (pos == idx++) {
2670 iter->tb = tb;
2671 return n;
2672 }
2673 }
2674 }
2675
2676 return NULL;
2677 }
2678
fib_trie_seq_start(struct seq_file * seq,loff_t * pos)2679 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2680 __acquires(RCU)
2681 {
2682 rcu_read_lock();
2683 return fib_trie_get_idx(seq, *pos);
2684 }
2685
fib_trie_seq_next(struct seq_file * seq,void * v,loff_t * pos)2686 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2687 {
2688 struct fib_trie_iter *iter = seq->private;
2689 struct net *net = seq_file_net(seq);
2690 struct fib_table *tb = iter->tb;
2691 struct hlist_node *tb_node;
2692 unsigned int h;
2693 struct key_vector *n;
2694
2695 ++*pos;
2696 /* next node in same table */
2697 n = fib_trie_get_next(iter);
2698 if (n)
2699 return n;
2700
2701 /* walk rest of this hash chain */
2702 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2703 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2704 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2705 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2706 if (n)
2707 goto found;
2708 }
2709
2710 /* new hash chain */
2711 while (++h < FIB_TABLE_HASHSZ) {
2712 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2713 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2714 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2715 if (n)
2716 goto found;
2717 }
2718 }
2719 return NULL;
2720
2721 found:
2722 iter->tb = tb;
2723 return n;
2724 }
2725
fib_trie_seq_stop(struct seq_file * seq,void * v)2726 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2727 __releases(RCU)
2728 {
2729 rcu_read_unlock();
2730 }
2731
seq_indent(struct seq_file * seq,int n)2732 static void seq_indent(struct seq_file *seq, int n)
2733 {
2734 while (n-- > 0)
2735 seq_puts(seq, " ");
2736 }
2737
rtn_scope(char * buf,size_t len,enum rt_scope_t s)2738 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2739 {
2740 switch (s) {
2741 case RT_SCOPE_UNIVERSE: return "universe";
2742 case RT_SCOPE_SITE: return "site";
2743 case RT_SCOPE_LINK: return "link";
2744 case RT_SCOPE_HOST: return "host";
2745 case RT_SCOPE_NOWHERE: return "nowhere";
2746 default:
2747 snprintf(buf, len, "scope=%d", s);
2748 return buf;
2749 }
2750 }
2751
2752 static const char *const rtn_type_names[__RTN_MAX] = {
2753 [RTN_UNSPEC] = "UNSPEC",
2754 [RTN_UNICAST] = "UNICAST",
2755 [RTN_LOCAL] = "LOCAL",
2756 [RTN_BROADCAST] = "BROADCAST",
2757 [RTN_ANYCAST] = "ANYCAST",
2758 [RTN_MULTICAST] = "MULTICAST",
2759 [RTN_BLACKHOLE] = "BLACKHOLE",
2760 [RTN_UNREACHABLE] = "UNREACHABLE",
2761 [RTN_PROHIBIT] = "PROHIBIT",
2762 [RTN_THROW] = "THROW",
2763 [RTN_NAT] = "NAT",
2764 [RTN_XRESOLVE] = "XRESOLVE",
2765 };
2766
rtn_type(char * buf,size_t len,unsigned int t)2767 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2768 {
2769 if (t < __RTN_MAX && rtn_type_names[t])
2770 return rtn_type_names[t];
2771 snprintf(buf, len, "type %u", t);
2772 return buf;
2773 }
2774
2775 /* Pretty print the trie */
fib_trie_seq_show(struct seq_file * seq,void * v)2776 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2777 {
2778 const struct fib_trie_iter *iter = seq->private;
2779 struct key_vector *n = v;
2780
2781 if (IS_TRIE(node_parent_rcu(n)))
2782 fib_table_print(seq, iter->tb);
2783
2784 if (IS_TNODE(n)) {
2785 __be32 prf = htonl(n->key);
2786
2787 seq_indent(seq, iter->depth-1);
2788 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2789 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2790 tn_info(n)->full_children,
2791 tn_info(n)->empty_children);
2792 } else {
2793 __be32 val = htonl(n->key);
2794 struct fib_alias *fa;
2795
2796 seq_indent(seq, iter->depth);
2797 seq_printf(seq, " |-- %pI4\n", &val);
2798
2799 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2800 char buf1[32], buf2[32];
2801
2802 seq_indent(seq, iter->depth + 1);
2803 seq_printf(seq, " /%zu %s %s",
2804 KEYLENGTH - fa->fa_slen,
2805 rtn_scope(buf1, sizeof(buf1),
2806 fa->fa_info->fib_scope),
2807 rtn_type(buf2, sizeof(buf2),
2808 fa->fa_type));
2809 if (fa->fa_dscp)
2810 seq_printf(seq, " tos=%d",
2811 inet_dscp_to_dsfield(fa->fa_dscp));
2812 seq_putc(seq, '\n');
2813 }
2814 }
2815
2816 return 0;
2817 }
2818
2819 static const struct seq_operations fib_trie_seq_ops = {
2820 .start = fib_trie_seq_start,
2821 .next = fib_trie_seq_next,
2822 .stop = fib_trie_seq_stop,
2823 .show = fib_trie_seq_show,
2824 };
2825
2826 struct fib_route_iter {
2827 struct seq_net_private p;
2828 struct fib_table *main_tb;
2829 struct key_vector *tnode;
2830 loff_t pos;
2831 t_key key;
2832 };
2833
fib_route_get_idx(struct fib_route_iter * iter,loff_t pos)2834 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2835 loff_t pos)
2836 {
2837 struct key_vector *l, **tp = &iter->tnode;
2838 t_key key;
2839
2840 /* use cached location of previously found key */
2841 if (iter->pos > 0 && pos >= iter->pos) {
2842 key = iter->key;
2843 } else {
2844 iter->pos = 1;
2845 key = 0;
2846 }
2847
2848 pos -= iter->pos;
2849
2850 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2851 key = l->key + 1;
2852 iter->pos++;
2853 l = NULL;
2854
2855 /* handle unlikely case of a key wrap */
2856 if (!key)
2857 break;
2858 }
2859
2860 if (l)
2861 iter->key = l->key; /* remember it */
2862 else
2863 iter->pos = 0; /* forget it */
2864
2865 return l;
2866 }
2867
fib_route_seq_start(struct seq_file * seq,loff_t * pos)2868 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2869 __acquires(RCU)
2870 {
2871 struct fib_route_iter *iter = seq->private;
2872 struct fib_table *tb;
2873 struct trie *t;
2874
2875 rcu_read_lock();
2876
2877 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2878 if (!tb)
2879 return NULL;
2880
2881 iter->main_tb = tb;
2882 t = (struct trie *)tb->tb_data;
2883 iter->tnode = t->kv;
2884
2885 if (*pos != 0)
2886 return fib_route_get_idx(iter, *pos);
2887
2888 iter->pos = 0;
2889 iter->key = KEY_MAX;
2890
2891 return SEQ_START_TOKEN;
2892 }
2893
fib_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2894 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2895 {
2896 struct fib_route_iter *iter = seq->private;
2897 struct key_vector *l = NULL;
2898 t_key key = iter->key + 1;
2899
2900 ++*pos;
2901
2902 /* only allow key of 0 for start of sequence */
2903 if ((v == SEQ_START_TOKEN) || key)
2904 l = leaf_walk_rcu(&iter->tnode, key);
2905
2906 if (l) {
2907 iter->key = l->key;
2908 iter->pos++;
2909 } else {
2910 iter->pos = 0;
2911 }
2912
2913 return l;
2914 }
2915
fib_route_seq_stop(struct seq_file * seq,void * v)2916 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2917 __releases(RCU)
2918 {
2919 rcu_read_unlock();
2920 }
2921
fib_flag_trans(int type,__be32 mask,struct fib_info * fi)2922 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2923 {
2924 unsigned int flags = 0;
2925
2926 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2927 flags = RTF_REJECT;
2928 if (fi) {
2929 const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2930
2931 if (nhc->nhc_gw.ipv4)
2932 flags |= RTF_GATEWAY;
2933 }
2934 if (mask == htonl(0xFFFFFFFF))
2935 flags |= RTF_HOST;
2936 flags |= RTF_UP;
2937 return flags;
2938 }
2939
2940 /*
2941 * This outputs /proc/net/route.
2942 * The format of the file is not supposed to be changed
2943 * and needs to be same as fib_hash output to avoid breaking
2944 * legacy utilities
2945 */
fib_route_seq_show(struct seq_file * seq,void * v)2946 static int fib_route_seq_show(struct seq_file *seq, void *v)
2947 {
2948 struct fib_route_iter *iter = seq->private;
2949 struct fib_table *tb = iter->main_tb;
2950 struct fib_alias *fa;
2951 struct key_vector *l = v;
2952 __be32 prefix;
2953
2954 if (v == SEQ_START_TOKEN) {
2955 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2956 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2957 "\tWindow\tIRTT");
2958 return 0;
2959 }
2960
2961 prefix = htonl(l->key);
2962
2963 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2964 struct fib_info *fi = fa->fa_info;
2965 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2966 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2967
2968 if ((fa->fa_type == RTN_BROADCAST) ||
2969 (fa->fa_type == RTN_MULTICAST))
2970 continue;
2971
2972 if (fa->tb_id != tb->tb_id)
2973 continue;
2974
2975 seq_setwidth(seq, 127);
2976
2977 if (fi) {
2978 struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2979 __be32 gw = 0;
2980
2981 if (nhc->nhc_gw_family == AF_INET)
2982 gw = nhc->nhc_gw.ipv4;
2983
2984 seq_printf(seq,
2985 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2986 "%d\t%08X\t%d\t%u\t%u",
2987 nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2988 prefix, gw, flags, 0, 0,
2989 fi->fib_priority,
2990 mask,
2991 (fi->fib_advmss ?
2992 fi->fib_advmss + 40 : 0),
2993 fi->fib_window,
2994 fi->fib_rtt >> 3);
2995 } else {
2996 seq_printf(seq,
2997 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2998 "%d\t%08X\t%d\t%u\t%u",
2999 prefix, 0, flags, 0, 0, 0,
3000 mask, 0, 0, 0);
3001 }
3002 seq_pad(seq, '\n');
3003 }
3004
3005 return 0;
3006 }
3007
3008 static const struct seq_operations fib_route_seq_ops = {
3009 .start = fib_route_seq_start,
3010 .next = fib_route_seq_next,
3011 .stop = fib_route_seq_stop,
3012 .show = fib_route_seq_show,
3013 };
3014
fib_proc_init(struct net * net)3015 int __net_init fib_proc_init(struct net *net)
3016 {
3017 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3018 sizeof(struct fib_trie_iter)))
3019 goto out1;
3020
3021 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3022 fib_triestat_seq_show, NULL))
3023 goto out2;
3024
3025 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3026 sizeof(struct fib_route_iter)))
3027 goto out3;
3028
3029 return 0;
3030
3031 out3:
3032 remove_proc_entry("fib_triestat", net->proc_net);
3033 out2:
3034 remove_proc_entry("fib_trie", net->proc_net);
3035 out1:
3036 return -ENOMEM;
3037 }
3038
fib_proc_exit(struct net * net)3039 void __net_exit fib_proc_exit(struct net *net)
3040 {
3041 remove_proc_entry("fib_trie", net->proc_net);
3042 remove_proc_entry("fib_triestat", net->proc_net);
3043 remove_proc_entry("route", net->proc_net);
3044 }
3045
3046 #endif /* CONFIG_PROC_FS */
3047