• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58 
59 #include "workqueue_internal.h"
60 
61 #include <trace/hooks/dtask.h>
62 #include <trace/hooks/wqlockup.h>
63 /* events/workqueue.h uses default TRACE_INCLUDE_PATH */
64 #undef TRACE_INCLUDE_PATH
65 
66 enum worker_pool_flags {
67 	/*
68 	 * worker_pool flags
69 	 *
70 	 * A bound pool is either associated or disassociated with its CPU.
71 	 * While associated (!DISASSOCIATED), all workers are bound to the
72 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
73 	 * is in effect.
74 	 *
75 	 * While DISASSOCIATED, the cpu may be offline and all workers have
76 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
77 	 * be executing on any CPU.  The pool behaves as an unbound one.
78 	 *
79 	 * Note that DISASSOCIATED should be flipped only while holding
80 	 * wq_pool_attach_mutex to avoid changing binding state while
81 	 * worker_attach_to_pool() is in progress.
82 	 *
83 	 * As there can only be one concurrent BH execution context per CPU, a
84 	 * BH pool is per-CPU and always DISASSOCIATED.
85 	 */
86 	POOL_BH			= 1 << 0,	/* is a BH pool */
87 	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
88 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
89 	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
90 };
91 
92 enum worker_flags {
93 	/* worker flags */
94 	WORKER_DIE		= 1 << 1,	/* die die die */
95 	WORKER_IDLE		= 1 << 2,	/* is idle */
96 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
97 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
98 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
99 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
100 
101 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
102 				  WORKER_UNBOUND | WORKER_REBOUND,
103 };
104 
105 enum work_cancel_flags {
106 	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
107 	WORK_CANCEL_DISABLE	= 1 << 1,	/* canceling to disable */
108 };
109 
110 enum wq_internal_consts {
111 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
112 
113 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
114 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
115 
116 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
117 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
118 
119 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
120 						/* call for help after 10ms
121 						   (min two ticks) */
122 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
123 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
124 
125 	/*
126 	 * Rescue workers are used only on emergencies and shared by
127 	 * all cpus.  Give MIN_NICE.
128 	 */
129 	RESCUER_NICE_LEVEL	= MIN_NICE,
130 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
131 
132 	WQ_NAME_LEN		= 32,
133 	WORKER_ID_LEN		= 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */
134 };
135 
136 /*
137  * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
138  * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
139  * msecs_to_jiffies() can't be an initializer.
140  */
141 #define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
142 #define BH_WORKER_RESTARTS	10
143 
144 /*
145  * Structure fields follow one of the following exclusion rules.
146  *
147  * I: Modifiable by initialization/destruction paths and read-only for
148  *    everyone else.
149  *
150  * P: Preemption protected.  Disabling preemption is enough and should
151  *    only be modified and accessed from the local cpu.
152  *
153  * L: pool->lock protected.  Access with pool->lock held.
154  *
155  * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
156  *     reads.
157  *
158  * K: Only modified by worker while holding pool->lock. Can be safely read by
159  *    self, while holding pool->lock or from IRQ context if %current is the
160  *    kworker.
161  *
162  * S: Only modified by worker self.
163  *
164  * A: wq_pool_attach_mutex protected.
165  *
166  * PL: wq_pool_mutex protected.
167  *
168  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
169  *
170  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
171  *
172  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
173  *      RCU for reads.
174  *
175  * WQ: wq->mutex protected.
176  *
177  * WR: wq->mutex protected for writes.  RCU protected for reads.
178  *
179  * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
180  *     with READ_ONCE() without locking.
181  *
182  * MD: wq_mayday_lock protected.
183  *
184  * WD: Used internally by the watchdog.
185  */
186 
187 /* struct worker is defined in workqueue_internal.h */
188 
189 struct worker_pool {
190 	raw_spinlock_t		lock;		/* the pool lock */
191 	int			cpu;		/* I: the associated cpu */
192 	int			node;		/* I: the associated node ID */
193 	int			id;		/* I: pool ID */
194 	unsigned int		flags;		/* L: flags */
195 
196 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
197 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
198 
199 	/*
200 	 * The counter is incremented in a process context on the associated CPU
201 	 * w/ preemption disabled, and decremented or reset in the same context
202 	 * but w/ pool->lock held. The readers grab pool->lock and are
203 	 * guaranteed to see if the counter reached zero.
204 	 */
205 	int			nr_running;
206 
207 	struct list_head	worklist;	/* L: list of pending works */
208 
209 	int			nr_workers;	/* L: total number of workers */
210 	int			nr_idle;	/* L: currently idle workers */
211 
212 	struct list_head	idle_list;	/* L: list of idle workers */
213 	struct timer_list	idle_timer;	/* L: worker idle timeout */
214 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
215 
216 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
217 
218 	/* a workers is either on busy_hash or idle_list, or the manager */
219 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
220 						/* L: hash of busy workers */
221 
222 	struct worker		*manager;	/* L: purely informational */
223 	struct list_head	workers;	/* A: attached workers */
224 
225 	struct ida		worker_ida;	/* worker IDs for task name */
226 
227 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
228 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
229 	int			refcnt;		/* PL: refcnt for unbound pools */
230 
231 	/*
232 	 * Destruction of pool is RCU protected to allow dereferences
233 	 * from get_work_pool().
234 	 */
235 	struct rcu_head		rcu;
236 };
237 
238 /*
239  * Per-pool_workqueue statistics. These can be monitored using
240  * tools/workqueue/wq_monitor.py.
241  */
242 enum pool_workqueue_stats {
243 	PWQ_STAT_STARTED,	/* work items started execution */
244 	PWQ_STAT_COMPLETED,	/* work items completed execution */
245 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
246 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
247 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
248 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
249 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
250 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
251 
252 	PWQ_NR_STATS,
253 };
254 
255 /*
256  * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
257  * of work_struct->data are used for flags and the remaining high bits
258  * point to the pwq; thus, pwqs need to be aligned at two's power of the
259  * number of flag bits.
260  */
261 struct pool_workqueue {
262 	struct worker_pool	*pool;		/* I: the associated pool */
263 	struct workqueue_struct *wq;		/* I: the owning workqueue */
264 	int			work_color;	/* L: current color */
265 	int			flush_color;	/* L: flushing color */
266 	int			refcnt;		/* L: reference count */
267 	int			nr_in_flight[WORK_NR_COLORS];
268 						/* L: nr of in_flight works */
269 	bool			plugged;	/* L: execution suspended */
270 
271 	/*
272 	 * nr_active management and WORK_STRUCT_INACTIVE:
273 	 *
274 	 * When pwq->nr_active >= max_active, new work item is queued to
275 	 * pwq->inactive_works instead of pool->worklist and marked with
276 	 * WORK_STRUCT_INACTIVE.
277 	 *
278 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
279 	 * nr_active and all work items in pwq->inactive_works are marked with
280 	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
281 	 * in pwq->inactive_works. Some of them are ready to run in
282 	 * pool->worklist or worker->scheduled. Those work itmes are only struct
283 	 * wq_barrier which is used for flush_work() and should not participate
284 	 * in nr_active. For non-barrier work item, it is marked with
285 	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
286 	 */
287 	int			nr_active;	/* L: nr of active works */
288 	struct list_head	inactive_works;	/* L: inactive works */
289 	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
290 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
291 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
292 
293 	u64			stats[PWQ_NR_STATS];
294 
295 	/*
296 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
297 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
298 	 * RCU protected so that the first pwq can be determined without
299 	 * grabbing wq->mutex.
300 	 */
301 	struct kthread_work	release_work;
302 	struct rcu_head		rcu;
303 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
304 
305 /*
306  * Structure used to wait for workqueue flush.
307  */
308 struct wq_flusher {
309 	struct list_head	list;		/* WQ: list of flushers */
310 	int			flush_color;	/* WQ: flush color waiting for */
311 	struct completion	done;		/* flush completion */
312 };
313 
314 struct wq_device;
315 
316 /*
317  * Unlike in a per-cpu workqueue where max_active limits its concurrency level
318  * on each CPU, in an unbound workqueue, max_active applies to the whole system.
319  * As sharing a single nr_active across multiple sockets can be very expensive,
320  * the counting and enforcement is per NUMA node.
321  *
322  * The following struct is used to enforce per-node max_active. When a pwq wants
323  * to start executing a work item, it should increment ->nr using
324  * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
325  * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
326  * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
327  * round-robin order.
328  */
329 struct wq_node_nr_active {
330 	int			max;		/* per-node max_active */
331 	atomic_t		nr;		/* per-node nr_active */
332 	raw_spinlock_t		lock;		/* nests inside pool locks */
333 	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
334 };
335 
336 /*
337  * The externally visible workqueue.  It relays the issued work items to
338  * the appropriate worker_pool through its pool_workqueues.
339  */
340 struct workqueue_struct {
341 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
342 	struct list_head	list;		/* PR: list of all workqueues */
343 
344 	struct mutex		mutex;		/* protects this wq */
345 	int			work_color;	/* WQ: current work color */
346 	int			flush_color;	/* WQ: current flush color */
347 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
348 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
349 	struct list_head	flusher_queue;	/* WQ: flush waiters */
350 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
351 
352 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
353 	struct worker		*rescuer;	/* MD: rescue worker */
354 
355 	int			nr_drainers;	/* WQ: drain in progress */
356 
357 	/* See alloc_workqueue() function comment for info on min/max_active */
358 	int			max_active;	/* WO: max active works */
359 	int			min_active;	/* WO: min active works */
360 	int			saved_max_active; /* WQ: saved max_active */
361 	int			saved_min_active; /* WQ: saved min_active */
362 
363 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
364 	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
365 
366 #ifdef CONFIG_SYSFS
367 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
368 #endif
369 #ifdef CONFIG_LOCKDEP
370 	char			*lock_name;
371 	struct lock_class_key	key;
372 	struct lockdep_map	__lockdep_map;
373 	struct lockdep_map	*lockdep_map;
374 #endif
375 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
376 
377 	/*
378 	 * Destruction of workqueue_struct is RCU protected to allow walking
379 	 * the workqueues list without grabbing wq_pool_mutex.
380 	 * This is used to dump all workqueues from sysrq.
381 	 */
382 	struct rcu_head		rcu;
383 
384 	/* hot fields used during command issue, aligned to cacheline */
385 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
386 	struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */
387 	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
388 };
389 
390 /*
391  * Each pod type describes how CPUs should be grouped for unbound workqueues.
392  * See the comment above workqueue_attrs->affn_scope.
393  */
394 struct wq_pod_type {
395 	int			nr_pods;	/* number of pods */
396 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
397 	int			*pod_node;	/* pod -> node */
398 	int			*cpu_pod;	/* cpu -> pod */
399 };
400 
401 struct work_offq_data {
402 	u32			pool_id;
403 	u32			disable;
404 	u32			flags;
405 };
406 
407 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
408 	[WQ_AFFN_DFL]		= "default",
409 	[WQ_AFFN_CPU]		= "cpu",
410 	[WQ_AFFN_SMT]		= "smt",
411 	[WQ_AFFN_CACHE]		= "cache",
412 	[WQ_AFFN_NUMA]		= "numa",
413 	[WQ_AFFN_SYSTEM]	= "system",
414 };
415 
416 /*
417  * Per-cpu work items which run for longer than the following threshold are
418  * automatically considered CPU intensive and excluded from concurrency
419  * management to prevent them from noticeably delaying other per-cpu work items.
420  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
421  * The actual value is initialized in wq_cpu_intensive_thresh_init().
422  */
423 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
424 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
425 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
426 static unsigned int wq_cpu_intensive_warning_thresh = 4;
427 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
428 #endif
429 
430 /* see the comment above the definition of WQ_POWER_EFFICIENT */
431 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
432 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
433 
434 static bool wq_online;			/* can kworkers be created yet? */
435 static bool wq_topo_initialized __read_mostly = false;
436 
437 static struct kmem_cache *pwq_cache;
438 
439 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
440 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
441 
442 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
443 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf;
444 
445 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
446 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
447 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
448 /* wait for manager to go away */
449 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
450 
451 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
452 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
453 
454 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */
455 static cpumask_var_t wq_online_cpumask;
456 
457 /* PL&A: allowable cpus for unbound wqs and work items */
458 static cpumask_var_t wq_unbound_cpumask;
459 
460 /* PL: user requested unbound cpumask via sysfs */
461 static cpumask_var_t wq_requested_unbound_cpumask;
462 
463 /* PL: isolated cpumask to be excluded from unbound cpumask */
464 static cpumask_var_t wq_isolated_cpumask;
465 
466 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
467 static struct cpumask wq_cmdline_cpumask __initdata;
468 
469 /* CPU where unbound work was last round robin scheduled from this CPU */
470 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
471 
472 /*
473  * Local execution of unbound work items is no longer guaranteed.  The
474  * following always forces round-robin CPU selection on unbound work items
475  * to uncover usages which depend on it.
476  */
477 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
478 static bool wq_debug_force_rr_cpu = true;
479 #else
480 static bool wq_debug_force_rr_cpu = false;
481 #endif
482 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
483 
484 /* to raise softirq for the BH worker pools on other CPUs */
485 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], bh_pool_irq_works);
486 
487 /* the BH worker pools */
488 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], bh_worker_pools);
489 
490 /* the per-cpu worker pools */
491 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
492 
493 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
494 
495 /* PL: hash of all unbound pools keyed by pool->attrs */
496 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
497 
498 /* I: attributes used when instantiating standard unbound pools on demand */
499 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
500 
501 /* I: attributes used when instantiating ordered pools on demand */
502 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
503 
504 /*
505  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
506  * process context while holding a pool lock. Bounce to a dedicated kthread
507  * worker to avoid A-A deadlocks.
508  */
509 static struct kthread_worker *pwq_release_worker __ro_after_init;
510 
511 struct workqueue_struct *system_wq __ro_after_init;
512 EXPORT_SYMBOL(system_wq);
513 struct workqueue_struct *system_highpri_wq __ro_after_init;
514 EXPORT_SYMBOL_GPL(system_highpri_wq);
515 struct workqueue_struct *system_long_wq __ro_after_init;
516 EXPORT_SYMBOL_GPL(system_long_wq);
517 struct workqueue_struct *system_unbound_wq __ro_after_init;
518 EXPORT_SYMBOL_GPL(system_unbound_wq);
519 struct workqueue_struct *system_freezable_wq __ro_after_init;
520 EXPORT_SYMBOL_GPL(system_freezable_wq);
521 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
522 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
523 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
524 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
525 struct workqueue_struct *system_bh_wq;
526 EXPORT_SYMBOL_GPL(system_bh_wq);
527 struct workqueue_struct *system_bh_highpri_wq;
528 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
529 
530 static int worker_thread(void *__worker);
531 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
532 static void show_pwq(struct pool_workqueue *pwq);
533 static void show_one_worker_pool(struct worker_pool *pool);
534 
535 #define CREATE_TRACE_POINTS
536 #include <trace/events/workqueue.h>
537 
538 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_start);
539 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_end);
540 
541 #define assert_rcu_or_pool_mutex()					\
542 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
543 			 !lockdep_is_held(&wq_pool_mutex),		\
544 			 "RCU or wq_pool_mutex should be held")
545 
546 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
547 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
548 			 !lockdep_is_held(&wq->mutex) &&		\
549 			 !lockdep_is_held(&wq_pool_mutex),		\
550 			 "RCU, wq->mutex or wq_pool_mutex should be held")
551 
552 #define for_each_bh_worker_pool(pool, cpu)				\
553 	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
554 	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
555 	     (pool)++)
556 
557 #define for_each_cpu_worker_pool(pool, cpu)				\
558 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
559 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
560 	     (pool)++)
561 
562 /**
563  * for_each_pool - iterate through all worker_pools in the system
564  * @pool: iteration cursor
565  * @pi: integer used for iteration
566  *
567  * This must be called either with wq_pool_mutex held or RCU read
568  * locked.  If the pool needs to be used beyond the locking in effect, the
569  * caller is responsible for guaranteeing that the pool stays online.
570  *
571  * The if/else clause exists only for the lockdep assertion and can be
572  * ignored.
573  */
574 #define for_each_pool(pool, pi)						\
575 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
576 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
577 		else
578 
579 /**
580  * for_each_pool_worker - iterate through all workers of a worker_pool
581  * @worker: iteration cursor
582  * @pool: worker_pool to iterate workers of
583  *
584  * This must be called with wq_pool_attach_mutex.
585  *
586  * The if/else clause exists only for the lockdep assertion and can be
587  * ignored.
588  */
589 #define for_each_pool_worker(worker, pool)				\
590 	list_for_each_entry((worker), &(pool)->workers, node)		\
591 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
592 		else
593 
594 /**
595  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
596  * @pwq: iteration cursor
597  * @wq: the target workqueue
598  *
599  * This must be called either with wq->mutex held or RCU read locked.
600  * If the pwq needs to be used beyond the locking in effect, the caller is
601  * responsible for guaranteeing that the pwq stays online.
602  *
603  * The if/else clause exists only for the lockdep assertion and can be
604  * ignored.
605  */
606 #define for_each_pwq(pwq, wq)						\
607 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
608 				 lockdep_is_held(&(wq->mutex)))
609 
610 #ifdef CONFIG_DEBUG_OBJECTS_WORK
611 
612 static const struct debug_obj_descr work_debug_descr;
613 
work_debug_hint(void * addr)614 static void *work_debug_hint(void *addr)
615 {
616 	return ((struct work_struct *) addr)->func;
617 }
618 
work_is_static_object(void * addr)619 static bool work_is_static_object(void *addr)
620 {
621 	struct work_struct *work = addr;
622 
623 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
624 }
625 
626 /*
627  * fixup_init is called when:
628  * - an active object is initialized
629  */
work_fixup_init(void * addr,enum debug_obj_state state)630 static bool work_fixup_init(void *addr, enum debug_obj_state state)
631 {
632 	struct work_struct *work = addr;
633 
634 	switch (state) {
635 	case ODEBUG_STATE_ACTIVE:
636 		cancel_work_sync(work);
637 		debug_object_init(work, &work_debug_descr);
638 		return true;
639 	default:
640 		return false;
641 	}
642 }
643 
644 /*
645  * fixup_free is called when:
646  * - an active object is freed
647  */
work_fixup_free(void * addr,enum debug_obj_state state)648 static bool work_fixup_free(void *addr, enum debug_obj_state state)
649 {
650 	struct work_struct *work = addr;
651 
652 	switch (state) {
653 	case ODEBUG_STATE_ACTIVE:
654 		cancel_work_sync(work);
655 		debug_object_free(work, &work_debug_descr);
656 		return true;
657 	default:
658 		return false;
659 	}
660 }
661 
662 static const struct debug_obj_descr work_debug_descr = {
663 	.name		= "work_struct",
664 	.debug_hint	= work_debug_hint,
665 	.is_static_object = work_is_static_object,
666 	.fixup_init	= work_fixup_init,
667 	.fixup_free	= work_fixup_free,
668 };
669 
debug_work_activate(struct work_struct * work)670 static inline void debug_work_activate(struct work_struct *work)
671 {
672 	debug_object_activate(work, &work_debug_descr);
673 }
674 
debug_work_deactivate(struct work_struct * work)675 static inline void debug_work_deactivate(struct work_struct *work)
676 {
677 	debug_object_deactivate(work, &work_debug_descr);
678 }
679 
__init_work(struct work_struct * work,int onstack)680 void __init_work(struct work_struct *work, int onstack)
681 {
682 	if (onstack)
683 		debug_object_init_on_stack(work, &work_debug_descr);
684 	else
685 		debug_object_init(work, &work_debug_descr);
686 }
687 EXPORT_SYMBOL_GPL(__init_work);
688 
destroy_work_on_stack(struct work_struct * work)689 void destroy_work_on_stack(struct work_struct *work)
690 {
691 	debug_object_free(work, &work_debug_descr);
692 }
693 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
694 
destroy_delayed_work_on_stack(struct delayed_work * work)695 void destroy_delayed_work_on_stack(struct delayed_work *work)
696 {
697 	destroy_timer_on_stack(&work->timer);
698 	debug_object_free(&work->work, &work_debug_descr);
699 }
700 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
701 
702 #else
debug_work_activate(struct work_struct * work)703 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)704 static inline void debug_work_deactivate(struct work_struct *work) { }
705 #endif
706 
707 /**
708  * worker_pool_assign_id - allocate ID and assign it to @pool
709  * @pool: the pool pointer of interest
710  *
711  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
712  * successfully, -errno on failure.
713  */
worker_pool_assign_id(struct worker_pool * pool)714 static int worker_pool_assign_id(struct worker_pool *pool)
715 {
716 	int ret;
717 
718 	lockdep_assert_held(&wq_pool_mutex);
719 
720 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
721 			GFP_KERNEL);
722 	if (ret >= 0) {
723 		pool->id = ret;
724 		return 0;
725 	}
726 	return ret;
727 }
728 
729 static struct pool_workqueue __rcu **
unbound_pwq_slot(struct workqueue_struct * wq,int cpu)730 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
731 {
732        if (cpu >= 0)
733                return per_cpu_ptr(wq->cpu_pwq, cpu);
734        else
735                return &wq->dfl_pwq;
736 }
737 
738 /* @cpu < 0 for dfl_pwq */
unbound_pwq(struct workqueue_struct * wq,int cpu)739 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
740 {
741 	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
742 				     lockdep_is_held(&wq_pool_mutex) ||
743 				     lockdep_is_held(&wq->mutex));
744 }
745 
746 /**
747  * unbound_effective_cpumask - effective cpumask of an unbound workqueue
748  * @wq: workqueue of interest
749  *
750  * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
751  * is masked with wq_unbound_cpumask to determine the effective cpumask. The
752  * default pwq is always mapped to the pool with the current effective cpumask.
753  */
unbound_effective_cpumask(struct workqueue_struct * wq)754 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
755 {
756 	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
757 }
758 
work_color_to_flags(int color)759 static unsigned int work_color_to_flags(int color)
760 {
761 	return color << WORK_STRUCT_COLOR_SHIFT;
762 }
763 
get_work_color(unsigned long work_data)764 static int get_work_color(unsigned long work_data)
765 {
766 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
767 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
768 }
769 
work_next_color(int color)770 static int work_next_color(int color)
771 {
772 	return (color + 1) % WORK_NR_COLORS;
773 }
774 
pool_offq_flags(struct worker_pool * pool)775 static unsigned long pool_offq_flags(struct worker_pool *pool)
776 {
777 	return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
778 }
779 
780 /*
781  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
782  * contain the pointer to the queued pwq.  Once execution starts, the flag
783  * is cleared and the high bits contain OFFQ flags and pool ID.
784  *
785  * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
786  * can be used to set the pwq, pool or clear work->data. These functions should
787  * only be called while the work is owned - ie. while the PENDING bit is set.
788  *
789  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
790  * corresponding to a work.  Pool is available once the work has been
791  * queued anywhere after initialization until it is sync canceled.  pwq is
792  * available only while the work item is queued.
793  */
set_work_data(struct work_struct * work,unsigned long data)794 static inline void set_work_data(struct work_struct *work, unsigned long data)
795 {
796 	WARN_ON_ONCE(!work_pending(work));
797 	atomic_long_set(&work->data, data | work_static(work));
798 }
799 
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long flags)800 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
801 			 unsigned long flags)
802 {
803 	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
804 		      WORK_STRUCT_PWQ | flags);
805 }
806 
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id,unsigned long flags)807 static void set_work_pool_and_keep_pending(struct work_struct *work,
808 					   int pool_id, unsigned long flags)
809 {
810 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
811 		      WORK_STRUCT_PENDING | flags);
812 }
813 
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id,unsigned long flags)814 static void set_work_pool_and_clear_pending(struct work_struct *work,
815 					    int pool_id, unsigned long flags)
816 {
817 	/*
818 	 * The following wmb is paired with the implied mb in
819 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
820 	 * here are visible to and precede any updates by the next PENDING
821 	 * owner.
822 	 */
823 	smp_wmb();
824 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
825 		      flags);
826 	/*
827 	 * The following mb guarantees that previous clear of a PENDING bit
828 	 * will not be reordered with any speculative LOADS or STORES from
829 	 * work->current_func, which is executed afterwards.  This possible
830 	 * reordering can lead to a missed execution on attempt to queue
831 	 * the same @work.  E.g. consider this case:
832 	 *
833 	 *   CPU#0                         CPU#1
834 	 *   ----------------------------  --------------------------------
835 	 *
836 	 * 1  STORE event_indicated
837 	 * 2  queue_work_on() {
838 	 * 3    test_and_set_bit(PENDING)
839 	 * 4 }                             set_..._and_clear_pending() {
840 	 * 5                                 set_work_data() # clear bit
841 	 * 6                                 smp_mb()
842 	 * 7                               work->current_func() {
843 	 * 8				      LOAD event_indicated
844 	 *				   }
845 	 *
846 	 * Without an explicit full barrier speculative LOAD on line 8 can
847 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
848 	 * CPU#0 observes the PENDING bit is still set and new execution of
849 	 * a @work is not queued in a hope, that CPU#1 will eventually
850 	 * finish the queued @work.  Meanwhile CPU#1 does not see
851 	 * event_indicated is set, because speculative LOAD was executed
852 	 * before actual STORE.
853 	 */
854 	smp_mb();
855 }
856 
work_struct_pwq(unsigned long data)857 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
858 {
859 	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
860 }
861 
get_work_pwq(struct work_struct * work)862 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
863 {
864 	unsigned long data = atomic_long_read(&work->data);
865 
866 	if (data & WORK_STRUCT_PWQ)
867 		return work_struct_pwq(data);
868 	else
869 		return NULL;
870 }
871 
872 /**
873  * get_work_pool - return the worker_pool a given work was associated with
874  * @work: the work item of interest
875  *
876  * Pools are created and destroyed under wq_pool_mutex, and allows read
877  * access under RCU read lock.  As such, this function should be
878  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
879  *
880  * All fields of the returned pool are accessible as long as the above
881  * mentioned locking is in effect.  If the returned pool needs to be used
882  * beyond the critical section, the caller is responsible for ensuring the
883  * returned pool is and stays online.
884  *
885  * Return: The worker_pool @work was last associated with.  %NULL if none.
886  */
get_work_pool(struct work_struct * work)887 static struct worker_pool *get_work_pool(struct work_struct *work)
888 {
889 	unsigned long data = atomic_long_read(&work->data);
890 	int pool_id;
891 
892 	assert_rcu_or_pool_mutex();
893 
894 	if (data & WORK_STRUCT_PWQ)
895 		return work_struct_pwq(data)->pool;
896 
897 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
898 	if (pool_id == WORK_OFFQ_POOL_NONE)
899 		return NULL;
900 
901 	return idr_find(&worker_pool_idr, pool_id);
902 }
903 
shift_and_mask(unsigned long v,u32 shift,u32 bits)904 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
905 {
906 	return (v >> shift) & ((1U << bits) - 1);
907 }
908 
work_offqd_unpack(struct work_offq_data * offqd,unsigned long data)909 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
910 {
911 	WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
912 
913 	offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
914 					WORK_OFFQ_POOL_BITS);
915 	offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
916 					WORK_OFFQ_DISABLE_BITS);
917 	offqd->flags = data & WORK_OFFQ_FLAG_MASK;
918 }
919 
work_offqd_pack_flags(struct work_offq_data * offqd)920 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
921 {
922 	return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
923 		((unsigned long)offqd->flags);
924 }
925 
926 /*
927  * Policy functions.  These define the policies on how the global worker
928  * pools are managed.  Unless noted otherwise, these functions assume that
929  * they're being called with pool->lock held.
930  */
931 
932 /*
933  * Need to wake up a worker?  Called from anything but currently
934  * running workers.
935  *
936  * Note that, because unbound workers never contribute to nr_running, this
937  * function will always return %true for unbound pools as long as the
938  * worklist isn't empty.
939  */
need_more_worker(struct worker_pool * pool)940 static bool need_more_worker(struct worker_pool *pool)
941 {
942 	return !list_empty(&pool->worklist) && !pool->nr_running;
943 }
944 
945 /* Can I start working?  Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)946 static bool may_start_working(struct worker_pool *pool)
947 {
948 	return pool->nr_idle;
949 }
950 
951 /* Do I need to keep working?  Called from currently running workers. */
keep_working(struct worker_pool * pool)952 static bool keep_working(struct worker_pool *pool)
953 {
954 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
955 }
956 
957 /* Do we need a new worker?  Called from manager. */
need_to_create_worker(struct worker_pool * pool)958 static bool need_to_create_worker(struct worker_pool *pool)
959 {
960 	return need_more_worker(pool) && !may_start_working(pool);
961 }
962 
963 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)964 static bool too_many_workers(struct worker_pool *pool)
965 {
966 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
967 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
968 	int nr_busy = pool->nr_workers - nr_idle;
969 
970 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
971 }
972 
973 /**
974  * worker_set_flags - set worker flags and adjust nr_running accordingly
975  * @worker: self
976  * @flags: flags to set
977  *
978  * Set @flags in @worker->flags and adjust nr_running accordingly.
979  */
worker_set_flags(struct worker * worker,unsigned int flags)980 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
981 {
982 	struct worker_pool *pool = worker->pool;
983 
984 	lockdep_assert_held(&pool->lock);
985 
986 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
987 	if ((flags & WORKER_NOT_RUNNING) &&
988 	    !(worker->flags & WORKER_NOT_RUNNING)) {
989 		pool->nr_running--;
990 	}
991 
992 	worker->flags |= flags;
993 }
994 
995 /**
996  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
997  * @worker: self
998  * @flags: flags to clear
999  *
1000  * Clear @flags in @worker->flags and adjust nr_running accordingly.
1001  */
worker_clr_flags(struct worker * worker,unsigned int flags)1002 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1003 {
1004 	struct worker_pool *pool = worker->pool;
1005 	unsigned int oflags = worker->flags;
1006 
1007 	lockdep_assert_held(&pool->lock);
1008 
1009 	worker->flags &= ~flags;
1010 
1011 	/*
1012 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1013 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1014 	 * of multiple flags, not a single flag.
1015 	 */
1016 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1017 		if (!(worker->flags & WORKER_NOT_RUNNING))
1018 			pool->nr_running++;
1019 }
1020 
1021 /* Return the first idle worker.  Called with pool->lock held. */
first_idle_worker(struct worker_pool * pool)1022 static struct worker *first_idle_worker(struct worker_pool *pool)
1023 {
1024 	if (unlikely(list_empty(&pool->idle_list)))
1025 		return NULL;
1026 
1027 	return list_first_entry(&pool->idle_list, struct worker, entry);
1028 }
1029 
1030 /**
1031  * worker_enter_idle - enter idle state
1032  * @worker: worker which is entering idle state
1033  *
1034  * @worker is entering idle state.  Update stats and idle timer if
1035  * necessary.
1036  *
1037  * LOCKING:
1038  * raw_spin_lock_irq(pool->lock).
1039  */
worker_enter_idle(struct worker * worker)1040 static void worker_enter_idle(struct worker *worker)
1041 {
1042 	struct worker_pool *pool = worker->pool;
1043 
1044 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1045 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1046 			 (worker->hentry.next || worker->hentry.pprev)))
1047 		return;
1048 
1049 	/* can't use worker_set_flags(), also called from create_worker() */
1050 	worker->flags |= WORKER_IDLE;
1051 	pool->nr_idle++;
1052 	worker->last_active = jiffies;
1053 
1054 	/* idle_list is LIFO */
1055 	list_add(&worker->entry, &pool->idle_list);
1056 
1057 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1058 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1059 
1060 	/* Sanity check nr_running. */
1061 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1062 }
1063 
1064 /**
1065  * worker_leave_idle - leave idle state
1066  * @worker: worker which is leaving idle state
1067  *
1068  * @worker is leaving idle state.  Update stats.
1069  *
1070  * LOCKING:
1071  * raw_spin_lock_irq(pool->lock).
1072  */
worker_leave_idle(struct worker * worker)1073 static void worker_leave_idle(struct worker *worker)
1074 {
1075 	struct worker_pool *pool = worker->pool;
1076 
1077 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1078 		return;
1079 	worker_clr_flags(worker, WORKER_IDLE);
1080 	pool->nr_idle--;
1081 	list_del_init(&worker->entry);
1082 }
1083 
1084 /**
1085  * find_worker_executing_work - find worker which is executing a work
1086  * @pool: pool of interest
1087  * @work: work to find worker for
1088  *
1089  * Find a worker which is executing @work on @pool by searching
1090  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1091  * to match, its current execution should match the address of @work and
1092  * its work function.  This is to avoid unwanted dependency between
1093  * unrelated work executions through a work item being recycled while still
1094  * being executed.
1095  *
1096  * This is a bit tricky.  A work item may be freed once its execution
1097  * starts and nothing prevents the freed area from being recycled for
1098  * another work item.  If the same work item address ends up being reused
1099  * before the original execution finishes, workqueue will identify the
1100  * recycled work item as currently executing and make it wait until the
1101  * current execution finishes, introducing an unwanted dependency.
1102  *
1103  * This function checks the work item address and work function to avoid
1104  * false positives.  Note that this isn't complete as one may construct a
1105  * work function which can introduce dependency onto itself through a
1106  * recycled work item.  Well, if somebody wants to shoot oneself in the
1107  * foot that badly, there's only so much we can do, and if such deadlock
1108  * actually occurs, it should be easy to locate the culprit work function.
1109  *
1110  * CONTEXT:
1111  * raw_spin_lock_irq(pool->lock).
1112  *
1113  * Return:
1114  * Pointer to worker which is executing @work if found, %NULL
1115  * otherwise.
1116  */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1117 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1118 						 struct work_struct *work)
1119 {
1120 	struct worker *worker;
1121 
1122 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1123 			       (unsigned long)work)
1124 		if (worker->current_work == work &&
1125 		    worker->current_func == work->func)
1126 			return worker;
1127 
1128 	return NULL;
1129 }
1130 
1131 /**
1132  * move_linked_works - move linked works to a list
1133  * @work: start of series of works to be scheduled
1134  * @head: target list to append @work to
1135  * @nextp: out parameter for nested worklist walking
1136  *
1137  * Schedule linked works starting from @work to @head. Work series to be
1138  * scheduled starts at @work and includes any consecutive work with
1139  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1140  * @nextp.
1141  *
1142  * CONTEXT:
1143  * raw_spin_lock_irq(pool->lock).
1144  */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1145 static void move_linked_works(struct work_struct *work, struct list_head *head,
1146 			      struct work_struct **nextp)
1147 {
1148 	struct work_struct *n;
1149 
1150 	/*
1151 	 * Linked worklist will always end before the end of the list,
1152 	 * use NULL for list head.
1153 	 */
1154 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1155 		list_move_tail(&work->entry, head);
1156 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1157 			break;
1158 	}
1159 
1160 	/*
1161 	 * If we're already inside safe list traversal and have moved
1162 	 * multiple works to the scheduled queue, the next position
1163 	 * needs to be updated.
1164 	 */
1165 	if (nextp)
1166 		*nextp = n;
1167 }
1168 
1169 /**
1170  * assign_work - assign a work item and its linked work items to a worker
1171  * @work: work to assign
1172  * @worker: worker to assign to
1173  * @nextp: out parameter for nested worklist walking
1174  *
1175  * Assign @work and its linked work items to @worker. If @work is already being
1176  * executed by another worker in the same pool, it'll be punted there.
1177  *
1178  * If @nextp is not NULL, it's updated to point to the next work of the last
1179  * scheduled work. This allows assign_work() to be nested inside
1180  * list_for_each_entry_safe().
1181  *
1182  * Returns %true if @work was successfully assigned to @worker. %false if @work
1183  * was punted to another worker already executing it.
1184  */
assign_work(struct work_struct * work,struct worker * worker,struct work_struct ** nextp)1185 static bool assign_work(struct work_struct *work, struct worker *worker,
1186 			struct work_struct **nextp)
1187 {
1188 	struct worker_pool *pool = worker->pool;
1189 	struct worker *collision;
1190 
1191 	lockdep_assert_held(&pool->lock);
1192 
1193 	/*
1194 	 * A single work shouldn't be executed concurrently by multiple workers.
1195 	 * __queue_work() ensures that @work doesn't jump to a different pool
1196 	 * while still running in the previous pool. Here, we should ensure that
1197 	 * @work is not executed concurrently by multiple workers from the same
1198 	 * pool. Check whether anyone is already processing the work. If so,
1199 	 * defer the work to the currently executing one.
1200 	 */
1201 	collision = find_worker_executing_work(pool, work);
1202 	if (unlikely(collision)) {
1203 		move_linked_works(work, &collision->scheduled, nextp);
1204 		return false;
1205 	}
1206 
1207 	move_linked_works(work, &worker->scheduled, nextp);
1208 	return true;
1209 }
1210 
bh_pool_irq_work(struct worker_pool * pool)1211 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1212 {
1213 	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1214 
1215 	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1216 }
1217 
kick_bh_pool(struct worker_pool * pool)1218 static void kick_bh_pool(struct worker_pool *pool)
1219 {
1220 #ifdef CONFIG_SMP
1221 	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1222 	if (unlikely(pool->cpu != smp_processor_id() &&
1223 		     !(pool->flags & POOL_BH_DRAINING))) {
1224 		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1225 		return;
1226 	}
1227 #endif
1228 	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1229 		raise_softirq_irqoff(HI_SOFTIRQ);
1230 	else
1231 		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1232 }
1233 
1234 /**
1235  * kick_pool - wake up an idle worker if necessary
1236  * @pool: pool to kick
1237  *
1238  * @pool may have pending work items. Wake up worker if necessary. Returns
1239  * whether a worker was woken up.
1240  */
kick_pool(struct worker_pool * pool)1241 static bool kick_pool(struct worker_pool *pool)
1242 {
1243 	struct worker *worker = first_idle_worker(pool);
1244 	struct task_struct *p;
1245 
1246 	lockdep_assert_held(&pool->lock);
1247 
1248 	if (!need_more_worker(pool) || !worker)
1249 		return false;
1250 
1251 	if (pool->flags & POOL_BH) {
1252 		kick_bh_pool(pool);
1253 		return true;
1254 	}
1255 
1256 	p = worker->task;
1257 
1258 #ifdef CONFIG_SMP
1259 	/*
1260 	 * Idle @worker is about to execute @work and waking up provides an
1261 	 * opportunity to migrate @worker at a lower cost by setting the task's
1262 	 * wake_cpu field. Let's see if we want to move @worker to improve
1263 	 * execution locality.
1264 	 *
1265 	 * We're waking the worker that went idle the latest and there's some
1266 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1267 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1268 	 * optimization and the race window is narrow, let's leave as-is for
1269 	 * now. If this becomes pronounced, we can skip over workers which are
1270 	 * still on cpu when picking an idle worker.
1271 	 *
1272 	 * If @pool has non-strict affinity, @worker might have ended up outside
1273 	 * its affinity scope. Repatriate.
1274 	 */
1275 	if (!pool->attrs->affn_strict &&
1276 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1277 		struct work_struct *work = list_first_entry(&pool->worklist,
1278 						struct work_struct, entry);
1279 		int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1280 							  cpu_online_mask);
1281 		if (wake_cpu < nr_cpu_ids) {
1282 			p->wake_cpu = wake_cpu;
1283 			get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1284 		}
1285 	}
1286 #endif
1287 	wake_up_process(p);
1288 	return true;
1289 }
1290 
1291 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1292 
1293 /*
1294  * Concurrency-managed per-cpu work items that hog CPU for longer than
1295  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1296  * which prevents them from stalling other concurrency-managed work items. If a
1297  * work function keeps triggering this mechanism, it's likely that the work item
1298  * should be using an unbound workqueue instead.
1299  *
1300  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1301  * and report them so that they can be examined and converted to use unbound
1302  * workqueues as appropriate. To avoid flooding the console, each violating work
1303  * function is tracked and reported with exponential backoff.
1304  */
1305 #define WCI_MAX_ENTS 128
1306 
1307 struct wci_ent {
1308 	work_func_t		func;
1309 	atomic64_t		cnt;
1310 	struct hlist_node	hash_node;
1311 };
1312 
1313 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1314 static int wci_nr_ents;
1315 static DEFINE_RAW_SPINLOCK(wci_lock);
1316 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1317 
wci_find_ent(work_func_t func)1318 static struct wci_ent *wci_find_ent(work_func_t func)
1319 {
1320 	struct wci_ent *ent;
1321 
1322 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1323 				   (unsigned long)func) {
1324 		if (ent->func == func)
1325 			return ent;
1326 	}
1327 	return NULL;
1328 }
1329 
wq_cpu_intensive_report(work_func_t func)1330 static void wq_cpu_intensive_report(work_func_t func)
1331 {
1332 	struct wci_ent *ent;
1333 
1334 restart:
1335 	ent = wci_find_ent(func);
1336 	if (ent) {
1337 		u64 cnt;
1338 
1339 		/*
1340 		 * Start reporting from the warning_thresh and back off
1341 		 * exponentially.
1342 		 */
1343 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1344 		if (wq_cpu_intensive_warning_thresh &&
1345 		    cnt >= wq_cpu_intensive_warning_thresh &&
1346 		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1347 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1348 					ent->func, wq_cpu_intensive_thresh_us,
1349 					atomic64_read(&ent->cnt));
1350 		return;
1351 	}
1352 
1353 	/*
1354 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1355 	 * is exhausted, something went really wrong and we probably made enough
1356 	 * noise already.
1357 	 */
1358 	if (wci_nr_ents >= WCI_MAX_ENTS)
1359 		return;
1360 
1361 	raw_spin_lock(&wci_lock);
1362 
1363 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1364 		raw_spin_unlock(&wci_lock);
1365 		return;
1366 	}
1367 
1368 	if (wci_find_ent(func)) {
1369 		raw_spin_unlock(&wci_lock);
1370 		goto restart;
1371 	}
1372 
1373 	ent = &wci_ents[wci_nr_ents++];
1374 	ent->func = func;
1375 	atomic64_set(&ent->cnt, 0);
1376 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1377 
1378 	raw_spin_unlock(&wci_lock);
1379 
1380 	goto restart;
1381 }
1382 
1383 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
wq_cpu_intensive_report(work_func_t func)1384 static void wq_cpu_intensive_report(work_func_t func) {}
1385 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1386 
1387 /**
1388  * wq_worker_running - a worker is running again
1389  * @task: task waking up
1390  *
1391  * This function is called when a worker returns from schedule()
1392  */
wq_worker_running(struct task_struct * task)1393 void wq_worker_running(struct task_struct *task)
1394 {
1395 	struct worker *worker = kthread_data(task);
1396 
1397 	if (!READ_ONCE(worker->sleeping))
1398 		return;
1399 
1400 	/*
1401 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1402 	 * and the nr_running increment below, we may ruin the nr_running reset
1403 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1404 	 * pool. Protect against such race.
1405 	 */
1406 	preempt_disable();
1407 	if (!(worker->flags & WORKER_NOT_RUNNING))
1408 		worker->pool->nr_running++;
1409 	preempt_enable();
1410 
1411 	/*
1412 	 * CPU intensive auto-detection cares about how long a work item hogged
1413 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1414 	 */
1415 	worker->current_at = worker->task->se.sum_exec_runtime;
1416 
1417 	WRITE_ONCE(worker->sleeping, 0);
1418 }
1419 
1420 /**
1421  * wq_worker_sleeping - a worker is going to sleep
1422  * @task: task going to sleep
1423  *
1424  * This function is called from schedule() when a busy worker is
1425  * going to sleep.
1426  */
wq_worker_sleeping(struct task_struct * task)1427 void wq_worker_sleeping(struct task_struct *task)
1428 {
1429 	struct worker *worker = kthread_data(task);
1430 	struct worker_pool *pool;
1431 
1432 	/*
1433 	 * Rescuers, which may not have all the fields set up like normal
1434 	 * workers, also reach here, let's not access anything before
1435 	 * checking NOT_RUNNING.
1436 	 */
1437 	if (worker->flags & WORKER_NOT_RUNNING)
1438 		return;
1439 
1440 	pool = worker->pool;
1441 
1442 	/* Return if preempted before wq_worker_running() was reached */
1443 	if (READ_ONCE(worker->sleeping))
1444 		return;
1445 
1446 	WRITE_ONCE(worker->sleeping, 1);
1447 	raw_spin_lock_irq(&pool->lock);
1448 
1449 	/*
1450 	 * Recheck in case unbind_workers() preempted us. We don't
1451 	 * want to decrement nr_running after the worker is unbound
1452 	 * and nr_running has been reset.
1453 	 */
1454 	if (worker->flags & WORKER_NOT_RUNNING) {
1455 		raw_spin_unlock_irq(&pool->lock);
1456 		return;
1457 	}
1458 
1459 	pool->nr_running--;
1460 	if (kick_pool(pool))
1461 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1462 
1463 	raw_spin_unlock_irq(&pool->lock);
1464 }
1465 
1466 /**
1467  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1468  * @task: task currently running
1469  *
1470  * Called from sched_tick(). We're in the IRQ context and the current
1471  * worker's fields which follow the 'K' locking rule can be accessed safely.
1472  */
wq_worker_tick(struct task_struct * task)1473 void wq_worker_tick(struct task_struct *task)
1474 {
1475 	struct worker *worker = kthread_data(task);
1476 	struct pool_workqueue *pwq = worker->current_pwq;
1477 	struct worker_pool *pool = worker->pool;
1478 
1479 	if (!pwq)
1480 		return;
1481 
1482 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1483 
1484 	if (!wq_cpu_intensive_thresh_us)
1485 		return;
1486 
1487 	/*
1488 	 * If the current worker is concurrency managed and hogged the CPU for
1489 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1490 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1491 	 *
1492 	 * Set @worker->sleeping means that @worker is in the process of
1493 	 * switching out voluntarily and won't be contributing to
1494 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1495 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1496 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1497 	 * We probably want to make this prettier in the future.
1498 	 */
1499 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1500 	    worker->task->se.sum_exec_runtime - worker->current_at <
1501 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1502 		return;
1503 
1504 	raw_spin_lock(&pool->lock);
1505 
1506 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1507 	wq_cpu_intensive_report(worker->current_func);
1508 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1509 
1510 	if (kick_pool(pool))
1511 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1512 
1513 	raw_spin_unlock(&pool->lock);
1514 }
1515 
1516 /**
1517  * wq_worker_last_func - retrieve worker's last work function
1518  * @task: Task to retrieve last work function of.
1519  *
1520  * Determine the last function a worker executed. This is called from
1521  * the scheduler to get a worker's last known identity.
1522  *
1523  * CONTEXT:
1524  * raw_spin_lock_irq(rq->lock)
1525  *
1526  * This function is called during schedule() when a kworker is going
1527  * to sleep. It's used by psi to identify aggregation workers during
1528  * dequeuing, to allow periodic aggregation to shut-off when that
1529  * worker is the last task in the system or cgroup to go to sleep.
1530  *
1531  * As this function doesn't involve any workqueue-related locking, it
1532  * only returns stable values when called from inside the scheduler's
1533  * queuing and dequeuing paths, when @task, which must be a kworker,
1534  * is guaranteed to not be processing any works.
1535  *
1536  * Return:
1537  * The last work function %current executed as a worker, NULL if it
1538  * hasn't executed any work yet.
1539  */
wq_worker_last_func(struct task_struct * task)1540 work_func_t wq_worker_last_func(struct task_struct *task)
1541 {
1542 	struct worker *worker = kthread_data(task);
1543 
1544 	return worker->last_func;
1545 }
1546 
1547 /**
1548  * wq_node_nr_active - Determine wq_node_nr_active to use
1549  * @wq: workqueue of interest
1550  * @node: NUMA node, can be %NUMA_NO_NODE
1551  *
1552  * Determine wq_node_nr_active to use for @wq on @node. Returns:
1553  *
1554  * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1555  *
1556  * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1557  *
1558  * - Otherwise, node_nr_active[@node].
1559  */
wq_node_nr_active(struct workqueue_struct * wq,int node)1560 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1561 						   int node)
1562 {
1563 	if (!(wq->flags & WQ_UNBOUND))
1564 		return NULL;
1565 
1566 	if (node == NUMA_NO_NODE)
1567 		node = nr_node_ids;
1568 
1569 	return wq->node_nr_active[node];
1570 }
1571 
1572 /**
1573  * wq_update_node_max_active - Update per-node max_actives to use
1574  * @wq: workqueue to update
1575  * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1576  *
1577  * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1578  * distributed among nodes according to the proportions of numbers of online
1579  * cpus. The result is always between @wq->min_active and max_active.
1580  */
wq_update_node_max_active(struct workqueue_struct * wq,int off_cpu)1581 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1582 {
1583 	struct cpumask *effective = unbound_effective_cpumask(wq);
1584 	int min_active = READ_ONCE(wq->min_active);
1585 	int max_active = READ_ONCE(wq->max_active);
1586 	int total_cpus, node;
1587 
1588 	lockdep_assert_held(&wq->mutex);
1589 
1590 	if (!wq_topo_initialized)
1591 		return;
1592 
1593 	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1594 		off_cpu = -1;
1595 
1596 	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1597 	if (off_cpu >= 0)
1598 		total_cpus--;
1599 
1600 	/* If all CPUs of the wq get offline, use the default values */
1601 	if (unlikely(!total_cpus)) {
1602 		for_each_node(node)
1603 			wq_node_nr_active(wq, node)->max = min_active;
1604 
1605 		wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1606 		return;
1607 	}
1608 
1609 	for_each_node(node) {
1610 		int node_cpus;
1611 
1612 		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1613 		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1614 			node_cpus--;
1615 
1616 		wq_node_nr_active(wq, node)->max =
1617 			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1618 			      min_active, max_active);
1619 	}
1620 
1621 	wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1622 }
1623 
1624 /**
1625  * get_pwq - get an extra reference on the specified pool_workqueue
1626  * @pwq: pool_workqueue to get
1627  *
1628  * Obtain an extra reference on @pwq.  The caller should guarantee that
1629  * @pwq has positive refcnt and be holding the matching pool->lock.
1630  */
get_pwq(struct pool_workqueue * pwq)1631 static void get_pwq(struct pool_workqueue *pwq)
1632 {
1633 	lockdep_assert_held(&pwq->pool->lock);
1634 	WARN_ON_ONCE(pwq->refcnt <= 0);
1635 	pwq->refcnt++;
1636 }
1637 
1638 /**
1639  * put_pwq - put a pool_workqueue reference
1640  * @pwq: pool_workqueue to put
1641  *
1642  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1643  * destruction.  The caller should be holding the matching pool->lock.
1644  */
put_pwq(struct pool_workqueue * pwq)1645 static void put_pwq(struct pool_workqueue *pwq)
1646 {
1647 	lockdep_assert_held(&pwq->pool->lock);
1648 	if (likely(--pwq->refcnt))
1649 		return;
1650 	/*
1651 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1652 	 * kthread_worker to avoid A-A deadlocks.
1653 	 */
1654 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1655 }
1656 
1657 /**
1658  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1659  * @pwq: pool_workqueue to put (can be %NULL)
1660  *
1661  * put_pwq() with locking.  This function also allows %NULL @pwq.
1662  */
put_pwq_unlocked(struct pool_workqueue * pwq)1663 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1664 {
1665 	if (pwq) {
1666 		/*
1667 		 * As both pwqs and pools are RCU protected, the
1668 		 * following lock operations are safe.
1669 		 */
1670 		raw_spin_lock_irq(&pwq->pool->lock);
1671 		put_pwq(pwq);
1672 		raw_spin_unlock_irq(&pwq->pool->lock);
1673 	}
1674 }
1675 
pwq_is_empty(struct pool_workqueue * pwq)1676 static bool pwq_is_empty(struct pool_workqueue *pwq)
1677 {
1678 	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1679 }
1680 
__pwq_activate_work(struct pool_workqueue * pwq,struct work_struct * work)1681 static void __pwq_activate_work(struct pool_workqueue *pwq,
1682 				struct work_struct *work)
1683 {
1684 	unsigned long *wdb = work_data_bits(work);
1685 
1686 	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1687 	trace_workqueue_activate_work(work);
1688 	if (list_empty(&pwq->pool->worklist))
1689 		pwq->pool->watchdog_ts = jiffies;
1690 	move_linked_works(work, &pwq->pool->worklist, NULL);
1691 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1692 }
1693 
tryinc_node_nr_active(struct wq_node_nr_active * nna)1694 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1695 {
1696 	int max = READ_ONCE(nna->max);
1697 
1698 	while (true) {
1699 		int old, tmp;
1700 
1701 		old = atomic_read(&nna->nr);
1702 		if (old >= max)
1703 			return false;
1704 		tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1705 		if (tmp == old)
1706 			return true;
1707 	}
1708 }
1709 
1710 /**
1711  * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1712  * @pwq: pool_workqueue of interest
1713  * @fill: max_active may have increased, try to increase concurrency level
1714  *
1715  * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1716  * successfully obtained. %false otherwise.
1717  */
pwq_tryinc_nr_active(struct pool_workqueue * pwq,bool fill)1718 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1719 {
1720 	struct workqueue_struct *wq = pwq->wq;
1721 	struct worker_pool *pool = pwq->pool;
1722 	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1723 	bool obtained = false;
1724 
1725 	lockdep_assert_held(&pool->lock);
1726 
1727 	if (!nna) {
1728 		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1729 		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1730 		goto out;
1731 	}
1732 
1733 	if (unlikely(pwq->plugged))
1734 		return false;
1735 
1736 	/*
1737 	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1738 	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1739 	 * concurrency level. Don't jump the line.
1740 	 *
1741 	 * We need to ignore the pending test after max_active has increased as
1742 	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1743 	 * increase it. This is indicated by @fill.
1744 	 */
1745 	if (!list_empty(&pwq->pending_node) && likely(!fill))
1746 		goto out;
1747 
1748 	obtained = tryinc_node_nr_active(nna);
1749 	if (obtained)
1750 		goto out;
1751 
1752 	/*
1753 	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1754 	 * and try again. The smp_mb() is paired with the implied memory barrier
1755 	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1756 	 * we see the decremented $nna->nr or they see non-empty
1757 	 * $nna->pending_pwqs.
1758 	 */
1759 	raw_spin_lock(&nna->lock);
1760 
1761 	if (list_empty(&pwq->pending_node))
1762 		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1763 	else if (likely(!fill))
1764 		goto out_unlock;
1765 
1766 	smp_mb();
1767 
1768 	obtained = tryinc_node_nr_active(nna);
1769 
1770 	/*
1771 	 * If @fill, @pwq might have already been pending. Being spuriously
1772 	 * pending in cold paths doesn't affect anything. Let's leave it be.
1773 	 */
1774 	if (obtained && likely(!fill))
1775 		list_del_init(&pwq->pending_node);
1776 
1777 out_unlock:
1778 	raw_spin_unlock(&nna->lock);
1779 out:
1780 	if (obtained)
1781 		pwq->nr_active++;
1782 	return obtained;
1783 }
1784 
1785 /**
1786  * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1787  * @pwq: pool_workqueue of interest
1788  * @fill: max_active may have increased, try to increase concurrency level
1789  *
1790  * Activate the first inactive work item of @pwq if available and allowed by
1791  * max_active limit.
1792  *
1793  * Returns %true if an inactive work item has been activated. %false if no
1794  * inactive work item is found or max_active limit is reached.
1795  */
pwq_activate_first_inactive(struct pool_workqueue * pwq,bool fill)1796 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1797 {
1798 	struct work_struct *work =
1799 		list_first_entry_or_null(&pwq->inactive_works,
1800 					 struct work_struct, entry);
1801 
1802 	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1803 		__pwq_activate_work(pwq, work);
1804 		return true;
1805 	} else {
1806 		return false;
1807 	}
1808 }
1809 
1810 /**
1811  * unplug_oldest_pwq - unplug the oldest pool_workqueue
1812  * @wq: workqueue_struct where its oldest pwq is to be unplugged
1813  *
1814  * This function should only be called for ordered workqueues where only the
1815  * oldest pwq is unplugged, the others are plugged to suspend execution to
1816  * ensure proper work item ordering::
1817  *
1818  *    dfl_pwq --------------+     [P] - plugged
1819  *                          |
1820  *                          v
1821  *    pwqs -> A -> B [P] -> C [P] (newest)
1822  *            |    |        |
1823  *            1    3        5
1824  *            |    |        |
1825  *            2    4        6
1826  *
1827  * When the oldest pwq is drained and removed, this function should be called
1828  * to unplug the next oldest one to start its work item execution. Note that
1829  * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1830  * the list is the oldest.
1831  */
unplug_oldest_pwq(struct workqueue_struct * wq)1832 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1833 {
1834 	struct pool_workqueue *pwq;
1835 
1836 	lockdep_assert_held(&wq->mutex);
1837 
1838 	/* Caller should make sure that pwqs isn't empty before calling */
1839 	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1840 				       pwqs_node);
1841 	raw_spin_lock_irq(&pwq->pool->lock);
1842 	if (pwq->plugged) {
1843 		pwq->plugged = false;
1844 		if (pwq_activate_first_inactive(pwq, true))
1845 			kick_pool(pwq->pool);
1846 	}
1847 	raw_spin_unlock_irq(&pwq->pool->lock);
1848 }
1849 
1850 /**
1851  * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1852  * @nna: wq_node_nr_active to activate a pending pwq for
1853  * @caller_pool: worker_pool the caller is locking
1854  *
1855  * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1856  * @caller_pool may be unlocked and relocked to lock other worker_pools.
1857  */
node_activate_pending_pwq(struct wq_node_nr_active * nna,struct worker_pool * caller_pool)1858 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1859 				      struct worker_pool *caller_pool)
1860 {
1861 	struct worker_pool *locked_pool = caller_pool;
1862 	struct pool_workqueue *pwq;
1863 	struct work_struct *work;
1864 
1865 	lockdep_assert_held(&caller_pool->lock);
1866 
1867 	raw_spin_lock(&nna->lock);
1868 retry:
1869 	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1870 				       struct pool_workqueue, pending_node);
1871 	if (!pwq)
1872 		goto out_unlock;
1873 
1874 	/*
1875 	 * If @pwq is for a different pool than @locked_pool, we need to lock
1876 	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1877 	 * / lock dance. For that, we also need to release @nna->lock as it's
1878 	 * nested inside pool locks.
1879 	 */
1880 	if (pwq->pool != locked_pool) {
1881 		raw_spin_unlock(&locked_pool->lock);
1882 		locked_pool = pwq->pool;
1883 		if (!raw_spin_trylock(&locked_pool->lock)) {
1884 			raw_spin_unlock(&nna->lock);
1885 			raw_spin_lock(&locked_pool->lock);
1886 			raw_spin_lock(&nna->lock);
1887 			goto retry;
1888 		}
1889 	}
1890 
1891 	/*
1892 	 * $pwq may not have any inactive work items due to e.g. cancellations.
1893 	 * Drop it from pending_pwqs and see if there's another one.
1894 	 */
1895 	work = list_first_entry_or_null(&pwq->inactive_works,
1896 					struct work_struct, entry);
1897 	if (!work) {
1898 		list_del_init(&pwq->pending_node);
1899 		goto retry;
1900 	}
1901 
1902 	/*
1903 	 * Acquire an nr_active count and activate the inactive work item. If
1904 	 * $pwq still has inactive work items, rotate it to the end of the
1905 	 * pending_pwqs so that we round-robin through them. This means that
1906 	 * inactive work items are not activated in queueing order which is fine
1907 	 * given that there has never been any ordering across different pwqs.
1908 	 */
1909 	if (likely(tryinc_node_nr_active(nna))) {
1910 		pwq->nr_active++;
1911 		__pwq_activate_work(pwq, work);
1912 
1913 		if (list_empty(&pwq->inactive_works))
1914 			list_del_init(&pwq->pending_node);
1915 		else
1916 			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1917 
1918 		/* if activating a foreign pool, make sure it's running */
1919 		if (pwq->pool != caller_pool)
1920 			kick_pool(pwq->pool);
1921 	}
1922 
1923 out_unlock:
1924 	raw_spin_unlock(&nna->lock);
1925 	if (locked_pool != caller_pool) {
1926 		raw_spin_unlock(&locked_pool->lock);
1927 		raw_spin_lock(&caller_pool->lock);
1928 	}
1929 }
1930 
1931 /**
1932  * pwq_dec_nr_active - Retire an active count
1933  * @pwq: pool_workqueue of interest
1934  *
1935  * Decrement @pwq's nr_active and try to activate the first inactive work item.
1936  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1937  */
pwq_dec_nr_active(struct pool_workqueue * pwq)1938 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1939 {
1940 	struct worker_pool *pool = pwq->pool;
1941 	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1942 
1943 	lockdep_assert_held(&pool->lock);
1944 
1945 	/*
1946 	 * @pwq->nr_active should be decremented for both percpu and unbound
1947 	 * workqueues.
1948 	 */
1949 	pwq->nr_active--;
1950 
1951 	/*
1952 	 * For a percpu workqueue, it's simple. Just need to kick the first
1953 	 * inactive work item on @pwq itself.
1954 	 */
1955 	if (!nna) {
1956 		pwq_activate_first_inactive(pwq, false);
1957 		return;
1958 	}
1959 
1960 	/*
1961 	 * If @pwq is for an unbound workqueue, it's more complicated because
1962 	 * multiple pwqs and pools may be sharing the nr_active count. When a
1963 	 * pwq needs to wait for an nr_active count, it puts itself on
1964 	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1965 	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1966 	 * guarantee that either we see non-empty pending_pwqs or they see
1967 	 * decremented $nna->nr.
1968 	 *
1969 	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1970 	 * max_active gets updated. However, it is guaranteed to be equal to or
1971 	 * larger than @pwq->wq->min_active which is above zero unless freezing.
1972 	 * This maintains the forward progress guarantee.
1973 	 */
1974 	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1975 		return;
1976 
1977 	if (!list_empty(&nna->pending_pwqs))
1978 		node_activate_pending_pwq(nna, pool);
1979 }
1980 
1981 /**
1982  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1983  * @pwq: pwq of interest
1984  * @work_data: work_data of work which left the queue
1985  *
1986  * A work either has completed or is removed from pending queue,
1987  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1988  *
1989  * NOTE:
1990  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1991  * and thus should be called after all other state updates for the in-flight
1992  * work item is complete.
1993  *
1994  * CONTEXT:
1995  * raw_spin_lock_irq(pool->lock).
1996  */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,unsigned long work_data)1997 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1998 {
1999 	int color = get_work_color(work_data);
2000 
2001 	if (!(work_data & WORK_STRUCT_INACTIVE))
2002 		pwq_dec_nr_active(pwq);
2003 
2004 	pwq->nr_in_flight[color]--;
2005 
2006 	/* is flush in progress and are we at the flushing tip? */
2007 	if (likely(pwq->flush_color != color))
2008 		goto out_put;
2009 
2010 	/* are there still in-flight works? */
2011 	if (pwq->nr_in_flight[color])
2012 		goto out_put;
2013 
2014 	/* this pwq is done, clear flush_color */
2015 	pwq->flush_color = -1;
2016 
2017 	/*
2018 	 * If this was the last pwq, wake up the first flusher.  It
2019 	 * will handle the rest.
2020 	 */
2021 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2022 		complete(&pwq->wq->first_flusher->done);
2023 out_put:
2024 	put_pwq(pwq);
2025 }
2026 
2027 /**
2028  * try_to_grab_pending - steal work item from worklist and disable irq
2029  * @work: work item to steal
2030  * @cflags: %WORK_CANCEL_ flags
2031  * @irq_flags: place to store irq state
2032  *
2033  * Try to grab PENDING bit of @work.  This function can handle @work in any
2034  * stable state - idle, on timer or on worklist.
2035  *
2036  * Return:
2037  *
2038  *  ========	================================================================
2039  *  1		if @work was pending and we successfully stole PENDING
2040  *  0		if @work was idle and we claimed PENDING
2041  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
2042  *  ========	================================================================
2043  *
2044  * Note:
2045  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2046  * interrupted while holding PENDING and @work off queue, irq must be
2047  * disabled on entry.  This, combined with delayed_work->timer being
2048  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2049  *
2050  * On successful return, >= 0, irq is disabled and the caller is
2051  * responsible for releasing it using local_irq_restore(*@irq_flags).
2052  *
2053  * This function is safe to call from any context including IRQ handler.
2054  */
try_to_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2055 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2056 			       unsigned long *irq_flags)
2057 {
2058 	struct worker_pool *pool;
2059 	struct pool_workqueue *pwq;
2060 
2061 	local_irq_save(*irq_flags);
2062 
2063 	/* try to steal the timer if it exists */
2064 	if (cflags & WORK_CANCEL_DELAYED) {
2065 		struct delayed_work *dwork = to_delayed_work(work);
2066 
2067 		/*
2068 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
2069 		 * guaranteed that the timer is not queued anywhere and not
2070 		 * running on the local CPU.
2071 		 */
2072 		if (likely(del_timer(&dwork->timer)))
2073 			return 1;
2074 	}
2075 
2076 	/* try to claim PENDING the normal way */
2077 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2078 		return 0;
2079 
2080 	rcu_read_lock();
2081 	/*
2082 	 * The queueing is in progress, or it is already queued. Try to
2083 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2084 	 */
2085 	pool = get_work_pool(work);
2086 	if (!pool)
2087 		goto fail;
2088 
2089 	raw_spin_lock(&pool->lock);
2090 	/*
2091 	 * work->data is guaranteed to point to pwq only while the work
2092 	 * item is queued on pwq->wq, and both updating work->data to point
2093 	 * to pwq on queueing and to pool on dequeueing are done under
2094 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2095 	 * points to pwq which is associated with a locked pool, the work
2096 	 * item is currently queued on that pool.
2097 	 */
2098 	pwq = get_work_pwq(work);
2099 	if (pwq && pwq->pool == pool) {
2100 		unsigned long work_data = *work_data_bits(work);
2101 
2102 		debug_work_deactivate(work);
2103 
2104 		/*
2105 		 * A cancelable inactive work item must be in the
2106 		 * pwq->inactive_works since a queued barrier can't be
2107 		 * canceled (see the comments in insert_wq_barrier()).
2108 		 *
2109 		 * An inactive work item cannot be deleted directly because
2110 		 * it might have linked barrier work items which, if left
2111 		 * on the inactive_works list, will confuse pwq->nr_active
2112 		 * management later on and cause stall.  Move the linked
2113 		 * barrier work items to the worklist when deleting the grabbed
2114 		 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that
2115 		 * it doesn't participate in nr_active management in later
2116 		 * pwq_dec_nr_in_flight().
2117 		 */
2118 		if (work_data & WORK_STRUCT_INACTIVE)
2119 			move_linked_works(work, &pwq->pool->worklist, NULL);
2120 
2121 		list_del_init(&work->entry);
2122 
2123 		/*
2124 		 * work->data points to pwq iff queued. Let's point to pool. As
2125 		 * this destroys work->data needed by the next step, stash it.
2126 		 */
2127 		set_work_pool_and_keep_pending(work, pool->id,
2128 					       pool_offq_flags(pool));
2129 
2130 		/* must be the last step, see the function comment */
2131 		pwq_dec_nr_in_flight(pwq, work_data);
2132 
2133 		raw_spin_unlock(&pool->lock);
2134 		rcu_read_unlock();
2135 		return 1;
2136 	}
2137 	raw_spin_unlock(&pool->lock);
2138 fail:
2139 	rcu_read_unlock();
2140 	local_irq_restore(*irq_flags);
2141 	return -EAGAIN;
2142 }
2143 
2144 /**
2145  * work_grab_pending - steal work item from worklist and disable irq
2146  * @work: work item to steal
2147  * @cflags: %WORK_CANCEL_ flags
2148  * @irq_flags: place to store IRQ state
2149  *
2150  * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2151  * or on worklist.
2152  *
2153  * Can be called from any context. IRQ is disabled on return with IRQ state
2154  * stored in *@irq_flags. The caller is responsible for re-enabling it using
2155  * local_irq_restore().
2156  *
2157  * Returns %true if @work was pending. %false if idle.
2158  */
work_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2159 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2160 			      unsigned long *irq_flags)
2161 {
2162 	int ret;
2163 
2164 	while (true) {
2165 		ret = try_to_grab_pending(work, cflags, irq_flags);
2166 		if (ret >= 0)
2167 			return ret;
2168 		cpu_relax();
2169 	}
2170 }
2171 
2172 /**
2173  * insert_work - insert a work into a pool
2174  * @pwq: pwq @work belongs to
2175  * @work: work to insert
2176  * @head: insertion point
2177  * @extra_flags: extra WORK_STRUCT_* flags to set
2178  *
2179  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2180  * work_struct flags.
2181  *
2182  * CONTEXT:
2183  * raw_spin_lock_irq(pool->lock).
2184  */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)2185 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2186 			struct list_head *head, unsigned int extra_flags)
2187 {
2188 	debug_work_activate(work);
2189 
2190 	/* record the work call stack in order to print it in KASAN reports */
2191 	kasan_record_aux_stack_noalloc(work);
2192 
2193 	/* we own @work, set data and link */
2194 	set_work_pwq(work, pwq, extra_flags);
2195 	list_add_tail(&work->entry, head);
2196 	get_pwq(pwq);
2197 }
2198 
2199 /*
2200  * Test whether @work is being queued from another work executing on the
2201  * same workqueue.
2202  */
is_chained_work(struct workqueue_struct * wq)2203 static bool is_chained_work(struct workqueue_struct *wq)
2204 {
2205 	struct worker *worker;
2206 
2207 	worker = current_wq_worker();
2208 	/*
2209 	 * Return %true iff I'm a worker executing a work item on @wq.  If
2210 	 * I'm @worker, it's safe to dereference it without locking.
2211 	 */
2212 	return worker && worker->current_pwq->wq == wq;
2213 }
2214 
2215 /*
2216  * When queueing an unbound work item to a wq, prefer local CPU if allowed
2217  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2218  * avoid perturbing sensitive tasks.
2219  */
wq_select_unbound_cpu(int cpu)2220 static int wq_select_unbound_cpu(int cpu)
2221 {
2222 	int new_cpu;
2223 
2224 	if (likely(!wq_debug_force_rr_cpu)) {
2225 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2226 			return cpu;
2227 	} else {
2228 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2229 	}
2230 
2231 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2232 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2233 	if (unlikely(new_cpu >= nr_cpu_ids)) {
2234 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2235 		if (unlikely(new_cpu >= nr_cpu_ids))
2236 			return cpu;
2237 	}
2238 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2239 
2240 	return new_cpu;
2241 }
2242 
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)2243 static void __queue_work(int cpu, struct workqueue_struct *wq,
2244 			 struct work_struct *work)
2245 {
2246 	struct pool_workqueue *pwq;
2247 	struct worker_pool *last_pool, *pool;
2248 	unsigned int work_flags;
2249 	unsigned int req_cpu = cpu;
2250 
2251 	/*
2252 	 * While a work item is PENDING && off queue, a task trying to
2253 	 * steal the PENDING will busy-loop waiting for it to either get
2254 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2255 	 * happen with IRQ disabled.
2256 	 */
2257 	lockdep_assert_irqs_disabled();
2258 
2259 	/*
2260 	 * For a draining wq, only works from the same workqueue are
2261 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2262 	 * queues a new work item to a wq after destroy_workqueue(wq).
2263 	 */
2264 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2265 		     WARN_ON_ONCE(!is_chained_work(wq))))
2266 		return;
2267 	rcu_read_lock();
2268 retry:
2269 	/* pwq which will be used unless @work is executing elsewhere */
2270 	if (req_cpu == WORK_CPU_UNBOUND) {
2271 		if (wq->flags & WQ_UNBOUND)
2272 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2273 		else
2274 			cpu = raw_smp_processor_id();
2275 	}
2276 
2277 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2278 	pool = pwq->pool;
2279 
2280 	/*
2281 	 * If @work was previously on a different pool, it might still be
2282 	 * running there, in which case the work needs to be queued on that
2283 	 * pool to guarantee non-reentrancy.
2284 	 *
2285 	 * For ordered workqueue, work items must be queued on the newest pwq
2286 	 * for accurate order management.  Guaranteed order also guarantees
2287 	 * non-reentrancy.  See the comments above unplug_oldest_pwq().
2288 	 */
2289 	last_pool = get_work_pool(work);
2290 	if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) {
2291 		struct worker *worker;
2292 
2293 		raw_spin_lock(&last_pool->lock);
2294 
2295 		worker = find_worker_executing_work(last_pool, work);
2296 
2297 		if (worker && worker->current_pwq->wq == wq) {
2298 			pwq = worker->current_pwq;
2299 			pool = pwq->pool;
2300 			WARN_ON_ONCE(pool != last_pool);
2301 		} else {
2302 			/* meh... not running there, queue here */
2303 			raw_spin_unlock(&last_pool->lock);
2304 			raw_spin_lock(&pool->lock);
2305 		}
2306 	} else {
2307 		raw_spin_lock(&pool->lock);
2308 	}
2309 
2310 	/*
2311 	 * pwq is determined and locked. For unbound pools, we could have raced
2312 	 * with pwq release and it could already be dead. If its refcnt is zero,
2313 	 * repeat pwq selection. Note that unbound pwqs never die without
2314 	 * another pwq replacing it in cpu_pwq or while work items are executing
2315 	 * on it, so the retrying is guaranteed to make forward-progress.
2316 	 */
2317 	if (unlikely(!pwq->refcnt)) {
2318 		if (wq->flags & WQ_UNBOUND) {
2319 			raw_spin_unlock(&pool->lock);
2320 			cpu_relax();
2321 			goto retry;
2322 		}
2323 		/* oops */
2324 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2325 			  wq->name, cpu);
2326 	}
2327 
2328 	/* pwq determined, queue */
2329 	trace_workqueue_queue_work(req_cpu, pwq, work);
2330 
2331 	if (WARN_ON(!list_empty(&work->entry)))
2332 		goto out;
2333 
2334 	pwq->nr_in_flight[pwq->work_color]++;
2335 	work_flags = work_color_to_flags(pwq->work_color);
2336 
2337 	/*
2338 	 * Limit the number of concurrently active work items to max_active.
2339 	 * @work must also queue behind existing inactive work items to maintain
2340 	 * ordering when max_active changes. See wq_adjust_max_active().
2341 	 */
2342 	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2343 		if (list_empty(&pool->worklist))
2344 			pool->watchdog_ts = jiffies;
2345 
2346 		trace_workqueue_activate_work(work);
2347 		insert_work(pwq, work, &pool->worklist, work_flags);
2348 		kick_pool(pool);
2349 	} else {
2350 		work_flags |= WORK_STRUCT_INACTIVE;
2351 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2352 	}
2353 
2354 out:
2355 	raw_spin_unlock(&pool->lock);
2356 	rcu_read_unlock();
2357 }
2358 
clear_pending_if_disabled(struct work_struct * work)2359 static bool clear_pending_if_disabled(struct work_struct *work)
2360 {
2361 	unsigned long data = *work_data_bits(work);
2362 	struct work_offq_data offqd;
2363 
2364 	if (likely((data & WORK_STRUCT_PWQ) ||
2365 		   !(data & WORK_OFFQ_DISABLE_MASK)))
2366 		return false;
2367 
2368 	work_offqd_unpack(&offqd, data);
2369 	set_work_pool_and_clear_pending(work, offqd.pool_id,
2370 					work_offqd_pack_flags(&offqd));
2371 	return true;
2372 }
2373 
2374 /**
2375  * queue_work_on - queue work on specific cpu
2376  * @cpu: CPU number to execute work on
2377  * @wq: workqueue to use
2378  * @work: work to queue
2379  *
2380  * We queue the work to a specific CPU, the caller must ensure it
2381  * can't go away.  Callers that fail to ensure that the specified
2382  * CPU cannot go away will execute on a randomly chosen CPU.
2383  * But note well that callers specifying a CPU that never has been
2384  * online will get a splat.
2385  *
2386  * Return: %false if @work was already on a queue, %true otherwise.
2387  */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)2388 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2389 		   struct work_struct *work)
2390 {
2391 	bool ret = false;
2392 	unsigned long irq_flags;
2393 
2394 	local_irq_save(irq_flags);
2395 
2396 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2397 	    !clear_pending_if_disabled(work)) {
2398 		__queue_work(cpu, wq, work);
2399 		ret = true;
2400 	}
2401 
2402 	local_irq_restore(irq_flags);
2403 	return ret;
2404 }
2405 EXPORT_SYMBOL(queue_work_on);
2406 
2407 /**
2408  * select_numa_node_cpu - Select a CPU based on NUMA node
2409  * @node: NUMA node ID that we want to select a CPU from
2410  *
2411  * This function will attempt to find a "random" cpu available on a given
2412  * node. If there are no CPUs available on the given node it will return
2413  * WORK_CPU_UNBOUND indicating that we should just schedule to any
2414  * available CPU if we need to schedule this work.
2415  */
select_numa_node_cpu(int node)2416 static int select_numa_node_cpu(int node)
2417 {
2418 	int cpu;
2419 
2420 	/* Delay binding to CPU if node is not valid or online */
2421 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2422 		return WORK_CPU_UNBOUND;
2423 
2424 	/* Use local node/cpu if we are already there */
2425 	cpu = raw_smp_processor_id();
2426 	if (node == cpu_to_node(cpu))
2427 		return cpu;
2428 
2429 	/* Use "random" otherwise know as "first" online CPU of node */
2430 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2431 
2432 	/* If CPU is valid return that, otherwise just defer */
2433 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2434 }
2435 
2436 /**
2437  * queue_work_node - queue work on a "random" cpu for a given NUMA node
2438  * @node: NUMA node that we are targeting the work for
2439  * @wq: workqueue to use
2440  * @work: work to queue
2441  *
2442  * We queue the work to a "random" CPU within a given NUMA node. The basic
2443  * idea here is to provide a way to somehow associate work with a given
2444  * NUMA node.
2445  *
2446  * This function will only make a best effort attempt at getting this onto
2447  * the right NUMA node. If no node is requested or the requested node is
2448  * offline then we just fall back to standard queue_work behavior.
2449  *
2450  * Currently the "random" CPU ends up being the first available CPU in the
2451  * intersection of cpu_online_mask and the cpumask of the node, unless we
2452  * are running on the node. In that case we just use the current CPU.
2453  *
2454  * Return: %false if @work was already on a queue, %true otherwise.
2455  */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)2456 bool queue_work_node(int node, struct workqueue_struct *wq,
2457 		     struct work_struct *work)
2458 {
2459 	unsigned long irq_flags;
2460 	bool ret = false;
2461 
2462 	/*
2463 	 * This current implementation is specific to unbound workqueues.
2464 	 * Specifically we only return the first available CPU for a given
2465 	 * node instead of cycling through individual CPUs within the node.
2466 	 *
2467 	 * If this is used with a per-cpu workqueue then the logic in
2468 	 * workqueue_select_cpu_near would need to be updated to allow for
2469 	 * some round robin type logic.
2470 	 */
2471 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2472 
2473 	local_irq_save(irq_flags);
2474 
2475 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2476 	    !clear_pending_if_disabled(work)) {
2477 		int cpu = select_numa_node_cpu(node);
2478 
2479 		__queue_work(cpu, wq, work);
2480 		ret = true;
2481 	}
2482 
2483 	local_irq_restore(irq_flags);
2484 	return ret;
2485 }
2486 EXPORT_SYMBOL_GPL(queue_work_node);
2487 
delayed_work_timer_fn(struct timer_list * t)2488 void delayed_work_timer_fn(struct timer_list *t)
2489 {
2490 	struct delayed_work *dwork = from_timer(dwork, t, timer);
2491 
2492 	/* should have been called from irqsafe timer with irq already off */
2493 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2494 }
2495 EXPORT_SYMBOL(delayed_work_timer_fn);
2496 
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2497 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2498 				struct delayed_work *dwork, unsigned long delay)
2499 {
2500 	struct timer_list *timer = &dwork->timer;
2501 	struct work_struct *work = &dwork->work;
2502 
2503 	WARN_ON_ONCE(!wq);
2504 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2505 	WARN_ON_ONCE(timer_pending(timer));
2506 	WARN_ON_ONCE(!list_empty(&work->entry));
2507 
2508 	/*
2509 	 * If @delay is 0, queue @dwork->work immediately.  This is for
2510 	 * both optimization and correctness.  The earliest @timer can
2511 	 * expire is on the closest next tick and delayed_work users depend
2512 	 * on that there's no such delay when @delay is 0.
2513 	 */
2514 	if (!delay) {
2515 		__queue_work(cpu, wq, &dwork->work);
2516 		return;
2517 	}
2518 
2519 	dwork->wq = wq;
2520 	dwork->cpu = cpu;
2521 	timer->expires = jiffies + delay;
2522 
2523 	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2524 		/* If the current cpu is a housekeeping cpu, use it. */
2525 		cpu = smp_processor_id();
2526 		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2527 			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2528 		add_timer_on(timer, cpu);
2529 	} else {
2530 		if (likely(cpu == WORK_CPU_UNBOUND))
2531 			add_timer_global(timer);
2532 		else
2533 			add_timer_on(timer, cpu);
2534 	}
2535 }
2536 
2537 /**
2538  * queue_delayed_work_on - queue work on specific CPU after delay
2539  * @cpu: CPU number to execute work on
2540  * @wq: workqueue to use
2541  * @dwork: work to queue
2542  * @delay: number of jiffies to wait before queueing
2543  *
2544  * Return: %false if @work was already on a queue, %true otherwise.  If
2545  * @delay is zero and @dwork is idle, it will be scheduled for immediate
2546  * execution.
2547  */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2548 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2549 			   struct delayed_work *dwork, unsigned long delay)
2550 {
2551 	struct work_struct *work = &dwork->work;
2552 	bool ret = false;
2553 	unsigned long irq_flags;
2554 
2555 	/* read the comment in __queue_work() */
2556 	local_irq_save(irq_flags);
2557 
2558 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2559 	    !clear_pending_if_disabled(work)) {
2560 		__queue_delayed_work(cpu, wq, dwork, delay);
2561 		ret = true;
2562 	}
2563 
2564 	local_irq_restore(irq_flags);
2565 	return ret;
2566 }
2567 EXPORT_SYMBOL(queue_delayed_work_on);
2568 
2569 /**
2570  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2571  * @cpu: CPU number to execute work on
2572  * @wq: workqueue to use
2573  * @dwork: work to queue
2574  * @delay: number of jiffies to wait before queueing
2575  *
2576  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2577  * modify @dwork's timer so that it expires after @delay.  If @delay is
2578  * zero, @work is guaranteed to be scheduled immediately regardless of its
2579  * current state.
2580  *
2581  * Return: %false if @dwork was idle and queued, %true if @dwork was
2582  * pending and its timer was modified.
2583  *
2584  * This function is safe to call from any context including IRQ handler.
2585  * See try_to_grab_pending() for details.
2586  */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2587 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2588 			 struct delayed_work *dwork, unsigned long delay)
2589 {
2590 	unsigned long irq_flags;
2591 	bool ret;
2592 
2593 	ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
2594 
2595 	if (!clear_pending_if_disabled(&dwork->work))
2596 		__queue_delayed_work(cpu, wq, dwork, delay);
2597 
2598 	local_irq_restore(irq_flags);
2599 	return ret;
2600 }
2601 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2602 
rcu_work_rcufn(struct rcu_head * rcu)2603 static void rcu_work_rcufn(struct rcu_head *rcu)
2604 {
2605 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2606 
2607 	/* read the comment in __queue_work() */
2608 	local_irq_disable();
2609 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2610 	local_irq_enable();
2611 }
2612 
2613 /**
2614  * queue_rcu_work - queue work after a RCU grace period
2615  * @wq: workqueue to use
2616  * @rwork: work to queue
2617  *
2618  * Return: %false if @rwork was already pending, %true otherwise.  Note
2619  * that a full RCU grace period is guaranteed only after a %true return.
2620  * While @rwork is guaranteed to be executed after a %false return, the
2621  * execution may happen before a full RCU grace period has passed.
2622  */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)2623 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2624 {
2625 	struct work_struct *work = &rwork->work;
2626 
2627 	/*
2628 	 * rcu_work can't be canceled or disabled. Warn if the user reached
2629 	 * inside @rwork and disabled the inner work.
2630 	 */
2631 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2632 	    !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2633 		rwork->wq = wq;
2634 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2635 		return true;
2636 	}
2637 
2638 	return false;
2639 }
2640 EXPORT_SYMBOL(queue_rcu_work);
2641 
alloc_worker(int node)2642 static struct worker *alloc_worker(int node)
2643 {
2644 	struct worker *worker;
2645 
2646 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2647 	if (worker) {
2648 		INIT_LIST_HEAD(&worker->entry);
2649 		INIT_LIST_HEAD(&worker->scheduled);
2650 		INIT_LIST_HEAD(&worker->node);
2651 		/* on creation a worker is in !idle && prep state */
2652 		worker->flags = WORKER_PREP;
2653 	}
2654 	return worker;
2655 }
2656 
pool_allowed_cpus(struct worker_pool * pool)2657 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2658 {
2659 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2660 		return pool->attrs->__pod_cpumask;
2661 	else
2662 		return pool->attrs->cpumask;
2663 }
2664 
2665 /**
2666  * worker_attach_to_pool() - attach a worker to a pool
2667  * @worker: worker to be attached
2668  * @pool: the target pool
2669  *
2670  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2671  * cpu-binding of @worker are kept coordinated with the pool across
2672  * cpu-[un]hotplugs.
2673  */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)2674 static void worker_attach_to_pool(struct worker *worker,
2675 				  struct worker_pool *pool)
2676 {
2677 	mutex_lock(&wq_pool_attach_mutex);
2678 
2679 	/*
2680 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2681 	 * across this function. See the comments above the flag definition for
2682 	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2683 	 */
2684 	if (pool->flags & POOL_DISASSOCIATED) {
2685 		worker->flags |= WORKER_UNBOUND;
2686 	} else {
2687 		WARN_ON_ONCE(pool->flags & POOL_BH);
2688 		kthread_set_per_cpu(worker->task, pool->cpu);
2689 	}
2690 
2691 	if (worker->rescue_wq)
2692 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2693 
2694 	list_add_tail(&worker->node, &pool->workers);
2695 	worker->pool = pool;
2696 
2697 	mutex_unlock(&wq_pool_attach_mutex);
2698 }
2699 
unbind_worker(struct worker * worker)2700 static void unbind_worker(struct worker *worker)
2701 {
2702 	lockdep_assert_held(&wq_pool_attach_mutex);
2703 
2704 	kthread_set_per_cpu(worker->task, -1);
2705 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2706 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2707 	else
2708 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2709 }
2710 
2711 
detach_worker(struct worker * worker)2712 static void detach_worker(struct worker *worker)
2713 {
2714 	lockdep_assert_held(&wq_pool_attach_mutex);
2715 
2716 	unbind_worker(worker);
2717 	list_del(&worker->node);
2718 }
2719 
2720 /**
2721  * worker_detach_from_pool() - detach a worker from its pool
2722  * @worker: worker which is attached to its pool
2723  *
2724  * Undo the attaching which had been done in worker_attach_to_pool().  The
2725  * caller worker shouldn't access to the pool after detached except it has
2726  * other reference to the pool.
2727  */
worker_detach_from_pool(struct worker * worker)2728 static void worker_detach_from_pool(struct worker *worker)
2729 {
2730 	struct worker_pool *pool = worker->pool;
2731 
2732 	/* there is one permanent BH worker per CPU which should never detach */
2733 	WARN_ON_ONCE(pool->flags & POOL_BH);
2734 
2735 	mutex_lock(&wq_pool_attach_mutex);
2736 	detach_worker(worker);
2737 	worker->pool = NULL;
2738 	mutex_unlock(&wq_pool_attach_mutex);
2739 
2740 	/* clear leftover flags without pool->lock after it is detached */
2741 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2742 }
2743 
format_worker_id(char * buf,size_t size,struct worker * worker,struct worker_pool * pool)2744 static int format_worker_id(char *buf, size_t size, struct worker *worker,
2745 			    struct worker_pool *pool)
2746 {
2747 	if (worker->rescue_wq)
2748 		return scnprintf(buf, size, "kworker/R-%s",
2749 				 worker->rescue_wq->name);
2750 
2751 	if (pool) {
2752 		if (pool->cpu >= 0)
2753 			return scnprintf(buf, size, "kworker/%d:%d%s",
2754 					 pool->cpu, worker->id,
2755 					 pool->attrs->nice < 0  ? "H" : "");
2756 		else
2757 			return scnprintf(buf, size, "kworker/u%d:%d",
2758 					 pool->id, worker->id);
2759 	} else {
2760 		return scnprintf(buf, size, "kworker/dying");
2761 	}
2762 }
2763 
2764 /**
2765  * create_worker - create a new workqueue worker
2766  * @pool: pool the new worker will belong to
2767  *
2768  * Create and start a new worker which is attached to @pool.
2769  *
2770  * CONTEXT:
2771  * Might sleep.  Does GFP_KERNEL allocations.
2772  *
2773  * Return:
2774  * Pointer to the newly created worker.
2775  */
create_worker(struct worker_pool * pool)2776 static struct worker *create_worker(struct worker_pool *pool)
2777 {
2778 	struct worker *worker;
2779 	int id;
2780 
2781 	/* ID is needed to determine kthread name */
2782 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2783 	if (id < 0) {
2784 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2785 			    ERR_PTR(id));
2786 		return NULL;
2787 	}
2788 
2789 	worker = alloc_worker(pool->node);
2790 	if (!worker) {
2791 		pr_err_once("workqueue: Failed to allocate a worker\n");
2792 		goto fail;
2793 	}
2794 
2795 	worker->id = id;
2796 
2797 	if (!(pool->flags & POOL_BH)) {
2798 		char id_buf[WORKER_ID_LEN];
2799 
2800 		format_worker_id(id_buf, sizeof(id_buf), worker, pool);
2801 		worker->task = kthread_create_on_node(worker_thread, worker,
2802 						      pool->node, "%s", id_buf);
2803 		if (IS_ERR(worker->task)) {
2804 			if (PTR_ERR(worker->task) == -EINTR) {
2805 				pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n",
2806 				       id_buf);
2807 			} else {
2808 				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2809 					    worker->task);
2810 			}
2811 			goto fail;
2812 		}
2813 
2814 		set_user_nice(worker->task, pool->attrs->nice);
2815 		trace_android_rvh_create_worker(worker->task, pool->attrs);
2816 		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2817 	}
2818 
2819 	/* successful, attach the worker to the pool */
2820 	worker_attach_to_pool(worker, pool);
2821 
2822 	/* start the newly created worker */
2823 	raw_spin_lock_irq(&pool->lock);
2824 
2825 	worker->pool->nr_workers++;
2826 	worker_enter_idle(worker);
2827 
2828 	/*
2829 	 * @worker is waiting on a completion in kthread() and will trigger hung
2830 	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2831 	 * wake it up explicitly.
2832 	 */
2833 	if (worker->task)
2834 		wake_up_process(worker->task);
2835 
2836 	raw_spin_unlock_irq(&pool->lock);
2837 
2838 	return worker;
2839 
2840 fail:
2841 	ida_free(&pool->worker_ida, id);
2842 	kfree(worker);
2843 	return NULL;
2844 }
2845 
detach_dying_workers(struct list_head * cull_list)2846 static void detach_dying_workers(struct list_head *cull_list)
2847 {
2848 	struct worker *worker;
2849 
2850 	list_for_each_entry(worker, cull_list, entry)
2851 		detach_worker(worker);
2852 }
2853 
reap_dying_workers(struct list_head * cull_list)2854 static void reap_dying_workers(struct list_head *cull_list)
2855 {
2856 	struct worker *worker, *tmp;
2857 
2858 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2859 		list_del_init(&worker->entry);
2860 		kthread_stop_put(worker->task);
2861 		kfree(worker);
2862 	}
2863 }
2864 
2865 /**
2866  * set_worker_dying - Tag a worker for destruction
2867  * @worker: worker to be destroyed
2868  * @list: transfer worker away from its pool->idle_list and into list
2869  *
2870  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2871  * should be idle.
2872  *
2873  * CONTEXT:
2874  * raw_spin_lock_irq(pool->lock).
2875  */
set_worker_dying(struct worker * worker,struct list_head * list)2876 static void set_worker_dying(struct worker *worker, struct list_head *list)
2877 {
2878 	struct worker_pool *pool = worker->pool;
2879 
2880 	lockdep_assert_held(&pool->lock);
2881 	lockdep_assert_held(&wq_pool_attach_mutex);
2882 
2883 	/* sanity check frenzy */
2884 	if (WARN_ON(worker->current_work) ||
2885 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2886 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2887 		return;
2888 
2889 	pool->nr_workers--;
2890 	pool->nr_idle--;
2891 
2892 	worker->flags |= WORKER_DIE;
2893 
2894 	list_move(&worker->entry, list);
2895 
2896 	/* get an extra task struct reference for later kthread_stop_put() */
2897 	get_task_struct(worker->task);
2898 }
2899 
2900 /**
2901  * idle_worker_timeout - check if some idle workers can now be deleted.
2902  * @t: The pool's idle_timer that just expired
2903  *
2904  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2905  * worker_leave_idle(), as a worker flicking between idle and active while its
2906  * pool is at the too_many_workers() tipping point would cause too much timer
2907  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2908  * it expire and re-evaluate things from there.
2909  */
idle_worker_timeout(struct timer_list * t)2910 static void idle_worker_timeout(struct timer_list *t)
2911 {
2912 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2913 	bool do_cull = false;
2914 
2915 	if (work_pending(&pool->idle_cull_work))
2916 		return;
2917 
2918 	raw_spin_lock_irq(&pool->lock);
2919 
2920 	if (too_many_workers(pool)) {
2921 		struct worker *worker;
2922 		unsigned long expires;
2923 
2924 		/* idle_list is kept in LIFO order, check the last one */
2925 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2926 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2927 		do_cull = !time_before(jiffies, expires);
2928 
2929 		if (!do_cull)
2930 			mod_timer(&pool->idle_timer, expires);
2931 	}
2932 	raw_spin_unlock_irq(&pool->lock);
2933 
2934 	if (do_cull)
2935 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2936 }
2937 
2938 /**
2939  * idle_cull_fn - cull workers that have been idle for too long.
2940  * @work: the pool's work for handling these idle workers
2941  *
2942  * This goes through a pool's idle workers and gets rid of those that have been
2943  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2944  *
2945  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2946  * culled, so this also resets worker affinity. This requires a sleepable
2947  * context, hence the split between timer callback and work item.
2948  */
idle_cull_fn(struct work_struct * work)2949 static void idle_cull_fn(struct work_struct *work)
2950 {
2951 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2952 	LIST_HEAD(cull_list);
2953 
2954 	/*
2955 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2956 	 * cannot proceed beyong set_pf_worker() in its self-destruct path.
2957 	 * This is required as a previously-preempted worker could run after
2958 	 * set_worker_dying() has happened but before detach_dying_workers() did.
2959 	 */
2960 	mutex_lock(&wq_pool_attach_mutex);
2961 	raw_spin_lock_irq(&pool->lock);
2962 
2963 	while (too_many_workers(pool)) {
2964 		struct worker *worker;
2965 		unsigned long expires;
2966 
2967 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2968 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2969 
2970 		if (time_before(jiffies, expires)) {
2971 			mod_timer(&pool->idle_timer, expires);
2972 			break;
2973 		}
2974 
2975 		set_worker_dying(worker, &cull_list);
2976 	}
2977 
2978 	raw_spin_unlock_irq(&pool->lock);
2979 	detach_dying_workers(&cull_list);
2980 	mutex_unlock(&wq_pool_attach_mutex);
2981 
2982 	reap_dying_workers(&cull_list);
2983 }
2984 
send_mayday(struct work_struct * work)2985 static void send_mayday(struct work_struct *work)
2986 {
2987 	struct pool_workqueue *pwq = get_work_pwq(work);
2988 	struct workqueue_struct *wq = pwq->wq;
2989 
2990 	lockdep_assert_held(&wq_mayday_lock);
2991 
2992 	if (!wq->rescuer)
2993 		return;
2994 
2995 	/* mayday mayday mayday */
2996 	if (list_empty(&pwq->mayday_node)) {
2997 		/*
2998 		 * If @pwq is for an unbound wq, its base ref may be put at
2999 		 * any time due to an attribute change.  Pin @pwq until the
3000 		 * rescuer is done with it.
3001 		 */
3002 		get_pwq(pwq);
3003 		list_add_tail(&pwq->mayday_node, &wq->maydays);
3004 		wake_up_process(wq->rescuer->task);
3005 		pwq->stats[PWQ_STAT_MAYDAY]++;
3006 	}
3007 }
3008 
pool_mayday_timeout(struct timer_list * t)3009 static void pool_mayday_timeout(struct timer_list *t)
3010 {
3011 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
3012 	struct work_struct *work;
3013 
3014 	raw_spin_lock_irq(&pool->lock);
3015 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
3016 
3017 	if (need_to_create_worker(pool)) {
3018 		/*
3019 		 * We've been trying to create a new worker but
3020 		 * haven't been successful.  We might be hitting an
3021 		 * allocation deadlock.  Send distress signals to
3022 		 * rescuers.
3023 		 */
3024 		list_for_each_entry(work, &pool->worklist, entry)
3025 			send_mayday(work);
3026 	}
3027 
3028 	raw_spin_unlock(&wq_mayday_lock);
3029 	raw_spin_unlock_irq(&pool->lock);
3030 
3031 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3032 }
3033 
3034 /**
3035  * maybe_create_worker - create a new worker if necessary
3036  * @pool: pool to create a new worker for
3037  *
3038  * Create a new worker for @pool if necessary.  @pool is guaranteed to
3039  * have at least one idle worker on return from this function.  If
3040  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3041  * sent to all rescuers with works scheduled on @pool to resolve
3042  * possible allocation deadlock.
3043  *
3044  * On return, need_to_create_worker() is guaranteed to be %false and
3045  * may_start_working() %true.
3046  *
3047  * LOCKING:
3048  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3049  * multiple times.  Does GFP_KERNEL allocations.  Called only from
3050  * manager.
3051  */
maybe_create_worker(struct worker_pool * pool)3052 static void maybe_create_worker(struct worker_pool *pool)
3053 __releases(&pool->lock)
3054 __acquires(&pool->lock)
3055 {
3056 restart:
3057 	raw_spin_unlock_irq(&pool->lock);
3058 
3059 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3060 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3061 
3062 	while (true) {
3063 		if (create_worker(pool) || !need_to_create_worker(pool))
3064 			break;
3065 
3066 		schedule_timeout_interruptible(CREATE_COOLDOWN);
3067 
3068 		if (!need_to_create_worker(pool))
3069 			break;
3070 	}
3071 
3072 	del_timer_sync(&pool->mayday_timer);
3073 	raw_spin_lock_irq(&pool->lock);
3074 	/*
3075 	 * This is necessary even after a new worker was just successfully
3076 	 * created as @pool->lock was dropped and the new worker might have
3077 	 * already become busy.
3078 	 */
3079 	if (need_to_create_worker(pool))
3080 		goto restart;
3081 }
3082 
3083 /**
3084  * manage_workers - manage worker pool
3085  * @worker: self
3086  *
3087  * Assume the manager role and manage the worker pool @worker belongs
3088  * to.  At any given time, there can be only zero or one manager per
3089  * pool.  The exclusion is handled automatically by this function.
3090  *
3091  * The caller can safely start processing works on false return.  On
3092  * true return, it's guaranteed that need_to_create_worker() is false
3093  * and may_start_working() is true.
3094  *
3095  * CONTEXT:
3096  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3097  * multiple times.  Does GFP_KERNEL allocations.
3098  *
3099  * Return:
3100  * %false if the pool doesn't need management and the caller can safely
3101  * start processing works, %true if management function was performed and
3102  * the conditions that the caller verified before calling the function may
3103  * no longer be true.
3104  */
manage_workers(struct worker * worker)3105 static bool manage_workers(struct worker *worker)
3106 {
3107 	struct worker_pool *pool = worker->pool;
3108 
3109 	if (pool->flags & POOL_MANAGER_ACTIVE)
3110 		return false;
3111 
3112 	pool->flags |= POOL_MANAGER_ACTIVE;
3113 	pool->manager = worker;
3114 
3115 	maybe_create_worker(pool);
3116 
3117 	pool->manager = NULL;
3118 	pool->flags &= ~POOL_MANAGER_ACTIVE;
3119 	rcuwait_wake_up(&manager_wait);
3120 	return true;
3121 }
3122 
3123 /**
3124  * process_one_work - process single work
3125  * @worker: self
3126  * @work: work to process
3127  *
3128  * Process @work.  This function contains all the logics necessary to
3129  * process a single work including synchronization against and
3130  * interaction with other workers on the same cpu, queueing and
3131  * flushing.  As long as context requirement is met, any worker can
3132  * call this function to process a work.
3133  *
3134  * CONTEXT:
3135  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3136  */
process_one_work(struct worker * worker,struct work_struct * work)3137 static void process_one_work(struct worker *worker, struct work_struct *work)
3138 __releases(&pool->lock)
3139 __acquires(&pool->lock)
3140 {
3141 	struct pool_workqueue *pwq = get_work_pwq(work);
3142 	struct worker_pool *pool = worker->pool;
3143 	unsigned long work_data;
3144 	int lockdep_start_depth, rcu_start_depth;
3145 	bool bh_draining = pool->flags & POOL_BH_DRAINING;
3146 #ifdef CONFIG_LOCKDEP
3147 	/*
3148 	 * It is permissible to free the struct work_struct from
3149 	 * inside the function that is called from it, this we need to
3150 	 * take into account for lockdep too.  To avoid bogus "held
3151 	 * lock freed" warnings as well as problems when looking into
3152 	 * work->lockdep_map, make a copy and use that here.
3153 	 */
3154 	struct lockdep_map lockdep_map;
3155 
3156 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3157 #endif
3158 	/* ensure we're on the correct CPU */
3159 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3160 		     raw_smp_processor_id() != pool->cpu);
3161 
3162 	/* claim and dequeue */
3163 	debug_work_deactivate(work);
3164 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3165 	worker->current_work = work;
3166 	worker->current_func = work->func;
3167 	worker->current_pwq = pwq;
3168 	if (worker->task)
3169 		worker->current_at = worker->task->se.sum_exec_runtime;
3170 	work_data = *work_data_bits(work);
3171 	worker->current_color = get_work_color(work_data);
3172 
3173 	/*
3174 	 * Record wq name for cmdline and debug reporting, may get
3175 	 * overridden through set_worker_desc().
3176 	 */
3177 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3178 
3179 	list_del_init(&work->entry);
3180 
3181 	/*
3182 	 * CPU intensive works don't participate in concurrency management.
3183 	 * They're the scheduler's responsibility.  This takes @worker out
3184 	 * of concurrency management and the next code block will chain
3185 	 * execution of the pending work items.
3186 	 */
3187 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3188 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3189 
3190 	/*
3191 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3192 	 * since nr_running would always be >= 1 at this point. This is used to
3193 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3194 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3195 	 */
3196 	kick_pool(pool);
3197 
3198 	/*
3199 	 * Record the last pool and clear PENDING which should be the last
3200 	 * update to @work.  Also, do this inside @pool->lock so that
3201 	 * PENDING and queued state changes happen together while IRQ is
3202 	 * disabled.
3203 	 */
3204 	set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3205 
3206 	pwq->stats[PWQ_STAT_STARTED]++;
3207 	raw_spin_unlock_irq(&pool->lock);
3208 
3209 	rcu_start_depth = rcu_preempt_depth();
3210 	lockdep_start_depth = lockdep_depth(current);
3211 	/* see drain_dead_softirq_workfn() */
3212 	if (!bh_draining)
3213 		lock_map_acquire(pwq->wq->lockdep_map);
3214 	lock_map_acquire(&lockdep_map);
3215 	/*
3216 	 * Strictly speaking we should mark the invariant state without holding
3217 	 * any locks, that is, before these two lock_map_acquire()'s.
3218 	 *
3219 	 * However, that would result in:
3220 	 *
3221 	 *   A(W1)
3222 	 *   WFC(C)
3223 	 *		A(W1)
3224 	 *		C(C)
3225 	 *
3226 	 * Which would create W1->C->W1 dependencies, even though there is no
3227 	 * actual deadlock possible. There are two solutions, using a
3228 	 * read-recursive acquire on the work(queue) 'locks', but this will then
3229 	 * hit the lockdep limitation on recursive locks, or simply discard
3230 	 * these locks.
3231 	 *
3232 	 * AFAICT there is no possible deadlock scenario between the
3233 	 * flush_work() and complete() primitives (except for single-threaded
3234 	 * workqueues), so hiding them isn't a problem.
3235 	 */
3236 	lockdep_invariant_state(true);
3237 	trace_workqueue_execute_start(work);
3238 	worker->current_func(work);
3239 	/*
3240 	 * While we must be careful to not use "work" after this, the trace
3241 	 * point will only record its address.
3242 	 */
3243 	trace_workqueue_execute_end(work, worker->current_func);
3244 	pwq->stats[PWQ_STAT_COMPLETED]++;
3245 	lock_map_release(&lockdep_map);
3246 	if (!bh_draining)
3247 		lock_map_release(pwq->wq->lockdep_map);
3248 
3249 	if (unlikely((worker->task && in_atomic()) ||
3250 		     lockdep_depth(current) != lockdep_start_depth ||
3251 		     rcu_preempt_depth() != rcu_start_depth)) {
3252 		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3253 		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3254 		       current->comm, task_pid_nr(current), preempt_count(),
3255 		       lockdep_start_depth, lockdep_depth(current),
3256 		       rcu_start_depth, rcu_preempt_depth(),
3257 		       worker->current_func);
3258 		debug_show_held_locks(current);
3259 		dump_stack();
3260 	}
3261 
3262 	/*
3263 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3264 	 * kernels, where a requeueing work item waiting for something to
3265 	 * happen could deadlock with stop_machine as such work item could
3266 	 * indefinitely requeue itself while all other CPUs are trapped in
3267 	 * stop_machine. At the same time, report a quiescent RCU state so
3268 	 * the same condition doesn't freeze RCU.
3269 	 */
3270 	if (worker->task)
3271 		cond_resched();
3272 
3273 	raw_spin_lock_irq(&pool->lock);
3274 
3275 	/*
3276 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3277 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3278 	 * wq_cpu_intensive_thresh_us. Clear it.
3279 	 */
3280 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3281 
3282 	/* tag the worker for identification in schedule() */
3283 	worker->last_func = worker->current_func;
3284 
3285 	/* we're done with it, release */
3286 	hash_del(&worker->hentry);
3287 	worker->current_work = NULL;
3288 	worker->current_func = NULL;
3289 	worker->current_pwq = NULL;
3290 	worker->current_color = INT_MAX;
3291 
3292 	/* must be the last step, see the function comment */
3293 	pwq_dec_nr_in_flight(pwq, work_data);
3294 }
3295 
3296 /**
3297  * process_scheduled_works - process scheduled works
3298  * @worker: self
3299  *
3300  * Process all scheduled works.  Please note that the scheduled list
3301  * may change while processing a work, so this function repeatedly
3302  * fetches a work from the top and executes it.
3303  *
3304  * CONTEXT:
3305  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3306  * multiple times.
3307  */
process_scheduled_works(struct worker * worker)3308 static void process_scheduled_works(struct worker *worker)
3309 {
3310 	struct work_struct *work;
3311 	bool first = true;
3312 
3313 	while ((work = list_first_entry_or_null(&worker->scheduled,
3314 						struct work_struct, entry))) {
3315 		if (first) {
3316 			worker->pool->watchdog_ts = jiffies;
3317 			first = false;
3318 		}
3319 		process_one_work(worker, work);
3320 	}
3321 }
3322 
set_pf_worker(bool val)3323 static void set_pf_worker(bool val)
3324 {
3325 	mutex_lock(&wq_pool_attach_mutex);
3326 	if (val)
3327 		current->flags |= PF_WQ_WORKER;
3328 	else
3329 		current->flags &= ~PF_WQ_WORKER;
3330 	mutex_unlock(&wq_pool_attach_mutex);
3331 }
3332 
3333 /**
3334  * worker_thread - the worker thread function
3335  * @__worker: self
3336  *
3337  * The worker thread function.  All workers belong to a worker_pool -
3338  * either a per-cpu one or dynamic unbound one.  These workers process all
3339  * work items regardless of their specific target workqueue.  The only
3340  * exception is work items which belong to workqueues with a rescuer which
3341  * will be explained in rescuer_thread().
3342  *
3343  * Return: 0
3344  */
worker_thread(void * __worker)3345 static int worker_thread(void *__worker)
3346 {
3347 	struct worker *worker = __worker;
3348 	struct worker_pool *pool = worker->pool;
3349 
3350 	/* tell the scheduler that this is a workqueue worker */
3351 	set_pf_worker(true);
3352 woke_up:
3353 	raw_spin_lock_irq(&pool->lock);
3354 
3355 	/* am I supposed to die? */
3356 	if (unlikely(worker->flags & WORKER_DIE)) {
3357 		raw_spin_unlock_irq(&pool->lock);
3358 		set_pf_worker(false);
3359 		/*
3360 		 * The worker is dead and PF_WQ_WORKER is cleared, worker->pool
3361 		 * shouldn't be accessed, reset it to NULL in case otherwise.
3362 		 */
3363 		worker->pool = NULL;
3364 		ida_free(&pool->worker_ida, worker->id);
3365 		return 0;
3366 	}
3367 
3368 	worker_leave_idle(worker);
3369 recheck:
3370 	/* no more worker necessary? */
3371 	if (!need_more_worker(pool))
3372 		goto sleep;
3373 
3374 	/* do we need to manage? */
3375 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3376 		goto recheck;
3377 
3378 	/*
3379 	 * ->scheduled list can only be filled while a worker is
3380 	 * preparing to process a work or actually processing it.
3381 	 * Make sure nobody diddled with it while I was sleeping.
3382 	 */
3383 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3384 
3385 	/*
3386 	 * Finish PREP stage.  We're guaranteed to have at least one idle
3387 	 * worker or that someone else has already assumed the manager
3388 	 * role.  This is where @worker starts participating in concurrency
3389 	 * management if applicable and concurrency management is restored
3390 	 * after being rebound.  See rebind_workers() for details.
3391 	 */
3392 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3393 
3394 	do {
3395 		struct work_struct *work =
3396 			list_first_entry(&pool->worklist,
3397 					 struct work_struct, entry);
3398 
3399 		if (assign_work(work, worker, NULL))
3400 			process_scheduled_works(worker);
3401 	} while (keep_working(pool));
3402 
3403 	worker_set_flags(worker, WORKER_PREP);
3404 sleep:
3405 	/*
3406 	 * pool->lock is held and there's no work to process and no need to
3407 	 * manage, sleep.  Workers are woken up only while holding
3408 	 * pool->lock or from local cpu, so setting the current state
3409 	 * before releasing pool->lock is enough to prevent losing any
3410 	 * event.
3411 	 */
3412 	worker_enter_idle(worker);
3413 	__set_current_state(TASK_IDLE);
3414 	raw_spin_unlock_irq(&pool->lock);
3415 	schedule();
3416 	goto woke_up;
3417 }
3418 
3419 /**
3420  * rescuer_thread - the rescuer thread function
3421  * @__rescuer: self
3422  *
3423  * Workqueue rescuer thread function.  There's one rescuer for each
3424  * workqueue which has WQ_MEM_RECLAIM set.
3425  *
3426  * Regular work processing on a pool may block trying to create a new
3427  * worker which uses GFP_KERNEL allocation which has slight chance of
3428  * developing into deadlock if some works currently on the same queue
3429  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3430  * the problem rescuer solves.
3431  *
3432  * When such condition is possible, the pool summons rescuers of all
3433  * workqueues which have works queued on the pool and let them process
3434  * those works so that forward progress can be guaranteed.
3435  *
3436  * This should happen rarely.
3437  *
3438  * Return: 0
3439  */
rescuer_thread(void * __rescuer)3440 static int rescuer_thread(void *__rescuer)
3441 {
3442 	struct worker *rescuer = __rescuer;
3443 	struct workqueue_struct *wq = rescuer->rescue_wq;
3444 	bool should_stop;
3445 
3446 	set_user_nice(current, RESCUER_NICE_LEVEL);
3447 
3448 	/*
3449 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3450 	 * doesn't participate in concurrency management.
3451 	 */
3452 	set_pf_worker(true);
3453 repeat:
3454 	set_current_state(TASK_IDLE);
3455 
3456 	/*
3457 	 * By the time the rescuer is requested to stop, the workqueue
3458 	 * shouldn't have any work pending, but @wq->maydays may still have
3459 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3460 	 * all the work items before the rescuer got to them.  Go through
3461 	 * @wq->maydays processing before acting on should_stop so that the
3462 	 * list is always empty on exit.
3463 	 */
3464 	should_stop = kthread_should_stop();
3465 
3466 	/* see whether any pwq is asking for help */
3467 	raw_spin_lock_irq(&wq_mayday_lock);
3468 
3469 	while (!list_empty(&wq->maydays)) {
3470 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3471 					struct pool_workqueue, mayday_node);
3472 		struct worker_pool *pool = pwq->pool;
3473 		struct work_struct *work, *n;
3474 
3475 		__set_current_state(TASK_RUNNING);
3476 		list_del_init(&pwq->mayday_node);
3477 
3478 		raw_spin_unlock_irq(&wq_mayday_lock);
3479 
3480 		worker_attach_to_pool(rescuer, pool);
3481 
3482 		raw_spin_lock_irq(&pool->lock);
3483 
3484 		/*
3485 		 * Slurp in all works issued via this workqueue and
3486 		 * process'em.
3487 		 */
3488 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3489 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3490 			if (get_work_pwq(work) == pwq &&
3491 			    assign_work(work, rescuer, &n))
3492 				pwq->stats[PWQ_STAT_RESCUED]++;
3493 		}
3494 
3495 		if (!list_empty(&rescuer->scheduled)) {
3496 			process_scheduled_works(rescuer);
3497 
3498 			/*
3499 			 * The above execution of rescued work items could
3500 			 * have created more to rescue through
3501 			 * pwq_activate_first_inactive() or chained
3502 			 * queueing.  Let's put @pwq back on mayday list so
3503 			 * that such back-to-back work items, which may be
3504 			 * being used to relieve memory pressure, don't
3505 			 * incur MAYDAY_INTERVAL delay inbetween.
3506 			 */
3507 			if (pwq->nr_active && need_to_create_worker(pool)) {
3508 				raw_spin_lock(&wq_mayday_lock);
3509 				/*
3510 				 * Queue iff we aren't racing destruction
3511 				 * and somebody else hasn't queued it already.
3512 				 */
3513 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3514 					get_pwq(pwq);
3515 					list_add_tail(&pwq->mayday_node, &wq->maydays);
3516 				}
3517 				raw_spin_unlock(&wq_mayday_lock);
3518 			}
3519 		}
3520 
3521 		/*
3522 		 * Leave this pool. Notify regular workers; otherwise, we end up
3523 		 * with 0 concurrency and stalling the execution.
3524 		 */
3525 		kick_pool(pool);
3526 
3527 		raw_spin_unlock_irq(&pool->lock);
3528 
3529 		worker_detach_from_pool(rescuer);
3530 
3531 		/*
3532 		 * Put the reference grabbed by send_mayday().  @pool might
3533 		 * go away any time after it.
3534 		 */
3535 		put_pwq_unlocked(pwq);
3536 
3537 		raw_spin_lock_irq(&wq_mayday_lock);
3538 	}
3539 
3540 	raw_spin_unlock_irq(&wq_mayday_lock);
3541 
3542 	if (should_stop) {
3543 		__set_current_state(TASK_RUNNING);
3544 		set_pf_worker(false);
3545 		return 0;
3546 	}
3547 
3548 	/* rescuers should never participate in concurrency management */
3549 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3550 	schedule();
3551 	goto repeat;
3552 }
3553 
bh_worker(struct worker * worker)3554 static void bh_worker(struct worker *worker)
3555 {
3556 	struct worker_pool *pool = worker->pool;
3557 	int nr_restarts = BH_WORKER_RESTARTS;
3558 	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3559 
3560 	raw_spin_lock_irq(&pool->lock);
3561 	worker_leave_idle(worker);
3562 
3563 	/*
3564 	 * This function follows the structure of worker_thread(). See there for
3565 	 * explanations on each step.
3566 	 */
3567 	if (!need_more_worker(pool))
3568 		goto done;
3569 
3570 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3571 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3572 
3573 	do {
3574 		struct work_struct *work =
3575 			list_first_entry(&pool->worklist,
3576 					 struct work_struct, entry);
3577 
3578 		if (assign_work(work, worker, NULL))
3579 			process_scheduled_works(worker);
3580 	} while (keep_working(pool) &&
3581 		 --nr_restarts && time_before(jiffies, end));
3582 
3583 	worker_set_flags(worker, WORKER_PREP);
3584 done:
3585 	worker_enter_idle(worker);
3586 	kick_pool(pool);
3587 	raw_spin_unlock_irq(&pool->lock);
3588 }
3589 
3590 /*
3591  * TODO: Convert all tasklet users to workqueue and use softirq directly.
3592  *
3593  * This is currently called from tasklet[_hi]action() and thus is also called
3594  * whenever there are tasklets to run. Let's do an early exit if there's nothing
3595  * queued. Once conversion from tasklet is complete, the need_more_worker() test
3596  * can be dropped.
3597  *
3598  * After full conversion, we'll add worker->softirq_action, directly use the
3599  * softirq action and obtain the worker pointer from the softirq_action pointer.
3600  */
workqueue_softirq_action(bool highpri)3601 void workqueue_softirq_action(bool highpri)
3602 {
3603 	struct worker_pool *pool =
3604 		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3605 	if (need_more_worker(pool))
3606 		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3607 }
3608 
3609 struct wq_drain_dead_softirq_work {
3610 	struct work_struct	work;
3611 	struct worker_pool	*pool;
3612 	struct completion	done;
3613 };
3614 
drain_dead_softirq_workfn(struct work_struct * work)3615 static void drain_dead_softirq_workfn(struct work_struct *work)
3616 {
3617 	struct wq_drain_dead_softirq_work *dead_work =
3618 		container_of(work, struct wq_drain_dead_softirq_work, work);
3619 	struct worker_pool *pool = dead_work->pool;
3620 	bool repeat;
3621 
3622 	/*
3623 	 * @pool's CPU is dead and we want to execute its still pending work
3624 	 * items from this BH work item which is running on a different CPU. As
3625 	 * its CPU is dead, @pool can't be kicked and, as work execution path
3626 	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3627 	 * @pool with %POOL_BH_DRAINING for the special treatments.
3628 	 */
3629 	raw_spin_lock_irq(&pool->lock);
3630 	pool->flags |= POOL_BH_DRAINING;
3631 	raw_spin_unlock_irq(&pool->lock);
3632 
3633 	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3634 
3635 	raw_spin_lock_irq(&pool->lock);
3636 	pool->flags &= ~POOL_BH_DRAINING;
3637 	repeat = need_more_worker(pool);
3638 	raw_spin_unlock_irq(&pool->lock);
3639 
3640 	/*
3641 	 * bh_worker() might hit consecutive execution limit and bail. If there
3642 	 * still are pending work items, reschedule self and return so that we
3643 	 * don't hog this CPU's BH.
3644 	 */
3645 	if (repeat) {
3646 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3647 			queue_work(system_bh_highpri_wq, work);
3648 		else
3649 			queue_work(system_bh_wq, work);
3650 	} else {
3651 		complete(&dead_work->done);
3652 	}
3653 }
3654 
3655 /*
3656  * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3657  * possible to allocate dead_work per CPU and avoid flushing. However, then we
3658  * have to worry about draining overlapping with CPU coming back online or
3659  * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3660  * on). Let's keep it simple and drain them synchronously. These are BH work
3661  * items which shouldn't be requeued on the same pool. Shouldn't take long.
3662  */
workqueue_softirq_dead(unsigned int cpu)3663 void workqueue_softirq_dead(unsigned int cpu)
3664 {
3665 	int i;
3666 
3667 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3668 		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3669 		struct wq_drain_dead_softirq_work dead_work;
3670 
3671 		if (!need_more_worker(pool))
3672 			continue;
3673 
3674 		INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3675 		dead_work.pool = pool;
3676 		init_completion(&dead_work.done);
3677 
3678 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3679 			queue_work(system_bh_highpri_wq, &dead_work.work);
3680 		else
3681 			queue_work(system_bh_wq, &dead_work.work);
3682 
3683 		wait_for_completion(&dead_work.done);
3684 		destroy_work_on_stack(&dead_work.work);
3685 	}
3686 }
3687 
3688 /**
3689  * check_flush_dependency - check for flush dependency sanity
3690  * @target_wq: workqueue being flushed
3691  * @target_work: work item being flushed (NULL for workqueue flushes)
3692  * @from_cancel: are we called from the work cancel path
3693  *
3694  * %current is trying to flush the whole @target_wq or @target_work on it.
3695  * If this is not the cancel path (which implies work being flushed is either
3696  * already running, or will not be at all), check if @target_wq doesn't have
3697  * %WQ_MEM_RECLAIM and verify that %current is not reclaiming memory or running
3698  * on a workqueue which doesn't have %WQ_MEM_RECLAIM as that can break forward-
3699  * progress guarantee leading to a deadlock.
3700  */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work,bool from_cancel)3701 static void check_flush_dependency(struct workqueue_struct *target_wq,
3702 				   struct work_struct *target_work,
3703 				   bool from_cancel)
3704 {
3705 	work_func_t target_func;
3706 	struct worker *worker;
3707 
3708 	if (from_cancel || target_wq->flags & WQ_MEM_RECLAIM)
3709 		return;
3710 
3711 	worker = current_wq_worker();
3712 	target_func = target_work ? target_work->func : NULL;
3713 
3714 	WARN_ONCE(current->flags & PF_MEMALLOC,
3715 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3716 		  current->pid, current->comm, target_wq->name, target_func);
3717 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3718 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3719 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3720 		  worker->current_pwq->wq->name, worker->current_func,
3721 		  target_wq->name, target_func);
3722 }
3723 
3724 struct wq_barrier {
3725 	struct work_struct	work;
3726 	struct completion	done;
3727 	struct task_struct	*task;	/* purely informational */
3728 };
3729 
wq_barrier_func(struct work_struct * work)3730 static void wq_barrier_func(struct work_struct *work)
3731 {
3732 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3733 	complete(&barr->done);
3734 }
3735 
3736 /**
3737  * insert_wq_barrier - insert a barrier work
3738  * @pwq: pwq to insert barrier into
3739  * @barr: wq_barrier to insert
3740  * @target: target work to attach @barr to
3741  * @worker: worker currently executing @target, NULL if @target is not executing
3742  *
3743  * @barr is linked to @target such that @barr is completed only after
3744  * @target finishes execution.  Please note that the ordering
3745  * guarantee is observed only with respect to @target and on the local
3746  * cpu.
3747  *
3748  * Currently, a queued barrier can't be canceled.  This is because
3749  * try_to_grab_pending() can't determine whether the work to be
3750  * grabbed is at the head of the queue and thus can't clear LINKED
3751  * flag of the previous work while there must be a valid next work
3752  * after a work with LINKED flag set.
3753  *
3754  * Note that when @worker is non-NULL, @target may be modified
3755  * underneath us, so we can't reliably determine pwq from @target.
3756  *
3757  * CONTEXT:
3758  * raw_spin_lock_irq(pool->lock).
3759  */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)3760 static void insert_wq_barrier(struct pool_workqueue *pwq,
3761 			      struct wq_barrier *barr,
3762 			      struct work_struct *target, struct worker *worker)
3763 {
3764 	static __maybe_unused struct lock_class_key bh_key, thr_key;
3765 	unsigned int work_flags = 0;
3766 	unsigned int work_color;
3767 	struct list_head *head;
3768 
3769 	/*
3770 	 * debugobject calls are safe here even with pool->lock locked
3771 	 * as we know for sure that this will not trigger any of the
3772 	 * checks and call back into the fixup functions where we
3773 	 * might deadlock.
3774 	 *
3775 	 * BH and threaded workqueues need separate lockdep keys to avoid
3776 	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3777 	 * usage".
3778 	 */
3779 	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3780 			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3781 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3782 
3783 	init_completion_map(&barr->done, &target->lockdep_map);
3784 
3785 	barr->task = current;
3786 
3787 	/* The barrier work item does not participate in nr_active. */
3788 	work_flags |= WORK_STRUCT_INACTIVE;
3789 
3790 	/*
3791 	 * If @target is currently being executed, schedule the
3792 	 * barrier to the worker; otherwise, put it after @target.
3793 	 */
3794 	if (worker) {
3795 		head = worker->scheduled.next;
3796 		work_color = worker->current_color;
3797 	} else {
3798 		unsigned long *bits = work_data_bits(target);
3799 
3800 		head = target->entry.next;
3801 		/* there can already be other linked works, inherit and set */
3802 		work_flags |= *bits & WORK_STRUCT_LINKED;
3803 		work_color = get_work_color(*bits);
3804 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3805 	}
3806 
3807 	pwq->nr_in_flight[work_color]++;
3808 	work_flags |= work_color_to_flags(work_color);
3809 
3810 	insert_work(pwq, &barr->work, head, work_flags);
3811 }
3812 
3813 /**
3814  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3815  * @wq: workqueue being flushed
3816  * @flush_color: new flush color, < 0 for no-op
3817  * @work_color: new work color, < 0 for no-op
3818  *
3819  * Prepare pwqs for workqueue flushing.
3820  *
3821  * If @flush_color is non-negative, flush_color on all pwqs should be
3822  * -1.  If no pwq has in-flight commands at the specified color, all
3823  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3824  * has in flight commands, its pwq->flush_color is set to
3825  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3826  * wakeup logic is armed and %true is returned.
3827  *
3828  * The caller should have initialized @wq->first_flusher prior to
3829  * calling this function with non-negative @flush_color.  If
3830  * @flush_color is negative, no flush color update is done and %false
3831  * is returned.
3832  *
3833  * If @work_color is non-negative, all pwqs should have the same
3834  * work_color which is previous to @work_color and all will be
3835  * advanced to @work_color.
3836  *
3837  * CONTEXT:
3838  * mutex_lock(wq->mutex).
3839  *
3840  * Return:
3841  * %true if @flush_color >= 0 and there's something to flush.  %false
3842  * otherwise.
3843  */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)3844 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3845 				      int flush_color, int work_color)
3846 {
3847 	bool wait = false;
3848 	struct pool_workqueue *pwq;
3849 
3850 	if (flush_color >= 0) {
3851 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3852 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3853 	}
3854 
3855 	for_each_pwq(pwq, wq) {
3856 		struct worker_pool *pool = pwq->pool;
3857 
3858 		raw_spin_lock_irq(&pool->lock);
3859 
3860 		if (flush_color >= 0) {
3861 			WARN_ON_ONCE(pwq->flush_color != -1);
3862 
3863 			if (pwq->nr_in_flight[flush_color]) {
3864 				pwq->flush_color = flush_color;
3865 				atomic_inc(&wq->nr_pwqs_to_flush);
3866 				wait = true;
3867 			}
3868 		}
3869 
3870 		if (work_color >= 0) {
3871 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3872 			pwq->work_color = work_color;
3873 		}
3874 
3875 		raw_spin_unlock_irq(&pool->lock);
3876 	}
3877 
3878 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3879 		complete(&wq->first_flusher->done);
3880 
3881 	return wait;
3882 }
3883 
touch_wq_lockdep_map(struct workqueue_struct * wq)3884 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3885 {
3886 #ifdef CONFIG_LOCKDEP
3887 	if (unlikely(!wq->lockdep_map))
3888 		return;
3889 
3890 	if (wq->flags & WQ_BH)
3891 		local_bh_disable();
3892 
3893 	lock_map_acquire(wq->lockdep_map);
3894 	lock_map_release(wq->lockdep_map);
3895 
3896 	if (wq->flags & WQ_BH)
3897 		local_bh_enable();
3898 #endif
3899 }
3900 
touch_work_lockdep_map(struct work_struct * work,struct workqueue_struct * wq)3901 static void touch_work_lockdep_map(struct work_struct *work,
3902 				   struct workqueue_struct *wq)
3903 {
3904 #ifdef CONFIG_LOCKDEP
3905 	if (wq->flags & WQ_BH)
3906 		local_bh_disable();
3907 
3908 	lock_map_acquire(&work->lockdep_map);
3909 	lock_map_release(&work->lockdep_map);
3910 
3911 	if (wq->flags & WQ_BH)
3912 		local_bh_enable();
3913 #endif
3914 }
3915 
3916 /**
3917  * __flush_workqueue - ensure that any scheduled work has run to completion.
3918  * @wq: workqueue to flush
3919  *
3920  * This function sleeps until all work items which were queued on entry
3921  * have finished execution, but it is not livelocked by new incoming ones.
3922  */
__flush_workqueue(struct workqueue_struct * wq)3923 void __flush_workqueue(struct workqueue_struct *wq)
3924 {
3925 	struct wq_flusher this_flusher = {
3926 		.list = LIST_HEAD_INIT(this_flusher.list),
3927 		.flush_color = -1,
3928 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)),
3929 	};
3930 	int next_color;
3931 
3932 	if (WARN_ON(!wq_online))
3933 		return;
3934 
3935 	touch_wq_lockdep_map(wq);
3936 
3937 	mutex_lock(&wq->mutex);
3938 
3939 	/*
3940 	 * Start-to-wait phase
3941 	 */
3942 	next_color = work_next_color(wq->work_color);
3943 
3944 	if (next_color != wq->flush_color) {
3945 		/*
3946 		 * Color space is not full.  The current work_color
3947 		 * becomes our flush_color and work_color is advanced
3948 		 * by one.
3949 		 */
3950 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3951 		this_flusher.flush_color = wq->work_color;
3952 		wq->work_color = next_color;
3953 
3954 		if (!wq->first_flusher) {
3955 			/* no flush in progress, become the first flusher */
3956 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3957 
3958 			wq->first_flusher = &this_flusher;
3959 
3960 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3961 						       wq->work_color)) {
3962 				/* nothing to flush, done */
3963 				wq->flush_color = next_color;
3964 				wq->first_flusher = NULL;
3965 				goto out_unlock;
3966 			}
3967 		} else {
3968 			/* wait in queue */
3969 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3970 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3971 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3972 		}
3973 	} else {
3974 		/*
3975 		 * Oops, color space is full, wait on overflow queue.
3976 		 * The next flush completion will assign us
3977 		 * flush_color and transfer to flusher_queue.
3978 		 */
3979 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3980 	}
3981 
3982 	check_flush_dependency(wq, NULL, false);
3983 
3984 	mutex_unlock(&wq->mutex);
3985 
3986 	trace_android_vh_flush_wq_wait_start(wq);
3987 	wait_for_completion(&this_flusher.done);
3988 	trace_android_vh_flush_wq_wait_finish(wq);
3989 
3990 	/*
3991 	 * Wake-up-and-cascade phase
3992 	 *
3993 	 * First flushers are responsible for cascading flushes and
3994 	 * handling overflow.  Non-first flushers can simply return.
3995 	 */
3996 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
3997 		return;
3998 
3999 	mutex_lock(&wq->mutex);
4000 
4001 	/* we might have raced, check again with mutex held */
4002 	if (wq->first_flusher != &this_flusher)
4003 		goto out_unlock;
4004 
4005 	WRITE_ONCE(wq->first_flusher, NULL);
4006 
4007 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
4008 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4009 
4010 	while (true) {
4011 		struct wq_flusher *next, *tmp;
4012 
4013 		/* complete all the flushers sharing the current flush color */
4014 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4015 			if (next->flush_color != wq->flush_color)
4016 				break;
4017 			list_del_init(&next->list);
4018 			complete(&next->done);
4019 		}
4020 
4021 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4022 			     wq->flush_color != work_next_color(wq->work_color));
4023 
4024 		/* this flush_color is finished, advance by one */
4025 		wq->flush_color = work_next_color(wq->flush_color);
4026 
4027 		/* one color has been freed, handle overflow queue */
4028 		if (!list_empty(&wq->flusher_overflow)) {
4029 			/*
4030 			 * Assign the same color to all overflowed
4031 			 * flushers, advance work_color and append to
4032 			 * flusher_queue.  This is the start-to-wait
4033 			 * phase for these overflowed flushers.
4034 			 */
4035 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
4036 				tmp->flush_color = wq->work_color;
4037 
4038 			wq->work_color = work_next_color(wq->work_color);
4039 
4040 			list_splice_tail_init(&wq->flusher_overflow,
4041 					      &wq->flusher_queue);
4042 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4043 		}
4044 
4045 		if (list_empty(&wq->flusher_queue)) {
4046 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4047 			break;
4048 		}
4049 
4050 		/*
4051 		 * Need to flush more colors.  Make the next flusher
4052 		 * the new first flusher and arm pwqs.
4053 		 */
4054 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4055 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4056 
4057 		list_del_init(&next->list);
4058 		wq->first_flusher = next;
4059 
4060 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4061 			break;
4062 
4063 		/*
4064 		 * Meh... this color is already done, clear first
4065 		 * flusher and repeat cascading.
4066 		 */
4067 		wq->first_flusher = NULL;
4068 	}
4069 
4070 out_unlock:
4071 	mutex_unlock(&wq->mutex);
4072 }
4073 EXPORT_SYMBOL(__flush_workqueue);
4074 
4075 /**
4076  * drain_workqueue - drain a workqueue
4077  * @wq: workqueue to drain
4078  *
4079  * Wait until the workqueue becomes empty.  While draining is in progress,
4080  * only chain queueing is allowed.  IOW, only currently pending or running
4081  * work items on @wq can queue further work items on it.  @wq is flushed
4082  * repeatedly until it becomes empty.  The number of flushing is determined
4083  * by the depth of chaining and should be relatively short.  Whine if it
4084  * takes too long.
4085  */
drain_workqueue(struct workqueue_struct * wq)4086 void drain_workqueue(struct workqueue_struct *wq)
4087 {
4088 	unsigned int flush_cnt = 0;
4089 	struct pool_workqueue *pwq;
4090 
4091 	/*
4092 	 * __queue_work() needs to test whether there are drainers, is much
4093 	 * hotter than drain_workqueue() and already looks at @wq->flags.
4094 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4095 	 */
4096 	mutex_lock(&wq->mutex);
4097 	if (!wq->nr_drainers++)
4098 		wq->flags |= __WQ_DRAINING;
4099 	mutex_unlock(&wq->mutex);
4100 reflush:
4101 	__flush_workqueue(wq);
4102 
4103 	mutex_lock(&wq->mutex);
4104 
4105 	for_each_pwq(pwq, wq) {
4106 		bool drained;
4107 
4108 		raw_spin_lock_irq(&pwq->pool->lock);
4109 		drained = pwq_is_empty(pwq);
4110 		raw_spin_unlock_irq(&pwq->pool->lock);
4111 
4112 		if (drained)
4113 			continue;
4114 
4115 		if (++flush_cnt == 10 ||
4116 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4117 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4118 				wq->name, __func__, flush_cnt);
4119 
4120 		mutex_unlock(&wq->mutex);
4121 		goto reflush;
4122 	}
4123 
4124 	if (!--wq->nr_drainers)
4125 		wq->flags &= ~__WQ_DRAINING;
4126 	mutex_unlock(&wq->mutex);
4127 }
4128 EXPORT_SYMBOL_GPL(drain_workqueue);
4129 
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)4130 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4131 			     bool from_cancel)
4132 {
4133 	struct worker *worker = NULL;
4134 	struct worker_pool *pool;
4135 	struct pool_workqueue *pwq;
4136 	struct workqueue_struct *wq;
4137 
4138 	rcu_read_lock();
4139 	pool = get_work_pool(work);
4140 	if (!pool) {
4141 		rcu_read_unlock();
4142 		return false;
4143 	}
4144 
4145 	raw_spin_lock_irq(&pool->lock);
4146 	/* see the comment in try_to_grab_pending() with the same code */
4147 	pwq = get_work_pwq(work);
4148 	if (pwq) {
4149 		if (unlikely(pwq->pool != pool))
4150 			goto already_gone;
4151 	} else {
4152 		worker = find_worker_executing_work(pool, work);
4153 		if (!worker)
4154 			goto already_gone;
4155 		pwq = worker->current_pwq;
4156 	}
4157 
4158 	wq = pwq->wq;
4159 	check_flush_dependency(wq, work, from_cancel);
4160 
4161 	insert_wq_barrier(pwq, barr, work, worker);
4162 	raw_spin_unlock_irq(&pool->lock);
4163 
4164 	touch_work_lockdep_map(work, wq);
4165 
4166 	/*
4167 	 * Force a lock recursion deadlock when using flush_work() inside a
4168 	 * single-threaded or rescuer equipped workqueue.
4169 	 *
4170 	 * For single threaded workqueues the deadlock happens when the work
4171 	 * is after the work issuing the flush_work(). For rescuer equipped
4172 	 * workqueues the deadlock happens when the rescuer stalls, blocking
4173 	 * forward progress.
4174 	 */
4175 	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4176 		touch_wq_lockdep_map(wq);
4177 
4178 	rcu_read_unlock();
4179 	return true;
4180 already_gone:
4181 	raw_spin_unlock_irq(&pool->lock);
4182 	rcu_read_unlock();
4183 	return false;
4184 }
4185 
__flush_work(struct work_struct * work,bool from_cancel)4186 static bool __flush_work(struct work_struct *work, bool from_cancel)
4187 {
4188 	struct wq_barrier barr;
4189 
4190 	if (WARN_ON(!wq_online))
4191 		return false;
4192 
4193 	if (WARN_ON(!work->func))
4194 		return false;
4195 
4196 	if (!start_flush_work(work, &barr, from_cancel))
4197 		return false;
4198 
4199 	/*
4200 	 * start_flush_work() returned %true. If @from_cancel is set, we know
4201 	 * that @work must have been executing during start_flush_work() and
4202 	 * can't currently be queued. Its data must contain OFFQ bits. If @work
4203 	 * was queued on a BH workqueue, we also know that it was running in the
4204 	 * BH context and thus can be busy-waited.
4205 	 */
4206 	if (from_cancel) {
4207 		unsigned long data = *work_data_bits(work);
4208 
4209 		if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) &&
4210 		    (data & WORK_OFFQ_BH)) {
4211 			/*
4212 			 * On RT, prevent a live lock when %current preempted
4213 			 * soft interrupt processing or prevents ksoftirqd from
4214 			 * running by keeping flipping BH. If the BH work item
4215 			 * runs on a different CPU then this has no effect other
4216 			 * than doing the BH disable/enable dance for nothing.
4217 			 * This is copied from
4218 			 * kernel/softirq.c::tasklet_unlock_spin_wait().
4219 			 */
4220 			while (!try_wait_for_completion(&barr.done)) {
4221 				if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4222 					local_bh_disable();
4223 					local_bh_enable();
4224 				} else {
4225 					cpu_relax();
4226 				}
4227 			}
4228 			goto out_destroy;
4229 		}
4230 	}
4231 
4232 	trace_android_vh_flush_work_wait_start(work);
4233 	wait_for_completion(&barr.done);
4234 	trace_android_vh_flush_work_wait_finish(work);
4235 
4236 out_destroy:
4237 	destroy_work_on_stack(&barr.work);
4238 	return true;
4239 }
4240 
4241 /**
4242  * flush_work - wait for a work to finish executing the last queueing instance
4243  * @work: the work to flush
4244  *
4245  * Wait until @work has finished execution.  @work is guaranteed to be idle
4246  * on return if it hasn't been requeued since flush started.
4247  *
4248  * Return:
4249  * %true if flush_work() waited for the work to finish execution,
4250  * %false if it was already idle.
4251  */
flush_work(struct work_struct * work)4252 bool flush_work(struct work_struct *work)
4253 {
4254 	might_sleep();
4255 	return __flush_work(work, false);
4256 }
4257 EXPORT_SYMBOL_GPL(flush_work);
4258 
4259 /**
4260  * flush_delayed_work - wait for a dwork to finish executing the last queueing
4261  * @dwork: the delayed work to flush
4262  *
4263  * Delayed timer is cancelled and the pending work is queued for
4264  * immediate execution.  Like flush_work(), this function only
4265  * considers the last queueing instance of @dwork.
4266  *
4267  * Return:
4268  * %true if flush_work() waited for the work to finish execution,
4269  * %false if it was already idle.
4270  */
flush_delayed_work(struct delayed_work * dwork)4271 bool flush_delayed_work(struct delayed_work *dwork)
4272 {
4273 	local_irq_disable();
4274 	if (del_timer_sync(&dwork->timer))
4275 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4276 	local_irq_enable();
4277 	return flush_work(&dwork->work);
4278 }
4279 EXPORT_SYMBOL(flush_delayed_work);
4280 
4281 /**
4282  * flush_rcu_work - wait for a rwork to finish executing the last queueing
4283  * @rwork: the rcu work to flush
4284  *
4285  * Return:
4286  * %true if flush_rcu_work() waited for the work to finish execution,
4287  * %false if it was already idle.
4288  */
flush_rcu_work(struct rcu_work * rwork)4289 bool flush_rcu_work(struct rcu_work *rwork)
4290 {
4291 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4292 		rcu_barrier();
4293 		flush_work(&rwork->work);
4294 		return true;
4295 	} else {
4296 		return flush_work(&rwork->work);
4297 	}
4298 }
4299 EXPORT_SYMBOL(flush_rcu_work);
4300 
work_offqd_disable(struct work_offq_data * offqd)4301 static void work_offqd_disable(struct work_offq_data *offqd)
4302 {
4303 	const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4304 
4305 	if (likely(offqd->disable < max))
4306 		offqd->disable++;
4307 	else
4308 		WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4309 }
4310 
work_offqd_enable(struct work_offq_data * offqd)4311 static void work_offqd_enable(struct work_offq_data *offqd)
4312 {
4313 	if (likely(offqd->disable > 0))
4314 		offqd->disable--;
4315 	else
4316 		WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4317 }
4318 
__cancel_work(struct work_struct * work,u32 cflags)4319 static bool __cancel_work(struct work_struct *work, u32 cflags)
4320 {
4321 	struct work_offq_data offqd;
4322 	unsigned long irq_flags;
4323 	int ret;
4324 
4325 	ret = work_grab_pending(work, cflags, &irq_flags);
4326 
4327 	work_offqd_unpack(&offqd, *work_data_bits(work));
4328 
4329 	if (cflags & WORK_CANCEL_DISABLE)
4330 		work_offqd_disable(&offqd);
4331 
4332 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4333 					work_offqd_pack_flags(&offqd));
4334 	local_irq_restore(irq_flags);
4335 	return ret;
4336 }
4337 
__cancel_work_sync(struct work_struct * work,u32 cflags)4338 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4339 {
4340 	bool ret;
4341 
4342 	ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4343 
4344 	if (*work_data_bits(work) & WORK_OFFQ_BH)
4345 		WARN_ON_ONCE(in_hardirq());
4346 	else
4347 		might_sleep();
4348 
4349 	/*
4350 	 * Skip __flush_work() during early boot when we know that @work isn't
4351 	 * executing. This allows canceling during early boot.
4352 	 */
4353 	if (wq_online)
4354 		__flush_work(work, true);
4355 
4356 	if (!(cflags & WORK_CANCEL_DISABLE))
4357 		enable_work(work);
4358 
4359 	return ret;
4360 }
4361 
4362 /*
4363  * See cancel_delayed_work()
4364  */
cancel_work(struct work_struct * work)4365 bool cancel_work(struct work_struct *work)
4366 {
4367 	return __cancel_work(work, 0);
4368 }
4369 EXPORT_SYMBOL(cancel_work);
4370 
4371 /**
4372  * cancel_work_sync - cancel a work and wait for it to finish
4373  * @work: the work to cancel
4374  *
4375  * Cancel @work and wait for its execution to finish. This function can be used
4376  * even if the work re-queues itself or migrates to another workqueue. On return
4377  * from this function, @work is guaranteed to be not pending or executing on any
4378  * CPU as long as there aren't racing enqueues.
4379  *
4380  * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4381  * Use cancel_delayed_work_sync() instead.
4382  *
4383  * Must be called from a sleepable context if @work was last queued on a non-BH
4384  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4385  * if @work was last queued on a BH workqueue.
4386  *
4387  * Returns %true if @work was pending, %false otherwise.
4388  */
cancel_work_sync(struct work_struct * work)4389 bool cancel_work_sync(struct work_struct *work)
4390 {
4391 	return __cancel_work_sync(work, 0);
4392 }
4393 EXPORT_SYMBOL_GPL(cancel_work_sync);
4394 
4395 /**
4396  * cancel_delayed_work - cancel a delayed work
4397  * @dwork: delayed_work to cancel
4398  *
4399  * Kill off a pending delayed_work.
4400  *
4401  * Return: %true if @dwork was pending and canceled; %false if it wasn't
4402  * pending.
4403  *
4404  * Note:
4405  * The work callback function may still be running on return, unless
4406  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4407  * use cancel_delayed_work_sync() to wait on it.
4408  *
4409  * This function is safe to call from any context including IRQ handler.
4410  */
cancel_delayed_work(struct delayed_work * dwork)4411 bool cancel_delayed_work(struct delayed_work *dwork)
4412 {
4413 	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4414 }
4415 EXPORT_SYMBOL(cancel_delayed_work);
4416 
4417 /**
4418  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4419  * @dwork: the delayed work cancel
4420  *
4421  * This is cancel_work_sync() for delayed works.
4422  *
4423  * Return:
4424  * %true if @dwork was pending, %false otherwise.
4425  */
cancel_delayed_work_sync(struct delayed_work * dwork)4426 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4427 {
4428 	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4429 }
4430 EXPORT_SYMBOL(cancel_delayed_work_sync);
4431 
4432 /**
4433  * disable_work - Disable and cancel a work item
4434  * @work: work item to disable
4435  *
4436  * Disable @work by incrementing its disable count and cancel it if currently
4437  * pending. As long as the disable count is non-zero, any attempt to queue @work
4438  * will fail and return %false. The maximum supported disable depth is 2 to the
4439  * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4440  *
4441  * Can be called from any context. Returns %true if @work was pending, %false
4442  * otherwise.
4443  */
disable_work(struct work_struct * work)4444 bool disable_work(struct work_struct *work)
4445 {
4446 	return __cancel_work(work, WORK_CANCEL_DISABLE);
4447 }
4448 EXPORT_SYMBOL_GPL(disable_work);
4449 
4450 /**
4451  * disable_work_sync - Disable, cancel and drain a work item
4452  * @work: work item to disable
4453  *
4454  * Similar to disable_work() but also wait for @work to finish if currently
4455  * executing.
4456  *
4457  * Must be called from a sleepable context if @work was last queued on a non-BH
4458  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4459  * if @work was last queued on a BH workqueue.
4460  *
4461  * Returns %true if @work was pending, %false otherwise.
4462  */
disable_work_sync(struct work_struct * work)4463 bool disable_work_sync(struct work_struct *work)
4464 {
4465 	return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4466 }
4467 EXPORT_SYMBOL_GPL(disable_work_sync);
4468 
4469 /**
4470  * enable_work - Enable a work item
4471  * @work: work item to enable
4472  *
4473  * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4474  * only be queued if its disable count is 0.
4475  *
4476  * Can be called from any context. Returns %true if the disable count reached 0.
4477  * Otherwise, %false.
4478  */
enable_work(struct work_struct * work)4479 bool enable_work(struct work_struct *work)
4480 {
4481 	struct work_offq_data offqd;
4482 	unsigned long irq_flags;
4483 
4484 	work_grab_pending(work, 0, &irq_flags);
4485 
4486 	work_offqd_unpack(&offqd, *work_data_bits(work));
4487 	work_offqd_enable(&offqd);
4488 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4489 					work_offqd_pack_flags(&offqd));
4490 	local_irq_restore(irq_flags);
4491 
4492 	return !offqd.disable;
4493 }
4494 EXPORT_SYMBOL_GPL(enable_work);
4495 
4496 /**
4497  * disable_delayed_work - Disable and cancel a delayed work item
4498  * @dwork: delayed work item to disable
4499  *
4500  * disable_work() for delayed work items.
4501  */
disable_delayed_work(struct delayed_work * dwork)4502 bool disable_delayed_work(struct delayed_work *dwork)
4503 {
4504 	return __cancel_work(&dwork->work,
4505 			     WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4506 }
4507 EXPORT_SYMBOL_GPL(disable_delayed_work);
4508 
4509 /**
4510  * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4511  * @dwork: delayed work item to disable
4512  *
4513  * disable_work_sync() for delayed work items.
4514  */
disable_delayed_work_sync(struct delayed_work * dwork)4515 bool disable_delayed_work_sync(struct delayed_work *dwork)
4516 {
4517 	return __cancel_work_sync(&dwork->work,
4518 				  WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4519 }
4520 EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4521 
4522 /**
4523  * enable_delayed_work - Enable a delayed work item
4524  * @dwork: delayed work item to enable
4525  *
4526  * enable_work() for delayed work items.
4527  */
enable_delayed_work(struct delayed_work * dwork)4528 bool enable_delayed_work(struct delayed_work *dwork)
4529 {
4530 	return enable_work(&dwork->work);
4531 }
4532 EXPORT_SYMBOL_GPL(enable_delayed_work);
4533 
4534 /**
4535  * schedule_on_each_cpu - execute a function synchronously on each online CPU
4536  * @func: the function to call
4537  *
4538  * schedule_on_each_cpu() executes @func on each online CPU using the
4539  * system workqueue and blocks until all CPUs have completed.
4540  * schedule_on_each_cpu() is very slow.
4541  *
4542  * Return:
4543  * 0 on success, -errno on failure.
4544  */
schedule_on_each_cpu(work_func_t func)4545 int schedule_on_each_cpu(work_func_t func)
4546 {
4547 	int cpu;
4548 	struct work_struct __percpu *works;
4549 
4550 	works = alloc_percpu(struct work_struct);
4551 	if (!works)
4552 		return -ENOMEM;
4553 
4554 	cpus_read_lock();
4555 
4556 	for_each_online_cpu(cpu) {
4557 		struct work_struct *work = per_cpu_ptr(works, cpu);
4558 
4559 		INIT_WORK(work, func);
4560 		schedule_work_on(cpu, work);
4561 	}
4562 
4563 	for_each_online_cpu(cpu)
4564 		flush_work(per_cpu_ptr(works, cpu));
4565 
4566 	cpus_read_unlock();
4567 	free_percpu(works);
4568 	return 0;
4569 }
4570 
4571 /**
4572  * execute_in_process_context - reliably execute the routine with user context
4573  * @fn:		the function to execute
4574  * @ew:		guaranteed storage for the execute work structure (must
4575  *		be available when the work executes)
4576  *
4577  * Executes the function immediately if process context is available,
4578  * otherwise schedules the function for delayed execution.
4579  *
4580  * Return:	0 - function was executed
4581  *		1 - function was scheduled for execution
4582  */
execute_in_process_context(work_func_t fn,struct execute_work * ew)4583 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4584 {
4585 	if (!in_interrupt()) {
4586 		fn(&ew->work);
4587 		return 0;
4588 	}
4589 
4590 	INIT_WORK(&ew->work, fn);
4591 	schedule_work(&ew->work);
4592 
4593 	return 1;
4594 }
4595 EXPORT_SYMBOL_GPL(execute_in_process_context);
4596 
4597 /**
4598  * free_workqueue_attrs - free a workqueue_attrs
4599  * @attrs: workqueue_attrs to free
4600  *
4601  * Undo alloc_workqueue_attrs().
4602  */
free_workqueue_attrs(struct workqueue_attrs * attrs)4603 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4604 {
4605 	if (attrs) {
4606 		free_cpumask_var(attrs->cpumask);
4607 		free_cpumask_var(attrs->__pod_cpumask);
4608 		kfree(attrs);
4609 	}
4610 }
4611 EXPORT_SYMBOL_GPL(free_workqueue_attrs);
4612 
4613 /**
4614  * alloc_workqueue_attrs - allocate a workqueue_attrs
4615  *
4616  * Allocate a new workqueue_attrs, initialize with default settings and
4617  * return it.
4618  *
4619  * Return: The allocated new workqueue_attr on success. %NULL on failure.
4620  */
alloc_workqueue_attrs(void)4621 struct workqueue_attrs *alloc_workqueue_attrs(void)
4622 {
4623 	struct workqueue_attrs *attrs;
4624 
4625 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4626 	if (!attrs)
4627 		goto fail;
4628 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4629 		goto fail;
4630 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4631 		goto fail;
4632 
4633 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4634 	attrs->affn_scope = WQ_AFFN_DFL;
4635 	return attrs;
4636 fail:
4637 	free_workqueue_attrs(attrs);
4638 	return NULL;
4639 }
4640 EXPORT_SYMBOL_GPL(alloc_workqueue_attrs);
4641 
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)4642 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4643 				 const struct workqueue_attrs *from)
4644 {
4645 	to->nice = from->nice;
4646 	cpumask_copy(to->cpumask, from->cpumask);
4647 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4648 	to->affn_strict = from->affn_strict;
4649 
4650 	/*
4651 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4652 	 * fields as copying is used for both pool and wq attrs. Instead,
4653 	 * get_unbound_pool() explicitly clears the fields.
4654 	 */
4655 	to->affn_scope = from->affn_scope;
4656 	to->ordered = from->ordered;
4657 }
4658 
4659 /*
4660  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4661  * comments in 'struct workqueue_attrs' definition.
4662  */
wqattrs_clear_for_pool(struct workqueue_attrs * attrs)4663 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4664 {
4665 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4666 	attrs->ordered = false;
4667 	if (attrs->affn_strict)
4668 		cpumask_copy(attrs->cpumask, cpu_possible_mask);
4669 }
4670 
4671 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)4672 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4673 {
4674 	u32 hash = 0;
4675 
4676 	hash = jhash_1word(attrs->nice, hash);
4677 	hash = jhash_1word(attrs->affn_strict, hash);
4678 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4679 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4680 	if (!attrs->affn_strict)
4681 		hash = jhash(cpumask_bits(attrs->cpumask),
4682 			     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4683 	return hash;
4684 }
4685 
4686 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)4687 static bool wqattrs_equal(const struct workqueue_attrs *a,
4688 			  const struct workqueue_attrs *b)
4689 {
4690 	if (a->nice != b->nice)
4691 		return false;
4692 	if (a->affn_strict != b->affn_strict)
4693 		return false;
4694 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4695 		return false;
4696 	if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4697 		return false;
4698 	return true;
4699 }
4700 
4701 /* Update @attrs with actually available CPUs */
wqattrs_actualize_cpumask(struct workqueue_attrs * attrs,const cpumask_t * unbound_cpumask)4702 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4703 				      const cpumask_t *unbound_cpumask)
4704 {
4705 	/*
4706 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4707 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4708 	 * @unbound_cpumask.
4709 	 */
4710 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4711 	if (unlikely(cpumask_empty(attrs->cpumask)))
4712 		cpumask_copy(attrs->cpumask, unbound_cpumask);
4713 }
4714 
4715 /* find wq_pod_type to use for @attrs */
4716 static const struct wq_pod_type *
wqattrs_pod_type(const struct workqueue_attrs * attrs)4717 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4718 {
4719 	enum wq_affn_scope scope;
4720 	struct wq_pod_type *pt;
4721 
4722 	/* to synchronize access to wq_affn_dfl */
4723 	lockdep_assert_held(&wq_pool_mutex);
4724 
4725 	if (attrs->affn_scope == WQ_AFFN_DFL)
4726 		scope = wq_affn_dfl;
4727 	else
4728 		scope = attrs->affn_scope;
4729 
4730 	pt = &wq_pod_types[scope];
4731 
4732 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4733 	    likely(pt->nr_pods))
4734 		return pt;
4735 
4736 	/*
4737 	 * Before workqueue_init_topology(), only SYSTEM is available which is
4738 	 * initialized in workqueue_init_early().
4739 	 */
4740 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4741 	BUG_ON(!pt->nr_pods);
4742 	return pt;
4743 }
4744 
4745 /**
4746  * init_worker_pool - initialize a newly zalloc'd worker_pool
4747  * @pool: worker_pool to initialize
4748  *
4749  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4750  *
4751  * Return: 0 on success, -errno on failure.  Even on failure, all fields
4752  * inside @pool proper are initialized and put_unbound_pool() can be called
4753  * on @pool safely to release it.
4754  */
init_worker_pool(struct worker_pool * pool)4755 static int init_worker_pool(struct worker_pool *pool)
4756 {
4757 	raw_spin_lock_init(&pool->lock);
4758 	pool->id = -1;
4759 	pool->cpu = -1;
4760 	pool->node = NUMA_NO_NODE;
4761 	pool->flags |= POOL_DISASSOCIATED;
4762 	pool->watchdog_ts = jiffies;
4763 	INIT_LIST_HEAD(&pool->worklist);
4764 	INIT_LIST_HEAD(&pool->idle_list);
4765 	hash_init(pool->busy_hash);
4766 
4767 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4768 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4769 
4770 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4771 
4772 	INIT_LIST_HEAD(&pool->workers);
4773 
4774 	ida_init(&pool->worker_ida);
4775 	INIT_HLIST_NODE(&pool->hash_node);
4776 	pool->refcnt = 1;
4777 
4778 	/* shouldn't fail above this point */
4779 	pool->attrs = alloc_workqueue_attrs();
4780 	if (!pool->attrs)
4781 		return -ENOMEM;
4782 
4783 	wqattrs_clear_for_pool(pool->attrs);
4784 
4785 	return 0;
4786 }
4787 
4788 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)4789 static void wq_init_lockdep(struct workqueue_struct *wq)
4790 {
4791 	char *lock_name;
4792 
4793 	lockdep_register_key(&wq->key);
4794 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4795 	if (!lock_name)
4796 		lock_name = wq->name;
4797 
4798 	wq->lock_name = lock_name;
4799 	wq->lockdep_map = &wq->__lockdep_map;
4800 	lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0);
4801 }
4802 
wq_unregister_lockdep(struct workqueue_struct * wq)4803 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4804 {
4805 	if (wq->lockdep_map != &wq->__lockdep_map)
4806 		return;
4807 
4808 	lockdep_unregister_key(&wq->key);
4809 }
4810 
wq_free_lockdep(struct workqueue_struct * wq)4811 static void wq_free_lockdep(struct workqueue_struct *wq)
4812 {
4813 	if (wq->lockdep_map != &wq->__lockdep_map)
4814 		return;
4815 
4816 	if (wq->lock_name != wq->name)
4817 		kfree(wq->lock_name);
4818 }
4819 #else
wq_init_lockdep(struct workqueue_struct * wq)4820 static void wq_init_lockdep(struct workqueue_struct *wq)
4821 {
4822 }
4823 
wq_unregister_lockdep(struct workqueue_struct * wq)4824 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4825 {
4826 }
4827 
wq_free_lockdep(struct workqueue_struct * wq)4828 static void wq_free_lockdep(struct workqueue_struct *wq)
4829 {
4830 }
4831 #endif
4832 
free_node_nr_active(struct wq_node_nr_active ** nna_ar)4833 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4834 {
4835 	int node;
4836 
4837 	for_each_node(node) {
4838 		kfree(nna_ar[node]);
4839 		nna_ar[node] = NULL;
4840 	}
4841 
4842 	kfree(nna_ar[nr_node_ids]);
4843 	nna_ar[nr_node_ids] = NULL;
4844 }
4845 
init_node_nr_active(struct wq_node_nr_active * nna)4846 static void init_node_nr_active(struct wq_node_nr_active *nna)
4847 {
4848 	nna->max = WQ_DFL_MIN_ACTIVE;
4849 	atomic_set(&nna->nr, 0);
4850 	raw_spin_lock_init(&nna->lock);
4851 	INIT_LIST_HEAD(&nna->pending_pwqs);
4852 }
4853 
4854 /*
4855  * Each node's nr_active counter will be accessed mostly from its own node and
4856  * should be allocated in the node.
4857  */
alloc_node_nr_active(struct wq_node_nr_active ** nna_ar)4858 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4859 {
4860 	struct wq_node_nr_active *nna;
4861 	int node;
4862 
4863 	for_each_node(node) {
4864 		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4865 		if (!nna)
4866 			goto err_free;
4867 		init_node_nr_active(nna);
4868 		nna_ar[node] = nna;
4869 	}
4870 
4871 	/* [nr_node_ids] is used as the fallback */
4872 	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4873 	if (!nna)
4874 		goto err_free;
4875 	init_node_nr_active(nna);
4876 	nna_ar[nr_node_ids] = nna;
4877 
4878 	return 0;
4879 
4880 err_free:
4881 	free_node_nr_active(nna_ar);
4882 	return -ENOMEM;
4883 }
4884 
rcu_free_wq(struct rcu_head * rcu)4885 static void rcu_free_wq(struct rcu_head *rcu)
4886 {
4887 	struct workqueue_struct *wq =
4888 		container_of(rcu, struct workqueue_struct, rcu);
4889 
4890 	if (wq->flags & WQ_UNBOUND)
4891 		free_node_nr_active(wq->node_nr_active);
4892 
4893 	wq_free_lockdep(wq);
4894 	free_percpu(wq->cpu_pwq);
4895 	free_workqueue_attrs(wq->unbound_attrs);
4896 	kfree(wq);
4897 }
4898 
rcu_free_pool(struct rcu_head * rcu)4899 static void rcu_free_pool(struct rcu_head *rcu)
4900 {
4901 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4902 
4903 	ida_destroy(&pool->worker_ida);
4904 	free_workqueue_attrs(pool->attrs);
4905 	kfree(pool);
4906 }
4907 
4908 /**
4909  * put_unbound_pool - put a worker_pool
4910  * @pool: worker_pool to put
4911  *
4912  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4913  * safe manner.  get_unbound_pool() calls this function on its failure path
4914  * and this function should be able to release pools which went through,
4915  * successfully or not, init_worker_pool().
4916  *
4917  * Should be called with wq_pool_mutex held.
4918  */
put_unbound_pool(struct worker_pool * pool)4919 static void put_unbound_pool(struct worker_pool *pool)
4920 {
4921 	struct worker *worker;
4922 	LIST_HEAD(cull_list);
4923 
4924 	lockdep_assert_held(&wq_pool_mutex);
4925 
4926 	if (--pool->refcnt)
4927 		return;
4928 
4929 	/* sanity checks */
4930 	if (WARN_ON(!(pool->cpu < 0)) ||
4931 	    WARN_ON(!list_empty(&pool->worklist)))
4932 		return;
4933 
4934 	/* release id and unhash */
4935 	if (pool->id >= 0)
4936 		idr_remove(&worker_pool_idr, pool->id);
4937 	hash_del(&pool->hash_node);
4938 
4939 	/*
4940 	 * Become the manager and destroy all workers.  This prevents
4941 	 * @pool's workers from blocking on attach_mutex.  We're the last
4942 	 * manager and @pool gets freed with the flag set.
4943 	 *
4944 	 * Having a concurrent manager is quite unlikely to happen as we can
4945 	 * only get here with
4946 	 *   pwq->refcnt == pool->refcnt == 0
4947 	 * which implies no work queued to the pool, which implies no worker can
4948 	 * become the manager. However a worker could have taken the role of
4949 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4950 	 * drops pool->lock
4951 	 */
4952 	while (true) {
4953 		rcuwait_wait_event(&manager_wait,
4954 				   !(pool->flags & POOL_MANAGER_ACTIVE),
4955 				   TASK_UNINTERRUPTIBLE);
4956 
4957 		mutex_lock(&wq_pool_attach_mutex);
4958 		raw_spin_lock_irq(&pool->lock);
4959 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4960 			pool->flags |= POOL_MANAGER_ACTIVE;
4961 			break;
4962 		}
4963 		raw_spin_unlock_irq(&pool->lock);
4964 		mutex_unlock(&wq_pool_attach_mutex);
4965 	}
4966 
4967 	while ((worker = first_idle_worker(pool)))
4968 		set_worker_dying(worker, &cull_list);
4969 	WARN_ON(pool->nr_workers || pool->nr_idle);
4970 	raw_spin_unlock_irq(&pool->lock);
4971 
4972 	detach_dying_workers(&cull_list);
4973 
4974 	mutex_unlock(&wq_pool_attach_mutex);
4975 
4976 	reap_dying_workers(&cull_list);
4977 
4978 	/* shut down the timers */
4979 	del_timer_sync(&pool->idle_timer);
4980 	cancel_work_sync(&pool->idle_cull_work);
4981 	del_timer_sync(&pool->mayday_timer);
4982 
4983 	/* RCU protected to allow dereferences from get_work_pool() */
4984 	call_rcu(&pool->rcu, rcu_free_pool);
4985 }
4986 
4987 /**
4988  * get_unbound_pool - get a worker_pool with the specified attributes
4989  * @attrs: the attributes of the worker_pool to get
4990  *
4991  * Obtain a worker_pool which has the same attributes as @attrs, bump the
4992  * reference count and return it.  If there already is a matching
4993  * worker_pool, it will be used; otherwise, this function attempts to
4994  * create a new one.
4995  *
4996  * Should be called with wq_pool_mutex held.
4997  *
4998  * Return: On success, a worker_pool with the same attributes as @attrs.
4999  * On failure, %NULL.
5000  */
get_unbound_pool(const struct workqueue_attrs * attrs)5001 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
5002 {
5003 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
5004 	u32 hash = wqattrs_hash(attrs);
5005 	struct worker_pool *pool;
5006 	int pod, node = NUMA_NO_NODE;
5007 
5008 	lockdep_assert_held(&wq_pool_mutex);
5009 
5010 	/* do we already have a matching pool? */
5011 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
5012 		if (wqattrs_equal(pool->attrs, attrs)) {
5013 			pool->refcnt++;
5014 			return pool;
5015 		}
5016 	}
5017 
5018 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
5019 	for (pod = 0; pod < pt->nr_pods; pod++) {
5020 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
5021 			node = pt->pod_node[pod];
5022 			break;
5023 		}
5024 	}
5025 
5026 	/* nope, create a new one */
5027 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
5028 	if (!pool || init_worker_pool(pool) < 0)
5029 		goto fail;
5030 
5031 	pool->node = node;
5032 	copy_workqueue_attrs(pool->attrs, attrs);
5033 	wqattrs_clear_for_pool(pool->attrs);
5034 
5035 	if (worker_pool_assign_id(pool) < 0)
5036 		goto fail;
5037 
5038 	/* create and start the initial worker */
5039 	if (wq_online && !create_worker(pool))
5040 		goto fail;
5041 
5042 	/* install */
5043 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
5044 
5045 	return pool;
5046 fail:
5047 	if (pool)
5048 		put_unbound_pool(pool);
5049 	return NULL;
5050 }
5051 
5052 /*
5053  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5054  * refcnt and needs to be destroyed.
5055  */
pwq_release_workfn(struct kthread_work * work)5056 static void pwq_release_workfn(struct kthread_work *work)
5057 {
5058 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5059 						  release_work);
5060 	struct workqueue_struct *wq = pwq->wq;
5061 	struct worker_pool *pool = pwq->pool;
5062 	bool is_last = false;
5063 
5064 	/*
5065 	 * When @pwq is not linked, it doesn't hold any reference to the
5066 	 * @wq, and @wq is invalid to access.
5067 	 */
5068 	if (!list_empty(&pwq->pwqs_node)) {
5069 		mutex_lock(&wq->mutex);
5070 		list_del_rcu(&pwq->pwqs_node);
5071 		is_last = list_empty(&wq->pwqs);
5072 
5073 		/*
5074 		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5075 		 */
5076 		if (!is_last && (wq->flags & __WQ_ORDERED))
5077 			unplug_oldest_pwq(wq);
5078 
5079 		mutex_unlock(&wq->mutex);
5080 	}
5081 
5082 	if (wq->flags & WQ_UNBOUND) {
5083 		mutex_lock(&wq_pool_mutex);
5084 		put_unbound_pool(pool);
5085 		mutex_unlock(&wq_pool_mutex);
5086 	}
5087 
5088 	if (!list_empty(&pwq->pending_node)) {
5089 		struct wq_node_nr_active *nna =
5090 			wq_node_nr_active(pwq->wq, pwq->pool->node);
5091 
5092 		raw_spin_lock_irq(&nna->lock);
5093 		list_del_init(&pwq->pending_node);
5094 		raw_spin_unlock_irq(&nna->lock);
5095 	}
5096 
5097 	kfree_rcu(pwq, rcu);
5098 
5099 	/*
5100 	 * If we're the last pwq going away, @wq is already dead and no one
5101 	 * is gonna access it anymore.  Schedule RCU free.
5102 	 */
5103 	if (is_last) {
5104 		wq_unregister_lockdep(wq);
5105 		call_rcu(&wq->rcu, rcu_free_wq);
5106 	}
5107 }
5108 
5109 /* initialize newly allocated @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)5110 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5111 		     struct worker_pool *pool)
5112 {
5113 	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5114 
5115 	memset(pwq, 0, sizeof(*pwq));
5116 
5117 	pwq->pool = pool;
5118 	pwq->wq = wq;
5119 	pwq->flush_color = -1;
5120 	pwq->refcnt = 1;
5121 	INIT_LIST_HEAD(&pwq->inactive_works);
5122 	INIT_LIST_HEAD(&pwq->pending_node);
5123 	INIT_LIST_HEAD(&pwq->pwqs_node);
5124 	INIT_LIST_HEAD(&pwq->mayday_node);
5125 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
5126 }
5127 
5128 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)5129 static void link_pwq(struct pool_workqueue *pwq)
5130 {
5131 	struct workqueue_struct *wq = pwq->wq;
5132 
5133 	lockdep_assert_held(&wq->mutex);
5134 
5135 	/* may be called multiple times, ignore if already linked */
5136 	if (!list_empty(&pwq->pwqs_node))
5137 		return;
5138 
5139 	/* set the matching work_color */
5140 	pwq->work_color = wq->work_color;
5141 
5142 	/* link in @pwq */
5143 	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5144 }
5145 
5146 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5147 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5148 					const struct workqueue_attrs *attrs)
5149 {
5150 	struct worker_pool *pool;
5151 	struct pool_workqueue *pwq;
5152 
5153 	lockdep_assert_held(&wq_pool_mutex);
5154 
5155 	pool = get_unbound_pool(attrs);
5156 	if (!pool)
5157 		return NULL;
5158 
5159 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5160 	if (!pwq) {
5161 		put_unbound_pool(pool);
5162 		return NULL;
5163 	}
5164 
5165 	init_pwq(pwq, wq, pool);
5166 	return pwq;
5167 }
5168 
apply_wqattrs_lock(void)5169 static void apply_wqattrs_lock(void)
5170 {
5171 	mutex_lock(&wq_pool_mutex);
5172 }
5173 
apply_wqattrs_unlock(void)5174 static void apply_wqattrs_unlock(void)
5175 {
5176 	mutex_unlock(&wq_pool_mutex);
5177 }
5178 
5179 /**
5180  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5181  * @attrs: the wq_attrs of the default pwq of the target workqueue
5182  * @cpu: the target CPU
5183  *
5184  * Calculate the cpumask a workqueue with @attrs should use on @pod.
5185  * The result is stored in @attrs->__pod_cpumask.
5186  *
5187  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5188  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5189  * intersection of the possible CPUs of @pod and @attrs->cpumask.
5190  *
5191  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5192  */
wq_calc_pod_cpumask(struct workqueue_attrs * attrs,int cpu)5193 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu)
5194 {
5195 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5196 	int pod = pt->cpu_pod[cpu];
5197 
5198 	/* calculate possible CPUs in @pod that @attrs wants */
5199 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5200 	/* does @pod have any online CPUs @attrs wants? */
5201 	if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) {
5202 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5203 		return;
5204 	}
5205 }
5206 
5207 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
install_unbound_pwq(struct workqueue_struct * wq,int cpu,struct pool_workqueue * pwq)5208 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5209 					int cpu, struct pool_workqueue *pwq)
5210 {
5211 	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5212 	struct pool_workqueue *old_pwq;
5213 
5214 	lockdep_assert_held(&wq_pool_mutex);
5215 	lockdep_assert_held(&wq->mutex);
5216 
5217 	/* link_pwq() can handle duplicate calls */
5218 	link_pwq(pwq);
5219 
5220 	old_pwq = rcu_access_pointer(*slot);
5221 	rcu_assign_pointer(*slot, pwq);
5222 	return old_pwq;
5223 }
5224 
5225 /* context to store the prepared attrs & pwqs before applying */
5226 struct apply_wqattrs_ctx {
5227 	struct workqueue_struct	*wq;		/* target workqueue */
5228 	struct workqueue_attrs	*attrs;		/* attrs to apply */
5229 	struct list_head	list;		/* queued for batching commit */
5230 	struct pool_workqueue	*dfl_pwq;
5231 	struct pool_workqueue	*pwq_tbl[];
5232 };
5233 
5234 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)5235 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5236 {
5237 	if (ctx) {
5238 		int cpu;
5239 
5240 		for_each_possible_cpu(cpu)
5241 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5242 		put_pwq_unlocked(ctx->dfl_pwq);
5243 
5244 		free_workqueue_attrs(ctx->attrs);
5245 
5246 		kfree(ctx);
5247 	}
5248 }
5249 
5250 /* allocate the attrs and pwqs for later installation */
5251 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs,const cpumask_var_t unbound_cpumask)5252 apply_wqattrs_prepare(struct workqueue_struct *wq,
5253 		      const struct workqueue_attrs *attrs,
5254 		      const cpumask_var_t unbound_cpumask)
5255 {
5256 	struct apply_wqattrs_ctx *ctx;
5257 	struct workqueue_attrs *new_attrs;
5258 	int cpu;
5259 
5260 	lockdep_assert_held(&wq_pool_mutex);
5261 
5262 	if (WARN_ON(attrs->affn_scope < 0 ||
5263 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5264 		return ERR_PTR(-EINVAL);
5265 
5266 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5267 
5268 	new_attrs = alloc_workqueue_attrs();
5269 	if (!ctx || !new_attrs)
5270 		goto out_free;
5271 
5272 	/*
5273 	 * If something goes wrong during CPU up/down, we'll fall back to
5274 	 * the default pwq covering whole @attrs->cpumask.  Always create
5275 	 * it even if we don't use it immediately.
5276 	 */
5277 	copy_workqueue_attrs(new_attrs, attrs);
5278 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5279 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5280 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5281 	if (!ctx->dfl_pwq)
5282 		goto out_free;
5283 
5284 	for_each_possible_cpu(cpu) {
5285 		if (new_attrs->ordered) {
5286 			ctx->dfl_pwq->refcnt++;
5287 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5288 		} else {
5289 			wq_calc_pod_cpumask(new_attrs, cpu);
5290 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5291 			if (!ctx->pwq_tbl[cpu])
5292 				goto out_free;
5293 		}
5294 	}
5295 
5296 	/* save the user configured attrs and sanitize it. */
5297 	copy_workqueue_attrs(new_attrs, attrs);
5298 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5299 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5300 	ctx->attrs = new_attrs;
5301 
5302 	/*
5303 	 * For initialized ordered workqueues, there should only be one pwq
5304 	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5305 	 * of newly queued work items until execution of older work items in
5306 	 * the old pwq's have completed.
5307 	 */
5308 	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5309 		ctx->dfl_pwq->plugged = true;
5310 
5311 	ctx->wq = wq;
5312 	return ctx;
5313 
5314 out_free:
5315 	free_workqueue_attrs(new_attrs);
5316 	apply_wqattrs_cleanup(ctx);
5317 	return ERR_PTR(-ENOMEM);
5318 }
5319 
5320 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)5321 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5322 {
5323 	int cpu;
5324 
5325 	/* all pwqs have been created successfully, let's install'em */
5326 	mutex_lock(&ctx->wq->mutex);
5327 
5328 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5329 
5330 	/* save the previous pwqs and install the new ones */
5331 	for_each_possible_cpu(cpu)
5332 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5333 							ctx->pwq_tbl[cpu]);
5334 	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5335 
5336 	/* update node_nr_active->max */
5337 	wq_update_node_max_active(ctx->wq, -1);
5338 
5339 	/* rescuer needs to respect wq cpumask changes */
5340 	if (ctx->wq->rescuer)
5341 		set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5342 				     unbound_effective_cpumask(ctx->wq));
5343 
5344 	mutex_unlock(&ctx->wq->mutex);
5345 }
5346 
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5347 int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5348 					const struct workqueue_attrs *attrs)
5349 {
5350 	struct apply_wqattrs_ctx *ctx;
5351 
5352 	/* only unbound workqueues can change attributes */
5353 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5354 		return -EINVAL;
5355 
5356 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5357 	if (IS_ERR(ctx))
5358 		return PTR_ERR(ctx);
5359 
5360 	/* the ctx has been prepared successfully, let's commit it */
5361 	apply_wqattrs_commit(ctx);
5362 	apply_wqattrs_cleanup(ctx);
5363 
5364 	return 0;
5365 }
5366 EXPORT_SYMBOL_GPL(apply_workqueue_attrs_locked);
5367 
5368 /**
5369  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5370  * @wq: the target workqueue
5371  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5372  *
5373  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5374  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5375  * work items are affine to the pod it was issued on. Older pwqs are released as
5376  * in-flight work items finish. Note that a work item which repeatedly requeues
5377  * itself back-to-back will stay on its current pwq.
5378  *
5379  * Performs GFP_KERNEL allocations.
5380  *
5381  * Return: 0 on success and -errno on failure.
5382  */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5383 int apply_workqueue_attrs(struct workqueue_struct *wq,
5384 			  const struct workqueue_attrs *attrs)
5385 {
5386 	int ret;
5387 
5388 	mutex_lock(&wq_pool_mutex);
5389 	ret = apply_workqueue_attrs_locked(wq, attrs);
5390 	mutex_unlock(&wq_pool_mutex);
5391 
5392 	return ret;
5393 }
5394 EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
5395 
5396 /**
5397  * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug
5398  * @wq: the target workqueue
5399  * @cpu: the CPU to update the pwq slot for
5400  *
5401  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5402  * %CPU_DOWN_FAILED.  @cpu is in the same pod of the CPU being hot[un]plugged.
5403  *
5404  *
5405  * If pod affinity can't be adjusted due to memory allocation failure, it falls
5406  * back to @wq->dfl_pwq which may not be optimal but is always correct.
5407  *
5408  * Note that when the last allowed CPU of a pod goes offline for a workqueue
5409  * with a cpumask spanning multiple pods, the workers which were already
5410  * executing the work items for the workqueue will lose their CPU affinity and
5411  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5412  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5413  * responsibility to flush the work item from CPU_DOWN_PREPARE.
5414  */
unbound_wq_update_pwq(struct workqueue_struct * wq,int cpu)5415 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu)
5416 {
5417 	struct pool_workqueue *old_pwq = NULL, *pwq;
5418 	struct workqueue_attrs *target_attrs;
5419 
5420 	lockdep_assert_held(&wq_pool_mutex);
5421 
5422 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5423 		return;
5424 
5425 	/*
5426 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5427 	 * Let's use a preallocated one.  The following buf is protected by
5428 	 * CPU hotplug exclusion.
5429 	 */
5430 	target_attrs = unbound_wq_update_pwq_attrs_buf;
5431 
5432 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5433 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5434 
5435 	/* nothing to do if the target cpumask matches the current pwq */
5436 	wq_calc_pod_cpumask(target_attrs, cpu);
5437 	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5438 		return;
5439 
5440 	/* create a new pwq */
5441 	pwq = alloc_unbound_pwq(wq, target_attrs);
5442 	if (!pwq) {
5443 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5444 			wq->name);
5445 		goto use_dfl_pwq;
5446 	}
5447 
5448 	/* Install the new pwq. */
5449 	mutex_lock(&wq->mutex);
5450 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5451 	goto out_unlock;
5452 
5453 use_dfl_pwq:
5454 	mutex_lock(&wq->mutex);
5455 	pwq = unbound_pwq(wq, -1);
5456 	raw_spin_lock_irq(&pwq->pool->lock);
5457 	get_pwq(pwq);
5458 	raw_spin_unlock_irq(&pwq->pool->lock);
5459 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5460 out_unlock:
5461 	mutex_unlock(&wq->mutex);
5462 	put_pwq_unlocked(old_pwq);
5463 }
5464 
alloc_and_link_pwqs(struct workqueue_struct * wq)5465 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5466 {
5467 	bool highpri = wq->flags & WQ_HIGHPRI;
5468 	int cpu, ret;
5469 	bool skip = false;
5470 
5471 	lockdep_assert_held(&wq_pool_mutex);
5472 
5473 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5474 	if (!wq->cpu_pwq)
5475 		goto enomem;
5476 
5477 	if (!(wq->flags & WQ_UNBOUND)) {
5478 		struct worker_pool __percpu *pools;
5479 
5480 		if (wq->flags & WQ_BH)
5481 			pools = bh_worker_pools;
5482 		else
5483 			pools = cpu_worker_pools;
5484 
5485 		for_each_possible_cpu(cpu) {
5486 			struct pool_workqueue **pwq_p;
5487 			struct worker_pool *pool;
5488 
5489 			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5490 			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5491 
5492 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5493 						       pool->node);
5494 			if (!*pwq_p)
5495 				goto enomem;
5496 
5497 			init_pwq(*pwq_p, wq, pool);
5498 
5499 			mutex_lock(&wq->mutex);
5500 			link_pwq(*pwq_p);
5501 			mutex_unlock(&wq->mutex);
5502 		}
5503 		return 0;
5504 	}
5505 
5506 	trace_android_rvh_alloc_and_link_pwqs(wq, &ret, &skip);
5507 	if (skip)
5508 		goto oem_skip;
5509 
5510 	if (wq->flags & __WQ_ORDERED) {
5511 		struct pool_workqueue *dfl_pwq;
5512 
5513 		ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]);
5514 		/* there should only be single pwq for ordering guarantee */
5515 		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5516 		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5517 			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5518 		     "ordering guarantee broken for workqueue %s\n", wq->name);
5519 	} else {
5520 		ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]);
5521 	}
5522 
5523 oem_skip:
5524 	return ret;
5525 
5526 enomem:
5527 	if (wq->cpu_pwq) {
5528 		for_each_possible_cpu(cpu) {
5529 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5530 
5531 			if (pwq)
5532 				kmem_cache_free(pwq_cache, pwq);
5533 		}
5534 		free_percpu(wq->cpu_pwq);
5535 		wq->cpu_pwq = NULL;
5536 	}
5537 	return -ENOMEM;
5538 }
5539 
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)5540 static int wq_clamp_max_active(int max_active, unsigned int flags,
5541 			       const char *name)
5542 {
5543 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5544 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5545 			max_active, name, 1, WQ_MAX_ACTIVE);
5546 
5547 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5548 }
5549 
5550 /*
5551  * Workqueues which may be used during memory reclaim should have a rescuer
5552  * to guarantee forward progress.
5553  */
init_rescuer(struct workqueue_struct * wq)5554 static int init_rescuer(struct workqueue_struct *wq)
5555 {
5556 	struct worker *rescuer;
5557 	char id_buf[WORKER_ID_LEN];
5558 	int ret;
5559 
5560 	lockdep_assert_held(&wq_pool_mutex);
5561 
5562 	if (!(wq->flags & WQ_MEM_RECLAIM))
5563 		return 0;
5564 
5565 	rescuer = alloc_worker(NUMA_NO_NODE);
5566 	if (!rescuer) {
5567 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5568 		       wq->name);
5569 		return -ENOMEM;
5570 	}
5571 
5572 	rescuer->rescue_wq = wq;
5573 	format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL);
5574 
5575 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf);
5576 	if (IS_ERR(rescuer->task)) {
5577 		ret = PTR_ERR(rescuer->task);
5578 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5579 		       wq->name, ERR_PTR(ret));
5580 		kfree(rescuer);
5581 		return ret;
5582 	}
5583 
5584 	wq->rescuer = rescuer;
5585 	if (wq->flags & WQ_UNBOUND)
5586 		kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq));
5587 	else
5588 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5589 	wake_up_process(rescuer->task);
5590 
5591 	return 0;
5592 }
5593 
5594 /**
5595  * wq_adjust_max_active - update a wq's max_active to the current setting
5596  * @wq: target workqueue
5597  *
5598  * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5599  * activate inactive work items accordingly. If @wq is freezing, clear
5600  * @wq->max_active to zero.
5601  */
wq_adjust_max_active(struct workqueue_struct * wq)5602 static void wq_adjust_max_active(struct workqueue_struct *wq)
5603 {
5604 	bool activated;
5605 	int new_max, new_min;
5606 
5607 	lockdep_assert_held(&wq->mutex);
5608 
5609 	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5610 		new_max = 0;
5611 		new_min = 0;
5612 	} else {
5613 		new_max = wq->saved_max_active;
5614 		new_min = wq->saved_min_active;
5615 	}
5616 
5617 	if (wq->max_active == new_max && wq->min_active == new_min)
5618 		return;
5619 
5620 	/*
5621 	 * Update @wq->max/min_active and then kick inactive work items if more
5622 	 * active work items are allowed. This doesn't break work item ordering
5623 	 * because new work items are always queued behind existing inactive
5624 	 * work items if there are any.
5625 	 */
5626 	WRITE_ONCE(wq->max_active, new_max);
5627 	WRITE_ONCE(wq->min_active, new_min);
5628 
5629 	if (wq->flags & WQ_UNBOUND)
5630 		wq_update_node_max_active(wq, -1);
5631 
5632 	if (new_max == 0)
5633 		return;
5634 
5635 	/*
5636 	 * Round-robin through pwq's activating the first inactive work item
5637 	 * until max_active is filled.
5638 	 */
5639 	do {
5640 		struct pool_workqueue *pwq;
5641 
5642 		activated = false;
5643 		for_each_pwq(pwq, wq) {
5644 			unsigned long irq_flags;
5645 
5646 			/* can be called during early boot w/ irq disabled */
5647 			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5648 			if (pwq_activate_first_inactive(pwq, true)) {
5649 				activated = true;
5650 				kick_pool(pwq->pool);
5651 			}
5652 			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5653 		}
5654 	} while (activated);
5655 }
5656 
5657 __printf(1, 0)
__alloc_workqueue(const char * fmt,unsigned int flags,int max_active,va_list args)5658 static struct workqueue_struct *__alloc_workqueue(const char *fmt,
5659 						  unsigned int flags,
5660 						  int max_active, va_list args)
5661 {
5662 	struct workqueue_struct *wq;
5663 	size_t wq_size;
5664 	int name_len;
5665 
5666 	if (flags & WQ_BH) {
5667 		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5668 			return NULL;
5669 		if (WARN_ON_ONCE(max_active))
5670 			return NULL;
5671 	}
5672 
5673 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5674 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5675 		flags |= WQ_UNBOUND;
5676 
5677 	/* allocate wq and format name */
5678 	if (flags & WQ_UNBOUND)
5679 		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5680 	else
5681 		wq_size = sizeof(*wq);
5682 
5683 	wq = kzalloc(wq_size, GFP_KERNEL);
5684 	if (!wq)
5685 		return NULL;
5686 
5687 	if (flags & WQ_UNBOUND) {
5688 		wq->unbound_attrs = alloc_workqueue_attrs();
5689 		if (!wq->unbound_attrs)
5690 			goto err_free_wq;
5691 	}
5692 
5693 	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5694 
5695 	if (name_len >= WQ_NAME_LEN)
5696 		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5697 			     wq->name);
5698 
5699 	if (flags & WQ_BH) {
5700 		/*
5701 		 * BH workqueues always share a single execution context per CPU
5702 		 * and don't impose any max_active limit.
5703 		 */
5704 		max_active = INT_MAX;
5705 	} else {
5706 		max_active = max_active ?: WQ_DFL_ACTIVE;
5707 		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5708 	}
5709 
5710 	trace_android_rvh_alloc_workqueue(wq, &flags, &max_active);
5711 	/* init wq */
5712 	wq->flags = flags;
5713 	wq->max_active = max_active;
5714 	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5715 	wq->saved_max_active = wq->max_active;
5716 	wq->saved_min_active = wq->min_active;
5717 	mutex_init(&wq->mutex);
5718 	atomic_set(&wq->nr_pwqs_to_flush, 0);
5719 	INIT_LIST_HEAD(&wq->pwqs);
5720 	INIT_LIST_HEAD(&wq->flusher_queue);
5721 	INIT_LIST_HEAD(&wq->flusher_overflow);
5722 	INIT_LIST_HEAD(&wq->maydays);
5723 
5724 	INIT_LIST_HEAD(&wq->list);
5725 
5726 	if (flags & WQ_UNBOUND) {
5727 		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5728 			goto err_free_wq;
5729 	}
5730 
5731 	/*
5732 	 * wq_pool_mutex protects the workqueues list, allocations of PWQs,
5733 	 * and the global freeze state.
5734 	 */
5735 	apply_wqattrs_lock();
5736 
5737 	if (alloc_and_link_pwqs(wq) < 0)
5738 		goto err_unlock_free_node_nr_active;
5739 
5740 	mutex_lock(&wq->mutex);
5741 	wq_adjust_max_active(wq);
5742 	mutex_unlock(&wq->mutex);
5743 
5744 	list_add_tail_rcu(&wq->list, &workqueues);
5745 
5746 	if (wq_online && init_rescuer(wq) < 0)
5747 		goto err_unlock_destroy;
5748 
5749 	apply_wqattrs_unlock();
5750 
5751 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5752 		goto err_destroy;
5753 
5754 	return wq;
5755 
5756 err_unlock_free_node_nr_active:
5757 	apply_wqattrs_unlock();
5758 	/*
5759 	 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work,
5760 	 * flushing the pwq_release_worker ensures that the pwq_release_workfn()
5761 	 * completes before calling kfree(wq).
5762 	 */
5763 	if (wq->flags & WQ_UNBOUND) {
5764 		kthread_flush_worker(pwq_release_worker);
5765 		free_node_nr_active(wq->node_nr_active);
5766 	}
5767 err_free_wq:
5768 	free_workqueue_attrs(wq->unbound_attrs);
5769 	kfree(wq);
5770 	return NULL;
5771 err_unlock_destroy:
5772 	apply_wqattrs_unlock();
5773 err_destroy:
5774 	destroy_workqueue(wq);
5775 	return NULL;
5776 }
5777 
5778 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)5779 struct workqueue_struct *alloc_workqueue(const char *fmt,
5780 					 unsigned int flags,
5781 					 int max_active, ...)
5782 {
5783 	struct workqueue_struct *wq;
5784 	va_list args;
5785 
5786 	va_start(args, max_active);
5787 	wq = __alloc_workqueue(fmt, flags, max_active, args);
5788 	va_end(args);
5789 	if (!wq)
5790 		return NULL;
5791 
5792 	wq_init_lockdep(wq);
5793 
5794 	return wq;
5795 }
5796 EXPORT_SYMBOL_GPL(alloc_workqueue);
5797 
5798 #ifdef CONFIG_LOCKDEP
5799 __printf(1, 5)
5800 struct workqueue_struct *
alloc_workqueue_lockdep_map(const char * fmt,unsigned int flags,int max_active,struct lockdep_map * lockdep_map,...)5801 alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags,
5802 			    int max_active, struct lockdep_map *lockdep_map, ...)
5803 {
5804 	struct workqueue_struct *wq;
5805 	va_list args;
5806 
5807 	va_start(args, lockdep_map);
5808 	wq = __alloc_workqueue(fmt, flags, max_active, args);
5809 	va_end(args);
5810 	if (!wq)
5811 		return NULL;
5812 
5813 	wq->lockdep_map = lockdep_map;
5814 
5815 	return wq;
5816 }
5817 EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map);
5818 #endif
5819 
pwq_busy(struct pool_workqueue * pwq)5820 static bool pwq_busy(struct pool_workqueue *pwq)
5821 {
5822 	int i;
5823 
5824 	for (i = 0; i < WORK_NR_COLORS; i++)
5825 		if (pwq->nr_in_flight[i])
5826 			return true;
5827 
5828 	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5829 		return true;
5830 	if (!pwq_is_empty(pwq))
5831 		return true;
5832 
5833 	return false;
5834 }
5835 
5836 /**
5837  * destroy_workqueue - safely terminate a workqueue
5838  * @wq: target workqueue
5839  *
5840  * Safely destroy a workqueue. All work currently pending will be done first.
5841  */
destroy_workqueue(struct workqueue_struct * wq)5842 void destroy_workqueue(struct workqueue_struct *wq)
5843 {
5844 	struct pool_workqueue *pwq;
5845 	int cpu;
5846 
5847 	/*
5848 	 * Remove it from sysfs first so that sanity check failure doesn't
5849 	 * lead to sysfs name conflicts.
5850 	 */
5851 	workqueue_sysfs_unregister(wq);
5852 
5853 	/* mark the workqueue destruction is in progress */
5854 	mutex_lock(&wq->mutex);
5855 	wq->flags |= __WQ_DESTROYING;
5856 	mutex_unlock(&wq->mutex);
5857 
5858 	/* drain it before proceeding with destruction */
5859 	drain_workqueue(wq);
5860 
5861 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5862 	if (wq->rescuer) {
5863 		struct worker *rescuer = wq->rescuer;
5864 
5865 		/* this prevents new queueing */
5866 		raw_spin_lock_irq(&wq_mayday_lock);
5867 		wq->rescuer = NULL;
5868 		raw_spin_unlock_irq(&wq_mayday_lock);
5869 
5870 		/* rescuer will empty maydays list before exiting */
5871 		kthread_stop(rescuer->task);
5872 		kfree(rescuer);
5873 	}
5874 
5875 	/*
5876 	 * Sanity checks - grab all the locks so that we wait for all
5877 	 * in-flight operations which may do put_pwq().
5878 	 */
5879 	mutex_lock(&wq_pool_mutex);
5880 	mutex_lock(&wq->mutex);
5881 	for_each_pwq(pwq, wq) {
5882 		raw_spin_lock_irq(&pwq->pool->lock);
5883 		if (WARN_ON(pwq_busy(pwq))) {
5884 			pr_warn("%s: %s has the following busy pwq\n",
5885 				__func__, wq->name);
5886 			show_pwq(pwq);
5887 			raw_spin_unlock_irq(&pwq->pool->lock);
5888 			mutex_unlock(&wq->mutex);
5889 			mutex_unlock(&wq_pool_mutex);
5890 			show_one_workqueue(wq);
5891 			return;
5892 		}
5893 		raw_spin_unlock_irq(&pwq->pool->lock);
5894 	}
5895 	mutex_unlock(&wq->mutex);
5896 
5897 	/*
5898 	 * wq list is used to freeze wq, remove from list after
5899 	 * flushing is complete in case freeze races us.
5900 	 */
5901 	list_del_rcu(&wq->list);
5902 	mutex_unlock(&wq_pool_mutex);
5903 
5904 	/*
5905 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5906 	 * to put the base refs. @wq will be auto-destroyed from the last
5907 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5908 	 */
5909 	rcu_read_lock();
5910 
5911 	for_each_possible_cpu(cpu) {
5912 		put_pwq_unlocked(unbound_pwq(wq, cpu));
5913 		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5914 	}
5915 
5916 	put_pwq_unlocked(unbound_pwq(wq, -1));
5917 	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5918 
5919 	rcu_read_unlock();
5920 }
5921 EXPORT_SYMBOL_GPL(destroy_workqueue);
5922 
5923 /**
5924  * workqueue_set_max_active - adjust max_active of a workqueue
5925  * @wq: target workqueue
5926  * @max_active: new max_active value.
5927  *
5928  * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5929  * comment.
5930  *
5931  * CONTEXT:
5932  * Don't call from IRQ context.
5933  */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)5934 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5935 {
5936 	/* max_active doesn't mean anything for BH workqueues */
5937 	if (WARN_ON(wq->flags & WQ_BH))
5938 		return;
5939 	/* disallow meddling with max_active for ordered workqueues */
5940 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5941 		return;
5942 
5943 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5944 
5945 	mutex_lock(&wq->mutex);
5946 
5947 	wq->saved_max_active = max_active;
5948 	if (wq->flags & WQ_UNBOUND)
5949 		wq->saved_min_active = min(wq->saved_min_active, max_active);
5950 
5951 	wq_adjust_max_active(wq);
5952 
5953 	mutex_unlock(&wq->mutex);
5954 }
5955 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5956 
5957 /**
5958  * workqueue_set_min_active - adjust min_active of an unbound workqueue
5959  * @wq: target unbound workqueue
5960  * @min_active: new min_active value
5961  *
5962  * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5963  * unbound workqueue is not guaranteed to be able to process max_active
5964  * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5965  * able to process min_active number of interdependent work items which is
5966  * %WQ_DFL_MIN_ACTIVE by default.
5967  *
5968  * Use this function to adjust the min_active value between 0 and the current
5969  * max_active.
5970  */
workqueue_set_min_active(struct workqueue_struct * wq,int min_active)5971 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5972 {
5973 	/* min_active is only meaningful for non-ordered unbound workqueues */
5974 	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5975 		    WQ_UNBOUND))
5976 		return;
5977 
5978 	mutex_lock(&wq->mutex);
5979 	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5980 	wq_adjust_max_active(wq);
5981 	mutex_unlock(&wq->mutex);
5982 }
5983 
5984 /**
5985  * current_work - retrieve %current task's work struct
5986  *
5987  * Determine if %current task is a workqueue worker and what it's working on.
5988  * Useful to find out the context that the %current task is running in.
5989  *
5990  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5991  */
current_work(void)5992 struct work_struct *current_work(void)
5993 {
5994 	struct worker *worker = current_wq_worker();
5995 
5996 	return worker ? worker->current_work : NULL;
5997 }
5998 EXPORT_SYMBOL(current_work);
5999 
6000 /**
6001  * current_is_workqueue_rescuer - is %current workqueue rescuer?
6002  *
6003  * Determine whether %current is a workqueue rescuer.  Can be used from
6004  * work functions to determine whether it's being run off the rescuer task.
6005  *
6006  * Return: %true if %current is a workqueue rescuer. %false otherwise.
6007  */
current_is_workqueue_rescuer(void)6008 bool current_is_workqueue_rescuer(void)
6009 {
6010 	struct worker *worker = current_wq_worker();
6011 
6012 	return worker && worker->rescue_wq;
6013 }
6014 
6015 /**
6016  * workqueue_congested - test whether a workqueue is congested
6017  * @cpu: CPU in question
6018  * @wq: target workqueue
6019  *
6020  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
6021  * no synchronization around this function and the test result is
6022  * unreliable and only useful as advisory hints or for debugging.
6023  *
6024  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
6025  *
6026  * With the exception of ordered workqueues, all workqueues have per-cpu
6027  * pool_workqueues, each with its own congested state. A workqueue being
6028  * congested on one CPU doesn't mean that the workqueue is contested on any
6029  * other CPUs.
6030  *
6031  * Return:
6032  * %true if congested, %false otherwise.
6033  */
workqueue_congested(int cpu,struct workqueue_struct * wq)6034 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
6035 {
6036 	struct pool_workqueue *pwq;
6037 	bool ret;
6038 
6039 	rcu_read_lock();
6040 	preempt_disable();
6041 
6042 	if (cpu == WORK_CPU_UNBOUND)
6043 		cpu = smp_processor_id();
6044 
6045 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
6046 	ret = !list_empty(&pwq->inactive_works);
6047 
6048 	preempt_enable();
6049 	rcu_read_unlock();
6050 
6051 	return ret;
6052 }
6053 EXPORT_SYMBOL_GPL(workqueue_congested);
6054 
6055 /**
6056  * work_busy - test whether a work is currently pending or running
6057  * @work: the work to be tested
6058  *
6059  * Test whether @work is currently pending or running.  There is no
6060  * synchronization around this function and the test result is
6061  * unreliable and only useful as advisory hints or for debugging.
6062  *
6063  * Return:
6064  * OR'd bitmask of WORK_BUSY_* bits.
6065  */
work_busy(struct work_struct * work)6066 unsigned int work_busy(struct work_struct *work)
6067 {
6068 	struct worker_pool *pool;
6069 	unsigned long irq_flags;
6070 	unsigned int ret = 0;
6071 
6072 	if (work_pending(work))
6073 		ret |= WORK_BUSY_PENDING;
6074 
6075 	rcu_read_lock();
6076 	pool = get_work_pool(work);
6077 	if (pool) {
6078 		raw_spin_lock_irqsave(&pool->lock, irq_flags);
6079 		if (find_worker_executing_work(pool, work))
6080 			ret |= WORK_BUSY_RUNNING;
6081 		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6082 	}
6083 	rcu_read_unlock();
6084 
6085 	return ret;
6086 }
6087 EXPORT_SYMBOL_GPL(work_busy);
6088 
6089 /**
6090  * set_worker_desc - set description for the current work item
6091  * @fmt: printf-style format string
6092  * @...: arguments for the format string
6093  *
6094  * This function can be called by a running work function to describe what
6095  * the work item is about.  If the worker task gets dumped, this
6096  * information will be printed out together to help debugging.  The
6097  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6098  */
set_worker_desc(const char * fmt,...)6099 void set_worker_desc(const char *fmt, ...)
6100 {
6101 	struct worker *worker = current_wq_worker();
6102 	va_list args;
6103 
6104 	if (worker) {
6105 		va_start(args, fmt);
6106 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6107 		va_end(args);
6108 	}
6109 }
6110 EXPORT_SYMBOL_GPL(set_worker_desc);
6111 
6112 /**
6113  * print_worker_info - print out worker information and description
6114  * @log_lvl: the log level to use when printing
6115  * @task: target task
6116  *
6117  * If @task is a worker and currently executing a work item, print out the
6118  * name of the workqueue being serviced and worker description set with
6119  * set_worker_desc() by the currently executing work item.
6120  *
6121  * This function can be safely called on any task as long as the
6122  * task_struct itself is accessible.  While safe, this function isn't
6123  * synchronized and may print out mixups or garbages of limited length.
6124  */
print_worker_info(const char * log_lvl,struct task_struct * task)6125 void print_worker_info(const char *log_lvl, struct task_struct *task)
6126 {
6127 	work_func_t *fn = NULL;
6128 	char name[WQ_NAME_LEN] = { };
6129 	char desc[WORKER_DESC_LEN] = { };
6130 	struct pool_workqueue *pwq = NULL;
6131 	struct workqueue_struct *wq = NULL;
6132 	struct worker *worker;
6133 
6134 	if (!(task->flags & PF_WQ_WORKER))
6135 		return;
6136 
6137 	/*
6138 	 * This function is called without any synchronization and @task
6139 	 * could be in any state.  Be careful with dereferences.
6140 	 */
6141 	worker = kthread_probe_data(task);
6142 
6143 	/*
6144 	 * Carefully copy the associated workqueue's workfn, name and desc.
6145 	 * Keep the original last '\0' in case the original is garbage.
6146 	 */
6147 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6148 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6149 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6150 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6151 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6152 
6153 	if (fn || name[0] || desc[0]) {
6154 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6155 		if (strcmp(name, desc))
6156 			pr_cont(" (%s)", desc);
6157 		pr_cont("\n");
6158 	}
6159 }
6160 
pr_cont_pool_info(struct worker_pool * pool)6161 static void pr_cont_pool_info(struct worker_pool *pool)
6162 {
6163 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6164 	if (pool->node != NUMA_NO_NODE)
6165 		pr_cont(" node=%d", pool->node);
6166 	pr_cont(" flags=0x%x", pool->flags);
6167 	if (pool->flags & POOL_BH)
6168 		pr_cont(" bh%s",
6169 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6170 	else
6171 		pr_cont(" nice=%d", pool->attrs->nice);
6172 }
6173 
pr_cont_worker_id(struct worker * worker)6174 static void pr_cont_worker_id(struct worker *worker)
6175 {
6176 	struct worker_pool *pool = worker->pool;
6177 
6178 	if (pool->flags & WQ_BH)
6179 		pr_cont("bh%s",
6180 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6181 	else
6182 		pr_cont("%d%s", task_pid_nr(worker->task),
6183 			worker->rescue_wq ? "(RESCUER)" : "");
6184 }
6185 
6186 struct pr_cont_work_struct {
6187 	bool comma;
6188 	work_func_t func;
6189 	long ctr;
6190 };
6191 
pr_cont_work_flush(bool comma,work_func_t func,struct pr_cont_work_struct * pcwsp)6192 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6193 {
6194 	if (!pcwsp->ctr)
6195 		goto out_record;
6196 	if (func == pcwsp->func) {
6197 		pcwsp->ctr++;
6198 		return;
6199 	}
6200 	if (pcwsp->ctr == 1)
6201 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6202 	else
6203 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6204 	pcwsp->ctr = 0;
6205 out_record:
6206 	if ((long)func == -1L)
6207 		return;
6208 	pcwsp->comma = comma;
6209 	pcwsp->func = func;
6210 	pcwsp->ctr = 1;
6211 }
6212 
pr_cont_work(bool comma,struct work_struct * work,struct pr_cont_work_struct * pcwsp)6213 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6214 {
6215 	if (work->func == wq_barrier_func) {
6216 		struct wq_barrier *barr;
6217 
6218 		barr = container_of(work, struct wq_barrier, work);
6219 
6220 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6221 		pr_cont("%s BAR(%d)", comma ? "," : "",
6222 			task_pid_nr(barr->task));
6223 	} else {
6224 		if (!comma)
6225 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6226 		pr_cont_work_flush(comma, work->func, pcwsp);
6227 	}
6228 }
6229 
show_pwq(struct pool_workqueue * pwq)6230 static void show_pwq(struct pool_workqueue *pwq)
6231 {
6232 	struct pr_cont_work_struct pcws = { .ctr = 0, };
6233 	struct worker_pool *pool = pwq->pool;
6234 	struct work_struct *work;
6235 	struct worker *worker;
6236 	bool has_in_flight = false, has_pending = false;
6237 	int bkt;
6238 
6239 	pr_info("  pwq %d:", pool->id);
6240 	pr_cont_pool_info(pool);
6241 
6242 	pr_cont(" active=%d refcnt=%d%s\n",
6243 		pwq->nr_active, pwq->refcnt,
6244 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6245 
6246 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6247 		if (worker->current_pwq == pwq) {
6248 			has_in_flight = true;
6249 			break;
6250 		}
6251 	}
6252 	if (has_in_flight) {
6253 		bool comma = false;
6254 
6255 		pr_info("    in-flight:");
6256 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6257 			if (worker->current_pwq != pwq)
6258 				continue;
6259 
6260 			pr_cont(" %s", comma ? "," : "");
6261 			pr_cont_worker_id(worker);
6262 			pr_cont(":%ps", worker->current_func);
6263 			list_for_each_entry(work, &worker->scheduled, entry)
6264 				pr_cont_work(false, work, &pcws);
6265 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6266 			comma = true;
6267 		}
6268 		pr_cont("\n");
6269 	}
6270 
6271 	list_for_each_entry(work, &pool->worklist, entry) {
6272 		if (get_work_pwq(work) == pwq) {
6273 			has_pending = true;
6274 			break;
6275 		}
6276 	}
6277 	if (has_pending) {
6278 		bool comma = false;
6279 
6280 		pr_info("    pending:");
6281 		list_for_each_entry(work, &pool->worklist, entry) {
6282 			if (get_work_pwq(work) != pwq)
6283 				continue;
6284 
6285 			pr_cont_work(comma, work, &pcws);
6286 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6287 		}
6288 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6289 		pr_cont("\n");
6290 	}
6291 
6292 	if (!list_empty(&pwq->inactive_works)) {
6293 		bool comma = false;
6294 
6295 		pr_info("    inactive:");
6296 		list_for_each_entry(work, &pwq->inactive_works, entry) {
6297 			pr_cont_work(comma, work, &pcws);
6298 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6299 		}
6300 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6301 		pr_cont("\n");
6302 	}
6303 }
6304 
6305 /**
6306  * show_one_workqueue - dump state of specified workqueue
6307  * @wq: workqueue whose state will be printed
6308  */
show_one_workqueue(struct workqueue_struct * wq)6309 void show_one_workqueue(struct workqueue_struct *wq)
6310 {
6311 	struct pool_workqueue *pwq;
6312 	bool idle = true;
6313 	unsigned long irq_flags;
6314 
6315 	for_each_pwq(pwq, wq) {
6316 		if (!pwq_is_empty(pwq)) {
6317 			idle = false;
6318 			break;
6319 		}
6320 	}
6321 	if (idle) /* Nothing to print for idle workqueue */
6322 		return;
6323 
6324 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6325 
6326 	for_each_pwq(pwq, wq) {
6327 		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6328 		if (!pwq_is_empty(pwq)) {
6329 			/*
6330 			 * Defer printing to avoid deadlocks in console
6331 			 * drivers that queue work while holding locks
6332 			 * also taken in their write paths.
6333 			 */
6334 			printk_deferred_enter();
6335 			show_pwq(pwq);
6336 			printk_deferred_exit();
6337 		}
6338 		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6339 		/*
6340 		 * We could be printing a lot from atomic context, e.g.
6341 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6342 		 * hard lockup.
6343 		 */
6344 		touch_nmi_watchdog();
6345 	}
6346 
6347 }
6348 
6349 /**
6350  * show_one_worker_pool - dump state of specified worker pool
6351  * @pool: worker pool whose state will be printed
6352  */
show_one_worker_pool(struct worker_pool * pool)6353 static void show_one_worker_pool(struct worker_pool *pool)
6354 {
6355 	struct worker *worker;
6356 	bool first = true;
6357 	unsigned long irq_flags;
6358 	unsigned long hung = 0;
6359 
6360 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6361 	if (pool->nr_workers == pool->nr_idle)
6362 		goto next_pool;
6363 
6364 	/* How long the first pending work is waiting for a worker. */
6365 	if (!list_empty(&pool->worklist))
6366 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6367 
6368 	/*
6369 	 * Defer printing to avoid deadlocks in console drivers that
6370 	 * queue work while holding locks also taken in their write
6371 	 * paths.
6372 	 */
6373 	printk_deferred_enter();
6374 	pr_info("pool %d:", pool->id);
6375 	pr_cont_pool_info(pool);
6376 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6377 	if (pool->manager)
6378 		pr_cont(" manager: %d",
6379 			task_pid_nr(pool->manager->task));
6380 	list_for_each_entry(worker, &pool->idle_list, entry) {
6381 		pr_cont(" %s", first ? "idle: " : "");
6382 		pr_cont_worker_id(worker);
6383 		first = false;
6384 	}
6385 	pr_cont("\n");
6386 	printk_deferred_exit();
6387 next_pool:
6388 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6389 	/*
6390 	 * We could be printing a lot from atomic context, e.g.
6391 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6392 	 * hard lockup.
6393 	 */
6394 	touch_nmi_watchdog();
6395 
6396 }
6397 
6398 /**
6399  * show_all_workqueues - dump workqueue state
6400  *
6401  * Called from a sysrq handler and prints out all busy workqueues and pools.
6402  */
show_all_workqueues(void)6403 void show_all_workqueues(void)
6404 {
6405 	struct workqueue_struct *wq;
6406 	struct worker_pool *pool;
6407 	int pi;
6408 
6409 	rcu_read_lock();
6410 
6411 	pr_info("Showing busy workqueues and worker pools:\n");
6412 
6413 	list_for_each_entry_rcu(wq, &workqueues, list)
6414 		show_one_workqueue(wq);
6415 
6416 	for_each_pool(pool, pi)
6417 		show_one_worker_pool(pool);
6418 
6419 	rcu_read_unlock();
6420 }
6421 
6422 /**
6423  * show_freezable_workqueues - dump freezable workqueue state
6424  *
6425  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6426  * still busy.
6427  */
show_freezable_workqueues(void)6428 void show_freezable_workqueues(void)
6429 {
6430 	struct workqueue_struct *wq;
6431 
6432 	rcu_read_lock();
6433 
6434 	pr_info("Showing freezable workqueues that are still busy:\n");
6435 
6436 	list_for_each_entry_rcu(wq, &workqueues, list) {
6437 		if (!(wq->flags & WQ_FREEZABLE))
6438 			continue;
6439 		show_one_workqueue(wq);
6440 	}
6441 
6442 	rcu_read_unlock();
6443 }
6444 
6445 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)6446 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6447 {
6448 	/* stabilize PF_WQ_WORKER and worker pool association */
6449 	mutex_lock(&wq_pool_attach_mutex);
6450 
6451 	if (task->flags & PF_WQ_WORKER) {
6452 		struct worker *worker = kthread_data(task);
6453 		struct worker_pool *pool = worker->pool;
6454 		int off;
6455 
6456 		off = format_worker_id(buf, size, worker, pool);
6457 
6458 		if (pool) {
6459 			raw_spin_lock_irq(&pool->lock);
6460 			/*
6461 			 * ->desc tracks information (wq name or
6462 			 * set_worker_desc()) for the latest execution.  If
6463 			 * current, prepend '+', otherwise '-'.
6464 			 */
6465 			if (worker->desc[0] != '\0') {
6466 				if (worker->current_work)
6467 					scnprintf(buf + off, size - off, "+%s",
6468 						  worker->desc);
6469 				else
6470 					scnprintf(buf + off, size - off, "-%s",
6471 						  worker->desc);
6472 			}
6473 			raw_spin_unlock_irq(&pool->lock);
6474 		}
6475 	} else {
6476 		strscpy(buf, task->comm, size);
6477 	}
6478 
6479 	mutex_unlock(&wq_pool_attach_mutex);
6480 }
6481 EXPORT_SYMBOL_GPL(wq_worker_comm);
6482 
6483 #ifdef CONFIG_SMP
6484 
6485 /*
6486  * CPU hotplug.
6487  *
6488  * There are two challenges in supporting CPU hotplug.  Firstly, there
6489  * are a lot of assumptions on strong associations among work, pwq and
6490  * pool which make migrating pending and scheduled works very
6491  * difficult to implement without impacting hot paths.  Secondly,
6492  * worker pools serve mix of short, long and very long running works making
6493  * blocked draining impractical.
6494  *
6495  * This is solved by allowing the pools to be disassociated from the CPU
6496  * running as an unbound one and allowing it to be reattached later if the
6497  * cpu comes back online.
6498  */
6499 
unbind_workers(int cpu)6500 static void unbind_workers(int cpu)
6501 {
6502 	struct worker_pool *pool;
6503 	struct worker *worker;
6504 
6505 	for_each_cpu_worker_pool(pool, cpu) {
6506 		mutex_lock(&wq_pool_attach_mutex);
6507 		raw_spin_lock_irq(&pool->lock);
6508 
6509 		/*
6510 		 * We've blocked all attach/detach operations. Make all workers
6511 		 * unbound and set DISASSOCIATED.  Before this, all workers
6512 		 * must be on the cpu.  After this, they may become diasporas.
6513 		 * And the preemption disabled section in their sched callbacks
6514 		 * are guaranteed to see WORKER_UNBOUND since the code here
6515 		 * is on the same cpu.
6516 		 */
6517 		for_each_pool_worker(worker, pool)
6518 			worker->flags |= WORKER_UNBOUND;
6519 
6520 		pool->flags |= POOL_DISASSOCIATED;
6521 
6522 		/*
6523 		 * The handling of nr_running in sched callbacks are disabled
6524 		 * now.  Zap nr_running.  After this, nr_running stays zero and
6525 		 * need_more_worker() and keep_working() are always true as
6526 		 * long as the worklist is not empty.  This pool now behaves as
6527 		 * an unbound (in terms of concurrency management) pool which
6528 		 * are served by workers tied to the pool.
6529 		 */
6530 		pool->nr_running = 0;
6531 
6532 		/*
6533 		 * With concurrency management just turned off, a busy
6534 		 * worker blocking could lead to lengthy stalls.  Kick off
6535 		 * unbound chain execution of currently pending work items.
6536 		 */
6537 		kick_pool(pool);
6538 
6539 		raw_spin_unlock_irq(&pool->lock);
6540 
6541 		for_each_pool_worker(worker, pool)
6542 			unbind_worker(worker);
6543 
6544 		mutex_unlock(&wq_pool_attach_mutex);
6545 	}
6546 }
6547 
6548 /**
6549  * rebind_workers - rebind all workers of a pool to the associated CPU
6550  * @pool: pool of interest
6551  *
6552  * @pool->cpu is coming online.  Rebind all workers to the CPU.
6553  */
rebind_workers(struct worker_pool * pool)6554 static void rebind_workers(struct worker_pool *pool)
6555 {
6556 	struct worker *worker;
6557 
6558 	lockdep_assert_held(&wq_pool_attach_mutex);
6559 
6560 	/*
6561 	 * Restore CPU affinity of all workers.  As all idle workers should
6562 	 * be on the run-queue of the associated CPU before any local
6563 	 * wake-ups for concurrency management happen, restore CPU affinity
6564 	 * of all workers first and then clear UNBOUND.  As we're called
6565 	 * from CPU_ONLINE, the following shouldn't fail.
6566 	 */
6567 	for_each_pool_worker(worker, pool) {
6568 		kthread_set_per_cpu(worker->task, pool->cpu);
6569 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6570 						  pool_allowed_cpus(pool)) < 0);
6571 	}
6572 
6573 	raw_spin_lock_irq(&pool->lock);
6574 
6575 	pool->flags &= ~POOL_DISASSOCIATED;
6576 
6577 	for_each_pool_worker(worker, pool) {
6578 		unsigned int worker_flags = worker->flags;
6579 
6580 		/*
6581 		 * We want to clear UNBOUND but can't directly call
6582 		 * worker_clr_flags() or adjust nr_running.  Atomically
6583 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6584 		 * @worker will clear REBOUND using worker_clr_flags() when
6585 		 * it initiates the next execution cycle thus restoring
6586 		 * concurrency management.  Note that when or whether
6587 		 * @worker clears REBOUND doesn't affect correctness.
6588 		 *
6589 		 * WRITE_ONCE() is necessary because @worker->flags may be
6590 		 * tested without holding any lock in
6591 		 * wq_worker_running().  Without it, NOT_RUNNING test may
6592 		 * fail incorrectly leading to premature concurrency
6593 		 * management operations.
6594 		 */
6595 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6596 		worker_flags |= WORKER_REBOUND;
6597 		worker_flags &= ~WORKER_UNBOUND;
6598 		WRITE_ONCE(worker->flags, worker_flags);
6599 	}
6600 
6601 	raw_spin_unlock_irq(&pool->lock);
6602 }
6603 
6604 /**
6605  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6606  * @pool: unbound pool of interest
6607  * @cpu: the CPU which is coming up
6608  *
6609  * An unbound pool may end up with a cpumask which doesn't have any online
6610  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6611  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6612  * online CPU before, cpus_allowed of all its workers should be restored.
6613  */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)6614 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6615 {
6616 	static cpumask_t cpumask;
6617 	struct worker *worker;
6618 
6619 	lockdep_assert_held(&wq_pool_attach_mutex);
6620 
6621 	/* is @cpu allowed for @pool? */
6622 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6623 		return;
6624 
6625 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6626 
6627 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6628 	for_each_pool_worker(worker, pool)
6629 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6630 }
6631 
workqueue_prepare_cpu(unsigned int cpu)6632 int workqueue_prepare_cpu(unsigned int cpu)
6633 {
6634 	struct worker_pool *pool;
6635 
6636 	for_each_cpu_worker_pool(pool, cpu) {
6637 		if (pool->nr_workers)
6638 			continue;
6639 		if (!create_worker(pool))
6640 			return -ENOMEM;
6641 	}
6642 	return 0;
6643 }
6644 
workqueue_online_cpu(unsigned int cpu)6645 int workqueue_online_cpu(unsigned int cpu)
6646 {
6647 	struct worker_pool *pool;
6648 	struct workqueue_struct *wq;
6649 	int pi;
6650 
6651 	mutex_lock(&wq_pool_mutex);
6652 
6653 	cpumask_set_cpu(cpu, wq_online_cpumask);
6654 
6655 	for_each_pool(pool, pi) {
6656 		/* BH pools aren't affected by hotplug */
6657 		if (pool->flags & POOL_BH)
6658 			continue;
6659 
6660 		mutex_lock(&wq_pool_attach_mutex);
6661 		if (pool->cpu == cpu)
6662 			rebind_workers(pool);
6663 		else if (pool->cpu < 0)
6664 			restore_unbound_workers_cpumask(pool, cpu);
6665 		mutex_unlock(&wq_pool_attach_mutex);
6666 	}
6667 
6668 	/* update pod affinity of unbound workqueues */
6669 	list_for_each_entry(wq, &workqueues, list) {
6670 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6671 
6672 		if (attrs) {
6673 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6674 			int tcpu;
6675 
6676 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6677 				unbound_wq_update_pwq(wq, tcpu);
6678 
6679 			mutex_lock(&wq->mutex);
6680 			wq_update_node_max_active(wq, -1);
6681 			mutex_unlock(&wq->mutex);
6682 		}
6683 	}
6684 
6685 	mutex_unlock(&wq_pool_mutex);
6686 	return 0;
6687 }
6688 
workqueue_offline_cpu(unsigned int cpu)6689 int workqueue_offline_cpu(unsigned int cpu)
6690 {
6691 	struct workqueue_struct *wq;
6692 
6693 	/* unbinding per-cpu workers should happen on the local CPU */
6694 	if (WARN_ON(cpu != smp_processor_id()))
6695 		return -1;
6696 
6697 	unbind_workers(cpu);
6698 
6699 	/* update pod affinity of unbound workqueues */
6700 	mutex_lock(&wq_pool_mutex);
6701 
6702 	cpumask_clear_cpu(cpu, wq_online_cpumask);
6703 
6704 	list_for_each_entry(wq, &workqueues, list) {
6705 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6706 
6707 		if (attrs) {
6708 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6709 			int tcpu;
6710 
6711 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6712 				unbound_wq_update_pwq(wq, tcpu);
6713 
6714 			mutex_lock(&wq->mutex);
6715 			wq_update_node_max_active(wq, cpu);
6716 			mutex_unlock(&wq->mutex);
6717 		}
6718 	}
6719 	mutex_unlock(&wq_pool_mutex);
6720 
6721 	return 0;
6722 }
6723 
6724 struct work_for_cpu {
6725 	struct work_struct work;
6726 	long (*fn)(void *);
6727 	void *arg;
6728 	long ret;
6729 };
6730 
work_for_cpu_fn(struct work_struct * work)6731 static void work_for_cpu_fn(struct work_struct *work)
6732 {
6733 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6734 
6735 	wfc->ret = wfc->fn(wfc->arg);
6736 }
6737 
6738 /**
6739  * work_on_cpu_key - run a function in thread context on a particular cpu
6740  * @cpu: the cpu to run on
6741  * @fn: the function to run
6742  * @arg: the function arg
6743  * @key: The lock class key for lock debugging purposes
6744  *
6745  * It is up to the caller to ensure that the cpu doesn't go offline.
6746  * The caller must not hold any locks which would prevent @fn from completing.
6747  *
6748  * Return: The value @fn returns.
6749  */
work_on_cpu_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)6750 long work_on_cpu_key(int cpu, long (*fn)(void *),
6751 		     void *arg, struct lock_class_key *key)
6752 {
6753 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6754 
6755 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6756 	schedule_work_on(cpu, &wfc.work);
6757 	flush_work(&wfc.work);
6758 	destroy_work_on_stack(&wfc.work);
6759 	return wfc.ret;
6760 }
6761 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6762 
6763 /**
6764  * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6765  * @cpu: the cpu to run on
6766  * @fn:  the function to run
6767  * @arg: the function argument
6768  * @key: The lock class key for lock debugging purposes
6769  *
6770  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6771  * any locks which would prevent @fn from completing.
6772  *
6773  * Return: The value @fn returns.
6774  */
work_on_cpu_safe_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)6775 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6776 			  void *arg, struct lock_class_key *key)
6777 {
6778 	long ret = -ENODEV;
6779 
6780 	cpus_read_lock();
6781 	if (cpu_online(cpu))
6782 		ret = work_on_cpu_key(cpu, fn, arg, key);
6783 	cpus_read_unlock();
6784 	return ret;
6785 }
6786 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6787 #endif /* CONFIG_SMP */
6788 
6789 #ifdef CONFIG_FREEZER
6790 
6791 /**
6792  * freeze_workqueues_begin - begin freezing workqueues
6793  *
6794  * Start freezing workqueues.  After this function returns, all freezable
6795  * workqueues will queue new works to their inactive_works list instead of
6796  * pool->worklist.
6797  *
6798  * CONTEXT:
6799  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6800  */
freeze_workqueues_begin(void)6801 void freeze_workqueues_begin(void)
6802 {
6803 	struct workqueue_struct *wq;
6804 
6805 	mutex_lock(&wq_pool_mutex);
6806 
6807 	WARN_ON_ONCE(workqueue_freezing);
6808 	workqueue_freezing = true;
6809 
6810 	list_for_each_entry(wq, &workqueues, list) {
6811 		mutex_lock(&wq->mutex);
6812 		wq_adjust_max_active(wq);
6813 		mutex_unlock(&wq->mutex);
6814 	}
6815 
6816 	mutex_unlock(&wq_pool_mutex);
6817 }
6818 
6819 /**
6820  * freeze_workqueues_busy - are freezable workqueues still busy?
6821  *
6822  * Check whether freezing is complete.  This function must be called
6823  * between freeze_workqueues_begin() and thaw_workqueues().
6824  *
6825  * CONTEXT:
6826  * Grabs and releases wq_pool_mutex.
6827  *
6828  * Return:
6829  * %true if some freezable workqueues are still busy.  %false if freezing
6830  * is complete.
6831  */
freeze_workqueues_busy(void)6832 bool freeze_workqueues_busy(void)
6833 {
6834 	bool busy = false;
6835 	struct workqueue_struct *wq;
6836 	struct pool_workqueue *pwq;
6837 
6838 	mutex_lock(&wq_pool_mutex);
6839 
6840 	WARN_ON_ONCE(!workqueue_freezing);
6841 
6842 	list_for_each_entry(wq, &workqueues, list) {
6843 		if (!(wq->flags & WQ_FREEZABLE))
6844 			continue;
6845 		/*
6846 		 * nr_active is monotonically decreasing.  It's safe
6847 		 * to peek without lock.
6848 		 */
6849 		rcu_read_lock();
6850 		for_each_pwq(pwq, wq) {
6851 			WARN_ON_ONCE(pwq->nr_active < 0);
6852 			if (pwq->nr_active) {
6853 				busy = true;
6854 				rcu_read_unlock();
6855 				goto out_unlock;
6856 			}
6857 		}
6858 		rcu_read_unlock();
6859 	}
6860 out_unlock:
6861 	mutex_unlock(&wq_pool_mutex);
6862 	return busy;
6863 }
6864 
6865 /**
6866  * thaw_workqueues - thaw workqueues
6867  *
6868  * Thaw workqueues.  Normal queueing is restored and all collected
6869  * frozen works are transferred to their respective pool worklists.
6870  *
6871  * CONTEXT:
6872  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6873  */
thaw_workqueues(void)6874 void thaw_workqueues(void)
6875 {
6876 	struct workqueue_struct *wq;
6877 
6878 	mutex_lock(&wq_pool_mutex);
6879 
6880 	if (!workqueue_freezing)
6881 		goto out_unlock;
6882 
6883 	workqueue_freezing = false;
6884 
6885 	/* restore max_active and repopulate worklist */
6886 	list_for_each_entry(wq, &workqueues, list) {
6887 		mutex_lock(&wq->mutex);
6888 		wq_adjust_max_active(wq);
6889 		mutex_unlock(&wq->mutex);
6890 	}
6891 
6892 out_unlock:
6893 	mutex_unlock(&wq_pool_mutex);
6894 }
6895 #endif /* CONFIG_FREEZER */
6896 
workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)6897 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6898 {
6899 	LIST_HEAD(ctxs);
6900 	int ret = 0;
6901 	struct workqueue_struct *wq;
6902 	struct apply_wqattrs_ctx *ctx, *n;
6903 
6904 	lockdep_assert_held(&wq_pool_mutex);
6905 
6906 	list_for_each_entry(wq, &workqueues, list) {
6907 		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6908 			continue;
6909 
6910 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6911 		if (IS_ERR(ctx)) {
6912 			ret = PTR_ERR(ctx);
6913 			break;
6914 		}
6915 
6916 		list_add_tail(&ctx->list, &ctxs);
6917 	}
6918 
6919 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6920 		if (!ret)
6921 			apply_wqattrs_commit(ctx);
6922 		apply_wqattrs_cleanup(ctx);
6923 	}
6924 
6925 	if (!ret) {
6926 		mutex_lock(&wq_pool_attach_mutex);
6927 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6928 		mutex_unlock(&wq_pool_attach_mutex);
6929 	}
6930 	return ret;
6931 }
6932 
6933 /**
6934  * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6935  * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6936  *
6937  * This function can be called from cpuset code to provide a set of isolated
6938  * CPUs that should be excluded from wq_unbound_cpumask.
6939  */
workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)6940 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6941 {
6942 	cpumask_var_t cpumask;
6943 	int ret = 0;
6944 
6945 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6946 		return -ENOMEM;
6947 
6948 	mutex_lock(&wq_pool_mutex);
6949 
6950 	/*
6951 	 * If the operation fails, it will fall back to
6952 	 * wq_requested_unbound_cpumask which is initially set to
6953 	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6954 	 * by any subsequent write to workqueue/cpumask sysfs file.
6955 	 */
6956 	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6957 		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6958 	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6959 		ret = workqueue_apply_unbound_cpumask(cpumask);
6960 
6961 	/* Save the current isolated cpumask & export it via sysfs */
6962 	if (!ret)
6963 		cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6964 
6965 	mutex_unlock(&wq_pool_mutex);
6966 	free_cpumask_var(cpumask);
6967 	return ret;
6968 }
6969 
parse_affn_scope(const char * val)6970 static int parse_affn_scope(const char *val)
6971 {
6972 	int i;
6973 
6974 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6975 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6976 			return i;
6977 	}
6978 	return -EINVAL;
6979 }
6980 
wq_affn_dfl_set(const char * val,const struct kernel_param * kp)6981 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6982 {
6983 	struct workqueue_struct *wq;
6984 	int affn, cpu;
6985 
6986 	affn = parse_affn_scope(val);
6987 	if (affn < 0)
6988 		return affn;
6989 	if (affn == WQ_AFFN_DFL)
6990 		return -EINVAL;
6991 
6992 	cpus_read_lock();
6993 	mutex_lock(&wq_pool_mutex);
6994 
6995 	wq_affn_dfl = affn;
6996 
6997 	list_for_each_entry(wq, &workqueues, list) {
6998 		for_each_online_cpu(cpu)
6999 			unbound_wq_update_pwq(wq, cpu);
7000 	}
7001 
7002 	mutex_unlock(&wq_pool_mutex);
7003 	cpus_read_unlock();
7004 
7005 	return 0;
7006 }
7007 
wq_affn_dfl_get(char * buffer,const struct kernel_param * kp)7008 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
7009 {
7010 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
7011 }
7012 
7013 static const struct kernel_param_ops wq_affn_dfl_ops = {
7014 	.set	= wq_affn_dfl_set,
7015 	.get	= wq_affn_dfl_get,
7016 };
7017 
7018 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
7019 
7020 #ifdef CONFIG_SYSFS
7021 /*
7022  * Workqueues with WQ_SYSFS flag set is visible to userland via
7023  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
7024  * following attributes.
7025  *
7026  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
7027  *  max_active		RW int	: maximum number of in-flight work items
7028  *
7029  * Unbound workqueues have the following extra attributes.
7030  *
7031  *  nice		RW int	: nice value of the workers
7032  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
7033  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
7034  *  affinity_strict	RW bool : worker CPU affinity is strict
7035  */
7036 struct wq_device {
7037 	struct workqueue_struct		*wq;
7038 	struct device			dev;
7039 };
7040 
dev_to_wq(struct device * dev)7041 static struct workqueue_struct *dev_to_wq(struct device *dev)
7042 {
7043 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7044 
7045 	return wq_dev->wq;
7046 }
7047 
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)7048 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
7049 			    char *buf)
7050 {
7051 	struct workqueue_struct *wq = dev_to_wq(dev);
7052 
7053 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
7054 }
7055 static DEVICE_ATTR_RO(per_cpu);
7056 
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)7057 static ssize_t max_active_show(struct device *dev,
7058 			       struct device_attribute *attr, char *buf)
7059 {
7060 	struct workqueue_struct *wq = dev_to_wq(dev);
7061 
7062 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
7063 }
7064 
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7065 static ssize_t max_active_store(struct device *dev,
7066 				struct device_attribute *attr, const char *buf,
7067 				size_t count)
7068 {
7069 	struct workqueue_struct *wq = dev_to_wq(dev);
7070 	int val;
7071 
7072 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
7073 		return -EINVAL;
7074 
7075 	workqueue_set_max_active(wq, val);
7076 	return count;
7077 }
7078 static DEVICE_ATTR_RW(max_active);
7079 
7080 static struct attribute *wq_sysfs_attrs[] = {
7081 	&dev_attr_per_cpu.attr,
7082 	&dev_attr_max_active.attr,
7083 	NULL,
7084 };
7085 ATTRIBUTE_GROUPS(wq_sysfs);
7086 
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)7087 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7088 			    char *buf)
7089 {
7090 	struct workqueue_struct *wq = dev_to_wq(dev);
7091 	int written;
7092 
7093 	mutex_lock(&wq->mutex);
7094 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7095 	mutex_unlock(&wq->mutex);
7096 
7097 	return written;
7098 }
7099 
7100 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)7101 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7102 {
7103 	struct workqueue_attrs *attrs;
7104 
7105 	lockdep_assert_held(&wq_pool_mutex);
7106 
7107 	attrs = alloc_workqueue_attrs();
7108 	if (!attrs)
7109 		return NULL;
7110 
7111 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
7112 	return attrs;
7113 }
7114 
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7115 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7116 			     const char *buf, size_t count)
7117 {
7118 	struct workqueue_struct *wq = dev_to_wq(dev);
7119 	struct workqueue_attrs *attrs;
7120 	int ret = -ENOMEM;
7121 
7122 	apply_wqattrs_lock();
7123 
7124 	attrs = wq_sysfs_prep_attrs(wq);
7125 	if (!attrs)
7126 		goto out_unlock;
7127 
7128 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7129 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7130 		ret = apply_workqueue_attrs_locked(wq, attrs);
7131 	else
7132 		ret = -EINVAL;
7133 
7134 out_unlock:
7135 	apply_wqattrs_unlock();
7136 	free_workqueue_attrs(attrs);
7137 	return ret ?: count;
7138 }
7139 
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7140 static ssize_t wq_cpumask_show(struct device *dev,
7141 			       struct device_attribute *attr, char *buf)
7142 {
7143 	struct workqueue_struct *wq = dev_to_wq(dev);
7144 	int written;
7145 
7146 	mutex_lock(&wq->mutex);
7147 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7148 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
7149 	mutex_unlock(&wq->mutex);
7150 	return written;
7151 }
7152 
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7153 static ssize_t wq_cpumask_store(struct device *dev,
7154 				struct device_attribute *attr,
7155 				const char *buf, size_t count)
7156 {
7157 	struct workqueue_struct *wq = dev_to_wq(dev);
7158 	struct workqueue_attrs *attrs;
7159 	int ret = -ENOMEM;
7160 
7161 	apply_wqattrs_lock();
7162 
7163 	attrs = wq_sysfs_prep_attrs(wq);
7164 	if (!attrs)
7165 		goto out_unlock;
7166 
7167 	ret = cpumask_parse(buf, attrs->cpumask);
7168 	if (!ret)
7169 		ret = apply_workqueue_attrs_locked(wq, attrs);
7170 
7171 out_unlock:
7172 	apply_wqattrs_unlock();
7173 	free_workqueue_attrs(attrs);
7174 	return ret ?: count;
7175 }
7176 
wq_affn_scope_show(struct device * dev,struct device_attribute * attr,char * buf)7177 static ssize_t wq_affn_scope_show(struct device *dev,
7178 				  struct device_attribute *attr, char *buf)
7179 {
7180 	struct workqueue_struct *wq = dev_to_wq(dev);
7181 	int written;
7182 
7183 	mutex_lock(&wq->mutex);
7184 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7185 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7186 				    wq_affn_names[WQ_AFFN_DFL],
7187 				    wq_affn_names[wq_affn_dfl]);
7188 	else
7189 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7190 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7191 	mutex_unlock(&wq->mutex);
7192 
7193 	return written;
7194 }
7195 
wq_affn_scope_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7196 static ssize_t wq_affn_scope_store(struct device *dev,
7197 				   struct device_attribute *attr,
7198 				   const char *buf, size_t count)
7199 {
7200 	struct workqueue_struct *wq = dev_to_wq(dev);
7201 	struct workqueue_attrs *attrs;
7202 	int affn, ret = -ENOMEM;
7203 
7204 	affn = parse_affn_scope(buf);
7205 	if (affn < 0)
7206 		return affn;
7207 
7208 	apply_wqattrs_lock();
7209 	attrs = wq_sysfs_prep_attrs(wq);
7210 	if (attrs) {
7211 		attrs->affn_scope = affn;
7212 		ret = apply_workqueue_attrs_locked(wq, attrs);
7213 	}
7214 	apply_wqattrs_unlock();
7215 	free_workqueue_attrs(attrs);
7216 	return ret ?: count;
7217 }
7218 
wq_affinity_strict_show(struct device * dev,struct device_attribute * attr,char * buf)7219 static ssize_t wq_affinity_strict_show(struct device *dev,
7220 				       struct device_attribute *attr, char *buf)
7221 {
7222 	struct workqueue_struct *wq = dev_to_wq(dev);
7223 
7224 	return scnprintf(buf, PAGE_SIZE, "%d\n",
7225 			 wq->unbound_attrs->affn_strict);
7226 }
7227 
wq_affinity_strict_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7228 static ssize_t wq_affinity_strict_store(struct device *dev,
7229 					struct device_attribute *attr,
7230 					const char *buf, size_t count)
7231 {
7232 	struct workqueue_struct *wq = dev_to_wq(dev);
7233 	struct workqueue_attrs *attrs;
7234 	int v, ret = -ENOMEM;
7235 
7236 	if (sscanf(buf, "%d", &v) != 1)
7237 		return -EINVAL;
7238 
7239 	apply_wqattrs_lock();
7240 	attrs = wq_sysfs_prep_attrs(wq);
7241 	if (attrs) {
7242 		attrs->affn_strict = (bool)v;
7243 		ret = apply_workqueue_attrs_locked(wq, attrs);
7244 	}
7245 	apply_wqattrs_unlock();
7246 	free_workqueue_attrs(attrs);
7247 	return ret ?: count;
7248 }
7249 
7250 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7251 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7252 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7253 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7254 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7255 	__ATTR_NULL,
7256 };
7257 
7258 static const struct bus_type wq_subsys = {
7259 	.name				= "workqueue",
7260 	.dev_groups			= wq_sysfs_groups,
7261 };
7262 
7263 /**
7264  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7265  *  @cpumask: the cpumask to set
7266  *
7267  *  The low-level workqueues cpumask is a global cpumask that limits
7268  *  the affinity of all unbound workqueues.  This function check the @cpumask
7269  *  and apply it to all unbound workqueues and updates all pwqs of them.
7270  *
7271  *  Return:	0	- Success
7272  *		-EINVAL	- Invalid @cpumask
7273  *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7274  */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)7275 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7276 {
7277 	int ret = -EINVAL;
7278 
7279 	/*
7280 	 * Not excluding isolated cpus on purpose.
7281 	 * If the user wishes to include them, we allow that.
7282 	 */
7283 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7284 	if (!cpumask_empty(cpumask)) {
7285 		ret = 0;
7286 		apply_wqattrs_lock();
7287 		if (!cpumask_equal(cpumask, wq_unbound_cpumask))
7288 			ret = workqueue_apply_unbound_cpumask(cpumask);
7289 		if (!ret)
7290 			cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7291 		apply_wqattrs_unlock();
7292 	}
7293 
7294 	return ret;
7295 }
7296 
__wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf,cpumask_var_t mask)7297 static ssize_t __wq_cpumask_show(struct device *dev,
7298 		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7299 {
7300 	int written;
7301 
7302 	mutex_lock(&wq_pool_mutex);
7303 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7304 	mutex_unlock(&wq_pool_mutex);
7305 
7306 	return written;
7307 }
7308 
cpumask_requested_show(struct device * dev,struct device_attribute * attr,char * buf)7309 static ssize_t cpumask_requested_show(struct device *dev,
7310 		struct device_attribute *attr, char *buf)
7311 {
7312 	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7313 }
7314 static DEVICE_ATTR_RO(cpumask_requested);
7315 
cpumask_isolated_show(struct device * dev,struct device_attribute * attr,char * buf)7316 static ssize_t cpumask_isolated_show(struct device *dev,
7317 		struct device_attribute *attr, char *buf)
7318 {
7319 	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7320 }
7321 static DEVICE_ATTR_RO(cpumask_isolated);
7322 
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7323 static ssize_t cpumask_show(struct device *dev,
7324 		struct device_attribute *attr, char *buf)
7325 {
7326 	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7327 }
7328 
cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7329 static ssize_t cpumask_store(struct device *dev,
7330 		struct device_attribute *attr, const char *buf, size_t count)
7331 {
7332 	cpumask_var_t cpumask;
7333 	int ret;
7334 
7335 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7336 		return -ENOMEM;
7337 
7338 	ret = cpumask_parse(buf, cpumask);
7339 	if (!ret)
7340 		ret = workqueue_set_unbound_cpumask(cpumask);
7341 
7342 	free_cpumask_var(cpumask);
7343 	return ret ? ret : count;
7344 }
7345 static DEVICE_ATTR_RW(cpumask);
7346 
7347 static struct attribute *wq_sysfs_cpumask_attrs[] = {
7348 	&dev_attr_cpumask.attr,
7349 	&dev_attr_cpumask_requested.attr,
7350 	&dev_attr_cpumask_isolated.attr,
7351 	NULL,
7352 };
7353 ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7354 
wq_sysfs_init(void)7355 static int __init wq_sysfs_init(void)
7356 {
7357 	return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
7358 }
7359 core_initcall(wq_sysfs_init);
7360 
wq_device_release(struct device * dev)7361 static void wq_device_release(struct device *dev)
7362 {
7363 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7364 
7365 	kfree(wq_dev);
7366 }
7367 
7368 /**
7369  * workqueue_sysfs_register - make a workqueue visible in sysfs
7370  * @wq: the workqueue to register
7371  *
7372  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7373  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7374  * which is the preferred method.
7375  *
7376  * Workqueue user should use this function directly iff it wants to apply
7377  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7378  * apply_workqueue_attrs() may race against userland updating the
7379  * attributes.
7380  *
7381  * Return: 0 on success, -errno on failure.
7382  */
workqueue_sysfs_register(struct workqueue_struct * wq)7383 int workqueue_sysfs_register(struct workqueue_struct *wq)
7384 {
7385 	struct wq_device *wq_dev;
7386 	int ret;
7387 
7388 	/*
7389 	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7390 	 * ordered workqueues.
7391 	 */
7392 	if (WARN_ON(wq->flags & __WQ_ORDERED))
7393 		return -EINVAL;
7394 
7395 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7396 	if (!wq_dev)
7397 		return -ENOMEM;
7398 
7399 	wq_dev->wq = wq;
7400 	wq_dev->dev.bus = &wq_subsys;
7401 	wq_dev->dev.release = wq_device_release;
7402 	dev_set_name(&wq_dev->dev, "%s", wq->name);
7403 
7404 	/*
7405 	 * unbound_attrs are created separately.  Suppress uevent until
7406 	 * everything is ready.
7407 	 */
7408 	dev_set_uevent_suppress(&wq_dev->dev, true);
7409 
7410 	ret = device_register(&wq_dev->dev);
7411 	if (ret) {
7412 		put_device(&wq_dev->dev);
7413 		wq->wq_dev = NULL;
7414 		return ret;
7415 	}
7416 
7417 	if (wq->flags & WQ_UNBOUND) {
7418 		struct device_attribute *attr;
7419 
7420 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7421 			ret = device_create_file(&wq_dev->dev, attr);
7422 			if (ret) {
7423 				device_unregister(&wq_dev->dev);
7424 				wq->wq_dev = NULL;
7425 				return ret;
7426 			}
7427 		}
7428 	}
7429 
7430 	dev_set_uevent_suppress(&wq_dev->dev, false);
7431 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7432 	return 0;
7433 }
7434 
7435 /**
7436  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7437  * @wq: the workqueue to unregister
7438  *
7439  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7440  */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7441 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7442 {
7443 	struct wq_device *wq_dev = wq->wq_dev;
7444 
7445 	if (!wq->wq_dev)
7446 		return;
7447 
7448 	wq->wq_dev = NULL;
7449 	device_unregister(&wq_dev->dev);
7450 }
7451 #else	/* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7452 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7453 #endif	/* CONFIG_SYSFS */
7454 
7455 /*
7456  * Workqueue watchdog.
7457  *
7458  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7459  * flush dependency, a concurrency managed work item which stays RUNNING
7460  * indefinitely.  Workqueue stalls can be very difficult to debug as the
7461  * usual warning mechanisms don't trigger and internal workqueue state is
7462  * largely opaque.
7463  *
7464  * Workqueue watchdog monitors all worker pools periodically and dumps
7465  * state if some pools failed to make forward progress for a while where
7466  * forward progress is defined as the first item on ->worklist changing.
7467  *
7468  * This mechanism is controlled through the kernel parameter
7469  * "workqueue.watchdog_thresh" which can be updated at runtime through the
7470  * corresponding sysfs parameter file.
7471  */
7472 #ifdef CONFIG_WQ_WATCHDOG
7473 
7474 static unsigned long wq_watchdog_thresh = 30;
7475 static struct timer_list wq_watchdog_timer;
7476 
7477 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7478 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7479 
7480 static unsigned int wq_panic_on_stall;
7481 module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644);
7482 
7483 /*
7484  * Show workers that might prevent the processing of pending work items.
7485  * The only candidates are CPU-bound workers in the running state.
7486  * Pending work items should be handled by another idle worker
7487  * in all other situations.
7488  */
show_cpu_pool_hog(struct worker_pool * pool)7489 static void show_cpu_pool_hog(struct worker_pool *pool)
7490 {
7491 	struct worker *worker;
7492 	unsigned long irq_flags;
7493 	int bkt;
7494 
7495 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7496 
7497 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7498 		if (task_is_running(worker->task)) {
7499 			/*
7500 			 * Defer printing to avoid deadlocks in console
7501 			 * drivers that queue work while holding locks
7502 			 * also taken in their write paths.
7503 			 */
7504 			printk_deferred_enter();
7505 
7506 			pr_info("pool %d:\n", pool->id);
7507 			sched_show_task(worker->task);
7508 
7509 			printk_deferred_exit();
7510 		}
7511 	}
7512 
7513 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7514 }
7515 
show_cpu_pools_hogs(void)7516 static void show_cpu_pools_hogs(void)
7517 {
7518 	struct worker_pool *pool;
7519 	int pi;
7520 
7521 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7522 
7523 	rcu_read_lock();
7524 
7525 	for_each_pool(pool, pi) {
7526 		if (pool->cpu_stall)
7527 			show_cpu_pool_hog(pool);
7528 
7529 	}
7530 
7531 	rcu_read_unlock();
7532 }
7533 
panic_on_wq_watchdog(void)7534 static void panic_on_wq_watchdog(void)
7535 {
7536 	static unsigned int wq_stall;
7537 
7538 	if (wq_panic_on_stall) {
7539 		wq_stall++;
7540 		BUG_ON(wq_stall >= wq_panic_on_stall);
7541 	}
7542 }
7543 
wq_watchdog_reset_touched(void)7544 static void wq_watchdog_reset_touched(void)
7545 {
7546 	int cpu;
7547 
7548 	wq_watchdog_touched = jiffies;
7549 	for_each_possible_cpu(cpu)
7550 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7551 }
7552 
wq_watchdog_timer_fn(struct timer_list * unused)7553 static void wq_watchdog_timer_fn(struct timer_list *unused)
7554 {
7555 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7556 	bool lockup_detected = false;
7557 	bool cpu_pool_stall = false;
7558 	unsigned long now = jiffies;
7559 	struct worker_pool *pool;
7560 	int pi;
7561 
7562 	if (!thresh)
7563 		return;
7564 
7565 	rcu_read_lock();
7566 
7567 	for_each_pool(pool, pi) {
7568 		unsigned long pool_ts, touched, ts;
7569 
7570 		pool->cpu_stall = false;
7571 		if (list_empty(&pool->worklist))
7572 			continue;
7573 
7574 		/*
7575 		 * If a virtual machine is stopped by the host it can look to
7576 		 * the watchdog like a stall.
7577 		 */
7578 		kvm_check_and_clear_guest_paused();
7579 
7580 		/* get the latest of pool and touched timestamps */
7581 		if (pool->cpu >= 0)
7582 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7583 		else
7584 			touched = READ_ONCE(wq_watchdog_touched);
7585 		pool_ts = READ_ONCE(pool->watchdog_ts);
7586 
7587 		if (time_after(pool_ts, touched))
7588 			ts = pool_ts;
7589 		else
7590 			ts = touched;
7591 
7592 		/* did we stall? */
7593 		if (time_after(now, ts + thresh)) {
7594 			lockup_detected = true;
7595 			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7596 				pool->cpu_stall = true;
7597 				cpu_pool_stall = true;
7598 			}
7599 			pr_emerg("BUG: workqueue lockup - pool");
7600 			pr_cont_pool_info(pool);
7601 			pr_cont(" stuck for %us!\n",
7602 				jiffies_to_msecs(now - pool_ts) / 1000);
7603 			trace_android_vh_wq_lockup_pool(pool->cpu, pool_ts);
7604 		}
7605 
7606 
7607 	}
7608 
7609 	rcu_read_unlock();
7610 
7611 	if (lockup_detected)
7612 		show_all_workqueues();
7613 
7614 	if (cpu_pool_stall)
7615 		show_cpu_pools_hogs();
7616 
7617 	if (lockup_detected)
7618 		panic_on_wq_watchdog();
7619 
7620 	wq_watchdog_reset_touched();
7621 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7622 }
7623 
wq_watchdog_touch(int cpu)7624 notrace void wq_watchdog_touch(int cpu)
7625 {
7626 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7627 	unsigned long touch_ts = READ_ONCE(wq_watchdog_touched);
7628 	unsigned long now = jiffies;
7629 
7630 	if (cpu >= 0)
7631 		per_cpu(wq_watchdog_touched_cpu, cpu) = now;
7632 	else
7633 		WARN_ONCE(1, "%s should be called with valid CPU", __func__);
7634 
7635 	/* Don't unnecessarily store to global cacheline */
7636 	if (time_after(now, touch_ts + thresh / 4))
7637 		WRITE_ONCE(wq_watchdog_touched, jiffies);
7638 }
7639 
wq_watchdog_set_thresh(unsigned long thresh)7640 static void wq_watchdog_set_thresh(unsigned long thresh)
7641 {
7642 	wq_watchdog_thresh = 0;
7643 	del_timer_sync(&wq_watchdog_timer);
7644 
7645 	if (thresh) {
7646 		wq_watchdog_thresh = thresh;
7647 		wq_watchdog_reset_touched();
7648 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7649 	}
7650 }
7651 
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)7652 static int wq_watchdog_param_set_thresh(const char *val,
7653 					const struct kernel_param *kp)
7654 {
7655 	unsigned long thresh;
7656 	int ret;
7657 
7658 	ret = kstrtoul(val, 0, &thresh);
7659 	if (ret)
7660 		return ret;
7661 
7662 	if (system_wq)
7663 		wq_watchdog_set_thresh(thresh);
7664 	else
7665 		wq_watchdog_thresh = thresh;
7666 
7667 	return 0;
7668 }
7669 
7670 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7671 	.set	= wq_watchdog_param_set_thresh,
7672 	.get	= param_get_ulong,
7673 };
7674 
7675 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7676 		0644);
7677 
wq_watchdog_init(void)7678 static void wq_watchdog_init(void)
7679 {
7680 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7681 	wq_watchdog_set_thresh(wq_watchdog_thresh);
7682 }
7683 
7684 #else	/* CONFIG_WQ_WATCHDOG */
7685 
wq_watchdog_init(void)7686 static inline void wq_watchdog_init(void) { }
7687 
7688 #endif	/* CONFIG_WQ_WATCHDOG */
7689 
bh_pool_kick_normal(struct irq_work * irq_work)7690 static void bh_pool_kick_normal(struct irq_work *irq_work)
7691 {
7692 	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7693 }
7694 
bh_pool_kick_highpri(struct irq_work * irq_work)7695 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7696 {
7697 	raise_softirq_irqoff(HI_SOFTIRQ);
7698 }
7699 
restrict_unbound_cpumask(const char * name,const struct cpumask * mask)7700 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7701 {
7702 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7703 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7704 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7705 		return;
7706 	}
7707 
7708 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7709 }
7710 
init_cpu_worker_pool(struct worker_pool * pool,int cpu,int nice)7711 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7712 {
7713 	BUG_ON(init_worker_pool(pool));
7714 	pool->cpu = cpu;
7715 	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7716 	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7717 	pool->attrs->nice = nice;
7718 	pool->attrs->affn_strict = true;
7719 	pool->node = cpu_to_node(cpu);
7720 
7721 	/* alloc pool ID */
7722 	mutex_lock(&wq_pool_mutex);
7723 	BUG_ON(worker_pool_assign_id(pool));
7724 	mutex_unlock(&wq_pool_mutex);
7725 }
7726 
7727 /**
7728  * workqueue_init_early - early init for workqueue subsystem
7729  *
7730  * This is the first step of three-staged workqueue subsystem initialization and
7731  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7732  * up. It sets up all the data structures and system workqueues and allows early
7733  * boot code to create workqueues and queue/cancel work items. Actual work item
7734  * execution starts only after kthreads can be created and scheduled right
7735  * before early initcalls.
7736  */
workqueue_init_early(void)7737 void __init workqueue_init_early(void)
7738 {
7739 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7740 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7741 	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7742 						       bh_pool_kick_highpri };
7743 	int i, cpu;
7744 
7745 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7746 
7747 	BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL));
7748 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7749 	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7750 	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7751 
7752 	cpumask_copy(wq_online_cpumask, cpu_online_mask);
7753 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7754 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7755 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7756 	if (!cpumask_empty(&wq_cmdline_cpumask))
7757 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7758 
7759 	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7760 	cpumask_andnot(wq_isolated_cpumask, cpu_possible_mask,
7761 						housekeeping_cpumask(HK_TYPE_DOMAIN));
7762 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7763 
7764 	unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs();
7765 	BUG_ON(!unbound_wq_update_pwq_attrs_buf);
7766 
7767 	/*
7768 	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7769 	 * This allows workqueue items to be moved to HK CPUs.
7770 	 */
7771 	if (housekeeping_enabled(HK_TYPE_TICK))
7772 		wq_power_efficient = true;
7773 
7774 	/* initialize WQ_AFFN_SYSTEM pods */
7775 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7776 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7777 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7778 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7779 
7780 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7781 
7782 	pt->nr_pods = 1;
7783 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7784 	pt->pod_node[0] = NUMA_NO_NODE;
7785 	pt->cpu_pod[0] = 0;
7786 
7787 	/* initialize BH and CPU pools */
7788 	for_each_possible_cpu(cpu) {
7789 		struct worker_pool *pool;
7790 
7791 		i = 0;
7792 		for_each_bh_worker_pool(pool, cpu) {
7793 			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7794 			pool->flags |= POOL_BH;
7795 			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7796 			i++;
7797 		}
7798 
7799 		i = 0;
7800 		for_each_cpu_worker_pool(pool, cpu)
7801 			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7802 	}
7803 
7804 	/* create default unbound and ordered wq attrs */
7805 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7806 		struct workqueue_attrs *attrs;
7807 
7808 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7809 		attrs->nice = std_nice[i];
7810 		unbound_std_wq_attrs[i] = attrs;
7811 
7812 		/*
7813 		 * An ordered wq should have only one pwq as ordering is
7814 		 * guaranteed by max_active which is enforced by pwqs.
7815 		 */
7816 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7817 		attrs->nice = std_nice[i];
7818 		attrs->ordered = true;
7819 		ordered_wq_attrs[i] = attrs;
7820 	}
7821 
7822 	system_wq = alloc_workqueue("events", 0, 0);
7823 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7824 	system_long_wq = alloc_workqueue("events_long", 0, 0);
7825 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7826 					    WQ_MAX_ACTIVE);
7827 	system_freezable_wq = alloc_workqueue("events_freezable",
7828 					      WQ_FREEZABLE, 0);
7829 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7830 					      WQ_POWER_EFFICIENT, 0);
7831 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7832 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7833 					      0);
7834 	system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7835 	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7836 					       WQ_BH | WQ_HIGHPRI, 0);
7837 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7838 	       !system_unbound_wq || !system_freezable_wq ||
7839 	       !system_power_efficient_wq ||
7840 	       !system_freezable_power_efficient_wq ||
7841 	       !system_bh_wq || !system_bh_highpri_wq);
7842 }
7843 
wq_cpu_intensive_thresh_init(void)7844 static void __init wq_cpu_intensive_thresh_init(void)
7845 {
7846 	unsigned long thresh;
7847 	unsigned long bogo;
7848 
7849 	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7850 	BUG_ON(IS_ERR(pwq_release_worker));
7851 
7852 	/* if the user set it to a specific value, keep it */
7853 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7854 		return;
7855 
7856 	/*
7857 	 * The default of 10ms is derived from the fact that most modern (as of
7858 	 * 2023) processors can do a lot in 10ms and that it's just below what
7859 	 * most consider human-perceivable. However, the kernel also runs on a
7860 	 * lot slower CPUs including microcontrollers where the threshold is way
7861 	 * too low.
7862 	 *
7863 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7864 	 * This is by no means accurate but it doesn't have to be. The mechanism
7865 	 * is still useful even when the threshold is fully scaled up. Also, as
7866 	 * the reports would usually be applicable to everyone, some machines
7867 	 * operating on longer thresholds won't significantly diminish their
7868 	 * usefulness.
7869 	 */
7870 	thresh = 10 * USEC_PER_MSEC;
7871 
7872 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7873 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7874 	if (bogo < 4000)
7875 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7876 
7877 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7878 		 loops_per_jiffy, bogo, thresh);
7879 
7880 	wq_cpu_intensive_thresh_us = thresh;
7881 }
7882 
7883 /**
7884  * workqueue_init - bring workqueue subsystem fully online
7885  *
7886  * This is the second step of three-staged workqueue subsystem initialization
7887  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7888  * been created and work items queued on them, but there are no kworkers
7889  * executing the work items yet. Populate the worker pools with the initial
7890  * workers and enable future kworker creations.
7891  */
workqueue_init(void)7892 void __init workqueue_init(void)
7893 {
7894 	struct workqueue_struct *wq;
7895 	struct worker_pool *pool;
7896 	int cpu, bkt;
7897 
7898 	wq_cpu_intensive_thresh_init();
7899 
7900 	mutex_lock(&wq_pool_mutex);
7901 
7902 	/*
7903 	 * Per-cpu pools created earlier could be missing node hint. Fix them
7904 	 * up. Also, create a rescuer for workqueues that requested it.
7905 	 */
7906 	for_each_possible_cpu(cpu) {
7907 		for_each_bh_worker_pool(pool, cpu)
7908 			pool->node = cpu_to_node(cpu);
7909 		for_each_cpu_worker_pool(pool, cpu)
7910 			pool->node = cpu_to_node(cpu);
7911 	}
7912 
7913 	list_for_each_entry(wq, &workqueues, list) {
7914 		WARN(init_rescuer(wq),
7915 		     "workqueue: failed to create early rescuer for %s",
7916 		     wq->name);
7917 	}
7918 
7919 	mutex_unlock(&wq_pool_mutex);
7920 
7921 	/*
7922 	 * Create the initial workers. A BH pool has one pseudo worker that
7923 	 * represents the shared BH execution context and thus doesn't get
7924 	 * affected by hotplug events. Create the BH pseudo workers for all
7925 	 * possible CPUs here.
7926 	 */
7927 	for_each_possible_cpu(cpu)
7928 		for_each_bh_worker_pool(pool, cpu)
7929 			BUG_ON(!create_worker(pool));
7930 
7931 	for_each_online_cpu(cpu) {
7932 		for_each_cpu_worker_pool(pool, cpu) {
7933 			pool->flags &= ~POOL_DISASSOCIATED;
7934 			BUG_ON(!create_worker(pool));
7935 		}
7936 	}
7937 
7938 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7939 		BUG_ON(!create_worker(pool));
7940 
7941 	wq_online = true;
7942 	wq_watchdog_init();
7943 }
7944 
7945 /*
7946  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7947  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7948  * and consecutive pod ID. The rest of @pt is initialized accordingly.
7949  */
init_pod_type(struct wq_pod_type * pt,bool (* cpus_share_pod)(int,int))7950 static void __init init_pod_type(struct wq_pod_type *pt,
7951 				 bool (*cpus_share_pod)(int, int))
7952 {
7953 	int cur, pre, cpu, pod;
7954 
7955 	pt->nr_pods = 0;
7956 
7957 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7958 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7959 	BUG_ON(!pt->cpu_pod);
7960 
7961 	for_each_possible_cpu(cur) {
7962 		for_each_possible_cpu(pre) {
7963 			if (pre >= cur) {
7964 				pt->cpu_pod[cur] = pt->nr_pods++;
7965 				break;
7966 			}
7967 			if (cpus_share_pod(cur, pre)) {
7968 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7969 				break;
7970 			}
7971 		}
7972 	}
7973 
7974 	/* init the rest to match @pt->cpu_pod[] */
7975 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7976 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7977 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7978 
7979 	for (pod = 0; pod < pt->nr_pods; pod++)
7980 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7981 
7982 	for_each_possible_cpu(cpu) {
7983 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7984 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7985 	}
7986 }
7987 
cpus_dont_share(int cpu0,int cpu1)7988 static bool __init cpus_dont_share(int cpu0, int cpu1)
7989 {
7990 	return false;
7991 }
7992 
cpus_share_smt(int cpu0,int cpu1)7993 static bool __init cpus_share_smt(int cpu0, int cpu1)
7994 {
7995 #ifdef CONFIG_SCHED_SMT
7996 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7997 #else
7998 	return false;
7999 #endif
8000 }
8001 
cpus_share_numa(int cpu0,int cpu1)8002 static bool __init cpus_share_numa(int cpu0, int cpu1)
8003 {
8004 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
8005 }
8006 
8007 /**
8008  * workqueue_init_topology - initialize CPU pods for unbound workqueues
8009  *
8010  * This is the third step of three-staged workqueue subsystem initialization and
8011  * invoked after SMP and topology information are fully initialized. It
8012  * initializes the unbound CPU pods accordingly.
8013  */
workqueue_init_topology(void)8014 void __init workqueue_init_topology(void)
8015 {
8016 	struct workqueue_struct *wq;
8017 	int cpu;
8018 
8019 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
8020 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
8021 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
8022 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
8023 
8024 	wq_topo_initialized = true;
8025 
8026 	mutex_lock(&wq_pool_mutex);
8027 
8028 	/*
8029 	 * Workqueues allocated earlier would have all CPUs sharing the default
8030 	 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue
8031 	 * and CPU combinations to apply per-pod sharing.
8032 	 */
8033 	list_for_each_entry(wq, &workqueues, list) {
8034 		for_each_online_cpu(cpu)
8035 			unbound_wq_update_pwq(wq, cpu);
8036 		if (wq->flags & WQ_UNBOUND) {
8037 			mutex_lock(&wq->mutex);
8038 			wq_update_node_max_active(wq, -1);
8039 			mutex_unlock(&wq->mutex);
8040 		}
8041 	}
8042 
8043 	mutex_unlock(&wq_pool_mutex);
8044 }
8045 
__warn_flushing_systemwide_wq(void)8046 void __warn_flushing_systemwide_wq(void)
8047 {
8048 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
8049 	dump_stack();
8050 }
8051 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
8052 
workqueue_unbound_cpus_setup(char * str)8053 static int __init workqueue_unbound_cpus_setup(char *str)
8054 {
8055 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
8056 		cpumask_clear(&wq_cmdline_cpumask);
8057 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
8058 	}
8059 
8060 	return 1;
8061 }
8062 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
8063