1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58
59 #include "workqueue_internal.h"
60
61 #include <trace/hooks/dtask.h>
62 #include <trace/hooks/wqlockup.h>
63 /* events/workqueue.h uses default TRACE_INCLUDE_PATH */
64 #undef TRACE_INCLUDE_PATH
65
66 enum worker_pool_flags {
67 /*
68 * worker_pool flags
69 *
70 * A bound pool is either associated or disassociated with its CPU.
71 * While associated (!DISASSOCIATED), all workers are bound to the
72 * CPU and none has %WORKER_UNBOUND set and concurrency management
73 * is in effect.
74 *
75 * While DISASSOCIATED, the cpu may be offline and all workers have
76 * %WORKER_UNBOUND set and concurrency management disabled, and may
77 * be executing on any CPU. The pool behaves as an unbound one.
78 *
79 * Note that DISASSOCIATED should be flipped only while holding
80 * wq_pool_attach_mutex to avoid changing binding state while
81 * worker_attach_to_pool() is in progress.
82 *
83 * As there can only be one concurrent BH execution context per CPU, a
84 * BH pool is per-CPU and always DISASSOCIATED.
85 */
86 POOL_BH = 1 << 0, /* is a BH pool */
87 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */
88 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
89 POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */
90 };
91
92 enum worker_flags {
93 /* worker flags */
94 WORKER_DIE = 1 << 1, /* die die die */
95 WORKER_IDLE = 1 << 2, /* is idle */
96 WORKER_PREP = 1 << 3, /* preparing to run works */
97 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
98 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
99 WORKER_REBOUND = 1 << 8, /* worker was rebound */
100
101 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
102 WORKER_UNBOUND | WORKER_REBOUND,
103 };
104
105 enum work_cancel_flags {
106 WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */
107 WORK_CANCEL_DISABLE = 1 << 1, /* canceling to disable */
108 };
109
110 enum wq_internal_consts {
111 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
112
113 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
114 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
115
116 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
117 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
118
119 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
120 /* call for help after 10ms
121 (min two ticks) */
122 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
123 CREATE_COOLDOWN = HZ, /* time to breath after fail */
124
125 /*
126 * Rescue workers are used only on emergencies and shared by
127 * all cpus. Give MIN_NICE.
128 */
129 RESCUER_NICE_LEVEL = MIN_NICE,
130 HIGHPRI_NICE_LEVEL = MIN_NICE,
131
132 WQ_NAME_LEN = 32,
133 WORKER_ID_LEN = 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */
134 };
135
136 /*
137 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
138 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
139 * msecs_to_jiffies() can't be an initializer.
140 */
141 #define BH_WORKER_JIFFIES msecs_to_jiffies(2)
142 #define BH_WORKER_RESTARTS 10
143
144 /*
145 * Structure fields follow one of the following exclusion rules.
146 *
147 * I: Modifiable by initialization/destruction paths and read-only for
148 * everyone else.
149 *
150 * P: Preemption protected. Disabling preemption is enough and should
151 * only be modified and accessed from the local cpu.
152 *
153 * L: pool->lock protected. Access with pool->lock held.
154 *
155 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
156 * reads.
157 *
158 * K: Only modified by worker while holding pool->lock. Can be safely read by
159 * self, while holding pool->lock or from IRQ context if %current is the
160 * kworker.
161 *
162 * S: Only modified by worker self.
163 *
164 * A: wq_pool_attach_mutex protected.
165 *
166 * PL: wq_pool_mutex protected.
167 *
168 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
169 *
170 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
171 *
172 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
173 * RCU for reads.
174 *
175 * WQ: wq->mutex protected.
176 *
177 * WR: wq->mutex protected for writes. RCU protected for reads.
178 *
179 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
180 * with READ_ONCE() without locking.
181 *
182 * MD: wq_mayday_lock protected.
183 *
184 * WD: Used internally by the watchdog.
185 */
186
187 /* struct worker is defined in workqueue_internal.h */
188
189 struct worker_pool {
190 raw_spinlock_t lock; /* the pool lock */
191 int cpu; /* I: the associated cpu */
192 int node; /* I: the associated node ID */
193 int id; /* I: pool ID */
194 unsigned int flags; /* L: flags */
195
196 unsigned long watchdog_ts; /* L: watchdog timestamp */
197 bool cpu_stall; /* WD: stalled cpu bound pool */
198
199 /*
200 * The counter is incremented in a process context on the associated CPU
201 * w/ preemption disabled, and decremented or reset in the same context
202 * but w/ pool->lock held. The readers grab pool->lock and are
203 * guaranteed to see if the counter reached zero.
204 */
205 int nr_running;
206
207 struct list_head worklist; /* L: list of pending works */
208
209 int nr_workers; /* L: total number of workers */
210 int nr_idle; /* L: currently idle workers */
211
212 struct list_head idle_list; /* L: list of idle workers */
213 struct timer_list idle_timer; /* L: worker idle timeout */
214 struct work_struct idle_cull_work; /* L: worker idle cleanup */
215
216 struct timer_list mayday_timer; /* L: SOS timer for workers */
217
218 /* a workers is either on busy_hash or idle_list, or the manager */
219 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
220 /* L: hash of busy workers */
221
222 struct worker *manager; /* L: purely informational */
223 struct list_head workers; /* A: attached workers */
224
225 struct ida worker_ida; /* worker IDs for task name */
226
227 struct workqueue_attrs *attrs; /* I: worker attributes */
228 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
229 int refcnt; /* PL: refcnt for unbound pools */
230
231 /*
232 * Destruction of pool is RCU protected to allow dereferences
233 * from get_work_pool().
234 */
235 struct rcu_head rcu;
236 };
237
238 /*
239 * Per-pool_workqueue statistics. These can be monitored using
240 * tools/workqueue/wq_monitor.py.
241 */
242 enum pool_workqueue_stats {
243 PWQ_STAT_STARTED, /* work items started execution */
244 PWQ_STAT_COMPLETED, /* work items completed execution */
245 PWQ_STAT_CPU_TIME, /* total CPU time consumed */
246 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */
247 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */
248 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */
249 PWQ_STAT_MAYDAY, /* maydays to rescuer */
250 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */
251
252 PWQ_NR_STATS,
253 };
254
255 /*
256 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT
257 * of work_struct->data are used for flags and the remaining high bits
258 * point to the pwq; thus, pwqs need to be aligned at two's power of the
259 * number of flag bits.
260 */
261 struct pool_workqueue {
262 struct worker_pool *pool; /* I: the associated pool */
263 struct workqueue_struct *wq; /* I: the owning workqueue */
264 int work_color; /* L: current color */
265 int flush_color; /* L: flushing color */
266 int refcnt; /* L: reference count */
267 int nr_in_flight[WORK_NR_COLORS];
268 /* L: nr of in_flight works */
269 bool plugged; /* L: execution suspended */
270
271 /*
272 * nr_active management and WORK_STRUCT_INACTIVE:
273 *
274 * When pwq->nr_active >= max_active, new work item is queued to
275 * pwq->inactive_works instead of pool->worklist and marked with
276 * WORK_STRUCT_INACTIVE.
277 *
278 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
279 * nr_active and all work items in pwq->inactive_works are marked with
280 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
281 * in pwq->inactive_works. Some of them are ready to run in
282 * pool->worklist or worker->scheduled. Those work itmes are only struct
283 * wq_barrier which is used for flush_work() and should not participate
284 * in nr_active. For non-barrier work item, it is marked with
285 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
286 */
287 int nr_active; /* L: nr of active works */
288 struct list_head inactive_works; /* L: inactive works */
289 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */
290 struct list_head pwqs_node; /* WR: node on wq->pwqs */
291 struct list_head mayday_node; /* MD: node on wq->maydays */
292
293 u64 stats[PWQ_NR_STATS];
294
295 /*
296 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
297 * and pwq_release_workfn() for details. pool_workqueue itself is also
298 * RCU protected so that the first pwq can be determined without
299 * grabbing wq->mutex.
300 */
301 struct kthread_work release_work;
302 struct rcu_head rcu;
303 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
304
305 /*
306 * Structure used to wait for workqueue flush.
307 */
308 struct wq_flusher {
309 struct list_head list; /* WQ: list of flushers */
310 int flush_color; /* WQ: flush color waiting for */
311 struct completion done; /* flush completion */
312 };
313
314 struct wq_device;
315
316 /*
317 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
318 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
319 * As sharing a single nr_active across multiple sockets can be very expensive,
320 * the counting and enforcement is per NUMA node.
321 *
322 * The following struct is used to enforce per-node max_active. When a pwq wants
323 * to start executing a work item, it should increment ->nr using
324 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
325 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
326 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
327 * round-robin order.
328 */
329 struct wq_node_nr_active {
330 int max; /* per-node max_active */
331 atomic_t nr; /* per-node nr_active */
332 raw_spinlock_t lock; /* nests inside pool locks */
333 struct list_head pending_pwqs; /* LN: pwqs with inactive works */
334 };
335
336 /*
337 * The externally visible workqueue. It relays the issued work items to
338 * the appropriate worker_pool through its pool_workqueues.
339 */
340 struct workqueue_struct {
341 struct list_head pwqs; /* WR: all pwqs of this wq */
342 struct list_head list; /* PR: list of all workqueues */
343
344 struct mutex mutex; /* protects this wq */
345 int work_color; /* WQ: current work color */
346 int flush_color; /* WQ: current flush color */
347 atomic_t nr_pwqs_to_flush; /* flush in progress */
348 struct wq_flusher *first_flusher; /* WQ: first flusher */
349 struct list_head flusher_queue; /* WQ: flush waiters */
350 struct list_head flusher_overflow; /* WQ: flush overflow list */
351
352 struct list_head maydays; /* MD: pwqs requesting rescue */
353 struct worker *rescuer; /* MD: rescue worker */
354
355 int nr_drainers; /* WQ: drain in progress */
356
357 /* See alloc_workqueue() function comment for info on min/max_active */
358 int max_active; /* WO: max active works */
359 int min_active; /* WO: min active works */
360 int saved_max_active; /* WQ: saved max_active */
361 int saved_min_active; /* WQ: saved min_active */
362
363 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
364 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */
365
366 #ifdef CONFIG_SYSFS
367 struct wq_device *wq_dev; /* I: for sysfs interface */
368 #endif
369 #ifdef CONFIG_LOCKDEP
370 char *lock_name;
371 struct lock_class_key key;
372 struct lockdep_map __lockdep_map;
373 struct lockdep_map *lockdep_map;
374 #endif
375 char name[WQ_NAME_LEN]; /* I: workqueue name */
376
377 /*
378 * Destruction of workqueue_struct is RCU protected to allow walking
379 * the workqueues list without grabbing wq_pool_mutex.
380 * This is used to dump all workqueues from sysrq.
381 */
382 struct rcu_head rcu;
383
384 /* hot fields used during command issue, aligned to cacheline */
385 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
386 struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */
387 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
388 };
389
390 /*
391 * Each pod type describes how CPUs should be grouped for unbound workqueues.
392 * See the comment above workqueue_attrs->affn_scope.
393 */
394 struct wq_pod_type {
395 int nr_pods; /* number of pods */
396 cpumask_var_t *pod_cpus; /* pod -> cpus */
397 int *pod_node; /* pod -> node */
398 int *cpu_pod; /* cpu -> pod */
399 };
400
401 struct work_offq_data {
402 u32 pool_id;
403 u32 disable;
404 u32 flags;
405 };
406
407 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
408 [WQ_AFFN_DFL] = "default",
409 [WQ_AFFN_CPU] = "cpu",
410 [WQ_AFFN_SMT] = "smt",
411 [WQ_AFFN_CACHE] = "cache",
412 [WQ_AFFN_NUMA] = "numa",
413 [WQ_AFFN_SYSTEM] = "system",
414 };
415
416 /*
417 * Per-cpu work items which run for longer than the following threshold are
418 * automatically considered CPU intensive and excluded from concurrency
419 * management to prevent them from noticeably delaying other per-cpu work items.
420 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
421 * The actual value is initialized in wq_cpu_intensive_thresh_init().
422 */
423 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
424 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
425 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
426 static unsigned int wq_cpu_intensive_warning_thresh = 4;
427 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
428 #endif
429
430 /* see the comment above the definition of WQ_POWER_EFFICIENT */
431 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
432 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
433
434 static bool wq_online; /* can kworkers be created yet? */
435 static bool wq_topo_initialized __read_mostly = false;
436
437 static struct kmem_cache *pwq_cache;
438
439 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
440 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
441
442 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
443 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf;
444
445 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
446 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
447 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
448 /* wait for manager to go away */
449 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
450
451 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
452 static bool workqueue_freezing; /* PL: have wqs started freezing? */
453
454 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */
455 static cpumask_var_t wq_online_cpumask;
456
457 /* PL&A: allowable cpus for unbound wqs and work items */
458 static cpumask_var_t wq_unbound_cpumask;
459
460 /* PL: user requested unbound cpumask via sysfs */
461 static cpumask_var_t wq_requested_unbound_cpumask;
462
463 /* PL: isolated cpumask to be excluded from unbound cpumask */
464 static cpumask_var_t wq_isolated_cpumask;
465
466 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
467 static struct cpumask wq_cmdline_cpumask __initdata;
468
469 /* CPU where unbound work was last round robin scheduled from this CPU */
470 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
471
472 /*
473 * Local execution of unbound work items is no longer guaranteed. The
474 * following always forces round-robin CPU selection on unbound work items
475 * to uncover usages which depend on it.
476 */
477 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
478 static bool wq_debug_force_rr_cpu = true;
479 #else
480 static bool wq_debug_force_rr_cpu = false;
481 #endif
482 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
483
484 /* to raise softirq for the BH worker pools on other CPUs */
485 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], bh_pool_irq_works);
486
487 /* the BH worker pools */
488 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], bh_worker_pools);
489
490 /* the per-cpu worker pools */
491 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
492
493 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
494
495 /* PL: hash of all unbound pools keyed by pool->attrs */
496 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
497
498 /* I: attributes used when instantiating standard unbound pools on demand */
499 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
500
501 /* I: attributes used when instantiating ordered pools on demand */
502 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
503
504 /*
505 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
506 * process context while holding a pool lock. Bounce to a dedicated kthread
507 * worker to avoid A-A deadlocks.
508 */
509 static struct kthread_worker *pwq_release_worker __ro_after_init;
510
511 struct workqueue_struct *system_wq __ro_after_init;
512 EXPORT_SYMBOL(system_wq);
513 struct workqueue_struct *system_highpri_wq __ro_after_init;
514 EXPORT_SYMBOL_GPL(system_highpri_wq);
515 struct workqueue_struct *system_long_wq __ro_after_init;
516 EXPORT_SYMBOL_GPL(system_long_wq);
517 struct workqueue_struct *system_unbound_wq __ro_after_init;
518 EXPORT_SYMBOL_GPL(system_unbound_wq);
519 struct workqueue_struct *system_freezable_wq __ro_after_init;
520 EXPORT_SYMBOL_GPL(system_freezable_wq);
521 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
522 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
523 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
524 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
525 struct workqueue_struct *system_bh_wq;
526 EXPORT_SYMBOL_GPL(system_bh_wq);
527 struct workqueue_struct *system_bh_highpri_wq;
528 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
529
530 static int worker_thread(void *__worker);
531 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
532 static void show_pwq(struct pool_workqueue *pwq);
533 static void show_one_worker_pool(struct worker_pool *pool);
534
535 #define CREATE_TRACE_POINTS
536 #include <trace/events/workqueue.h>
537
538 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_start);
539 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_end);
540
541 #define assert_rcu_or_pool_mutex() \
542 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \
543 !lockdep_is_held(&wq_pool_mutex), \
544 "RCU or wq_pool_mutex should be held")
545
546 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
547 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \
548 !lockdep_is_held(&wq->mutex) && \
549 !lockdep_is_held(&wq_pool_mutex), \
550 "RCU, wq->mutex or wq_pool_mutex should be held")
551
552 #define for_each_bh_worker_pool(pool, cpu) \
553 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \
554 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
555 (pool)++)
556
557 #define for_each_cpu_worker_pool(pool, cpu) \
558 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
559 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
560 (pool)++)
561
562 /**
563 * for_each_pool - iterate through all worker_pools in the system
564 * @pool: iteration cursor
565 * @pi: integer used for iteration
566 *
567 * This must be called either with wq_pool_mutex held or RCU read
568 * locked. If the pool needs to be used beyond the locking in effect, the
569 * caller is responsible for guaranteeing that the pool stays online.
570 *
571 * The if/else clause exists only for the lockdep assertion and can be
572 * ignored.
573 */
574 #define for_each_pool(pool, pi) \
575 idr_for_each_entry(&worker_pool_idr, pool, pi) \
576 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
577 else
578
579 /**
580 * for_each_pool_worker - iterate through all workers of a worker_pool
581 * @worker: iteration cursor
582 * @pool: worker_pool to iterate workers of
583 *
584 * This must be called with wq_pool_attach_mutex.
585 *
586 * The if/else clause exists only for the lockdep assertion and can be
587 * ignored.
588 */
589 #define for_each_pool_worker(worker, pool) \
590 list_for_each_entry((worker), &(pool)->workers, node) \
591 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
592 else
593
594 /**
595 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
596 * @pwq: iteration cursor
597 * @wq: the target workqueue
598 *
599 * This must be called either with wq->mutex held or RCU read locked.
600 * If the pwq needs to be used beyond the locking in effect, the caller is
601 * responsible for guaranteeing that the pwq stays online.
602 *
603 * The if/else clause exists only for the lockdep assertion and can be
604 * ignored.
605 */
606 #define for_each_pwq(pwq, wq) \
607 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
608 lockdep_is_held(&(wq->mutex)))
609
610 #ifdef CONFIG_DEBUG_OBJECTS_WORK
611
612 static const struct debug_obj_descr work_debug_descr;
613
work_debug_hint(void * addr)614 static void *work_debug_hint(void *addr)
615 {
616 return ((struct work_struct *) addr)->func;
617 }
618
work_is_static_object(void * addr)619 static bool work_is_static_object(void *addr)
620 {
621 struct work_struct *work = addr;
622
623 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
624 }
625
626 /*
627 * fixup_init is called when:
628 * - an active object is initialized
629 */
work_fixup_init(void * addr,enum debug_obj_state state)630 static bool work_fixup_init(void *addr, enum debug_obj_state state)
631 {
632 struct work_struct *work = addr;
633
634 switch (state) {
635 case ODEBUG_STATE_ACTIVE:
636 cancel_work_sync(work);
637 debug_object_init(work, &work_debug_descr);
638 return true;
639 default:
640 return false;
641 }
642 }
643
644 /*
645 * fixup_free is called when:
646 * - an active object is freed
647 */
work_fixup_free(void * addr,enum debug_obj_state state)648 static bool work_fixup_free(void *addr, enum debug_obj_state state)
649 {
650 struct work_struct *work = addr;
651
652 switch (state) {
653 case ODEBUG_STATE_ACTIVE:
654 cancel_work_sync(work);
655 debug_object_free(work, &work_debug_descr);
656 return true;
657 default:
658 return false;
659 }
660 }
661
662 static const struct debug_obj_descr work_debug_descr = {
663 .name = "work_struct",
664 .debug_hint = work_debug_hint,
665 .is_static_object = work_is_static_object,
666 .fixup_init = work_fixup_init,
667 .fixup_free = work_fixup_free,
668 };
669
debug_work_activate(struct work_struct * work)670 static inline void debug_work_activate(struct work_struct *work)
671 {
672 debug_object_activate(work, &work_debug_descr);
673 }
674
debug_work_deactivate(struct work_struct * work)675 static inline void debug_work_deactivate(struct work_struct *work)
676 {
677 debug_object_deactivate(work, &work_debug_descr);
678 }
679
__init_work(struct work_struct * work,int onstack)680 void __init_work(struct work_struct *work, int onstack)
681 {
682 if (onstack)
683 debug_object_init_on_stack(work, &work_debug_descr);
684 else
685 debug_object_init(work, &work_debug_descr);
686 }
687 EXPORT_SYMBOL_GPL(__init_work);
688
destroy_work_on_stack(struct work_struct * work)689 void destroy_work_on_stack(struct work_struct *work)
690 {
691 debug_object_free(work, &work_debug_descr);
692 }
693 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
694
destroy_delayed_work_on_stack(struct delayed_work * work)695 void destroy_delayed_work_on_stack(struct delayed_work *work)
696 {
697 destroy_timer_on_stack(&work->timer);
698 debug_object_free(&work->work, &work_debug_descr);
699 }
700 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
701
702 #else
debug_work_activate(struct work_struct * work)703 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)704 static inline void debug_work_deactivate(struct work_struct *work) { }
705 #endif
706
707 /**
708 * worker_pool_assign_id - allocate ID and assign it to @pool
709 * @pool: the pool pointer of interest
710 *
711 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
712 * successfully, -errno on failure.
713 */
worker_pool_assign_id(struct worker_pool * pool)714 static int worker_pool_assign_id(struct worker_pool *pool)
715 {
716 int ret;
717
718 lockdep_assert_held(&wq_pool_mutex);
719
720 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
721 GFP_KERNEL);
722 if (ret >= 0) {
723 pool->id = ret;
724 return 0;
725 }
726 return ret;
727 }
728
729 static struct pool_workqueue __rcu **
unbound_pwq_slot(struct workqueue_struct * wq,int cpu)730 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
731 {
732 if (cpu >= 0)
733 return per_cpu_ptr(wq->cpu_pwq, cpu);
734 else
735 return &wq->dfl_pwq;
736 }
737
738 /* @cpu < 0 for dfl_pwq */
unbound_pwq(struct workqueue_struct * wq,int cpu)739 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
740 {
741 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
742 lockdep_is_held(&wq_pool_mutex) ||
743 lockdep_is_held(&wq->mutex));
744 }
745
746 /**
747 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
748 * @wq: workqueue of interest
749 *
750 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
751 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
752 * default pwq is always mapped to the pool with the current effective cpumask.
753 */
unbound_effective_cpumask(struct workqueue_struct * wq)754 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
755 {
756 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
757 }
758
work_color_to_flags(int color)759 static unsigned int work_color_to_flags(int color)
760 {
761 return color << WORK_STRUCT_COLOR_SHIFT;
762 }
763
get_work_color(unsigned long work_data)764 static int get_work_color(unsigned long work_data)
765 {
766 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
767 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
768 }
769
work_next_color(int color)770 static int work_next_color(int color)
771 {
772 return (color + 1) % WORK_NR_COLORS;
773 }
774
pool_offq_flags(struct worker_pool * pool)775 static unsigned long pool_offq_flags(struct worker_pool *pool)
776 {
777 return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
778 }
779
780 /*
781 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
782 * contain the pointer to the queued pwq. Once execution starts, the flag
783 * is cleared and the high bits contain OFFQ flags and pool ID.
784 *
785 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
786 * can be used to set the pwq, pool or clear work->data. These functions should
787 * only be called while the work is owned - ie. while the PENDING bit is set.
788 *
789 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
790 * corresponding to a work. Pool is available once the work has been
791 * queued anywhere after initialization until it is sync canceled. pwq is
792 * available only while the work item is queued.
793 */
set_work_data(struct work_struct * work,unsigned long data)794 static inline void set_work_data(struct work_struct *work, unsigned long data)
795 {
796 WARN_ON_ONCE(!work_pending(work));
797 atomic_long_set(&work->data, data | work_static(work));
798 }
799
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long flags)800 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
801 unsigned long flags)
802 {
803 set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
804 WORK_STRUCT_PWQ | flags);
805 }
806
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id,unsigned long flags)807 static void set_work_pool_and_keep_pending(struct work_struct *work,
808 int pool_id, unsigned long flags)
809 {
810 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
811 WORK_STRUCT_PENDING | flags);
812 }
813
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id,unsigned long flags)814 static void set_work_pool_and_clear_pending(struct work_struct *work,
815 int pool_id, unsigned long flags)
816 {
817 /*
818 * The following wmb is paired with the implied mb in
819 * test_and_set_bit(PENDING) and ensures all updates to @work made
820 * here are visible to and precede any updates by the next PENDING
821 * owner.
822 */
823 smp_wmb();
824 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
825 flags);
826 /*
827 * The following mb guarantees that previous clear of a PENDING bit
828 * will not be reordered with any speculative LOADS or STORES from
829 * work->current_func, which is executed afterwards. This possible
830 * reordering can lead to a missed execution on attempt to queue
831 * the same @work. E.g. consider this case:
832 *
833 * CPU#0 CPU#1
834 * ---------------------------- --------------------------------
835 *
836 * 1 STORE event_indicated
837 * 2 queue_work_on() {
838 * 3 test_and_set_bit(PENDING)
839 * 4 } set_..._and_clear_pending() {
840 * 5 set_work_data() # clear bit
841 * 6 smp_mb()
842 * 7 work->current_func() {
843 * 8 LOAD event_indicated
844 * }
845 *
846 * Without an explicit full barrier speculative LOAD on line 8 can
847 * be executed before CPU#0 does STORE on line 1. If that happens,
848 * CPU#0 observes the PENDING bit is still set and new execution of
849 * a @work is not queued in a hope, that CPU#1 will eventually
850 * finish the queued @work. Meanwhile CPU#1 does not see
851 * event_indicated is set, because speculative LOAD was executed
852 * before actual STORE.
853 */
854 smp_mb();
855 }
856
work_struct_pwq(unsigned long data)857 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
858 {
859 return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
860 }
861
get_work_pwq(struct work_struct * work)862 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
863 {
864 unsigned long data = atomic_long_read(&work->data);
865
866 if (data & WORK_STRUCT_PWQ)
867 return work_struct_pwq(data);
868 else
869 return NULL;
870 }
871
872 /**
873 * get_work_pool - return the worker_pool a given work was associated with
874 * @work: the work item of interest
875 *
876 * Pools are created and destroyed under wq_pool_mutex, and allows read
877 * access under RCU read lock. As such, this function should be
878 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
879 *
880 * All fields of the returned pool are accessible as long as the above
881 * mentioned locking is in effect. If the returned pool needs to be used
882 * beyond the critical section, the caller is responsible for ensuring the
883 * returned pool is and stays online.
884 *
885 * Return: The worker_pool @work was last associated with. %NULL if none.
886 */
get_work_pool(struct work_struct * work)887 static struct worker_pool *get_work_pool(struct work_struct *work)
888 {
889 unsigned long data = atomic_long_read(&work->data);
890 int pool_id;
891
892 assert_rcu_or_pool_mutex();
893
894 if (data & WORK_STRUCT_PWQ)
895 return work_struct_pwq(data)->pool;
896
897 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
898 if (pool_id == WORK_OFFQ_POOL_NONE)
899 return NULL;
900
901 return idr_find(&worker_pool_idr, pool_id);
902 }
903
shift_and_mask(unsigned long v,u32 shift,u32 bits)904 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
905 {
906 return (v >> shift) & ((1U << bits) - 1);
907 }
908
work_offqd_unpack(struct work_offq_data * offqd,unsigned long data)909 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
910 {
911 WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
912
913 offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
914 WORK_OFFQ_POOL_BITS);
915 offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
916 WORK_OFFQ_DISABLE_BITS);
917 offqd->flags = data & WORK_OFFQ_FLAG_MASK;
918 }
919
work_offqd_pack_flags(struct work_offq_data * offqd)920 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
921 {
922 return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
923 ((unsigned long)offqd->flags);
924 }
925
926 /*
927 * Policy functions. These define the policies on how the global worker
928 * pools are managed. Unless noted otherwise, these functions assume that
929 * they're being called with pool->lock held.
930 */
931
932 /*
933 * Need to wake up a worker? Called from anything but currently
934 * running workers.
935 *
936 * Note that, because unbound workers never contribute to nr_running, this
937 * function will always return %true for unbound pools as long as the
938 * worklist isn't empty.
939 */
need_more_worker(struct worker_pool * pool)940 static bool need_more_worker(struct worker_pool *pool)
941 {
942 return !list_empty(&pool->worklist) && !pool->nr_running;
943 }
944
945 /* Can I start working? Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)946 static bool may_start_working(struct worker_pool *pool)
947 {
948 return pool->nr_idle;
949 }
950
951 /* Do I need to keep working? Called from currently running workers. */
keep_working(struct worker_pool * pool)952 static bool keep_working(struct worker_pool *pool)
953 {
954 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
955 }
956
957 /* Do we need a new worker? Called from manager. */
need_to_create_worker(struct worker_pool * pool)958 static bool need_to_create_worker(struct worker_pool *pool)
959 {
960 return need_more_worker(pool) && !may_start_working(pool);
961 }
962
963 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)964 static bool too_many_workers(struct worker_pool *pool)
965 {
966 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
967 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
968 int nr_busy = pool->nr_workers - nr_idle;
969
970 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
971 }
972
973 /**
974 * worker_set_flags - set worker flags and adjust nr_running accordingly
975 * @worker: self
976 * @flags: flags to set
977 *
978 * Set @flags in @worker->flags and adjust nr_running accordingly.
979 */
worker_set_flags(struct worker * worker,unsigned int flags)980 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
981 {
982 struct worker_pool *pool = worker->pool;
983
984 lockdep_assert_held(&pool->lock);
985
986 /* If transitioning into NOT_RUNNING, adjust nr_running. */
987 if ((flags & WORKER_NOT_RUNNING) &&
988 !(worker->flags & WORKER_NOT_RUNNING)) {
989 pool->nr_running--;
990 }
991
992 worker->flags |= flags;
993 }
994
995 /**
996 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
997 * @worker: self
998 * @flags: flags to clear
999 *
1000 * Clear @flags in @worker->flags and adjust nr_running accordingly.
1001 */
worker_clr_flags(struct worker * worker,unsigned int flags)1002 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1003 {
1004 struct worker_pool *pool = worker->pool;
1005 unsigned int oflags = worker->flags;
1006
1007 lockdep_assert_held(&pool->lock);
1008
1009 worker->flags &= ~flags;
1010
1011 /*
1012 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1013 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1014 * of multiple flags, not a single flag.
1015 */
1016 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1017 if (!(worker->flags & WORKER_NOT_RUNNING))
1018 pool->nr_running++;
1019 }
1020
1021 /* Return the first idle worker. Called with pool->lock held. */
first_idle_worker(struct worker_pool * pool)1022 static struct worker *first_idle_worker(struct worker_pool *pool)
1023 {
1024 if (unlikely(list_empty(&pool->idle_list)))
1025 return NULL;
1026
1027 return list_first_entry(&pool->idle_list, struct worker, entry);
1028 }
1029
1030 /**
1031 * worker_enter_idle - enter idle state
1032 * @worker: worker which is entering idle state
1033 *
1034 * @worker is entering idle state. Update stats and idle timer if
1035 * necessary.
1036 *
1037 * LOCKING:
1038 * raw_spin_lock_irq(pool->lock).
1039 */
worker_enter_idle(struct worker * worker)1040 static void worker_enter_idle(struct worker *worker)
1041 {
1042 struct worker_pool *pool = worker->pool;
1043
1044 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1045 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1046 (worker->hentry.next || worker->hentry.pprev)))
1047 return;
1048
1049 /* can't use worker_set_flags(), also called from create_worker() */
1050 worker->flags |= WORKER_IDLE;
1051 pool->nr_idle++;
1052 worker->last_active = jiffies;
1053
1054 /* idle_list is LIFO */
1055 list_add(&worker->entry, &pool->idle_list);
1056
1057 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1058 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1059
1060 /* Sanity check nr_running. */
1061 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1062 }
1063
1064 /**
1065 * worker_leave_idle - leave idle state
1066 * @worker: worker which is leaving idle state
1067 *
1068 * @worker is leaving idle state. Update stats.
1069 *
1070 * LOCKING:
1071 * raw_spin_lock_irq(pool->lock).
1072 */
worker_leave_idle(struct worker * worker)1073 static void worker_leave_idle(struct worker *worker)
1074 {
1075 struct worker_pool *pool = worker->pool;
1076
1077 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1078 return;
1079 worker_clr_flags(worker, WORKER_IDLE);
1080 pool->nr_idle--;
1081 list_del_init(&worker->entry);
1082 }
1083
1084 /**
1085 * find_worker_executing_work - find worker which is executing a work
1086 * @pool: pool of interest
1087 * @work: work to find worker for
1088 *
1089 * Find a worker which is executing @work on @pool by searching
1090 * @pool->busy_hash which is keyed by the address of @work. For a worker
1091 * to match, its current execution should match the address of @work and
1092 * its work function. This is to avoid unwanted dependency between
1093 * unrelated work executions through a work item being recycled while still
1094 * being executed.
1095 *
1096 * This is a bit tricky. A work item may be freed once its execution
1097 * starts and nothing prevents the freed area from being recycled for
1098 * another work item. If the same work item address ends up being reused
1099 * before the original execution finishes, workqueue will identify the
1100 * recycled work item as currently executing and make it wait until the
1101 * current execution finishes, introducing an unwanted dependency.
1102 *
1103 * This function checks the work item address and work function to avoid
1104 * false positives. Note that this isn't complete as one may construct a
1105 * work function which can introduce dependency onto itself through a
1106 * recycled work item. Well, if somebody wants to shoot oneself in the
1107 * foot that badly, there's only so much we can do, and if such deadlock
1108 * actually occurs, it should be easy to locate the culprit work function.
1109 *
1110 * CONTEXT:
1111 * raw_spin_lock_irq(pool->lock).
1112 *
1113 * Return:
1114 * Pointer to worker which is executing @work if found, %NULL
1115 * otherwise.
1116 */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1117 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1118 struct work_struct *work)
1119 {
1120 struct worker *worker;
1121
1122 hash_for_each_possible(pool->busy_hash, worker, hentry,
1123 (unsigned long)work)
1124 if (worker->current_work == work &&
1125 worker->current_func == work->func)
1126 return worker;
1127
1128 return NULL;
1129 }
1130
1131 /**
1132 * move_linked_works - move linked works to a list
1133 * @work: start of series of works to be scheduled
1134 * @head: target list to append @work to
1135 * @nextp: out parameter for nested worklist walking
1136 *
1137 * Schedule linked works starting from @work to @head. Work series to be
1138 * scheduled starts at @work and includes any consecutive work with
1139 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1140 * @nextp.
1141 *
1142 * CONTEXT:
1143 * raw_spin_lock_irq(pool->lock).
1144 */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1145 static void move_linked_works(struct work_struct *work, struct list_head *head,
1146 struct work_struct **nextp)
1147 {
1148 struct work_struct *n;
1149
1150 /*
1151 * Linked worklist will always end before the end of the list,
1152 * use NULL for list head.
1153 */
1154 list_for_each_entry_safe_from(work, n, NULL, entry) {
1155 list_move_tail(&work->entry, head);
1156 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1157 break;
1158 }
1159
1160 /*
1161 * If we're already inside safe list traversal and have moved
1162 * multiple works to the scheduled queue, the next position
1163 * needs to be updated.
1164 */
1165 if (nextp)
1166 *nextp = n;
1167 }
1168
1169 /**
1170 * assign_work - assign a work item and its linked work items to a worker
1171 * @work: work to assign
1172 * @worker: worker to assign to
1173 * @nextp: out parameter for nested worklist walking
1174 *
1175 * Assign @work and its linked work items to @worker. If @work is already being
1176 * executed by another worker in the same pool, it'll be punted there.
1177 *
1178 * If @nextp is not NULL, it's updated to point to the next work of the last
1179 * scheduled work. This allows assign_work() to be nested inside
1180 * list_for_each_entry_safe().
1181 *
1182 * Returns %true if @work was successfully assigned to @worker. %false if @work
1183 * was punted to another worker already executing it.
1184 */
assign_work(struct work_struct * work,struct worker * worker,struct work_struct ** nextp)1185 static bool assign_work(struct work_struct *work, struct worker *worker,
1186 struct work_struct **nextp)
1187 {
1188 struct worker_pool *pool = worker->pool;
1189 struct worker *collision;
1190
1191 lockdep_assert_held(&pool->lock);
1192
1193 /*
1194 * A single work shouldn't be executed concurrently by multiple workers.
1195 * __queue_work() ensures that @work doesn't jump to a different pool
1196 * while still running in the previous pool. Here, we should ensure that
1197 * @work is not executed concurrently by multiple workers from the same
1198 * pool. Check whether anyone is already processing the work. If so,
1199 * defer the work to the currently executing one.
1200 */
1201 collision = find_worker_executing_work(pool, work);
1202 if (unlikely(collision)) {
1203 move_linked_works(work, &collision->scheduled, nextp);
1204 return false;
1205 }
1206
1207 move_linked_works(work, &worker->scheduled, nextp);
1208 return true;
1209 }
1210
bh_pool_irq_work(struct worker_pool * pool)1211 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1212 {
1213 int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1214
1215 return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1216 }
1217
kick_bh_pool(struct worker_pool * pool)1218 static void kick_bh_pool(struct worker_pool *pool)
1219 {
1220 #ifdef CONFIG_SMP
1221 /* see drain_dead_softirq_workfn() for BH_DRAINING */
1222 if (unlikely(pool->cpu != smp_processor_id() &&
1223 !(pool->flags & POOL_BH_DRAINING))) {
1224 irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1225 return;
1226 }
1227 #endif
1228 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1229 raise_softirq_irqoff(HI_SOFTIRQ);
1230 else
1231 raise_softirq_irqoff(TASKLET_SOFTIRQ);
1232 }
1233
1234 /**
1235 * kick_pool - wake up an idle worker if necessary
1236 * @pool: pool to kick
1237 *
1238 * @pool may have pending work items. Wake up worker if necessary. Returns
1239 * whether a worker was woken up.
1240 */
kick_pool(struct worker_pool * pool)1241 static bool kick_pool(struct worker_pool *pool)
1242 {
1243 struct worker *worker = first_idle_worker(pool);
1244 struct task_struct *p;
1245
1246 lockdep_assert_held(&pool->lock);
1247
1248 if (!need_more_worker(pool) || !worker)
1249 return false;
1250
1251 if (pool->flags & POOL_BH) {
1252 kick_bh_pool(pool);
1253 return true;
1254 }
1255
1256 p = worker->task;
1257
1258 #ifdef CONFIG_SMP
1259 /*
1260 * Idle @worker is about to execute @work and waking up provides an
1261 * opportunity to migrate @worker at a lower cost by setting the task's
1262 * wake_cpu field. Let's see if we want to move @worker to improve
1263 * execution locality.
1264 *
1265 * We're waking the worker that went idle the latest and there's some
1266 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1267 * so, setting the wake_cpu won't do anything. As this is a best-effort
1268 * optimization and the race window is narrow, let's leave as-is for
1269 * now. If this becomes pronounced, we can skip over workers which are
1270 * still on cpu when picking an idle worker.
1271 *
1272 * If @pool has non-strict affinity, @worker might have ended up outside
1273 * its affinity scope. Repatriate.
1274 */
1275 if (!pool->attrs->affn_strict &&
1276 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1277 struct work_struct *work = list_first_entry(&pool->worklist,
1278 struct work_struct, entry);
1279 int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1280 cpu_online_mask);
1281 if (wake_cpu < nr_cpu_ids) {
1282 p->wake_cpu = wake_cpu;
1283 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1284 }
1285 }
1286 #endif
1287 wake_up_process(p);
1288 return true;
1289 }
1290
1291 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1292
1293 /*
1294 * Concurrency-managed per-cpu work items that hog CPU for longer than
1295 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1296 * which prevents them from stalling other concurrency-managed work items. If a
1297 * work function keeps triggering this mechanism, it's likely that the work item
1298 * should be using an unbound workqueue instead.
1299 *
1300 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1301 * and report them so that they can be examined and converted to use unbound
1302 * workqueues as appropriate. To avoid flooding the console, each violating work
1303 * function is tracked and reported with exponential backoff.
1304 */
1305 #define WCI_MAX_ENTS 128
1306
1307 struct wci_ent {
1308 work_func_t func;
1309 atomic64_t cnt;
1310 struct hlist_node hash_node;
1311 };
1312
1313 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1314 static int wci_nr_ents;
1315 static DEFINE_RAW_SPINLOCK(wci_lock);
1316 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1317
wci_find_ent(work_func_t func)1318 static struct wci_ent *wci_find_ent(work_func_t func)
1319 {
1320 struct wci_ent *ent;
1321
1322 hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1323 (unsigned long)func) {
1324 if (ent->func == func)
1325 return ent;
1326 }
1327 return NULL;
1328 }
1329
wq_cpu_intensive_report(work_func_t func)1330 static void wq_cpu_intensive_report(work_func_t func)
1331 {
1332 struct wci_ent *ent;
1333
1334 restart:
1335 ent = wci_find_ent(func);
1336 if (ent) {
1337 u64 cnt;
1338
1339 /*
1340 * Start reporting from the warning_thresh and back off
1341 * exponentially.
1342 */
1343 cnt = atomic64_inc_return_relaxed(&ent->cnt);
1344 if (wq_cpu_intensive_warning_thresh &&
1345 cnt >= wq_cpu_intensive_warning_thresh &&
1346 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1347 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1348 ent->func, wq_cpu_intensive_thresh_us,
1349 atomic64_read(&ent->cnt));
1350 return;
1351 }
1352
1353 /*
1354 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1355 * is exhausted, something went really wrong and we probably made enough
1356 * noise already.
1357 */
1358 if (wci_nr_ents >= WCI_MAX_ENTS)
1359 return;
1360
1361 raw_spin_lock(&wci_lock);
1362
1363 if (wci_nr_ents >= WCI_MAX_ENTS) {
1364 raw_spin_unlock(&wci_lock);
1365 return;
1366 }
1367
1368 if (wci_find_ent(func)) {
1369 raw_spin_unlock(&wci_lock);
1370 goto restart;
1371 }
1372
1373 ent = &wci_ents[wci_nr_ents++];
1374 ent->func = func;
1375 atomic64_set(&ent->cnt, 0);
1376 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1377
1378 raw_spin_unlock(&wci_lock);
1379
1380 goto restart;
1381 }
1382
1383 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
wq_cpu_intensive_report(work_func_t func)1384 static void wq_cpu_intensive_report(work_func_t func) {}
1385 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1386
1387 /**
1388 * wq_worker_running - a worker is running again
1389 * @task: task waking up
1390 *
1391 * This function is called when a worker returns from schedule()
1392 */
wq_worker_running(struct task_struct * task)1393 void wq_worker_running(struct task_struct *task)
1394 {
1395 struct worker *worker = kthread_data(task);
1396
1397 if (!READ_ONCE(worker->sleeping))
1398 return;
1399
1400 /*
1401 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1402 * and the nr_running increment below, we may ruin the nr_running reset
1403 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1404 * pool. Protect against such race.
1405 */
1406 preempt_disable();
1407 if (!(worker->flags & WORKER_NOT_RUNNING))
1408 worker->pool->nr_running++;
1409 preempt_enable();
1410
1411 /*
1412 * CPU intensive auto-detection cares about how long a work item hogged
1413 * CPU without sleeping. Reset the starting timestamp on wakeup.
1414 */
1415 worker->current_at = worker->task->se.sum_exec_runtime;
1416
1417 WRITE_ONCE(worker->sleeping, 0);
1418 }
1419
1420 /**
1421 * wq_worker_sleeping - a worker is going to sleep
1422 * @task: task going to sleep
1423 *
1424 * This function is called from schedule() when a busy worker is
1425 * going to sleep.
1426 */
wq_worker_sleeping(struct task_struct * task)1427 void wq_worker_sleeping(struct task_struct *task)
1428 {
1429 struct worker *worker = kthread_data(task);
1430 struct worker_pool *pool;
1431
1432 /*
1433 * Rescuers, which may not have all the fields set up like normal
1434 * workers, also reach here, let's not access anything before
1435 * checking NOT_RUNNING.
1436 */
1437 if (worker->flags & WORKER_NOT_RUNNING)
1438 return;
1439
1440 pool = worker->pool;
1441
1442 /* Return if preempted before wq_worker_running() was reached */
1443 if (READ_ONCE(worker->sleeping))
1444 return;
1445
1446 WRITE_ONCE(worker->sleeping, 1);
1447 raw_spin_lock_irq(&pool->lock);
1448
1449 /*
1450 * Recheck in case unbind_workers() preempted us. We don't
1451 * want to decrement nr_running after the worker is unbound
1452 * and nr_running has been reset.
1453 */
1454 if (worker->flags & WORKER_NOT_RUNNING) {
1455 raw_spin_unlock_irq(&pool->lock);
1456 return;
1457 }
1458
1459 pool->nr_running--;
1460 if (kick_pool(pool))
1461 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1462
1463 raw_spin_unlock_irq(&pool->lock);
1464 }
1465
1466 /**
1467 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1468 * @task: task currently running
1469 *
1470 * Called from sched_tick(). We're in the IRQ context and the current
1471 * worker's fields which follow the 'K' locking rule can be accessed safely.
1472 */
wq_worker_tick(struct task_struct * task)1473 void wq_worker_tick(struct task_struct *task)
1474 {
1475 struct worker *worker = kthread_data(task);
1476 struct pool_workqueue *pwq = worker->current_pwq;
1477 struct worker_pool *pool = worker->pool;
1478
1479 if (!pwq)
1480 return;
1481
1482 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1483
1484 if (!wq_cpu_intensive_thresh_us)
1485 return;
1486
1487 /*
1488 * If the current worker is concurrency managed and hogged the CPU for
1489 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1490 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1491 *
1492 * Set @worker->sleeping means that @worker is in the process of
1493 * switching out voluntarily and won't be contributing to
1494 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1495 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1496 * double decrements. The task is releasing the CPU anyway. Let's skip.
1497 * We probably want to make this prettier in the future.
1498 */
1499 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1500 worker->task->se.sum_exec_runtime - worker->current_at <
1501 wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1502 return;
1503
1504 raw_spin_lock(&pool->lock);
1505
1506 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1507 wq_cpu_intensive_report(worker->current_func);
1508 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1509
1510 if (kick_pool(pool))
1511 pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1512
1513 raw_spin_unlock(&pool->lock);
1514 }
1515
1516 /**
1517 * wq_worker_last_func - retrieve worker's last work function
1518 * @task: Task to retrieve last work function of.
1519 *
1520 * Determine the last function a worker executed. This is called from
1521 * the scheduler to get a worker's last known identity.
1522 *
1523 * CONTEXT:
1524 * raw_spin_lock_irq(rq->lock)
1525 *
1526 * This function is called during schedule() when a kworker is going
1527 * to sleep. It's used by psi to identify aggregation workers during
1528 * dequeuing, to allow periodic aggregation to shut-off when that
1529 * worker is the last task in the system or cgroup to go to sleep.
1530 *
1531 * As this function doesn't involve any workqueue-related locking, it
1532 * only returns stable values when called from inside the scheduler's
1533 * queuing and dequeuing paths, when @task, which must be a kworker,
1534 * is guaranteed to not be processing any works.
1535 *
1536 * Return:
1537 * The last work function %current executed as a worker, NULL if it
1538 * hasn't executed any work yet.
1539 */
wq_worker_last_func(struct task_struct * task)1540 work_func_t wq_worker_last_func(struct task_struct *task)
1541 {
1542 struct worker *worker = kthread_data(task);
1543
1544 return worker->last_func;
1545 }
1546
1547 /**
1548 * wq_node_nr_active - Determine wq_node_nr_active to use
1549 * @wq: workqueue of interest
1550 * @node: NUMA node, can be %NUMA_NO_NODE
1551 *
1552 * Determine wq_node_nr_active to use for @wq on @node. Returns:
1553 *
1554 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1555 *
1556 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1557 *
1558 * - Otherwise, node_nr_active[@node].
1559 */
wq_node_nr_active(struct workqueue_struct * wq,int node)1560 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1561 int node)
1562 {
1563 if (!(wq->flags & WQ_UNBOUND))
1564 return NULL;
1565
1566 if (node == NUMA_NO_NODE)
1567 node = nr_node_ids;
1568
1569 return wq->node_nr_active[node];
1570 }
1571
1572 /**
1573 * wq_update_node_max_active - Update per-node max_actives to use
1574 * @wq: workqueue to update
1575 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1576 *
1577 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1578 * distributed among nodes according to the proportions of numbers of online
1579 * cpus. The result is always between @wq->min_active and max_active.
1580 */
wq_update_node_max_active(struct workqueue_struct * wq,int off_cpu)1581 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1582 {
1583 struct cpumask *effective = unbound_effective_cpumask(wq);
1584 int min_active = READ_ONCE(wq->min_active);
1585 int max_active = READ_ONCE(wq->max_active);
1586 int total_cpus, node;
1587
1588 lockdep_assert_held(&wq->mutex);
1589
1590 if (!wq_topo_initialized)
1591 return;
1592
1593 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1594 off_cpu = -1;
1595
1596 total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1597 if (off_cpu >= 0)
1598 total_cpus--;
1599
1600 /* If all CPUs of the wq get offline, use the default values */
1601 if (unlikely(!total_cpus)) {
1602 for_each_node(node)
1603 wq_node_nr_active(wq, node)->max = min_active;
1604
1605 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1606 return;
1607 }
1608
1609 for_each_node(node) {
1610 int node_cpus;
1611
1612 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1613 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1614 node_cpus--;
1615
1616 wq_node_nr_active(wq, node)->max =
1617 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1618 min_active, max_active);
1619 }
1620
1621 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1622 }
1623
1624 /**
1625 * get_pwq - get an extra reference on the specified pool_workqueue
1626 * @pwq: pool_workqueue to get
1627 *
1628 * Obtain an extra reference on @pwq. The caller should guarantee that
1629 * @pwq has positive refcnt and be holding the matching pool->lock.
1630 */
get_pwq(struct pool_workqueue * pwq)1631 static void get_pwq(struct pool_workqueue *pwq)
1632 {
1633 lockdep_assert_held(&pwq->pool->lock);
1634 WARN_ON_ONCE(pwq->refcnt <= 0);
1635 pwq->refcnt++;
1636 }
1637
1638 /**
1639 * put_pwq - put a pool_workqueue reference
1640 * @pwq: pool_workqueue to put
1641 *
1642 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1643 * destruction. The caller should be holding the matching pool->lock.
1644 */
put_pwq(struct pool_workqueue * pwq)1645 static void put_pwq(struct pool_workqueue *pwq)
1646 {
1647 lockdep_assert_held(&pwq->pool->lock);
1648 if (likely(--pwq->refcnt))
1649 return;
1650 /*
1651 * @pwq can't be released under pool->lock, bounce to a dedicated
1652 * kthread_worker to avoid A-A deadlocks.
1653 */
1654 kthread_queue_work(pwq_release_worker, &pwq->release_work);
1655 }
1656
1657 /**
1658 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1659 * @pwq: pool_workqueue to put (can be %NULL)
1660 *
1661 * put_pwq() with locking. This function also allows %NULL @pwq.
1662 */
put_pwq_unlocked(struct pool_workqueue * pwq)1663 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1664 {
1665 if (pwq) {
1666 /*
1667 * As both pwqs and pools are RCU protected, the
1668 * following lock operations are safe.
1669 */
1670 raw_spin_lock_irq(&pwq->pool->lock);
1671 put_pwq(pwq);
1672 raw_spin_unlock_irq(&pwq->pool->lock);
1673 }
1674 }
1675
pwq_is_empty(struct pool_workqueue * pwq)1676 static bool pwq_is_empty(struct pool_workqueue *pwq)
1677 {
1678 return !pwq->nr_active && list_empty(&pwq->inactive_works);
1679 }
1680
__pwq_activate_work(struct pool_workqueue * pwq,struct work_struct * work)1681 static void __pwq_activate_work(struct pool_workqueue *pwq,
1682 struct work_struct *work)
1683 {
1684 unsigned long *wdb = work_data_bits(work);
1685
1686 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1687 trace_workqueue_activate_work(work);
1688 if (list_empty(&pwq->pool->worklist))
1689 pwq->pool->watchdog_ts = jiffies;
1690 move_linked_works(work, &pwq->pool->worklist, NULL);
1691 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1692 }
1693
tryinc_node_nr_active(struct wq_node_nr_active * nna)1694 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1695 {
1696 int max = READ_ONCE(nna->max);
1697
1698 while (true) {
1699 int old, tmp;
1700
1701 old = atomic_read(&nna->nr);
1702 if (old >= max)
1703 return false;
1704 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1705 if (tmp == old)
1706 return true;
1707 }
1708 }
1709
1710 /**
1711 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1712 * @pwq: pool_workqueue of interest
1713 * @fill: max_active may have increased, try to increase concurrency level
1714 *
1715 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1716 * successfully obtained. %false otherwise.
1717 */
pwq_tryinc_nr_active(struct pool_workqueue * pwq,bool fill)1718 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1719 {
1720 struct workqueue_struct *wq = pwq->wq;
1721 struct worker_pool *pool = pwq->pool;
1722 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1723 bool obtained = false;
1724
1725 lockdep_assert_held(&pool->lock);
1726
1727 if (!nna) {
1728 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1729 obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1730 goto out;
1731 }
1732
1733 if (unlikely(pwq->plugged))
1734 return false;
1735
1736 /*
1737 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1738 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1739 * concurrency level. Don't jump the line.
1740 *
1741 * We need to ignore the pending test after max_active has increased as
1742 * pwq_dec_nr_active() can only maintain the concurrency level but not
1743 * increase it. This is indicated by @fill.
1744 */
1745 if (!list_empty(&pwq->pending_node) && likely(!fill))
1746 goto out;
1747
1748 obtained = tryinc_node_nr_active(nna);
1749 if (obtained)
1750 goto out;
1751
1752 /*
1753 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1754 * and try again. The smp_mb() is paired with the implied memory barrier
1755 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1756 * we see the decremented $nna->nr or they see non-empty
1757 * $nna->pending_pwqs.
1758 */
1759 raw_spin_lock(&nna->lock);
1760
1761 if (list_empty(&pwq->pending_node))
1762 list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1763 else if (likely(!fill))
1764 goto out_unlock;
1765
1766 smp_mb();
1767
1768 obtained = tryinc_node_nr_active(nna);
1769
1770 /*
1771 * If @fill, @pwq might have already been pending. Being spuriously
1772 * pending in cold paths doesn't affect anything. Let's leave it be.
1773 */
1774 if (obtained && likely(!fill))
1775 list_del_init(&pwq->pending_node);
1776
1777 out_unlock:
1778 raw_spin_unlock(&nna->lock);
1779 out:
1780 if (obtained)
1781 pwq->nr_active++;
1782 return obtained;
1783 }
1784
1785 /**
1786 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1787 * @pwq: pool_workqueue of interest
1788 * @fill: max_active may have increased, try to increase concurrency level
1789 *
1790 * Activate the first inactive work item of @pwq if available and allowed by
1791 * max_active limit.
1792 *
1793 * Returns %true if an inactive work item has been activated. %false if no
1794 * inactive work item is found or max_active limit is reached.
1795 */
pwq_activate_first_inactive(struct pool_workqueue * pwq,bool fill)1796 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1797 {
1798 struct work_struct *work =
1799 list_first_entry_or_null(&pwq->inactive_works,
1800 struct work_struct, entry);
1801
1802 if (work && pwq_tryinc_nr_active(pwq, fill)) {
1803 __pwq_activate_work(pwq, work);
1804 return true;
1805 } else {
1806 return false;
1807 }
1808 }
1809
1810 /**
1811 * unplug_oldest_pwq - unplug the oldest pool_workqueue
1812 * @wq: workqueue_struct where its oldest pwq is to be unplugged
1813 *
1814 * This function should only be called for ordered workqueues where only the
1815 * oldest pwq is unplugged, the others are plugged to suspend execution to
1816 * ensure proper work item ordering::
1817 *
1818 * dfl_pwq --------------+ [P] - plugged
1819 * |
1820 * v
1821 * pwqs -> A -> B [P] -> C [P] (newest)
1822 * | | |
1823 * 1 3 5
1824 * | | |
1825 * 2 4 6
1826 *
1827 * When the oldest pwq is drained and removed, this function should be called
1828 * to unplug the next oldest one to start its work item execution. Note that
1829 * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1830 * the list is the oldest.
1831 */
unplug_oldest_pwq(struct workqueue_struct * wq)1832 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1833 {
1834 struct pool_workqueue *pwq;
1835
1836 lockdep_assert_held(&wq->mutex);
1837
1838 /* Caller should make sure that pwqs isn't empty before calling */
1839 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1840 pwqs_node);
1841 raw_spin_lock_irq(&pwq->pool->lock);
1842 if (pwq->plugged) {
1843 pwq->plugged = false;
1844 if (pwq_activate_first_inactive(pwq, true))
1845 kick_pool(pwq->pool);
1846 }
1847 raw_spin_unlock_irq(&pwq->pool->lock);
1848 }
1849
1850 /**
1851 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1852 * @nna: wq_node_nr_active to activate a pending pwq for
1853 * @caller_pool: worker_pool the caller is locking
1854 *
1855 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1856 * @caller_pool may be unlocked and relocked to lock other worker_pools.
1857 */
node_activate_pending_pwq(struct wq_node_nr_active * nna,struct worker_pool * caller_pool)1858 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1859 struct worker_pool *caller_pool)
1860 {
1861 struct worker_pool *locked_pool = caller_pool;
1862 struct pool_workqueue *pwq;
1863 struct work_struct *work;
1864
1865 lockdep_assert_held(&caller_pool->lock);
1866
1867 raw_spin_lock(&nna->lock);
1868 retry:
1869 pwq = list_first_entry_or_null(&nna->pending_pwqs,
1870 struct pool_workqueue, pending_node);
1871 if (!pwq)
1872 goto out_unlock;
1873
1874 /*
1875 * If @pwq is for a different pool than @locked_pool, we need to lock
1876 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1877 * / lock dance. For that, we also need to release @nna->lock as it's
1878 * nested inside pool locks.
1879 */
1880 if (pwq->pool != locked_pool) {
1881 raw_spin_unlock(&locked_pool->lock);
1882 locked_pool = pwq->pool;
1883 if (!raw_spin_trylock(&locked_pool->lock)) {
1884 raw_spin_unlock(&nna->lock);
1885 raw_spin_lock(&locked_pool->lock);
1886 raw_spin_lock(&nna->lock);
1887 goto retry;
1888 }
1889 }
1890
1891 /*
1892 * $pwq may not have any inactive work items due to e.g. cancellations.
1893 * Drop it from pending_pwqs and see if there's another one.
1894 */
1895 work = list_first_entry_or_null(&pwq->inactive_works,
1896 struct work_struct, entry);
1897 if (!work) {
1898 list_del_init(&pwq->pending_node);
1899 goto retry;
1900 }
1901
1902 /*
1903 * Acquire an nr_active count and activate the inactive work item. If
1904 * $pwq still has inactive work items, rotate it to the end of the
1905 * pending_pwqs so that we round-robin through them. This means that
1906 * inactive work items are not activated in queueing order which is fine
1907 * given that there has never been any ordering across different pwqs.
1908 */
1909 if (likely(tryinc_node_nr_active(nna))) {
1910 pwq->nr_active++;
1911 __pwq_activate_work(pwq, work);
1912
1913 if (list_empty(&pwq->inactive_works))
1914 list_del_init(&pwq->pending_node);
1915 else
1916 list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1917
1918 /* if activating a foreign pool, make sure it's running */
1919 if (pwq->pool != caller_pool)
1920 kick_pool(pwq->pool);
1921 }
1922
1923 out_unlock:
1924 raw_spin_unlock(&nna->lock);
1925 if (locked_pool != caller_pool) {
1926 raw_spin_unlock(&locked_pool->lock);
1927 raw_spin_lock(&caller_pool->lock);
1928 }
1929 }
1930
1931 /**
1932 * pwq_dec_nr_active - Retire an active count
1933 * @pwq: pool_workqueue of interest
1934 *
1935 * Decrement @pwq's nr_active and try to activate the first inactive work item.
1936 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1937 */
pwq_dec_nr_active(struct pool_workqueue * pwq)1938 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1939 {
1940 struct worker_pool *pool = pwq->pool;
1941 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1942
1943 lockdep_assert_held(&pool->lock);
1944
1945 /*
1946 * @pwq->nr_active should be decremented for both percpu and unbound
1947 * workqueues.
1948 */
1949 pwq->nr_active--;
1950
1951 /*
1952 * For a percpu workqueue, it's simple. Just need to kick the first
1953 * inactive work item on @pwq itself.
1954 */
1955 if (!nna) {
1956 pwq_activate_first_inactive(pwq, false);
1957 return;
1958 }
1959
1960 /*
1961 * If @pwq is for an unbound workqueue, it's more complicated because
1962 * multiple pwqs and pools may be sharing the nr_active count. When a
1963 * pwq needs to wait for an nr_active count, it puts itself on
1964 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1965 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1966 * guarantee that either we see non-empty pending_pwqs or they see
1967 * decremented $nna->nr.
1968 *
1969 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1970 * max_active gets updated. However, it is guaranteed to be equal to or
1971 * larger than @pwq->wq->min_active which is above zero unless freezing.
1972 * This maintains the forward progress guarantee.
1973 */
1974 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1975 return;
1976
1977 if (!list_empty(&nna->pending_pwqs))
1978 node_activate_pending_pwq(nna, pool);
1979 }
1980
1981 /**
1982 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1983 * @pwq: pwq of interest
1984 * @work_data: work_data of work which left the queue
1985 *
1986 * A work either has completed or is removed from pending queue,
1987 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1988 *
1989 * NOTE:
1990 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1991 * and thus should be called after all other state updates for the in-flight
1992 * work item is complete.
1993 *
1994 * CONTEXT:
1995 * raw_spin_lock_irq(pool->lock).
1996 */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,unsigned long work_data)1997 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1998 {
1999 int color = get_work_color(work_data);
2000
2001 if (!(work_data & WORK_STRUCT_INACTIVE))
2002 pwq_dec_nr_active(pwq);
2003
2004 pwq->nr_in_flight[color]--;
2005
2006 /* is flush in progress and are we at the flushing tip? */
2007 if (likely(pwq->flush_color != color))
2008 goto out_put;
2009
2010 /* are there still in-flight works? */
2011 if (pwq->nr_in_flight[color])
2012 goto out_put;
2013
2014 /* this pwq is done, clear flush_color */
2015 pwq->flush_color = -1;
2016
2017 /*
2018 * If this was the last pwq, wake up the first flusher. It
2019 * will handle the rest.
2020 */
2021 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2022 complete(&pwq->wq->first_flusher->done);
2023 out_put:
2024 put_pwq(pwq);
2025 }
2026
2027 /**
2028 * try_to_grab_pending - steal work item from worklist and disable irq
2029 * @work: work item to steal
2030 * @cflags: %WORK_CANCEL_ flags
2031 * @irq_flags: place to store irq state
2032 *
2033 * Try to grab PENDING bit of @work. This function can handle @work in any
2034 * stable state - idle, on timer or on worklist.
2035 *
2036 * Return:
2037 *
2038 * ======== ================================================================
2039 * 1 if @work was pending and we successfully stole PENDING
2040 * 0 if @work was idle and we claimed PENDING
2041 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
2042 * ======== ================================================================
2043 *
2044 * Note:
2045 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
2046 * interrupted while holding PENDING and @work off queue, irq must be
2047 * disabled on entry. This, combined with delayed_work->timer being
2048 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2049 *
2050 * On successful return, >= 0, irq is disabled and the caller is
2051 * responsible for releasing it using local_irq_restore(*@irq_flags).
2052 *
2053 * This function is safe to call from any context including IRQ handler.
2054 */
try_to_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2055 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2056 unsigned long *irq_flags)
2057 {
2058 struct worker_pool *pool;
2059 struct pool_workqueue *pwq;
2060
2061 local_irq_save(*irq_flags);
2062
2063 /* try to steal the timer if it exists */
2064 if (cflags & WORK_CANCEL_DELAYED) {
2065 struct delayed_work *dwork = to_delayed_work(work);
2066
2067 /*
2068 * dwork->timer is irqsafe. If del_timer() fails, it's
2069 * guaranteed that the timer is not queued anywhere and not
2070 * running on the local CPU.
2071 */
2072 if (likely(del_timer(&dwork->timer)))
2073 return 1;
2074 }
2075
2076 /* try to claim PENDING the normal way */
2077 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2078 return 0;
2079
2080 rcu_read_lock();
2081 /*
2082 * The queueing is in progress, or it is already queued. Try to
2083 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2084 */
2085 pool = get_work_pool(work);
2086 if (!pool)
2087 goto fail;
2088
2089 raw_spin_lock(&pool->lock);
2090 /*
2091 * work->data is guaranteed to point to pwq only while the work
2092 * item is queued on pwq->wq, and both updating work->data to point
2093 * to pwq on queueing and to pool on dequeueing are done under
2094 * pwq->pool->lock. This in turn guarantees that, if work->data
2095 * points to pwq which is associated with a locked pool, the work
2096 * item is currently queued on that pool.
2097 */
2098 pwq = get_work_pwq(work);
2099 if (pwq && pwq->pool == pool) {
2100 unsigned long work_data = *work_data_bits(work);
2101
2102 debug_work_deactivate(work);
2103
2104 /*
2105 * A cancelable inactive work item must be in the
2106 * pwq->inactive_works since a queued barrier can't be
2107 * canceled (see the comments in insert_wq_barrier()).
2108 *
2109 * An inactive work item cannot be deleted directly because
2110 * it might have linked barrier work items which, if left
2111 * on the inactive_works list, will confuse pwq->nr_active
2112 * management later on and cause stall. Move the linked
2113 * barrier work items to the worklist when deleting the grabbed
2114 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that
2115 * it doesn't participate in nr_active management in later
2116 * pwq_dec_nr_in_flight().
2117 */
2118 if (work_data & WORK_STRUCT_INACTIVE)
2119 move_linked_works(work, &pwq->pool->worklist, NULL);
2120
2121 list_del_init(&work->entry);
2122
2123 /*
2124 * work->data points to pwq iff queued. Let's point to pool. As
2125 * this destroys work->data needed by the next step, stash it.
2126 */
2127 set_work_pool_and_keep_pending(work, pool->id,
2128 pool_offq_flags(pool));
2129
2130 /* must be the last step, see the function comment */
2131 pwq_dec_nr_in_flight(pwq, work_data);
2132
2133 raw_spin_unlock(&pool->lock);
2134 rcu_read_unlock();
2135 return 1;
2136 }
2137 raw_spin_unlock(&pool->lock);
2138 fail:
2139 rcu_read_unlock();
2140 local_irq_restore(*irq_flags);
2141 return -EAGAIN;
2142 }
2143
2144 /**
2145 * work_grab_pending - steal work item from worklist and disable irq
2146 * @work: work item to steal
2147 * @cflags: %WORK_CANCEL_ flags
2148 * @irq_flags: place to store IRQ state
2149 *
2150 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2151 * or on worklist.
2152 *
2153 * Can be called from any context. IRQ is disabled on return with IRQ state
2154 * stored in *@irq_flags. The caller is responsible for re-enabling it using
2155 * local_irq_restore().
2156 *
2157 * Returns %true if @work was pending. %false if idle.
2158 */
work_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2159 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2160 unsigned long *irq_flags)
2161 {
2162 int ret;
2163
2164 while (true) {
2165 ret = try_to_grab_pending(work, cflags, irq_flags);
2166 if (ret >= 0)
2167 return ret;
2168 cpu_relax();
2169 }
2170 }
2171
2172 /**
2173 * insert_work - insert a work into a pool
2174 * @pwq: pwq @work belongs to
2175 * @work: work to insert
2176 * @head: insertion point
2177 * @extra_flags: extra WORK_STRUCT_* flags to set
2178 *
2179 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
2180 * work_struct flags.
2181 *
2182 * CONTEXT:
2183 * raw_spin_lock_irq(pool->lock).
2184 */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)2185 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2186 struct list_head *head, unsigned int extra_flags)
2187 {
2188 debug_work_activate(work);
2189
2190 /* record the work call stack in order to print it in KASAN reports */
2191 kasan_record_aux_stack_noalloc(work);
2192
2193 /* we own @work, set data and link */
2194 set_work_pwq(work, pwq, extra_flags);
2195 list_add_tail(&work->entry, head);
2196 get_pwq(pwq);
2197 }
2198
2199 /*
2200 * Test whether @work is being queued from another work executing on the
2201 * same workqueue.
2202 */
is_chained_work(struct workqueue_struct * wq)2203 static bool is_chained_work(struct workqueue_struct *wq)
2204 {
2205 struct worker *worker;
2206
2207 worker = current_wq_worker();
2208 /*
2209 * Return %true iff I'm a worker executing a work item on @wq. If
2210 * I'm @worker, it's safe to dereference it without locking.
2211 */
2212 return worker && worker->current_pwq->wq == wq;
2213 }
2214
2215 /*
2216 * When queueing an unbound work item to a wq, prefer local CPU if allowed
2217 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
2218 * avoid perturbing sensitive tasks.
2219 */
wq_select_unbound_cpu(int cpu)2220 static int wq_select_unbound_cpu(int cpu)
2221 {
2222 int new_cpu;
2223
2224 if (likely(!wq_debug_force_rr_cpu)) {
2225 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2226 return cpu;
2227 } else {
2228 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2229 }
2230
2231 new_cpu = __this_cpu_read(wq_rr_cpu_last);
2232 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2233 if (unlikely(new_cpu >= nr_cpu_ids)) {
2234 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2235 if (unlikely(new_cpu >= nr_cpu_ids))
2236 return cpu;
2237 }
2238 __this_cpu_write(wq_rr_cpu_last, new_cpu);
2239
2240 return new_cpu;
2241 }
2242
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)2243 static void __queue_work(int cpu, struct workqueue_struct *wq,
2244 struct work_struct *work)
2245 {
2246 struct pool_workqueue *pwq;
2247 struct worker_pool *last_pool, *pool;
2248 unsigned int work_flags;
2249 unsigned int req_cpu = cpu;
2250
2251 /*
2252 * While a work item is PENDING && off queue, a task trying to
2253 * steal the PENDING will busy-loop waiting for it to either get
2254 * queued or lose PENDING. Grabbing PENDING and queueing should
2255 * happen with IRQ disabled.
2256 */
2257 lockdep_assert_irqs_disabled();
2258
2259 /*
2260 * For a draining wq, only works from the same workqueue are
2261 * allowed. The __WQ_DESTROYING helps to spot the issue that
2262 * queues a new work item to a wq after destroy_workqueue(wq).
2263 */
2264 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2265 WARN_ON_ONCE(!is_chained_work(wq))))
2266 return;
2267 rcu_read_lock();
2268 retry:
2269 /* pwq which will be used unless @work is executing elsewhere */
2270 if (req_cpu == WORK_CPU_UNBOUND) {
2271 if (wq->flags & WQ_UNBOUND)
2272 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2273 else
2274 cpu = raw_smp_processor_id();
2275 }
2276
2277 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2278 pool = pwq->pool;
2279
2280 /*
2281 * If @work was previously on a different pool, it might still be
2282 * running there, in which case the work needs to be queued on that
2283 * pool to guarantee non-reentrancy.
2284 *
2285 * For ordered workqueue, work items must be queued on the newest pwq
2286 * for accurate order management. Guaranteed order also guarantees
2287 * non-reentrancy. See the comments above unplug_oldest_pwq().
2288 */
2289 last_pool = get_work_pool(work);
2290 if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) {
2291 struct worker *worker;
2292
2293 raw_spin_lock(&last_pool->lock);
2294
2295 worker = find_worker_executing_work(last_pool, work);
2296
2297 if (worker && worker->current_pwq->wq == wq) {
2298 pwq = worker->current_pwq;
2299 pool = pwq->pool;
2300 WARN_ON_ONCE(pool != last_pool);
2301 } else {
2302 /* meh... not running there, queue here */
2303 raw_spin_unlock(&last_pool->lock);
2304 raw_spin_lock(&pool->lock);
2305 }
2306 } else {
2307 raw_spin_lock(&pool->lock);
2308 }
2309
2310 /*
2311 * pwq is determined and locked. For unbound pools, we could have raced
2312 * with pwq release and it could already be dead. If its refcnt is zero,
2313 * repeat pwq selection. Note that unbound pwqs never die without
2314 * another pwq replacing it in cpu_pwq or while work items are executing
2315 * on it, so the retrying is guaranteed to make forward-progress.
2316 */
2317 if (unlikely(!pwq->refcnt)) {
2318 if (wq->flags & WQ_UNBOUND) {
2319 raw_spin_unlock(&pool->lock);
2320 cpu_relax();
2321 goto retry;
2322 }
2323 /* oops */
2324 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2325 wq->name, cpu);
2326 }
2327
2328 /* pwq determined, queue */
2329 trace_workqueue_queue_work(req_cpu, pwq, work);
2330
2331 if (WARN_ON(!list_empty(&work->entry)))
2332 goto out;
2333
2334 pwq->nr_in_flight[pwq->work_color]++;
2335 work_flags = work_color_to_flags(pwq->work_color);
2336
2337 /*
2338 * Limit the number of concurrently active work items to max_active.
2339 * @work must also queue behind existing inactive work items to maintain
2340 * ordering when max_active changes. See wq_adjust_max_active().
2341 */
2342 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2343 if (list_empty(&pool->worklist))
2344 pool->watchdog_ts = jiffies;
2345
2346 trace_workqueue_activate_work(work);
2347 insert_work(pwq, work, &pool->worklist, work_flags);
2348 kick_pool(pool);
2349 } else {
2350 work_flags |= WORK_STRUCT_INACTIVE;
2351 insert_work(pwq, work, &pwq->inactive_works, work_flags);
2352 }
2353
2354 out:
2355 raw_spin_unlock(&pool->lock);
2356 rcu_read_unlock();
2357 }
2358
clear_pending_if_disabled(struct work_struct * work)2359 static bool clear_pending_if_disabled(struct work_struct *work)
2360 {
2361 unsigned long data = *work_data_bits(work);
2362 struct work_offq_data offqd;
2363
2364 if (likely((data & WORK_STRUCT_PWQ) ||
2365 !(data & WORK_OFFQ_DISABLE_MASK)))
2366 return false;
2367
2368 work_offqd_unpack(&offqd, data);
2369 set_work_pool_and_clear_pending(work, offqd.pool_id,
2370 work_offqd_pack_flags(&offqd));
2371 return true;
2372 }
2373
2374 /**
2375 * queue_work_on - queue work on specific cpu
2376 * @cpu: CPU number to execute work on
2377 * @wq: workqueue to use
2378 * @work: work to queue
2379 *
2380 * We queue the work to a specific CPU, the caller must ensure it
2381 * can't go away. Callers that fail to ensure that the specified
2382 * CPU cannot go away will execute on a randomly chosen CPU.
2383 * But note well that callers specifying a CPU that never has been
2384 * online will get a splat.
2385 *
2386 * Return: %false if @work was already on a queue, %true otherwise.
2387 */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)2388 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2389 struct work_struct *work)
2390 {
2391 bool ret = false;
2392 unsigned long irq_flags;
2393
2394 local_irq_save(irq_flags);
2395
2396 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2397 !clear_pending_if_disabled(work)) {
2398 __queue_work(cpu, wq, work);
2399 ret = true;
2400 }
2401
2402 local_irq_restore(irq_flags);
2403 return ret;
2404 }
2405 EXPORT_SYMBOL(queue_work_on);
2406
2407 /**
2408 * select_numa_node_cpu - Select a CPU based on NUMA node
2409 * @node: NUMA node ID that we want to select a CPU from
2410 *
2411 * This function will attempt to find a "random" cpu available on a given
2412 * node. If there are no CPUs available on the given node it will return
2413 * WORK_CPU_UNBOUND indicating that we should just schedule to any
2414 * available CPU if we need to schedule this work.
2415 */
select_numa_node_cpu(int node)2416 static int select_numa_node_cpu(int node)
2417 {
2418 int cpu;
2419
2420 /* Delay binding to CPU if node is not valid or online */
2421 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2422 return WORK_CPU_UNBOUND;
2423
2424 /* Use local node/cpu if we are already there */
2425 cpu = raw_smp_processor_id();
2426 if (node == cpu_to_node(cpu))
2427 return cpu;
2428
2429 /* Use "random" otherwise know as "first" online CPU of node */
2430 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2431
2432 /* If CPU is valid return that, otherwise just defer */
2433 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2434 }
2435
2436 /**
2437 * queue_work_node - queue work on a "random" cpu for a given NUMA node
2438 * @node: NUMA node that we are targeting the work for
2439 * @wq: workqueue to use
2440 * @work: work to queue
2441 *
2442 * We queue the work to a "random" CPU within a given NUMA node. The basic
2443 * idea here is to provide a way to somehow associate work with a given
2444 * NUMA node.
2445 *
2446 * This function will only make a best effort attempt at getting this onto
2447 * the right NUMA node. If no node is requested or the requested node is
2448 * offline then we just fall back to standard queue_work behavior.
2449 *
2450 * Currently the "random" CPU ends up being the first available CPU in the
2451 * intersection of cpu_online_mask and the cpumask of the node, unless we
2452 * are running on the node. In that case we just use the current CPU.
2453 *
2454 * Return: %false if @work was already on a queue, %true otherwise.
2455 */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)2456 bool queue_work_node(int node, struct workqueue_struct *wq,
2457 struct work_struct *work)
2458 {
2459 unsigned long irq_flags;
2460 bool ret = false;
2461
2462 /*
2463 * This current implementation is specific to unbound workqueues.
2464 * Specifically we only return the first available CPU for a given
2465 * node instead of cycling through individual CPUs within the node.
2466 *
2467 * If this is used with a per-cpu workqueue then the logic in
2468 * workqueue_select_cpu_near would need to be updated to allow for
2469 * some round robin type logic.
2470 */
2471 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2472
2473 local_irq_save(irq_flags);
2474
2475 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2476 !clear_pending_if_disabled(work)) {
2477 int cpu = select_numa_node_cpu(node);
2478
2479 __queue_work(cpu, wq, work);
2480 ret = true;
2481 }
2482
2483 local_irq_restore(irq_flags);
2484 return ret;
2485 }
2486 EXPORT_SYMBOL_GPL(queue_work_node);
2487
delayed_work_timer_fn(struct timer_list * t)2488 void delayed_work_timer_fn(struct timer_list *t)
2489 {
2490 struct delayed_work *dwork = from_timer(dwork, t, timer);
2491
2492 /* should have been called from irqsafe timer with irq already off */
2493 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2494 }
2495 EXPORT_SYMBOL(delayed_work_timer_fn);
2496
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2497 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2498 struct delayed_work *dwork, unsigned long delay)
2499 {
2500 struct timer_list *timer = &dwork->timer;
2501 struct work_struct *work = &dwork->work;
2502
2503 WARN_ON_ONCE(!wq);
2504 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2505 WARN_ON_ONCE(timer_pending(timer));
2506 WARN_ON_ONCE(!list_empty(&work->entry));
2507
2508 /*
2509 * If @delay is 0, queue @dwork->work immediately. This is for
2510 * both optimization and correctness. The earliest @timer can
2511 * expire is on the closest next tick and delayed_work users depend
2512 * on that there's no such delay when @delay is 0.
2513 */
2514 if (!delay) {
2515 __queue_work(cpu, wq, &dwork->work);
2516 return;
2517 }
2518
2519 dwork->wq = wq;
2520 dwork->cpu = cpu;
2521 timer->expires = jiffies + delay;
2522
2523 if (housekeeping_enabled(HK_TYPE_TIMER)) {
2524 /* If the current cpu is a housekeeping cpu, use it. */
2525 cpu = smp_processor_id();
2526 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2527 cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2528 add_timer_on(timer, cpu);
2529 } else {
2530 if (likely(cpu == WORK_CPU_UNBOUND))
2531 add_timer_global(timer);
2532 else
2533 add_timer_on(timer, cpu);
2534 }
2535 }
2536
2537 /**
2538 * queue_delayed_work_on - queue work on specific CPU after delay
2539 * @cpu: CPU number to execute work on
2540 * @wq: workqueue to use
2541 * @dwork: work to queue
2542 * @delay: number of jiffies to wait before queueing
2543 *
2544 * Return: %false if @work was already on a queue, %true otherwise. If
2545 * @delay is zero and @dwork is idle, it will be scheduled for immediate
2546 * execution.
2547 */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2548 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2549 struct delayed_work *dwork, unsigned long delay)
2550 {
2551 struct work_struct *work = &dwork->work;
2552 bool ret = false;
2553 unsigned long irq_flags;
2554
2555 /* read the comment in __queue_work() */
2556 local_irq_save(irq_flags);
2557
2558 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2559 !clear_pending_if_disabled(work)) {
2560 __queue_delayed_work(cpu, wq, dwork, delay);
2561 ret = true;
2562 }
2563
2564 local_irq_restore(irq_flags);
2565 return ret;
2566 }
2567 EXPORT_SYMBOL(queue_delayed_work_on);
2568
2569 /**
2570 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2571 * @cpu: CPU number to execute work on
2572 * @wq: workqueue to use
2573 * @dwork: work to queue
2574 * @delay: number of jiffies to wait before queueing
2575 *
2576 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2577 * modify @dwork's timer so that it expires after @delay. If @delay is
2578 * zero, @work is guaranteed to be scheduled immediately regardless of its
2579 * current state.
2580 *
2581 * Return: %false if @dwork was idle and queued, %true if @dwork was
2582 * pending and its timer was modified.
2583 *
2584 * This function is safe to call from any context including IRQ handler.
2585 * See try_to_grab_pending() for details.
2586 */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2587 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2588 struct delayed_work *dwork, unsigned long delay)
2589 {
2590 unsigned long irq_flags;
2591 bool ret;
2592
2593 ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
2594
2595 if (!clear_pending_if_disabled(&dwork->work))
2596 __queue_delayed_work(cpu, wq, dwork, delay);
2597
2598 local_irq_restore(irq_flags);
2599 return ret;
2600 }
2601 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2602
rcu_work_rcufn(struct rcu_head * rcu)2603 static void rcu_work_rcufn(struct rcu_head *rcu)
2604 {
2605 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2606
2607 /* read the comment in __queue_work() */
2608 local_irq_disable();
2609 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2610 local_irq_enable();
2611 }
2612
2613 /**
2614 * queue_rcu_work - queue work after a RCU grace period
2615 * @wq: workqueue to use
2616 * @rwork: work to queue
2617 *
2618 * Return: %false if @rwork was already pending, %true otherwise. Note
2619 * that a full RCU grace period is guaranteed only after a %true return.
2620 * While @rwork is guaranteed to be executed after a %false return, the
2621 * execution may happen before a full RCU grace period has passed.
2622 */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)2623 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2624 {
2625 struct work_struct *work = &rwork->work;
2626
2627 /*
2628 * rcu_work can't be canceled or disabled. Warn if the user reached
2629 * inside @rwork and disabled the inner work.
2630 */
2631 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2632 !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2633 rwork->wq = wq;
2634 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2635 return true;
2636 }
2637
2638 return false;
2639 }
2640 EXPORT_SYMBOL(queue_rcu_work);
2641
alloc_worker(int node)2642 static struct worker *alloc_worker(int node)
2643 {
2644 struct worker *worker;
2645
2646 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2647 if (worker) {
2648 INIT_LIST_HEAD(&worker->entry);
2649 INIT_LIST_HEAD(&worker->scheduled);
2650 INIT_LIST_HEAD(&worker->node);
2651 /* on creation a worker is in !idle && prep state */
2652 worker->flags = WORKER_PREP;
2653 }
2654 return worker;
2655 }
2656
pool_allowed_cpus(struct worker_pool * pool)2657 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2658 {
2659 if (pool->cpu < 0 && pool->attrs->affn_strict)
2660 return pool->attrs->__pod_cpumask;
2661 else
2662 return pool->attrs->cpumask;
2663 }
2664
2665 /**
2666 * worker_attach_to_pool() - attach a worker to a pool
2667 * @worker: worker to be attached
2668 * @pool: the target pool
2669 *
2670 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
2671 * cpu-binding of @worker are kept coordinated with the pool across
2672 * cpu-[un]hotplugs.
2673 */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)2674 static void worker_attach_to_pool(struct worker *worker,
2675 struct worker_pool *pool)
2676 {
2677 mutex_lock(&wq_pool_attach_mutex);
2678
2679 /*
2680 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2681 * across this function. See the comments above the flag definition for
2682 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2683 */
2684 if (pool->flags & POOL_DISASSOCIATED) {
2685 worker->flags |= WORKER_UNBOUND;
2686 } else {
2687 WARN_ON_ONCE(pool->flags & POOL_BH);
2688 kthread_set_per_cpu(worker->task, pool->cpu);
2689 }
2690
2691 if (worker->rescue_wq)
2692 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2693
2694 list_add_tail(&worker->node, &pool->workers);
2695 worker->pool = pool;
2696
2697 mutex_unlock(&wq_pool_attach_mutex);
2698 }
2699
unbind_worker(struct worker * worker)2700 static void unbind_worker(struct worker *worker)
2701 {
2702 lockdep_assert_held(&wq_pool_attach_mutex);
2703
2704 kthread_set_per_cpu(worker->task, -1);
2705 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2706 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2707 else
2708 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2709 }
2710
2711
detach_worker(struct worker * worker)2712 static void detach_worker(struct worker *worker)
2713 {
2714 lockdep_assert_held(&wq_pool_attach_mutex);
2715
2716 unbind_worker(worker);
2717 list_del(&worker->node);
2718 }
2719
2720 /**
2721 * worker_detach_from_pool() - detach a worker from its pool
2722 * @worker: worker which is attached to its pool
2723 *
2724 * Undo the attaching which had been done in worker_attach_to_pool(). The
2725 * caller worker shouldn't access to the pool after detached except it has
2726 * other reference to the pool.
2727 */
worker_detach_from_pool(struct worker * worker)2728 static void worker_detach_from_pool(struct worker *worker)
2729 {
2730 struct worker_pool *pool = worker->pool;
2731
2732 /* there is one permanent BH worker per CPU which should never detach */
2733 WARN_ON_ONCE(pool->flags & POOL_BH);
2734
2735 mutex_lock(&wq_pool_attach_mutex);
2736 detach_worker(worker);
2737 worker->pool = NULL;
2738 mutex_unlock(&wq_pool_attach_mutex);
2739
2740 /* clear leftover flags without pool->lock after it is detached */
2741 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2742 }
2743
format_worker_id(char * buf,size_t size,struct worker * worker,struct worker_pool * pool)2744 static int format_worker_id(char *buf, size_t size, struct worker *worker,
2745 struct worker_pool *pool)
2746 {
2747 if (worker->rescue_wq)
2748 return scnprintf(buf, size, "kworker/R-%s",
2749 worker->rescue_wq->name);
2750
2751 if (pool) {
2752 if (pool->cpu >= 0)
2753 return scnprintf(buf, size, "kworker/%d:%d%s",
2754 pool->cpu, worker->id,
2755 pool->attrs->nice < 0 ? "H" : "");
2756 else
2757 return scnprintf(buf, size, "kworker/u%d:%d",
2758 pool->id, worker->id);
2759 } else {
2760 return scnprintf(buf, size, "kworker/dying");
2761 }
2762 }
2763
2764 /**
2765 * create_worker - create a new workqueue worker
2766 * @pool: pool the new worker will belong to
2767 *
2768 * Create and start a new worker which is attached to @pool.
2769 *
2770 * CONTEXT:
2771 * Might sleep. Does GFP_KERNEL allocations.
2772 *
2773 * Return:
2774 * Pointer to the newly created worker.
2775 */
create_worker(struct worker_pool * pool)2776 static struct worker *create_worker(struct worker_pool *pool)
2777 {
2778 struct worker *worker;
2779 int id;
2780
2781 /* ID is needed to determine kthread name */
2782 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2783 if (id < 0) {
2784 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2785 ERR_PTR(id));
2786 return NULL;
2787 }
2788
2789 worker = alloc_worker(pool->node);
2790 if (!worker) {
2791 pr_err_once("workqueue: Failed to allocate a worker\n");
2792 goto fail;
2793 }
2794
2795 worker->id = id;
2796
2797 if (!(pool->flags & POOL_BH)) {
2798 char id_buf[WORKER_ID_LEN];
2799
2800 format_worker_id(id_buf, sizeof(id_buf), worker, pool);
2801 worker->task = kthread_create_on_node(worker_thread, worker,
2802 pool->node, "%s", id_buf);
2803 if (IS_ERR(worker->task)) {
2804 if (PTR_ERR(worker->task) == -EINTR) {
2805 pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n",
2806 id_buf);
2807 } else {
2808 pr_err_once("workqueue: Failed to create a worker thread: %pe",
2809 worker->task);
2810 }
2811 goto fail;
2812 }
2813
2814 set_user_nice(worker->task, pool->attrs->nice);
2815 trace_android_rvh_create_worker(worker->task, pool->attrs);
2816 kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2817 }
2818
2819 /* successful, attach the worker to the pool */
2820 worker_attach_to_pool(worker, pool);
2821
2822 /* start the newly created worker */
2823 raw_spin_lock_irq(&pool->lock);
2824
2825 worker->pool->nr_workers++;
2826 worker_enter_idle(worker);
2827
2828 /*
2829 * @worker is waiting on a completion in kthread() and will trigger hung
2830 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2831 * wake it up explicitly.
2832 */
2833 if (worker->task)
2834 wake_up_process(worker->task);
2835
2836 raw_spin_unlock_irq(&pool->lock);
2837
2838 return worker;
2839
2840 fail:
2841 ida_free(&pool->worker_ida, id);
2842 kfree(worker);
2843 return NULL;
2844 }
2845
detach_dying_workers(struct list_head * cull_list)2846 static void detach_dying_workers(struct list_head *cull_list)
2847 {
2848 struct worker *worker;
2849
2850 list_for_each_entry(worker, cull_list, entry)
2851 detach_worker(worker);
2852 }
2853
reap_dying_workers(struct list_head * cull_list)2854 static void reap_dying_workers(struct list_head *cull_list)
2855 {
2856 struct worker *worker, *tmp;
2857
2858 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2859 list_del_init(&worker->entry);
2860 kthread_stop_put(worker->task);
2861 kfree(worker);
2862 }
2863 }
2864
2865 /**
2866 * set_worker_dying - Tag a worker for destruction
2867 * @worker: worker to be destroyed
2868 * @list: transfer worker away from its pool->idle_list and into list
2869 *
2870 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2871 * should be idle.
2872 *
2873 * CONTEXT:
2874 * raw_spin_lock_irq(pool->lock).
2875 */
set_worker_dying(struct worker * worker,struct list_head * list)2876 static void set_worker_dying(struct worker *worker, struct list_head *list)
2877 {
2878 struct worker_pool *pool = worker->pool;
2879
2880 lockdep_assert_held(&pool->lock);
2881 lockdep_assert_held(&wq_pool_attach_mutex);
2882
2883 /* sanity check frenzy */
2884 if (WARN_ON(worker->current_work) ||
2885 WARN_ON(!list_empty(&worker->scheduled)) ||
2886 WARN_ON(!(worker->flags & WORKER_IDLE)))
2887 return;
2888
2889 pool->nr_workers--;
2890 pool->nr_idle--;
2891
2892 worker->flags |= WORKER_DIE;
2893
2894 list_move(&worker->entry, list);
2895
2896 /* get an extra task struct reference for later kthread_stop_put() */
2897 get_task_struct(worker->task);
2898 }
2899
2900 /**
2901 * idle_worker_timeout - check if some idle workers can now be deleted.
2902 * @t: The pool's idle_timer that just expired
2903 *
2904 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2905 * worker_leave_idle(), as a worker flicking between idle and active while its
2906 * pool is at the too_many_workers() tipping point would cause too much timer
2907 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2908 * it expire and re-evaluate things from there.
2909 */
idle_worker_timeout(struct timer_list * t)2910 static void idle_worker_timeout(struct timer_list *t)
2911 {
2912 struct worker_pool *pool = from_timer(pool, t, idle_timer);
2913 bool do_cull = false;
2914
2915 if (work_pending(&pool->idle_cull_work))
2916 return;
2917
2918 raw_spin_lock_irq(&pool->lock);
2919
2920 if (too_many_workers(pool)) {
2921 struct worker *worker;
2922 unsigned long expires;
2923
2924 /* idle_list is kept in LIFO order, check the last one */
2925 worker = list_last_entry(&pool->idle_list, struct worker, entry);
2926 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2927 do_cull = !time_before(jiffies, expires);
2928
2929 if (!do_cull)
2930 mod_timer(&pool->idle_timer, expires);
2931 }
2932 raw_spin_unlock_irq(&pool->lock);
2933
2934 if (do_cull)
2935 queue_work(system_unbound_wq, &pool->idle_cull_work);
2936 }
2937
2938 /**
2939 * idle_cull_fn - cull workers that have been idle for too long.
2940 * @work: the pool's work for handling these idle workers
2941 *
2942 * This goes through a pool's idle workers and gets rid of those that have been
2943 * idle for at least IDLE_WORKER_TIMEOUT seconds.
2944 *
2945 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2946 * culled, so this also resets worker affinity. This requires a sleepable
2947 * context, hence the split between timer callback and work item.
2948 */
idle_cull_fn(struct work_struct * work)2949 static void idle_cull_fn(struct work_struct *work)
2950 {
2951 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2952 LIST_HEAD(cull_list);
2953
2954 /*
2955 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2956 * cannot proceed beyong set_pf_worker() in its self-destruct path.
2957 * This is required as a previously-preempted worker could run after
2958 * set_worker_dying() has happened but before detach_dying_workers() did.
2959 */
2960 mutex_lock(&wq_pool_attach_mutex);
2961 raw_spin_lock_irq(&pool->lock);
2962
2963 while (too_many_workers(pool)) {
2964 struct worker *worker;
2965 unsigned long expires;
2966
2967 worker = list_last_entry(&pool->idle_list, struct worker, entry);
2968 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2969
2970 if (time_before(jiffies, expires)) {
2971 mod_timer(&pool->idle_timer, expires);
2972 break;
2973 }
2974
2975 set_worker_dying(worker, &cull_list);
2976 }
2977
2978 raw_spin_unlock_irq(&pool->lock);
2979 detach_dying_workers(&cull_list);
2980 mutex_unlock(&wq_pool_attach_mutex);
2981
2982 reap_dying_workers(&cull_list);
2983 }
2984
send_mayday(struct work_struct * work)2985 static void send_mayday(struct work_struct *work)
2986 {
2987 struct pool_workqueue *pwq = get_work_pwq(work);
2988 struct workqueue_struct *wq = pwq->wq;
2989
2990 lockdep_assert_held(&wq_mayday_lock);
2991
2992 if (!wq->rescuer)
2993 return;
2994
2995 /* mayday mayday mayday */
2996 if (list_empty(&pwq->mayday_node)) {
2997 /*
2998 * If @pwq is for an unbound wq, its base ref may be put at
2999 * any time due to an attribute change. Pin @pwq until the
3000 * rescuer is done with it.
3001 */
3002 get_pwq(pwq);
3003 list_add_tail(&pwq->mayday_node, &wq->maydays);
3004 wake_up_process(wq->rescuer->task);
3005 pwq->stats[PWQ_STAT_MAYDAY]++;
3006 }
3007 }
3008
pool_mayday_timeout(struct timer_list * t)3009 static void pool_mayday_timeout(struct timer_list *t)
3010 {
3011 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
3012 struct work_struct *work;
3013
3014 raw_spin_lock_irq(&pool->lock);
3015 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
3016
3017 if (need_to_create_worker(pool)) {
3018 /*
3019 * We've been trying to create a new worker but
3020 * haven't been successful. We might be hitting an
3021 * allocation deadlock. Send distress signals to
3022 * rescuers.
3023 */
3024 list_for_each_entry(work, &pool->worklist, entry)
3025 send_mayday(work);
3026 }
3027
3028 raw_spin_unlock(&wq_mayday_lock);
3029 raw_spin_unlock_irq(&pool->lock);
3030
3031 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3032 }
3033
3034 /**
3035 * maybe_create_worker - create a new worker if necessary
3036 * @pool: pool to create a new worker for
3037 *
3038 * Create a new worker for @pool if necessary. @pool is guaranteed to
3039 * have at least one idle worker on return from this function. If
3040 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3041 * sent to all rescuers with works scheduled on @pool to resolve
3042 * possible allocation deadlock.
3043 *
3044 * On return, need_to_create_worker() is guaranteed to be %false and
3045 * may_start_working() %true.
3046 *
3047 * LOCKING:
3048 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3049 * multiple times. Does GFP_KERNEL allocations. Called only from
3050 * manager.
3051 */
maybe_create_worker(struct worker_pool * pool)3052 static void maybe_create_worker(struct worker_pool *pool)
3053 __releases(&pool->lock)
3054 __acquires(&pool->lock)
3055 {
3056 restart:
3057 raw_spin_unlock_irq(&pool->lock);
3058
3059 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3060 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3061
3062 while (true) {
3063 if (create_worker(pool) || !need_to_create_worker(pool))
3064 break;
3065
3066 schedule_timeout_interruptible(CREATE_COOLDOWN);
3067
3068 if (!need_to_create_worker(pool))
3069 break;
3070 }
3071
3072 del_timer_sync(&pool->mayday_timer);
3073 raw_spin_lock_irq(&pool->lock);
3074 /*
3075 * This is necessary even after a new worker was just successfully
3076 * created as @pool->lock was dropped and the new worker might have
3077 * already become busy.
3078 */
3079 if (need_to_create_worker(pool))
3080 goto restart;
3081 }
3082
3083 /**
3084 * manage_workers - manage worker pool
3085 * @worker: self
3086 *
3087 * Assume the manager role and manage the worker pool @worker belongs
3088 * to. At any given time, there can be only zero or one manager per
3089 * pool. The exclusion is handled automatically by this function.
3090 *
3091 * The caller can safely start processing works on false return. On
3092 * true return, it's guaranteed that need_to_create_worker() is false
3093 * and may_start_working() is true.
3094 *
3095 * CONTEXT:
3096 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3097 * multiple times. Does GFP_KERNEL allocations.
3098 *
3099 * Return:
3100 * %false if the pool doesn't need management and the caller can safely
3101 * start processing works, %true if management function was performed and
3102 * the conditions that the caller verified before calling the function may
3103 * no longer be true.
3104 */
manage_workers(struct worker * worker)3105 static bool manage_workers(struct worker *worker)
3106 {
3107 struct worker_pool *pool = worker->pool;
3108
3109 if (pool->flags & POOL_MANAGER_ACTIVE)
3110 return false;
3111
3112 pool->flags |= POOL_MANAGER_ACTIVE;
3113 pool->manager = worker;
3114
3115 maybe_create_worker(pool);
3116
3117 pool->manager = NULL;
3118 pool->flags &= ~POOL_MANAGER_ACTIVE;
3119 rcuwait_wake_up(&manager_wait);
3120 return true;
3121 }
3122
3123 /**
3124 * process_one_work - process single work
3125 * @worker: self
3126 * @work: work to process
3127 *
3128 * Process @work. This function contains all the logics necessary to
3129 * process a single work including synchronization against and
3130 * interaction with other workers on the same cpu, queueing and
3131 * flushing. As long as context requirement is met, any worker can
3132 * call this function to process a work.
3133 *
3134 * CONTEXT:
3135 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3136 */
process_one_work(struct worker * worker,struct work_struct * work)3137 static void process_one_work(struct worker *worker, struct work_struct *work)
3138 __releases(&pool->lock)
3139 __acquires(&pool->lock)
3140 {
3141 struct pool_workqueue *pwq = get_work_pwq(work);
3142 struct worker_pool *pool = worker->pool;
3143 unsigned long work_data;
3144 int lockdep_start_depth, rcu_start_depth;
3145 bool bh_draining = pool->flags & POOL_BH_DRAINING;
3146 #ifdef CONFIG_LOCKDEP
3147 /*
3148 * It is permissible to free the struct work_struct from
3149 * inside the function that is called from it, this we need to
3150 * take into account for lockdep too. To avoid bogus "held
3151 * lock freed" warnings as well as problems when looking into
3152 * work->lockdep_map, make a copy and use that here.
3153 */
3154 struct lockdep_map lockdep_map;
3155
3156 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3157 #endif
3158 /* ensure we're on the correct CPU */
3159 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3160 raw_smp_processor_id() != pool->cpu);
3161
3162 /* claim and dequeue */
3163 debug_work_deactivate(work);
3164 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3165 worker->current_work = work;
3166 worker->current_func = work->func;
3167 worker->current_pwq = pwq;
3168 if (worker->task)
3169 worker->current_at = worker->task->se.sum_exec_runtime;
3170 work_data = *work_data_bits(work);
3171 worker->current_color = get_work_color(work_data);
3172
3173 /*
3174 * Record wq name for cmdline and debug reporting, may get
3175 * overridden through set_worker_desc().
3176 */
3177 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3178
3179 list_del_init(&work->entry);
3180
3181 /*
3182 * CPU intensive works don't participate in concurrency management.
3183 * They're the scheduler's responsibility. This takes @worker out
3184 * of concurrency management and the next code block will chain
3185 * execution of the pending work items.
3186 */
3187 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3188 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3189
3190 /*
3191 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3192 * since nr_running would always be >= 1 at this point. This is used to
3193 * chain execution of the pending work items for WORKER_NOT_RUNNING
3194 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3195 */
3196 kick_pool(pool);
3197
3198 /*
3199 * Record the last pool and clear PENDING which should be the last
3200 * update to @work. Also, do this inside @pool->lock so that
3201 * PENDING and queued state changes happen together while IRQ is
3202 * disabled.
3203 */
3204 set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3205
3206 pwq->stats[PWQ_STAT_STARTED]++;
3207 raw_spin_unlock_irq(&pool->lock);
3208
3209 rcu_start_depth = rcu_preempt_depth();
3210 lockdep_start_depth = lockdep_depth(current);
3211 /* see drain_dead_softirq_workfn() */
3212 if (!bh_draining)
3213 lock_map_acquire(pwq->wq->lockdep_map);
3214 lock_map_acquire(&lockdep_map);
3215 /*
3216 * Strictly speaking we should mark the invariant state without holding
3217 * any locks, that is, before these two lock_map_acquire()'s.
3218 *
3219 * However, that would result in:
3220 *
3221 * A(W1)
3222 * WFC(C)
3223 * A(W1)
3224 * C(C)
3225 *
3226 * Which would create W1->C->W1 dependencies, even though there is no
3227 * actual deadlock possible. There are two solutions, using a
3228 * read-recursive acquire on the work(queue) 'locks', but this will then
3229 * hit the lockdep limitation on recursive locks, or simply discard
3230 * these locks.
3231 *
3232 * AFAICT there is no possible deadlock scenario between the
3233 * flush_work() and complete() primitives (except for single-threaded
3234 * workqueues), so hiding them isn't a problem.
3235 */
3236 lockdep_invariant_state(true);
3237 trace_workqueue_execute_start(work);
3238 worker->current_func(work);
3239 /*
3240 * While we must be careful to not use "work" after this, the trace
3241 * point will only record its address.
3242 */
3243 trace_workqueue_execute_end(work, worker->current_func);
3244 pwq->stats[PWQ_STAT_COMPLETED]++;
3245 lock_map_release(&lockdep_map);
3246 if (!bh_draining)
3247 lock_map_release(pwq->wq->lockdep_map);
3248
3249 if (unlikely((worker->task && in_atomic()) ||
3250 lockdep_depth(current) != lockdep_start_depth ||
3251 rcu_preempt_depth() != rcu_start_depth)) {
3252 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3253 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3254 current->comm, task_pid_nr(current), preempt_count(),
3255 lockdep_start_depth, lockdep_depth(current),
3256 rcu_start_depth, rcu_preempt_depth(),
3257 worker->current_func);
3258 debug_show_held_locks(current);
3259 dump_stack();
3260 }
3261
3262 /*
3263 * The following prevents a kworker from hogging CPU on !PREEMPTION
3264 * kernels, where a requeueing work item waiting for something to
3265 * happen could deadlock with stop_machine as such work item could
3266 * indefinitely requeue itself while all other CPUs are trapped in
3267 * stop_machine. At the same time, report a quiescent RCU state so
3268 * the same condition doesn't freeze RCU.
3269 */
3270 if (worker->task)
3271 cond_resched();
3272
3273 raw_spin_lock_irq(&pool->lock);
3274
3275 /*
3276 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3277 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3278 * wq_cpu_intensive_thresh_us. Clear it.
3279 */
3280 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3281
3282 /* tag the worker for identification in schedule() */
3283 worker->last_func = worker->current_func;
3284
3285 /* we're done with it, release */
3286 hash_del(&worker->hentry);
3287 worker->current_work = NULL;
3288 worker->current_func = NULL;
3289 worker->current_pwq = NULL;
3290 worker->current_color = INT_MAX;
3291
3292 /* must be the last step, see the function comment */
3293 pwq_dec_nr_in_flight(pwq, work_data);
3294 }
3295
3296 /**
3297 * process_scheduled_works - process scheduled works
3298 * @worker: self
3299 *
3300 * Process all scheduled works. Please note that the scheduled list
3301 * may change while processing a work, so this function repeatedly
3302 * fetches a work from the top and executes it.
3303 *
3304 * CONTEXT:
3305 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3306 * multiple times.
3307 */
process_scheduled_works(struct worker * worker)3308 static void process_scheduled_works(struct worker *worker)
3309 {
3310 struct work_struct *work;
3311 bool first = true;
3312
3313 while ((work = list_first_entry_or_null(&worker->scheduled,
3314 struct work_struct, entry))) {
3315 if (first) {
3316 worker->pool->watchdog_ts = jiffies;
3317 first = false;
3318 }
3319 process_one_work(worker, work);
3320 }
3321 }
3322
set_pf_worker(bool val)3323 static void set_pf_worker(bool val)
3324 {
3325 mutex_lock(&wq_pool_attach_mutex);
3326 if (val)
3327 current->flags |= PF_WQ_WORKER;
3328 else
3329 current->flags &= ~PF_WQ_WORKER;
3330 mutex_unlock(&wq_pool_attach_mutex);
3331 }
3332
3333 /**
3334 * worker_thread - the worker thread function
3335 * @__worker: self
3336 *
3337 * The worker thread function. All workers belong to a worker_pool -
3338 * either a per-cpu one or dynamic unbound one. These workers process all
3339 * work items regardless of their specific target workqueue. The only
3340 * exception is work items which belong to workqueues with a rescuer which
3341 * will be explained in rescuer_thread().
3342 *
3343 * Return: 0
3344 */
worker_thread(void * __worker)3345 static int worker_thread(void *__worker)
3346 {
3347 struct worker *worker = __worker;
3348 struct worker_pool *pool = worker->pool;
3349
3350 /* tell the scheduler that this is a workqueue worker */
3351 set_pf_worker(true);
3352 woke_up:
3353 raw_spin_lock_irq(&pool->lock);
3354
3355 /* am I supposed to die? */
3356 if (unlikely(worker->flags & WORKER_DIE)) {
3357 raw_spin_unlock_irq(&pool->lock);
3358 set_pf_worker(false);
3359 /*
3360 * The worker is dead and PF_WQ_WORKER is cleared, worker->pool
3361 * shouldn't be accessed, reset it to NULL in case otherwise.
3362 */
3363 worker->pool = NULL;
3364 ida_free(&pool->worker_ida, worker->id);
3365 return 0;
3366 }
3367
3368 worker_leave_idle(worker);
3369 recheck:
3370 /* no more worker necessary? */
3371 if (!need_more_worker(pool))
3372 goto sleep;
3373
3374 /* do we need to manage? */
3375 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3376 goto recheck;
3377
3378 /*
3379 * ->scheduled list can only be filled while a worker is
3380 * preparing to process a work or actually processing it.
3381 * Make sure nobody diddled with it while I was sleeping.
3382 */
3383 WARN_ON_ONCE(!list_empty(&worker->scheduled));
3384
3385 /*
3386 * Finish PREP stage. We're guaranteed to have at least one idle
3387 * worker or that someone else has already assumed the manager
3388 * role. This is where @worker starts participating in concurrency
3389 * management if applicable and concurrency management is restored
3390 * after being rebound. See rebind_workers() for details.
3391 */
3392 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3393
3394 do {
3395 struct work_struct *work =
3396 list_first_entry(&pool->worklist,
3397 struct work_struct, entry);
3398
3399 if (assign_work(work, worker, NULL))
3400 process_scheduled_works(worker);
3401 } while (keep_working(pool));
3402
3403 worker_set_flags(worker, WORKER_PREP);
3404 sleep:
3405 /*
3406 * pool->lock is held and there's no work to process and no need to
3407 * manage, sleep. Workers are woken up only while holding
3408 * pool->lock or from local cpu, so setting the current state
3409 * before releasing pool->lock is enough to prevent losing any
3410 * event.
3411 */
3412 worker_enter_idle(worker);
3413 __set_current_state(TASK_IDLE);
3414 raw_spin_unlock_irq(&pool->lock);
3415 schedule();
3416 goto woke_up;
3417 }
3418
3419 /**
3420 * rescuer_thread - the rescuer thread function
3421 * @__rescuer: self
3422 *
3423 * Workqueue rescuer thread function. There's one rescuer for each
3424 * workqueue which has WQ_MEM_RECLAIM set.
3425 *
3426 * Regular work processing on a pool may block trying to create a new
3427 * worker which uses GFP_KERNEL allocation which has slight chance of
3428 * developing into deadlock if some works currently on the same queue
3429 * need to be processed to satisfy the GFP_KERNEL allocation. This is
3430 * the problem rescuer solves.
3431 *
3432 * When such condition is possible, the pool summons rescuers of all
3433 * workqueues which have works queued on the pool and let them process
3434 * those works so that forward progress can be guaranteed.
3435 *
3436 * This should happen rarely.
3437 *
3438 * Return: 0
3439 */
rescuer_thread(void * __rescuer)3440 static int rescuer_thread(void *__rescuer)
3441 {
3442 struct worker *rescuer = __rescuer;
3443 struct workqueue_struct *wq = rescuer->rescue_wq;
3444 bool should_stop;
3445
3446 set_user_nice(current, RESCUER_NICE_LEVEL);
3447
3448 /*
3449 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
3450 * doesn't participate in concurrency management.
3451 */
3452 set_pf_worker(true);
3453 repeat:
3454 set_current_state(TASK_IDLE);
3455
3456 /*
3457 * By the time the rescuer is requested to stop, the workqueue
3458 * shouldn't have any work pending, but @wq->maydays may still have
3459 * pwq(s) queued. This can happen by non-rescuer workers consuming
3460 * all the work items before the rescuer got to them. Go through
3461 * @wq->maydays processing before acting on should_stop so that the
3462 * list is always empty on exit.
3463 */
3464 should_stop = kthread_should_stop();
3465
3466 /* see whether any pwq is asking for help */
3467 raw_spin_lock_irq(&wq_mayday_lock);
3468
3469 while (!list_empty(&wq->maydays)) {
3470 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3471 struct pool_workqueue, mayday_node);
3472 struct worker_pool *pool = pwq->pool;
3473 struct work_struct *work, *n;
3474
3475 __set_current_state(TASK_RUNNING);
3476 list_del_init(&pwq->mayday_node);
3477
3478 raw_spin_unlock_irq(&wq_mayday_lock);
3479
3480 worker_attach_to_pool(rescuer, pool);
3481
3482 raw_spin_lock_irq(&pool->lock);
3483
3484 /*
3485 * Slurp in all works issued via this workqueue and
3486 * process'em.
3487 */
3488 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3489 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3490 if (get_work_pwq(work) == pwq &&
3491 assign_work(work, rescuer, &n))
3492 pwq->stats[PWQ_STAT_RESCUED]++;
3493 }
3494
3495 if (!list_empty(&rescuer->scheduled)) {
3496 process_scheduled_works(rescuer);
3497
3498 /*
3499 * The above execution of rescued work items could
3500 * have created more to rescue through
3501 * pwq_activate_first_inactive() or chained
3502 * queueing. Let's put @pwq back on mayday list so
3503 * that such back-to-back work items, which may be
3504 * being used to relieve memory pressure, don't
3505 * incur MAYDAY_INTERVAL delay inbetween.
3506 */
3507 if (pwq->nr_active && need_to_create_worker(pool)) {
3508 raw_spin_lock(&wq_mayday_lock);
3509 /*
3510 * Queue iff we aren't racing destruction
3511 * and somebody else hasn't queued it already.
3512 */
3513 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3514 get_pwq(pwq);
3515 list_add_tail(&pwq->mayday_node, &wq->maydays);
3516 }
3517 raw_spin_unlock(&wq_mayday_lock);
3518 }
3519 }
3520
3521 /*
3522 * Leave this pool. Notify regular workers; otherwise, we end up
3523 * with 0 concurrency and stalling the execution.
3524 */
3525 kick_pool(pool);
3526
3527 raw_spin_unlock_irq(&pool->lock);
3528
3529 worker_detach_from_pool(rescuer);
3530
3531 /*
3532 * Put the reference grabbed by send_mayday(). @pool might
3533 * go away any time after it.
3534 */
3535 put_pwq_unlocked(pwq);
3536
3537 raw_spin_lock_irq(&wq_mayday_lock);
3538 }
3539
3540 raw_spin_unlock_irq(&wq_mayday_lock);
3541
3542 if (should_stop) {
3543 __set_current_state(TASK_RUNNING);
3544 set_pf_worker(false);
3545 return 0;
3546 }
3547
3548 /* rescuers should never participate in concurrency management */
3549 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3550 schedule();
3551 goto repeat;
3552 }
3553
bh_worker(struct worker * worker)3554 static void bh_worker(struct worker *worker)
3555 {
3556 struct worker_pool *pool = worker->pool;
3557 int nr_restarts = BH_WORKER_RESTARTS;
3558 unsigned long end = jiffies + BH_WORKER_JIFFIES;
3559
3560 raw_spin_lock_irq(&pool->lock);
3561 worker_leave_idle(worker);
3562
3563 /*
3564 * This function follows the structure of worker_thread(). See there for
3565 * explanations on each step.
3566 */
3567 if (!need_more_worker(pool))
3568 goto done;
3569
3570 WARN_ON_ONCE(!list_empty(&worker->scheduled));
3571 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3572
3573 do {
3574 struct work_struct *work =
3575 list_first_entry(&pool->worklist,
3576 struct work_struct, entry);
3577
3578 if (assign_work(work, worker, NULL))
3579 process_scheduled_works(worker);
3580 } while (keep_working(pool) &&
3581 --nr_restarts && time_before(jiffies, end));
3582
3583 worker_set_flags(worker, WORKER_PREP);
3584 done:
3585 worker_enter_idle(worker);
3586 kick_pool(pool);
3587 raw_spin_unlock_irq(&pool->lock);
3588 }
3589
3590 /*
3591 * TODO: Convert all tasklet users to workqueue and use softirq directly.
3592 *
3593 * This is currently called from tasklet[_hi]action() and thus is also called
3594 * whenever there are tasklets to run. Let's do an early exit if there's nothing
3595 * queued. Once conversion from tasklet is complete, the need_more_worker() test
3596 * can be dropped.
3597 *
3598 * After full conversion, we'll add worker->softirq_action, directly use the
3599 * softirq action and obtain the worker pointer from the softirq_action pointer.
3600 */
workqueue_softirq_action(bool highpri)3601 void workqueue_softirq_action(bool highpri)
3602 {
3603 struct worker_pool *pool =
3604 &per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3605 if (need_more_worker(pool))
3606 bh_worker(list_first_entry(&pool->workers, struct worker, node));
3607 }
3608
3609 struct wq_drain_dead_softirq_work {
3610 struct work_struct work;
3611 struct worker_pool *pool;
3612 struct completion done;
3613 };
3614
drain_dead_softirq_workfn(struct work_struct * work)3615 static void drain_dead_softirq_workfn(struct work_struct *work)
3616 {
3617 struct wq_drain_dead_softirq_work *dead_work =
3618 container_of(work, struct wq_drain_dead_softirq_work, work);
3619 struct worker_pool *pool = dead_work->pool;
3620 bool repeat;
3621
3622 /*
3623 * @pool's CPU is dead and we want to execute its still pending work
3624 * items from this BH work item which is running on a different CPU. As
3625 * its CPU is dead, @pool can't be kicked and, as work execution path
3626 * will be nested, a lockdep annotation needs to be suppressed. Mark
3627 * @pool with %POOL_BH_DRAINING for the special treatments.
3628 */
3629 raw_spin_lock_irq(&pool->lock);
3630 pool->flags |= POOL_BH_DRAINING;
3631 raw_spin_unlock_irq(&pool->lock);
3632
3633 bh_worker(list_first_entry(&pool->workers, struct worker, node));
3634
3635 raw_spin_lock_irq(&pool->lock);
3636 pool->flags &= ~POOL_BH_DRAINING;
3637 repeat = need_more_worker(pool);
3638 raw_spin_unlock_irq(&pool->lock);
3639
3640 /*
3641 * bh_worker() might hit consecutive execution limit and bail. If there
3642 * still are pending work items, reschedule self and return so that we
3643 * don't hog this CPU's BH.
3644 */
3645 if (repeat) {
3646 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3647 queue_work(system_bh_highpri_wq, work);
3648 else
3649 queue_work(system_bh_wq, work);
3650 } else {
3651 complete(&dead_work->done);
3652 }
3653 }
3654
3655 /*
3656 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3657 * possible to allocate dead_work per CPU and avoid flushing. However, then we
3658 * have to worry about draining overlapping with CPU coming back online or
3659 * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3660 * on). Let's keep it simple and drain them synchronously. These are BH work
3661 * items which shouldn't be requeued on the same pool. Shouldn't take long.
3662 */
workqueue_softirq_dead(unsigned int cpu)3663 void workqueue_softirq_dead(unsigned int cpu)
3664 {
3665 int i;
3666
3667 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3668 struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3669 struct wq_drain_dead_softirq_work dead_work;
3670
3671 if (!need_more_worker(pool))
3672 continue;
3673
3674 INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3675 dead_work.pool = pool;
3676 init_completion(&dead_work.done);
3677
3678 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3679 queue_work(system_bh_highpri_wq, &dead_work.work);
3680 else
3681 queue_work(system_bh_wq, &dead_work.work);
3682
3683 wait_for_completion(&dead_work.done);
3684 destroy_work_on_stack(&dead_work.work);
3685 }
3686 }
3687
3688 /**
3689 * check_flush_dependency - check for flush dependency sanity
3690 * @target_wq: workqueue being flushed
3691 * @target_work: work item being flushed (NULL for workqueue flushes)
3692 * @from_cancel: are we called from the work cancel path
3693 *
3694 * %current is trying to flush the whole @target_wq or @target_work on it.
3695 * If this is not the cancel path (which implies work being flushed is either
3696 * already running, or will not be at all), check if @target_wq doesn't have
3697 * %WQ_MEM_RECLAIM and verify that %current is not reclaiming memory or running
3698 * on a workqueue which doesn't have %WQ_MEM_RECLAIM as that can break forward-
3699 * progress guarantee leading to a deadlock.
3700 */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work,bool from_cancel)3701 static void check_flush_dependency(struct workqueue_struct *target_wq,
3702 struct work_struct *target_work,
3703 bool from_cancel)
3704 {
3705 work_func_t target_func;
3706 struct worker *worker;
3707
3708 if (from_cancel || target_wq->flags & WQ_MEM_RECLAIM)
3709 return;
3710
3711 worker = current_wq_worker();
3712 target_func = target_work ? target_work->func : NULL;
3713
3714 WARN_ONCE(current->flags & PF_MEMALLOC,
3715 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3716 current->pid, current->comm, target_wq->name, target_func);
3717 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3718 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3719 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3720 worker->current_pwq->wq->name, worker->current_func,
3721 target_wq->name, target_func);
3722 }
3723
3724 struct wq_barrier {
3725 struct work_struct work;
3726 struct completion done;
3727 struct task_struct *task; /* purely informational */
3728 };
3729
wq_barrier_func(struct work_struct * work)3730 static void wq_barrier_func(struct work_struct *work)
3731 {
3732 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3733 complete(&barr->done);
3734 }
3735
3736 /**
3737 * insert_wq_barrier - insert a barrier work
3738 * @pwq: pwq to insert barrier into
3739 * @barr: wq_barrier to insert
3740 * @target: target work to attach @barr to
3741 * @worker: worker currently executing @target, NULL if @target is not executing
3742 *
3743 * @barr is linked to @target such that @barr is completed only after
3744 * @target finishes execution. Please note that the ordering
3745 * guarantee is observed only with respect to @target and on the local
3746 * cpu.
3747 *
3748 * Currently, a queued barrier can't be canceled. This is because
3749 * try_to_grab_pending() can't determine whether the work to be
3750 * grabbed is at the head of the queue and thus can't clear LINKED
3751 * flag of the previous work while there must be a valid next work
3752 * after a work with LINKED flag set.
3753 *
3754 * Note that when @worker is non-NULL, @target may be modified
3755 * underneath us, so we can't reliably determine pwq from @target.
3756 *
3757 * CONTEXT:
3758 * raw_spin_lock_irq(pool->lock).
3759 */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)3760 static void insert_wq_barrier(struct pool_workqueue *pwq,
3761 struct wq_barrier *barr,
3762 struct work_struct *target, struct worker *worker)
3763 {
3764 static __maybe_unused struct lock_class_key bh_key, thr_key;
3765 unsigned int work_flags = 0;
3766 unsigned int work_color;
3767 struct list_head *head;
3768
3769 /*
3770 * debugobject calls are safe here even with pool->lock locked
3771 * as we know for sure that this will not trigger any of the
3772 * checks and call back into the fixup functions where we
3773 * might deadlock.
3774 *
3775 * BH and threaded workqueues need separate lockdep keys to avoid
3776 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3777 * usage".
3778 */
3779 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3780 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3781 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3782
3783 init_completion_map(&barr->done, &target->lockdep_map);
3784
3785 barr->task = current;
3786
3787 /* The barrier work item does not participate in nr_active. */
3788 work_flags |= WORK_STRUCT_INACTIVE;
3789
3790 /*
3791 * If @target is currently being executed, schedule the
3792 * barrier to the worker; otherwise, put it after @target.
3793 */
3794 if (worker) {
3795 head = worker->scheduled.next;
3796 work_color = worker->current_color;
3797 } else {
3798 unsigned long *bits = work_data_bits(target);
3799
3800 head = target->entry.next;
3801 /* there can already be other linked works, inherit and set */
3802 work_flags |= *bits & WORK_STRUCT_LINKED;
3803 work_color = get_work_color(*bits);
3804 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
3805 }
3806
3807 pwq->nr_in_flight[work_color]++;
3808 work_flags |= work_color_to_flags(work_color);
3809
3810 insert_work(pwq, &barr->work, head, work_flags);
3811 }
3812
3813 /**
3814 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3815 * @wq: workqueue being flushed
3816 * @flush_color: new flush color, < 0 for no-op
3817 * @work_color: new work color, < 0 for no-op
3818 *
3819 * Prepare pwqs for workqueue flushing.
3820 *
3821 * If @flush_color is non-negative, flush_color on all pwqs should be
3822 * -1. If no pwq has in-flight commands at the specified color, all
3823 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
3824 * has in flight commands, its pwq->flush_color is set to
3825 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3826 * wakeup logic is armed and %true is returned.
3827 *
3828 * The caller should have initialized @wq->first_flusher prior to
3829 * calling this function with non-negative @flush_color. If
3830 * @flush_color is negative, no flush color update is done and %false
3831 * is returned.
3832 *
3833 * If @work_color is non-negative, all pwqs should have the same
3834 * work_color which is previous to @work_color and all will be
3835 * advanced to @work_color.
3836 *
3837 * CONTEXT:
3838 * mutex_lock(wq->mutex).
3839 *
3840 * Return:
3841 * %true if @flush_color >= 0 and there's something to flush. %false
3842 * otherwise.
3843 */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)3844 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3845 int flush_color, int work_color)
3846 {
3847 bool wait = false;
3848 struct pool_workqueue *pwq;
3849
3850 if (flush_color >= 0) {
3851 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3852 atomic_set(&wq->nr_pwqs_to_flush, 1);
3853 }
3854
3855 for_each_pwq(pwq, wq) {
3856 struct worker_pool *pool = pwq->pool;
3857
3858 raw_spin_lock_irq(&pool->lock);
3859
3860 if (flush_color >= 0) {
3861 WARN_ON_ONCE(pwq->flush_color != -1);
3862
3863 if (pwq->nr_in_flight[flush_color]) {
3864 pwq->flush_color = flush_color;
3865 atomic_inc(&wq->nr_pwqs_to_flush);
3866 wait = true;
3867 }
3868 }
3869
3870 if (work_color >= 0) {
3871 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3872 pwq->work_color = work_color;
3873 }
3874
3875 raw_spin_unlock_irq(&pool->lock);
3876 }
3877
3878 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3879 complete(&wq->first_flusher->done);
3880
3881 return wait;
3882 }
3883
touch_wq_lockdep_map(struct workqueue_struct * wq)3884 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3885 {
3886 #ifdef CONFIG_LOCKDEP
3887 if (unlikely(!wq->lockdep_map))
3888 return;
3889
3890 if (wq->flags & WQ_BH)
3891 local_bh_disable();
3892
3893 lock_map_acquire(wq->lockdep_map);
3894 lock_map_release(wq->lockdep_map);
3895
3896 if (wq->flags & WQ_BH)
3897 local_bh_enable();
3898 #endif
3899 }
3900
touch_work_lockdep_map(struct work_struct * work,struct workqueue_struct * wq)3901 static void touch_work_lockdep_map(struct work_struct *work,
3902 struct workqueue_struct *wq)
3903 {
3904 #ifdef CONFIG_LOCKDEP
3905 if (wq->flags & WQ_BH)
3906 local_bh_disable();
3907
3908 lock_map_acquire(&work->lockdep_map);
3909 lock_map_release(&work->lockdep_map);
3910
3911 if (wq->flags & WQ_BH)
3912 local_bh_enable();
3913 #endif
3914 }
3915
3916 /**
3917 * __flush_workqueue - ensure that any scheduled work has run to completion.
3918 * @wq: workqueue to flush
3919 *
3920 * This function sleeps until all work items which were queued on entry
3921 * have finished execution, but it is not livelocked by new incoming ones.
3922 */
__flush_workqueue(struct workqueue_struct * wq)3923 void __flush_workqueue(struct workqueue_struct *wq)
3924 {
3925 struct wq_flusher this_flusher = {
3926 .list = LIST_HEAD_INIT(this_flusher.list),
3927 .flush_color = -1,
3928 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)),
3929 };
3930 int next_color;
3931
3932 if (WARN_ON(!wq_online))
3933 return;
3934
3935 touch_wq_lockdep_map(wq);
3936
3937 mutex_lock(&wq->mutex);
3938
3939 /*
3940 * Start-to-wait phase
3941 */
3942 next_color = work_next_color(wq->work_color);
3943
3944 if (next_color != wq->flush_color) {
3945 /*
3946 * Color space is not full. The current work_color
3947 * becomes our flush_color and work_color is advanced
3948 * by one.
3949 */
3950 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3951 this_flusher.flush_color = wq->work_color;
3952 wq->work_color = next_color;
3953
3954 if (!wq->first_flusher) {
3955 /* no flush in progress, become the first flusher */
3956 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3957
3958 wq->first_flusher = &this_flusher;
3959
3960 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3961 wq->work_color)) {
3962 /* nothing to flush, done */
3963 wq->flush_color = next_color;
3964 wq->first_flusher = NULL;
3965 goto out_unlock;
3966 }
3967 } else {
3968 /* wait in queue */
3969 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3970 list_add_tail(&this_flusher.list, &wq->flusher_queue);
3971 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3972 }
3973 } else {
3974 /*
3975 * Oops, color space is full, wait on overflow queue.
3976 * The next flush completion will assign us
3977 * flush_color and transfer to flusher_queue.
3978 */
3979 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3980 }
3981
3982 check_flush_dependency(wq, NULL, false);
3983
3984 mutex_unlock(&wq->mutex);
3985
3986 trace_android_vh_flush_wq_wait_start(wq);
3987 wait_for_completion(&this_flusher.done);
3988 trace_android_vh_flush_wq_wait_finish(wq);
3989
3990 /*
3991 * Wake-up-and-cascade phase
3992 *
3993 * First flushers are responsible for cascading flushes and
3994 * handling overflow. Non-first flushers can simply return.
3995 */
3996 if (READ_ONCE(wq->first_flusher) != &this_flusher)
3997 return;
3998
3999 mutex_lock(&wq->mutex);
4000
4001 /* we might have raced, check again with mutex held */
4002 if (wq->first_flusher != &this_flusher)
4003 goto out_unlock;
4004
4005 WRITE_ONCE(wq->first_flusher, NULL);
4006
4007 WARN_ON_ONCE(!list_empty(&this_flusher.list));
4008 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4009
4010 while (true) {
4011 struct wq_flusher *next, *tmp;
4012
4013 /* complete all the flushers sharing the current flush color */
4014 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4015 if (next->flush_color != wq->flush_color)
4016 break;
4017 list_del_init(&next->list);
4018 complete(&next->done);
4019 }
4020
4021 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4022 wq->flush_color != work_next_color(wq->work_color));
4023
4024 /* this flush_color is finished, advance by one */
4025 wq->flush_color = work_next_color(wq->flush_color);
4026
4027 /* one color has been freed, handle overflow queue */
4028 if (!list_empty(&wq->flusher_overflow)) {
4029 /*
4030 * Assign the same color to all overflowed
4031 * flushers, advance work_color and append to
4032 * flusher_queue. This is the start-to-wait
4033 * phase for these overflowed flushers.
4034 */
4035 list_for_each_entry(tmp, &wq->flusher_overflow, list)
4036 tmp->flush_color = wq->work_color;
4037
4038 wq->work_color = work_next_color(wq->work_color);
4039
4040 list_splice_tail_init(&wq->flusher_overflow,
4041 &wq->flusher_queue);
4042 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4043 }
4044
4045 if (list_empty(&wq->flusher_queue)) {
4046 WARN_ON_ONCE(wq->flush_color != wq->work_color);
4047 break;
4048 }
4049
4050 /*
4051 * Need to flush more colors. Make the next flusher
4052 * the new first flusher and arm pwqs.
4053 */
4054 WARN_ON_ONCE(wq->flush_color == wq->work_color);
4055 WARN_ON_ONCE(wq->flush_color != next->flush_color);
4056
4057 list_del_init(&next->list);
4058 wq->first_flusher = next;
4059
4060 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4061 break;
4062
4063 /*
4064 * Meh... this color is already done, clear first
4065 * flusher and repeat cascading.
4066 */
4067 wq->first_flusher = NULL;
4068 }
4069
4070 out_unlock:
4071 mutex_unlock(&wq->mutex);
4072 }
4073 EXPORT_SYMBOL(__flush_workqueue);
4074
4075 /**
4076 * drain_workqueue - drain a workqueue
4077 * @wq: workqueue to drain
4078 *
4079 * Wait until the workqueue becomes empty. While draining is in progress,
4080 * only chain queueing is allowed. IOW, only currently pending or running
4081 * work items on @wq can queue further work items on it. @wq is flushed
4082 * repeatedly until it becomes empty. The number of flushing is determined
4083 * by the depth of chaining and should be relatively short. Whine if it
4084 * takes too long.
4085 */
drain_workqueue(struct workqueue_struct * wq)4086 void drain_workqueue(struct workqueue_struct *wq)
4087 {
4088 unsigned int flush_cnt = 0;
4089 struct pool_workqueue *pwq;
4090
4091 /*
4092 * __queue_work() needs to test whether there are drainers, is much
4093 * hotter than drain_workqueue() and already looks at @wq->flags.
4094 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4095 */
4096 mutex_lock(&wq->mutex);
4097 if (!wq->nr_drainers++)
4098 wq->flags |= __WQ_DRAINING;
4099 mutex_unlock(&wq->mutex);
4100 reflush:
4101 __flush_workqueue(wq);
4102
4103 mutex_lock(&wq->mutex);
4104
4105 for_each_pwq(pwq, wq) {
4106 bool drained;
4107
4108 raw_spin_lock_irq(&pwq->pool->lock);
4109 drained = pwq_is_empty(pwq);
4110 raw_spin_unlock_irq(&pwq->pool->lock);
4111
4112 if (drained)
4113 continue;
4114
4115 if (++flush_cnt == 10 ||
4116 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4117 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4118 wq->name, __func__, flush_cnt);
4119
4120 mutex_unlock(&wq->mutex);
4121 goto reflush;
4122 }
4123
4124 if (!--wq->nr_drainers)
4125 wq->flags &= ~__WQ_DRAINING;
4126 mutex_unlock(&wq->mutex);
4127 }
4128 EXPORT_SYMBOL_GPL(drain_workqueue);
4129
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)4130 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4131 bool from_cancel)
4132 {
4133 struct worker *worker = NULL;
4134 struct worker_pool *pool;
4135 struct pool_workqueue *pwq;
4136 struct workqueue_struct *wq;
4137
4138 rcu_read_lock();
4139 pool = get_work_pool(work);
4140 if (!pool) {
4141 rcu_read_unlock();
4142 return false;
4143 }
4144
4145 raw_spin_lock_irq(&pool->lock);
4146 /* see the comment in try_to_grab_pending() with the same code */
4147 pwq = get_work_pwq(work);
4148 if (pwq) {
4149 if (unlikely(pwq->pool != pool))
4150 goto already_gone;
4151 } else {
4152 worker = find_worker_executing_work(pool, work);
4153 if (!worker)
4154 goto already_gone;
4155 pwq = worker->current_pwq;
4156 }
4157
4158 wq = pwq->wq;
4159 check_flush_dependency(wq, work, from_cancel);
4160
4161 insert_wq_barrier(pwq, barr, work, worker);
4162 raw_spin_unlock_irq(&pool->lock);
4163
4164 touch_work_lockdep_map(work, wq);
4165
4166 /*
4167 * Force a lock recursion deadlock when using flush_work() inside a
4168 * single-threaded or rescuer equipped workqueue.
4169 *
4170 * For single threaded workqueues the deadlock happens when the work
4171 * is after the work issuing the flush_work(). For rescuer equipped
4172 * workqueues the deadlock happens when the rescuer stalls, blocking
4173 * forward progress.
4174 */
4175 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4176 touch_wq_lockdep_map(wq);
4177
4178 rcu_read_unlock();
4179 return true;
4180 already_gone:
4181 raw_spin_unlock_irq(&pool->lock);
4182 rcu_read_unlock();
4183 return false;
4184 }
4185
__flush_work(struct work_struct * work,bool from_cancel)4186 static bool __flush_work(struct work_struct *work, bool from_cancel)
4187 {
4188 struct wq_barrier barr;
4189
4190 if (WARN_ON(!wq_online))
4191 return false;
4192
4193 if (WARN_ON(!work->func))
4194 return false;
4195
4196 if (!start_flush_work(work, &barr, from_cancel))
4197 return false;
4198
4199 /*
4200 * start_flush_work() returned %true. If @from_cancel is set, we know
4201 * that @work must have been executing during start_flush_work() and
4202 * can't currently be queued. Its data must contain OFFQ bits. If @work
4203 * was queued on a BH workqueue, we also know that it was running in the
4204 * BH context and thus can be busy-waited.
4205 */
4206 if (from_cancel) {
4207 unsigned long data = *work_data_bits(work);
4208
4209 if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) &&
4210 (data & WORK_OFFQ_BH)) {
4211 /*
4212 * On RT, prevent a live lock when %current preempted
4213 * soft interrupt processing or prevents ksoftirqd from
4214 * running by keeping flipping BH. If the BH work item
4215 * runs on a different CPU then this has no effect other
4216 * than doing the BH disable/enable dance for nothing.
4217 * This is copied from
4218 * kernel/softirq.c::tasklet_unlock_spin_wait().
4219 */
4220 while (!try_wait_for_completion(&barr.done)) {
4221 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4222 local_bh_disable();
4223 local_bh_enable();
4224 } else {
4225 cpu_relax();
4226 }
4227 }
4228 goto out_destroy;
4229 }
4230 }
4231
4232 trace_android_vh_flush_work_wait_start(work);
4233 wait_for_completion(&barr.done);
4234 trace_android_vh_flush_work_wait_finish(work);
4235
4236 out_destroy:
4237 destroy_work_on_stack(&barr.work);
4238 return true;
4239 }
4240
4241 /**
4242 * flush_work - wait for a work to finish executing the last queueing instance
4243 * @work: the work to flush
4244 *
4245 * Wait until @work has finished execution. @work is guaranteed to be idle
4246 * on return if it hasn't been requeued since flush started.
4247 *
4248 * Return:
4249 * %true if flush_work() waited for the work to finish execution,
4250 * %false if it was already idle.
4251 */
flush_work(struct work_struct * work)4252 bool flush_work(struct work_struct *work)
4253 {
4254 might_sleep();
4255 return __flush_work(work, false);
4256 }
4257 EXPORT_SYMBOL_GPL(flush_work);
4258
4259 /**
4260 * flush_delayed_work - wait for a dwork to finish executing the last queueing
4261 * @dwork: the delayed work to flush
4262 *
4263 * Delayed timer is cancelled and the pending work is queued for
4264 * immediate execution. Like flush_work(), this function only
4265 * considers the last queueing instance of @dwork.
4266 *
4267 * Return:
4268 * %true if flush_work() waited for the work to finish execution,
4269 * %false if it was already idle.
4270 */
flush_delayed_work(struct delayed_work * dwork)4271 bool flush_delayed_work(struct delayed_work *dwork)
4272 {
4273 local_irq_disable();
4274 if (del_timer_sync(&dwork->timer))
4275 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
4276 local_irq_enable();
4277 return flush_work(&dwork->work);
4278 }
4279 EXPORT_SYMBOL(flush_delayed_work);
4280
4281 /**
4282 * flush_rcu_work - wait for a rwork to finish executing the last queueing
4283 * @rwork: the rcu work to flush
4284 *
4285 * Return:
4286 * %true if flush_rcu_work() waited for the work to finish execution,
4287 * %false if it was already idle.
4288 */
flush_rcu_work(struct rcu_work * rwork)4289 bool flush_rcu_work(struct rcu_work *rwork)
4290 {
4291 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4292 rcu_barrier();
4293 flush_work(&rwork->work);
4294 return true;
4295 } else {
4296 return flush_work(&rwork->work);
4297 }
4298 }
4299 EXPORT_SYMBOL(flush_rcu_work);
4300
work_offqd_disable(struct work_offq_data * offqd)4301 static void work_offqd_disable(struct work_offq_data *offqd)
4302 {
4303 const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4304
4305 if (likely(offqd->disable < max))
4306 offqd->disable++;
4307 else
4308 WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4309 }
4310
work_offqd_enable(struct work_offq_data * offqd)4311 static void work_offqd_enable(struct work_offq_data *offqd)
4312 {
4313 if (likely(offqd->disable > 0))
4314 offqd->disable--;
4315 else
4316 WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4317 }
4318
__cancel_work(struct work_struct * work,u32 cflags)4319 static bool __cancel_work(struct work_struct *work, u32 cflags)
4320 {
4321 struct work_offq_data offqd;
4322 unsigned long irq_flags;
4323 int ret;
4324
4325 ret = work_grab_pending(work, cflags, &irq_flags);
4326
4327 work_offqd_unpack(&offqd, *work_data_bits(work));
4328
4329 if (cflags & WORK_CANCEL_DISABLE)
4330 work_offqd_disable(&offqd);
4331
4332 set_work_pool_and_clear_pending(work, offqd.pool_id,
4333 work_offqd_pack_flags(&offqd));
4334 local_irq_restore(irq_flags);
4335 return ret;
4336 }
4337
__cancel_work_sync(struct work_struct * work,u32 cflags)4338 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4339 {
4340 bool ret;
4341
4342 ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4343
4344 if (*work_data_bits(work) & WORK_OFFQ_BH)
4345 WARN_ON_ONCE(in_hardirq());
4346 else
4347 might_sleep();
4348
4349 /*
4350 * Skip __flush_work() during early boot when we know that @work isn't
4351 * executing. This allows canceling during early boot.
4352 */
4353 if (wq_online)
4354 __flush_work(work, true);
4355
4356 if (!(cflags & WORK_CANCEL_DISABLE))
4357 enable_work(work);
4358
4359 return ret;
4360 }
4361
4362 /*
4363 * See cancel_delayed_work()
4364 */
cancel_work(struct work_struct * work)4365 bool cancel_work(struct work_struct *work)
4366 {
4367 return __cancel_work(work, 0);
4368 }
4369 EXPORT_SYMBOL(cancel_work);
4370
4371 /**
4372 * cancel_work_sync - cancel a work and wait for it to finish
4373 * @work: the work to cancel
4374 *
4375 * Cancel @work and wait for its execution to finish. This function can be used
4376 * even if the work re-queues itself or migrates to another workqueue. On return
4377 * from this function, @work is guaranteed to be not pending or executing on any
4378 * CPU as long as there aren't racing enqueues.
4379 *
4380 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4381 * Use cancel_delayed_work_sync() instead.
4382 *
4383 * Must be called from a sleepable context if @work was last queued on a non-BH
4384 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4385 * if @work was last queued on a BH workqueue.
4386 *
4387 * Returns %true if @work was pending, %false otherwise.
4388 */
cancel_work_sync(struct work_struct * work)4389 bool cancel_work_sync(struct work_struct *work)
4390 {
4391 return __cancel_work_sync(work, 0);
4392 }
4393 EXPORT_SYMBOL_GPL(cancel_work_sync);
4394
4395 /**
4396 * cancel_delayed_work - cancel a delayed work
4397 * @dwork: delayed_work to cancel
4398 *
4399 * Kill off a pending delayed_work.
4400 *
4401 * Return: %true if @dwork was pending and canceled; %false if it wasn't
4402 * pending.
4403 *
4404 * Note:
4405 * The work callback function may still be running on return, unless
4406 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
4407 * use cancel_delayed_work_sync() to wait on it.
4408 *
4409 * This function is safe to call from any context including IRQ handler.
4410 */
cancel_delayed_work(struct delayed_work * dwork)4411 bool cancel_delayed_work(struct delayed_work *dwork)
4412 {
4413 return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4414 }
4415 EXPORT_SYMBOL(cancel_delayed_work);
4416
4417 /**
4418 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4419 * @dwork: the delayed work cancel
4420 *
4421 * This is cancel_work_sync() for delayed works.
4422 *
4423 * Return:
4424 * %true if @dwork was pending, %false otherwise.
4425 */
cancel_delayed_work_sync(struct delayed_work * dwork)4426 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4427 {
4428 return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4429 }
4430 EXPORT_SYMBOL(cancel_delayed_work_sync);
4431
4432 /**
4433 * disable_work - Disable and cancel a work item
4434 * @work: work item to disable
4435 *
4436 * Disable @work by incrementing its disable count and cancel it if currently
4437 * pending. As long as the disable count is non-zero, any attempt to queue @work
4438 * will fail and return %false. The maximum supported disable depth is 2 to the
4439 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4440 *
4441 * Can be called from any context. Returns %true if @work was pending, %false
4442 * otherwise.
4443 */
disable_work(struct work_struct * work)4444 bool disable_work(struct work_struct *work)
4445 {
4446 return __cancel_work(work, WORK_CANCEL_DISABLE);
4447 }
4448 EXPORT_SYMBOL_GPL(disable_work);
4449
4450 /**
4451 * disable_work_sync - Disable, cancel and drain a work item
4452 * @work: work item to disable
4453 *
4454 * Similar to disable_work() but also wait for @work to finish if currently
4455 * executing.
4456 *
4457 * Must be called from a sleepable context if @work was last queued on a non-BH
4458 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4459 * if @work was last queued on a BH workqueue.
4460 *
4461 * Returns %true if @work was pending, %false otherwise.
4462 */
disable_work_sync(struct work_struct * work)4463 bool disable_work_sync(struct work_struct *work)
4464 {
4465 return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4466 }
4467 EXPORT_SYMBOL_GPL(disable_work_sync);
4468
4469 /**
4470 * enable_work - Enable a work item
4471 * @work: work item to enable
4472 *
4473 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4474 * only be queued if its disable count is 0.
4475 *
4476 * Can be called from any context. Returns %true if the disable count reached 0.
4477 * Otherwise, %false.
4478 */
enable_work(struct work_struct * work)4479 bool enable_work(struct work_struct *work)
4480 {
4481 struct work_offq_data offqd;
4482 unsigned long irq_flags;
4483
4484 work_grab_pending(work, 0, &irq_flags);
4485
4486 work_offqd_unpack(&offqd, *work_data_bits(work));
4487 work_offqd_enable(&offqd);
4488 set_work_pool_and_clear_pending(work, offqd.pool_id,
4489 work_offqd_pack_flags(&offqd));
4490 local_irq_restore(irq_flags);
4491
4492 return !offqd.disable;
4493 }
4494 EXPORT_SYMBOL_GPL(enable_work);
4495
4496 /**
4497 * disable_delayed_work - Disable and cancel a delayed work item
4498 * @dwork: delayed work item to disable
4499 *
4500 * disable_work() for delayed work items.
4501 */
disable_delayed_work(struct delayed_work * dwork)4502 bool disable_delayed_work(struct delayed_work *dwork)
4503 {
4504 return __cancel_work(&dwork->work,
4505 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4506 }
4507 EXPORT_SYMBOL_GPL(disable_delayed_work);
4508
4509 /**
4510 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4511 * @dwork: delayed work item to disable
4512 *
4513 * disable_work_sync() for delayed work items.
4514 */
disable_delayed_work_sync(struct delayed_work * dwork)4515 bool disable_delayed_work_sync(struct delayed_work *dwork)
4516 {
4517 return __cancel_work_sync(&dwork->work,
4518 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4519 }
4520 EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4521
4522 /**
4523 * enable_delayed_work - Enable a delayed work item
4524 * @dwork: delayed work item to enable
4525 *
4526 * enable_work() for delayed work items.
4527 */
enable_delayed_work(struct delayed_work * dwork)4528 bool enable_delayed_work(struct delayed_work *dwork)
4529 {
4530 return enable_work(&dwork->work);
4531 }
4532 EXPORT_SYMBOL_GPL(enable_delayed_work);
4533
4534 /**
4535 * schedule_on_each_cpu - execute a function synchronously on each online CPU
4536 * @func: the function to call
4537 *
4538 * schedule_on_each_cpu() executes @func on each online CPU using the
4539 * system workqueue and blocks until all CPUs have completed.
4540 * schedule_on_each_cpu() is very slow.
4541 *
4542 * Return:
4543 * 0 on success, -errno on failure.
4544 */
schedule_on_each_cpu(work_func_t func)4545 int schedule_on_each_cpu(work_func_t func)
4546 {
4547 int cpu;
4548 struct work_struct __percpu *works;
4549
4550 works = alloc_percpu(struct work_struct);
4551 if (!works)
4552 return -ENOMEM;
4553
4554 cpus_read_lock();
4555
4556 for_each_online_cpu(cpu) {
4557 struct work_struct *work = per_cpu_ptr(works, cpu);
4558
4559 INIT_WORK(work, func);
4560 schedule_work_on(cpu, work);
4561 }
4562
4563 for_each_online_cpu(cpu)
4564 flush_work(per_cpu_ptr(works, cpu));
4565
4566 cpus_read_unlock();
4567 free_percpu(works);
4568 return 0;
4569 }
4570
4571 /**
4572 * execute_in_process_context - reliably execute the routine with user context
4573 * @fn: the function to execute
4574 * @ew: guaranteed storage for the execute work structure (must
4575 * be available when the work executes)
4576 *
4577 * Executes the function immediately if process context is available,
4578 * otherwise schedules the function for delayed execution.
4579 *
4580 * Return: 0 - function was executed
4581 * 1 - function was scheduled for execution
4582 */
execute_in_process_context(work_func_t fn,struct execute_work * ew)4583 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4584 {
4585 if (!in_interrupt()) {
4586 fn(&ew->work);
4587 return 0;
4588 }
4589
4590 INIT_WORK(&ew->work, fn);
4591 schedule_work(&ew->work);
4592
4593 return 1;
4594 }
4595 EXPORT_SYMBOL_GPL(execute_in_process_context);
4596
4597 /**
4598 * free_workqueue_attrs - free a workqueue_attrs
4599 * @attrs: workqueue_attrs to free
4600 *
4601 * Undo alloc_workqueue_attrs().
4602 */
free_workqueue_attrs(struct workqueue_attrs * attrs)4603 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4604 {
4605 if (attrs) {
4606 free_cpumask_var(attrs->cpumask);
4607 free_cpumask_var(attrs->__pod_cpumask);
4608 kfree(attrs);
4609 }
4610 }
4611 EXPORT_SYMBOL_GPL(free_workqueue_attrs);
4612
4613 /**
4614 * alloc_workqueue_attrs - allocate a workqueue_attrs
4615 *
4616 * Allocate a new workqueue_attrs, initialize with default settings and
4617 * return it.
4618 *
4619 * Return: The allocated new workqueue_attr on success. %NULL on failure.
4620 */
alloc_workqueue_attrs(void)4621 struct workqueue_attrs *alloc_workqueue_attrs(void)
4622 {
4623 struct workqueue_attrs *attrs;
4624
4625 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4626 if (!attrs)
4627 goto fail;
4628 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4629 goto fail;
4630 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4631 goto fail;
4632
4633 cpumask_copy(attrs->cpumask, cpu_possible_mask);
4634 attrs->affn_scope = WQ_AFFN_DFL;
4635 return attrs;
4636 fail:
4637 free_workqueue_attrs(attrs);
4638 return NULL;
4639 }
4640 EXPORT_SYMBOL_GPL(alloc_workqueue_attrs);
4641
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)4642 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4643 const struct workqueue_attrs *from)
4644 {
4645 to->nice = from->nice;
4646 cpumask_copy(to->cpumask, from->cpumask);
4647 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4648 to->affn_strict = from->affn_strict;
4649
4650 /*
4651 * Unlike hash and equality test, copying shouldn't ignore wq-only
4652 * fields as copying is used for both pool and wq attrs. Instead,
4653 * get_unbound_pool() explicitly clears the fields.
4654 */
4655 to->affn_scope = from->affn_scope;
4656 to->ordered = from->ordered;
4657 }
4658
4659 /*
4660 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4661 * comments in 'struct workqueue_attrs' definition.
4662 */
wqattrs_clear_for_pool(struct workqueue_attrs * attrs)4663 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4664 {
4665 attrs->affn_scope = WQ_AFFN_NR_TYPES;
4666 attrs->ordered = false;
4667 if (attrs->affn_strict)
4668 cpumask_copy(attrs->cpumask, cpu_possible_mask);
4669 }
4670
4671 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)4672 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4673 {
4674 u32 hash = 0;
4675
4676 hash = jhash_1word(attrs->nice, hash);
4677 hash = jhash_1word(attrs->affn_strict, hash);
4678 hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4679 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4680 if (!attrs->affn_strict)
4681 hash = jhash(cpumask_bits(attrs->cpumask),
4682 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4683 return hash;
4684 }
4685
4686 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)4687 static bool wqattrs_equal(const struct workqueue_attrs *a,
4688 const struct workqueue_attrs *b)
4689 {
4690 if (a->nice != b->nice)
4691 return false;
4692 if (a->affn_strict != b->affn_strict)
4693 return false;
4694 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4695 return false;
4696 if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4697 return false;
4698 return true;
4699 }
4700
4701 /* Update @attrs with actually available CPUs */
wqattrs_actualize_cpumask(struct workqueue_attrs * attrs,const cpumask_t * unbound_cpumask)4702 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4703 const cpumask_t *unbound_cpumask)
4704 {
4705 /*
4706 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4707 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4708 * @unbound_cpumask.
4709 */
4710 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4711 if (unlikely(cpumask_empty(attrs->cpumask)))
4712 cpumask_copy(attrs->cpumask, unbound_cpumask);
4713 }
4714
4715 /* find wq_pod_type to use for @attrs */
4716 static const struct wq_pod_type *
wqattrs_pod_type(const struct workqueue_attrs * attrs)4717 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4718 {
4719 enum wq_affn_scope scope;
4720 struct wq_pod_type *pt;
4721
4722 /* to synchronize access to wq_affn_dfl */
4723 lockdep_assert_held(&wq_pool_mutex);
4724
4725 if (attrs->affn_scope == WQ_AFFN_DFL)
4726 scope = wq_affn_dfl;
4727 else
4728 scope = attrs->affn_scope;
4729
4730 pt = &wq_pod_types[scope];
4731
4732 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4733 likely(pt->nr_pods))
4734 return pt;
4735
4736 /*
4737 * Before workqueue_init_topology(), only SYSTEM is available which is
4738 * initialized in workqueue_init_early().
4739 */
4740 pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4741 BUG_ON(!pt->nr_pods);
4742 return pt;
4743 }
4744
4745 /**
4746 * init_worker_pool - initialize a newly zalloc'd worker_pool
4747 * @pool: worker_pool to initialize
4748 *
4749 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
4750 *
4751 * Return: 0 on success, -errno on failure. Even on failure, all fields
4752 * inside @pool proper are initialized and put_unbound_pool() can be called
4753 * on @pool safely to release it.
4754 */
init_worker_pool(struct worker_pool * pool)4755 static int init_worker_pool(struct worker_pool *pool)
4756 {
4757 raw_spin_lock_init(&pool->lock);
4758 pool->id = -1;
4759 pool->cpu = -1;
4760 pool->node = NUMA_NO_NODE;
4761 pool->flags |= POOL_DISASSOCIATED;
4762 pool->watchdog_ts = jiffies;
4763 INIT_LIST_HEAD(&pool->worklist);
4764 INIT_LIST_HEAD(&pool->idle_list);
4765 hash_init(pool->busy_hash);
4766
4767 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4768 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4769
4770 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4771
4772 INIT_LIST_HEAD(&pool->workers);
4773
4774 ida_init(&pool->worker_ida);
4775 INIT_HLIST_NODE(&pool->hash_node);
4776 pool->refcnt = 1;
4777
4778 /* shouldn't fail above this point */
4779 pool->attrs = alloc_workqueue_attrs();
4780 if (!pool->attrs)
4781 return -ENOMEM;
4782
4783 wqattrs_clear_for_pool(pool->attrs);
4784
4785 return 0;
4786 }
4787
4788 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)4789 static void wq_init_lockdep(struct workqueue_struct *wq)
4790 {
4791 char *lock_name;
4792
4793 lockdep_register_key(&wq->key);
4794 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4795 if (!lock_name)
4796 lock_name = wq->name;
4797
4798 wq->lock_name = lock_name;
4799 wq->lockdep_map = &wq->__lockdep_map;
4800 lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0);
4801 }
4802
wq_unregister_lockdep(struct workqueue_struct * wq)4803 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4804 {
4805 if (wq->lockdep_map != &wq->__lockdep_map)
4806 return;
4807
4808 lockdep_unregister_key(&wq->key);
4809 }
4810
wq_free_lockdep(struct workqueue_struct * wq)4811 static void wq_free_lockdep(struct workqueue_struct *wq)
4812 {
4813 if (wq->lockdep_map != &wq->__lockdep_map)
4814 return;
4815
4816 if (wq->lock_name != wq->name)
4817 kfree(wq->lock_name);
4818 }
4819 #else
wq_init_lockdep(struct workqueue_struct * wq)4820 static void wq_init_lockdep(struct workqueue_struct *wq)
4821 {
4822 }
4823
wq_unregister_lockdep(struct workqueue_struct * wq)4824 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4825 {
4826 }
4827
wq_free_lockdep(struct workqueue_struct * wq)4828 static void wq_free_lockdep(struct workqueue_struct *wq)
4829 {
4830 }
4831 #endif
4832
free_node_nr_active(struct wq_node_nr_active ** nna_ar)4833 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4834 {
4835 int node;
4836
4837 for_each_node(node) {
4838 kfree(nna_ar[node]);
4839 nna_ar[node] = NULL;
4840 }
4841
4842 kfree(nna_ar[nr_node_ids]);
4843 nna_ar[nr_node_ids] = NULL;
4844 }
4845
init_node_nr_active(struct wq_node_nr_active * nna)4846 static void init_node_nr_active(struct wq_node_nr_active *nna)
4847 {
4848 nna->max = WQ_DFL_MIN_ACTIVE;
4849 atomic_set(&nna->nr, 0);
4850 raw_spin_lock_init(&nna->lock);
4851 INIT_LIST_HEAD(&nna->pending_pwqs);
4852 }
4853
4854 /*
4855 * Each node's nr_active counter will be accessed mostly from its own node and
4856 * should be allocated in the node.
4857 */
alloc_node_nr_active(struct wq_node_nr_active ** nna_ar)4858 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4859 {
4860 struct wq_node_nr_active *nna;
4861 int node;
4862
4863 for_each_node(node) {
4864 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4865 if (!nna)
4866 goto err_free;
4867 init_node_nr_active(nna);
4868 nna_ar[node] = nna;
4869 }
4870
4871 /* [nr_node_ids] is used as the fallback */
4872 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4873 if (!nna)
4874 goto err_free;
4875 init_node_nr_active(nna);
4876 nna_ar[nr_node_ids] = nna;
4877
4878 return 0;
4879
4880 err_free:
4881 free_node_nr_active(nna_ar);
4882 return -ENOMEM;
4883 }
4884
rcu_free_wq(struct rcu_head * rcu)4885 static void rcu_free_wq(struct rcu_head *rcu)
4886 {
4887 struct workqueue_struct *wq =
4888 container_of(rcu, struct workqueue_struct, rcu);
4889
4890 if (wq->flags & WQ_UNBOUND)
4891 free_node_nr_active(wq->node_nr_active);
4892
4893 wq_free_lockdep(wq);
4894 free_percpu(wq->cpu_pwq);
4895 free_workqueue_attrs(wq->unbound_attrs);
4896 kfree(wq);
4897 }
4898
rcu_free_pool(struct rcu_head * rcu)4899 static void rcu_free_pool(struct rcu_head *rcu)
4900 {
4901 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4902
4903 ida_destroy(&pool->worker_ida);
4904 free_workqueue_attrs(pool->attrs);
4905 kfree(pool);
4906 }
4907
4908 /**
4909 * put_unbound_pool - put a worker_pool
4910 * @pool: worker_pool to put
4911 *
4912 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
4913 * safe manner. get_unbound_pool() calls this function on its failure path
4914 * and this function should be able to release pools which went through,
4915 * successfully or not, init_worker_pool().
4916 *
4917 * Should be called with wq_pool_mutex held.
4918 */
put_unbound_pool(struct worker_pool * pool)4919 static void put_unbound_pool(struct worker_pool *pool)
4920 {
4921 struct worker *worker;
4922 LIST_HEAD(cull_list);
4923
4924 lockdep_assert_held(&wq_pool_mutex);
4925
4926 if (--pool->refcnt)
4927 return;
4928
4929 /* sanity checks */
4930 if (WARN_ON(!(pool->cpu < 0)) ||
4931 WARN_ON(!list_empty(&pool->worklist)))
4932 return;
4933
4934 /* release id and unhash */
4935 if (pool->id >= 0)
4936 idr_remove(&worker_pool_idr, pool->id);
4937 hash_del(&pool->hash_node);
4938
4939 /*
4940 * Become the manager and destroy all workers. This prevents
4941 * @pool's workers from blocking on attach_mutex. We're the last
4942 * manager and @pool gets freed with the flag set.
4943 *
4944 * Having a concurrent manager is quite unlikely to happen as we can
4945 * only get here with
4946 * pwq->refcnt == pool->refcnt == 0
4947 * which implies no work queued to the pool, which implies no worker can
4948 * become the manager. However a worker could have taken the role of
4949 * manager before the refcnts dropped to 0, since maybe_create_worker()
4950 * drops pool->lock
4951 */
4952 while (true) {
4953 rcuwait_wait_event(&manager_wait,
4954 !(pool->flags & POOL_MANAGER_ACTIVE),
4955 TASK_UNINTERRUPTIBLE);
4956
4957 mutex_lock(&wq_pool_attach_mutex);
4958 raw_spin_lock_irq(&pool->lock);
4959 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4960 pool->flags |= POOL_MANAGER_ACTIVE;
4961 break;
4962 }
4963 raw_spin_unlock_irq(&pool->lock);
4964 mutex_unlock(&wq_pool_attach_mutex);
4965 }
4966
4967 while ((worker = first_idle_worker(pool)))
4968 set_worker_dying(worker, &cull_list);
4969 WARN_ON(pool->nr_workers || pool->nr_idle);
4970 raw_spin_unlock_irq(&pool->lock);
4971
4972 detach_dying_workers(&cull_list);
4973
4974 mutex_unlock(&wq_pool_attach_mutex);
4975
4976 reap_dying_workers(&cull_list);
4977
4978 /* shut down the timers */
4979 del_timer_sync(&pool->idle_timer);
4980 cancel_work_sync(&pool->idle_cull_work);
4981 del_timer_sync(&pool->mayday_timer);
4982
4983 /* RCU protected to allow dereferences from get_work_pool() */
4984 call_rcu(&pool->rcu, rcu_free_pool);
4985 }
4986
4987 /**
4988 * get_unbound_pool - get a worker_pool with the specified attributes
4989 * @attrs: the attributes of the worker_pool to get
4990 *
4991 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4992 * reference count and return it. If there already is a matching
4993 * worker_pool, it will be used; otherwise, this function attempts to
4994 * create a new one.
4995 *
4996 * Should be called with wq_pool_mutex held.
4997 *
4998 * Return: On success, a worker_pool with the same attributes as @attrs.
4999 * On failure, %NULL.
5000 */
get_unbound_pool(const struct workqueue_attrs * attrs)5001 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
5002 {
5003 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
5004 u32 hash = wqattrs_hash(attrs);
5005 struct worker_pool *pool;
5006 int pod, node = NUMA_NO_NODE;
5007
5008 lockdep_assert_held(&wq_pool_mutex);
5009
5010 /* do we already have a matching pool? */
5011 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
5012 if (wqattrs_equal(pool->attrs, attrs)) {
5013 pool->refcnt++;
5014 return pool;
5015 }
5016 }
5017
5018 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */
5019 for (pod = 0; pod < pt->nr_pods; pod++) {
5020 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
5021 node = pt->pod_node[pod];
5022 break;
5023 }
5024 }
5025
5026 /* nope, create a new one */
5027 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
5028 if (!pool || init_worker_pool(pool) < 0)
5029 goto fail;
5030
5031 pool->node = node;
5032 copy_workqueue_attrs(pool->attrs, attrs);
5033 wqattrs_clear_for_pool(pool->attrs);
5034
5035 if (worker_pool_assign_id(pool) < 0)
5036 goto fail;
5037
5038 /* create and start the initial worker */
5039 if (wq_online && !create_worker(pool))
5040 goto fail;
5041
5042 /* install */
5043 hash_add(unbound_pool_hash, &pool->hash_node, hash);
5044
5045 return pool;
5046 fail:
5047 if (pool)
5048 put_unbound_pool(pool);
5049 return NULL;
5050 }
5051
5052 /*
5053 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5054 * refcnt and needs to be destroyed.
5055 */
pwq_release_workfn(struct kthread_work * work)5056 static void pwq_release_workfn(struct kthread_work *work)
5057 {
5058 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5059 release_work);
5060 struct workqueue_struct *wq = pwq->wq;
5061 struct worker_pool *pool = pwq->pool;
5062 bool is_last = false;
5063
5064 /*
5065 * When @pwq is not linked, it doesn't hold any reference to the
5066 * @wq, and @wq is invalid to access.
5067 */
5068 if (!list_empty(&pwq->pwqs_node)) {
5069 mutex_lock(&wq->mutex);
5070 list_del_rcu(&pwq->pwqs_node);
5071 is_last = list_empty(&wq->pwqs);
5072
5073 /*
5074 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5075 */
5076 if (!is_last && (wq->flags & __WQ_ORDERED))
5077 unplug_oldest_pwq(wq);
5078
5079 mutex_unlock(&wq->mutex);
5080 }
5081
5082 if (wq->flags & WQ_UNBOUND) {
5083 mutex_lock(&wq_pool_mutex);
5084 put_unbound_pool(pool);
5085 mutex_unlock(&wq_pool_mutex);
5086 }
5087
5088 if (!list_empty(&pwq->pending_node)) {
5089 struct wq_node_nr_active *nna =
5090 wq_node_nr_active(pwq->wq, pwq->pool->node);
5091
5092 raw_spin_lock_irq(&nna->lock);
5093 list_del_init(&pwq->pending_node);
5094 raw_spin_unlock_irq(&nna->lock);
5095 }
5096
5097 kfree_rcu(pwq, rcu);
5098
5099 /*
5100 * If we're the last pwq going away, @wq is already dead and no one
5101 * is gonna access it anymore. Schedule RCU free.
5102 */
5103 if (is_last) {
5104 wq_unregister_lockdep(wq);
5105 call_rcu(&wq->rcu, rcu_free_wq);
5106 }
5107 }
5108
5109 /* initialize newly allocated @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)5110 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5111 struct worker_pool *pool)
5112 {
5113 BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5114
5115 memset(pwq, 0, sizeof(*pwq));
5116
5117 pwq->pool = pool;
5118 pwq->wq = wq;
5119 pwq->flush_color = -1;
5120 pwq->refcnt = 1;
5121 INIT_LIST_HEAD(&pwq->inactive_works);
5122 INIT_LIST_HEAD(&pwq->pending_node);
5123 INIT_LIST_HEAD(&pwq->pwqs_node);
5124 INIT_LIST_HEAD(&pwq->mayday_node);
5125 kthread_init_work(&pwq->release_work, pwq_release_workfn);
5126 }
5127
5128 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)5129 static void link_pwq(struct pool_workqueue *pwq)
5130 {
5131 struct workqueue_struct *wq = pwq->wq;
5132
5133 lockdep_assert_held(&wq->mutex);
5134
5135 /* may be called multiple times, ignore if already linked */
5136 if (!list_empty(&pwq->pwqs_node))
5137 return;
5138
5139 /* set the matching work_color */
5140 pwq->work_color = wq->work_color;
5141
5142 /* link in @pwq */
5143 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5144 }
5145
5146 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5147 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5148 const struct workqueue_attrs *attrs)
5149 {
5150 struct worker_pool *pool;
5151 struct pool_workqueue *pwq;
5152
5153 lockdep_assert_held(&wq_pool_mutex);
5154
5155 pool = get_unbound_pool(attrs);
5156 if (!pool)
5157 return NULL;
5158
5159 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5160 if (!pwq) {
5161 put_unbound_pool(pool);
5162 return NULL;
5163 }
5164
5165 init_pwq(pwq, wq, pool);
5166 return pwq;
5167 }
5168
apply_wqattrs_lock(void)5169 static void apply_wqattrs_lock(void)
5170 {
5171 mutex_lock(&wq_pool_mutex);
5172 }
5173
apply_wqattrs_unlock(void)5174 static void apply_wqattrs_unlock(void)
5175 {
5176 mutex_unlock(&wq_pool_mutex);
5177 }
5178
5179 /**
5180 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5181 * @attrs: the wq_attrs of the default pwq of the target workqueue
5182 * @cpu: the target CPU
5183 *
5184 * Calculate the cpumask a workqueue with @attrs should use on @pod.
5185 * The result is stored in @attrs->__pod_cpumask.
5186 *
5187 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5188 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5189 * intersection of the possible CPUs of @pod and @attrs->cpumask.
5190 *
5191 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5192 */
wq_calc_pod_cpumask(struct workqueue_attrs * attrs,int cpu)5193 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu)
5194 {
5195 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5196 int pod = pt->cpu_pod[cpu];
5197
5198 /* calculate possible CPUs in @pod that @attrs wants */
5199 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5200 /* does @pod have any online CPUs @attrs wants? */
5201 if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) {
5202 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5203 return;
5204 }
5205 }
5206
5207 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
install_unbound_pwq(struct workqueue_struct * wq,int cpu,struct pool_workqueue * pwq)5208 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5209 int cpu, struct pool_workqueue *pwq)
5210 {
5211 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5212 struct pool_workqueue *old_pwq;
5213
5214 lockdep_assert_held(&wq_pool_mutex);
5215 lockdep_assert_held(&wq->mutex);
5216
5217 /* link_pwq() can handle duplicate calls */
5218 link_pwq(pwq);
5219
5220 old_pwq = rcu_access_pointer(*slot);
5221 rcu_assign_pointer(*slot, pwq);
5222 return old_pwq;
5223 }
5224
5225 /* context to store the prepared attrs & pwqs before applying */
5226 struct apply_wqattrs_ctx {
5227 struct workqueue_struct *wq; /* target workqueue */
5228 struct workqueue_attrs *attrs; /* attrs to apply */
5229 struct list_head list; /* queued for batching commit */
5230 struct pool_workqueue *dfl_pwq;
5231 struct pool_workqueue *pwq_tbl[];
5232 };
5233
5234 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)5235 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5236 {
5237 if (ctx) {
5238 int cpu;
5239
5240 for_each_possible_cpu(cpu)
5241 put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5242 put_pwq_unlocked(ctx->dfl_pwq);
5243
5244 free_workqueue_attrs(ctx->attrs);
5245
5246 kfree(ctx);
5247 }
5248 }
5249
5250 /* allocate the attrs and pwqs for later installation */
5251 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs,const cpumask_var_t unbound_cpumask)5252 apply_wqattrs_prepare(struct workqueue_struct *wq,
5253 const struct workqueue_attrs *attrs,
5254 const cpumask_var_t unbound_cpumask)
5255 {
5256 struct apply_wqattrs_ctx *ctx;
5257 struct workqueue_attrs *new_attrs;
5258 int cpu;
5259
5260 lockdep_assert_held(&wq_pool_mutex);
5261
5262 if (WARN_ON(attrs->affn_scope < 0 ||
5263 attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5264 return ERR_PTR(-EINVAL);
5265
5266 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5267
5268 new_attrs = alloc_workqueue_attrs();
5269 if (!ctx || !new_attrs)
5270 goto out_free;
5271
5272 /*
5273 * If something goes wrong during CPU up/down, we'll fall back to
5274 * the default pwq covering whole @attrs->cpumask. Always create
5275 * it even if we don't use it immediately.
5276 */
5277 copy_workqueue_attrs(new_attrs, attrs);
5278 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5279 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5280 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5281 if (!ctx->dfl_pwq)
5282 goto out_free;
5283
5284 for_each_possible_cpu(cpu) {
5285 if (new_attrs->ordered) {
5286 ctx->dfl_pwq->refcnt++;
5287 ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5288 } else {
5289 wq_calc_pod_cpumask(new_attrs, cpu);
5290 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5291 if (!ctx->pwq_tbl[cpu])
5292 goto out_free;
5293 }
5294 }
5295
5296 /* save the user configured attrs and sanitize it. */
5297 copy_workqueue_attrs(new_attrs, attrs);
5298 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5299 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5300 ctx->attrs = new_attrs;
5301
5302 /*
5303 * For initialized ordered workqueues, there should only be one pwq
5304 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5305 * of newly queued work items until execution of older work items in
5306 * the old pwq's have completed.
5307 */
5308 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5309 ctx->dfl_pwq->plugged = true;
5310
5311 ctx->wq = wq;
5312 return ctx;
5313
5314 out_free:
5315 free_workqueue_attrs(new_attrs);
5316 apply_wqattrs_cleanup(ctx);
5317 return ERR_PTR(-ENOMEM);
5318 }
5319
5320 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)5321 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5322 {
5323 int cpu;
5324
5325 /* all pwqs have been created successfully, let's install'em */
5326 mutex_lock(&ctx->wq->mutex);
5327
5328 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5329
5330 /* save the previous pwqs and install the new ones */
5331 for_each_possible_cpu(cpu)
5332 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5333 ctx->pwq_tbl[cpu]);
5334 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5335
5336 /* update node_nr_active->max */
5337 wq_update_node_max_active(ctx->wq, -1);
5338
5339 /* rescuer needs to respect wq cpumask changes */
5340 if (ctx->wq->rescuer)
5341 set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5342 unbound_effective_cpumask(ctx->wq));
5343
5344 mutex_unlock(&ctx->wq->mutex);
5345 }
5346
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5347 int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5348 const struct workqueue_attrs *attrs)
5349 {
5350 struct apply_wqattrs_ctx *ctx;
5351
5352 /* only unbound workqueues can change attributes */
5353 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5354 return -EINVAL;
5355
5356 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5357 if (IS_ERR(ctx))
5358 return PTR_ERR(ctx);
5359
5360 /* the ctx has been prepared successfully, let's commit it */
5361 apply_wqattrs_commit(ctx);
5362 apply_wqattrs_cleanup(ctx);
5363
5364 return 0;
5365 }
5366 EXPORT_SYMBOL_GPL(apply_workqueue_attrs_locked);
5367
5368 /**
5369 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5370 * @wq: the target workqueue
5371 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5372 *
5373 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5374 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5375 * work items are affine to the pod it was issued on. Older pwqs are released as
5376 * in-flight work items finish. Note that a work item which repeatedly requeues
5377 * itself back-to-back will stay on its current pwq.
5378 *
5379 * Performs GFP_KERNEL allocations.
5380 *
5381 * Return: 0 on success and -errno on failure.
5382 */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5383 int apply_workqueue_attrs(struct workqueue_struct *wq,
5384 const struct workqueue_attrs *attrs)
5385 {
5386 int ret;
5387
5388 mutex_lock(&wq_pool_mutex);
5389 ret = apply_workqueue_attrs_locked(wq, attrs);
5390 mutex_unlock(&wq_pool_mutex);
5391
5392 return ret;
5393 }
5394 EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
5395
5396 /**
5397 * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug
5398 * @wq: the target workqueue
5399 * @cpu: the CPU to update the pwq slot for
5400 *
5401 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5402 * %CPU_DOWN_FAILED. @cpu is in the same pod of the CPU being hot[un]plugged.
5403 *
5404 *
5405 * If pod affinity can't be adjusted due to memory allocation failure, it falls
5406 * back to @wq->dfl_pwq which may not be optimal but is always correct.
5407 *
5408 * Note that when the last allowed CPU of a pod goes offline for a workqueue
5409 * with a cpumask spanning multiple pods, the workers which were already
5410 * executing the work items for the workqueue will lose their CPU affinity and
5411 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5412 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5413 * responsibility to flush the work item from CPU_DOWN_PREPARE.
5414 */
unbound_wq_update_pwq(struct workqueue_struct * wq,int cpu)5415 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu)
5416 {
5417 struct pool_workqueue *old_pwq = NULL, *pwq;
5418 struct workqueue_attrs *target_attrs;
5419
5420 lockdep_assert_held(&wq_pool_mutex);
5421
5422 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5423 return;
5424
5425 /*
5426 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5427 * Let's use a preallocated one. The following buf is protected by
5428 * CPU hotplug exclusion.
5429 */
5430 target_attrs = unbound_wq_update_pwq_attrs_buf;
5431
5432 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5433 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5434
5435 /* nothing to do if the target cpumask matches the current pwq */
5436 wq_calc_pod_cpumask(target_attrs, cpu);
5437 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5438 return;
5439
5440 /* create a new pwq */
5441 pwq = alloc_unbound_pwq(wq, target_attrs);
5442 if (!pwq) {
5443 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5444 wq->name);
5445 goto use_dfl_pwq;
5446 }
5447
5448 /* Install the new pwq. */
5449 mutex_lock(&wq->mutex);
5450 old_pwq = install_unbound_pwq(wq, cpu, pwq);
5451 goto out_unlock;
5452
5453 use_dfl_pwq:
5454 mutex_lock(&wq->mutex);
5455 pwq = unbound_pwq(wq, -1);
5456 raw_spin_lock_irq(&pwq->pool->lock);
5457 get_pwq(pwq);
5458 raw_spin_unlock_irq(&pwq->pool->lock);
5459 old_pwq = install_unbound_pwq(wq, cpu, pwq);
5460 out_unlock:
5461 mutex_unlock(&wq->mutex);
5462 put_pwq_unlocked(old_pwq);
5463 }
5464
alloc_and_link_pwqs(struct workqueue_struct * wq)5465 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5466 {
5467 bool highpri = wq->flags & WQ_HIGHPRI;
5468 int cpu, ret;
5469 bool skip = false;
5470
5471 lockdep_assert_held(&wq_pool_mutex);
5472
5473 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5474 if (!wq->cpu_pwq)
5475 goto enomem;
5476
5477 if (!(wq->flags & WQ_UNBOUND)) {
5478 struct worker_pool __percpu *pools;
5479
5480 if (wq->flags & WQ_BH)
5481 pools = bh_worker_pools;
5482 else
5483 pools = cpu_worker_pools;
5484
5485 for_each_possible_cpu(cpu) {
5486 struct pool_workqueue **pwq_p;
5487 struct worker_pool *pool;
5488
5489 pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5490 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5491
5492 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5493 pool->node);
5494 if (!*pwq_p)
5495 goto enomem;
5496
5497 init_pwq(*pwq_p, wq, pool);
5498
5499 mutex_lock(&wq->mutex);
5500 link_pwq(*pwq_p);
5501 mutex_unlock(&wq->mutex);
5502 }
5503 return 0;
5504 }
5505
5506 trace_android_rvh_alloc_and_link_pwqs(wq, &ret, &skip);
5507 if (skip)
5508 goto oem_skip;
5509
5510 if (wq->flags & __WQ_ORDERED) {
5511 struct pool_workqueue *dfl_pwq;
5512
5513 ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]);
5514 /* there should only be single pwq for ordering guarantee */
5515 dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5516 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5517 wq->pwqs.prev != &dfl_pwq->pwqs_node),
5518 "ordering guarantee broken for workqueue %s\n", wq->name);
5519 } else {
5520 ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]);
5521 }
5522
5523 oem_skip:
5524 return ret;
5525
5526 enomem:
5527 if (wq->cpu_pwq) {
5528 for_each_possible_cpu(cpu) {
5529 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5530
5531 if (pwq)
5532 kmem_cache_free(pwq_cache, pwq);
5533 }
5534 free_percpu(wq->cpu_pwq);
5535 wq->cpu_pwq = NULL;
5536 }
5537 return -ENOMEM;
5538 }
5539
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)5540 static int wq_clamp_max_active(int max_active, unsigned int flags,
5541 const char *name)
5542 {
5543 if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5544 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5545 max_active, name, 1, WQ_MAX_ACTIVE);
5546
5547 return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5548 }
5549
5550 /*
5551 * Workqueues which may be used during memory reclaim should have a rescuer
5552 * to guarantee forward progress.
5553 */
init_rescuer(struct workqueue_struct * wq)5554 static int init_rescuer(struct workqueue_struct *wq)
5555 {
5556 struct worker *rescuer;
5557 char id_buf[WORKER_ID_LEN];
5558 int ret;
5559
5560 lockdep_assert_held(&wq_pool_mutex);
5561
5562 if (!(wq->flags & WQ_MEM_RECLAIM))
5563 return 0;
5564
5565 rescuer = alloc_worker(NUMA_NO_NODE);
5566 if (!rescuer) {
5567 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5568 wq->name);
5569 return -ENOMEM;
5570 }
5571
5572 rescuer->rescue_wq = wq;
5573 format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL);
5574
5575 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf);
5576 if (IS_ERR(rescuer->task)) {
5577 ret = PTR_ERR(rescuer->task);
5578 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5579 wq->name, ERR_PTR(ret));
5580 kfree(rescuer);
5581 return ret;
5582 }
5583
5584 wq->rescuer = rescuer;
5585 if (wq->flags & WQ_UNBOUND)
5586 kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq));
5587 else
5588 kthread_bind_mask(rescuer->task, cpu_possible_mask);
5589 wake_up_process(rescuer->task);
5590
5591 return 0;
5592 }
5593
5594 /**
5595 * wq_adjust_max_active - update a wq's max_active to the current setting
5596 * @wq: target workqueue
5597 *
5598 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5599 * activate inactive work items accordingly. If @wq is freezing, clear
5600 * @wq->max_active to zero.
5601 */
wq_adjust_max_active(struct workqueue_struct * wq)5602 static void wq_adjust_max_active(struct workqueue_struct *wq)
5603 {
5604 bool activated;
5605 int new_max, new_min;
5606
5607 lockdep_assert_held(&wq->mutex);
5608
5609 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5610 new_max = 0;
5611 new_min = 0;
5612 } else {
5613 new_max = wq->saved_max_active;
5614 new_min = wq->saved_min_active;
5615 }
5616
5617 if (wq->max_active == new_max && wq->min_active == new_min)
5618 return;
5619
5620 /*
5621 * Update @wq->max/min_active and then kick inactive work items if more
5622 * active work items are allowed. This doesn't break work item ordering
5623 * because new work items are always queued behind existing inactive
5624 * work items if there are any.
5625 */
5626 WRITE_ONCE(wq->max_active, new_max);
5627 WRITE_ONCE(wq->min_active, new_min);
5628
5629 if (wq->flags & WQ_UNBOUND)
5630 wq_update_node_max_active(wq, -1);
5631
5632 if (new_max == 0)
5633 return;
5634
5635 /*
5636 * Round-robin through pwq's activating the first inactive work item
5637 * until max_active is filled.
5638 */
5639 do {
5640 struct pool_workqueue *pwq;
5641
5642 activated = false;
5643 for_each_pwq(pwq, wq) {
5644 unsigned long irq_flags;
5645
5646 /* can be called during early boot w/ irq disabled */
5647 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5648 if (pwq_activate_first_inactive(pwq, true)) {
5649 activated = true;
5650 kick_pool(pwq->pool);
5651 }
5652 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5653 }
5654 } while (activated);
5655 }
5656
5657 __printf(1, 0)
__alloc_workqueue(const char * fmt,unsigned int flags,int max_active,va_list args)5658 static struct workqueue_struct *__alloc_workqueue(const char *fmt,
5659 unsigned int flags,
5660 int max_active, va_list args)
5661 {
5662 struct workqueue_struct *wq;
5663 size_t wq_size;
5664 int name_len;
5665
5666 if (flags & WQ_BH) {
5667 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5668 return NULL;
5669 if (WARN_ON_ONCE(max_active))
5670 return NULL;
5671 }
5672
5673 /* see the comment above the definition of WQ_POWER_EFFICIENT */
5674 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5675 flags |= WQ_UNBOUND;
5676
5677 /* allocate wq and format name */
5678 if (flags & WQ_UNBOUND)
5679 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5680 else
5681 wq_size = sizeof(*wq);
5682
5683 wq = kzalloc(wq_size, GFP_KERNEL);
5684 if (!wq)
5685 return NULL;
5686
5687 if (flags & WQ_UNBOUND) {
5688 wq->unbound_attrs = alloc_workqueue_attrs();
5689 if (!wq->unbound_attrs)
5690 goto err_free_wq;
5691 }
5692
5693 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5694
5695 if (name_len >= WQ_NAME_LEN)
5696 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5697 wq->name);
5698
5699 if (flags & WQ_BH) {
5700 /*
5701 * BH workqueues always share a single execution context per CPU
5702 * and don't impose any max_active limit.
5703 */
5704 max_active = INT_MAX;
5705 } else {
5706 max_active = max_active ?: WQ_DFL_ACTIVE;
5707 max_active = wq_clamp_max_active(max_active, flags, wq->name);
5708 }
5709
5710 trace_android_rvh_alloc_workqueue(wq, &flags, &max_active);
5711 /* init wq */
5712 wq->flags = flags;
5713 wq->max_active = max_active;
5714 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5715 wq->saved_max_active = wq->max_active;
5716 wq->saved_min_active = wq->min_active;
5717 mutex_init(&wq->mutex);
5718 atomic_set(&wq->nr_pwqs_to_flush, 0);
5719 INIT_LIST_HEAD(&wq->pwqs);
5720 INIT_LIST_HEAD(&wq->flusher_queue);
5721 INIT_LIST_HEAD(&wq->flusher_overflow);
5722 INIT_LIST_HEAD(&wq->maydays);
5723
5724 INIT_LIST_HEAD(&wq->list);
5725
5726 if (flags & WQ_UNBOUND) {
5727 if (alloc_node_nr_active(wq->node_nr_active) < 0)
5728 goto err_free_wq;
5729 }
5730
5731 /*
5732 * wq_pool_mutex protects the workqueues list, allocations of PWQs,
5733 * and the global freeze state.
5734 */
5735 apply_wqattrs_lock();
5736
5737 if (alloc_and_link_pwqs(wq) < 0)
5738 goto err_unlock_free_node_nr_active;
5739
5740 mutex_lock(&wq->mutex);
5741 wq_adjust_max_active(wq);
5742 mutex_unlock(&wq->mutex);
5743
5744 list_add_tail_rcu(&wq->list, &workqueues);
5745
5746 if (wq_online && init_rescuer(wq) < 0)
5747 goto err_unlock_destroy;
5748
5749 apply_wqattrs_unlock();
5750
5751 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5752 goto err_destroy;
5753
5754 return wq;
5755
5756 err_unlock_free_node_nr_active:
5757 apply_wqattrs_unlock();
5758 /*
5759 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work,
5760 * flushing the pwq_release_worker ensures that the pwq_release_workfn()
5761 * completes before calling kfree(wq).
5762 */
5763 if (wq->flags & WQ_UNBOUND) {
5764 kthread_flush_worker(pwq_release_worker);
5765 free_node_nr_active(wq->node_nr_active);
5766 }
5767 err_free_wq:
5768 free_workqueue_attrs(wq->unbound_attrs);
5769 kfree(wq);
5770 return NULL;
5771 err_unlock_destroy:
5772 apply_wqattrs_unlock();
5773 err_destroy:
5774 destroy_workqueue(wq);
5775 return NULL;
5776 }
5777
5778 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)5779 struct workqueue_struct *alloc_workqueue(const char *fmt,
5780 unsigned int flags,
5781 int max_active, ...)
5782 {
5783 struct workqueue_struct *wq;
5784 va_list args;
5785
5786 va_start(args, max_active);
5787 wq = __alloc_workqueue(fmt, flags, max_active, args);
5788 va_end(args);
5789 if (!wq)
5790 return NULL;
5791
5792 wq_init_lockdep(wq);
5793
5794 return wq;
5795 }
5796 EXPORT_SYMBOL_GPL(alloc_workqueue);
5797
5798 #ifdef CONFIG_LOCKDEP
5799 __printf(1, 5)
5800 struct workqueue_struct *
alloc_workqueue_lockdep_map(const char * fmt,unsigned int flags,int max_active,struct lockdep_map * lockdep_map,...)5801 alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags,
5802 int max_active, struct lockdep_map *lockdep_map, ...)
5803 {
5804 struct workqueue_struct *wq;
5805 va_list args;
5806
5807 va_start(args, lockdep_map);
5808 wq = __alloc_workqueue(fmt, flags, max_active, args);
5809 va_end(args);
5810 if (!wq)
5811 return NULL;
5812
5813 wq->lockdep_map = lockdep_map;
5814
5815 return wq;
5816 }
5817 EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map);
5818 #endif
5819
pwq_busy(struct pool_workqueue * pwq)5820 static bool pwq_busy(struct pool_workqueue *pwq)
5821 {
5822 int i;
5823
5824 for (i = 0; i < WORK_NR_COLORS; i++)
5825 if (pwq->nr_in_flight[i])
5826 return true;
5827
5828 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5829 return true;
5830 if (!pwq_is_empty(pwq))
5831 return true;
5832
5833 return false;
5834 }
5835
5836 /**
5837 * destroy_workqueue - safely terminate a workqueue
5838 * @wq: target workqueue
5839 *
5840 * Safely destroy a workqueue. All work currently pending will be done first.
5841 */
destroy_workqueue(struct workqueue_struct * wq)5842 void destroy_workqueue(struct workqueue_struct *wq)
5843 {
5844 struct pool_workqueue *pwq;
5845 int cpu;
5846
5847 /*
5848 * Remove it from sysfs first so that sanity check failure doesn't
5849 * lead to sysfs name conflicts.
5850 */
5851 workqueue_sysfs_unregister(wq);
5852
5853 /* mark the workqueue destruction is in progress */
5854 mutex_lock(&wq->mutex);
5855 wq->flags |= __WQ_DESTROYING;
5856 mutex_unlock(&wq->mutex);
5857
5858 /* drain it before proceeding with destruction */
5859 drain_workqueue(wq);
5860
5861 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5862 if (wq->rescuer) {
5863 struct worker *rescuer = wq->rescuer;
5864
5865 /* this prevents new queueing */
5866 raw_spin_lock_irq(&wq_mayday_lock);
5867 wq->rescuer = NULL;
5868 raw_spin_unlock_irq(&wq_mayday_lock);
5869
5870 /* rescuer will empty maydays list before exiting */
5871 kthread_stop(rescuer->task);
5872 kfree(rescuer);
5873 }
5874
5875 /*
5876 * Sanity checks - grab all the locks so that we wait for all
5877 * in-flight operations which may do put_pwq().
5878 */
5879 mutex_lock(&wq_pool_mutex);
5880 mutex_lock(&wq->mutex);
5881 for_each_pwq(pwq, wq) {
5882 raw_spin_lock_irq(&pwq->pool->lock);
5883 if (WARN_ON(pwq_busy(pwq))) {
5884 pr_warn("%s: %s has the following busy pwq\n",
5885 __func__, wq->name);
5886 show_pwq(pwq);
5887 raw_spin_unlock_irq(&pwq->pool->lock);
5888 mutex_unlock(&wq->mutex);
5889 mutex_unlock(&wq_pool_mutex);
5890 show_one_workqueue(wq);
5891 return;
5892 }
5893 raw_spin_unlock_irq(&pwq->pool->lock);
5894 }
5895 mutex_unlock(&wq->mutex);
5896
5897 /*
5898 * wq list is used to freeze wq, remove from list after
5899 * flushing is complete in case freeze races us.
5900 */
5901 list_del_rcu(&wq->list);
5902 mutex_unlock(&wq_pool_mutex);
5903
5904 /*
5905 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5906 * to put the base refs. @wq will be auto-destroyed from the last
5907 * pwq_put. RCU read lock prevents @wq from going away from under us.
5908 */
5909 rcu_read_lock();
5910
5911 for_each_possible_cpu(cpu) {
5912 put_pwq_unlocked(unbound_pwq(wq, cpu));
5913 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5914 }
5915
5916 put_pwq_unlocked(unbound_pwq(wq, -1));
5917 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5918
5919 rcu_read_unlock();
5920 }
5921 EXPORT_SYMBOL_GPL(destroy_workqueue);
5922
5923 /**
5924 * workqueue_set_max_active - adjust max_active of a workqueue
5925 * @wq: target workqueue
5926 * @max_active: new max_active value.
5927 *
5928 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5929 * comment.
5930 *
5931 * CONTEXT:
5932 * Don't call from IRQ context.
5933 */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)5934 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5935 {
5936 /* max_active doesn't mean anything for BH workqueues */
5937 if (WARN_ON(wq->flags & WQ_BH))
5938 return;
5939 /* disallow meddling with max_active for ordered workqueues */
5940 if (WARN_ON(wq->flags & __WQ_ORDERED))
5941 return;
5942
5943 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5944
5945 mutex_lock(&wq->mutex);
5946
5947 wq->saved_max_active = max_active;
5948 if (wq->flags & WQ_UNBOUND)
5949 wq->saved_min_active = min(wq->saved_min_active, max_active);
5950
5951 wq_adjust_max_active(wq);
5952
5953 mutex_unlock(&wq->mutex);
5954 }
5955 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5956
5957 /**
5958 * workqueue_set_min_active - adjust min_active of an unbound workqueue
5959 * @wq: target unbound workqueue
5960 * @min_active: new min_active value
5961 *
5962 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5963 * unbound workqueue is not guaranteed to be able to process max_active
5964 * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5965 * able to process min_active number of interdependent work items which is
5966 * %WQ_DFL_MIN_ACTIVE by default.
5967 *
5968 * Use this function to adjust the min_active value between 0 and the current
5969 * max_active.
5970 */
workqueue_set_min_active(struct workqueue_struct * wq,int min_active)5971 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5972 {
5973 /* min_active is only meaningful for non-ordered unbound workqueues */
5974 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5975 WQ_UNBOUND))
5976 return;
5977
5978 mutex_lock(&wq->mutex);
5979 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5980 wq_adjust_max_active(wq);
5981 mutex_unlock(&wq->mutex);
5982 }
5983
5984 /**
5985 * current_work - retrieve %current task's work struct
5986 *
5987 * Determine if %current task is a workqueue worker and what it's working on.
5988 * Useful to find out the context that the %current task is running in.
5989 *
5990 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5991 */
current_work(void)5992 struct work_struct *current_work(void)
5993 {
5994 struct worker *worker = current_wq_worker();
5995
5996 return worker ? worker->current_work : NULL;
5997 }
5998 EXPORT_SYMBOL(current_work);
5999
6000 /**
6001 * current_is_workqueue_rescuer - is %current workqueue rescuer?
6002 *
6003 * Determine whether %current is a workqueue rescuer. Can be used from
6004 * work functions to determine whether it's being run off the rescuer task.
6005 *
6006 * Return: %true if %current is a workqueue rescuer. %false otherwise.
6007 */
current_is_workqueue_rescuer(void)6008 bool current_is_workqueue_rescuer(void)
6009 {
6010 struct worker *worker = current_wq_worker();
6011
6012 return worker && worker->rescue_wq;
6013 }
6014
6015 /**
6016 * workqueue_congested - test whether a workqueue is congested
6017 * @cpu: CPU in question
6018 * @wq: target workqueue
6019 *
6020 * Test whether @wq's cpu workqueue for @cpu is congested. There is
6021 * no synchronization around this function and the test result is
6022 * unreliable and only useful as advisory hints or for debugging.
6023 *
6024 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
6025 *
6026 * With the exception of ordered workqueues, all workqueues have per-cpu
6027 * pool_workqueues, each with its own congested state. A workqueue being
6028 * congested on one CPU doesn't mean that the workqueue is contested on any
6029 * other CPUs.
6030 *
6031 * Return:
6032 * %true if congested, %false otherwise.
6033 */
workqueue_congested(int cpu,struct workqueue_struct * wq)6034 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
6035 {
6036 struct pool_workqueue *pwq;
6037 bool ret;
6038
6039 rcu_read_lock();
6040 preempt_disable();
6041
6042 if (cpu == WORK_CPU_UNBOUND)
6043 cpu = smp_processor_id();
6044
6045 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
6046 ret = !list_empty(&pwq->inactive_works);
6047
6048 preempt_enable();
6049 rcu_read_unlock();
6050
6051 return ret;
6052 }
6053 EXPORT_SYMBOL_GPL(workqueue_congested);
6054
6055 /**
6056 * work_busy - test whether a work is currently pending or running
6057 * @work: the work to be tested
6058 *
6059 * Test whether @work is currently pending or running. There is no
6060 * synchronization around this function and the test result is
6061 * unreliable and only useful as advisory hints or for debugging.
6062 *
6063 * Return:
6064 * OR'd bitmask of WORK_BUSY_* bits.
6065 */
work_busy(struct work_struct * work)6066 unsigned int work_busy(struct work_struct *work)
6067 {
6068 struct worker_pool *pool;
6069 unsigned long irq_flags;
6070 unsigned int ret = 0;
6071
6072 if (work_pending(work))
6073 ret |= WORK_BUSY_PENDING;
6074
6075 rcu_read_lock();
6076 pool = get_work_pool(work);
6077 if (pool) {
6078 raw_spin_lock_irqsave(&pool->lock, irq_flags);
6079 if (find_worker_executing_work(pool, work))
6080 ret |= WORK_BUSY_RUNNING;
6081 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6082 }
6083 rcu_read_unlock();
6084
6085 return ret;
6086 }
6087 EXPORT_SYMBOL_GPL(work_busy);
6088
6089 /**
6090 * set_worker_desc - set description for the current work item
6091 * @fmt: printf-style format string
6092 * @...: arguments for the format string
6093 *
6094 * This function can be called by a running work function to describe what
6095 * the work item is about. If the worker task gets dumped, this
6096 * information will be printed out together to help debugging. The
6097 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6098 */
set_worker_desc(const char * fmt,...)6099 void set_worker_desc(const char *fmt, ...)
6100 {
6101 struct worker *worker = current_wq_worker();
6102 va_list args;
6103
6104 if (worker) {
6105 va_start(args, fmt);
6106 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6107 va_end(args);
6108 }
6109 }
6110 EXPORT_SYMBOL_GPL(set_worker_desc);
6111
6112 /**
6113 * print_worker_info - print out worker information and description
6114 * @log_lvl: the log level to use when printing
6115 * @task: target task
6116 *
6117 * If @task is a worker and currently executing a work item, print out the
6118 * name of the workqueue being serviced and worker description set with
6119 * set_worker_desc() by the currently executing work item.
6120 *
6121 * This function can be safely called on any task as long as the
6122 * task_struct itself is accessible. While safe, this function isn't
6123 * synchronized and may print out mixups or garbages of limited length.
6124 */
print_worker_info(const char * log_lvl,struct task_struct * task)6125 void print_worker_info(const char *log_lvl, struct task_struct *task)
6126 {
6127 work_func_t *fn = NULL;
6128 char name[WQ_NAME_LEN] = { };
6129 char desc[WORKER_DESC_LEN] = { };
6130 struct pool_workqueue *pwq = NULL;
6131 struct workqueue_struct *wq = NULL;
6132 struct worker *worker;
6133
6134 if (!(task->flags & PF_WQ_WORKER))
6135 return;
6136
6137 /*
6138 * This function is called without any synchronization and @task
6139 * could be in any state. Be careful with dereferences.
6140 */
6141 worker = kthread_probe_data(task);
6142
6143 /*
6144 * Carefully copy the associated workqueue's workfn, name and desc.
6145 * Keep the original last '\0' in case the original is garbage.
6146 */
6147 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6148 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6149 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6150 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6151 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6152
6153 if (fn || name[0] || desc[0]) {
6154 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6155 if (strcmp(name, desc))
6156 pr_cont(" (%s)", desc);
6157 pr_cont("\n");
6158 }
6159 }
6160
pr_cont_pool_info(struct worker_pool * pool)6161 static void pr_cont_pool_info(struct worker_pool *pool)
6162 {
6163 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6164 if (pool->node != NUMA_NO_NODE)
6165 pr_cont(" node=%d", pool->node);
6166 pr_cont(" flags=0x%x", pool->flags);
6167 if (pool->flags & POOL_BH)
6168 pr_cont(" bh%s",
6169 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6170 else
6171 pr_cont(" nice=%d", pool->attrs->nice);
6172 }
6173
pr_cont_worker_id(struct worker * worker)6174 static void pr_cont_worker_id(struct worker *worker)
6175 {
6176 struct worker_pool *pool = worker->pool;
6177
6178 if (pool->flags & WQ_BH)
6179 pr_cont("bh%s",
6180 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6181 else
6182 pr_cont("%d%s", task_pid_nr(worker->task),
6183 worker->rescue_wq ? "(RESCUER)" : "");
6184 }
6185
6186 struct pr_cont_work_struct {
6187 bool comma;
6188 work_func_t func;
6189 long ctr;
6190 };
6191
pr_cont_work_flush(bool comma,work_func_t func,struct pr_cont_work_struct * pcwsp)6192 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6193 {
6194 if (!pcwsp->ctr)
6195 goto out_record;
6196 if (func == pcwsp->func) {
6197 pcwsp->ctr++;
6198 return;
6199 }
6200 if (pcwsp->ctr == 1)
6201 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6202 else
6203 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6204 pcwsp->ctr = 0;
6205 out_record:
6206 if ((long)func == -1L)
6207 return;
6208 pcwsp->comma = comma;
6209 pcwsp->func = func;
6210 pcwsp->ctr = 1;
6211 }
6212
pr_cont_work(bool comma,struct work_struct * work,struct pr_cont_work_struct * pcwsp)6213 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6214 {
6215 if (work->func == wq_barrier_func) {
6216 struct wq_barrier *barr;
6217
6218 barr = container_of(work, struct wq_barrier, work);
6219
6220 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6221 pr_cont("%s BAR(%d)", comma ? "," : "",
6222 task_pid_nr(barr->task));
6223 } else {
6224 if (!comma)
6225 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6226 pr_cont_work_flush(comma, work->func, pcwsp);
6227 }
6228 }
6229
show_pwq(struct pool_workqueue * pwq)6230 static void show_pwq(struct pool_workqueue *pwq)
6231 {
6232 struct pr_cont_work_struct pcws = { .ctr = 0, };
6233 struct worker_pool *pool = pwq->pool;
6234 struct work_struct *work;
6235 struct worker *worker;
6236 bool has_in_flight = false, has_pending = false;
6237 int bkt;
6238
6239 pr_info(" pwq %d:", pool->id);
6240 pr_cont_pool_info(pool);
6241
6242 pr_cont(" active=%d refcnt=%d%s\n",
6243 pwq->nr_active, pwq->refcnt,
6244 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6245
6246 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6247 if (worker->current_pwq == pwq) {
6248 has_in_flight = true;
6249 break;
6250 }
6251 }
6252 if (has_in_flight) {
6253 bool comma = false;
6254
6255 pr_info(" in-flight:");
6256 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6257 if (worker->current_pwq != pwq)
6258 continue;
6259
6260 pr_cont(" %s", comma ? "," : "");
6261 pr_cont_worker_id(worker);
6262 pr_cont(":%ps", worker->current_func);
6263 list_for_each_entry(work, &worker->scheduled, entry)
6264 pr_cont_work(false, work, &pcws);
6265 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6266 comma = true;
6267 }
6268 pr_cont("\n");
6269 }
6270
6271 list_for_each_entry(work, &pool->worklist, entry) {
6272 if (get_work_pwq(work) == pwq) {
6273 has_pending = true;
6274 break;
6275 }
6276 }
6277 if (has_pending) {
6278 bool comma = false;
6279
6280 pr_info(" pending:");
6281 list_for_each_entry(work, &pool->worklist, entry) {
6282 if (get_work_pwq(work) != pwq)
6283 continue;
6284
6285 pr_cont_work(comma, work, &pcws);
6286 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6287 }
6288 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6289 pr_cont("\n");
6290 }
6291
6292 if (!list_empty(&pwq->inactive_works)) {
6293 bool comma = false;
6294
6295 pr_info(" inactive:");
6296 list_for_each_entry(work, &pwq->inactive_works, entry) {
6297 pr_cont_work(comma, work, &pcws);
6298 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6299 }
6300 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6301 pr_cont("\n");
6302 }
6303 }
6304
6305 /**
6306 * show_one_workqueue - dump state of specified workqueue
6307 * @wq: workqueue whose state will be printed
6308 */
show_one_workqueue(struct workqueue_struct * wq)6309 void show_one_workqueue(struct workqueue_struct *wq)
6310 {
6311 struct pool_workqueue *pwq;
6312 bool idle = true;
6313 unsigned long irq_flags;
6314
6315 for_each_pwq(pwq, wq) {
6316 if (!pwq_is_empty(pwq)) {
6317 idle = false;
6318 break;
6319 }
6320 }
6321 if (idle) /* Nothing to print for idle workqueue */
6322 return;
6323
6324 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6325
6326 for_each_pwq(pwq, wq) {
6327 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6328 if (!pwq_is_empty(pwq)) {
6329 /*
6330 * Defer printing to avoid deadlocks in console
6331 * drivers that queue work while holding locks
6332 * also taken in their write paths.
6333 */
6334 printk_deferred_enter();
6335 show_pwq(pwq);
6336 printk_deferred_exit();
6337 }
6338 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6339 /*
6340 * We could be printing a lot from atomic context, e.g.
6341 * sysrq-t -> show_all_workqueues(). Avoid triggering
6342 * hard lockup.
6343 */
6344 touch_nmi_watchdog();
6345 }
6346
6347 }
6348
6349 /**
6350 * show_one_worker_pool - dump state of specified worker pool
6351 * @pool: worker pool whose state will be printed
6352 */
show_one_worker_pool(struct worker_pool * pool)6353 static void show_one_worker_pool(struct worker_pool *pool)
6354 {
6355 struct worker *worker;
6356 bool first = true;
6357 unsigned long irq_flags;
6358 unsigned long hung = 0;
6359
6360 raw_spin_lock_irqsave(&pool->lock, irq_flags);
6361 if (pool->nr_workers == pool->nr_idle)
6362 goto next_pool;
6363
6364 /* How long the first pending work is waiting for a worker. */
6365 if (!list_empty(&pool->worklist))
6366 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6367
6368 /*
6369 * Defer printing to avoid deadlocks in console drivers that
6370 * queue work while holding locks also taken in their write
6371 * paths.
6372 */
6373 printk_deferred_enter();
6374 pr_info("pool %d:", pool->id);
6375 pr_cont_pool_info(pool);
6376 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6377 if (pool->manager)
6378 pr_cont(" manager: %d",
6379 task_pid_nr(pool->manager->task));
6380 list_for_each_entry(worker, &pool->idle_list, entry) {
6381 pr_cont(" %s", first ? "idle: " : "");
6382 pr_cont_worker_id(worker);
6383 first = false;
6384 }
6385 pr_cont("\n");
6386 printk_deferred_exit();
6387 next_pool:
6388 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6389 /*
6390 * We could be printing a lot from atomic context, e.g.
6391 * sysrq-t -> show_all_workqueues(). Avoid triggering
6392 * hard lockup.
6393 */
6394 touch_nmi_watchdog();
6395
6396 }
6397
6398 /**
6399 * show_all_workqueues - dump workqueue state
6400 *
6401 * Called from a sysrq handler and prints out all busy workqueues and pools.
6402 */
show_all_workqueues(void)6403 void show_all_workqueues(void)
6404 {
6405 struct workqueue_struct *wq;
6406 struct worker_pool *pool;
6407 int pi;
6408
6409 rcu_read_lock();
6410
6411 pr_info("Showing busy workqueues and worker pools:\n");
6412
6413 list_for_each_entry_rcu(wq, &workqueues, list)
6414 show_one_workqueue(wq);
6415
6416 for_each_pool(pool, pi)
6417 show_one_worker_pool(pool);
6418
6419 rcu_read_unlock();
6420 }
6421
6422 /**
6423 * show_freezable_workqueues - dump freezable workqueue state
6424 *
6425 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6426 * still busy.
6427 */
show_freezable_workqueues(void)6428 void show_freezable_workqueues(void)
6429 {
6430 struct workqueue_struct *wq;
6431
6432 rcu_read_lock();
6433
6434 pr_info("Showing freezable workqueues that are still busy:\n");
6435
6436 list_for_each_entry_rcu(wq, &workqueues, list) {
6437 if (!(wq->flags & WQ_FREEZABLE))
6438 continue;
6439 show_one_workqueue(wq);
6440 }
6441
6442 rcu_read_unlock();
6443 }
6444
6445 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)6446 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6447 {
6448 /* stabilize PF_WQ_WORKER and worker pool association */
6449 mutex_lock(&wq_pool_attach_mutex);
6450
6451 if (task->flags & PF_WQ_WORKER) {
6452 struct worker *worker = kthread_data(task);
6453 struct worker_pool *pool = worker->pool;
6454 int off;
6455
6456 off = format_worker_id(buf, size, worker, pool);
6457
6458 if (pool) {
6459 raw_spin_lock_irq(&pool->lock);
6460 /*
6461 * ->desc tracks information (wq name or
6462 * set_worker_desc()) for the latest execution. If
6463 * current, prepend '+', otherwise '-'.
6464 */
6465 if (worker->desc[0] != '\0') {
6466 if (worker->current_work)
6467 scnprintf(buf + off, size - off, "+%s",
6468 worker->desc);
6469 else
6470 scnprintf(buf + off, size - off, "-%s",
6471 worker->desc);
6472 }
6473 raw_spin_unlock_irq(&pool->lock);
6474 }
6475 } else {
6476 strscpy(buf, task->comm, size);
6477 }
6478
6479 mutex_unlock(&wq_pool_attach_mutex);
6480 }
6481 EXPORT_SYMBOL_GPL(wq_worker_comm);
6482
6483 #ifdef CONFIG_SMP
6484
6485 /*
6486 * CPU hotplug.
6487 *
6488 * There are two challenges in supporting CPU hotplug. Firstly, there
6489 * are a lot of assumptions on strong associations among work, pwq and
6490 * pool which make migrating pending and scheduled works very
6491 * difficult to implement without impacting hot paths. Secondly,
6492 * worker pools serve mix of short, long and very long running works making
6493 * blocked draining impractical.
6494 *
6495 * This is solved by allowing the pools to be disassociated from the CPU
6496 * running as an unbound one and allowing it to be reattached later if the
6497 * cpu comes back online.
6498 */
6499
unbind_workers(int cpu)6500 static void unbind_workers(int cpu)
6501 {
6502 struct worker_pool *pool;
6503 struct worker *worker;
6504
6505 for_each_cpu_worker_pool(pool, cpu) {
6506 mutex_lock(&wq_pool_attach_mutex);
6507 raw_spin_lock_irq(&pool->lock);
6508
6509 /*
6510 * We've blocked all attach/detach operations. Make all workers
6511 * unbound and set DISASSOCIATED. Before this, all workers
6512 * must be on the cpu. After this, they may become diasporas.
6513 * And the preemption disabled section in their sched callbacks
6514 * are guaranteed to see WORKER_UNBOUND since the code here
6515 * is on the same cpu.
6516 */
6517 for_each_pool_worker(worker, pool)
6518 worker->flags |= WORKER_UNBOUND;
6519
6520 pool->flags |= POOL_DISASSOCIATED;
6521
6522 /*
6523 * The handling of nr_running in sched callbacks are disabled
6524 * now. Zap nr_running. After this, nr_running stays zero and
6525 * need_more_worker() and keep_working() are always true as
6526 * long as the worklist is not empty. This pool now behaves as
6527 * an unbound (in terms of concurrency management) pool which
6528 * are served by workers tied to the pool.
6529 */
6530 pool->nr_running = 0;
6531
6532 /*
6533 * With concurrency management just turned off, a busy
6534 * worker blocking could lead to lengthy stalls. Kick off
6535 * unbound chain execution of currently pending work items.
6536 */
6537 kick_pool(pool);
6538
6539 raw_spin_unlock_irq(&pool->lock);
6540
6541 for_each_pool_worker(worker, pool)
6542 unbind_worker(worker);
6543
6544 mutex_unlock(&wq_pool_attach_mutex);
6545 }
6546 }
6547
6548 /**
6549 * rebind_workers - rebind all workers of a pool to the associated CPU
6550 * @pool: pool of interest
6551 *
6552 * @pool->cpu is coming online. Rebind all workers to the CPU.
6553 */
rebind_workers(struct worker_pool * pool)6554 static void rebind_workers(struct worker_pool *pool)
6555 {
6556 struct worker *worker;
6557
6558 lockdep_assert_held(&wq_pool_attach_mutex);
6559
6560 /*
6561 * Restore CPU affinity of all workers. As all idle workers should
6562 * be on the run-queue of the associated CPU before any local
6563 * wake-ups for concurrency management happen, restore CPU affinity
6564 * of all workers first and then clear UNBOUND. As we're called
6565 * from CPU_ONLINE, the following shouldn't fail.
6566 */
6567 for_each_pool_worker(worker, pool) {
6568 kthread_set_per_cpu(worker->task, pool->cpu);
6569 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6570 pool_allowed_cpus(pool)) < 0);
6571 }
6572
6573 raw_spin_lock_irq(&pool->lock);
6574
6575 pool->flags &= ~POOL_DISASSOCIATED;
6576
6577 for_each_pool_worker(worker, pool) {
6578 unsigned int worker_flags = worker->flags;
6579
6580 /*
6581 * We want to clear UNBOUND but can't directly call
6582 * worker_clr_flags() or adjust nr_running. Atomically
6583 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6584 * @worker will clear REBOUND using worker_clr_flags() when
6585 * it initiates the next execution cycle thus restoring
6586 * concurrency management. Note that when or whether
6587 * @worker clears REBOUND doesn't affect correctness.
6588 *
6589 * WRITE_ONCE() is necessary because @worker->flags may be
6590 * tested without holding any lock in
6591 * wq_worker_running(). Without it, NOT_RUNNING test may
6592 * fail incorrectly leading to premature concurrency
6593 * management operations.
6594 */
6595 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6596 worker_flags |= WORKER_REBOUND;
6597 worker_flags &= ~WORKER_UNBOUND;
6598 WRITE_ONCE(worker->flags, worker_flags);
6599 }
6600
6601 raw_spin_unlock_irq(&pool->lock);
6602 }
6603
6604 /**
6605 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6606 * @pool: unbound pool of interest
6607 * @cpu: the CPU which is coming up
6608 *
6609 * An unbound pool may end up with a cpumask which doesn't have any online
6610 * CPUs. When a worker of such pool get scheduled, the scheduler resets
6611 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
6612 * online CPU before, cpus_allowed of all its workers should be restored.
6613 */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)6614 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6615 {
6616 static cpumask_t cpumask;
6617 struct worker *worker;
6618
6619 lockdep_assert_held(&wq_pool_attach_mutex);
6620
6621 /* is @cpu allowed for @pool? */
6622 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6623 return;
6624
6625 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6626
6627 /* as we're called from CPU_ONLINE, the following shouldn't fail */
6628 for_each_pool_worker(worker, pool)
6629 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6630 }
6631
workqueue_prepare_cpu(unsigned int cpu)6632 int workqueue_prepare_cpu(unsigned int cpu)
6633 {
6634 struct worker_pool *pool;
6635
6636 for_each_cpu_worker_pool(pool, cpu) {
6637 if (pool->nr_workers)
6638 continue;
6639 if (!create_worker(pool))
6640 return -ENOMEM;
6641 }
6642 return 0;
6643 }
6644
workqueue_online_cpu(unsigned int cpu)6645 int workqueue_online_cpu(unsigned int cpu)
6646 {
6647 struct worker_pool *pool;
6648 struct workqueue_struct *wq;
6649 int pi;
6650
6651 mutex_lock(&wq_pool_mutex);
6652
6653 cpumask_set_cpu(cpu, wq_online_cpumask);
6654
6655 for_each_pool(pool, pi) {
6656 /* BH pools aren't affected by hotplug */
6657 if (pool->flags & POOL_BH)
6658 continue;
6659
6660 mutex_lock(&wq_pool_attach_mutex);
6661 if (pool->cpu == cpu)
6662 rebind_workers(pool);
6663 else if (pool->cpu < 0)
6664 restore_unbound_workers_cpumask(pool, cpu);
6665 mutex_unlock(&wq_pool_attach_mutex);
6666 }
6667
6668 /* update pod affinity of unbound workqueues */
6669 list_for_each_entry(wq, &workqueues, list) {
6670 struct workqueue_attrs *attrs = wq->unbound_attrs;
6671
6672 if (attrs) {
6673 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6674 int tcpu;
6675
6676 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6677 unbound_wq_update_pwq(wq, tcpu);
6678
6679 mutex_lock(&wq->mutex);
6680 wq_update_node_max_active(wq, -1);
6681 mutex_unlock(&wq->mutex);
6682 }
6683 }
6684
6685 mutex_unlock(&wq_pool_mutex);
6686 return 0;
6687 }
6688
workqueue_offline_cpu(unsigned int cpu)6689 int workqueue_offline_cpu(unsigned int cpu)
6690 {
6691 struct workqueue_struct *wq;
6692
6693 /* unbinding per-cpu workers should happen on the local CPU */
6694 if (WARN_ON(cpu != smp_processor_id()))
6695 return -1;
6696
6697 unbind_workers(cpu);
6698
6699 /* update pod affinity of unbound workqueues */
6700 mutex_lock(&wq_pool_mutex);
6701
6702 cpumask_clear_cpu(cpu, wq_online_cpumask);
6703
6704 list_for_each_entry(wq, &workqueues, list) {
6705 struct workqueue_attrs *attrs = wq->unbound_attrs;
6706
6707 if (attrs) {
6708 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6709 int tcpu;
6710
6711 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6712 unbound_wq_update_pwq(wq, tcpu);
6713
6714 mutex_lock(&wq->mutex);
6715 wq_update_node_max_active(wq, cpu);
6716 mutex_unlock(&wq->mutex);
6717 }
6718 }
6719 mutex_unlock(&wq_pool_mutex);
6720
6721 return 0;
6722 }
6723
6724 struct work_for_cpu {
6725 struct work_struct work;
6726 long (*fn)(void *);
6727 void *arg;
6728 long ret;
6729 };
6730
work_for_cpu_fn(struct work_struct * work)6731 static void work_for_cpu_fn(struct work_struct *work)
6732 {
6733 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6734
6735 wfc->ret = wfc->fn(wfc->arg);
6736 }
6737
6738 /**
6739 * work_on_cpu_key - run a function in thread context on a particular cpu
6740 * @cpu: the cpu to run on
6741 * @fn: the function to run
6742 * @arg: the function arg
6743 * @key: The lock class key for lock debugging purposes
6744 *
6745 * It is up to the caller to ensure that the cpu doesn't go offline.
6746 * The caller must not hold any locks which would prevent @fn from completing.
6747 *
6748 * Return: The value @fn returns.
6749 */
work_on_cpu_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)6750 long work_on_cpu_key(int cpu, long (*fn)(void *),
6751 void *arg, struct lock_class_key *key)
6752 {
6753 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6754
6755 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6756 schedule_work_on(cpu, &wfc.work);
6757 flush_work(&wfc.work);
6758 destroy_work_on_stack(&wfc.work);
6759 return wfc.ret;
6760 }
6761 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6762
6763 /**
6764 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6765 * @cpu: the cpu to run on
6766 * @fn: the function to run
6767 * @arg: the function argument
6768 * @key: The lock class key for lock debugging purposes
6769 *
6770 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6771 * any locks which would prevent @fn from completing.
6772 *
6773 * Return: The value @fn returns.
6774 */
work_on_cpu_safe_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)6775 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6776 void *arg, struct lock_class_key *key)
6777 {
6778 long ret = -ENODEV;
6779
6780 cpus_read_lock();
6781 if (cpu_online(cpu))
6782 ret = work_on_cpu_key(cpu, fn, arg, key);
6783 cpus_read_unlock();
6784 return ret;
6785 }
6786 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6787 #endif /* CONFIG_SMP */
6788
6789 #ifdef CONFIG_FREEZER
6790
6791 /**
6792 * freeze_workqueues_begin - begin freezing workqueues
6793 *
6794 * Start freezing workqueues. After this function returns, all freezable
6795 * workqueues will queue new works to their inactive_works list instead of
6796 * pool->worklist.
6797 *
6798 * CONTEXT:
6799 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6800 */
freeze_workqueues_begin(void)6801 void freeze_workqueues_begin(void)
6802 {
6803 struct workqueue_struct *wq;
6804
6805 mutex_lock(&wq_pool_mutex);
6806
6807 WARN_ON_ONCE(workqueue_freezing);
6808 workqueue_freezing = true;
6809
6810 list_for_each_entry(wq, &workqueues, list) {
6811 mutex_lock(&wq->mutex);
6812 wq_adjust_max_active(wq);
6813 mutex_unlock(&wq->mutex);
6814 }
6815
6816 mutex_unlock(&wq_pool_mutex);
6817 }
6818
6819 /**
6820 * freeze_workqueues_busy - are freezable workqueues still busy?
6821 *
6822 * Check whether freezing is complete. This function must be called
6823 * between freeze_workqueues_begin() and thaw_workqueues().
6824 *
6825 * CONTEXT:
6826 * Grabs and releases wq_pool_mutex.
6827 *
6828 * Return:
6829 * %true if some freezable workqueues are still busy. %false if freezing
6830 * is complete.
6831 */
freeze_workqueues_busy(void)6832 bool freeze_workqueues_busy(void)
6833 {
6834 bool busy = false;
6835 struct workqueue_struct *wq;
6836 struct pool_workqueue *pwq;
6837
6838 mutex_lock(&wq_pool_mutex);
6839
6840 WARN_ON_ONCE(!workqueue_freezing);
6841
6842 list_for_each_entry(wq, &workqueues, list) {
6843 if (!(wq->flags & WQ_FREEZABLE))
6844 continue;
6845 /*
6846 * nr_active is monotonically decreasing. It's safe
6847 * to peek without lock.
6848 */
6849 rcu_read_lock();
6850 for_each_pwq(pwq, wq) {
6851 WARN_ON_ONCE(pwq->nr_active < 0);
6852 if (pwq->nr_active) {
6853 busy = true;
6854 rcu_read_unlock();
6855 goto out_unlock;
6856 }
6857 }
6858 rcu_read_unlock();
6859 }
6860 out_unlock:
6861 mutex_unlock(&wq_pool_mutex);
6862 return busy;
6863 }
6864
6865 /**
6866 * thaw_workqueues - thaw workqueues
6867 *
6868 * Thaw workqueues. Normal queueing is restored and all collected
6869 * frozen works are transferred to their respective pool worklists.
6870 *
6871 * CONTEXT:
6872 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6873 */
thaw_workqueues(void)6874 void thaw_workqueues(void)
6875 {
6876 struct workqueue_struct *wq;
6877
6878 mutex_lock(&wq_pool_mutex);
6879
6880 if (!workqueue_freezing)
6881 goto out_unlock;
6882
6883 workqueue_freezing = false;
6884
6885 /* restore max_active and repopulate worklist */
6886 list_for_each_entry(wq, &workqueues, list) {
6887 mutex_lock(&wq->mutex);
6888 wq_adjust_max_active(wq);
6889 mutex_unlock(&wq->mutex);
6890 }
6891
6892 out_unlock:
6893 mutex_unlock(&wq_pool_mutex);
6894 }
6895 #endif /* CONFIG_FREEZER */
6896
workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)6897 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6898 {
6899 LIST_HEAD(ctxs);
6900 int ret = 0;
6901 struct workqueue_struct *wq;
6902 struct apply_wqattrs_ctx *ctx, *n;
6903
6904 lockdep_assert_held(&wq_pool_mutex);
6905
6906 list_for_each_entry(wq, &workqueues, list) {
6907 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6908 continue;
6909
6910 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6911 if (IS_ERR(ctx)) {
6912 ret = PTR_ERR(ctx);
6913 break;
6914 }
6915
6916 list_add_tail(&ctx->list, &ctxs);
6917 }
6918
6919 list_for_each_entry_safe(ctx, n, &ctxs, list) {
6920 if (!ret)
6921 apply_wqattrs_commit(ctx);
6922 apply_wqattrs_cleanup(ctx);
6923 }
6924
6925 if (!ret) {
6926 mutex_lock(&wq_pool_attach_mutex);
6927 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6928 mutex_unlock(&wq_pool_attach_mutex);
6929 }
6930 return ret;
6931 }
6932
6933 /**
6934 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6935 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6936 *
6937 * This function can be called from cpuset code to provide a set of isolated
6938 * CPUs that should be excluded from wq_unbound_cpumask.
6939 */
workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)6940 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6941 {
6942 cpumask_var_t cpumask;
6943 int ret = 0;
6944
6945 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6946 return -ENOMEM;
6947
6948 mutex_lock(&wq_pool_mutex);
6949
6950 /*
6951 * If the operation fails, it will fall back to
6952 * wq_requested_unbound_cpumask which is initially set to
6953 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6954 * by any subsequent write to workqueue/cpumask sysfs file.
6955 */
6956 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6957 cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6958 if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6959 ret = workqueue_apply_unbound_cpumask(cpumask);
6960
6961 /* Save the current isolated cpumask & export it via sysfs */
6962 if (!ret)
6963 cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6964
6965 mutex_unlock(&wq_pool_mutex);
6966 free_cpumask_var(cpumask);
6967 return ret;
6968 }
6969
parse_affn_scope(const char * val)6970 static int parse_affn_scope(const char *val)
6971 {
6972 int i;
6973
6974 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6975 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6976 return i;
6977 }
6978 return -EINVAL;
6979 }
6980
wq_affn_dfl_set(const char * val,const struct kernel_param * kp)6981 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6982 {
6983 struct workqueue_struct *wq;
6984 int affn, cpu;
6985
6986 affn = parse_affn_scope(val);
6987 if (affn < 0)
6988 return affn;
6989 if (affn == WQ_AFFN_DFL)
6990 return -EINVAL;
6991
6992 cpus_read_lock();
6993 mutex_lock(&wq_pool_mutex);
6994
6995 wq_affn_dfl = affn;
6996
6997 list_for_each_entry(wq, &workqueues, list) {
6998 for_each_online_cpu(cpu)
6999 unbound_wq_update_pwq(wq, cpu);
7000 }
7001
7002 mutex_unlock(&wq_pool_mutex);
7003 cpus_read_unlock();
7004
7005 return 0;
7006 }
7007
wq_affn_dfl_get(char * buffer,const struct kernel_param * kp)7008 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
7009 {
7010 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
7011 }
7012
7013 static const struct kernel_param_ops wq_affn_dfl_ops = {
7014 .set = wq_affn_dfl_set,
7015 .get = wq_affn_dfl_get,
7016 };
7017
7018 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
7019
7020 #ifdef CONFIG_SYSFS
7021 /*
7022 * Workqueues with WQ_SYSFS flag set is visible to userland via
7023 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
7024 * following attributes.
7025 *
7026 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
7027 * max_active RW int : maximum number of in-flight work items
7028 *
7029 * Unbound workqueues have the following extra attributes.
7030 *
7031 * nice RW int : nice value of the workers
7032 * cpumask RW mask : bitmask of allowed CPUs for the workers
7033 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none)
7034 * affinity_strict RW bool : worker CPU affinity is strict
7035 */
7036 struct wq_device {
7037 struct workqueue_struct *wq;
7038 struct device dev;
7039 };
7040
dev_to_wq(struct device * dev)7041 static struct workqueue_struct *dev_to_wq(struct device *dev)
7042 {
7043 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7044
7045 return wq_dev->wq;
7046 }
7047
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)7048 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
7049 char *buf)
7050 {
7051 struct workqueue_struct *wq = dev_to_wq(dev);
7052
7053 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
7054 }
7055 static DEVICE_ATTR_RO(per_cpu);
7056
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)7057 static ssize_t max_active_show(struct device *dev,
7058 struct device_attribute *attr, char *buf)
7059 {
7060 struct workqueue_struct *wq = dev_to_wq(dev);
7061
7062 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
7063 }
7064
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7065 static ssize_t max_active_store(struct device *dev,
7066 struct device_attribute *attr, const char *buf,
7067 size_t count)
7068 {
7069 struct workqueue_struct *wq = dev_to_wq(dev);
7070 int val;
7071
7072 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
7073 return -EINVAL;
7074
7075 workqueue_set_max_active(wq, val);
7076 return count;
7077 }
7078 static DEVICE_ATTR_RW(max_active);
7079
7080 static struct attribute *wq_sysfs_attrs[] = {
7081 &dev_attr_per_cpu.attr,
7082 &dev_attr_max_active.attr,
7083 NULL,
7084 };
7085 ATTRIBUTE_GROUPS(wq_sysfs);
7086
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)7087 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7088 char *buf)
7089 {
7090 struct workqueue_struct *wq = dev_to_wq(dev);
7091 int written;
7092
7093 mutex_lock(&wq->mutex);
7094 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7095 mutex_unlock(&wq->mutex);
7096
7097 return written;
7098 }
7099
7100 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)7101 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7102 {
7103 struct workqueue_attrs *attrs;
7104
7105 lockdep_assert_held(&wq_pool_mutex);
7106
7107 attrs = alloc_workqueue_attrs();
7108 if (!attrs)
7109 return NULL;
7110
7111 copy_workqueue_attrs(attrs, wq->unbound_attrs);
7112 return attrs;
7113 }
7114
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7115 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7116 const char *buf, size_t count)
7117 {
7118 struct workqueue_struct *wq = dev_to_wq(dev);
7119 struct workqueue_attrs *attrs;
7120 int ret = -ENOMEM;
7121
7122 apply_wqattrs_lock();
7123
7124 attrs = wq_sysfs_prep_attrs(wq);
7125 if (!attrs)
7126 goto out_unlock;
7127
7128 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7129 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7130 ret = apply_workqueue_attrs_locked(wq, attrs);
7131 else
7132 ret = -EINVAL;
7133
7134 out_unlock:
7135 apply_wqattrs_unlock();
7136 free_workqueue_attrs(attrs);
7137 return ret ?: count;
7138 }
7139
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7140 static ssize_t wq_cpumask_show(struct device *dev,
7141 struct device_attribute *attr, char *buf)
7142 {
7143 struct workqueue_struct *wq = dev_to_wq(dev);
7144 int written;
7145
7146 mutex_lock(&wq->mutex);
7147 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7148 cpumask_pr_args(wq->unbound_attrs->cpumask));
7149 mutex_unlock(&wq->mutex);
7150 return written;
7151 }
7152
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7153 static ssize_t wq_cpumask_store(struct device *dev,
7154 struct device_attribute *attr,
7155 const char *buf, size_t count)
7156 {
7157 struct workqueue_struct *wq = dev_to_wq(dev);
7158 struct workqueue_attrs *attrs;
7159 int ret = -ENOMEM;
7160
7161 apply_wqattrs_lock();
7162
7163 attrs = wq_sysfs_prep_attrs(wq);
7164 if (!attrs)
7165 goto out_unlock;
7166
7167 ret = cpumask_parse(buf, attrs->cpumask);
7168 if (!ret)
7169 ret = apply_workqueue_attrs_locked(wq, attrs);
7170
7171 out_unlock:
7172 apply_wqattrs_unlock();
7173 free_workqueue_attrs(attrs);
7174 return ret ?: count;
7175 }
7176
wq_affn_scope_show(struct device * dev,struct device_attribute * attr,char * buf)7177 static ssize_t wq_affn_scope_show(struct device *dev,
7178 struct device_attribute *attr, char *buf)
7179 {
7180 struct workqueue_struct *wq = dev_to_wq(dev);
7181 int written;
7182
7183 mutex_lock(&wq->mutex);
7184 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7185 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7186 wq_affn_names[WQ_AFFN_DFL],
7187 wq_affn_names[wq_affn_dfl]);
7188 else
7189 written = scnprintf(buf, PAGE_SIZE, "%s\n",
7190 wq_affn_names[wq->unbound_attrs->affn_scope]);
7191 mutex_unlock(&wq->mutex);
7192
7193 return written;
7194 }
7195
wq_affn_scope_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7196 static ssize_t wq_affn_scope_store(struct device *dev,
7197 struct device_attribute *attr,
7198 const char *buf, size_t count)
7199 {
7200 struct workqueue_struct *wq = dev_to_wq(dev);
7201 struct workqueue_attrs *attrs;
7202 int affn, ret = -ENOMEM;
7203
7204 affn = parse_affn_scope(buf);
7205 if (affn < 0)
7206 return affn;
7207
7208 apply_wqattrs_lock();
7209 attrs = wq_sysfs_prep_attrs(wq);
7210 if (attrs) {
7211 attrs->affn_scope = affn;
7212 ret = apply_workqueue_attrs_locked(wq, attrs);
7213 }
7214 apply_wqattrs_unlock();
7215 free_workqueue_attrs(attrs);
7216 return ret ?: count;
7217 }
7218
wq_affinity_strict_show(struct device * dev,struct device_attribute * attr,char * buf)7219 static ssize_t wq_affinity_strict_show(struct device *dev,
7220 struct device_attribute *attr, char *buf)
7221 {
7222 struct workqueue_struct *wq = dev_to_wq(dev);
7223
7224 return scnprintf(buf, PAGE_SIZE, "%d\n",
7225 wq->unbound_attrs->affn_strict);
7226 }
7227
wq_affinity_strict_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7228 static ssize_t wq_affinity_strict_store(struct device *dev,
7229 struct device_attribute *attr,
7230 const char *buf, size_t count)
7231 {
7232 struct workqueue_struct *wq = dev_to_wq(dev);
7233 struct workqueue_attrs *attrs;
7234 int v, ret = -ENOMEM;
7235
7236 if (sscanf(buf, "%d", &v) != 1)
7237 return -EINVAL;
7238
7239 apply_wqattrs_lock();
7240 attrs = wq_sysfs_prep_attrs(wq);
7241 if (attrs) {
7242 attrs->affn_strict = (bool)v;
7243 ret = apply_workqueue_attrs_locked(wq, attrs);
7244 }
7245 apply_wqattrs_unlock();
7246 free_workqueue_attrs(attrs);
7247 return ret ?: count;
7248 }
7249
7250 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7251 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7252 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7253 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7254 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7255 __ATTR_NULL,
7256 };
7257
7258 static const struct bus_type wq_subsys = {
7259 .name = "workqueue",
7260 .dev_groups = wq_sysfs_groups,
7261 };
7262
7263 /**
7264 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7265 * @cpumask: the cpumask to set
7266 *
7267 * The low-level workqueues cpumask is a global cpumask that limits
7268 * the affinity of all unbound workqueues. This function check the @cpumask
7269 * and apply it to all unbound workqueues and updates all pwqs of them.
7270 *
7271 * Return: 0 - Success
7272 * -EINVAL - Invalid @cpumask
7273 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
7274 */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)7275 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7276 {
7277 int ret = -EINVAL;
7278
7279 /*
7280 * Not excluding isolated cpus on purpose.
7281 * If the user wishes to include them, we allow that.
7282 */
7283 cpumask_and(cpumask, cpumask, cpu_possible_mask);
7284 if (!cpumask_empty(cpumask)) {
7285 ret = 0;
7286 apply_wqattrs_lock();
7287 if (!cpumask_equal(cpumask, wq_unbound_cpumask))
7288 ret = workqueue_apply_unbound_cpumask(cpumask);
7289 if (!ret)
7290 cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7291 apply_wqattrs_unlock();
7292 }
7293
7294 return ret;
7295 }
7296
__wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf,cpumask_var_t mask)7297 static ssize_t __wq_cpumask_show(struct device *dev,
7298 struct device_attribute *attr, char *buf, cpumask_var_t mask)
7299 {
7300 int written;
7301
7302 mutex_lock(&wq_pool_mutex);
7303 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7304 mutex_unlock(&wq_pool_mutex);
7305
7306 return written;
7307 }
7308
cpumask_requested_show(struct device * dev,struct device_attribute * attr,char * buf)7309 static ssize_t cpumask_requested_show(struct device *dev,
7310 struct device_attribute *attr, char *buf)
7311 {
7312 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7313 }
7314 static DEVICE_ATTR_RO(cpumask_requested);
7315
cpumask_isolated_show(struct device * dev,struct device_attribute * attr,char * buf)7316 static ssize_t cpumask_isolated_show(struct device *dev,
7317 struct device_attribute *attr, char *buf)
7318 {
7319 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7320 }
7321 static DEVICE_ATTR_RO(cpumask_isolated);
7322
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7323 static ssize_t cpumask_show(struct device *dev,
7324 struct device_attribute *attr, char *buf)
7325 {
7326 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7327 }
7328
cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7329 static ssize_t cpumask_store(struct device *dev,
7330 struct device_attribute *attr, const char *buf, size_t count)
7331 {
7332 cpumask_var_t cpumask;
7333 int ret;
7334
7335 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7336 return -ENOMEM;
7337
7338 ret = cpumask_parse(buf, cpumask);
7339 if (!ret)
7340 ret = workqueue_set_unbound_cpumask(cpumask);
7341
7342 free_cpumask_var(cpumask);
7343 return ret ? ret : count;
7344 }
7345 static DEVICE_ATTR_RW(cpumask);
7346
7347 static struct attribute *wq_sysfs_cpumask_attrs[] = {
7348 &dev_attr_cpumask.attr,
7349 &dev_attr_cpumask_requested.attr,
7350 &dev_attr_cpumask_isolated.attr,
7351 NULL,
7352 };
7353 ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7354
wq_sysfs_init(void)7355 static int __init wq_sysfs_init(void)
7356 {
7357 return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
7358 }
7359 core_initcall(wq_sysfs_init);
7360
wq_device_release(struct device * dev)7361 static void wq_device_release(struct device *dev)
7362 {
7363 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7364
7365 kfree(wq_dev);
7366 }
7367
7368 /**
7369 * workqueue_sysfs_register - make a workqueue visible in sysfs
7370 * @wq: the workqueue to register
7371 *
7372 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7373 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7374 * which is the preferred method.
7375 *
7376 * Workqueue user should use this function directly iff it wants to apply
7377 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7378 * apply_workqueue_attrs() may race against userland updating the
7379 * attributes.
7380 *
7381 * Return: 0 on success, -errno on failure.
7382 */
workqueue_sysfs_register(struct workqueue_struct * wq)7383 int workqueue_sysfs_register(struct workqueue_struct *wq)
7384 {
7385 struct wq_device *wq_dev;
7386 int ret;
7387
7388 /*
7389 * Adjusting max_active breaks ordering guarantee. Disallow exposing
7390 * ordered workqueues.
7391 */
7392 if (WARN_ON(wq->flags & __WQ_ORDERED))
7393 return -EINVAL;
7394
7395 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7396 if (!wq_dev)
7397 return -ENOMEM;
7398
7399 wq_dev->wq = wq;
7400 wq_dev->dev.bus = &wq_subsys;
7401 wq_dev->dev.release = wq_device_release;
7402 dev_set_name(&wq_dev->dev, "%s", wq->name);
7403
7404 /*
7405 * unbound_attrs are created separately. Suppress uevent until
7406 * everything is ready.
7407 */
7408 dev_set_uevent_suppress(&wq_dev->dev, true);
7409
7410 ret = device_register(&wq_dev->dev);
7411 if (ret) {
7412 put_device(&wq_dev->dev);
7413 wq->wq_dev = NULL;
7414 return ret;
7415 }
7416
7417 if (wq->flags & WQ_UNBOUND) {
7418 struct device_attribute *attr;
7419
7420 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7421 ret = device_create_file(&wq_dev->dev, attr);
7422 if (ret) {
7423 device_unregister(&wq_dev->dev);
7424 wq->wq_dev = NULL;
7425 return ret;
7426 }
7427 }
7428 }
7429
7430 dev_set_uevent_suppress(&wq_dev->dev, false);
7431 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7432 return 0;
7433 }
7434
7435 /**
7436 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7437 * @wq: the workqueue to unregister
7438 *
7439 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7440 */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7441 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7442 {
7443 struct wq_device *wq_dev = wq->wq_dev;
7444
7445 if (!wq->wq_dev)
7446 return;
7447
7448 wq->wq_dev = NULL;
7449 device_unregister(&wq_dev->dev);
7450 }
7451 #else /* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7452 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
7453 #endif /* CONFIG_SYSFS */
7454
7455 /*
7456 * Workqueue watchdog.
7457 *
7458 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7459 * flush dependency, a concurrency managed work item which stays RUNNING
7460 * indefinitely. Workqueue stalls can be very difficult to debug as the
7461 * usual warning mechanisms don't trigger and internal workqueue state is
7462 * largely opaque.
7463 *
7464 * Workqueue watchdog monitors all worker pools periodically and dumps
7465 * state if some pools failed to make forward progress for a while where
7466 * forward progress is defined as the first item on ->worklist changing.
7467 *
7468 * This mechanism is controlled through the kernel parameter
7469 * "workqueue.watchdog_thresh" which can be updated at runtime through the
7470 * corresponding sysfs parameter file.
7471 */
7472 #ifdef CONFIG_WQ_WATCHDOG
7473
7474 static unsigned long wq_watchdog_thresh = 30;
7475 static struct timer_list wq_watchdog_timer;
7476
7477 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7478 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7479
7480 static unsigned int wq_panic_on_stall;
7481 module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644);
7482
7483 /*
7484 * Show workers that might prevent the processing of pending work items.
7485 * The only candidates are CPU-bound workers in the running state.
7486 * Pending work items should be handled by another idle worker
7487 * in all other situations.
7488 */
show_cpu_pool_hog(struct worker_pool * pool)7489 static void show_cpu_pool_hog(struct worker_pool *pool)
7490 {
7491 struct worker *worker;
7492 unsigned long irq_flags;
7493 int bkt;
7494
7495 raw_spin_lock_irqsave(&pool->lock, irq_flags);
7496
7497 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7498 if (task_is_running(worker->task)) {
7499 /*
7500 * Defer printing to avoid deadlocks in console
7501 * drivers that queue work while holding locks
7502 * also taken in their write paths.
7503 */
7504 printk_deferred_enter();
7505
7506 pr_info("pool %d:\n", pool->id);
7507 sched_show_task(worker->task);
7508
7509 printk_deferred_exit();
7510 }
7511 }
7512
7513 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7514 }
7515
show_cpu_pools_hogs(void)7516 static void show_cpu_pools_hogs(void)
7517 {
7518 struct worker_pool *pool;
7519 int pi;
7520
7521 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7522
7523 rcu_read_lock();
7524
7525 for_each_pool(pool, pi) {
7526 if (pool->cpu_stall)
7527 show_cpu_pool_hog(pool);
7528
7529 }
7530
7531 rcu_read_unlock();
7532 }
7533
panic_on_wq_watchdog(void)7534 static void panic_on_wq_watchdog(void)
7535 {
7536 static unsigned int wq_stall;
7537
7538 if (wq_panic_on_stall) {
7539 wq_stall++;
7540 BUG_ON(wq_stall >= wq_panic_on_stall);
7541 }
7542 }
7543
wq_watchdog_reset_touched(void)7544 static void wq_watchdog_reset_touched(void)
7545 {
7546 int cpu;
7547
7548 wq_watchdog_touched = jiffies;
7549 for_each_possible_cpu(cpu)
7550 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7551 }
7552
wq_watchdog_timer_fn(struct timer_list * unused)7553 static void wq_watchdog_timer_fn(struct timer_list *unused)
7554 {
7555 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7556 bool lockup_detected = false;
7557 bool cpu_pool_stall = false;
7558 unsigned long now = jiffies;
7559 struct worker_pool *pool;
7560 int pi;
7561
7562 if (!thresh)
7563 return;
7564
7565 rcu_read_lock();
7566
7567 for_each_pool(pool, pi) {
7568 unsigned long pool_ts, touched, ts;
7569
7570 pool->cpu_stall = false;
7571 if (list_empty(&pool->worklist))
7572 continue;
7573
7574 /*
7575 * If a virtual machine is stopped by the host it can look to
7576 * the watchdog like a stall.
7577 */
7578 kvm_check_and_clear_guest_paused();
7579
7580 /* get the latest of pool and touched timestamps */
7581 if (pool->cpu >= 0)
7582 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7583 else
7584 touched = READ_ONCE(wq_watchdog_touched);
7585 pool_ts = READ_ONCE(pool->watchdog_ts);
7586
7587 if (time_after(pool_ts, touched))
7588 ts = pool_ts;
7589 else
7590 ts = touched;
7591
7592 /* did we stall? */
7593 if (time_after(now, ts + thresh)) {
7594 lockup_detected = true;
7595 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7596 pool->cpu_stall = true;
7597 cpu_pool_stall = true;
7598 }
7599 pr_emerg("BUG: workqueue lockup - pool");
7600 pr_cont_pool_info(pool);
7601 pr_cont(" stuck for %us!\n",
7602 jiffies_to_msecs(now - pool_ts) / 1000);
7603 trace_android_vh_wq_lockup_pool(pool->cpu, pool_ts);
7604 }
7605
7606
7607 }
7608
7609 rcu_read_unlock();
7610
7611 if (lockup_detected)
7612 show_all_workqueues();
7613
7614 if (cpu_pool_stall)
7615 show_cpu_pools_hogs();
7616
7617 if (lockup_detected)
7618 panic_on_wq_watchdog();
7619
7620 wq_watchdog_reset_touched();
7621 mod_timer(&wq_watchdog_timer, jiffies + thresh);
7622 }
7623
wq_watchdog_touch(int cpu)7624 notrace void wq_watchdog_touch(int cpu)
7625 {
7626 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7627 unsigned long touch_ts = READ_ONCE(wq_watchdog_touched);
7628 unsigned long now = jiffies;
7629
7630 if (cpu >= 0)
7631 per_cpu(wq_watchdog_touched_cpu, cpu) = now;
7632 else
7633 WARN_ONCE(1, "%s should be called with valid CPU", __func__);
7634
7635 /* Don't unnecessarily store to global cacheline */
7636 if (time_after(now, touch_ts + thresh / 4))
7637 WRITE_ONCE(wq_watchdog_touched, jiffies);
7638 }
7639
wq_watchdog_set_thresh(unsigned long thresh)7640 static void wq_watchdog_set_thresh(unsigned long thresh)
7641 {
7642 wq_watchdog_thresh = 0;
7643 del_timer_sync(&wq_watchdog_timer);
7644
7645 if (thresh) {
7646 wq_watchdog_thresh = thresh;
7647 wq_watchdog_reset_touched();
7648 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7649 }
7650 }
7651
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)7652 static int wq_watchdog_param_set_thresh(const char *val,
7653 const struct kernel_param *kp)
7654 {
7655 unsigned long thresh;
7656 int ret;
7657
7658 ret = kstrtoul(val, 0, &thresh);
7659 if (ret)
7660 return ret;
7661
7662 if (system_wq)
7663 wq_watchdog_set_thresh(thresh);
7664 else
7665 wq_watchdog_thresh = thresh;
7666
7667 return 0;
7668 }
7669
7670 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7671 .set = wq_watchdog_param_set_thresh,
7672 .get = param_get_ulong,
7673 };
7674
7675 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7676 0644);
7677
wq_watchdog_init(void)7678 static void wq_watchdog_init(void)
7679 {
7680 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7681 wq_watchdog_set_thresh(wq_watchdog_thresh);
7682 }
7683
7684 #else /* CONFIG_WQ_WATCHDOG */
7685
wq_watchdog_init(void)7686 static inline void wq_watchdog_init(void) { }
7687
7688 #endif /* CONFIG_WQ_WATCHDOG */
7689
bh_pool_kick_normal(struct irq_work * irq_work)7690 static void bh_pool_kick_normal(struct irq_work *irq_work)
7691 {
7692 raise_softirq_irqoff(TASKLET_SOFTIRQ);
7693 }
7694
bh_pool_kick_highpri(struct irq_work * irq_work)7695 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7696 {
7697 raise_softirq_irqoff(HI_SOFTIRQ);
7698 }
7699
restrict_unbound_cpumask(const char * name,const struct cpumask * mask)7700 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7701 {
7702 if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7703 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7704 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7705 return;
7706 }
7707
7708 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7709 }
7710
init_cpu_worker_pool(struct worker_pool * pool,int cpu,int nice)7711 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7712 {
7713 BUG_ON(init_worker_pool(pool));
7714 pool->cpu = cpu;
7715 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7716 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7717 pool->attrs->nice = nice;
7718 pool->attrs->affn_strict = true;
7719 pool->node = cpu_to_node(cpu);
7720
7721 /* alloc pool ID */
7722 mutex_lock(&wq_pool_mutex);
7723 BUG_ON(worker_pool_assign_id(pool));
7724 mutex_unlock(&wq_pool_mutex);
7725 }
7726
7727 /**
7728 * workqueue_init_early - early init for workqueue subsystem
7729 *
7730 * This is the first step of three-staged workqueue subsystem initialization and
7731 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7732 * up. It sets up all the data structures and system workqueues and allows early
7733 * boot code to create workqueues and queue/cancel work items. Actual work item
7734 * execution starts only after kthreads can be created and scheduled right
7735 * before early initcalls.
7736 */
workqueue_init_early(void)7737 void __init workqueue_init_early(void)
7738 {
7739 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7740 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7741 void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7742 bh_pool_kick_highpri };
7743 int i, cpu;
7744
7745 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7746
7747 BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL));
7748 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7749 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7750 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7751
7752 cpumask_copy(wq_online_cpumask, cpu_online_mask);
7753 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7754 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7755 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7756 if (!cpumask_empty(&wq_cmdline_cpumask))
7757 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7758
7759 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7760 cpumask_andnot(wq_isolated_cpumask, cpu_possible_mask,
7761 housekeeping_cpumask(HK_TYPE_DOMAIN));
7762 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7763
7764 unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs();
7765 BUG_ON(!unbound_wq_update_pwq_attrs_buf);
7766
7767 /*
7768 * If nohz_full is enabled, set power efficient workqueue as unbound.
7769 * This allows workqueue items to be moved to HK CPUs.
7770 */
7771 if (housekeeping_enabled(HK_TYPE_TICK))
7772 wq_power_efficient = true;
7773
7774 /* initialize WQ_AFFN_SYSTEM pods */
7775 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7776 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7777 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7778 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7779
7780 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7781
7782 pt->nr_pods = 1;
7783 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7784 pt->pod_node[0] = NUMA_NO_NODE;
7785 pt->cpu_pod[0] = 0;
7786
7787 /* initialize BH and CPU pools */
7788 for_each_possible_cpu(cpu) {
7789 struct worker_pool *pool;
7790
7791 i = 0;
7792 for_each_bh_worker_pool(pool, cpu) {
7793 init_cpu_worker_pool(pool, cpu, std_nice[i]);
7794 pool->flags |= POOL_BH;
7795 init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7796 i++;
7797 }
7798
7799 i = 0;
7800 for_each_cpu_worker_pool(pool, cpu)
7801 init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7802 }
7803
7804 /* create default unbound and ordered wq attrs */
7805 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7806 struct workqueue_attrs *attrs;
7807
7808 BUG_ON(!(attrs = alloc_workqueue_attrs()));
7809 attrs->nice = std_nice[i];
7810 unbound_std_wq_attrs[i] = attrs;
7811
7812 /*
7813 * An ordered wq should have only one pwq as ordering is
7814 * guaranteed by max_active which is enforced by pwqs.
7815 */
7816 BUG_ON(!(attrs = alloc_workqueue_attrs()));
7817 attrs->nice = std_nice[i];
7818 attrs->ordered = true;
7819 ordered_wq_attrs[i] = attrs;
7820 }
7821
7822 system_wq = alloc_workqueue("events", 0, 0);
7823 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7824 system_long_wq = alloc_workqueue("events_long", 0, 0);
7825 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7826 WQ_MAX_ACTIVE);
7827 system_freezable_wq = alloc_workqueue("events_freezable",
7828 WQ_FREEZABLE, 0);
7829 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7830 WQ_POWER_EFFICIENT, 0);
7831 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7832 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7833 0);
7834 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7835 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7836 WQ_BH | WQ_HIGHPRI, 0);
7837 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7838 !system_unbound_wq || !system_freezable_wq ||
7839 !system_power_efficient_wq ||
7840 !system_freezable_power_efficient_wq ||
7841 !system_bh_wq || !system_bh_highpri_wq);
7842 }
7843
wq_cpu_intensive_thresh_init(void)7844 static void __init wq_cpu_intensive_thresh_init(void)
7845 {
7846 unsigned long thresh;
7847 unsigned long bogo;
7848
7849 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7850 BUG_ON(IS_ERR(pwq_release_worker));
7851
7852 /* if the user set it to a specific value, keep it */
7853 if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7854 return;
7855
7856 /*
7857 * The default of 10ms is derived from the fact that most modern (as of
7858 * 2023) processors can do a lot in 10ms and that it's just below what
7859 * most consider human-perceivable. However, the kernel also runs on a
7860 * lot slower CPUs including microcontrollers where the threshold is way
7861 * too low.
7862 *
7863 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7864 * This is by no means accurate but it doesn't have to be. The mechanism
7865 * is still useful even when the threshold is fully scaled up. Also, as
7866 * the reports would usually be applicable to everyone, some machines
7867 * operating on longer thresholds won't significantly diminish their
7868 * usefulness.
7869 */
7870 thresh = 10 * USEC_PER_MSEC;
7871
7872 /* see init/calibrate.c for lpj -> BogoMIPS calculation */
7873 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7874 if (bogo < 4000)
7875 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7876
7877 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7878 loops_per_jiffy, bogo, thresh);
7879
7880 wq_cpu_intensive_thresh_us = thresh;
7881 }
7882
7883 /**
7884 * workqueue_init - bring workqueue subsystem fully online
7885 *
7886 * This is the second step of three-staged workqueue subsystem initialization
7887 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7888 * been created and work items queued on them, but there are no kworkers
7889 * executing the work items yet. Populate the worker pools with the initial
7890 * workers and enable future kworker creations.
7891 */
workqueue_init(void)7892 void __init workqueue_init(void)
7893 {
7894 struct workqueue_struct *wq;
7895 struct worker_pool *pool;
7896 int cpu, bkt;
7897
7898 wq_cpu_intensive_thresh_init();
7899
7900 mutex_lock(&wq_pool_mutex);
7901
7902 /*
7903 * Per-cpu pools created earlier could be missing node hint. Fix them
7904 * up. Also, create a rescuer for workqueues that requested it.
7905 */
7906 for_each_possible_cpu(cpu) {
7907 for_each_bh_worker_pool(pool, cpu)
7908 pool->node = cpu_to_node(cpu);
7909 for_each_cpu_worker_pool(pool, cpu)
7910 pool->node = cpu_to_node(cpu);
7911 }
7912
7913 list_for_each_entry(wq, &workqueues, list) {
7914 WARN(init_rescuer(wq),
7915 "workqueue: failed to create early rescuer for %s",
7916 wq->name);
7917 }
7918
7919 mutex_unlock(&wq_pool_mutex);
7920
7921 /*
7922 * Create the initial workers. A BH pool has one pseudo worker that
7923 * represents the shared BH execution context and thus doesn't get
7924 * affected by hotplug events. Create the BH pseudo workers for all
7925 * possible CPUs here.
7926 */
7927 for_each_possible_cpu(cpu)
7928 for_each_bh_worker_pool(pool, cpu)
7929 BUG_ON(!create_worker(pool));
7930
7931 for_each_online_cpu(cpu) {
7932 for_each_cpu_worker_pool(pool, cpu) {
7933 pool->flags &= ~POOL_DISASSOCIATED;
7934 BUG_ON(!create_worker(pool));
7935 }
7936 }
7937
7938 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7939 BUG_ON(!create_worker(pool));
7940
7941 wq_online = true;
7942 wq_watchdog_init();
7943 }
7944
7945 /*
7946 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7947 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7948 * and consecutive pod ID. The rest of @pt is initialized accordingly.
7949 */
init_pod_type(struct wq_pod_type * pt,bool (* cpus_share_pod)(int,int))7950 static void __init init_pod_type(struct wq_pod_type *pt,
7951 bool (*cpus_share_pod)(int, int))
7952 {
7953 int cur, pre, cpu, pod;
7954
7955 pt->nr_pods = 0;
7956
7957 /* init @pt->cpu_pod[] according to @cpus_share_pod() */
7958 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7959 BUG_ON(!pt->cpu_pod);
7960
7961 for_each_possible_cpu(cur) {
7962 for_each_possible_cpu(pre) {
7963 if (pre >= cur) {
7964 pt->cpu_pod[cur] = pt->nr_pods++;
7965 break;
7966 }
7967 if (cpus_share_pod(cur, pre)) {
7968 pt->cpu_pod[cur] = pt->cpu_pod[pre];
7969 break;
7970 }
7971 }
7972 }
7973
7974 /* init the rest to match @pt->cpu_pod[] */
7975 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7976 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7977 BUG_ON(!pt->pod_cpus || !pt->pod_node);
7978
7979 for (pod = 0; pod < pt->nr_pods; pod++)
7980 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7981
7982 for_each_possible_cpu(cpu) {
7983 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7984 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7985 }
7986 }
7987
cpus_dont_share(int cpu0,int cpu1)7988 static bool __init cpus_dont_share(int cpu0, int cpu1)
7989 {
7990 return false;
7991 }
7992
cpus_share_smt(int cpu0,int cpu1)7993 static bool __init cpus_share_smt(int cpu0, int cpu1)
7994 {
7995 #ifdef CONFIG_SCHED_SMT
7996 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7997 #else
7998 return false;
7999 #endif
8000 }
8001
cpus_share_numa(int cpu0,int cpu1)8002 static bool __init cpus_share_numa(int cpu0, int cpu1)
8003 {
8004 return cpu_to_node(cpu0) == cpu_to_node(cpu1);
8005 }
8006
8007 /**
8008 * workqueue_init_topology - initialize CPU pods for unbound workqueues
8009 *
8010 * This is the third step of three-staged workqueue subsystem initialization and
8011 * invoked after SMP and topology information are fully initialized. It
8012 * initializes the unbound CPU pods accordingly.
8013 */
workqueue_init_topology(void)8014 void __init workqueue_init_topology(void)
8015 {
8016 struct workqueue_struct *wq;
8017 int cpu;
8018
8019 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
8020 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
8021 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
8022 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
8023
8024 wq_topo_initialized = true;
8025
8026 mutex_lock(&wq_pool_mutex);
8027
8028 /*
8029 * Workqueues allocated earlier would have all CPUs sharing the default
8030 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue
8031 * and CPU combinations to apply per-pod sharing.
8032 */
8033 list_for_each_entry(wq, &workqueues, list) {
8034 for_each_online_cpu(cpu)
8035 unbound_wq_update_pwq(wq, cpu);
8036 if (wq->flags & WQ_UNBOUND) {
8037 mutex_lock(&wq->mutex);
8038 wq_update_node_max_active(wq, -1);
8039 mutex_unlock(&wq->mutex);
8040 }
8041 }
8042
8043 mutex_unlock(&wq_pool_mutex);
8044 }
8045
__warn_flushing_systemwide_wq(void)8046 void __warn_flushing_systemwide_wq(void)
8047 {
8048 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
8049 dump_stack();
8050 }
8051 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
8052
workqueue_unbound_cpus_setup(char * str)8053 static int __init workqueue_unbound_cpus_setup(char *str)
8054 {
8055 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
8056 cpumask_clear(&wq_cmdline_cpumask);
8057 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
8058 }
8059
8060 return 1;
8061 }
8062 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
8063