• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/traps.c
4  *
5  * Copyright (C) 1995-2009 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/bug.h>
10 #include <linux/context_tracking.h>
11 #include <linux/signal.h>
12 #include <linux/kallsyms.h>
13 #include <linux/kprobes.h>
14 #include <linux/spinlock.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kdebug.h>
18 #include <linux/module.h>
19 #include <linux/kexec.h>
20 #include <linux/delay.h>
21 #include <linux/efi.h>
22 #include <linux/init.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/debug.h>
25 #include <linux/sched/task_stack.h>
26 #include <linux/sizes.h>
27 #include <linux/syscalls.h>
28 #include <linux/mm_types.h>
29 #include <linux/kasan.h>
30 #include <linux/ubsan.h>
31 #include <linux/cfi.h>
32 
33 #include <asm/atomic.h>
34 #include <asm/bug.h>
35 #include <asm/cpufeature.h>
36 #include <asm/daifflags.h>
37 #include <asm/debug-monitors.h>
38 #include <asm/efi.h>
39 #include <asm/esr.h>
40 #include <asm/exception.h>
41 #include <asm/extable.h>
42 #include <asm/insn.h>
43 #include <asm/kprobes.h>
44 #include <asm/patching.h>
45 #include <asm/traps.h>
46 #include <asm/smp.h>
47 #include <asm/stack_pointer.h>
48 #include <asm/stacktrace.h>
49 #include <asm/system_misc.h>
50 #include <asm/sysreg.h>
51 
52 #include <trace/hooks/traps.h>
53 
__check_eq(unsigned long pstate)54 static bool __kprobes __check_eq(unsigned long pstate)
55 {
56 	return (pstate & PSR_Z_BIT) != 0;
57 }
58 
__check_ne(unsigned long pstate)59 static bool __kprobes __check_ne(unsigned long pstate)
60 {
61 	return (pstate & PSR_Z_BIT) == 0;
62 }
63 
__check_cs(unsigned long pstate)64 static bool __kprobes __check_cs(unsigned long pstate)
65 {
66 	return (pstate & PSR_C_BIT) != 0;
67 }
68 
__check_cc(unsigned long pstate)69 static bool __kprobes __check_cc(unsigned long pstate)
70 {
71 	return (pstate & PSR_C_BIT) == 0;
72 }
73 
__check_mi(unsigned long pstate)74 static bool __kprobes __check_mi(unsigned long pstate)
75 {
76 	return (pstate & PSR_N_BIT) != 0;
77 }
78 
__check_pl(unsigned long pstate)79 static bool __kprobes __check_pl(unsigned long pstate)
80 {
81 	return (pstate & PSR_N_BIT) == 0;
82 }
83 
__check_vs(unsigned long pstate)84 static bool __kprobes __check_vs(unsigned long pstate)
85 {
86 	return (pstate & PSR_V_BIT) != 0;
87 }
88 
__check_vc(unsigned long pstate)89 static bool __kprobes __check_vc(unsigned long pstate)
90 {
91 	return (pstate & PSR_V_BIT) == 0;
92 }
93 
__check_hi(unsigned long pstate)94 static bool __kprobes __check_hi(unsigned long pstate)
95 {
96 	pstate &= ~(pstate >> 1);	/* PSR_C_BIT &= ~PSR_Z_BIT */
97 	return (pstate & PSR_C_BIT) != 0;
98 }
99 
__check_ls(unsigned long pstate)100 static bool __kprobes __check_ls(unsigned long pstate)
101 {
102 	pstate &= ~(pstate >> 1);	/* PSR_C_BIT &= ~PSR_Z_BIT */
103 	return (pstate & PSR_C_BIT) == 0;
104 }
105 
__check_ge(unsigned long pstate)106 static bool __kprobes __check_ge(unsigned long pstate)
107 {
108 	pstate ^= (pstate << 3);	/* PSR_N_BIT ^= PSR_V_BIT */
109 	return (pstate & PSR_N_BIT) == 0;
110 }
111 
__check_lt(unsigned long pstate)112 static bool __kprobes __check_lt(unsigned long pstate)
113 {
114 	pstate ^= (pstate << 3);	/* PSR_N_BIT ^= PSR_V_BIT */
115 	return (pstate & PSR_N_BIT) != 0;
116 }
117 
__check_gt(unsigned long pstate)118 static bool __kprobes __check_gt(unsigned long pstate)
119 {
120 	/*PSR_N_BIT ^= PSR_V_BIT */
121 	unsigned long temp = pstate ^ (pstate << 3);
122 
123 	temp |= (pstate << 1);	/*PSR_N_BIT |= PSR_Z_BIT */
124 	return (temp & PSR_N_BIT) == 0;
125 }
126 
__check_le(unsigned long pstate)127 static bool __kprobes __check_le(unsigned long pstate)
128 {
129 	/*PSR_N_BIT ^= PSR_V_BIT */
130 	unsigned long temp = pstate ^ (pstate << 3);
131 
132 	temp |= (pstate << 1);	/*PSR_N_BIT |= PSR_Z_BIT */
133 	return (temp & PSR_N_BIT) != 0;
134 }
135 
__check_al(unsigned long pstate)136 static bool __kprobes __check_al(unsigned long pstate)
137 {
138 	return true;
139 }
140 
141 /*
142  * Note that the ARMv8 ARM calls condition code 0b1111 "nv", but states that
143  * it behaves identically to 0b1110 ("al").
144  */
145 pstate_check_t * const aarch32_opcode_cond_checks[16] = {
146 	__check_eq, __check_ne, __check_cs, __check_cc,
147 	__check_mi, __check_pl, __check_vs, __check_vc,
148 	__check_hi, __check_ls, __check_ge, __check_lt,
149 	__check_gt, __check_le, __check_al, __check_al
150 };
151 
152 int show_unhandled_signals = 0;
153 
dump_kernel_instr(const char * lvl,struct pt_regs * regs)154 static void dump_kernel_instr(const char *lvl, struct pt_regs *regs)
155 {
156 	unsigned long addr = instruction_pointer(regs);
157 	char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
158 	int i;
159 
160 	if (user_mode(regs))
161 		return;
162 
163 	for (i = -4; i < 1; i++) {
164 		unsigned int val, bad;
165 
166 		bad = aarch64_insn_read(&((u32 *)addr)[i], &val);
167 
168 		if (!bad)
169 			p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
170 		else
171 			p += sprintf(p, i == 0 ? "(????????) " : "???????? ");
172 	}
173 
174 	printk("%sCode: %s\n", lvl, str);
175 }
176 
177 #ifdef CONFIG_PREEMPT
178 #define S_PREEMPT " PREEMPT"
179 #elif defined(CONFIG_PREEMPT_RT)
180 #define S_PREEMPT " PREEMPT_RT"
181 #else
182 #define S_PREEMPT ""
183 #endif
184 
185 #define S_SMP " SMP"
186 
__die(const char * str,long err,struct pt_regs * regs)187 static int __die(const char *str, long err, struct pt_regs *regs)
188 {
189 	static int die_counter;
190 	int ret;
191 
192 	pr_emerg("Internal error: %s: %016lx [#%d]" S_PREEMPT S_SMP "\n",
193 		 str, err, ++die_counter);
194 
195 	/* trap and error numbers are mostly meaningless on ARM */
196 	ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
197 	if (ret == NOTIFY_STOP)
198 		return ret;
199 
200 	print_modules();
201 	show_regs(regs);
202 
203 	dump_kernel_instr(KERN_EMERG, regs);
204 
205 	return ret;
206 }
207 
208 static DEFINE_RAW_SPINLOCK(die_lock);
209 
210 /*
211  * This function is protected against re-entrancy.
212  */
die(const char * str,struct pt_regs * regs,long err)213 void die(const char *str, struct pt_regs *regs, long err)
214 {
215 	int ret;
216 	unsigned long flags;
217 
218 	raw_spin_lock_irqsave(&die_lock, flags);
219 
220 	oops_enter();
221 
222 	console_verbose();
223 	bust_spinlocks(1);
224 	ret = __die(str, err, regs);
225 
226 	if (regs && kexec_should_crash(current))
227 		crash_kexec(regs);
228 
229 	bust_spinlocks(0);
230 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
231 	oops_exit();
232 
233 	if (in_interrupt())
234 		panic("%s: Fatal exception in interrupt", str);
235 	if (panic_on_oops)
236 		panic("%s: Fatal exception", str);
237 
238 	raw_spin_unlock_irqrestore(&die_lock, flags);
239 
240 	if (ret != NOTIFY_STOP)
241 		make_task_dead(SIGSEGV);
242 }
243 
arm64_show_signal(int signo,const char * str)244 static void arm64_show_signal(int signo, const char *str)
245 {
246 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
247 				      DEFAULT_RATELIMIT_BURST);
248 	struct task_struct *tsk = current;
249 	unsigned long esr = tsk->thread.fault_code;
250 	struct pt_regs *regs = task_pt_regs(tsk);
251 
252 	/* Leave if the signal won't be shown */
253 	if (!show_unhandled_signals ||
254 	    !unhandled_signal(tsk, signo) ||
255 	    !__ratelimit(&rs))
256 		return;
257 
258 	pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
259 	if (esr)
260 		pr_cont("%s, ESR 0x%016lx, ", esr_get_class_string(esr), esr);
261 
262 	pr_cont("%s", str);
263 	print_vma_addr(KERN_CONT " in ", regs->pc);
264 	pr_cont("\n");
265 	__show_regs(regs);
266 }
267 
arm64_force_sig_fault(int signo,int code,unsigned long far,const char * str)268 void arm64_force_sig_fault(int signo, int code, unsigned long far,
269 			   const char *str)
270 {
271 	arm64_show_signal(signo, str);
272 	if (signo == SIGKILL)
273 		force_sig(SIGKILL);
274 	else
275 		force_sig_fault(signo, code, (void __user *)far);
276 }
277 
arm64_force_sig_fault_pkey(unsigned long far,const char * str,int pkey)278 void arm64_force_sig_fault_pkey(unsigned long far, const char *str, int pkey)
279 {
280 	arm64_show_signal(SIGSEGV, str);
281 	force_sig_pkuerr((void __user *)far, pkey);
282 }
283 
arm64_force_sig_mceerr(int code,unsigned long far,short lsb,const char * str)284 void arm64_force_sig_mceerr(int code, unsigned long far, short lsb,
285 			    const char *str)
286 {
287 	arm64_show_signal(SIGBUS, str);
288 	force_sig_mceerr(code, (void __user *)far, lsb);
289 }
290 
arm64_force_sig_ptrace_errno_trap(int errno,unsigned long far,const char * str)291 void arm64_force_sig_ptrace_errno_trap(int errno, unsigned long far,
292 				       const char *str)
293 {
294 	arm64_show_signal(SIGTRAP, str);
295 	force_sig_ptrace_errno_trap(errno, (void __user *)far);
296 }
297 
arm64_notify_die(const char * str,struct pt_regs * regs,int signo,int sicode,unsigned long far,unsigned long err)298 void arm64_notify_die(const char *str, struct pt_regs *regs,
299 		      int signo, int sicode, unsigned long far,
300 		      unsigned long err)
301 {
302 	if (user_mode(regs)) {
303 		WARN_ON(regs != current_pt_regs());
304 		current->thread.fault_address = 0;
305 		current->thread.fault_code = err;
306 
307 		arm64_force_sig_fault(signo, sicode, far, str);
308 	} else {
309 		die(str, regs, err);
310 	}
311 }
312 
313 #ifdef CONFIG_COMPAT
314 #define PSTATE_IT_1_0_SHIFT	25
315 #define PSTATE_IT_1_0_MASK	(0x3 << PSTATE_IT_1_0_SHIFT)
316 #define PSTATE_IT_7_2_SHIFT	10
317 #define PSTATE_IT_7_2_MASK	(0x3f << PSTATE_IT_7_2_SHIFT)
318 
compat_get_it_state(struct pt_regs * regs)319 static u32 compat_get_it_state(struct pt_regs *regs)
320 {
321 	u32 it, pstate = regs->pstate;
322 
323 	it  = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT;
324 	it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2;
325 
326 	return it;
327 }
328 
compat_set_it_state(struct pt_regs * regs,u32 it)329 static void compat_set_it_state(struct pt_regs *regs, u32 it)
330 {
331 	u32 pstate_it;
332 
333 	pstate_it  = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK;
334 	pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK;
335 
336 	regs->pstate &= ~PSR_AA32_IT_MASK;
337 	regs->pstate |= pstate_it;
338 }
339 
advance_itstate(struct pt_regs * regs)340 static void advance_itstate(struct pt_regs *regs)
341 {
342 	u32 it;
343 
344 	/* ARM mode */
345 	if (!(regs->pstate & PSR_AA32_T_BIT) ||
346 	    !(regs->pstate & PSR_AA32_IT_MASK))
347 		return;
348 
349 	it  = compat_get_it_state(regs);
350 
351 	/*
352 	 * If this is the last instruction of the block, wipe the IT
353 	 * state. Otherwise advance it.
354 	 */
355 	if (!(it & 7))
356 		it = 0;
357 	else
358 		it = (it & 0xe0) | ((it << 1) & 0x1f);
359 
360 	compat_set_it_state(regs, it);
361 }
362 #else
advance_itstate(struct pt_regs * regs)363 static void advance_itstate(struct pt_regs *regs)
364 {
365 }
366 #endif
367 
arm64_skip_faulting_instruction(struct pt_regs * regs,unsigned long size)368 void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
369 {
370 	regs->pc += size;
371 
372 	/*
373 	 * If we were single stepping, we want to get the step exception after
374 	 * we return from the trap.
375 	 */
376 	if (user_mode(regs))
377 		user_fastforward_single_step(current);
378 
379 	if (compat_user_mode(regs))
380 		advance_itstate(regs);
381 	else
382 		regs->pstate &= ~PSR_BTYPE_MASK;
383 }
384 
user_insn_read(struct pt_regs * regs,u32 * insnp)385 static int user_insn_read(struct pt_regs *regs, u32 *insnp)
386 {
387 	u32 instr;
388 	unsigned long pc = instruction_pointer(regs);
389 
390 	if (compat_thumb_mode(regs)) {
391 		/* 16-bit Thumb instruction */
392 		__le16 instr_le;
393 		if (get_user(instr_le, (__le16 __user *)pc))
394 			return -EFAULT;
395 		instr = le16_to_cpu(instr_le);
396 		if (aarch32_insn_is_wide(instr)) {
397 			u32 instr2;
398 
399 			if (get_user(instr_le, (__le16 __user *)(pc + 2)))
400 				return -EFAULT;
401 			instr2 = le16_to_cpu(instr_le);
402 			instr = (instr << 16) | instr2;
403 		}
404 	} else {
405 		/* 32-bit ARM instruction */
406 		__le32 instr_le;
407 		if (get_user(instr_le, (__le32 __user *)pc))
408 			return -EFAULT;
409 		instr = le32_to_cpu(instr_le);
410 	}
411 
412 	*insnp = instr;
413 	return 0;
414 }
415 
force_signal_inject(int signal,int code,unsigned long address,unsigned long err)416 void force_signal_inject(int signal, int code, unsigned long address, unsigned long err)
417 {
418 	const char *desc;
419 	struct pt_regs *regs = current_pt_regs();
420 
421 	if (WARN_ON(!user_mode(regs)))
422 		return;
423 
424 	switch (signal) {
425 	case SIGILL:
426 		desc = "undefined instruction";
427 		break;
428 	case SIGSEGV:
429 		desc = "illegal memory access";
430 		break;
431 	default:
432 		desc = "unknown or unrecoverable error";
433 		break;
434 	}
435 
436 	/* Force signals we don't understand to SIGKILL */
437 	if (WARN_ON(signal != SIGKILL &&
438 		    siginfo_layout(signal, code) != SIL_FAULT)) {
439 		signal = SIGKILL;
440 	}
441 
442 	arm64_notify_die(desc, regs, signal, code, address, err);
443 }
444 
445 /*
446  * Set up process info to signal segmentation fault - called on access error.
447  */
arm64_notify_segfault(unsigned long addr)448 void arm64_notify_segfault(unsigned long addr)
449 {
450 	int code;
451 
452 	mmap_read_lock(current->mm);
453 	if (find_vma(current->mm, untagged_addr(addr)) == NULL)
454 		code = SEGV_MAPERR;
455 	else
456 		code = SEGV_ACCERR;
457 	mmap_read_unlock(current->mm);
458 
459 	force_signal_inject(SIGSEGV, code, addr, 0);
460 }
461 
do_el0_undef(struct pt_regs * regs,unsigned long esr)462 void do_el0_undef(struct pt_regs *regs, unsigned long esr)
463 {
464 	u32 insn;
465 
466 	/* check for AArch32 breakpoint instructions */
467 	if (!aarch32_break_handler(regs))
468 		return;
469 
470 	if (user_insn_read(regs, &insn))
471 		goto out_err;
472 
473 	if (try_emulate_mrs(regs, insn))
474 		return;
475 
476 	if (try_emulate_armv8_deprecated(regs, insn))
477 		return;
478 
479 out_err:
480 	force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
481 }
482 
do_el1_undef(struct pt_regs * regs,unsigned long esr)483 void do_el1_undef(struct pt_regs *regs, unsigned long esr)
484 {
485 	u32 insn;
486 
487 	if (aarch64_insn_read((void *)regs->pc, &insn))
488 		goto out_err;
489 
490 	if (try_emulate_el1_ssbs(regs, insn))
491 		return;
492 
493 out_err:
494 	trace_android_rvh_do_el1_undef(regs, esr);
495 	die("Oops - Undefined instruction", regs, esr);
496 }
497 
do_el0_bti(struct pt_regs * regs)498 void do_el0_bti(struct pt_regs *regs)
499 {
500 	force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
501 }
502 
do_el1_bti(struct pt_regs * regs,unsigned long esr)503 void do_el1_bti(struct pt_regs *regs, unsigned long esr)
504 {
505 	if (efi_runtime_fixup_exception(regs, "BTI violation")) {
506 		regs->pstate &= ~PSR_BTYPE_MASK;
507 		return;
508 	}
509 
510 	trace_android_rvh_do_el1_bti(regs, esr);
511 	die("Oops - BTI", regs, esr);
512 }
513 
do_el0_fpac(struct pt_regs * regs,unsigned long esr)514 void do_el0_fpac(struct pt_regs *regs, unsigned long esr)
515 {
516 	force_signal_inject(SIGILL, ILL_ILLOPN, regs->pc, esr);
517 }
518 
do_el1_fpac(struct pt_regs * regs,unsigned long esr)519 void do_el1_fpac(struct pt_regs *regs, unsigned long esr)
520 {
521 	/*
522 	 * Unexpected FPAC exception in the kernel: kill the task before it
523 	 * does any more harm.
524 	 */
525 	trace_android_rvh_do_el1_fpac(regs, esr);
526 	die("Oops - FPAC", regs, esr);
527 }
528 
do_el0_mops(struct pt_regs * regs,unsigned long esr)529 void do_el0_mops(struct pt_regs *regs, unsigned long esr)
530 {
531 	arm64_mops_reset_regs(&regs->user_regs, esr);
532 
533 	/*
534 	 * If single stepping then finish the step before executing the
535 	 * prologue instruction.
536 	 */
537 	user_fastforward_single_step(current);
538 }
539 
540 #define __user_cache_maint(insn, address, res)			\
541 	if (address >= TASK_SIZE_MAX) {				\
542 		res = -EFAULT;					\
543 	} else {						\
544 		uaccess_ttbr0_enable();				\
545 		asm volatile (					\
546 			"1:	" insn ", %1\n"			\
547 			"	mov	%w0, #0\n"		\
548 			"2:\n"					\
549 			_ASM_EXTABLE_UACCESS_ERR(1b, 2b, %w0)	\
550 			: "=r" (res)				\
551 			: "r" (address));			\
552 		uaccess_ttbr0_disable();			\
553 	}
554 
user_cache_maint_handler(unsigned long esr,struct pt_regs * regs)555 static void user_cache_maint_handler(unsigned long esr, struct pt_regs *regs)
556 {
557 	unsigned long tagged_address, address;
558 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
559 	int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
560 	int ret = 0;
561 
562 	tagged_address = pt_regs_read_reg(regs, rt);
563 	address = untagged_addr(tagged_address);
564 
565 	switch (crm) {
566 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAU:	/* DC CVAU, gets promoted */
567 		__user_cache_maint("dc civac", address, ret);
568 		break;
569 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAC:	/* DC CVAC, gets promoted */
570 		__user_cache_maint("dc civac", address, ret);
571 		break;
572 	case ESR_ELx_SYS64_ISS_CRM_DC_CVADP:	/* DC CVADP */
573 		__user_cache_maint("sys 3, c7, c13, 1", address, ret);
574 		break;
575 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAP:	/* DC CVAP */
576 		__user_cache_maint("sys 3, c7, c12, 1", address, ret);
577 		break;
578 	case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC:	/* DC CIVAC */
579 		__user_cache_maint("dc civac", address, ret);
580 		break;
581 	case ESR_ELx_SYS64_ISS_CRM_IC_IVAU:	/* IC IVAU */
582 		__user_cache_maint("ic ivau", address, ret);
583 		break;
584 	default:
585 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
586 		return;
587 	}
588 
589 	if (ret)
590 		arm64_notify_segfault(tagged_address);
591 	else
592 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
593 }
594 
ctr_read_handler(unsigned long esr,struct pt_regs * regs)595 static void ctr_read_handler(unsigned long esr, struct pt_regs *regs)
596 {
597 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
598 	unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
599 
600 	if (cpus_have_final_cap(ARM64_WORKAROUND_1542419)) {
601 		/* Hide DIC so that we can trap the unnecessary maintenance...*/
602 		val &= ~BIT(CTR_EL0_DIC_SHIFT);
603 
604 		/* ... and fake IminLine to reduce the number of traps. */
605 		val &= ~CTR_EL0_IminLine_MASK;
606 		val |= (PAGE_SHIFT - 2) & CTR_EL0_IminLine_MASK;
607 	}
608 
609 	pt_regs_write_reg(regs, rt, val);
610 
611 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
612 }
613 
cntvct_read_handler(unsigned long esr,struct pt_regs * regs)614 static void cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
615 {
616 	if (test_thread_flag(TIF_TSC_SIGSEGV)) {
617 		force_sig(SIGSEGV);
618 	} else {
619 		int rt = ESR_ELx_SYS64_ISS_RT(esr);
620 
621 		pt_regs_write_reg(regs, rt, arch_timer_read_counter());
622 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
623 	}
624 }
625 
cntfrq_read_handler(unsigned long esr,struct pt_regs * regs)626 static void cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
627 {
628 	if (test_thread_flag(TIF_TSC_SIGSEGV)) {
629 		force_sig(SIGSEGV);
630 	} else {
631 		int rt = ESR_ELx_SYS64_ISS_RT(esr);
632 
633 		pt_regs_write_reg(regs, rt, arch_timer_get_rate());
634 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
635 	}
636 }
637 
mrs_handler(unsigned long esr,struct pt_regs * regs)638 static void mrs_handler(unsigned long esr, struct pt_regs *regs)
639 {
640 	u32 sysreg, rt;
641 
642 	rt = ESR_ELx_SYS64_ISS_RT(esr);
643 	sysreg = esr_sys64_to_sysreg(esr);
644 
645 	if (do_emulate_mrs(regs, sysreg, rt) != 0)
646 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
647 }
648 
wfi_handler(unsigned long esr,struct pt_regs * regs)649 static void wfi_handler(unsigned long esr, struct pt_regs *regs)
650 {
651 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
652 }
653 
654 struct sys64_hook {
655 	unsigned long esr_mask;
656 	unsigned long esr_val;
657 	void (*handler)(unsigned long esr, struct pt_regs *regs);
658 };
659 
660 static const struct sys64_hook sys64_hooks[] = {
661 	{
662 		.esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
663 		.esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
664 		.handler = user_cache_maint_handler,
665 	},
666 	{
667 		/* Trap read access to CTR_EL0 */
668 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
669 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
670 		.handler = ctr_read_handler,
671 	},
672 	{
673 		/* Trap read access to CNTVCT_EL0 */
674 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
675 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
676 		.handler = cntvct_read_handler,
677 	},
678 	{
679 		/* Trap read access to CNTVCTSS_EL0 */
680 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
681 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCTSS,
682 		.handler = cntvct_read_handler,
683 	},
684 	{
685 		/* Trap read access to CNTFRQ_EL0 */
686 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
687 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
688 		.handler = cntfrq_read_handler,
689 	},
690 	{
691 		/* Trap read access to CPUID registers */
692 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
693 		.esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
694 		.handler = mrs_handler,
695 	},
696 	{
697 		/* Trap WFI instructions executed in userspace */
698 		.esr_mask = ESR_ELx_WFx_MASK,
699 		.esr_val = ESR_ELx_WFx_WFI_VAL,
700 		.handler = wfi_handler,
701 	},
702 	{},
703 };
704 
705 #ifdef CONFIG_COMPAT
cp15_cond_valid(unsigned long esr,struct pt_regs * regs)706 static bool cp15_cond_valid(unsigned long esr, struct pt_regs *regs)
707 {
708 	int cond;
709 
710 	/* Only a T32 instruction can trap without CV being set */
711 	if (!(esr & ESR_ELx_CV)) {
712 		u32 it;
713 
714 		it = compat_get_it_state(regs);
715 		if (!it)
716 			return true;
717 
718 		cond = it >> 4;
719 	} else {
720 		cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
721 	}
722 
723 	return aarch32_opcode_cond_checks[cond](regs->pstate);
724 }
725 
compat_cntfrq_read_handler(unsigned long esr,struct pt_regs * regs)726 static void compat_cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
727 {
728 	int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
729 
730 	pt_regs_write_reg(regs, reg, arch_timer_get_rate());
731 	arm64_skip_faulting_instruction(regs, 4);
732 }
733 
734 static const struct sys64_hook cp15_32_hooks[] = {
735 	{
736 		.esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK,
737 		.esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ,
738 		.handler = compat_cntfrq_read_handler,
739 	},
740 	{},
741 };
742 
compat_cntvct_read_handler(unsigned long esr,struct pt_regs * regs)743 static void compat_cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
744 {
745 	int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
746 	int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
747 	u64 val = arch_timer_read_counter();
748 
749 	pt_regs_write_reg(regs, rt, lower_32_bits(val));
750 	pt_regs_write_reg(regs, rt2, upper_32_bits(val));
751 	arm64_skip_faulting_instruction(regs, 4);
752 }
753 
754 static const struct sys64_hook cp15_64_hooks[] = {
755 	{
756 		.esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
757 		.esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT,
758 		.handler = compat_cntvct_read_handler,
759 	},
760 	{
761 		.esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
762 		.esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCTSS,
763 		.handler = compat_cntvct_read_handler,
764 	},
765 	{},
766 };
767 
do_el0_cp15(unsigned long esr,struct pt_regs * regs)768 void do_el0_cp15(unsigned long esr, struct pt_regs *regs)
769 {
770 	const struct sys64_hook *hook, *hook_base;
771 
772 	if (!cp15_cond_valid(esr, regs)) {
773 		/*
774 		 * There is no T16 variant of a CP access, so we
775 		 * always advance PC by 4 bytes.
776 		 */
777 		arm64_skip_faulting_instruction(regs, 4);
778 		return;
779 	}
780 
781 	switch (ESR_ELx_EC(esr)) {
782 	case ESR_ELx_EC_CP15_32:
783 		hook_base = cp15_32_hooks;
784 		break;
785 	case ESR_ELx_EC_CP15_64:
786 		hook_base = cp15_64_hooks;
787 		break;
788 	default:
789 		do_el0_undef(regs, esr);
790 		return;
791 	}
792 
793 	for (hook = hook_base; hook->handler; hook++)
794 		if ((hook->esr_mask & esr) == hook->esr_val) {
795 			hook->handler(esr, regs);
796 			return;
797 		}
798 
799 	/*
800 	 * New cp15 instructions may previously have been undefined at
801 	 * EL0. Fall back to our usual undefined instruction handler
802 	 * so that we handle these consistently.
803 	 */
804 	do_el0_undef(regs, esr);
805 }
806 #endif
807 
do_el0_sys(unsigned long esr,struct pt_regs * regs)808 void do_el0_sys(unsigned long esr, struct pt_regs *regs)
809 {
810 	const struct sys64_hook *hook;
811 
812 	for (hook = sys64_hooks; hook->handler; hook++)
813 		if ((hook->esr_mask & esr) == hook->esr_val) {
814 			hook->handler(esr, regs);
815 			return;
816 		}
817 
818 	/*
819 	 * New SYS instructions may previously have been undefined at EL0. Fall
820 	 * back to our usual undefined instruction handler so that we handle
821 	 * these consistently.
822 	 */
823 	do_el0_undef(regs, esr);
824 }
825 
826 static const char *esr_class_str[] = {
827 	[0 ... ESR_ELx_EC_MAX]		= "UNRECOGNIZED EC",
828 	[ESR_ELx_EC_UNKNOWN]		= "Unknown/Uncategorized",
829 	[ESR_ELx_EC_WFx]		= "WFI/WFE",
830 	[ESR_ELx_EC_CP15_32]		= "CP15 MCR/MRC",
831 	[ESR_ELx_EC_CP15_64]		= "CP15 MCRR/MRRC",
832 	[ESR_ELx_EC_CP14_MR]		= "CP14 MCR/MRC",
833 	[ESR_ELx_EC_CP14_LS]		= "CP14 LDC/STC",
834 	[ESR_ELx_EC_FP_ASIMD]		= "ASIMD",
835 	[ESR_ELx_EC_CP10_ID]		= "CP10 MRC/VMRS",
836 	[ESR_ELx_EC_PAC]		= "PAC",
837 	[ESR_ELx_EC_CP14_64]		= "CP14 MCRR/MRRC",
838 	[ESR_ELx_EC_BTI]		= "BTI",
839 	[ESR_ELx_EC_ILL]		= "PSTATE.IL",
840 	[ESR_ELx_EC_SVC32]		= "SVC (AArch32)",
841 	[ESR_ELx_EC_HVC32]		= "HVC (AArch32)",
842 	[ESR_ELx_EC_SMC32]		= "SMC (AArch32)",
843 	[ESR_ELx_EC_SVC64]		= "SVC (AArch64)",
844 	[ESR_ELx_EC_HVC64]		= "HVC (AArch64)",
845 	[ESR_ELx_EC_SMC64]		= "SMC (AArch64)",
846 	[ESR_ELx_EC_SYS64]		= "MSR/MRS (AArch64)",
847 	[ESR_ELx_EC_SVE]		= "SVE",
848 	[ESR_ELx_EC_ERET]		= "ERET/ERETAA/ERETAB",
849 	[ESR_ELx_EC_FPAC]		= "FPAC",
850 	[ESR_ELx_EC_SME]		= "SME",
851 	[ESR_ELx_EC_IMP_DEF]		= "EL3 IMP DEF",
852 	[ESR_ELx_EC_IABT_LOW]		= "IABT (lower EL)",
853 	[ESR_ELx_EC_IABT_CUR]		= "IABT (current EL)",
854 	[ESR_ELx_EC_PC_ALIGN]		= "PC Alignment",
855 	[ESR_ELx_EC_DABT_LOW]		= "DABT (lower EL)",
856 	[ESR_ELx_EC_DABT_CUR]		= "DABT (current EL)",
857 	[ESR_ELx_EC_SP_ALIGN]		= "SP Alignment",
858 	[ESR_ELx_EC_MOPS]		= "MOPS",
859 	[ESR_ELx_EC_FP_EXC32]		= "FP (AArch32)",
860 	[ESR_ELx_EC_FP_EXC64]		= "FP (AArch64)",
861 	[ESR_ELx_EC_SERROR]		= "SError",
862 	[ESR_ELx_EC_BREAKPT_LOW]	= "Breakpoint (lower EL)",
863 	[ESR_ELx_EC_BREAKPT_CUR]	= "Breakpoint (current EL)",
864 	[ESR_ELx_EC_SOFTSTP_LOW]	= "Software Step (lower EL)",
865 	[ESR_ELx_EC_SOFTSTP_CUR]	= "Software Step (current EL)",
866 	[ESR_ELx_EC_WATCHPT_LOW]	= "Watchpoint (lower EL)",
867 	[ESR_ELx_EC_WATCHPT_CUR]	= "Watchpoint (current EL)",
868 	[ESR_ELx_EC_BKPT32]		= "BKPT (AArch32)",
869 	[ESR_ELx_EC_VECTOR32]		= "Vector catch (AArch32)",
870 	[ESR_ELx_EC_BRK64]		= "BRK (AArch64)",
871 };
872 
esr_get_class_string(unsigned long esr)873 const char *esr_get_class_string(unsigned long esr)
874 {
875 	return esr_class_str[ESR_ELx_EC(esr)];
876 }
877 
878 /*
879  * bad_el0_sync handles unexpected, but potentially recoverable synchronous
880  * exceptions taken from EL0.
881  */
bad_el0_sync(struct pt_regs * regs,int reason,unsigned long esr)882 void bad_el0_sync(struct pt_regs *regs, int reason, unsigned long esr)
883 {
884 	unsigned long pc = instruction_pointer(regs);
885 
886 	current->thread.fault_address = 0;
887 	current->thread.fault_code = esr;
888 
889 	arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc,
890 			      "Bad EL0 synchronous exception");
891 }
892 
893 #ifdef CONFIG_VMAP_STACK
894 
895 DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
896 	__aligned(16);
897 
panic_bad_stack(struct pt_regs * regs,unsigned long esr,unsigned long far)898 void __noreturn panic_bad_stack(struct pt_regs *regs, unsigned long esr, unsigned long far)
899 {
900 	unsigned long tsk_stk = (unsigned long)current->stack;
901 	unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
902 	unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
903 
904 	console_verbose();
905 	pr_emerg("Insufficient stack space to handle exception!");
906 
907 	pr_emerg("ESR: 0x%016lx -- %s\n", esr, esr_get_class_string(esr));
908 	pr_emerg("FAR: 0x%016lx\n", far);
909 
910 	pr_emerg("Task stack:     [0x%016lx..0x%016lx]\n",
911 		 tsk_stk, tsk_stk + THREAD_SIZE);
912 	pr_emerg("IRQ stack:      [0x%016lx..0x%016lx]\n",
913 		 irq_stk, irq_stk + IRQ_STACK_SIZE);
914 	pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
915 		 ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
916 
917 	__show_regs(regs);
918 
919 	/*
920 	 * We use nmi_panic to limit the potential for recusive overflows, and
921 	 * to get a better stack trace.
922 	 */
923 	nmi_panic(NULL, "kernel stack overflow");
924 	cpu_park_loop();
925 }
926 #endif
927 
arm64_serror_panic(struct pt_regs * regs,unsigned long esr)928 void __noreturn arm64_serror_panic(struct pt_regs *regs, unsigned long esr)
929 {
930 	add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
931 	console_verbose();
932 
933 	pr_crit("SError Interrupt on CPU%d, code 0x%016lx -- %s\n",
934 		smp_processor_id(), esr, esr_get_class_string(esr));
935 
936 	trace_android_rvh_arm64_serror_panic(regs, esr);
937 	if (regs)
938 		__show_regs(regs);
939 
940 	nmi_panic(regs, "Asynchronous SError Interrupt");
941 
942 	cpu_park_loop();
943 }
944 
arm64_is_fatal_ras_serror(struct pt_regs * regs,unsigned long esr)945 bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned long esr)
946 {
947 	unsigned long aet = arm64_ras_serror_get_severity(esr);
948 
949 	switch (aet) {
950 	case ESR_ELx_AET_CE:	/* corrected error */
951 	case ESR_ELx_AET_UEO:	/* restartable, not yet consumed */
952 		/*
953 		 * The CPU can make progress. We may take UEO again as
954 		 * a more severe error.
955 		 */
956 		return false;
957 
958 	case ESR_ELx_AET_UEU:	/* Uncorrected Unrecoverable */
959 	case ESR_ELx_AET_UER:	/* Uncorrected Recoverable */
960 		/*
961 		 * The CPU can't make progress. The exception may have
962 		 * been imprecise.
963 		 *
964 		 * Neoverse-N1 #1349291 means a non-KVM SError reported as
965 		 * Unrecoverable should be treated as Uncontainable. We
966 		 * call arm64_serror_panic() in both cases.
967 		 */
968 		return true;
969 
970 	case ESR_ELx_AET_UC:	/* Uncontainable or Uncategorized error */
971 	default:
972 		/* Error has been silently propagated */
973 		arm64_serror_panic(regs, esr);
974 	}
975 }
976 
do_serror(struct pt_regs * regs,unsigned long esr)977 void do_serror(struct pt_regs *regs, unsigned long esr)
978 {
979 	/* non-RAS errors are not containable */
980 	if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
981 		arm64_serror_panic(regs, esr);
982 }
983 
984 /* GENERIC_BUG traps */
985 #ifdef CONFIG_GENERIC_BUG
is_valid_bugaddr(unsigned long addr)986 int is_valid_bugaddr(unsigned long addr)
987 {
988 	/*
989 	 * bug_handler() only called for BRK #BUG_BRK_IMM.
990 	 * So the answer is trivial -- any spurious instances with no
991 	 * bug table entry will be rejected by report_bug() and passed
992 	 * back to the debug-monitors code and handled as a fatal
993 	 * unexpected debug exception.
994 	 */
995 	return 1;
996 }
997 #endif
998 
bug_handler(struct pt_regs * regs,unsigned long esr)999 static int bug_handler(struct pt_regs *regs, unsigned long esr)
1000 {
1001 	switch (report_bug(regs->pc, regs)) {
1002 	case BUG_TRAP_TYPE_BUG:
1003 		die("Oops - BUG", regs, esr);
1004 		break;
1005 
1006 	case BUG_TRAP_TYPE_WARN:
1007 		break;
1008 
1009 	default:
1010 		/* unknown/unrecognised bug trap type */
1011 		return DBG_HOOK_ERROR;
1012 	}
1013 
1014 	/* If thread survives, skip over the BUG instruction and continue: */
1015 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1016 	return DBG_HOOK_HANDLED;
1017 }
1018 
1019 static struct break_hook bug_break_hook = {
1020 	.fn = bug_handler,
1021 	.imm = BUG_BRK_IMM,
1022 };
1023 
1024 #ifdef CONFIG_CFI_CLANG
cfi_handler(struct pt_regs * regs,unsigned long esr)1025 static int cfi_handler(struct pt_regs *regs, unsigned long esr)
1026 {
1027 	unsigned long target;
1028 	u32 type;
1029 
1030 	target = pt_regs_read_reg(regs, FIELD_GET(CFI_BRK_IMM_TARGET, esr));
1031 	type = (u32)pt_regs_read_reg(regs, FIELD_GET(CFI_BRK_IMM_TYPE, esr));
1032 
1033 	switch (report_cfi_failure(regs, regs->pc, &target, type)) {
1034 	case BUG_TRAP_TYPE_BUG:
1035 		die("Oops - CFI", regs, esr);
1036 		break;
1037 
1038 	case BUG_TRAP_TYPE_WARN:
1039 		break;
1040 
1041 	default:
1042 		return DBG_HOOK_ERROR;
1043 	}
1044 
1045 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1046 	return DBG_HOOK_HANDLED;
1047 }
1048 
1049 static struct break_hook cfi_break_hook = {
1050 	.fn = cfi_handler,
1051 	.imm = CFI_BRK_IMM_BASE,
1052 	.mask = CFI_BRK_IMM_MASK,
1053 };
1054 #endif /* CONFIG_CFI_CLANG */
1055 
reserved_fault_handler(struct pt_regs * regs,unsigned long esr)1056 static int reserved_fault_handler(struct pt_regs *regs, unsigned long esr)
1057 {
1058 	pr_err("%s generated an invalid instruction at %pS!\n",
1059 		"Kernel text patching",
1060 		(void *)instruction_pointer(regs));
1061 
1062 	/* We cannot handle this */
1063 	return DBG_HOOK_ERROR;
1064 }
1065 
1066 static struct break_hook fault_break_hook = {
1067 	.fn = reserved_fault_handler,
1068 	.imm = FAULT_BRK_IMM,
1069 };
1070 
1071 #ifdef CONFIG_KASAN_SW_TAGS
1072 
1073 #define KASAN_ESR_RECOVER	0x20
1074 #define KASAN_ESR_WRITE	0x10
1075 #define KASAN_ESR_SIZE_MASK	0x0f
1076 #define KASAN_ESR_SIZE(esr)	(1 << ((esr) & KASAN_ESR_SIZE_MASK))
1077 
kasan_handler(struct pt_regs * regs,unsigned long esr)1078 static int kasan_handler(struct pt_regs *regs, unsigned long esr)
1079 {
1080 	bool recover = esr & KASAN_ESR_RECOVER;
1081 	bool write = esr & KASAN_ESR_WRITE;
1082 	size_t size = KASAN_ESR_SIZE(esr);
1083 	void *addr = (void *)regs->regs[0];
1084 	u64 pc = regs->pc;
1085 
1086 	kasan_report(addr, size, write, pc);
1087 
1088 	/*
1089 	 * The instrumentation allows to control whether we can proceed after
1090 	 * a crash was detected. This is done by passing the -recover flag to
1091 	 * the compiler. Disabling recovery allows to generate more compact
1092 	 * code.
1093 	 *
1094 	 * Unfortunately disabling recovery doesn't work for the kernel right
1095 	 * now. KASAN reporting is disabled in some contexts (for example when
1096 	 * the allocator accesses slab object metadata; this is controlled by
1097 	 * current->kasan_depth). All these accesses are detected by the tool,
1098 	 * even though the reports for them are not printed.
1099 	 *
1100 	 * This is something that might be fixed at some point in the future.
1101 	 */
1102 	if (!recover)
1103 		die("Oops - KASAN", regs, esr);
1104 
1105 	/* If thread survives, skip over the brk instruction and continue: */
1106 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1107 	return DBG_HOOK_HANDLED;
1108 }
1109 
1110 static struct break_hook kasan_break_hook = {
1111 	.fn	= kasan_handler,
1112 	.imm	= KASAN_BRK_IMM,
1113 	.mask	= KASAN_BRK_MASK,
1114 };
1115 #endif
1116 
1117 #ifdef CONFIG_UBSAN_TRAP
ubsan_handler(struct pt_regs * regs,unsigned long esr)1118 static int ubsan_handler(struct pt_regs *regs, unsigned long esr)
1119 {
1120 	die(report_ubsan_failure(regs, esr & UBSAN_BRK_MASK), regs, esr);
1121 	return DBG_HOOK_HANDLED;
1122 }
1123 
1124 static struct break_hook ubsan_break_hook = {
1125 	.fn	= ubsan_handler,
1126 	.imm	= UBSAN_BRK_IMM,
1127 	.mask	= UBSAN_BRK_MASK,
1128 };
1129 #endif
1130 
1131 /*
1132  * Initial handler for AArch64 BRK exceptions
1133  * This handler only used until debug_traps_init().
1134  */
early_brk64(unsigned long addr,unsigned long esr,struct pt_regs * regs)1135 int __init early_brk64(unsigned long addr, unsigned long esr,
1136 		struct pt_regs *regs)
1137 {
1138 #ifdef CONFIG_CFI_CLANG
1139 	if (esr_is_cfi_brk(esr))
1140 		return cfi_handler(regs, esr) != DBG_HOOK_HANDLED;
1141 #endif
1142 #ifdef CONFIG_KASAN_SW_TAGS
1143 	if ((esr_brk_comment(esr) & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
1144 		return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
1145 #endif
1146 #ifdef CONFIG_UBSAN_TRAP
1147 	if ((esr_brk_comment(esr) & ~UBSAN_BRK_MASK) == UBSAN_BRK_IMM)
1148 		return ubsan_handler(regs, esr) != DBG_HOOK_HANDLED;
1149 #endif
1150 	return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
1151 }
1152 
trap_init(void)1153 void __init trap_init(void)
1154 {
1155 	register_kernel_break_hook(&bug_break_hook);
1156 #ifdef CONFIG_CFI_CLANG
1157 	register_kernel_break_hook(&cfi_break_hook);
1158 #endif
1159 	register_kernel_break_hook(&fault_break_hook);
1160 #ifdef CONFIG_KASAN_SW_TAGS
1161 	register_kernel_break_hook(&kasan_break_hook);
1162 #endif
1163 #ifdef CONFIG_UBSAN_TRAP
1164 	register_kernel_break_hook(&ubsan_break_hook);
1165 #endif
1166 	debug_traps_init();
1167 }
1168