1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/sched/ext.h>
27 #include <linux/seq_file.h>
28 #include <linux/rtmutex.h>
29 #include <linux/init.h>
30 #include <linux/unistd.h>
31 #include <linux/module.h>
32 #include <linux/vmalloc.h>
33 #include <linux/completion.h>
34 #include <linux/personality.h>
35 #include <linux/mempolicy.h>
36 #include <linux/sem.h>
37 #include <linux/file.h>
38 #include <linux/fdtable.h>
39 #include <linux/iocontext.h>
40 #include <linux/key.h>
41 #include <linux/kmsan.h>
42 #include <linux/binfmts.h>
43 #include <linux/mman.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/fs.h>
46 #include <linux/mm.h>
47 #include <linux/mm_inline.h>
48 #include <linux/memblock.h>
49 #include <linux/nsproxy.h>
50 #include <linux/capability.h>
51 #include <linux/cpu.h>
52 #include <linux/cgroup.h>
53 #include <linux/security.h>
54 #include <linux/hugetlb.h>
55 #include <linux/seccomp.h>
56 #include <linux/swap.h>
57 #include <linux/syscalls.h>
58 #include <linux/syscall_user_dispatch.h>
59 #include <linux/jiffies.h>
60 #include <linux/futex.h>
61 #include <linux/compat.h>
62 #include <linux/kthread.h>
63 #include <linux/task_io_accounting_ops.h>
64 #include <linux/rcupdate.h>
65 #include <linux/ptrace.h>
66 #include <linux/mount.h>
67 #include <linux/audit.h>
68 #include <linux/memcontrol.h>
69 #include <linux/ftrace.h>
70 #include <linux/proc_fs.h>
71 #include <linux/profile.h>
72 #include <linux/rmap.h>
73 #include <linux/ksm.h>
74 #include <linux/acct.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/tsacct_kern.h>
77 #include <linux/cn_proc.h>
78 #include <linux/freezer.h>
79 #include <linux/delayacct.h>
80 #include <linux/taskstats_kern.h>
81 #include <linux/tty.h>
82 #include <linux/fs_struct.h>
83 #include <linux/magic.h>
84 #include <linux/perf_event.h>
85 #include <linux/posix-timers.h>
86 #include <linux/user-return-notifier.h>
87 #include <linux/oom.h>
88 #include <linux/khugepaged.h>
89 #include <linux/signalfd.h>
90 #include <linux/uprobes.h>
91 #include <linux/aio.h>
92 #include <linux/compiler.h>
93 #include <linux/sysctl.h>
94 #include <linux/kcov.h>
95 #include <linux/livepatch.h>
96 #include <linux/thread_info.h>
97 #include <linux/stackleak.h>
98 #include <linux/kasan.h>
99 #include <linux/scs.h>
100 #include <linux/io_uring.h>
101 #include <linux/bpf.h>
102 #include <linux/stackprotector.h>
103 #include <linux/user_events.h>
104 #include <linux/iommu.h>
105 #include <linux/rseq.h>
106 #include <uapi/linux/pidfd.h>
107 #include <linux/pidfs.h>
108 #include <linux/cpufreq_times.h>
109 #include <linux/tick.h>
110
111 #include <asm/pgalloc.h>
112 #include <linux/uaccess.h>
113 #include <asm/mmu_context.h>
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116
117 #include <trace/events/sched.h>
118
119 #define CREATE_TRACE_POINTS
120 #include <trace/events/task.h>
121
122 #include <kunit/visibility.h>
123
124 #undef CREATE_TRACE_POINTS
125 #include <trace/hooks/sched.h>
126 /*
127 * Minimum number of threads to boot the kernel
128 */
129 #define MIN_THREADS 20
130
131 /*
132 * Maximum number of threads
133 */
134 #define MAX_THREADS FUTEX_TID_MASK
135
136 EXPORT_TRACEPOINT_SYMBOL_GPL(task_newtask);
137 EXPORT_TRACEPOINT_SYMBOL_GPL(task_rename);
138
139 /*
140 * Protected counters by write_lock_irq(&tasklist_lock)
141 */
142 unsigned long total_forks; /* Handle normal Linux uptimes. */
143 int nr_threads; /* The idle threads do not count.. */
144
145 static int max_threads; /* tunable limit on nr_threads */
146
147 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
148
149 static const char * const resident_page_types[] = {
150 NAMED_ARRAY_INDEX(MM_FILEPAGES),
151 NAMED_ARRAY_INDEX(MM_ANONPAGES),
152 NAMED_ARRAY_INDEX(MM_SWAPENTS),
153 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
154 };
155
156 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
157
158 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
159 EXPORT_SYMBOL_GPL(tasklist_lock);
160
161 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)162 int lockdep_tasklist_lock_is_held(void)
163 {
164 return lockdep_is_held(&tasklist_lock);
165 }
166 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
167 #endif /* #ifdef CONFIG_PROVE_RCU */
168
nr_processes(void)169 int nr_processes(void)
170 {
171 int cpu;
172 int total = 0;
173
174 for_each_possible_cpu(cpu)
175 total += per_cpu(process_counts, cpu);
176
177 return total;
178 }
179
arch_release_task_struct(struct task_struct * tsk)180 void __weak arch_release_task_struct(struct task_struct *tsk)
181 {
182 }
183
184 static struct kmem_cache *task_struct_cachep;
185
alloc_task_struct_node(int node)186 static inline struct task_struct *alloc_task_struct_node(int node)
187 {
188 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
189 }
190
free_task_struct(struct task_struct * tsk)191 static inline void free_task_struct(struct task_struct *tsk)
192 {
193 kmem_cache_free(task_struct_cachep, tsk);
194 }
195
196 /*
197 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
198 * kmemcache based allocator.
199 */
200 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
201
202 # ifdef CONFIG_VMAP_STACK
203 /*
204 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
205 * flush. Try to minimize the number of calls by caching stacks.
206 */
207 #define NR_CACHED_STACKS 2
208 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
209
210 struct vm_stack {
211 struct rcu_head rcu;
212 struct vm_struct *stack_vm_area;
213 };
214
try_release_thread_stack_to_cache(struct vm_struct * vm)215 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
216 {
217 unsigned int i;
218
219 for (i = 0; i < NR_CACHED_STACKS; i++) {
220 struct vm_struct *tmp = NULL;
221
222 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
223 return true;
224 }
225 return false;
226 }
227
thread_stack_free_rcu(struct rcu_head * rh)228 static void thread_stack_free_rcu(struct rcu_head *rh)
229 {
230 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
231
232 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
233 return;
234
235 vfree(vm_stack);
236 }
237
thread_stack_delayed_free(struct task_struct * tsk)238 static void thread_stack_delayed_free(struct task_struct *tsk)
239 {
240 struct vm_stack *vm_stack = tsk->stack;
241
242 vm_stack->stack_vm_area = tsk->stack_vm_area;
243 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
244 }
245
free_vm_stack_cache(unsigned int cpu)246 static int free_vm_stack_cache(unsigned int cpu)
247 {
248 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
249 int i;
250
251 for (i = 0; i < NR_CACHED_STACKS; i++) {
252 struct vm_struct *vm_stack = cached_vm_stacks[i];
253
254 if (!vm_stack)
255 continue;
256
257 vfree(vm_stack->addr);
258 cached_vm_stacks[i] = NULL;
259 }
260
261 return 0;
262 }
263
memcg_charge_kernel_stack(struct vm_struct * vm)264 static int memcg_charge_kernel_stack(struct vm_struct *vm)
265 {
266 int i;
267 int ret;
268 int nr_charged = 0;
269
270 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
271
272 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
273 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
274 if (ret)
275 goto err;
276 nr_charged++;
277 }
278 return 0;
279 err:
280 for (i = 0; i < nr_charged; i++)
281 memcg_kmem_uncharge_page(vm->pages[i], 0);
282 return ret;
283 }
284
alloc_thread_stack_node(struct task_struct * tsk,int node)285 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
286 {
287 struct vm_struct *vm;
288 void *stack;
289 int i;
290
291 for (i = 0; i < NR_CACHED_STACKS; i++) {
292 struct vm_struct *s;
293
294 s = this_cpu_xchg(cached_stacks[i], NULL);
295
296 if (!s)
297 continue;
298
299 /* Reset stack metadata. */
300 kasan_unpoison_range(s->addr, THREAD_SIZE);
301
302 stack = kasan_reset_tag(s->addr);
303
304 /* Clear stale pointers from reused stack. */
305 memset(stack, 0, THREAD_SIZE);
306
307 if (memcg_charge_kernel_stack(s)) {
308 vfree(s->addr);
309 return -ENOMEM;
310 }
311
312 tsk->stack_vm_area = s;
313 tsk->stack = stack;
314 return 0;
315 }
316
317 /*
318 * Allocated stacks are cached and later reused by new threads,
319 * so memcg accounting is performed manually on assigning/releasing
320 * stacks to tasks. Drop __GFP_ACCOUNT.
321 */
322 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
323 VMALLOC_START, VMALLOC_END,
324 THREADINFO_GFP & ~__GFP_ACCOUNT,
325 PAGE_KERNEL,
326 0, node, __builtin_return_address(0));
327 if (!stack)
328 return -ENOMEM;
329
330 vm = find_vm_area(stack);
331 if (memcg_charge_kernel_stack(vm)) {
332 vfree(stack);
333 return -ENOMEM;
334 }
335 /*
336 * We can't call find_vm_area() in interrupt context, and
337 * free_thread_stack() can be called in interrupt context,
338 * so cache the vm_struct.
339 */
340 tsk->stack_vm_area = vm;
341 stack = kasan_reset_tag(stack);
342 tsk->stack = stack;
343 return 0;
344 }
345
free_thread_stack(struct task_struct * tsk)346 static void free_thread_stack(struct task_struct *tsk)
347 {
348 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
349 thread_stack_delayed_free(tsk);
350
351 tsk->stack = NULL;
352 tsk->stack_vm_area = NULL;
353 }
354
355 # else /* !CONFIG_VMAP_STACK */
356
thread_stack_free_rcu(struct rcu_head * rh)357 static void thread_stack_free_rcu(struct rcu_head *rh)
358 {
359 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
360 }
361
thread_stack_delayed_free(struct task_struct * tsk)362 static void thread_stack_delayed_free(struct task_struct *tsk)
363 {
364 struct rcu_head *rh = tsk->stack;
365
366 call_rcu(rh, thread_stack_free_rcu);
367 }
368
alloc_thread_stack_node(struct task_struct * tsk,int node)369 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
370 {
371 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
372 THREAD_SIZE_ORDER);
373
374 if (likely(page)) {
375 tsk->stack = kasan_reset_tag(page_address(page));
376 return 0;
377 }
378 return -ENOMEM;
379 }
380
free_thread_stack(struct task_struct * tsk)381 static void free_thread_stack(struct task_struct *tsk)
382 {
383 thread_stack_delayed_free(tsk);
384 tsk->stack = NULL;
385 }
386
387 # endif /* CONFIG_VMAP_STACK */
388 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
389
390 static struct kmem_cache *thread_stack_cache;
391
thread_stack_free_rcu(struct rcu_head * rh)392 static void thread_stack_free_rcu(struct rcu_head *rh)
393 {
394 kmem_cache_free(thread_stack_cache, rh);
395 }
396
thread_stack_delayed_free(struct task_struct * tsk)397 static void thread_stack_delayed_free(struct task_struct *tsk)
398 {
399 struct rcu_head *rh = tsk->stack;
400
401 call_rcu(rh, thread_stack_free_rcu);
402 }
403
alloc_thread_stack_node(struct task_struct * tsk,int node)404 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
405 {
406 unsigned long *stack;
407 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
408 stack = kasan_reset_tag(stack);
409 tsk->stack = stack;
410 return stack ? 0 : -ENOMEM;
411 }
412
free_thread_stack(struct task_struct * tsk)413 static void free_thread_stack(struct task_struct *tsk)
414 {
415 thread_stack_delayed_free(tsk);
416 tsk->stack = NULL;
417 }
418
thread_stack_cache_init(void)419 void thread_stack_cache_init(void)
420 {
421 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
422 THREAD_SIZE, THREAD_SIZE, 0, 0,
423 THREAD_SIZE, NULL);
424 BUG_ON(thread_stack_cache == NULL);
425 }
426
427 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
428
429 /* SLAB cache for signal_struct structures (tsk->signal) */
430 static struct kmem_cache *signal_cachep;
431
432 /* SLAB cache for sighand_struct structures (tsk->sighand) */
433 struct kmem_cache *sighand_cachep;
434
435 /* SLAB cache for files_struct structures (tsk->files) */
436 struct kmem_cache *files_cachep;
437
438 /* SLAB cache for fs_struct structures (tsk->fs) */
439 struct kmem_cache *fs_cachep;
440
441 /* SLAB cache for vm_area_struct structures */
442 static struct kmem_cache *vm_area_cachep;
443
444 /* SLAB cache for mm_struct structures (tsk->mm) */
445 static struct kmem_cache *mm_cachep;
446
vm_area_alloc(struct mm_struct * mm)447 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
448 {
449 struct vm_area_struct *vma;
450
451 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
452 if (!vma)
453 return NULL;
454
455 vma_init(vma, mm);
456
457 return vma;
458 }
459
vm_area_init_from(const struct vm_area_struct * src,struct vm_area_struct * dest)460 static void vm_area_init_from(const struct vm_area_struct *src,
461 struct vm_area_struct *dest)
462 {
463 dest->vm_mm = src->vm_mm;
464 dest->vm_ops = src->vm_ops;
465 dest->vm_start = src->vm_start;
466 dest->vm_end = src->vm_end;
467 dest->anon_vma = src->anon_vma;
468 dest->vm_pgoff = src->vm_pgoff;
469 dest->vm_file = src->vm_file;
470 dest->vm_private_data = src->vm_private_data;
471 vm_flags_init(dest, src->vm_flags);
472 memcpy(&dest->vm_page_prot, &src->vm_page_prot,
473 sizeof(dest->vm_page_prot));
474 /*
475 * src->shared.rb may be modified concurrently when called from
476 * dup_mmap(), but the clone will reinitialize it.
477 */
478 data_race(memcpy(&dest->shared, &src->shared, sizeof(dest->shared)));
479 memcpy(&dest->vm_userfaultfd_ctx, &src->vm_userfaultfd_ctx,
480 sizeof(dest->vm_userfaultfd_ctx));
481 #ifdef CONFIG_ANON_VMA_NAME
482 dest->anon_name = src->anon_name;
483 #endif
484 #ifdef CONFIG_SWAP
485 memcpy(&dest->swap_readahead_info, &src->swap_readahead_info,
486 sizeof(dest->swap_readahead_info));
487 #endif
488 #ifndef CONFIG_MMU
489 dest->vm_region = src->vm_region;
490 #endif
491 #ifdef CONFIG_NUMA
492 dest->vm_policy = src->vm_policy;
493 #endif
494 }
495
vm_area_dup(struct vm_area_struct * orig)496 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
497 {
498 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
499
500 if (!new)
501 return NULL;
502
503 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
504 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
505 vm_area_init_from(orig, new);
506 vma_lock_init(new, true);
507 INIT_LIST_HEAD(&new->anon_vma_chain);
508 vma_numab_state_init(new);
509 dup_anon_vma_name(orig, new);
510
511 return new;
512 }
513
vm_area_free(struct vm_area_struct * vma)514 void vm_area_free(struct vm_area_struct *vma)
515 {
516 /* The vma should be detached while being destroyed. */
517 vma_assert_detached(vma);
518 vma_numab_state_free(vma);
519 free_anon_vma_name(vma);
520 kmem_cache_free(vm_area_cachep, vma);
521 }
522
account_kernel_stack(struct task_struct * tsk,int account)523 static void account_kernel_stack(struct task_struct *tsk, int account)
524 {
525 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
526 struct vm_struct *vm = task_stack_vm_area(tsk);
527 int i;
528
529 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
530 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
531 account * (PAGE_SIZE / 1024));
532 } else {
533 void *stack = task_stack_page(tsk);
534
535 /* All stack pages are in the same node. */
536 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
537 account * (THREAD_SIZE / 1024));
538 }
539 }
540
exit_task_stack_account(struct task_struct * tsk)541 void exit_task_stack_account(struct task_struct *tsk)
542 {
543 account_kernel_stack(tsk, -1);
544
545 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
546 struct vm_struct *vm;
547 int i;
548
549 vm = task_stack_vm_area(tsk);
550 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
551 memcg_kmem_uncharge_page(vm->pages[i], 0);
552 }
553 }
554
release_task_stack(struct task_struct * tsk)555 static void release_task_stack(struct task_struct *tsk)
556 {
557 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
558 return; /* Better to leak the stack than to free prematurely */
559
560 free_thread_stack(tsk);
561 }
562
563 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)564 void put_task_stack(struct task_struct *tsk)
565 {
566 if (refcount_dec_and_test(&tsk->stack_refcount))
567 release_task_stack(tsk);
568 }
569 #endif
570
free_task(struct task_struct * tsk)571 void free_task(struct task_struct *tsk)
572 {
573 #ifdef CONFIG_SECCOMP
574 WARN_ON_ONCE(tsk->seccomp.filter);
575 #endif
576 cpufreq_task_times_exit(tsk);
577 release_user_cpus_ptr(tsk);
578 scs_release(tsk);
579
580 trace_android_vh_free_task(tsk);
581 #ifndef CONFIG_THREAD_INFO_IN_TASK
582 /*
583 * The task is finally done with both the stack and thread_info,
584 * so free both.
585 */
586 release_task_stack(tsk);
587 #else
588 /*
589 * If the task had a separate stack allocation, it should be gone
590 * by now.
591 */
592 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
593 #endif
594 rt_mutex_debug_task_free(tsk);
595 ftrace_graph_exit_task(tsk);
596 arch_release_task_struct(tsk);
597 if (tsk->flags & PF_KTHREAD)
598 free_kthread_struct(tsk);
599 bpf_task_storage_free(tsk);
600 free_task_struct(tsk);
601 }
602 EXPORT_SYMBOL(free_task);
603
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)604 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
605 {
606 struct file *exe_file;
607
608 exe_file = get_mm_exe_file(oldmm);
609 RCU_INIT_POINTER(mm->exe_file, exe_file);
610 /*
611 * We depend on the oldmm having properly denied write access to the
612 * exe_file already.
613 */
614 if (exe_file && deny_write_access(exe_file))
615 pr_warn_once("deny_write_access() failed in %s\n", __func__);
616 }
617
618 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)619 static __latent_entropy int dup_mmap(struct mm_struct *mm,
620 struct mm_struct *oldmm)
621 {
622 struct vm_area_struct *mpnt, *tmp;
623 int retval;
624 unsigned long charge = 0;
625 LIST_HEAD(uf);
626 VMA_ITERATOR(vmi, mm, 0);
627
628 if (mmap_write_lock_killable(oldmm))
629 return -EINTR;
630 flush_cache_dup_mm(oldmm);
631 uprobe_dup_mmap(oldmm, mm);
632 /*
633 * Not linked in yet - no deadlock potential:
634 */
635 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
636
637 /* No ordering required: file already has been exposed. */
638 dup_mm_exe_file(mm, oldmm);
639
640 mm->total_vm = oldmm->total_vm;
641 mm->data_vm = oldmm->data_vm;
642 mm->exec_vm = oldmm->exec_vm;
643 mm->stack_vm = oldmm->stack_vm;
644
645 /* Use __mt_dup() to efficiently build an identical maple tree. */
646 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
647 if (unlikely(retval))
648 goto out;
649
650 mt_clear_in_rcu(vmi.mas.tree);
651 for_each_vma(vmi, mpnt) {
652 struct file *file;
653
654 vma_start_write(mpnt);
655 if (mpnt->vm_flags & VM_DONTCOPY) {
656 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
657 mpnt->vm_end, GFP_KERNEL);
658 if (retval)
659 goto loop_out;
660
661 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
662 continue;
663 }
664 charge = 0;
665 /*
666 * Don't duplicate many vmas if we've been oom-killed (for
667 * example)
668 */
669 if (fatal_signal_pending(current)) {
670 retval = -EINTR;
671 goto loop_out;
672 }
673 if (mpnt->vm_flags & VM_ACCOUNT) {
674 unsigned long len = vma_pages(mpnt);
675
676 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
677 goto fail_nomem;
678 charge = len;
679 }
680 tmp = vm_area_dup(mpnt);
681 if (!tmp)
682 goto fail_nomem;
683
684 /* track_pfn_copy() will later take care of copying internal state. */
685 if (unlikely(tmp->vm_flags & VM_PFNMAP))
686 untrack_pfn_clear(tmp);
687
688 retval = vma_dup_policy(mpnt, tmp);
689 if (retval)
690 goto fail_nomem_policy;
691 tmp->vm_mm = mm;
692 retval = dup_userfaultfd(tmp, &uf);
693 if (retval)
694 goto fail_nomem_anon_vma_fork;
695 if (tmp->vm_flags & VM_WIPEONFORK) {
696 /*
697 * VM_WIPEONFORK gets a clean slate in the child.
698 * Don't prepare anon_vma until fault since we don't
699 * copy page for current vma.
700 */
701 tmp->anon_vma = NULL;
702 } else if (anon_vma_fork(tmp, mpnt))
703 goto fail_nomem_anon_vma_fork;
704 vm_flags_clear(tmp, VM_LOCKED_MASK);
705 /*
706 * Copy/update hugetlb private vma information.
707 */
708 if (is_vm_hugetlb_page(tmp))
709 hugetlb_dup_vma_private(tmp);
710
711 /*
712 * Link the vma into the MT. After using __mt_dup(), memory
713 * allocation is not necessary here, so it cannot fail.
714 */
715 vma_iter_bulk_store(&vmi, tmp);
716
717 mm->map_count++;
718
719 if (tmp->vm_ops && tmp->vm_ops->open)
720 tmp->vm_ops->open(tmp);
721
722 file = tmp->vm_file;
723 if (file) {
724 struct address_space *mapping = file->f_mapping;
725
726 get_file(file);
727 i_mmap_lock_write(mapping);
728 if (vma_is_shared_maywrite(tmp))
729 mapping_allow_writable(mapping);
730 flush_dcache_mmap_lock(mapping);
731 /* insert tmp into the share list, just after mpnt */
732 vma_interval_tree_insert_after(tmp, mpnt,
733 &mapping->i_mmap);
734 flush_dcache_mmap_unlock(mapping);
735 i_mmap_unlock_write(mapping);
736 }
737
738 if (!(tmp->vm_flags & VM_WIPEONFORK))
739 retval = copy_page_range(tmp, mpnt);
740
741 if (retval) {
742 mpnt = vma_next(&vmi);
743 goto loop_out;
744 }
745 }
746 /* a new mm has just been created */
747 retval = arch_dup_mmap(oldmm, mm);
748 loop_out:
749 vma_iter_free(&vmi);
750 if (!retval) {
751 mt_set_in_rcu(vmi.mas.tree);
752 ksm_fork(mm, oldmm);
753 khugepaged_fork(mm, oldmm);
754 } else if (mpnt) {
755 /*
756 * The entire maple tree has already been duplicated. If the
757 * mmap duplication fails, mark the failure point with
758 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
759 * stop releasing VMAs that have not been duplicated after this
760 * point.
761 */
762 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
763 mas_store(&vmi.mas, XA_ZERO_ENTRY);
764 }
765 out:
766 mmap_write_unlock(mm);
767 flush_tlb_mm(oldmm);
768 mmap_write_unlock(oldmm);
769 if (!retval)
770 dup_userfaultfd_complete(&uf);
771 else
772 dup_userfaultfd_fail(&uf);
773 return retval;
774
775 fail_nomem_anon_vma_fork:
776 mpol_put(vma_policy(tmp));
777 fail_nomem_policy:
778 vm_area_free(tmp);
779 fail_nomem:
780 retval = -ENOMEM;
781 vm_unacct_memory(charge);
782 goto loop_out;
783 }
784
mm_alloc_pgd(struct mm_struct * mm)785 static inline int mm_alloc_pgd(struct mm_struct *mm)
786 {
787 mm->pgd = pgd_alloc(mm);
788 if (unlikely(!mm->pgd))
789 return -ENOMEM;
790 return 0;
791 }
792
mm_free_pgd(struct mm_struct * mm)793 static inline void mm_free_pgd(struct mm_struct *mm)
794 {
795 pgd_free(mm, mm->pgd);
796 }
797 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)798 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
799 {
800 mmap_write_lock(oldmm);
801 dup_mm_exe_file(mm, oldmm);
802 mmap_write_unlock(oldmm);
803 return 0;
804 }
805 #define mm_alloc_pgd(mm) (0)
806 #define mm_free_pgd(mm)
807 #endif /* CONFIG_MMU */
808
check_mm(struct mm_struct * mm)809 static void check_mm(struct mm_struct *mm)
810 {
811 int i;
812
813 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
814 "Please make sure 'struct resident_page_types[]' is updated as well");
815
816 for (i = 0; i < NR_MM_COUNTERS; i++) {
817 long x = percpu_counter_sum(&mm->rss_stat[i]);
818
819 if (unlikely(x))
820 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
821 mm, resident_page_types[i], x);
822 }
823
824 if (mm_pgtables_bytes(mm))
825 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
826 mm_pgtables_bytes(mm));
827
828 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
829 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
830 #endif
831 }
832
833 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
834 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
835
do_check_lazy_tlb(void * arg)836 static void do_check_lazy_tlb(void *arg)
837 {
838 struct mm_struct *mm = arg;
839
840 WARN_ON_ONCE(current->active_mm == mm);
841 }
842
do_shoot_lazy_tlb(void * arg)843 static void do_shoot_lazy_tlb(void *arg)
844 {
845 struct mm_struct *mm = arg;
846
847 if (current->active_mm == mm) {
848 WARN_ON_ONCE(current->mm);
849 current->active_mm = &init_mm;
850 switch_mm(mm, &init_mm, current);
851 }
852 }
853
cleanup_lazy_tlbs(struct mm_struct * mm)854 static void cleanup_lazy_tlbs(struct mm_struct *mm)
855 {
856 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
857 /*
858 * In this case, lazy tlb mms are refounted and would not reach
859 * __mmdrop until all CPUs have switched away and mmdrop()ed.
860 */
861 return;
862 }
863
864 /*
865 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
866 * requires lazy mm users to switch to another mm when the refcount
867 * drops to zero, before the mm is freed. This requires IPIs here to
868 * switch kernel threads to init_mm.
869 *
870 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
871 * switch with the final userspace teardown TLB flush which leaves the
872 * mm lazy on this CPU but no others, reducing the need for additional
873 * IPIs here. There are cases where a final IPI is still required here,
874 * such as the final mmdrop being performed on a different CPU than the
875 * one exiting, or kernel threads using the mm when userspace exits.
876 *
877 * IPI overheads have not found to be expensive, but they could be
878 * reduced in a number of possible ways, for example (roughly
879 * increasing order of complexity):
880 * - The last lazy reference created by exit_mm() could instead switch
881 * to init_mm, however it's probable this will run on the same CPU
882 * immediately afterwards, so this may not reduce IPIs much.
883 * - A batch of mms requiring IPIs could be gathered and freed at once.
884 * - CPUs store active_mm where it can be remotely checked without a
885 * lock, to filter out false-positives in the cpumask.
886 * - After mm_users or mm_count reaches zero, switching away from the
887 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
888 * with some batching or delaying of the final IPIs.
889 * - A delayed freeing and RCU-like quiescing sequence based on mm
890 * switching to avoid IPIs completely.
891 */
892 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
893 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
894 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
895 }
896
897 /*
898 * Called when the last reference to the mm
899 * is dropped: either by a lazy thread or by
900 * mmput. Free the page directory and the mm.
901 */
__mmdrop(struct mm_struct * mm)902 void __mmdrop(struct mm_struct *mm)
903 {
904 BUG_ON(mm == &init_mm);
905 WARN_ON_ONCE(mm == current->mm);
906
907 /* Ensure no CPUs are using this as their lazy tlb mm */
908 cleanup_lazy_tlbs(mm);
909
910 WARN_ON_ONCE(mm == current->active_mm);
911 mm_free_pgd(mm);
912 destroy_context(mm);
913 mmu_notifier_subscriptions_destroy(mm);
914 check_mm(mm);
915 put_user_ns(mm->user_ns);
916 mm_pasid_drop(mm);
917 mm_destroy_cid(mm);
918 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
919
920 free_mm(mm);
921 }
922 EXPORT_SYMBOL_GPL(__mmdrop);
923
mmdrop_async_fn(struct work_struct * work)924 static void mmdrop_async_fn(struct work_struct *work)
925 {
926 struct mm_struct *mm;
927
928 mm = container_of(work, struct mm_struct, async_put_work);
929 __mmdrop(mm);
930 }
931
mmdrop_async(struct mm_struct * mm)932 static void mmdrop_async(struct mm_struct *mm)
933 {
934 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
935 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
936 schedule_work(&mm->async_put_work);
937 }
938 }
939
free_signal_struct(struct signal_struct * sig)940 static inline void free_signal_struct(struct signal_struct *sig)
941 {
942 taskstats_tgid_free(sig);
943 sched_autogroup_exit(sig);
944 /*
945 * __mmdrop is not safe to call from softirq context on x86 due to
946 * pgd_dtor so postpone it to the async context
947 */
948 if (sig->oom_mm)
949 mmdrop_async(sig->oom_mm);
950 kmem_cache_free(signal_cachep, sig);
951 }
952
put_signal_struct(struct signal_struct * sig)953 static inline void put_signal_struct(struct signal_struct *sig)
954 {
955 if (refcount_dec_and_test(&sig->sigcnt))
956 free_signal_struct(sig);
957 }
958
__put_task_struct(struct task_struct * tsk)959 void __put_task_struct(struct task_struct *tsk)
960 {
961 WARN_ON(!tsk->exit_state);
962 WARN_ON(refcount_read(&tsk->usage));
963 WARN_ON(tsk == current);
964
965 sched_ext_free(tsk);
966 io_uring_free(tsk);
967 cgroup_free(tsk);
968 task_numa_free(tsk, true);
969 security_task_free(tsk);
970 exit_creds(tsk);
971 delayacct_tsk_free(tsk);
972 put_signal_struct(tsk->signal);
973 sched_core_free(tsk);
974 free_task(tsk);
975 }
976 EXPORT_SYMBOL_GPL(__put_task_struct);
977
__put_task_struct_rcu_cb(struct rcu_head * rhp)978 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
979 {
980 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
981
982 __put_task_struct(task);
983 }
984 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
985
arch_task_cache_init(void)986 void __init __weak arch_task_cache_init(void) { }
987
988 /*
989 * set_max_threads
990 */
set_max_threads(unsigned int max_threads_suggested)991 static void __init set_max_threads(unsigned int max_threads_suggested)
992 {
993 u64 threads;
994 unsigned long nr_pages = memblock_estimated_nr_free_pages();
995
996 /*
997 * The number of threads shall be limited such that the thread
998 * structures may only consume a small part of the available memory.
999 */
1000 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1001 threads = MAX_THREADS;
1002 else
1003 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1004 (u64) THREAD_SIZE * 8UL);
1005
1006 if (threads > max_threads_suggested)
1007 threads = max_threads_suggested;
1008
1009 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1010 }
1011
1012 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1013 /* Initialized by the architecture: */
1014 int arch_task_struct_size __read_mostly;
1015 #endif
1016
task_struct_whitelist(unsigned long * offset,unsigned long * size)1017 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1018 {
1019 /* Fetch thread_struct whitelist for the architecture. */
1020 arch_thread_struct_whitelist(offset, size);
1021
1022 /*
1023 * Handle zero-sized whitelist or empty thread_struct, otherwise
1024 * adjust offset to position of thread_struct in task_struct.
1025 */
1026 if (unlikely(*size == 0))
1027 *offset = 0;
1028 else
1029 *offset += offsetof(struct task_struct, thread);
1030 }
1031
fork_init(void)1032 void __init fork_init(void)
1033 {
1034 int i;
1035 #ifndef ARCH_MIN_TASKALIGN
1036 #define ARCH_MIN_TASKALIGN 0
1037 #endif
1038 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1039 unsigned long useroffset, usersize;
1040
1041 /* create a slab on which task_structs can be allocated */
1042 task_struct_whitelist(&useroffset, &usersize);
1043 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1044 arch_task_struct_size, align,
1045 SLAB_PANIC|SLAB_ACCOUNT,
1046 useroffset, usersize, NULL);
1047
1048 /* do the arch specific task caches init */
1049 arch_task_cache_init();
1050
1051 set_max_threads(MAX_THREADS);
1052
1053 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1054 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1055 init_task.signal->rlim[RLIMIT_SIGPENDING] =
1056 init_task.signal->rlim[RLIMIT_NPROC];
1057
1058 for (i = 0; i < UCOUNT_COUNTS; i++)
1059 init_user_ns.ucount_max[i] = max_threads/2;
1060
1061 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
1062 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
1063 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1064 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
1065
1066 #ifdef CONFIG_VMAP_STACK
1067 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1068 NULL, free_vm_stack_cache);
1069 #endif
1070
1071 scs_init();
1072
1073 lockdep_init_task(&init_task);
1074 uprobes_init();
1075 }
1076
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1077 int __weak arch_dup_task_struct(struct task_struct *dst,
1078 struct task_struct *src)
1079 {
1080 *dst = *src;
1081 return 0;
1082 }
1083
set_task_stack_end_magic(struct task_struct * tsk)1084 void set_task_stack_end_magic(struct task_struct *tsk)
1085 {
1086 unsigned long *stackend;
1087
1088 stackend = end_of_stack(tsk);
1089 *stackend = STACK_END_MAGIC; /* for overflow detection */
1090 }
1091
dup_task_struct(struct task_struct * orig,int node)1092 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1093 {
1094 struct task_struct *tsk;
1095 int err;
1096
1097 if (node == NUMA_NO_NODE)
1098 node = tsk_fork_get_node(orig);
1099 tsk = alloc_task_struct_node(node);
1100 if (!tsk)
1101 return NULL;
1102
1103 err = arch_dup_task_struct(tsk, orig);
1104 if (err)
1105 goto free_tsk;
1106
1107 err = alloc_thread_stack_node(tsk, node);
1108 if (err)
1109 goto free_tsk;
1110
1111 #ifdef CONFIG_THREAD_INFO_IN_TASK
1112 refcount_set(&tsk->stack_refcount, 1);
1113 #endif
1114 account_kernel_stack(tsk, 1);
1115
1116 err = scs_prepare(tsk, node);
1117 if (err)
1118 goto free_stack;
1119
1120 #ifdef CONFIG_SECCOMP
1121 /*
1122 * We must handle setting up seccomp filters once we're under
1123 * the sighand lock in case orig has changed between now and
1124 * then. Until then, filter must be NULL to avoid messing up
1125 * the usage counts on the error path calling free_task.
1126 */
1127 tsk->seccomp.filter = NULL;
1128 #endif
1129
1130 setup_thread_stack(tsk, orig);
1131 clear_user_return_notifier(tsk);
1132 clear_tsk_need_resched(tsk);
1133 set_task_stack_end_magic(tsk);
1134 clear_syscall_work_syscall_user_dispatch(tsk);
1135
1136 #ifdef CONFIG_STACKPROTECTOR
1137 tsk->stack_canary = get_random_canary();
1138 #endif
1139 if (orig->cpus_ptr == &orig->cpus_mask)
1140 tsk->cpus_ptr = &tsk->cpus_mask;
1141 dup_user_cpus_ptr(tsk, orig, node);
1142
1143 /*
1144 * One for the user space visible state that goes away when reaped.
1145 * One for the scheduler.
1146 */
1147 refcount_set(&tsk->rcu_users, 2);
1148 /* One for the rcu users */
1149 refcount_set(&tsk->usage, 1);
1150 #ifdef CONFIG_BLK_DEV_IO_TRACE
1151 tsk->btrace_seq = 0;
1152 #endif
1153 tsk->splice_pipe = NULL;
1154 tsk->task_frag.page = NULL;
1155 tsk->wake_q.next = NULL;
1156 tsk->worker_private = NULL;
1157
1158 kcov_task_init(tsk);
1159 kmsan_task_create(tsk);
1160 kmap_local_fork(tsk);
1161
1162 #ifdef CONFIG_FAULT_INJECTION
1163 tsk->fail_nth = 0;
1164 #endif
1165
1166 #ifdef CONFIG_BLK_CGROUP
1167 tsk->throttle_disk = NULL;
1168 tsk->use_memdelay = 0;
1169 #endif
1170
1171 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1172 tsk->pasid_activated = 0;
1173 #endif
1174
1175 #ifdef CONFIG_MEMCG
1176 tsk->active_memcg = NULL;
1177 #endif
1178
1179 #ifdef CONFIG_CPU_SUP_INTEL
1180 tsk->reported_split_lock = 0;
1181 #endif
1182
1183 #ifdef CONFIG_SCHED_MM_CID
1184 tsk->mm_cid = -1;
1185 tsk->last_mm_cid = -1;
1186 tsk->mm_cid_active = 0;
1187 tsk->migrate_from_cpu = -1;
1188 #endif
1189 android_init_vendor_data(tsk, 1);
1190 android_init_oem_data(tsk, 1);
1191 android_init_dynamic_vendor_data(tsk);
1192 trace_android_vh_dup_task_struct(tsk, orig);
1193 return tsk;
1194
1195 free_stack:
1196 exit_task_stack_account(tsk);
1197 free_thread_stack(tsk);
1198 free_tsk:
1199 free_task_struct(tsk);
1200 return NULL;
1201 }
1202
1203 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1204
1205 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1206
coredump_filter_setup(char * s)1207 static int __init coredump_filter_setup(char *s)
1208 {
1209 default_dump_filter =
1210 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1211 MMF_DUMP_FILTER_MASK;
1212 return 1;
1213 }
1214
1215 __setup("coredump_filter=", coredump_filter_setup);
1216
1217 #include <linux/init_task.h>
1218
mm_init_aio(struct mm_struct * mm)1219 static void mm_init_aio(struct mm_struct *mm)
1220 {
1221 #ifdef CONFIG_AIO
1222 spin_lock_init(&mm->ioctx_lock);
1223 mm->ioctx_table = NULL;
1224 #endif
1225 }
1226
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1227 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1228 struct task_struct *p)
1229 {
1230 #ifdef CONFIG_MEMCG
1231 if (mm->owner == p)
1232 WRITE_ONCE(mm->owner, NULL);
1233 #endif
1234 }
1235
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1236 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1237 {
1238 #ifdef CONFIG_MEMCG
1239 mm->owner = p;
1240 #endif
1241 }
1242
mm_init_uprobes_state(struct mm_struct * mm)1243 static void mm_init_uprobes_state(struct mm_struct *mm)
1244 {
1245 #ifdef CONFIG_UPROBES
1246 mm->uprobes_state.xol_area = NULL;
1247 #endif
1248 }
1249
mmap_init_lock(struct mm_struct * mm)1250 static void mmap_init_lock(struct mm_struct *mm)
1251 {
1252 init_rwsem(&mm->mmap_lock);
1253 mm_lock_seqcount_init(mm);
1254 #ifdef CONFIG_PER_VMA_LOCK
1255 rcuwait_init(&mm->vma_writer_wait);
1256 #endif
1257 }
1258
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1259 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1260 struct user_namespace *user_ns)
1261 {
1262 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1263 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1264 atomic_set(&mm->mm_users, 1);
1265 atomic_set(&mm->mm_count, 1);
1266 seqcount_init(&mm->write_protect_seq);
1267 mmap_init_lock(mm);
1268 INIT_LIST_HEAD(&mm->mmlist);
1269 mm_pgtables_bytes_init(mm);
1270 mm->map_count = 0;
1271 mm->locked_vm = 0;
1272 atomic64_set(&mm->pinned_vm, 0);
1273 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1274 spin_lock_init(&mm->page_table_lock);
1275 spin_lock_init(&mm->arg_lock);
1276 mm_init_cpumask(mm);
1277 mm_init_aio(mm);
1278 mm_init_owner(mm, p);
1279 mm_pasid_init(mm);
1280 RCU_INIT_POINTER(mm->exe_file, NULL);
1281 mmu_notifier_subscriptions_init(mm);
1282 init_tlb_flush_pending(mm);
1283 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1284 mm->pmd_huge_pte = NULL;
1285 #endif
1286 mm_init_uprobes_state(mm);
1287 hugetlb_count_init(mm);
1288
1289 if (current->mm) {
1290 mm->flags = mmf_init_flags(current->mm->flags);
1291 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1292 } else {
1293 mm->flags = default_dump_filter;
1294 mm->def_flags = 0;
1295 }
1296
1297 if (mm_alloc_pgd(mm))
1298 goto fail_nopgd;
1299
1300 if (init_new_context(p, mm))
1301 goto fail_nocontext;
1302
1303 if (mm_alloc_cid(mm))
1304 goto fail_cid;
1305
1306 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1307 NR_MM_COUNTERS))
1308 goto fail_pcpu;
1309
1310 mm->user_ns = get_user_ns(user_ns);
1311 lru_gen_init_mm(mm);
1312 return mm;
1313
1314 fail_pcpu:
1315 mm_destroy_cid(mm);
1316 fail_cid:
1317 destroy_context(mm);
1318 fail_nocontext:
1319 mm_free_pgd(mm);
1320 fail_nopgd:
1321 free_mm(mm);
1322 return NULL;
1323 }
1324
1325 /*
1326 * Allocate and initialize an mm_struct.
1327 */
mm_alloc(void)1328 struct mm_struct *mm_alloc(void)
1329 {
1330 struct mm_struct *mm;
1331
1332 mm = allocate_mm();
1333 if (!mm)
1334 return NULL;
1335
1336 memset(mm, 0, sizeof(*mm));
1337 return mm_init(mm, current, current_user_ns());
1338 }
1339 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1340
__mmput(struct mm_struct * mm)1341 static inline void __mmput(struct mm_struct *mm)
1342 {
1343 VM_BUG_ON(atomic_read(&mm->mm_users));
1344
1345 uprobe_clear_state(mm);
1346 exit_aio(mm);
1347 ksm_exit(mm);
1348 khugepaged_exit(mm); /* must run before exit_mmap */
1349 exit_mmap(mm);
1350 mm_put_huge_zero_folio(mm);
1351 set_mm_exe_file(mm, NULL);
1352 if (!list_empty(&mm->mmlist)) {
1353 spin_lock(&mmlist_lock);
1354 list_del(&mm->mmlist);
1355 spin_unlock(&mmlist_lock);
1356 }
1357 if (mm->binfmt)
1358 module_put(mm->binfmt->module);
1359 lru_gen_del_mm(mm);
1360 mmdrop(mm);
1361 }
1362
1363 /*
1364 * Decrement the use count and release all resources for an mm.
1365 */
mmput(struct mm_struct * mm)1366 void mmput(struct mm_struct *mm)
1367 {
1368 might_sleep();
1369
1370 if (atomic_dec_and_test(&mm->mm_users)) {
1371 trace_android_vh_mmput(mm);
1372 __mmput(mm);
1373 }
1374 }
1375 EXPORT_SYMBOL_GPL(mmput);
1376
1377 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1378 static void mmput_async_fn(struct work_struct *work)
1379 {
1380 struct mm_struct *mm = container_of(work, struct mm_struct,
1381 async_put_work);
1382
1383 __mmput(mm);
1384 }
1385
mmput_async(struct mm_struct * mm)1386 void mmput_async(struct mm_struct *mm)
1387 {
1388 if (atomic_dec_and_test(&mm->mm_users)) {
1389 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1390 schedule_work(&mm->async_put_work);
1391 }
1392 }
1393 EXPORT_SYMBOL_GPL(mmput_async);
1394 #endif
1395
1396 /**
1397 * set_mm_exe_file - change a reference to the mm's executable file
1398 * @mm: The mm to change.
1399 * @new_exe_file: The new file to use.
1400 *
1401 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1402 *
1403 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1404 * invocations: in mmput() nobody alive left, in execve it happens before
1405 * the new mm is made visible to anyone.
1406 *
1407 * Can only fail if new_exe_file != NULL.
1408 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1409 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1410 {
1411 struct file *old_exe_file;
1412
1413 /*
1414 * It is safe to dereference the exe_file without RCU as
1415 * this function is only called if nobody else can access
1416 * this mm -- see comment above for justification.
1417 */
1418 old_exe_file = rcu_dereference_raw(mm->exe_file);
1419
1420 if (new_exe_file) {
1421 /*
1422 * We expect the caller (i.e., sys_execve) to already denied
1423 * write access, so this is unlikely to fail.
1424 */
1425 if (unlikely(deny_write_access(new_exe_file)))
1426 return -EACCES;
1427 get_file(new_exe_file);
1428 }
1429 rcu_assign_pointer(mm->exe_file, new_exe_file);
1430 if (old_exe_file) {
1431 allow_write_access(old_exe_file);
1432 fput(old_exe_file);
1433 }
1434 return 0;
1435 }
1436
1437 /**
1438 * replace_mm_exe_file - replace a reference to the mm's executable file
1439 * @mm: The mm to change.
1440 * @new_exe_file: The new file to use.
1441 *
1442 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1443 *
1444 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1445 */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1446 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1447 {
1448 struct vm_area_struct *vma;
1449 struct file *old_exe_file;
1450 int ret = 0;
1451
1452 /* Forbid mm->exe_file change if old file still mapped. */
1453 old_exe_file = get_mm_exe_file(mm);
1454 if (old_exe_file) {
1455 VMA_ITERATOR(vmi, mm, 0);
1456 mmap_read_lock(mm);
1457 for_each_vma(vmi, vma) {
1458 if (!vma->vm_file)
1459 continue;
1460 if (path_equal(&vma->vm_file->f_path,
1461 &old_exe_file->f_path)) {
1462 ret = -EBUSY;
1463 break;
1464 }
1465 }
1466 mmap_read_unlock(mm);
1467 fput(old_exe_file);
1468 if (ret)
1469 return ret;
1470 }
1471
1472 ret = deny_write_access(new_exe_file);
1473 if (ret)
1474 return -EACCES;
1475 get_file(new_exe_file);
1476
1477 /* set the new file */
1478 mmap_write_lock(mm);
1479 old_exe_file = rcu_dereference_raw(mm->exe_file);
1480 rcu_assign_pointer(mm->exe_file, new_exe_file);
1481 mmap_write_unlock(mm);
1482
1483 if (old_exe_file) {
1484 allow_write_access(old_exe_file);
1485 fput(old_exe_file);
1486 }
1487 return 0;
1488 }
1489
1490 /**
1491 * get_mm_exe_file - acquire a reference to the mm's executable file
1492 * @mm: The mm of interest.
1493 *
1494 * Returns %NULL if mm has no associated executable file.
1495 * User must release file via fput().
1496 */
get_mm_exe_file(struct mm_struct * mm)1497 struct file *get_mm_exe_file(struct mm_struct *mm)
1498 {
1499 struct file *exe_file;
1500
1501 rcu_read_lock();
1502 exe_file = get_file_rcu(&mm->exe_file);
1503 rcu_read_unlock();
1504 return exe_file;
1505 }
1506
1507 /**
1508 * get_task_exe_file - acquire a reference to the task's executable file
1509 * @task: The task.
1510 *
1511 * Returns %NULL if task's mm (if any) has no associated executable file or
1512 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1513 * User must release file via fput().
1514 */
get_task_exe_file(struct task_struct * task)1515 struct file *get_task_exe_file(struct task_struct *task)
1516 {
1517 struct file *exe_file = NULL;
1518 struct mm_struct *mm;
1519
1520 task_lock(task);
1521 mm = task->mm;
1522 if (mm) {
1523 if (!(task->flags & PF_KTHREAD))
1524 exe_file = get_mm_exe_file(mm);
1525 }
1526 task_unlock(task);
1527 return exe_file;
1528 }
1529
1530 /**
1531 * get_task_mm - acquire a reference to the task's mm
1532 * @task: The task.
1533 *
1534 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1535 * this kernel workthread has transiently adopted a user mm with use_mm,
1536 * to do its AIO) is not set and if so returns a reference to it, after
1537 * bumping up the use count. User must release the mm via mmput()
1538 * after use. Typically used by /proc and ptrace.
1539 */
get_task_mm(struct task_struct * task)1540 struct mm_struct *get_task_mm(struct task_struct *task)
1541 {
1542 struct mm_struct *mm;
1543
1544 if (task->flags & PF_KTHREAD)
1545 return NULL;
1546
1547 task_lock(task);
1548 mm = task->mm;
1549 if (mm)
1550 mmget(mm);
1551 task_unlock(task);
1552 return mm;
1553 }
1554 EXPORT_SYMBOL_GPL(get_task_mm);
1555
mm_access(struct task_struct * task,unsigned int mode)1556 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1557 {
1558 struct mm_struct *mm;
1559 int err;
1560
1561 err = down_read_killable(&task->signal->exec_update_lock);
1562 if (err)
1563 return ERR_PTR(err);
1564
1565 mm = get_task_mm(task);
1566 if (mm && mm != current->mm &&
1567 !ptrace_may_access(task, mode)) {
1568 mmput(mm);
1569 mm = ERR_PTR(-EACCES);
1570 }
1571 up_read(&task->signal->exec_update_lock);
1572
1573 return mm;
1574 }
1575 EXPORT_SYMBOL_GPL(mm_access);
1576
complete_vfork_done(struct task_struct * tsk)1577 static void complete_vfork_done(struct task_struct *tsk)
1578 {
1579 struct completion *vfork;
1580
1581 task_lock(tsk);
1582 vfork = tsk->vfork_done;
1583 if (likely(vfork)) {
1584 tsk->vfork_done = NULL;
1585 complete(vfork);
1586 }
1587 task_unlock(tsk);
1588 }
1589
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1590 static int wait_for_vfork_done(struct task_struct *child,
1591 struct completion *vfork)
1592 {
1593 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1594 int killed;
1595
1596 cgroup_enter_frozen();
1597 killed = wait_for_completion_state(vfork, state);
1598 cgroup_leave_frozen(false);
1599
1600 if (killed) {
1601 task_lock(child);
1602 child->vfork_done = NULL;
1603 task_unlock(child);
1604 }
1605
1606 put_task_struct(child);
1607 return killed;
1608 }
1609
1610 /* Please note the differences between mmput and mm_release.
1611 * mmput is called whenever we stop holding onto a mm_struct,
1612 * error success whatever.
1613 *
1614 * mm_release is called after a mm_struct has been removed
1615 * from the current process.
1616 *
1617 * This difference is important for error handling, when we
1618 * only half set up a mm_struct for a new process and need to restore
1619 * the old one. Because we mmput the new mm_struct before
1620 * restoring the old one. . .
1621 * Eric Biederman 10 January 1998
1622 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1623 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1624 {
1625 uprobe_free_utask(tsk);
1626
1627 /* Get rid of any cached register state */
1628 deactivate_mm(tsk, mm);
1629
1630 /*
1631 * Signal userspace if we're not exiting with a core dump
1632 * because we want to leave the value intact for debugging
1633 * purposes.
1634 */
1635 if (tsk->clear_child_tid) {
1636 if (atomic_read(&mm->mm_users) > 1) {
1637 /*
1638 * We don't check the error code - if userspace has
1639 * not set up a proper pointer then tough luck.
1640 */
1641 put_user(0, tsk->clear_child_tid);
1642 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1643 1, NULL, NULL, 0, 0);
1644 }
1645 tsk->clear_child_tid = NULL;
1646 }
1647
1648 /*
1649 * All done, finally we can wake up parent and return this mm to him.
1650 * Also kthread_stop() uses this completion for synchronization.
1651 */
1652 if (tsk->vfork_done)
1653 complete_vfork_done(tsk);
1654 }
1655
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1656 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1657 {
1658 futex_exit_release(tsk);
1659 mm_release(tsk, mm);
1660 }
1661
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1662 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1663 {
1664 futex_exec_release(tsk);
1665 mm_release(tsk, mm);
1666 }
1667
1668 /**
1669 * dup_mm() - duplicates an existing mm structure
1670 * @tsk: the task_struct with which the new mm will be associated.
1671 * @oldmm: the mm to duplicate.
1672 *
1673 * Allocates a new mm structure and duplicates the provided @oldmm structure
1674 * content into it.
1675 *
1676 * Return: the duplicated mm or NULL on failure.
1677 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1678 static struct mm_struct *dup_mm(struct task_struct *tsk,
1679 struct mm_struct *oldmm)
1680 {
1681 struct mm_struct *mm;
1682 int err;
1683
1684 mm = allocate_mm();
1685 if (!mm)
1686 goto fail_nomem;
1687
1688 memcpy(mm, oldmm, sizeof(*mm));
1689
1690 if (!mm_init(mm, tsk, mm->user_ns))
1691 goto fail_nomem;
1692
1693 uprobe_start_dup_mmap();
1694 err = dup_mmap(mm, oldmm);
1695 if (err)
1696 goto free_pt;
1697 uprobe_end_dup_mmap();
1698
1699 mm->hiwater_rss = get_mm_rss(mm);
1700 mm->hiwater_vm = mm->total_vm;
1701
1702 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1703 goto free_pt;
1704
1705 return mm;
1706
1707 free_pt:
1708 /* don't put binfmt in mmput, we haven't got module yet */
1709 mm->binfmt = NULL;
1710 mm_init_owner(mm, NULL);
1711 mmput(mm);
1712 if (err)
1713 uprobe_end_dup_mmap();
1714
1715 fail_nomem:
1716 return NULL;
1717 }
1718
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1719 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1720 {
1721 struct mm_struct *mm, *oldmm;
1722
1723 tsk->min_flt = tsk->maj_flt = 0;
1724 tsk->nvcsw = tsk->nivcsw = 0;
1725 #ifdef CONFIG_DETECT_HUNG_TASK
1726 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1727 tsk->last_switch_time = 0;
1728 #endif
1729
1730 tsk->mm = NULL;
1731 tsk->active_mm = NULL;
1732
1733 /*
1734 * Are we cloning a kernel thread?
1735 *
1736 * We need to steal a active VM for that..
1737 */
1738 oldmm = current->mm;
1739 if (!oldmm)
1740 return 0;
1741
1742 if (clone_flags & CLONE_VM) {
1743 mmget(oldmm);
1744 mm = oldmm;
1745 } else {
1746 mm = dup_mm(tsk, current->mm);
1747 if (!mm)
1748 return -ENOMEM;
1749 }
1750
1751 tsk->mm = mm;
1752 tsk->active_mm = mm;
1753 sched_mm_cid_fork(tsk);
1754 return 0;
1755 }
1756
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1757 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1758 {
1759 struct fs_struct *fs = current->fs;
1760 if (clone_flags & CLONE_FS) {
1761 /* tsk->fs is already what we want */
1762 spin_lock(&fs->lock);
1763 /* "users" and "in_exec" locked for check_unsafe_exec() */
1764 if (fs->in_exec) {
1765 spin_unlock(&fs->lock);
1766 return -EAGAIN;
1767 }
1768 fs->users++;
1769 spin_unlock(&fs->lock);
1770 return 0;
1771 }
1772 tsk->fs = copy_fs_struct(fs);
1773 if (!tsk->fs)
1774 return -ENOMEM;
1775 return 0;
1776 }
1777
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1778 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1779 int no_files)
1780 {
1781 struct files_struct *oldf, *newf;
1782
1783 /*
1784 * A background process may not have any files ...
1785 */
1786 oldf = current->files;
1787 if (!oldf)
1788 return 0;
1789
1790 if (no_files) {
1791 tsk->files = NULL;
1792 return 0;
1793 }
1794
1795 if (clone_flags & CLONE_FILES) {
1796 atomic_inc(&oldf->count);
1797 return 0;
1798 }
1799
1800 newf = dup_fd(oldf, NULL);
1801 if (IS_ERR(newf))
1802 return PTR_ERR(newf);
1803
1804 tsk->files = newf;
1805 return 0;
1806 }
1807
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1808 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1809 {
1810 struct sighand_struct *sig;
1811
1812 if (clone_flags & CLONE_SIGHAND) {
1813 refcount_inc(¤t->sighand->count);
1814 return 0;
1815 }
1816 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1817 RCU_INIT_POINTER(tsk->sighand, sig);
1818 if (!sig)
1819 return -ENOMEM;
1820
1821 refcount_set(&sig->count, 1);
1822 spin_lock_irq(¤t->sighand->siglock);
1823 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1824 spin_unlock_irq(¤t->sighand->siglock);
1825
1826 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1827 if (clone_flags & CLONE_CLEAR_SIGHAND)
1828 flush_signal_handlers(tsk, 0);
1829
1830 return 0;
1831 }
1832
__cleanup_sighand(struct sighand_struct * sighand)1833 void __cleanup_sighand(struct sighand_struct *sighand)
1834 {
1835 if (refcount_dec_and_test(&sighand->count)) {
1836 signalfd_cleanup(sighand);
1837 /*
1838 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1839 * without an RCU grace period, see __lock_task_sighand().
1840 */
1841 kmem_cache_free(sighand_cachep, sighand);
1842 }
1843 }
1844
1845 /*
1846 * Initialize POSIX timer handling for a thread group.
1847 */
posix_cpu_timers_init_group(struct signal_struct * sig)1848 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1849 {
1850 struct posix_cputimers *pct = &sig->posix_cputimers;
1851 unsigned long cpu_limit;
1852
1853 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1854 posix_cputimers_group_init(pct, cpu_limit);
1855 }
1856
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1857 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1858 {
1859 struct signal_struct *sig;
1860
1861 if (clone_flags & CLONE_THREAD)
1862 return 0;
1863
1864 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1865 tsk->signal = sig;
1866 if (!sig)
1867 return -ENOMEM;
1868
1869 sig->nr_threads = 1;
1870 sig->quick_threads = 1;
1871 atomic_set(&sig->live, 1);
1872 refcount_set(&sig->sigcnt, 1);
1873
1874 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1875 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1876 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1877
1878 init_waitqueue_head(&sig->wait_chldexit);
1879 sig->curr_target = tsk;
1880 init_sigpending(&sig->shared_pending);
1881 INIT_HLIST_HEAD(&sig->multiprocess);
1882 seqlock_init(&sig->stats_lock);
1883 prev_cputime_init(&sig->prev_cputime);
1884
1885 #ifdef CONFIG_POSIX_TIMERS
1886 INIT_HLIST_HEAD(&sig->posix_timers);
1887 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1888 sig->real_timer.function = it_real_fn;
1889 #endif
1890
1891 task_lock(current->group_leader);
1892 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1893 task_unlock(current->group_leader);
1894
1895 posix_cpu_timers_init_group(sig);
1896
1897 tty_audit_fork(sig);
1898 sched_autogroup_fork(sig);
1899
1900 sig->oom_score_adj = current->signal->oom_score_adj;
1901 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1902
1903 mutex_init(&sig->cred_guard_mutex);
1904 init_rwsem(&sig->exec_update_lock);
1905
1906 return 0;
1907 }
1908
copy_seccomp(struct task_struct * p)1909 static void copy_seccomp(struct task_struct *p)
1910 {
1911 #ifdef CONFIG_SECCOMP
1912 /*
1913 * Must be called with sighand->lock held, which is common to
1914 * all threads in the group. Holding cred_guard_mutex is not
1915 * needed because this new task is not yet running and cannot
1916 * be racing exec.
1917 */
1918 assert_spin_locked(¤t->sighand->siglock);
1919
1920 /* Ref-count the new filter user, and assign it. */
1921 get_seccomp_filter(current);
1922 p->seccomp = current->seccomp;
1923
1924 /*
1925 * Explicitly enable no_new_privs here in case it got set
1926 * between the task_struct being duplicated and holding the
1927 * sighand lock. The seccomp state and nnp must be in sync.
1928 */
1929 if (task_no_new_privs(current))
1930 task_set_no_new_privs(p);
1931
1932 /*
1933 * If the parent gained a seccomp mode after copying thread
1934 * flags and between before we held the sighand lock, we have
1935 * to manually enable the seccomp thread flag here.
1936 */
1937 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1938 set_task_syscall_work(p, SECCOMP);
1939 #endif
1940 }
1941
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1942 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1943 {
1944 current->clear_child_tid = tidptr;
1945
1946 return task_pid_vnr(current);
1947 }
1948
rt_mutex_init_task(struct task_struct * p)1949 static void rt_mutex_init_task(struct task_struct *p)
1950 {
1951 raw_spin_lock_init(&p->pi_lock);
1952 #ifdef CONFIG_RT_MUTEXES
1953 p->pi_waiters = RB_ROOT_CACHED;
1954 p->pi_top_task = NULL;
1955 p->pi_blocked_on = NULL;
1956 #endif
1957 }
1958
init_task_pid_links(struct task_struct * task)1959 static inline void init_task_pid_links(struct task_struct *task)
1960 {
1961 enum pid_type type;
1962
1963 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1964 INIT_HLIST_NODE(&task->pid_links[type]);
1965 }
1966
1967 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1968 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1969 {
1970 if (type == PIDTYPE_PID)
1971 task->thread_pid = pid;
1972 else
1973 task->signal->pids[type] = pid;
1974 }
1975
rcu_copy_process(struct task_struct * p)1976 static inline void rcu_copy_process(struct task_struct *p)
1977 {
1978 #ifdef CONFIG_PREEMPT_RCU
1979 p->rcu_read_lock_nesting = 0;
1980 p->rcu_read_unlock_special.s = 0;
1981 p->rcu_blocked_node = NULL;
1982 INIT_LIST_HEAD(&p->rcu_node_entry);
1983 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1984 #ifdef CONFIG_TASKS_RCU
1985 p->rcu_tasks_holdout = false;
1986 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1987 p->rcu_tasks_idle_cpu = -1;
1988 INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1989 #endif /* #ifdef CONFIG_TASKS_RCU */
1990 #ifdef CONFIG_TASKS_TRACE_RCU
1991 p->trc_reader_nesting = 0;
1992 p->trc_reader_special.s = 0;
1993 INIT_LIST_HEAD(&p->trc_holdout_list);
1994 INIT_LIST_HEAD(&p->trc_blkd_node);
1995 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1996 }
1997
1998 /**
1999 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2000 * @pid: the struct pid for which to create a pidfd
2001 * @flags: flags of the new @pidfd
2002 * @ret: Where to return the file for the pidfd.
2003 *
2004 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2005 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2006 *
2007 * The helper doesn't perform checks on @pid which makes it useful for pidfds
2008 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2009 * pidfd file are prepared.
2010 *
2011 * If this function returns successfully the caller is responsible to either
2012 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2013 * order to install the pidfd into its file descriptor table or they must use
2014 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2015 * respectively.
2016 *
2017 * This function is useful when a pidfd must already be reserved but there
2018 * might still be points of failure afterwards and the caller wants to ensure
2019 * that no pidfd is leaked into its file descriptor table.
2020 *
2021 * Return: On success, a reserved pidfd is returned from the function and a new
2022 * pidfd file is returned in the last argument to the function. On
2023 * error, a negative error code is returned from the function and the
2024 * last argument remains unchanged.
2025 */
__pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2026 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2027 {
2028 int pidfd;
2029 struct file *pidfd_file;
2030
2031 pidfd = get_unused_fd_flags(O_CLOEXEC);
2032 if (pidfd < 0)
2033 return pidfd;
2034
2035 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2036 if (IS_ERR(pidfd_file)) {
2037 put_unused_fd(pidfd);
2038 return PTR_ERR(pidfd_file);
2039 }
2040 /*
2041 * anon_inode_getfile() ignores everything outside of the
2042 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2043 */
2044 pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2045 *ret = pidfd_file;
2046 return pidfd;
2047 }
2048
2049 /**
2050 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2051 * @pid: the struct pid for which to create a pidfd
2052 * @flags: flags of the new @pidfd
2053 * @ret: Where to return the pidfd.
2054 *
2055 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2056 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2057 *
2058 * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2059 * task identified by @pid must be a thread-group leader.
2060 *
2061 * If this function returns successfully the caller is responsible to either
2062 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2063 * order to install the pidfd into its file descriptor table or they must use
2064 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2065 * respectively.
2066 *
2067 * This function is useful when a pidfd must already be reserved but there
2068 * might still be points of failure afterwards and the caller wants to ensure
2069 * that no pidfd is leaked into its file descriptor table.
2070 *
2071 * Return: On success, a reserved pidfd is returned from the function and a new
2072 * pidfd file is returned in the last argument to the function. On
2073 * error, a negative error code is returned from the function and the
2074 * last argument remains unchanged.
2075 */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2076 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2077 {
2078 bool thread = flags & PIDFD_THREAD;
2079
2080 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2081 return -EINVAL;
2082
2083 return __pidfd_prepare(pid, flags, ret);
2084 }
2085
__delayed_free_task(struct rcu_head * rhp)2086 static void __delayed_free_task(struct rcu_head *rhp)
2087 {
2088 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2089
2090 free_task(tsk);
2091 }
2092
delayed_free_task(struct task_struct * tsk)2093 static __always_inline void delayed_free_task(struct task_struct *tsk)
2094 {
2095 if (IS_ENABLED(CONFIG_MEMCG))
2096 call_rcu(&tsk->rcu, __delayed_free_task);
2097 else
2098 free_task(tsk);
2099 }
2100
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)2101 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2102 {
2103 /* Skip if kernel thread */
2104 if (!tsk->mm)
2105 return;
2106
2107 /* Skip if spawning a thread or using vfork */
2108 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2109 return;
2110
2111 /* We need to synchronize with __set_oom_adj */
2112 mutex_lock(&oom_adj_mutex);
2113 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2114 /* Update the values in case they were changed after copy_signal */
2115 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2116 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2117 mutex_unlock(&oom_adj_mutex);
2118 }
2119
2120 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)2121 static void rv_task_fork(struct task_struct *p)
2122 {
2123 int i;
2124
2125 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2126 p->rv[i].da_mon.monitoring = false;
2127 }
2128 #else
2129 #define rv_task_fork(p) do {} while (0)
2130 #endif
2131
2132 /*
2133 * This creates a new process as a copy of the old one,
2134 * but does not actually start it yet.
2135 *
2136 * It copies the registers, and all the appropriate
2137 * parts of the process environment (as per the clone
2138 * flags). The actual kick-off is left to the caller.
2139 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)2140 __latent_entropy struct task_struct *copy_process(
2141 struct pid *pid,
2142 int trace,
2143 int node,
2144 struct kernel_clone_args *args)
2145 {
2146 int pidfd = -1, retval;
2147 struct task_struct *p;
2148 struct multiprocess_signals delayed;
2149 struct file *pidfile = NULL;
2150 const u64 clone_flags = args->flags;
2151 struct nsproxy *nsp = current->nsproxy;
2152
2153 /*
2154 * Don't allow sharing the root directory with processes in a different
2155 * namespace
2156 */
2157 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2158 return ERR_PTR(-EINVAL);
2159
2160 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2161 return ERR_PTR(-EINVAL);
2162
2163 /*
2164 * Thread groups must share signals as well, and detached threads
2165 * can only be started up within the thread group.
2166 */
2167 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2168 return ERR_PTR(-EINVAL);
2169
2170 /*
2171 * Shared signal handlers imply shared VM. By way of the above,
2172 * thread groups also imply shared VM. Blocking this case allows
2173 * for various simplifications in other code.
2174 */
2175 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2176 return ERR_PTR(-EINVAL);
2177
2178 /*
2179 * Siblings of global init remain as zombies on exit since they are
2180 * not reaped by their parent (swapper). To solve this and to avoid
2181 * multi-rooted process trees, prevent global and container-inits
2182 * from creating siblings.
2183 */
2184 if ((clone_flags & CLONE_PARENT) &&
2185 current->signal->flags & SIGNAL_UNKILLABLE)
2186 return ERR_PTR(-EINVAL);
2187
2188 /*
2189 * If the new process will be in a different pid or user namespace
2190 * do not allow it to share a thread group with the forking task.
2191 */
2192 if (clone_flags & CLONE_THREAD) {
2193 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2194 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2195 return ERR_PTR(-EINVAL);
2196 }
2197
2198 if (clone_flags & CLONE_PIDFD) {
2199 /*
2200 * - CLONE_DETACHED is blocked so that we can potentially
2201 * reuse it later for CLONE_PIDFD.
2202 */
2203 if (clone_flags & CLONE_DETACHED)
2204 return ERR_PTR(-EINVAL);
2205 }
2206
2207 /*
2208 * Force any signals received before this point to be delivered
2209 * before the fork happens. Collect up signals sent to multiple
2210 * processes that happen during the fork and delay them so that
2211 * they appear to happen after the fork.
2212 */
2213 sigemptyset(&delayed.signal);
2214 INIT_HLIST_NODE(&delayed.node);
2215
2216 spin_lock_irq(¤t->sighand->siglock);
2217 if (!(clone_flags & CLONE_THREAD))
2218 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
2219 recalc_sigpending();
2220 spin_unlock_irq(¤t->sighand->siglock);
2221 retval = -ERESTARTNOINTR;
2222 if (task_sigpending(current))
2223 goto fork_out;
2224
2225 retval = -ENOMEM;
2226 p = dup_task_struct(current, node);
2227 if (!p)
2228 goto fork_out;
2229 p->flags &= ~PF_KTHREAD;
2230 if (args->kthread)
2231 p->flags |= PF_KTHREAD;
2232 if (args->user_worker) {
2233 /*
2234 * Mark us a user worker, and block any signal that isn't
2235 * fatal or STOP
2236 */
2237 p->flags |= PF_USER_WORKER;
2238 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2239 }
2240 if (args->io_thread)
2241 p->flags |= PF_IO_WORKER;
2242
2243 cpufreq_task_times_init(p);
2244
2245 if (args->name)
2246 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2247
2248 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2249 /*
2250 * Clear TID on mm_release()?
2251 */
2252 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2253
2254 ftrace_graph_init_task(p);
2255
2256 rt_mutex_init_task(p);
2257 raw_spin_lock_init(&p->blocked_lock);
2258
2259 lockdep_assert_irqs_enabled();
2260 #ifdef CONFIG_PROVE_LOCKING
2261 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2262 #endif
2263 retval = copy_creds(p, clone_flags);
2264 if (retval < 0)
2265 goto bad_fork_free;
2266
2267 retval = -EAGAIN;
2268 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2269 if (p->real_cred->user != INIT_USER &&
2270 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2271 goto bad_fork_cleanup_count;
2272 }
2273 current->flags &= ~PF_NPROC_EXCEEDED;
2274
2275 /*
2276 * If multiple threads are within copy_process(), then this check
2277 * triggers too late. This doesn't hurt, the check is only there
2278 * to stop root fork bombs.
2279 */
2280 retval = -EAGAIN;
2281 if (data_race(nr_threads >= max_threads))
2282 goto bad_fork_cleanup_count;
2283
2284 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2285 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2286 p->flags |= PF_FORKNOEXEC;
2287 INIT_LIST_HEAD(&p->children);
2288 INIT_LIST_HEAD(&p->sibling);
2289 rcu_copy_process(p);
2290 p->vfork_done = NULL;
2291 spin_lock_init(&p->alloc_lock);
2292
2293 init_sigpending(&p->pending);
2294
2295 p->utime = p->stime = p->gtime = 0;
2296 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2297 p->utimescaled = p->stimescaled = 0;
2298 #endif
2299 prev_cputime_init(&p->prev_cputime);
2300
2301 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2302 seqcount_init(&p->vtime.seqcount);
2303 p->vtime.starttime = 0;
2304 p->vtime.state = VTIME_INACTIVE;
2305 #endif
2306
2307 #ifdef CONFIG_IO_URING
2308 p->io_uring = NULL;
2309 #endif
2310
2311 p->default_timer_slack_ns = current->timer_slack_ns;
2312
2313 #ifdef CONFIG_PSI
2314 p->psi_flags = 0;
2315 #endif
2316
2317 task_io_accounting_init(&p->ioac);
2318 acct_clear_integrals(p);
2319
2320 posix_cputimers_init(&p->posix_cputimers);
2321 tick_dep_init_task(p);
2322
2323 p->io_context = NULL;
2324 audit_set_context(p, NULL);
2325 cgroup_fork(p);
2326 if (args->kthread) {
2327 if (!set_kthread_struct(p))
2328 goto bad_fork_cleanup_delayacct;
2329 }
2330 #ifdef CONFIG_NUMA
2331 p->mempolicy = mpol_dup(p->mempolicy);
2332 if (IS_ERR(p->mempolicy)) {
2333 retval = PTR_ERR(p->mempolicy);
2334 p->mempolicy = NULL;
2335 goto bad_fork_cleanup_delayacct;
2336 }
2337 #endif
2338 #ifdef CONFIG_CPUSETS
2339 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2340 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2341 #endif
2342 #ifdef CONFIG_TRACE_IRQFLAGS
2343 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2344 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2345 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2346 p->softirqs_enabled = 1;
2347 p->softirq_context = 0;
2348 #endif
2349
2350 p->pagefault_disabled = 0;
2351
2352 #ifdef CONFIG_LOCKDEP
2353 lockdep_init_task(p);
2354 #endif
2355
2356 p->blocked_on_state = BO_RUNNABLE;
2357 p->blocked_on = NULL; /* not blocked yet */
2358 p->blocked_donor = NULL; /* nobody is boosting p yet */
2359 INIT_LIST_HEAD(&p->migration_node);
2360 #ifdef CONFIG_SCHED_PROXY_EXEC
2361 INIT_LIST_HEAD(&p->blocked_head);
2362 INIT_LIST_HEAD(&p->blocked_node);
2363 INIT_LIST_HEAD(&p->blocked_activation_node);
2364 p->sleeping_owner = NULL;
2365 #endif
2366 #ifdef CONFIG_BCACHE
2367 p->sequential_io = 0;
2368 p->sequential_io_avg = 0;
2369 #endif
2370 #ifdef CONFIG_BPF_SYSCALL
2371 RCU_INIT_POINTER(p->bpf_storage, NULL);
2372 p->bpf_ctx = NULL;
2373 #endif
2374
2375 /* Perform scheduler related setup. Assign this task to a CPU. */
2376 retval = sched_fork(clone_flags, p);
2377 if (retval)
2378 goto bad_fork_cleanup_policy;
2379
2380 retval = perf_event_init_task(p, clone_flags);
2381 if (retval)
2382 goto bad_fork_sched_cancel_fork;
2383 retval = audit_alloc(p);
2384 if (retval)
2385 goto bad_fork_cleanup_perf;
2386 /* copy all the process information */
2387 shm_init_task(p);
2388 retval = security_task_alloc(p, clone_flags);
2389 if (retval)
2390 goto bad_fork_cleanup_audit;
2391 retval = copy_semundo(clone_flags, p);
2392 if (retval)
2393 goto bad_fork_cleanup_security;
2394 retval = copy_files(clone_flags, p, args->no_files);
2395 if (retval)
2396 goto bad_fork_cleanup_semundo;
2397 retval = copy_fs(clone_flags, p);
2398 if (retval)
2399 goto bad_fork_cleanup_files;
2400 retval = copy_sighand(clone_flags, p);
2401 if (retval)
2402 goto bad_fork_cleanup_fs;
2403 retval = copy_signal(clone_flags, p);
2404 if (retval)
2405 goto bad_fork_cleanup_sighand;
2406 retval = copy_mm(clone_flags, p);
2407 if (retval)
2408 goto bad_fork_cleanup_signal;
2409 retval = copy_namespaces(clone_flags, p);
2410 if (retval)
2411 goto bad_fork_cleanup_mm;
2412 retval = copy_io(clone_flags, p);
2413 if (retval)
2414 goto bad_fork_cleanup_namespaces;
2415 retval = copy_thread(p, args);
2416 if (retval)
2417 goto bad_fork_cleanup_io;
2418
2419 stackleak_task_init(p);
2420
2421 if (pid != &init_struct_pid) {
2422 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2423 args->set_tid_size);
2424 if (IS_ERR(pid)) {
2425 retval = PTR_ERR(pid);
2426 goto bad_fork_cleanup_thread;
2427 }
2428 }
2429
2430 /*
2431 * This has to happen after we've potentially unshared the file
2432 * descriptor table (so that the pidfd doesn't leak into the child
2433 * if the fd table isn't shared).
2434 */
2435 if (clone_flags & CLONE_PIDFD) {
2436 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2437
2438 /* Note that no task has been attached to @pid yet. */
2439 retval = __pidfd_prepare(pid, flags, &pidfile);
2440 if (retval < 0)
2441 goto bad_fork_free_pid;
2442 pidfd = retval;
2443
2444 retval = put_user(pidfd, args->pidfd);
2445 if (retval)
2446 goto bad_fork_put_pidfd;
2447 }
2448
2449 #ifdef CONFIG_BLOCK
2450 p->plug = NULL;
2451 #endif
2452 futex_init_task(p);
2453
2454 /*
2455 * sigaltstack should be cleared when sharing the same VM
2456 */
2457 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2458 sas_ss_reset(p);
2459
2460 /*
2461 * Syscall tracing and stepping should be turned off in the
2462 * child regardless of CLONE_PTRACE.
2463 */
2464 user_disable_single_step(p);
2465 clear_task_syscall_work(p, SYSCALL_TRACE);
2466 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2467 clear_task_syscall_work(p, SYSCALL_EMU);
2468 #endif
2469 clear_tsk_latency_tracing(p);
2470
2471 /* ok, now we should be set up.. */
2472 p->pid = pid_nr(pid);
2473 if (clone_flags & CLONE_THREAD) {
2474 p->group_leader = current->group_leader;
2475 p->tgid = current->tgid;
2476 } else {
2477 p->group_leader = p;
2478 p->tgid = p->pid;
2479 }
2480
2481 p->nr_dirtied = 0;
2482 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2483 p->dirty_paused_when = 0;
2484
2485 p->pdeath_signal = 0;
2486 p->task_works = NULL;
2487 clear_posix_cputimers_work(p);
2488
2489 #ifdef CONFIG_KRETPROBES
2490 p->kretprobe_instances.first = NULL;
2491 #endif
2492 #ifdef CONFIG_RETHOOK
2493 p->rethooks.first = NULL;
2494 #endif
2495
2496 /*
2497 * Ensure that the cgroup subsystem policies allow the new process to be
2498 * forked. It should be noted that the new process's css_set can be changed
2499 * between here and cgroup_post_fork() if an organisation operation is in
2500 * progress.
2501 */
2502 retval = cgroup_can_fork(p, args);
2503 if (retval)
2504 goto bad_fork_put_pidfd;
2505
2506 /*
2507 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2508 * the new task on the correct runqueue. All this *before* the task
2509 * becomes visible.
2510 *
2511 * This isn't part of ->can_fork() because while the re-cloning is
2512 * cgroup specific, it unconditionally needs to place the task on a
2513 * runqueue.
2514 */
2515 retval = sched_cgroup_fork(p, args);
2516 if (retval)
2517 goto bad_fork_cancel_cgroup;
2518
2519 /*
2520 * From this point on we must avoid any synchronous user-space
2521 * communication until we take the tasklist-lock. In particular, we do
2522 * not want user-space to be able to predict the process start-time by
2523 * stalling fork(2) after we recorded the start_time but before it is
2524 * visible to the system.
2525 */
2526
2527 p->start_time = ktime_get_ns();
2528 p->start_boottime = ktime_get_boottime_ns();
2529
2530 /*
2531 * Make it visible to the rest of the system, but dont wake it up yet.
2532 * Need tasklist lock for parent etc handling!
2533 */
2534 write_lock_irq(&tasklist_lock);
2535
2536 /* CLONE_PARENT re-uses the old parent */
2537 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2538 p->real_parent = current->real_parent;
2539 p->parent_exec_id = current->parent_exec_id;
2540 if (clone_flags & CLONE_THREAD)
2541 p->exit_signal = -1;
2542 else
2543 p->exit_signal = current->group_leader->exit_signal;
2544 } else {
2545 p->real_parent = current;
2546 p->parent_exec_id = current->self_exec_id;
2547 p->exit_signal = args->exit_signal;
2548 }
2549
2550 klp_copy_process(p);
2551
2552 sched_core_fork(p);
2553
2554 spin_lock(¤t->sighand->siglock);
2555
2556 rv_task_fork(p);
2557
2558 rseq_fork(p, clone_flags);
2559
2560 /* Don't start children in a dying pid namespace */
2561 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2562 retval = -ENOMEM;
2563 goto bad_fork_core_free;
2564 }
2565
2566 /* Let kill terminate clone/fork in the middle */
2567 if (fatal_signal_pending(current)) {
2568 retval = -EINTR;
2569 goto bad_fork_core_free;
2570 }
2571
2572 /* No more failure paths after this point. */
2573
2574 /*
2575 * Copy seccomp details explicitly here, in case they were changed
2576 * before holding sighand lock.
2577 */
2578 copy_seccomp(p);
2579
2580 init_task_pid_links(p);
2581 if (likely(p->pid)) {
2582 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2583
2584 init_task_pid(p, PIDTYPE_PID, pid);
2585 if (thread_group_leader(p)) {
2586 init_task_pid(p, PIDTYPE_TGID, pid);
2587 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2588 init_task_pid(p, PIDTYPE_SID, task_session(current));
2589
2590 if (is_child_reaper(pid)) {
2591 ns_of_pid(pid)->child_reaper = p;
2592 p->signal->flags |= SIGNAL_UNKILLABLE;
2593 }
2594 p->signal->shared_pending.signal = delayed.signal;
2595 p->signal->tty = tty_kref_get(current->signal->tty);
2596 /*
2597 * Inherit has_child_subreaper flag under the same
2598 * tasklist_lock with adding child to the process tree
2599 * for propagate_has_child_subreaper optimization.
2600 */
2601 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2602 p->real_parent->signal->is_child_subreaper;
2603 list_add_tail(&p->sibling, &p->real_parent->children);
2604 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2605 attach_pid(p, PIDTYPE_TGID);
2606 attach_pid(p, PIDTYPE_PGID);
2607 attach_pid(p, PIDTYPE_SID);
2608 __this_cpu_inc(process_counts);
2609 } else {
2610 current->signal->nr_threads++;
2611 current->signal->quick_threads++;
2612 atomic_inc(¤t->signal->live);
2613 refcount_inc(¤t->signal->sigcnt);
2614 task_join_group_stop(p);
2615 list_add_tail_rcu(&p->thread_node,
2616 &p->signal->thread_head);
2617 }
2618 attach_pid(p, PIDTYPE_PID);
2619 nr_threads++;
2620 }
2621 trace_android_vh_copy_process(current, nr_threads);
2622 total_forks++;
2623 hlist_del_init(&delayed.node);
2624 spin_unlock(¤t->sighand->siglock);
2625 syscall_tracepoint_update(p);
2626 write_unlock_irq(&tasklist_lock);
2627
2628 if (pidfile)
2629 fd_install(pidfd, pidfile);
2630
2631 proc_fork_connector(p);
2632 sched_post_fork(p);
2633 cgroup_post_fork(p, args);
2634 perf_event_fork(p);
2635
2636 trace_task_newtask(p, clone_flags);
2637 uprobe_copy_process(p, clone_flags);
2638 user_events_fork(p, clone_flags);
2639
2640 copy_oom_score_adj(clone_flags, p);
2641
2642 return p;
2643
2644 bad_fork_core_free:
2645 sched_core_free(p);
2646 spin_unlock(¤t->sighand->siglock);
2647 write_unlock_irq(&tasklist_lock);
2648 bad_fork_cancel_cgroup:
2649 cgroup_cancel_fork(p, args);
2650 bad_fork_put_pidfd:
2651 if (clone_flags & CLONE_PIDFD) {
2652 fput(pidfile);
2653 put_unused_fd(pidfd);
2654 }
2655 bad_fork_free_pid:
2656 if (pid != &init_struct_pid)
2657 free_pid(pid);
2658 bad_fork_cleanup_thread:
2659 exit_thread(p);
2660 bad_fork_cleanup_io:
2661 if (p->io_context)
2662 exit_io_context(p);
2663 bad_fork_cleanup_namespaces:
2664 exit_task_namespaces(p);
2665 bad_fork_cleanup_mm:
2666 if (p->mm) {
2667 mm_clear_owner(p->mm, p);
2668 mmput(p->mm);
2669 }
2670 bad_fork_cleanup_signal:
2671 if (!(clone_flags & CLONE_THREAD))
2672 free_signal_struct(p->signal);
2673 bad_fork_cleanup_sighand:
2674 __cleanup_sighand(p->sighand);
2675 bad_fork_cleanup_fs:
2676 exit_fs(p); /* blocking */
2677 bad_fork_cleanup_files:
2678 exit_files(p); /* blocking */
2679 bad_fork_cleanup_semundo:
2680 exit_sem(p);
2681 bad_fork_cleanup_security:
2682 security_task_free(p);
2683 bad_fork_cleanup_audit:
2684 audit_free(p);
2685 bad_fork_cleanup_perf:
2686 perf_event_free_task(p);
2687 bad_fork_sched_cancel_fork:
2688 sched_cancel_fork(p);
2689 bad_fork_cleanup_policy:
2690 lockdep_free_task(p);
2691 #ifdef CONFIG_NUMA
2692 mpol_put(p->mempolicy);
2693 #endif
2694 bad_fork_cleanup_delayacct:
2695 delayacct_tsk_free(p);
2696 bad_fork_cleanup_count:
2697 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2698 exit_creds(p);
2699 bad_fork_free:
2700 WRITE_ONCE(p->__state, TASK_DEAD);
2701 exit_task_stack_account(p);
2702 put_task_stack(p);
2703 delayed_free_task(p);
2704 fork_out:
2705 spin_lock_irq(¤t->sighand->siglock);
2706 hlist_del_init(&delayed.node);
2707 spin_unlock_irq(¤t->sighand->siglock);
2708 return ERR_PTR(retval);
2709 }
2710
init_idle_pids(struct task_struct * idle)2711 static inline void init_idle_pids(struct task_struct *idle)
2712 {
2713 enum pid_type type;
2714
2715 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2716 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2717 init_task_pid(idle, type, &init_struct_pid);
2718 }
2719 }
2720
idle_dummy(void * dummy)2721 static int idle_dummy(void *dummy)
2722 {
2723 /* This function is never called */
2724 return 0;
2725 }
2726
fork_idle(int cpu)2727 struct task_struct * __init fork_idle(int cpu)
2728 {
2729 struct task_struct *task;
2730 struct kernel_clone_args args = {
2731 .flags = CLONE_VM,
2732 .fn = &idle_dummy,
2733 .fn_arg = NULL,
2734 .kthread = 1,
2735 .idle = 1,
2736 };
2737
2738 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2739 if (!IS_ERR(task)) {
2740 init_idle_pids(task);
2741 init_idle(task, cpu);
2742 }
2743
2744 return task;
2745 }
2746
2747 /*
2748 * This is like kernel_clone(), but shaved down and tailored to just
2749 * creating io_uring workers. It returns a created task, or an error pointer.
2750 * The returned task is inactive, and the caller must fire it up through
2751 * wake_up_new_task(p). All signals are blocked in the created task.
2752 */
create_io_thread(int (* fn)(void *),void * arg,int node)2753 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2754 {
2755 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2756 CLONE_IO;
2757 struct kernel_clone_args args = {
2758 .flags = ((lower_32_bits(flags) | CLONE_VM |
2759 CLONE_UNTRACED) & ~CSIGNAL),
2760 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2761 .fn = fn,
2762 .fn_arg = arg,
2763 .io_thread = 1,
2764 .user_worker = 1,
2765 };
2766
2767 return copy_process(NULL, 0, node, &args);
2768 }
2769
2770 /*
2771 * Ok, this is the main fork-routine.
2772 *
2773 * It copies the process, and if successful kick-starts
2774 * it and waits for it to finish using the VM if required.
2775 *
2776 * args->exit_signal is expected to be checked for sanity by the caller.
2777 */
kernel_clone(struct kernel_clone_args * args)2778 pid_t kernel_clone(struct kernel_clone_args *args)
2779 {
2780 u64 clone_flags = args->flags;
2781 struct completion vfork;
2782 struct pid *pid;
2783 struct task_struct *p;
2784 int trace = 0;
2785 pid_t nr;
2786
2787 /*
2788 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2789 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2790 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2791 * field in struct clone_args and it still doesn't make sense to have
2792 * them both point at the same memory location. Performing this check
2793 * here has the advantage that we don't need to have a separate helper
2794 * to check for legacy clone().
2795 */
2796 if ((clone_flags & CLONE_PIDFD) &&
2797 (clone_flags & CLONE_PARENT_SETTID) &&
2798 (args->pidfd == args->parent_tid))
2799 return -EINVAL;
2800
2801 /*
2802 * Determine whether and which event to report to ptracer. When
2803 * called from kernel_thread or CLONE_UNTRACED is explicitly
2804 * requested, no event is reported; otherwise, report if the event
2805 * for the type of forking is enabled.
2806 */
2807 if (!(clone_flags & CLONE_UNTRACED)) {
2808 if (clone_flags & CLONE_VFORK)
2809 trace = PTRACE_EVENT_VFORK;
2810 else if (args->exit_signal != SIGCHLD)
2811 trace = PTRACE_EVENT_CLONE;
2812 else
2813 trace = PTRACE_EVENT_FORK;
2814
2815 if (likely(!ptrace_event_enabled(current, trace)))
2816 trace = 0;
2817 }
2818
2819 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2820 add_latent_entropy();
2821
2822 if (IS_ERR(p))
2823 return PTR_ERR(p);
2824
2825 cpufreq_task_times_alloc(p);
2826
2827 /*
2828 * Do this prior waking up the new thread - the thread pointer
2829 * might get invalid after that point, if the thread exits quickly.
2830 */
2831 trace_sched_process_fork(current, p);
2832
2833 pid = get_task_pid(p, PIDTYPE_PID);
2834 nr = pid_vnr(pid);
2835
2836 if (clone_flags & CLONE_PARENT_SETTID)
2837 put_user(nr, args->parent_tid);
2838
2839 if (clone_flags & CLONE_VFORK) {
2840 p->vfork_done = &vfork;
2841 init_completion(&vfork);
2842 get_task_struct(p);
2843 }
2844
2845 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2846 /* lock the task to synchronize with memcg migration */
2847 task_lock(p);
2848 lru_gen_add_mm(p->mm);
2849 task_unlock(p);
2850 }
2851
2852 wake_up_new_task(p);
2853
2854 /* forking complete and child started to run, tell ptracer */
2855 if (unlikely(trace))
2856 ptrace_event_pid(trace, pid);
2857
2858 if (clone_flags & CLONE_VFORK) {
2859 if (!wait_for_vfork_done(p, &vfork))
2860 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2861 }
2862
2863 put_pid(pid);
2864 return nr;
2865 }
2866
2867 /*
2868 * Create a kernel thread.
2869 */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2870 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2871 unsigned long flags)
2872 {
2873 struct kernel_clone_args args = {
2874 .flags = ((lower_32_bits(flags) | CLONE_VM |
2875 CLONE_UNTRACED) & ~CSIGNAL),
2876 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2877 .fn = fn,
2878 .fn_arg = arg,
2879 .name = name,
2880 .kthread = 1,
2881 };
2882
2883 return kernel_clone(&args);
2884 }
2885
2886 /*
2887 * Create a user mode thread.
2888 */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2889 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2890 {
2891 struct kernel_clone_args args = {
2892 .flags = ((lower_32_bits(flags) | CLONE_VM |
2893 CLONE_UNTRACED) & ~CSIGNAL),
2894 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2895 .fn = fn,
2896 .fn_arg = arg,
2897 };
2898
2899 return kernel_clone(&args);
2900 }
2901
2902 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2903 SYSCALL_DEFINE0(fork)
2904 {
2905 #ifdef CONFIG_MMU
2906 struct kernel_clone_args args = {
2907 .exit_signal = SIGCHLD,
2908 };
2909
2910 return kernel_clone(&args);
2911 #else
2912 /* can not support in nommu mode */
2913 return -EINVAL;
2914 #endif
2915 }
2916 #endif
2917
2918 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2919 SYSCALL_DEFINE0(vfork)
2920 {
2921 struct kernel_clone_args args = {
2922 .flags = CLONE_VFORK | CLONE_VM,
2923 .exit_signal = SIGCHLD,
2924 };
2925
2926 return kernel_clone(&args);
2927 }
2928 #endif
2929
2930 #ifdef __ARCH_WANT_SYS_CLONE
2931 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2932 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2933 int __user *, parent_tidptr,
2934 unsigned long, tls,
2935 int __user *, child_tidptr)
2936 #elif defined(CONFIG_CLONE_BACKWARDS2)
2937 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2938 int __user *, parent_tidptr,
2939 int __user *, child_tidptr,
2940 unsigned long, tls)
2941 #elif defined(CONFIG_CLONE_BACKWARDS3)
2942 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2943 int, stack_size,
2944 int __user *, parent_tidptr,
2945 int __user *, child_tidptr,
2946 unsigned long, tls)
2947 #else
2948 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2949 int __user *, parent_tidptr,
2950 int __user *, child_tidptr,
2951 unsigned long, tls)
2952 #endif
2953 {
2954 struct kernel_clone_args args = {
2955 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2956 .pidfd = parent_tidptr,
2957 .child_tid = child_tidptr,
2958 .parent_tid = parent_tidptr,
2959 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2960 .stack = newsp,
2961 .tls = tls,
2962 };
2963
2964 return kernel_clone(&args);
2965 }
2966 #endif
2967
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2968 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2969 struct clone_args __user *uargs,
2970 size_t usize)
2971 {
2972 int err;
2973 struct clone_args args;
2974 pid_t *kset_tid = kargs->set_tid;
2975
2976 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2977 CLONE_ARGS_SIZE_VER0);
2978 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2979 CLONE_ARGS_SIZE_VER1);
2980 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2981 CLONE_ARGS_SIZE_VER2);
2982 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2983
2984 if (unlikely(usize > PAGE_SIZE))
2985 return -E2BIG;
2986 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2987 return -EINVAL;
2988
2989 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2990 if (err)
2991 return err;
2992
2993 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2994 return -EINVAL;
2995
2996 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2997 return -EINVAL;
2998
2999 if (unlikely(args.set_tid && args.set_tid_size == 0))
3000 return -EINVAL;
3001
3002 /*
3003 * Verify that higher 32bits of exit_signal are unset and that
3004 * it is a valid signal
3005 */
3006 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3007 !valid_signal(args.exit_signal)))
3008 return -EINVAL;
3009
3010 if ((args.flags & CLONE_INTO_CGROUP) &&
3011 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3012 return -EINVAL;
3013
3014 *kargs = (struct kernel_clone_args){
3015 .flags = args.flags,
3016 .pidfd = u64_to_user_ptr(args.pidfd),
3017 .child_tid = u64_to_user_ptr(args.child_tid),
3018 .parent_tid = u64_to_user_ptr(args.parent_tid),
3019 .exit_signal = args.exit_signal,
3020 .stack = args.stack,
3021 .stack_size = args.stack_size,
3022 .tls = args.tls,
3023 .set_tid_size = args.set_tid_size,
3024 .cgroup = args.cgroup,
3025 };
3026
3027 if (args.set_tid &&
3028 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3029 (kargs->set_tid_size * sizeof(pid_t))))
3030 return -EFAULT;
3031
3032 kargs->set_tid = kset_tid;
3033
3034 return 0;
3035 }
3036
3037 /**
3038 * clone3_stack_valid - check and prepare stack
3039 * @kargs: kernel clone args
3040 *
3041 * Verify that the stack arguments userspace gave us are sane.
3042 * In addition, set the stack direction for userspace since it's easy for us to
3043 * determine.
3044 */
clone3_stack_valid(struct kernel_clone_args * kargs)3045 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3046 {
3047 if (kargs->stack == 0) {
3048 if (kargs->stack_size > 0)
3049 return false;
3050 } else {
3051 if (kargs->stack_size == 0)
3052 return false;
3053
3054 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3055 return false;
3056
3057 #if !defined(CONFIG_STACK_GROWSUP)
3058 kargs->stack += kargs->stack_size;
3059 #endif
3060 }
3061
3062 return true;
3063 }
3064
clone3_args_valid(struct kernel_clone_args * kargs)3065 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3066 {
3067 /* Verify that no unknown flags are passed along. */
3068 if (kargs->flags &
3069 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3070 return false;
3071
3072 /*
3073 * - make the CLONE_DETACHED bit reusable for clone3
3074 * - make the CSIGNAL bits reusable for clone3
3075 */
3076 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3077 return false;
3078
3079 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3080 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3081 return false;
3082
3083 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3084 kargs->exit_signal)
3085 return false;
3086
3087 if (!clone3_stack_valid(kargs))
3088 return false;
3089
3090 return true;
3091 }
3092
3093 /**
3094 * sys_clone3 - create a new process with specific properties
3095 * @uargs: argument structure
3096 * @size: size of @uargs
3097 *
3098 * clone3() is the extensible successor to clone()/clone2().
3099 * It takes a struct as argument that is versioned by its size.
3100 *
3101 * Return: On success, a positive PID for the child process.
3102 * On error, a negative errno number.
3103 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)3104 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3105 {
3106 int err;
3107
3108 struct kernel_clone_args kargs;
3109 pid_t set_tid[MAX_PID_NS_LEVEL];
3110
3111 #ifdef __ARCH_BROKEN_SYS_CLONE3
3112 #warning clone3() entry point is missing, please fix
3113 return -ENOSYS;
3114 #endif
3115
3116 kargs.set_tid = set_tid;
3117
3118 err = copy_clone_args_from_user(&kargs, uargs, size);
3119 if (err)
3120 return err;
3121
3122 if (!clone3_args_valid(&kargs))
3123 return -EINVAL;
3124
3125 return kernel_clone(&kargs);
3126 }
3127
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)3128 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3129 {
3130 struct task_struct *leader, *parent, *child;
3131 int res;
3132
3133 read_lock(&tasklist_lock);
3134 leader = top = top->group_leader;
3135 down:
3136 for_each_thread(leader, parent) {
3137 list_for_each_entry(child, &parent->children, sibling) {
3138 res = visitor(child, data);
3139 if (res) {
3140 if (res < 0)
3141 goto out;
3142 leader = child;
3143 goto down;
3144 }
3145 up:
3146 ;
3147 }
3148 }
3149
3150 if (leader != top) {
3151 child = leader;
3152 parent = child->real_parent;
3153 leader = parent->group_leader;
3154 goto up;
3155 }
3156 out:
3157 read_unlock(&tasklist_lock);
3158 }
3159
3160 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3161 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3162 #endif
3163
sighand_ctor(void * data)3164 static void sighand_ctor(void *data)
3165 {
3166 struct sighand_struct *sighand = data;
3167
3168 spin_lock_init(&sighand->siglock);
3169 init_waitqueue_head(&sighand->signalfd_wqh);
3170 }
3171
mm_cache_init(void)3172 void __init mm_cache_init(void)
3173 {
3174 unsigned int mm_size;
3175
3176 /*
3177 * The mm_cpumask is located at the end of mm_struct, and is
3178 * dynamically sized based on the maximum CPU number this system
3179 * can have, taking hotplug into account (nr_cpu_ids).
3180 */
3181 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3182
3183 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3184 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3185 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3186 offsetof(struct mm_struct, saved_auxv),
3187 sizeof_field(struct mm_struct, saved_auxv),
3188 NULL);
3189 }
3190
proc_caches_init(void)3191 void __init proc_caches_init(void)
3192 {
3193 struct kmem_cache_args args = {
3194 .use_freeptr_offset = true,
3195 .freeptr_offset = offsetof(struct vm_area_struct, vm_freeptr),
3196 };
3197
3198 sighand_cachep = kmem_cache_create("sighand_cache",
3199 sizeof(struct sighand_struct), 0,
3200 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3201 SLAB_ACCOUNT, sighand_ctor);
3202 signal_cachep = kmem_cache_create("signal_cache",
3203 sizeof(struct signal_struct), 0,
3204 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3205 NULL);
3206 files_cachep = kmem_cache_create("files_cache",
3207 sizeof(struct files_struct), 0,
3208 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3209 NULL);
3210 fs_cachep = kmem_cache_create("fs_cache",
3211 sizeof(struct fs_struct), 0,
3212 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3213 NULL);
3214 vm_area_cachep = kmem_cache_create("vm_area_struct",
3215 sizeof(struct vm_area_struct), &args,
3216 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3217 SLAB_ACCOUNT);
3218 mmap_init();
3219 nsproxy_cache_init();
3220 }
3221
3222 /*
3223 * Check constraints on flags passed to the unshare system call.
3224 */
check_unshare_flags(unsigned long unshare_flags)3225 static int check_unshare_flags(unsigned long unshare_flags)
3226 {
3227 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3228 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3229 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3230 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3231 CLONE_NEWTIME))
3232 return -EINVAL;
3233 /*
3234 * Not implemented, but pretend it works if there is nothing
3235 * to unshare. Note that unsharing the address space or the
3236 * signal handlers also need to unshare the signal queues (aka
3237 * CLONE_THREAD).
3238 */
3239 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3240 if (!thread_group_empty(current))
3241 return -EINVAL;
3242 }
3243 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3244 if (refcount_read(¤t->sighand->count) > 1)
3245 return -EINVAL;
3246 }
3247 if (unshare_flags & CLONE_VM) {
3248 if (!current_is_single_threaded())
3249 return -EINVAL;
3250 }
3251
3252 return 0;
3253 }
3254
3255 /*
3256 * Unshare the filesystem structure if it is being shared
3257 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3258 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3259 {
3260 struct fs_struct *fs = current->fs;
3261
3262 if (!(unshare_flags & CLONE_FS) || !fs)
3263 return 0;
3264
3265 /* don't need lock here; in the worst case we'll do useless copy */
3266 if (fs->users == 1)
3267 return 0;
3268
3269 *new_fsp = copy_fs_struct(fs);
3270 if (!*new_fsp)
3271 return -ENOMEM;
3272
3273 return 0;
3274 }
3275
3276 /*
3277 * Unshare file descriptor table if it is being shared
3278 */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3279 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3280 {
3281 struct files_struct *fd = current->files;
3282
3283 if ((unshare_flags & CLONE_FILES) &&
3284 (fd && atomic_read(&fd->count) > 1)) {
3285 fd = dup_fd(fd, NULL);
3286 if (IS_ERR(fd))
3287 return PTR_ERR(fd);
3288 *new_fdp = fd;
3289 }
3290
3291 return 0;
3292 }
3293
3294 /*
3295 * unshare allows a process to 'unshare' part of the process
3296 * context which was originally shared using clone. copy_*
3297 * functions used by kernel_clone() cannot be used here directly
3298 * because they modify an inactive task_struct that is being
3299 * constructed. Here we are modifying the current, active,
3300 * task_struct.
3301 */
ksys_unshare(unsigned long unshare_flags)3302 int ksys_unshare(unsigned long unshare_flags)
3303 {
3304 struct fs_struct *fs, *new_fs = NULL;
3305 struct files_struct *new_fd = NULL;
3306 struct cred *new_cred = NULL;
3307 struct nsproxy *new_nsproxy = NULL;
3308 int do_sysvsem = 0;
3309 int err;
3310
3311 /*
3312 * If unsharing a user namespace must also unshare the thread group
3313 * and unshare the filesystem root and working directories.
3314 */
3315 if (unshare_flags & CLONE_NEWUSER)
3316 unshare_flags |= CLONE_THREAD | CLONE_FS;
3317 /*
3318 * If unsharing vm, must also unshare signal handlers.
3319 */
3320 if (unshare_flags & CLONE_VM)
3321 unshare_flags |= CLONE_SIGHAND;
3322 /*
3323 * If unsharing a signal handlers, must also unshare the signal queues.
3324 */
3325 if (unshare_flags & CLONE_SIGHAND)
3326 unshare_flags |= CLONE_THREAD;
3327 /*
3328 * If unsharing namespace, must also unshare filesystem information.
3329 */
3330 if (unshare_flags & CLONE_NEWNS)
3331 unshare_flags |= CLONE_FS;
3332
3333 err = check_unshare_flags(unshare_flags);
3334 if (err)
3335 goto bad_unshare_out;
3336 /*
3337 * CLONE_NEWIPC must also detach from the undolist: after switching
3338 * to a new ipc namespace, the semaphore arrays from the old
3339 * namespace are unreachable.
3340 */
3341 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3342 do_sysvsem = 1;
3343 err = unshare_fs(unshare_flags, &new_fs);
3344 if (err)
3345 goto bad_unshare_out;
3346 err = unshare_fd(unshare_flags, &new_fd);
3347 if (err)
3348 goto bad_unshare_cleanup_fs;
3349 err = unshare_userns(unshare_flags, &new_cred);
3350 if (err)
3351 goto bad_unshare_cleanup_fd;
3352 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3353 new_cred, new_fs);
3354 if (err)
3355 goto bad_unshare_cleanup_cred;
3356
3357 if (new_cred) {
3358 err = set_cred_ucounts(new_cred);
3359 if (err)
3360 goto bad_unshare_cleanup_cred;
3361 }
3362
3363 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3364 if (do_sysvsem) {
3365 /*
3366 * CLONE_SYSVSEM is equivalent to sys_exit().
3367 */
3368 exit_sem(current);
3369 }
3370 if (unshare_flags & CLONE_NEWIPC) {
3371 /* Orphan segments in old ns (see sem above). */
3372 exit_shm(current);
3373 shm_init_task(current);
3374 }
3375
3376 if (new_nsproxy)
3377 switch_task_namespaces(current, new_nsproxy);
3378
3379 task_lock(current);
3380
3381 if (new_fs) {
3382 fs = current->fs;
3383 spin_lock(&fs->lock);
3384 current->fs = new_fs;
3385 if (--fs->users)
3386 new_fs = NULL;
3387 else
3388 new_fs = fs;
3389 spin_unlock(&fs->lock);
3390 }
3391
3392 if (new_fd)
3393 swap(current->files, new_fd);
3394
3395 task_unlock(current);
3396
3397 if (new_cred) {
3398 /* Install the new user namespace */
3399 commit_creds(new_cred);
3400 new_cred = NULL;
3401 }
3402 }
3403
3404 perf_event_namespaces(current);
3405
3406 bad_unshare_cleanup_cred:
3407 if (new_cred)
3408 put_cred(new_cred);
3409 bad_unshare_cleanup_fd:
3410 if (new_fd)
3411 put_files_struct(new_fd);
3412
3413 bad_unshare_cleanup_fs:
3414 if (new_fs)
3415 free_fs_struct(new_fs);
3416
3417 bad_unshare_out:
3418 return err;
3419 }
3420
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3421 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3422 {
3423 return ksys_unshare(unshare_flags);
3424 }
3425
3426 /*
3427 * Helper to unshare the files of the current task.
3428 * We don't want to expose copy_files internals to
3429 * the exec layer of the kernel.
3430 */
3431
unshare_files(void)3432 int unshare_files(void)
3433 {
3434 struct task_struct *task = current;
3435 struct files_struct *old, *copy = NULL;
3436 int error;
3437
3438 error = unshare_fd(CLONE_FILES, ©);
3439 if (error || !copy)
3440 return error;
3441
3442 old = task->files;
3443 task_lock(task);
3444 task->files = copy;
3445 task_unlock(task);
3446 put_files_struct(old);
3447 return 0;
3448 }
3449
sysctl_max_threads(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3450 int sysctl_max_threads(const struct ctl_table *table, int write,
3451 void *buffer, size_t *lenp, loff_t *ppos)
3452 {
3453 struct ctl_table t;
3454 int ret;
3455 int threads = max_threads;
3456 int min = 1;
3457 int max = MAX_THREADS;
3458
3459 t = *table;
3460 t.data = &threads;
3461 t.extra1 = &min;
3462 t.extra2 = &max;
3463
3464 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3465 if (ret || !write)
3466 return ret;
3467
3468 max_threads = threads;
3469
3470 return 0;
3471 }
3472