• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1994  Linus Torvalds
4  *
5  *  Cyrix stuff, June 1998 by:
6  *	- Rafael R. Reilova (moved everything from head.S),
7  *        <rreilova@ececs.uc.edu>
8  *	- Channing Corn (tests & fixes),
9  *	- Andrew D. Balsa (code cleanup).
10  */
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/nospec.h>
15 #include <linux/prctl.h>
16 #include <linux/sched/smt.h>
17 #include <linux/pgtable.h>
18 #include <linux/bpf.h>
19 
20 #include <asm/spec-ctrl.h>
21 #include <asm/cmdline.h>
22 #include <asm/bugs.h>
23 #include <asm/processor.h>
24 #include <asm/processor-flags.h>
25 #include <asm/fpu/api.h>
26 #include <asm/msr.h>
27 #include <asm/vmx.h>
28 #include <asm/paravirt.h>
29 #include <asm/cpu_device_id.h>
30 #include <asm/e820/api.h>
31 #include <asm/hypervisor.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cpu.h>
34 
35 #include "cpu.h"
36 
37 static void __init spectre_v1_select_mitigation(void);
38 static void __init spectre_v2_select_mitigation(void);
39 static void __init retbleed_select_mitigation(void);
40 static void __init spectre_v2_user_select_mitigation(void);
41 static void __init ssb_select_mitigation(void);
42 static void __init l1tf_select_mitigation(void);
43 static void __init mds_select_mitigation(void);
44 static void __init md_clear_update_mitigation(void);
45 static void __init md_clear_select_mitigation(void);
46 static void __init taa_select_mitigation(void);
47 static void __init mmio_select_mitigation(void);
48 static void __init srbds_select_mitigation(void);
49 static void __init l1d_flush_select_mitigation(void);
50 static void __init srso_select_mitigation(void);
51 static void __init gds_select_mitigation(void);
52 static void __init its_select_mitigation(void);
53 static void __init tsa_select_mitigation(void);
54 static void __init vmscape_select_mitigation(void);
55 
56 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
57 u64 x86_spec_ctrl_base;
58 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
59 
60 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
61 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
62 EXPORT_PER_CPU_SYMBOL_GPL(x86_spec_ctrl_current);
63 
64 /*
65  * Set when the CPU has run a potentially malicious guest. An IBPB will
66  * be needed to before running userspace. That IBPB will flush the branch
67  * predictor content.
68  */
69 DEFINE_PER_CPU(bool, x86_ibpb_exit_to_user);
70 EXPORT_PER_CPU_SYMBOL_GPL(x86_ibpb_exit_to_user);
71 
72 u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
73 EXPORT_SYMBOL_GPL(x86_pred_cmd);
74 
75 static u64 __ro_after_init x86_arch_cap_msr;
76 
77 static DEFINE_MUTEX(spec_ctrl_mutex);
78 
79 void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
80 
set_return_thunk(void * thunk)81 static void __init set_return_thunk(void *thunk)
82 {
83 	x86_return_thunk = thunk;
84 
85 	pr_info("active return thunk: %ps\n", thunk);
86 }
87 
88 /* Update SPEC_CTRL MSR and its cached copy unconditionally */
update_spec_ctrl(u64 val)89 static void update_spec_ctrl(u64 val)
90 {
91 	this_cpu_write(x86_spec_ctrl_current, val);
92 	wrmsrl(MSR_IA32_SPEC_CTRL, val);
93 }
94 
95 /*
96  * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
97  * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
98  */
update_spec_ctrl_cond(u64 val)99 void update_spec_ctrl_cond(u64 val)
100 {
101 	if (this_cpu_read(x86_spec_ctrl_current) == val)
102 		return;
103 
104 	this_cpu_write(x86_spec_ctrl_current, val);
105 
106 	/*
107 	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
108 	 * forced the update can be delayed until that time.
109 	 */
110 	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
111 		wrmsrl(MSR_IA32_SPEC_CTRL, val);
112 }
113 
spec_ctrl_current(void)114 noinstr u64 spec_ctrl_current(void)
115 {
116 	return this_cpu_read(x86_spec_ctrl_current);
117 }
118 EXPORT_SYMBOL_GPL(spec_ctrl_current);
119 
120 /*
121  * AMD specific MSR info for Speculative Store Bypass control.
122  * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
123  */
124 u64 __ro_after_init x86_amd_ls_cfg_base;
125 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
126 
127 /* Control conditional STIBP in switch_to() */
128 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
129 /* Control conditional IBPB in switch_mm() */
130 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
131 /* Control unconditional IBPB in switch_mm() */
132 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
133 
134 /* Control CPU buffer clear before idling (halt, mwait) */
135 DEFINE_STATIC_KEY_FALSE(cpu_buf_idle_clear);
136 EXPORT_SYMBOL_GPL(cpu_buf_idle_clear);
137 
138 /*
139  * Controls whether l1d flush based mitigations are enabled,
140  * based on hw features and admin setting via boot parameter
141  * defaults to false
142  */
143 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
144 
145 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
146 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
147 EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
148 
cpu_select_mitigations(void)149 void __init cpu_select_mitigations(void)
150 {
151 	/*
152 	 * Read the SPEC_CTRL MSR to account for reserved bits which may
153 	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
154 	 * init code as it is not enumerated and depends on the family.
155 	 */
156 	if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
157 		rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
158 
159 		/*
160 		 * Previously running kernel (kexec), may have some controls
161 		 * turned ON. Clear them and let the mitigations setup below
162 		 * rediscover them based on configuration.
163 		 */
164 		x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
165 	}
166 
167 	x86_arch_cap_msr = x86_read_arch_cap_msr();
168 
169 	/* Select the proper CPU mitigations before patching alternatives: */
170 	spectre_v1_select_mitigation();
171 	spectre_v2_select_mitigation();
172 	/*
173 	 * retbleed_select_mitigation() relies on the state set by
174 	 * spectre_v2_select_mitigation(); specifically it wants to know about
175 	 * spectre_v2=ibrs.
176 	 */
177 	retbleed_select_mitigation();
178 	/*
179 	 * spectre_v2_user_select_mitigation() relies on the state set by
180 	 * retbleed_select_mitigation(); specifically the STIBP selection is
181 	 * forced for UNRET or IBPB.
182 	 */
183 	spectre_v2_user_select_mitigation();
184 	ssb_select_mitigation();
185 	l1tf_select_mitigation();
186 	md_clear_select_mitigation();
187 	srbds_select_mitigation();
188 	l1d_flush_select_mitigation();
189 
190 	/*
191 	 * srso_select_mitigation() depends and must run after
192 	 * retbleed_select_mitigation().
193 	 */
194 	srso_select_mitigation();
195 	gds_select_mitigation();
196 	its_select_mitigation();
197 	tsa_select_mitigation();
198 	vmscape_select_mitigation();
199 }
200 
201 /*
202  * NOTE: This function is *only* called for SVM, since Intel uses
203  * MSR_IA32_SPEC_CTRL for SSBD.
204  */
205 void
x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl,bool setguest)206 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
207 {
208 	u64 guestval, hostval;
209 	struct thread_info *ti = current_thread_info();
210 
211 	/*
212 	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
213 	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
214 	 */
215 	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
216 	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
217 		return;
218 
219 	/*
220 	 * If the host has SSBD mitigation enabled, force it in the host's
221 	 * virtual MSR value. If its not permanently enabled, evaluate
222 	 * current's TIF_SSBD thread flag.
223 	 */
224 	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
225 		hostval = SPEC_CTRL_SSBD;
226 	else
227 		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
228 
229 	/* Sanitize the guest value */
230 	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
231 
232 	if (hostval != guestval) {
233 		unsigned long tif;
234 
235 		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
236 				 ssbd_spec_ctrl_to_tif(hostval);
237 
238 		speculation_ctrl_update(tif);
239 	}
240 }
241 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
242 
x86_amd_ssb_disable(void)243 static void x86_amd_ssb_disable(void)
244 {
245 	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
246 
247 	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
248 		wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
249 	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
250 		wrmsrl(MSR_AMD64_LS_CFG, msrval);
251 }
252 
253 #undef pr_fmt
254 #define pr_fmt(fmt)	"MDS: " fmt
255 
256 /* Default mitigation for MDS-affected CPUs */
257 static enum mds_mitigations mds_mitigation __ro_after_init =
258 	IS_ENABLED(CONFIG_MITIGATION_MDS) ? MDS_MITIGATION_FULL : MDS_MITIGATION_OFF;
259 static bool mds_nosmt __ro_after_init = false;
260 
261 static const char * const mds_strings[] = {
262 	[MDS_MITIGATION_OFF]	= "Vulnerable",
263 	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
264 	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
265 };
266 
mds_select_mitigation(void)267 static void __init mds_select_mitigation(void)
268 {
269 	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
270 		mds_mitigation = MDS_MITIGATION_OFF;
271 		return;
272 	}
273 
274 	if (mds_mitigation == MDS_MITIGATION_FULL) {
275 		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
276 			mds_mitigation = MDS_MITIGATION_VMWERV;
277 
278 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
279 
280 		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
281 		    (mds_nosmt || cpu_mitigations_auto_nosmt()))
282 			cpu_smt_disable(false);
283 	}
284 }
285 
mds_cmdline(char * str)286 static int __init mds_cmdline(char *str)
287 {
288 	if (!boot_cpu_has_bug(X86_BUG_MDS))
289 		return 0;
290 
291 	if (!str)
292 		return -EINVAL;
293 
294 	if (!strcmp(str, "off"))
295 		mds_mitigation = MDS_MITIGATION_OFF;
296 	else if (!strcmp(str, "full"))
297 		mds_mitigation = MDS_MITIGATION_FULL;
298 	else if (!strcmp(str, "full,nosmt")) {
299 		mds_mitigation = MDS_MITIGATION_FULL;
300 		mds_nosmt = true;
301 	}
302 
303 	return 0;
304 }
305 early_param("mds", mds_cmdline);
306 
307 #undef pr_fmt
308 #define pr_fmt(fmt)	"TAA: " fmt
309 
310 enum taa_mitigations {
311 	TAA_MITIGATION_OFF,
312 	TAA_MITIGATION_UCODE_NEEDED,
313 	TAA_MITIGATION_VERW,
314 	TAA_MITIGATION_TSX_DISABLED,
315 };
316 
317 /* Default mitigation for TAA-affected CPUs */
318 static enum taa_mitigations taa_mitigation __ro_after_init =
319 	IS_ENABLED(CONFIG_MITIGATION_TAA) ? TAA_MITIGATION_VERW : TAA_MITIGATION_OFF;
320 static bool taa_nosmt __ro_after_init;
321 
322 static const char * const taa_strings[] = {
323 	[TAA_MITIGATION_OFF]		= "Vulnerable",
324 	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
325 	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
326 	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
327 };
328 
taa_select_mitigation(void)329 static void __init taa_select_mitigation(void)
330 {
331 	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
332 		taa_mitigation = TAA_MITIGATION_OFF;
333 		return;
334 	}
335 
336 	/* TSX previously disabled by tsx=off */
337 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
338 		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
339 		return;
340 	}
341 
342 	if (cpu_mitigations_off()) {
343 		taa_mitigation = TAA_MITIGATION_OFF;
344 		return;
345 	}
346 
347 	/*
348 	 * TAA mitigation via VERW is turned off if both
349 	 * tsx_async_abort=off and mds=off are specified.
350 	 */
351 	if (taa_mitigation == TAA_MITIGATION_OFF &&
352 	    mds_mitigation == MDS_MITIGATION_OFF)
353 		return;
354 
355 	if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
356 		taa_mitigation = TAA_MITIGATION_VERW;
357 	else
358 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
359 
360 	/*
361 	 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
362 	 * A microcode update fixes this behavior to clear CPU buffers. It also
363 	 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
364 	 * ARCH_CAP_TSX_CTRL_MSR bit.
365 	 *
366 	 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
367 	 * update is required.
368 	 */
369 	if ( (x86_arch_cap_msr & ARCH_CAP_MDS_NO) &&
370 	    !(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))
371 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
372 
373 	/*
374 	 * TSX is enabled, select alternate mitigation for TAA which is
375 	 * the same as MDS. Enable MDS static branch to clear CPU buffers.
376 	 *
377 	 * For guests that can't determine whether the correct microcode is
378 	 * present on host, enable the mitigation for UCODE_NEEDED as well.
379 	 */
380 	setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
381 
382 	if (taa_nosmt || cpu_mitigations_auto_nosmt())
383 		cpu_smt_disable(false);
384 }
385 
tsx_async_abort_parse_cmdline(char * str)386 static int __init tsx_async_abort_parse_cmdline(char *str)
387 {
388 	if (!boot_cpu_has_bug(X86_BUG_TAA))
389 		return 0;
390 
391 	if (!str)
392 		return -EINVAL;
393 
394 	if (!strcmp(str, "off")) {
395 		taa_mitigation = TAA_MITIGATION_OFF;
396 	} else if (!strcmp(str, "full")) {
397 		taa_mitigation = TAA_MITIGATION_VERW;
398 	} else if (!strcmp(str, "full,nosmt")) {
399 		taa_mitigation = TAA_MITIGATION_VERW;
400 		taa_nosmt = true;
401 	}
402 
403 	return 0;
404 }
405 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
406 
407 #undef pr_fmt
408 #define pr_fmt(fmt)	"MMIO Stale Data: " fmt
409 
410 enum mmio_mitigations {
411 	MMIO_MITIGATION_OFF,
412 	MMIO_MITIGATION_UCODE_NEEDED,
413 	MMIO_MITIGATION_VERW,
414 };
415 
416 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
417 static enum mmio_mitigations mmio_mitigation __ro_after_init =
418 	IS_ENABLED(CONFIG_MITIGATION_MMIO_STALE_DATA) ? MMIO_MITIGATION_VERW : MMIO_MITIGATION_OFF;
419 static bool mmio_nosmt __ro_after_init = false;
420 
421 static const char * const mmio_strings[] = {
422 	[MMIO_MITIGATION_OFF]		= "Vulnerable",
423 	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
424 	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
425 };
426 
mmio_select_mitigation(void)427 static void __init mmio_select_mitigation(void)
428 {
429 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
430 	     boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
431 	     cpu_mitigations_off()) {
432 		mmio_mitigation = MMIO_MITIGATION_OFF;
433 		return;
434 	}
435 
436 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
437 		return;
438 
439 	/*
440 	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
441 	 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
442 	 */
443 	if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
444 					      boot_cpu_has(X86_FEATURE_RTM)))
445 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
446 
447 	/*
448 	 * X86_FEATURE_CLEAR_CPU_BUF could be enabled by other VERW based
449 	 * mitigations, disable KVM-only mitigation in that case.
450 	 */
451 	if (boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
452 		static_branch_disable(&mmio_stale_data_clear);
453 	else
454 		static_branch_enable(&mmio_stale_data_clear);
455 
456 	/*
457 	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
458 	 * be propagated to uncore buffers, clearing the Fill buffers on idle
459 	 * is required irrespective of SMT state.
460 	 */
461 	if (!(x86_arch_cap_msr & ARCH_CAP_FBSDP_NO))
462 		static_branch_enable(&cpu_buf_idle_clear);
463 
464 	/*
465 	 * Check if the system has the right microcode.
466 	 *
467 	 * CPU Fill buffer clear mitigation is enumerated by either an explicit
468 	 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
469 	 * affected systems.
470 	 */
471 	if ((x86_arch_cap_msr & ARCH_CAP_FB_CLEAR) ||
472 	    (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
473 	     boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
474 	     !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)))
475 		mmio_mitigation = MMIO_MITIGATION_VERW;
476 	else
477 		mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
478 
479 	if (mmio_nosmt || cpu_mitigations_auto_nosmt())
480 		cpu_smt_disable(false);
481 }
482 
mmio_stale_data_parse_cmdline(char * str)483 static int __init mmio_stale_data_parse_cmdline(char *str)
484 {
485 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
486 		return 0;
487 
488 	if (!str)
489 		return -EINVAL;
490 
491 	if (!strcmp(str, "off")) {
492 		mmio_mitigation = MMIO_MITIGATION_OFF;
493 	} else if (!strcmp(str, "full")) {
494 		mmio_mitigation = MMIO_MITIGATION_VERW;
495 	} else if (!strcmp(str, "full,nosmt")) {
496 		mmio_mitigation = MMIO_MITIGATION_VERW;
497 		mmio_nosmt = true;
498 	}
499 
500 	return 0;
501 }
502 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
503 
504 #undef pr_fmt
505 #define pr_fmt(fmt)	"Register File Data Sampling: " fmt
506 
507 enum rfds_mitigations {
508 	RFDS_MITIGATION_OFF,
509 	RFDS_MITIGATION_VERW,
510 	RFDS_MITIGATION_UCODE_NEEDED,
511 };
512 
513 /* Default mitigation for Register File Data Sampling */
514 static enum rfds_mitigations rfds_mitigation __ro_after_init =
515 	IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_VERW : RFDS_MITIGATION_OFF;
516 
517 static const char * const rfds_strings[] = {
518 	[RFDS_MITIGATION_OFF]			= "Vulnerable",
519 	[RFDS_MITIGATION_VERW]			= "Mitigation: Clear Register File",
520 	[RFDS_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
521 };
522 
rfds_select_mitigation(void)523 static void __init rfds_select_mitigation(void)
524 {
525 	if (!boot_cpu_has_bug(X86_BUG_RFDS) || cpu_mitigations_off()) {
526 		rfds_mitigation = RFDS_MITIGATION_OFF;
527 		return;
528 	}
529 	if (rfds_mitigation == RFDS_MITIGATION_OFF)
530 		return;
531 
532 	if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
533 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
534 	else
535 		rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED;
536 }
537 
rfds_parse_cmdline(char * str)538 static __init int rfds_parse_cmdline(char *str)
539 {
540 	if (!str)
541 		return -EINVAL;
542 
543 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
544 		return 0;
545 
546 	if (!strcmp(str, "off"))
547 		rfds_mitigation = RFDS_MITIGATION_OFF;
548 	else if (!strcmp(str, "on"))
549 		rfds_mitigation = RFDS_MITIGATION_VERW;
550 
551 	return 0;
552 }
553 early_param("reg_file_data_sampling", rfds_parse_cmdline);
554 
555 #undef pr_fmt
556 #define pr_fmt(fmt)     "" fmt
557 
md_clear_update_mitigation(void)558 static void __init md_clear_update_mitigation(void)
559 {
560 	if (cpu_mitigations_off())
561 		return;
562 
563 	if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
564 		goto out;
565 
566 	/*
567 	 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO
568 	 * Stale Data mitigation, if necessary.
569 	 */
570 	if (mds_mitigation == MDS_MITIGATION_OFF &&
571 	    boot_cpu_has_bug(X86_BUG_MDS)) {
572 		mds_mitigation = MDS_MITIGATION_FULL;
573 		mds_select_mitigation();
574 	}
575 	if (taa_mitigation == TAA_MITIGATION_OFF &&
576 	    boot_cpu_has_bug(X86_BUG_TAA)) {
577 		taa_mitigation = TAA_MITIGATION_VERW;
578 		taa_select_mitigation();
579 	}
580 	/*
581 	 * MMIO_MITIGATION_OFF is not checked here so that mmio_stale_data_clear
582 	 * gets updated correctly as per X86_FEATURE_CLEAR_CPU_BUF state.
583 	 */
584 	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
585 		mmio_mitigation = MMIO_MITIGATION_VERW;
586 		mmio_select_mitigation();
587 	}
588 	if (rfds_mitigation == RFDS_MITIGATION_OFF &&
589 	    boot_cpu_has_bug(X86_BUG_RFDS)) {
590 		rfds_mitigation = RFDS_MITIGATION_VERW;
591 		rfds_select_mitigation();
592 	}
593 out:
594 	if (boot_cpu_has_bug(X86_BUG_MDS))
595 		pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
596 	if (boot_cpu_has_bug(X86_BUG_TAA))
597 		pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
598 	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
599 		pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
600 	else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
601 		pr_info("MMIO Stale Data: Unknown: No mitigations\n");
602 	if (boot_cpu_has_bug(X86_BUG_RFDS))
603 		pr_info("Register File Data Sampling: %s\n", rfds_strings[rfds_mitigation]);
604 }
605 
md_clear_select_mitigation(void)606 static void __init md_clear_select_mitigation(void)
607 {
608 	mds_select_mitigation();
609 	taa_select_mitigation();
610 	mmio_select_mitigation();
611 	rfds_select_mitigation();
612 
613 	/*
614 	 * As these mitigations are inter-related and rely on VERW instruction
615 	 * to clear the microarchitural buffers, update and print their status
616 	 * after mitigation selection is done for each of these vulnerabilities.
617 	 */
618 	md_clear_update_mitigation();
619 }
620 
621 #undef pr_fmt
622 #define pr_fmt(fmt)	"SRBDS: " fmt
623 
624 enum srbds_mitigations {
625 	SRBDS_MITIGATION_OFF,
626 	SRBDS_MITIGATION_UCODE_NEEDED,
627 	SRBDS_MITIGATION_FULL,
628 	SRBDS_MITIGATION_TSX_OFF,
629 	SRBDS_MITIGATION_HYPERVISOR,
630 };
631 
632 static enum srbds_mitigations srbds_mitigation __ro_after_init =
633 	IS_ENABLED(CONFIG_MITIGATION_SRBDS) ? SRBDS_MITIGATION_FULL : SRBDS_MITIGATION_OFF;
634 
635 static const char * const srbds_strings[] = {
636 	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
637 	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
638 	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
639 	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
640 	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
641 };
642 
643 static bool srbds_off;
644 
update_srbds_msr(void)645 void update_srbds_msr(void)
646 {
647 	u64 mcu_ctrl;
648 
649 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
650 		return;
651 
652 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
653 		return;
654 
655 	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
656 		return;
657 
658 	/*
659 	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
660 	 * being disabled and it hasn't received the SRBDS MSR microcode.
661 	 */
662 	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
663 		return;
664 
665 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
666 
667 	switch (srbds_mitigation) {
668 	case SRBDS_MITIGATION_OFF:
669 	case SRBDS_MITIGATION_TSX_OFF:
670 		mcu_ctrl |= RNGDS_MITG_DIS;
671 		break;
672 	case SRBDS_MITIGATION_FULL:
673 		mcu_ctrl &= ~RNGDS_MITG_DIS;
674 		break;
675 	default:
676 		break;
677 	}
678 
679 	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
680 }
681 
srbds_select_mitigation(void)682 static void __init srbds_select_mitigation(void)
683 {
684 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
685 		return;
686 
687 	/*
688 	 * Check to see if this is one of the MDS_NO systems supporting TSX that
689 	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
690 	 * by Processor MMIO Stale Data vulnerability.
691 	 */
692 	if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
693 	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
694 		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
695 	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
696 		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
697 	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
698 		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
699 	else if (cpu_mitigations_off() || srbds_off)
700 		srbds_mitigation = SRBDS_MITIGATION_OFF;
701 
702 	update_srbds_msr();
703 	pr_info("%s\n", srbds_strings[srbds_mitigation]);
704 }
705 
srbds_parse_cmdline(char * str)706 static int __init srbds_parse_cmdline(char *str)
707 {
708 	if (!str)
709 		return -EINVAL;
710 
711 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
712 		return 0;
713 
714 	srbds_off = !strcmp(str, "off");
715 	return 0;
716 }
717 early_param("srbds", srbds_parse_cmdline);
718 
719 #undef pr_fmt
720 #define pr_fmt(fmt)     "L1D Flush : " fmt
721 
722 enum l1d_flush_mitigations {
723 	L1D_FLUSH_OFF = 0,
724 	L1D_FLUSH_ON,
725 };
726 
727 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
728 
l1d_flush_select_mitigation(void)729 static void __init l1d_flush_select_mitigation(void)
730 {
731 	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
732 		return;
733 
734 	static_branch_enable(&switch_mm_cond_l1d_flush);
735 	pr_info("Conditional flush on switch_mm() enabled\n");
736 }
737 
l1d_flush_parse_cmdline(char * str)738 static int __init l1d_flush_parse_cmdline(char *str)
739 {
740 	if (!strcmp(str, "on"))
741 		l1d_flush_mitigation = L1D_FLUSH_ON;
742 
743 	return 0;
744 }
745 early_param("l1d_flush", l1d_flush_parse_cmdline);
746 
747 #undef pr_fmt
748 #define pr_fmt(fmt)	"GDS: " fmt
749 
750 enum gds_mitigations {
751 	GDS_MITIGATION_OFF,
752 	GDS_MITIGATION_UCODE_NEEDED,
753 	GDS_MITIGATION_FORCE,
754 	GDS_MITIGATION_FULL,
755 	GDS_MITIGATION_FULL_LOCKED,
756 	GDS_MITIGATION_HYPERVISOR,
757 };
758 
759 static enum gds_mitigations gds_mitigation __ro_after_init =
760 	IS_ENABLED(CONFIG_MITIGATION_GDS) ? GDS_MITIGATION_FULL : GDS_MITIGATION_OFF;
761 
762 static const char * const gds_strings[] = {
763 	[GDS_MITIGATION_OFF]		= "Vulnerable",
764 	[GDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
765 	[GDS_MITIGATION_FORCE]		= "Mitigation: AVX disabled, no microcode",
766 	[GDS_MITIGATION_FULL]		= "Mitigation: Microcode",
767 	[GDS_MITIGATION_FULL_LOCKED]	= "Mitigation: Microcode (locked)",
768 	[GDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
769 };
770 
gds_ucode_mitigated(void)771 bool gds_ucode_mitigated(void)
772 {
773 	return (gds_mitigation == GDS_MITIGATION_FULL ||
774 		gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
775 }
776 EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
777 
update_gds_msr(void)778 void update_gds_msr(void)
779 {
780 	u64 mcu_ctrl_after;
781 	u64 mcu_ctrl;
782 
783 	switch (gds_mitigation) {
784 	case GDS_MITIGATION_OFF:
785 		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
786 		mcu_ctrl |= GDS_MITG_DIS;
787 		break;
788 	case GDS_MITIGATION_FULL_LOCKED:
789 		/*
790 		 * The LOCKED state comes from the boot CPU. APs might not have
791 		 * the same state. Make sure the mitigation is enabled on all
792 		 * CPUs.
793 		 */
794 	case GDS_MITIGATION_FULL:
795 		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
796 		mcu_ctrl &= ~GDS_MITG_DIS;
797 		break;
798 	case GDS_MITIGATION_FORCE:
799 	case GDS_MITIGATION_UCODE_NEEDED:
800 	case GDS_MITIGATION_HYPERVISOR:
801 		return;
802 	}
803 
804 	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
805 
806 	/*
807 	 * Check to make sure that the WRMSR value was not ignored. Writes to
808 	 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
809 	 * processor was not.
810 	 */
811 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
812 	WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
813 }
814 
gds_select_mitigation(void)815 static void __init gds_select_mitigation(void)
816 {
817 	u64 mcu_ctrl;
818 
819 	if (!boot_cpu_has_bug(X86_BUG_GDS))
820 		return;
821 
822 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
823 		gds_mitigation = GDS_MITIGATION_HYPERVISOR;
824 		goto out;
825 	}
826 
827 	if (cpu_mitigations_off())
828 		gds_mitigation = GDS_MITIGATION_OFF;
829 	/* Will verify below that mitigation _can_ be disabled */
830 
831 	/* No microcode */
832 	if (!(x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)) {
833 		if (gds_mitigation == GDS_MITIGATION_FORCE) {
834 			/*
835 			 * This only needs to be done on the boot CPU so do it
836 			 * here rather than in update_gds_msr()
837 			 */
838 			setup_clear_cpu_cap(X86_FEATURE_AVX);
839 			pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
840 		} else {
841 			gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
842 		}
843 		goto out;
844 	}
845 
846 	/* Microcode has mitigation, use it */
847 	if (gds_mitigation == GDS_MITIGATION_FORCE)
848 		gds_mitigation = GDS_MITIGATION_FULL;
849 
850 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
851 	if (mcu_ctrl & GDS_MITG_LOCKED) {
852 		if (gds_mitigation == GDS_MITIGATION_OFF)
853 			pr_warn("Mitigation locked. Disable failed.\n");
854 
855 		/*
856 		 * The mitigation is selected from the boot CPU. All other CPUs
857 		 * _should_ have the same state. If the boot CPU isn't locked
858 		 * but others are then update_gds_msr() will WARN() of the state
859 		 * mismatch. If the boot CPU is locked update_gds_msr() will
860 		 * ensure the other CPUs have the mitigation enabled.
861 		 */
862 		gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
863 	}
864 
865 	update_gds_msr();
866 out:
867 	pr_info("%s\n", gds_strings[gds_mitigation]);
868 }
869 
gds_parse_cmdline(char * str)870 static int __init gds_parse_cmdline(char *str)
871 {
872 	if (!str)
873 		return -EINVAL;
874 
875 	if (!boot_cpu_has_bug(X86_BUG_GDS))
876 		return 0;
877 
878 	if (!strcmp(str, "off"))
879 		gds_mitigation = GDS_MITIGATION_OFF;
880 	else if (!strcmp(str, "force"))
881 		gds_mitigation = GDS_MITIGATION_FORCE;
882 
883 	return 0;
884 }
885 early_param("gather_data_sampling", gds_parse_cmdline);
886 
887 #undef pr_fmt
888 #define pr_fmt(fmt)     "Spectre V1 : " fmt
889 
890 enum spectre_v1_mitigation {
891 	SPECTRE_V1_MITIGATION_NONE,
892 	SPECTRE_V1_MITIGATION_AUTO,
893 };
894 
895 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
896 	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V1) ?
897 		SPECTRE_V1_MITIGATION_AUTO : SPECTRE_V1_MITIGATION_NONE;
898 
899 static const char * const spectre_v1_strings[] = {
900 	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
901 	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
902 };
903 
904 /*
905  * Does SMAP provide full mitigation against speculative kernel access to
906  * userspace?
907  */
smap_works_speculatively(void)908 static bool smap_works_speculatively(void)
909 {
910 	if (!boot_cpu_has(X86_FEATURE_SMAP))
911 		return false;
912 
913 	/*
914 	 * On CPUs which are vulnerable to Meltdown, SMAP does not
915 	 * prevent speculative access to user data in the L1 cache.
916 	 * Consider SMAP to be non-functional as a mitigation on these
917 	 * CPUs.
918 	 */
919 	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
920 		return false;
921 
922 	return true;
923 }
924 
spectre_v1_select_mitigation(void)925 static void __init spectre_v1_select_mitigation(void)
926 {
927 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
928 		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
929 		return;
930 	}
931 
932 	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
933 		/*
934 		 * With Spectre v1, a user can speculatively control either
935 		 * path of a conditional swapgs with a user-controlled GS
936 		 * value.  The mitigation is to add lfences to both code paths.
937 		 *
938 		 * If FSGSBASE is enabled, the user can put a kernel address in
939 		 * GS, in which case SMAP provides no protection.
940 		 *
941 		 * If FSGSBASE is disabled, the user can only put a user space
942 		 * address in GS.  That makes an attack harder, but still
943 		 * possible if there's no SMAP protection.
944 		 */
945 		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
946 		    !smap_works_speculatively()) {
947 			/*
948 			 * Mitigation can be provided from SWAPGS itself or
949 			 * PTI as the CR3 write in the Meltdown mitigation
950 			 * is serializing.
951 			 *
952 			 * If neither is there, mitigate with an LFENCE to
953 			 * stop speculation through swapgs.
954 			 */
955 			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
956 			    !boot_cpu_has(X86_FEATURE_PTI))
957 				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
958 
959 			/*
960 			 * Enable lfences in the kernel entry (non-swapgs)
961 			 * paths, to prevent user entry from speculatively
962 			 * skipping swapgs.
963 			 */
964 			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
965 		}
966 	}
967 
968 	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
969 }
970 
nospectre_v1_cmdline(char * str)971 static int __init nospectre_v1_cmdline(char *str)
972 {
973 	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
974 	return 0;
975 }
976 early_param("nospectre_v1", nospectre_v1_cmdline);
977 
978 enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
979 
980 #undef pr_fmt
981 #define pr_fmt(fmt)     "RETBleed: " fmt
982 
983 enum retbleed_mitigation {
984 	RETBLEED_MITIGATION_NONE,
985 	RETBLEED_MITIGATION_UNRET,
986 	RETBLEED_MITIGATION_IBPB,
987 	RETBLEED_MITIGATION_IBRS,
988 	RETBLEED_MITIGATION_EIBRS,
989 	RETBLEED_MITIGATION_STUFF,
990 };
991 
992 enum retbleed_mitigation_cmd {
993 	RETBLEED_CMD_OFF,
994 	RETBLEED_CMD_AUTO,
995 	RETBLEED_CMD_UNRET,
996 	RETBLEED_CMD_IBPB,
997 	RETBLEED_CMD_STUFF,
998 };
999 
1000 static const char * const retbleed_strings[] = {
1001 	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
1002 	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
1003 	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
1004 	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
1005 	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
1006 	[RETBLEED_MITIGATION_STUFF]	= "Mitigation: Stuffing",
1007 };
1008 
1009 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
1010 	RETBLEED_MITIGATION_NONE;
1011 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
1012 	IS_ENABLED(CONFIG_MITIGATION_RETBLEED) ? RETBLEED_CMD_AUTO : RETBLEED_CMD_OFF;
1013 
1014 static int __ro_after_init retbleed_nosmt = false;
1015 
retbleed_parse_cmdline(char * str)1016 static int __init retbleed_parse_cmdline(char *str)
1017 {
1018 	if (!str)
1019 		return -EINVAL;
1020 
1021 	while (str) {
1022 		char *next = strchr(str, ',');
1023 		if (next) {
1024 			*next = 0;
1025 			next++;
1026 		}
1027 
1028 		if (!strcmp(str, "off")) {
1029 			retbleed_cmd = RETBLEED_CMD_OFF;
1030 		} else if (!strcmp(str, "auto")) {
1031 			retbleed_cmd = RETBLEED_CMD_AUTO;
1032 		} else if (!strcmp(str, "unret")) {
1033 			retbleed_cmd = RETBLEED_CMD_UNRET;
1034 		} else if (!strcmp(str, "ibpb")) {
1035 			retbleed_cmd = RETBLEED_CMD_IBPB;
1036 		} else if (!strcmp(str, "stuff")) {
1037 			retbleed_cmd = RETBLEED_CMD_STUFF;
1038 		} else if (!strcmp(str, "nosmt")) {
1039 			retbleed_nosmt = true;
1040 		} else if (!strcmp(str, "force")) {
1041 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1042 		} else {
1043 			pr_err("Ignoring unknown retbleed option (%s).", str);
1044 		}
1045 
1046 		str = next;
1047 	}
1048 
1049 	return 0;
1050 }
1051 early_param("retbleed", retbleed_parse_cmdline);
1052 
1053 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
1054 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
1055 
retbleed_select_mitigation(void)1056 static void __init retbleed_select_mitigation(void)
1057 {
1058 	bool mitigate_smt = false;
1059 
1060 	if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
1061 		return;
1062 
1063 	switch (retbleed_cmd) {
1064 	case RETBLEED_CMD_OFF:
1065 		return;
1066 
1067 	case RETBLEED_CMD_UNRET:
1068 		if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) {
1069 			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1070 		} else {
1071 			pr_err("WARNING: kernel not compiled with MITIGATION_UNRET_ENTRY.\n");
1072 			goto do_cmd_auto;
1073 		}
1074 		break;
1075 
1076 	case RETBLEED_CMD_IBPB:
1077 		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
1078 			pr_err("WARNING: CPU does not support IBPB.\n");
1079 			goto do_cmd_auto;
1080 		} else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
1081 			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1082 		} else {
1083 			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
1084 			goto do_cmd_auto;
1085 		}
1086 		break;
1087 
1088 	case RETBLEED_CMD_STUFF:
1089 		if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING) &&
1090 		    spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
1091 			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1092 
1093 		} else {
1094 			if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING))
1095 				pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
1096 			else
1097 				pr_err("WARNING: kernel not compiled with MITIGATION_CALL_DEPTH_TRACKING.\n");
1098 
1099 			goto do_cmd_auto;
1100 		}
1101 		break;
1102 
1103 do_cmd_auto:
1104 	case RETBLEED_CMD_AUTO:
1105 		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1106 		    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1107 			if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY))
1108 				retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1109 			else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY) &&
1110 				 boot_cpu_has(X86_FEATURE_IBPB))
1111 				retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1112 		}
1113 
1114 		/*
1115 		 * The Intel mitigation (IBRS or eIBRS) was already selected in
1116 		 * spectre_v2_select_mitigation().  'retbleed_mitigation' will
1117 		 * be set accordingly below.
1118 		 */
1119 
1120 		break;
1121 	}
1122 
1123 	switch (retbleed_mitigation) {
1124 	case RETBLEED_MITIGATION_UNRET:
1125 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1126 		setup_force_cpu_cap(X86_FEATURE_UNRET);
1127 
1128 		set_return_thunk(retbleed_return_thunk);
1129 
1130 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1131 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1132 			pr_err(RETBLEED_UNTRAIN_MSG);
1133 
1134 		mitigate_smt = true;
1135 		break;
1136 
1137 	case RETBLEED_MITIGATION_IBPB:
1138 		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1139 		setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1140 		mitigate_smt = true;
1141 
1142 		/*
1143 		 * IBPB on entry already obviates the need for
1144 		 * software-based untraining so clear those in case some
1145 		 * other mitigation like SRSO has selected them.
1146 		 */
1147 		setup_clear_cpu_cap(X86_FEATURE_UNRET);
1148 		setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
1149 
1150 		/*
1151 		 * There is no need for RSB filling: entry_ibpb() ensures
1152 		 * all predictions, including the RSB, are invalidated,
1153 		 * regardless of IBPB implementation.
1154 		 */
1155 		setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1156 
1157 		break;
1158 
1159 	case RETBLEED_MITIGATION_STUFF:
1160 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1161 		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1162 
1163 		set_return_thunk(call_depth_return_thunk);
1164 		break;
1165 
1166 	default:
1167 		break;
1168 	}
1169 
1170 	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1171 	    (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1172 		cpu_smt_disable(false);
1173 
1174 	/*
1175 	 * Let IBRS trump all on Intel without affecting the effects of the
1176 	 * retbleed= cmdline option except for call depth based stuffing
1177 	 */
1178 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1179 		switch (spectre_v2_enabled) {
1180 		case SPECTRE_V2_IBRS:
1181 			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1182 			break;
1183 		case SPECTRE_V2_EIBRS:
1184 		case SPECTRE_V2_EIBRS_RETPOLINE:
1185 		case SPECTRE_V2_EIBRS_LFENCE:
1186 			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1187 			break;
1188 		default:
1189 			if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1190 				pr_err(RETBLEED_INTEL_MSG);
1191 		}
1192 	}
1193 
1194 	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1195 }
1196 
1197 #undef pr_fmt
1198 #define pr_fmt(fmt)     "ITS: " fmt
1199 
1200 enum its_mitigation_cmd {
1201 	ITS_CMD_OFF,
1202 	ITS_CMD_ON,
1203 	ITS_CMD_VMEXIT,
1204 	ITS_CMD_RSB_STUFF,
1205 };
1206 
1207 enum its_mitigation {
1208 	ITS_MITIGATION_OFF,
1209 	ITS_MITIGATION_VMEXIT_ONLY,
1210 	ITS_MITIGATION_ALIGNED_THUNKS,
1211 	ITS_MITIGATION_RETPOLINE_STUFF,
1212 };
1213 
1214 static const char * const its_strings[] = {
1215 	[ITS_MITIGATION_OFF]			= "Vulnerable",
1216 	[ITS_MITIGATION_VMEXIT_ONLY]		= "Mitigation: Vulnerable, KVM: Not affected",
1217 	[ITS_MITIGATION_ALIGNED_THUNKS]		= "Mitigation: Aligned branch/return thunks",
1218 	[ITS_MITIGATION_RETPOLINE_STUFF]	= "Mitigation: Retpolines, Stuffing RSB",
1219 };
1220 
1221 static enum its_mitigation its_mitigation __ro_after_init = ITS_MITIGATION_ALIGNED_THUNKS;
1222 
1223 static enum its_mitigation_cmd its_cmd __ro_after_init =
1224 	IS_ENABLED(CONFIG_MITIGATION_ITS) ? ITS_CMD_ON : ITS_CMD_OFF;
1225 
its_parse_cmdline(char * str)1226 static int __init its_parse_cmdline(char *str)
1227 {
1228 	if (!str)
1229 		return -EINVAL;
1230 
1231 	if (!IS_ENABLED(CONFIG_MITIGATION_ITS)) {
1232 		pr_err("Mitigation disabled at compile time, ignoring option (%s)", str);
1233 		return 0;
1234 	}
1235 
1236 	if (!strcmp(str, "off")) {
1237 		its_cmd = ITS_CMD_OFF;
1238 	} else if (!strcmp(str, "on")) {
1239 		its_cmd = ITS_CMD_ON;
1240 	} else if (!strcmp(str, "force")) {
1241 		its_cmd = ITS_CMD_ON;
1242 		setup_force_cpu_bug(X86_BUG_ITS);
1243 	} else if (!strcmp(str, "vmexit")) {
1244 		its_cmd = ITS_CMD_VMEXIT;
1245 	} else if (!strcmp(str, "stuff")) {
1246 		its_cmd = ITS_CMD_RSB_STUFF;
1247 	} else {
1248 		pr_err("Ignoring unknown indirect_target_selection option (%s).", str);
1249 	}
1250 
1251 	return 0;
1252 }
1253 early_param("indirect_target_selection", its_parse_cmdline);
1254 
its_select_mitigation(void)1255 static void __init its_select_mitigation(void)
1256 {
1257 	enum its_mitigation_cmd cmd = its_cmd;
1258 
1259 	if (!boot_cpu_has_bug(X86_BUG_ITS) || cpu_mitigations_off()) {
1260 		its_mitigation = ITS_MITIGATION_OFF;
1261 		return;
1262 	}
1263 
1264 	/* Retpoline+CDT mitigates ITS, bail out */
1265 	if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
1266 	    boot_cpu_has(X86_FEATURE_CALL_DEPTH)) {
1267 		its_mitigation = ITS_MITIGATION_RETPOLINE_STUFF;
1268 		goto out;
1269 	}
1270 
1271 	/* Exit early to avoid irrelevant warnings */
1272 	if (cmd == ITS_CMD_OFF) {
1273 		its_mitigation = ITS_MITIGATION_OFF;
1274 		goto out;
1275 	}
1276 	if (spectre_v2_enabled == SPECTRE_V2_NONE) {
1277 		pr_err("WARNING: Spectre-v2 mitigation is off, disabling ITS\n");
1278 		its_mitigation = ITS_MITIGATION_OFF;
1279 		goto out;
1280 	}
1281 	if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) ||
1282 	    !IS_ENABLED(CONFIG_MITIGATION_RETHUNK)) {
1283 		pr_err("WARNING: ITS mitigation depends on retpoline and rethunk support\n");
1284 		its_mitigation = ITS_MITIGATION_OFF;
1285 		goto out;
1286 	}
1287 	if (IS_ENABLED(CONFIG_DEBUG_FORCE_FUNCTION_ALIGN_64B)) {
1288 		pr_err("WARNING: ITS mitigation is not compatible with CONFIG_DEBUG_FORCE_FUNCTION_ALIGN_64B\n");
1289 		its_mitigation = ITS_MITIGATION_OFF;
1290 		goto out;
1291 	}
1292 	if (boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) {
1293 		pr_err("WARNING: ITS mitigation is not compatible with lfence mitigation\n");
1294 		its_mitigation = ITS_MITIGATION_OFF;
1295 		goto out;
1296 	}
1297 
1298 	if (cmd == ITS_CMD_RSB_STUFF &&
1299 	    (!boot_cpu_has(X86_FEATURE_RETPOLINE) || !IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING))) {
1300 		pr_err("RSB stuff mitigation not supported, using default\n");
1301 		cmd = ITS_CMD_ON;
1302 	}
1303 
1304 	switch (cmd) {
1305 	case ITS_CMD_OFF:
1306 		its_mitigation = ITS_MITIGATION_OFF;
1307 		break;
1308 	case ITS_CMD_VMEXIT:
1309 		if (boot_cpu_has_bug(X86_BUG_ITS_NATIVE_ONLY)) {
1310 			its_mitigation = ITS_MITIGATION_VMEXIT_ONLY;
1311 			goto out;
1312 		}
1313 		fallthrough;
1314 	case ITS_CMD_ON:
1315 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1316 		if (!boot_cpu_has(X86_FEATURE_RETPOLINE))
1317 			setup_force_cpu_cap(X86_FEATURE_INDIRECT_THUNK_ITS);
1318 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1319 		set_return_thunk(its_return_thunk);
1320 		break;
1321 	case ITS_CMD_RSB_STUFF:
1322 		its_mitigation = ITS_MITIGATION_RETPOLINE_STUFF;
1323 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1324 		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1325 		set_return_thunk(call_depth_return_thunk);
1326 		if (retbleed_mitigation == RETBLEED_MITIGATION_NONE) {
1327 			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1328 			pr_info("Retbleed mitigation updated to stuffing\n");
1329 		}
1330 		break;
1331 	}
1332 out:
1333 	pr_info("%s\n", its_strings[its_mitigation]);
1334 }
1335 
1336 #undef pr_fmt
1337 #define pr_fmt(fmt)     "Spectre V2 : " fmt
1338 
1339 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1340 	SPECTRE_V2_USER_NONE;
1341 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1342 	SPECTRE_V2_USER_NONE;
1343 
1344 #ifdef CONFIG_MITIGATION_RETPOLINE
1345 static bool spectre_v2_bad_module;
1346 
retpoline_module_ok(bool has_retpoline)1347 bool retpoline_module_ok(bool has_retpoline)
1348 {
1349 	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1350 		return true;
1351 
1352 	pr_err("System may be vulnerable to spectre v2\n");
1353 	spectre_v2_bad_module = true;
1354 	return false;
1355 }
1356 
spectre_v2_module_string(void)1357 static inline const char *spectre_v2_module_string(void)
1358 {
1359 	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1360 }
1361 #else
spectre_v2_module_string(void)1362 static inline const char *spectre_v2_module_string(void) { return ""; }
1363 #endif
1364 
1365 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1366 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1367 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1368 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1369 
1370 #ifdef CONFIG_BPF_SYSCALL
unpriv_ebpf_notify(int new_state)1371 void unpriv_ebpf_notify(int new_state)
1372 {
1373 	if (new_state)
1374 		return;
1375 
1376 	/* Unprivileged eBPF is enabled */
1377 
1378 	switch (spectre_v2_enabled) {
1379 	case SPECTRE_V2_EIBRS:
1380 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1381 		break;
1382 	case SPECTRE_V2_EIBRS_LFENCE:
1383 		if (sched_smt_active())
1384 			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1385 		break;
1386 	default:
1387 		break;
1388 	}
1389 }
1390 #endif
1391 
match_option(const char * arg,int arglen,const char * opt)1392 static inline bool match_option(const char *arg, int arglen, const char *opt)
1393 {
1394 	int len = strlen(opt);
1395 
1396 	return len == arglen && !strncmp(arg, opt, len);
1397 }
1398 
1399 /* The kernel command line selection for spectre v2 */
1400 enum spectre_v2_mitigation_cmd {
1401 	SPECTRE_V2_CMD_NONE,
1402 	SPECTRE_V2_CMD_AUTO,
1403 	SPECTRE_V2_CMD_FORCE,
1404 	SPECTRE_V2_CMD_RETPOLINE,
1405 	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1406 	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1407 	SPECTRE_V2_CMD_EIBRS,
1408 	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1409 	SPECTRE_V2_CMD_EIBRS_LFENCE,
1410 	SPECTRE_V2_CMD_IBRS,
1411 };
1412 
1413 enum spectre_v2_user_cmd {
1414 	SPECTRE_V2_USER_CMD_NONE,
1415 	SPECTRE_V2_USER_CMD_AUTO,
1416 	SPECTRE_V2_USER_CMD_FORCE,
1417 	SPECTRE_V2_USER_CMD_PRCTL,
1418 	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1419 	SPECTRE_V2_USER_CMD_SECCOMP,
1420 	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1421 };
1422 
1423 static const char * const spectre_v2_user_strings[] = {
1424 	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1425 	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1426 	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1427 	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1428 	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1429 };
1430 
1431 static const struct {
1432 	const char			*option;
1433 	enum spectre_v2_user_cmd	cmd;
1434 	bool				secure;
1435 } v2_user_options[] __initconst = {
1436 	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
1437 	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
1438 	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
1439 	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
1440 	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
1441 	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
1442 	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
1443 };
1444 
spec_v2_user_print_cond(const char * reason,bool secure)1445 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1446 {
1447 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1448 		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1449 }
1450 
1451 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1452 
1453 static enum spectre_v2_user_cmd __init
spectre_v2_parse_user_cmdline(void)1454 spectre_v2_parse_user_cmdline(void)
1455 {
1456 	enum spectre_v2_user_cmd mode;
1457 	char arg[20];
1458 	int ret, i;
1459 
1460 	mode = IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2) ?
1461 		SPECTRE_V2_USER_CMD_AUTO : SPECTRE_V2_USER_CMD_NONE;
1462 
1463 	switch (spectre_v2_cmd) {
1464 	case SPECTRE_V2_CMD_NONE:
1465 		return SPECTRE_V2_USER_CMD_NONE;
1466 	case SPECTRE_V2_CMD_FORCE:
1467 		return SPECTRE_V2_USER_CMD_FORCE;
1468 	default:
1469 		break;
1470 	}
1471 
1472 	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1473 				  arg, sizeof(arg));
1474 	if (ret < 0)
1475 		return mode;
1476 
1477 	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1478 		if (match_option(arg, ret, v2_user_options[i].option)) {
1479 			spec_v2_user_print_cond(v2_user_options[i].option,
1480 						v2_user_options[i].secure);
1481 			return v2_user_options[i].cmd;
1482 		}
1483 	}
1484 
1485 	pr_err("Unknown user space protection option (%s). Switching to default\n", arg);
1486 	return mode;
1487 }
1488 
spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)1489 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1490 {
1491 	return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1492 }
1493 
1494 static void __init
spectre_v2_user_select_mitigation(void)1495 spectre_v2_user_select_mitigation(void)
1496 {
1497 	enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1498 	bool smt_possible = IS_ENABLED(CONFIG_SMP);
1499 	enum spectre_v2_user_cmd cmd;
1500 
1501 	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1502 		return;
1503 
1504 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1505 	    cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1506 		smt_possible = false;
1507 
1508 	cmd = spectre_v2_parse_user_cmdline();
1509 	switch (cmd) {
1510 	case SPECTRE_V2_USER_CMD_NONE:
1511 		goto set_mode;
1512 	case SPECTRE_V2_USER_CMD_FORCE:
1513 		mode = SPECTRE_V2_USER_STRICT;
1514 		break;
1515 	case SPECTRE_V2_USER_CMD_AUTO:
1516 	case SPECTRE_V2_USER_CMD_PRCTL:
1517 	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1518 		mode = SPECTRE_V2_USER_PRCTL;
1519 		break;
1520 	case SPECTRE_V2_USER_CMD_SECCOMP:
1521 	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1522 		if (IS_ENABLED(CONFIG_SECCOMP))
1523 			mode = SPECTRE_V2_USER_SECCOMP;
1524 		else
1525 			mode = SPECTRE_V2_USER_PRCTL;
1526 		break;
1527 	}
1528 
1529 	/* Initialize Indirect Branch Prediction Barrier */
1530 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
1531 		setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1532 
1533 		spectre_v2_user_ibpb = mode;
1534 		switch (cmd) {
1535 		case SPECTRE_V2_USER_CMD_NONE:
1536 			break;
1537 		case SPECTRE_V2_USER_CMD_FORCE:
1538 		case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1539 		case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1540 			static_branch_enable(&switch_mm_always_ibpb);
1541 			spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1542 			break;
1543 		case SPECTRE_V2_USER_CMD_PRCTL:
1544 		case SPECTRE_V2_USER_CMD_AUTO:
1545 		case SPECTRE_V2_USER_CMD_SECCOMP:
1546 			static_branch_enable(&switch_mm_cond_ibpb);
1547 			break;
1548 		}
1549 
1550 		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1551 			static_key_enabled(&switch_mm_always_ibpb) ?
1552 			"always-on" : "conditional");
1553 	}
1554 
1555 	/*
1556 	 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1557 	 * is not required.
1558 	 *
1559 	 * Intel's Enhanced IBRS also protects against cross-thread branch target
1560 	 * injection in user-mode as the IBRS bit remains always set which
1561 	 * implicitly enables cross-thread protections.  However, in legacy IBRS
1562 	 * mode, the IBRS bit is set only on kernel entry and cleared on return
1563 	 * to userspace.  AMD Automatic IBRS also does not protect userspace.
1564 	 * These modes therefore disable the implicit cross-thread protection,
1565 	 * so allow for STIBP to be selected in those cases.
1566 	 */
1567 	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1568 	    !smt_possible ||
1569 	    (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1570 	     !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
1571 		return;
1572 
1573 	/*
1574 	 * At this point, an STIBP mode other than "off" has been set.
1575 	 * If STIBP support is not being forced, check if STIBP always-on
1576 	 * is preferred.
1577 	 */
1578 	if (mode != SPECTRE_V2_USER_STRICT &&
1579 	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1580 		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1581 
1582 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1583 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1584 		if (mode != SPECTRE_V2_USER_STRICT &&
1585 		    mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1586 			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1587 		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1588 	}
1589 
1590 	spectre_v2_user_stibp = mode;
1591 
1592 set_mode:
1593 	pr_info("%s\n", spectre_v2_user_strings[mode]);
1594 }
1595 
1596 static const char * const spectre_v2_strings[] = {
1597 	[SPECTRE_V2_NONE]			= "Vulnerable",
1598 	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
1599 	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
1600 	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced / Automatic IBRS",
1601 	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1602 	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1603 	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
1604 };
1605 
1606 static const struct {
1607 	const char *option;
1608 	enum spectre_v2_mitigation_cmd cmd;
1609 	bool secure;
1610 } mitigation_options[] __initconst = {
1611 	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
1612 	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
1613 	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
1614 	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1615 	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1616 	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1617 	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
1618 	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
1619 	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
1620 	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
1621 	{ "ibrs",		SPECTRE_V2_CMD_IBRS,              false },
1622 };
1623 
spec_v2_print_cond(const char * reason,bool secure)1624 static void __init spec_v2_print_cond(const char *reason, bool secure)
1625 {
1626 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1627 		pr_info("%s selected on command line.\n", reason);
1628 }
1629 
spectre_v2_parse_cmdline(void)1630 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1631 {
1632 	enum spectre_v2_mitigation_cmd cmd;
1633 	char arg[20];
1634 	int ret, i;
1635 
1636 	cmd = IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2) ?  SPECTRE_V2_CMD_AUTO : SPECTRE_V2_CMD_NONE;
1637 	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1638 	    cpu_mitigations_off())
1639 		return SPECTRE_V2_CMD_NONE;
1640 
1641 	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1642 	if (ret < 0)
1643 		return cmd;
1644 
1645 	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1646 		if (!match_option(arg, ret, mitigation_options[i].option))
1647 			continue;
1648 		cmd = mitigation_options[i].cmd;
1649 		break;
1650 	}
1651 
1652 	if (i >= ARRAY_SIZE(mitigation_options)) {
1653 		pr_err("unknown option (%s). Switching to default mode\n", arg);
1654 		return cmd;
1655 	}
1656 
1657 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1658 	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1659 	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1660 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1661 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1662 	    !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1663 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1664 		       mitigation_options[i].option);
1665 		return SPECTRE_V2_CMD_AUTO;
1666 	}
1667 
1668 	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1669 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1670 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1671 	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1672 		pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1673 		       mitigation_options[i].option);
1674 		return SPECTRE_V2_CMD_AUTO;
1675 	}
1676 
1677 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1678 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1679 	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1680 		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1681 		       mitigation_options[i].option);
1682 		return SPECTRE_V2_CMD_AUTO;
1683 	}
1684 
1685 	if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY)) {
1686 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1687 		       mitigation_options[i].option);
1688 		return SPECTRE_V2_CMD_AUTO;
1689 	}
1690 
1691 	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1692 		pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1693 		       mitigation_options[i].option);
1694 		return SPECTRE_V2_CMD_AUTO;
1695 	}
1696 
1697 	if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1698 		pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1699 		       mitigation_options[i].option);
1700 		return SPECTRE_V2_CMD_AUTO;
1701 	}
1702 
1703 	if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1704 		pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1705 		       mitigation_options[i].option);
1706 		return SPECTRE_V2_CMD_AUTO;
1707 	}
1708 
1709 	spec_v2_print_cond(mitigation_options[i].option,
1710 			   mitigation_options[i].secure);
1711 	return cmd;
1712 }
1713 
spectre_v2_select_retpoline(void)1714 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1715 {
1716 	if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1717 		pr_err("Kernel not compiled with retpoline; no mitigation available!");
1718 		return SPECTRE_V2_NONE;
1719 	}
1720 
1721 	return SPECTRE_V2_RETPOLINE;
1722 }
1723 
1724 static bool __ro_after_init rrsba_disabled;
1725 
1726 /* Disable in-kernel use of non-RSB RET predictors */
spec_ctrl_disable_kernel_rrsba(void)1727 static void __init spec_ctrl_disable_kernel_rrsba(void)
1728 {
1729 	if (rrsba_disabled)
1730 		return;
1731 
1732 	if (!(x86_arch_cap_msr & ARCH_CAP_RRSBA)) {
1733 		rrsba_disabled = true;
1734 		return;
1735 	}
1736 
1737 	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1738 		return;
1739 
1740 	x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1741 	update_spec_ctrl(x86_spec_ctrl_base);
1742 	rrsba_disabled = true;
1743 }
1744 
spectre_v2_select_rsb_mitigation(enum spectre_v2_mitigation mode)1745 static void __init spectre_v2_select_rsb_mitigation(enum spectre_v2_mitigation mode)
1746 {
1747 	/*
1748 	 * Similar to context switches, there are two types of RSB attacks
1749 	 * after VM exit:
1750 	 *
1751 	 * 1) RSB underflow
1752 	 *
1753 	 * 2) Poisoned RSB entry
1754 	 *
1755 	 * When retpoline is enabled, both are mitigated by filling/clearing
1756 	 * the RSB.
1757 	 *
1758 	 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1759 	 * prediction isolation protections, RSB still needs to be cleared
1760 	 * because of #2.  Note that SMEP provides no protection here, unlike
1761 	 * user-space-poisoned RSB entries.
1762 	 *
1763 	 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1764 	 * bug is present then a LITE version of RSB protection is required,
1765 	 * just a single call needs to retire before a RET is executed.
1766 	 */
1767 	switch (mode) {
1768 	case SPECTRE_V2_NONE:
1769 		break;
1770 
1771 	case SPECTRE_V2_EIBRS:
1772 	case SPECTRE_V2_EIBRS_LFENCE:
1773 	case SPECTRE_V2_EIBRS_RETPOLINE:
1774 		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1775 			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1776 			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1777 		}
1778 		break;
1779 
1780 	case SPECTRE_V2_RETPOLINE:
1781 	case SPECTRE_V2_LFENCE:
1782 	case SPECTRE_V2_IBRS:
1783 		pr_info("Spectre v2 / SpectreRSB: Filling RSB on context switch and VMEXIT\n");
1784 		setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1785 		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1786 		break;
1787 
1788 	default:
1789 		pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation\n");
1790 		dump_stack();
1791 		break;
1792 	}
1793 }
1794 
1795 /*
1796  * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by
1797  * branch history in userspace. Not needed if BHI_NO is set.
1798  */
spec_ctrl_bhi_dis(void)1799 static bool __init spec_ctrl_bhi_dis(void)
1800 {
1801 	if (!boot_cpu_has(X86_FEATURE_BHI_CTRL))
1802 		return false;
1803 
1804 	x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S;
1805 	update_spec_ctrl(x86_spec_ctrl_base);
1806 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW);
1807 
1808 	return true;
1809 }
1810 
1811 enum bhi_mitigations {
1812 	BHI_MITIGATION_OFF,
1813 	BHI_MITIGATION_ON,
1814 	BHI_MITIGATION_VMEXIT_ONLY,
1815 };
1816 
1817 static enum bhi_mitigations bhi_mitigation __ro_after_init =
1818 	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_BHI) ? BHI_MITIGATION_ON : BHI_MITIGATION_OFF;
1819 
spectre_bhi_parse_cmdline(char * str)1820 static int __init spectre_bhi_parse_cmdline(char *str)
1821 {
1822 	if (!str)
1823 		return -EINVAL;
1824 
1825 	if (!strcmp(str, "off"))
1826 		bhi_mitigation = BHI_MITIGATION_OFF;
1827 	else if (!strcmp(str, "on"))
1828 		bhi_mitigation = BHI_MITIGATION_ON;
1829 	else if (!strcmp(str, "vmexit"))
1830 		bhi_mitigation = BHI_MITIGATION_VMEXIT_ONLY;
1831 	else
1832 		pr_err("Ignoring unknown spectre_bhi option (%s)", str);
1833 
1834 	return 0;
1835 }
1836 early_param("spectre_bhi", spectre_bhi_parse_cmdline);
1837 
bhi_select_mitigation(void)1838 static void __init bhi_select_mitigation(void)
1839 {
1840 	if (bhi_mitigation == BHI_MITIGATION_OFF)
1841 		return;
1842 
1843 	/* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */
1844 	if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
1845 	    !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) {
1846 		spec_ctrl_disable_kernel_rrsba();
1847 		if (rrsba_disabled)
1848 			return;
1849 	}
1850 
1851 	if (!IS_ENABLED(CONFIG_X86_64))
1852 		return;
1853 
1854 	/* Mitigate in hardware if supported */
1855 	if (spec_ctrl_bhi_dis())
1856 		return;
1857 
1858 	if (bhi_mitigation == BHI_MITIGATION_VMEXIT_ONLY) {
1859 		pr_info("Spectre BHI mitigation: SW BHB clearing on VM exit only\n");
1860 		setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT);
1861 		return;
1862 	}
1863 
1864 	pr_info("Spectre BHI mitigation: SW BHB clearing on syscall and VM exit\n");
1865 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP);
1866 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT);
1867 }
1868 
spectre_v2_select_mitigation(void)1869 static void __init spectre_v2_select_mitigation(void)
1870 {
1871 	enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1872 	enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1873 
1874 	/*
1875 	 * If the CPU is not affected and the command line mode is NONE or AUTO
1876 	 * then nothing to do.
1877 	 */
1878 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1879 	    (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1880 		return;
1881 
1882 	switch (cmd) {
1883 	case SPECTRE_V2_CMD_NONE:
1884 		return;
1885 
1886 	case SPECTRE_V2_CMD_FORCE:
1887 	case SPECTRE_V2_CMD_AUTO:
1888 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1889 			mode = SPECTRE_V2_EIBRS;
1890 			break;
1891 		}
1892 
1893 		if (IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY) &&
1894 		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1895 		    retbleed_cmd != RETBLEED_CMD_OFF &&
1896 		    retbleed_cmd != RETBLEED_CMD_STUFF &&
1897 		    boot_cpu_has(X86_FEATURE_IBRS) &&
1898 		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1899 			mode = SPECTRE_V2_IBRS;
1900 			break;
1901 		}
1902 
1903 		mode = spectre_v2_select_retpoline();
1904 		break;
1905 
1906 	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1907 		pr_err(SPECTRE_V2_LFENCE_MSG);
1908 		mode = SPECTRE_V2_LFENCE;
1909 		break;
1910 
1911 	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1912 		mode = SPECTRE_V2_RETPOLINE;
1913 		break;
1914 
1915 	case SPECTRE_V2_CMD_RETPOLINE:
1916 		mode = spectre_v2_select_retpoline();
1917 		break;
1918 
1919 	case SPECTRE_V2_CMD_IBRS:
1920 		mode = SPECTRE_V2_IBRS;
1921 		break;
1922 
1923 	case SPECTRE_V2_CMD_EIBRS:
1924 		mode = SPECTRE_V2_EIBRS;
1925 		break;
1926 
1927 	case SPECTRE_V2_CMD_EIBRS_LFENCE:
1928 		mode = SPECTRE_V2_EIBRS_LFENCE;
1929 		break;
1930 
1931 	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1932 		mode = SPECTRE_V2_EIBRS_RETPOLINE;
1933 		break;
1934 	}
1935 
1936 	if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1937 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1938 
1939 	if (spectre_v2_in_ibrs_mode(mode)) {
1940 		if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1941 			msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1942 		} else {
1943 			x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1944 			update_spec_ctrl(x86_spec_ctrl_base);
1945 		}
1946 	}
1947 
1948 	switch (mode) {
1949 	case SPECTRE_V2_NONE:
1950 	case SPECTRE_V2_EIBRS:
1951 		break;
1952 
1953 	case SPECTRE_V2_IBRS:
1954 		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1955 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1956 			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1957 		break;
1958 
1959 	case SPECTRE_V2_LFENCE:
1960 	case SPECTRE_V2_EIBRS_LFENCE:
1961 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1962 		fallthrough;
1963 
1964 	case SPECTRE_V2_RETPOLINE:
1965 	case SPECTRE_V2_EIBRS_RETPOLINE:
1966 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1967 		break;
1968 	}
1969 
1970 	/*
1971 	 * Disable alternate RSB predictions in kernel when indirect CALLs and
1972 	 * JMPs gets protection against BHI and Intramode-BTI, but RET
1973 	 * prediction from a non-RSB predictor is still a risk.
1974 	 */
1975 	if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1976 	    mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1977 	    mode == SPECTRE_V2_RETPOLINE)
1978 		spec_ctrl_disable_kernel_rrsba();
1979 
1980 	if (boot_cpu_has(X86_BUG_BHI))
1981 		bhi_select_mitigation();
1982 
1983 	spectre_v2_enabled = mode;
1984 	pr_info("%s\n", spectre_v2_strings[mode]);
1985 
1986 	/*
1987 	 * If Spectre v2 protection has been enabled, fill the RSB during a
1988 	 * context switch.  In general there are two types of RSB attacks
1989 	 * across context switches, for which the CALLs/RETs may be unbalanced.
1990 	 *
1991 	 * 1) RSB underflow
1992 	 *
1993 	 *    Some Intel parts have "bottomless RSB".  When the RSB is empty,
1994 	 *    speculated return targets may come from the branch predictor,
1995 	 *    which could have a user-poisoned BTB or BHB entry.
1996 	 *
1997 	 *    AMD has it even worse: *all* returns are speculated from the BTB,
1998 	 *    regardless of the state of the RSB.
1999 	 *
2000 	 *    When IBRS or eIBRS is enabled, the "user -> kernel" attack
2001 	 *    scenario is mitigated by the IBRS branch prediction isolation
2002 	 *    properties, so the RSB buffer filling wouldn't be necessary to
2003 	 *    protect against this type of attack.
2004 	 *
2005 	 *    The "user -> user" attack scenario is mitigated by RSB filling.
2006 	 *
2007 	 * 2) Poisoned RSB entry
2008 	 *
2009 	 *    If the 'next' in-kernel return stack is shorter than 'prev',
2010 	 *    'next' could be tricked into speculating with a user-poisoned RSB
2011 	 *    entry.
2012 	 *
2013 	 *    The "user -> kernel" attack scenario is mitigated by SMEP and
2014 	 *    eIBRS.
2015 	 *
2016 	 *    The "user -> user" scenario, also known as SpectreBHB, requires
2017 	 *    RSB clearing.
2018 	 *
2019 	 * So to mitigate all cases, unconditionally fill RSB on context
2020 	 * switches.
2021 	 *
2022 	 * FIXME: Is this pointless for retbleed-affected AMD?
2023 	 */
2024 	spectre_v2_select_rsb_mitigation(mode);
2025 
2026 	/*
2027 	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
2028 	 * and Enhanced IBRS protect firmware too, so enable IBRS around
2029 	 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
2030 	 * otherwise enabled.
2031 	 *
2032 	 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
2033 	 * the user might select retpoline on the kernel command line and if
2034 	 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
2035 	 * enable IBRS around firmware calls.
2036 	 */
2037 	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
2038 	    boot_cpu_has(X86_FEATURE_IBPB) &&
2039 	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2040 	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
2041 
2042 		if (retbleed_cmd != RETBLEED_CMD_IBPB) {
2043 			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
2044 			pr_info("Enabling Speculation Barrier for firmware calls\n");
2045 		}
2046 
2047 	} else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
2048 		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
2049 		pr_info("Enabling Restricted Speculation for firmware calls\n");
2050 	}
2051 
2052 	/* Set up IBPB and STIBP depending on the general spectre V2 command */
2053 	spectre_v2_cmd = cmd;
2054 }
2055 
update_stibp_msr(void * __unused)2056 static void update_stibp_msr(void * __unused)
2057 {
2058 	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
2059 	update_spec_ctrl(val);
2060 }
2061 
2062 /* Update x86_spec_ctrl_base in case SMT state changed. */
update_stibp_strict(void)2063 static void update_stibp_strict(void)
2064 {
2065 	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
2066 
2067 	if (sched_smt_active())
2068 		mask |= SPEC_CTRL_STIBP;
2069 
2070 	if (mask == x86_spec_ctrl_base)
2071 		return;
2072 
2073 	pr_info("Update user space SMT mitigation: STIBP %s\n",
2074 		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
2075 	x86_spec_ctrl_base = mask;
2076 	on_each_cpu(update_stibp_msr, NULL, 1);
2077 }
2078 
2079 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
update_indir_branch_cond(void)2080 static void update_indir_branch_cond(void)
2081 {
2082 	if (sched_smt_active())
2083 		static_branch_enable(&switch_to_cond_stibp);
2084 	else
2085 		static_branch_disable(&switch_to_cond_stibp);
2086 }
2087 
2088 #undef pr_fmt
2089 #define pr_fmt(fmt) fmt
2090 
2091 /* Update the static key controlling the MDS CPU buffer clear in idle */
update_mds_branch_idle(void)2092 static void update_mds_branch_idle(void)
2093 {
2094 	/*
2095 	 * Enable the idle clearing if SMT is active on CPUs which are
2096 	 * affected only by MSBDS and not any other MDS variant.
2097 	 *
2098 	 * The other variants cannot be mitigated when SMT is enabled, so
2099 	 * clearing the buffers on idle just to prevent the Store Buffer
2100 	 * repartitioning leak would be a window dressing exercise.
2101 	 */
2102 	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
2103 		return;
2104 
2105 	if (sched_smt_active()) {
2106 		static_branch_enable(&cpu_buf_idle_clear);
2107 	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
2108 		   (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) {
2109 		static_branch_disable(&cpu_buf_idle_clear);
2110 	}
2111 }
2112 
2113 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
2114 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
2115 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
2116 
2117 #undef pr_fmt
2118 #define pr_fmt(fmt)	"Transient Scheduler Attacks: " fmt
2119 
2120 enum tsa_mitigations {
2121 	TSA_MITIGATION_NONE,
2122 	TSA_MITIGATION_UCODE_NEEDED,
2123 	TSA_MITIGATION_USER_KERNEL,
2124 	TSA_MITIGATION_VM,
2125 	TSA_MITIGATION_FULL,
2126 };
2127 
2128 static const char * const tsa_strings[] = {
2129 	[TSA_MITIGATION_NONE]		= "Vulnerable",
2130 	[TSA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
2131 	[TSA_MITIGATION_USER_KERNEL]	= "Mitigation: Clear CPU buffers: user/kernel boundary",
2132 	[TSA_MITIGATION_VM]		= "Mitigation: Clear CPU buffers: VM",
2133 	[TSA_MITIGATION_FULL]		= "Mitigation: Clear CPU buffers",
2134 };
2135 
2136 static enum tsa_mitigations tsa_mitigation __ro_after_init =
2137 	IS_ENABLED(CONFIG_MITIGATION_TSA) ? TSA_MITIGATION_FULL : TSA_MITIGATION_NONE;
2138 
tsa_parse_cmdline(char * str)2139 static int __init tsa_parse_cmdline(char *str)
2140 {
2141 	if (!str)
2142 		return -EINVAL;
2143 
2144 	if (!strcmp(str, "off"))
2145 		tsa_mitigation = TSA_MITIGATION_NONE;
2146 	else if (!strcmp(str, "on"))
2147 		tsa_mitigation = TSA_MITIGATION_FULL;
2148 	else if (!strcmp(str, "user"))
2149 		tsa_mitigation = TSA_MITIGATION_USER_KERNEL;
2150 	else if (!strcmp(str, "vm"))
2151 		tsa_mitigation = TSA_MITIGATION_VM;
2152 	else
2153 		pr_err("Ignoring unknown tsa=%s option.\n", str);
2154 
2155 	return 0;
2156 }
2157 early_param("tsa", tsa_parse_cmdline);
2158 
tsa_select_mitigation(void)2159 static void __init tsa_select_mitigation(void)
2160 {
2161 	if (tsa_mitigation == TSA_MITIGATION_NONE)
2162 		return;
2163 
2164 	if (cpu_mitigations_off() || !boot_cpu_has_bug(X86_BUG_TSA)) {
2165 		tsa_mitigation = TSA_MITIGATION_NONE;
2166 		return;
2167 	}
2168 
2169 	if (!boot_cpu_has(X86_FEATURE_VERW_CLEAR))
2170 		tsa_mitigation = TSA_MITIGATION_UCODE_NEEDED;
2171 
2172 	switch (tsa_mitigation) {
2173 	case TSA_MITIGATION_USER_KERNEL:
2174 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
2175 		break;
2176 
2177 	case TSA_MITIGATION_VM:
2178 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM);
2179 		break;
2180 
2181 	case TSA_MITIGATION_UCODE_NEEDED:
2182 		if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
2183 			goto out;
2184 
2185 		pr_notice("Forcing mitigation on in a VM\n");
2186 
2187 		/*
2188 		 * On the off-chance that microcode has been updated
2189 		 * on the host, enable the mitigation in the guest just
2190 		 * in case.
2191 		 */
2192 		fallthrough;
2193 	case TSA_MITIGATION_FULL:
2194 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
2195 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM);
2196 		break;
2197 	default:
2198 		break;
2199 	}
2200 
2201 out:
2202 	pr_info("%s\n", tsa_strings[tsa_mitigation]);
2203 }
2204 
2205 #undef pr_fmt
2206 #define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
2207 
2208 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
2209 
2210 /* The kernel command line selection */
2211 enum ssb_mitigation_cmd {
2212 	SPEC_STORE_BYPASS_CMD_NONE,
2213 	SPEC_STORE_BYPASS_CMD_AUTO,
2214 	SPEC_STORE_BYPASS_CMD_ON,
2215 	SPEC_STORE_BYPASS_CMD_PRCTL,
2216 	SPEC_STORE_BYPASS_CMD_SECCOMP,
2217 };
2218 
2219 static const char * const ssb_strings[] = {
2220 	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
2221 	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
2222 	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
2223 	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
2224 };
2225 
2226 static const struct {
2227 	const char *option;
2228 	enum ssb_mitigation_cmd cmd;
2229 } ssb_mitigation_options[]  __initconst = {
2230 	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
2231 	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
2232 	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
2233 	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
2234 	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
2235 };
2236 
ssb_parse_cmdline(void)2237 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
2238 {
2239 	enum ssb_mitigation_cmd cmd;
2240 	char arg[20];
2241 	int ret, i;
2242 
2243 	cmd = IS_ENABLED(CONFIG_MITIGATION_SSB) ?
2244 		SPEC_STORE_BYPASS_CMD_AUTO : SPEC_STORE_BYPASS_CMD_NONE;
2245 	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
2246 	    cpu_mitigations_off()) {
2247 		return SPEC_STORE_BYPASS_CMD_NONE;
2248 	} else {
2249 		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
2250 					  arg, sizeof(arg));
2251 		if (ret < 0)
2252 			return cmd;
2253 
2254 		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
2255 			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
2256 				continue;
2257 
2258 			cmd = ssb_mitigation_options[i].cmd;
2259 			break;
2260 		}
2261 
2262 		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
2263 			pr_err("unknown option (%s). Switching to default mode\n", arg);
2264 			return cmd;
2265 		}
2266 	}
2267 
2268 	return cmd;
2269 }
2270 
__ssb_select_mitigation(void)2271 static enum ssb_mitigation __init __ssb_select_mitigation(void)
2272 {
2273 	enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
2274 	enum ssb_mitigation_cmd cmd;
2275 
2276 	if (!boot_cpu_has(X86_FEATURE_SSBD))
2277 		return mode;
2278 
2279 	cmd = ssb_parse_cmdline();
2280 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
2281 	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
2282 	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
2283 		return mode;
2284 
2285 	switch (cmd) {
2286 	case SPEC_STORE_BYPASS_CMD_SECCOMP:
2287 		/*
2288 		 * Choose prctl+seccomp as the default mode if seccomp is
2289 		 * enabled.
2290 		 */
2291 		if (IS_ENABLED(CONFIG_SECCOMP))
2292 			mode = SPEC_STORE_BYPASS_SECCOMP;
2293 		else
2294 			mode = SPEC_STORE_BYPASS_PRCTL;
2295 		break;
2296 	case SPEC_STORE_BYPASS_CMD_ON:
2297 		mode = SPEC_STORE_BYPASS_DISABLE;
2298 		break;
2299 	case SPEC_STORE_BYPASS_CMD_AUTO:
2300 	case SPEC_STORE_BYPASS_CMD_PRCTL:
2301 		mode = SPEC_STORE_BYPASS_PRCTL;
2302 		break;
2303 	case SPEC_STORE_BYPASS_CMD_NONE:
2304 		break;
2305 	}
2306 
2307 	/*
2308 	 * We have three CPU feature flags that are in play here:
2309 	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
2310 	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
2311 	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
2312 	 */
2313 	if (mode == SPEC_STORE_BYPASS_DISABLE) {
2314 		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
2315 		/*
2316 		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
2317 		 * use a completely different MSR and bit dependent on family.
2318 		 */
2319 		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
2320 		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
2321 			x86_amd_ssb_disable();
2322 		} else {
2323 			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
2324 			update_spec_ctrl(x86_spec_ctrl_base);
2325 		}
2326 	}
2327 
2328 	return mode;
2329 }
2330 
ssb_select_mitigation(void)2331 static void ssb_select_mitigation(void)
2332 {
2333 	ssb_mode = __ssb_select_mitigation();
2334 
2335 	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2336 		pr_info("%s\n", ssb_strings[ssb_mode]);
2337 }
2338 
2339 #undef pr_fmt
2340 #define pr_fmt(fmt)     "Speculation prctl: " fmt
2341 
task_update_spec_tif(struct task_struct * tsk)2342 static void task_update_spec_tif(struct task_struct *tsk)
2343 {
2344 	/* Force the update of the real TIF bits */
2345 	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
2346 
2347 	/*
2348 	 * Immediately update the speculation control MSRs for the current
2349 	 * task, but for a non-current task delay setting the CPU
2350 	 * mitigation until it is scheduled next.
2351 	 *
2352 	 * This can only happen for SECCOMP mitigation. For PRCTL it's
2353 	 * always the current task.
2354 	 */
2355 	if (tsk == current)
2356 		speculation_ctrl_update_current();
2357 }
2358 
l1d_flush_prctl_set(struct task_struct * task,unsigned long ctrl)2359 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2360 {
2361 
2362 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2363 		return -EPERM;
2364 
2365 	switch (ctrl) {
2366 	case PR_SPEC_ENABLE:
2367 		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2368 		return 0;
2369 	case PR_SPEC_DISABLE:
2370 		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2371 		return 0;
2372 	default:
2373 		return -ERANGE;
2374 	}
2375 }
2376 
ssb_prctl_set(struct task_struct * task,unsigned long ctrl)2377 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2378 {
2379 	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2380 	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2381 		return -ENXIO;
2382 
2383 	switch (ctrl) {
2384 	case PR_SPEC_ENABLE:
2385 		/* If speculation is force disabled, enable is not allowed */
2386 		if (task_spec_ssb_force_disable(task))
2387 			return -EPERM;
2388 		task_clear_spec_ssb_disable(task);
2389 		task_clear_spec_ssb_noexec(task);
2390 		task_update_spec_tif(task);
2391 		break;
2392 	case PR_SPEC_DISABLE:
2393 		task_set_spec_ssb_disable(task);
2394 		task_clear_spec_ssb_noexec(task);
2395 		task_update_spec_tif(task);
2396 		break;
2397 	case PR_SPEC_FORCE_DISABLE:
2398 		task_set_spec_ssb_disable(task);
2399 		task_set_spec_ssb_force_disable(task);
2400 		task_clear_spec_ssb_noexec(task);
2401 		task_update_spec_tif(task);
2402 		break;
2403 	case PR_SPEC_DISABLE_NOEXEC:
2404 		if (task_spec_ssb_force_disable(task))
2405 			return -EPERM;
2406 		task_set_spec_ssb_disable(task);
2407 		task_set_spec_ssb_noexec(task);
2408 		task_update_spec_tif(task);
2409 		break;
2410 	default:
2411 		return -ERANGE;
2412 	}
2413 	return 0;
2414 }
2415 
is_spec_ib_user_controlled(void)2416 static bool is_spec_ib_user_controlled(void)
2417 {
2418 	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2419 		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2420 		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2421 		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2422 }
2423 
ib_prctl_set(struct task_struct * task,unsigned long ctrl)2424 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2425 {
2426 	switch (ctrl) {
2427 	case PR_SPEC_ENABLE:
2428 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2429 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2430 			return 0;
2431 
2432 		/*
2433 		 * With strict mode for both IBPB and STIBP, the instruction
2434 		 * code paths avoid checking this task flag and instead,
2435 		 * unconditionally run the instruction. However, STIBP and IBPB
2436 		 * are independent and either can be set to conditionally
2437 		 * enabled regardless of the mode of the other.
2438 		 *
2439 		 * If either is set to conditional, allow the task flag to be
2440 		 * updated, unless it was force-disabled by a previous prctl
2441 		 * call. Currently, this is possible on an AMD CPU which has the
2442 		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2443 		 * kernel is booted with 'spectre_v2_user=seccomp', then
2444 		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2445 		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2446 		 */
2447 		if (!is_spec_ib_user_controlled() ||
2448 		    task_spec_ib_force_disable(task))
2449 			return -EPERM;
2450 
2451 		task_clear_spec_ib_disable(task);
2452 		task_update_spec_tif(task);
2453 		break;
2454 	case PR_SPEC_DISABLE:
2455 	case PR_SPEC_FORCE_DISABLE:
2456 		/*
2457 		 * Indirect branch speculation is always allowed when
2458 		 * mitigation is force disabled.
2459 		 */
2460 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2461 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2462 			return -EPERM;
2463 
2464 		if (!is_spec_ib_user_controlled())
2465 			return 0;
2466 
2467 		task_set_spec_ib_disable(task);
2468 		if (ctrl == PR_SPEC_FORCE_DISABLE)
2469 			task_set_spec_ib_force_disable(task);
2470 		task_update_spec_tif(task);
2471 		if (task == current)
2472 			indirect_branch_prediction_barrier();
2473 		break;
2474 	default:
2475 		return -ERANGE;
2476 	}
2477 	return 0;
2478 }
2479 
arch_prctl_spec_ctrl_set(struct task_struct * task,unsigned long which,unsigned long ctrl)2480 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2481 			     unsigned long ctrl)
2482 {
2483 	switch (which) {
2484 	case PR_SPEC_STORE_BYPASS:
2485 		return ssb_prctl_set(task, ctrl);
2486 	case PR_SPEC_INDIRECT_BRANCH:
2487 		return ib_prctl_set(task, ctrl);
2488 	case PR_SPEC_L1D_FLUSH:
2489 		return l1d_flush_prctl_set(task, ctrl);
2490 	default:
2491 		return -ENODEV;
2492 	}
2493 }
2494 
2495 #ifdef CONFIG_SECCOMP
arch_seccomp_spec_mitigate(struct task_struct * task)2496 void arch_seccomp_spec_mitigate(struct task_struct *task)
2497 {
2498 	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2499 		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2500 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2501 	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2502 		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2503 }
2504 #endif
2505 
l1d_flush_prctl_get(struct task_struct * task)2506 static int l1d_flush_prctl_get(struct task_struct *task)
2507 {
2508 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2509 		return PR_SPEC_FORCE_DISABLE;
2510 
2511 	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2512 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2513 	else
2514 		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2515 }
2516 
ssb_prctl_get(struct task_struct * task)2517 static int ssb_prctl_get(struct task_struct *task)
2518 {
2519 	switch (ssb_mode) {
2520 	case SPEC_STORE_BYPASS_NONE:
2521 		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2522 			return PR_SPEC_ENABLE;
2523 		return PR_SPEC_NOT_AFFECTED;
2524 	case SPEC_STORE_BYPASS_DISABLE:
2525 		return PR_SPEC_DISABLE;
2526 	case SPEC_STORE_BYPASS_SECCOMP:
2527 	case SPEC_STORE_BYPASS_PRCTL:
2528 		if (task_spec_ssb_force_disable(task))
2529 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2530 		if (task_spec_ssb_noexec(task))
2531 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2532 		if (task_spec_ssb_disable(task))
2533 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2534 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2535 	}
2536 	BUG();
2537 }
2538 
ib_prctl_get(struct task_struct * task)2539 static int ib_prctl_get(struct task_struct *task)
2540 {
2541 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2542 		return PR_SPEC_NOT_AFFECTED;
2543 
2544 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2545 	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2546 		return PR_SPEC_ENABLE;
2547 	else if (is_spec_ib_user_controlled()) {
2548 		if (task_spec_ib_force_disable(task))
2549 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2550 		if (task_spec_ib_disable(task))
2551 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2552 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2553 	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2554 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2555 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2556 		return PR_SPEC_DISABLE;
2557 	else
2558 		return PR_SPEC_NOT_AFFECTED;
2559 }
2560 
arch_prctl_spec_ctrl_get(struct task_struct * task,unsigned long which)2561 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2562 {
2563 	switch (which) {
2564 	case PR_SPEC_STORE_BYPASS:
2565 		return ssb_prctl_get(task);
2566 	case PR_SPEC_INDIRECT_BRANCH:
2567 		return ib_prctl_get(task);
2568 	case PR_SPEC_L1D_FLUSH:
2569 		return l1d_flush_prctl_get(task);
2570 	default:
2571 		return -ENODEV;
2572 	}
2573 }
2574 
x86_spec_ctrl_setup_ap(void)2575 void x86_spec_ctrl_setup_ap(void)
2576 {
2577 	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2578 		update_spec_ctrl(x86_spec_ctrl_base);
2579 
2580 	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2581 		x86_amd_ssb_disable();
2582 }
2583 
2584 bool itlb_multihit_kvm_mitigation;
2585 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2586 
2587 #undef pr_fmt
2588 #define pr_fmt(fmt)	"L1TF: " fmt
2589 
2590 /* Default mitigation for L1TF-affected CPUs */
2591 enum l1tf_mitigations l1tf_mitigation __ro_after_init =
2592 	IS_ENABLED(CONFIG_MITIGATION_L1TF) ? L1TF_MITIGATION_FLUSH : L1TF_MITIGATION_OFF;
2593 #if IS_ENABLED(CONFIG_KVM_INTEL)
2594 EXPORT_SYMBOL_GPL(l1tf_mitigation);
2595 #endif
2596 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2597 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2598 
2599 /*
2600  * These CPUs all support 44bits physical address space internally in the
2601  * cache but CPUID can report a smaller number of physical address bits.
2602  *
2603  * The L1TF mitigation uses the top most address bit for the inversion of
2604  * non present PTEs. When the installed memory reaches into the top most
2605  * address bit due to memory holes, which has been observed on machines
2606  * which report 36bits physical address bits and have 32G RAM installed,
2607  * then the mitigation range check in l1tf_select_mitigation() triggers.
2608  * This is a false positive because the mitigation is still possible due to
2609  * the fact that the cache uses 44bit internally. Use the cache bits
2610  * instead of the reported physical bits and adjust them on the affected
2611  * machines to 44bit if the reported bits are less than 44.
2612  */
override_cache_bits(struct cpuinfo_x86 * c)2613 static void override_cache_bits(struct cpuinfo_x86 *c)
2614 {
2615 	if (c->x86 != 6)
2616 		return;
2617 
2618 	switch (c->x86_vfm) {
2619 	case INTEL_NEHALEM:
2620 	case INTEL_WESTMERE:
2621 	case INTEL_SANDYBRIDGE:
2622 	case INTEL_IVYBRIDGE:
2623 	case INTEL_HASWELL:
2624 	case INTEL_HASWELL_L:
2625 	case INTEL_HASWELL_G:
2626 	case INTEL_BROADWELL:
2627 	case INTEL_BROADWELL_G:
2628 	case INTEL_SKYLAKE_L:
2629 	case INTEL_SKYLAKE:
2630 	case INTEL_KABYLAKE_L:
2631 	case INTEL_KABYLAKE:
2632 		if (c->x86_cache_bits < 44)
2633 			c->x86_cache_bits = 44;
2634 		break;
2635 	}
2636 }
2637 
l1tf_select_mitigation(void)2638 static void __init l1tf_select_mitigation(void)
2639 {
2640 	u64 half_pa;
2641 
2642 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2643 		return;
2644 
2645 	if (cpu_mitigations_off())
2646 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2647 	else if (cpu_mitigations_auto_nosmt())
2648 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2649 
2650 	override_cache_bits(&boot_cpu_data);
2651 
2652 	switch (l1tf_mitigation) {
2653 	case L1TF_MITIGATION_OFF:
2654 	case L1TF_MITIGATION_FLUSH_NOWARN:
2655 	case L1TF_MITIGATION_FLUSH:
2656 		break;
2657 	case L1TF_MITIGATION_FLUSH_NOSMT:
2658 	case L1TF_MITIGATION_FULL:
2659 		cpu_smt_disable(false);
2660 		break;
2661 	case L1TF_MITIGATION_FULL_FORCE:
2662 		cpu_smt_disable(true);
2663 		break;
2664 	}
2665 
2666 #if CONFIG_PGTABLE_LEVELS == 2
2667 	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2668 	return;
2669 #endif
2670 
2671 	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2672 	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2673 			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2674 		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2675 		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2676 				half_pa);
2677 		pr_info("However, doing so will make a part of your RAM unusable.\n");
2678 		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2679 		return;
2680 	}
2681 
2682 	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2683 }
2684 
l1tf_cmdline(char * str)2685 static int __init l1tf_cmdline(char *str)
2686 {
2687 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2688 		return 0;
2689 
2690 	if (!str)
2691 		return -EINVAL;
2692 
2693 	if (!strcmp(str, "off"))
2694 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2695 	else if (!strcmp(str, "flush,nowarn"))
2696 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2697 	else if (!strcmp(str, "flush"))
2698 		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2699 	else if (!strcmp(str, "flush,nosmt"))
2700 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2701 	else if (!strcmp(str, "full"))
2702 		l1tf_mitigation = L1TF_MITIGATION_FULL;
2703 	else if (!strcmp(str, "full,force"))
2704 		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2705 
2706 	return 0;
2707 }
2708 early_param("l1tf", l1tf_cmdline);
2709 
2710 #undef pr_fmt
2711 #define pr_fmt(fmt)	"Speculative Return Stack Overflow: " fmt
2712 
2713 enum srso_mitigation {
2714 	SRSO_MITIGATION_NONE,
2715 	SRSO_MITIGATION_UCODE_NEEDED,
2716 	SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
2717 	SRSO_MITIGATION_MICROCODE,
2718 	SRSO_MITIGATION_SAFE_RET,
2719 	SRSO_MITIGATION_IBPB,
2720 	SRSO_MITIGATION_IBPB_ON_VMEXIT,
2721 	SRSO_MITIGATION_BP_SPEC_REDUCE,
2722 };
2723 
2724 enum srso_mitigation_cmd {
2725 	SRSO_CMD_OFF,
2726 	SRSO_CMD_MICROCODE,
2727 	SRSO_CMD_SAFE_RET,
2728 	SRSO_CMD_IBPB,
2729 	SRSO_CMD_IBPB_ON_VMEXIT,
2730 };
2731 
2732 static const char * const srso_strings[] = {
2733 	[SRSO_MITIGATION_NONE]			= "Vulnerable",
2734 	[SRSO_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
2735 	[SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED]	= "Vulnerable: Safe RET, no microcode",
2736 	[SRSO_MITIGATION_MICROCODE]		= "Vulnerable: Microcode, no safe RET",
2737 	[SRSO_MITIGATION_SAFE_RET]		= "Mitigation: Safe RET",
2738 	[SRSO_MITIGATION_IBPB]			= "Mitigation: IBPB",
2739 	[SRSO_MITIGATION_IBPB_ON_VMEXIT]	= "Mitigation: IBPB on VMEXIT only",
2740 	[SRSO_MITIGATION_BP_SPEC_REDUCE]	= "Mitigation: Reduced Speculation"
2741 };
2742 
2743 static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE;
2744 static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET;
2745 
srso_parse_cmdline(char * str)2746 static int __init srso_parse_cmdline(char *str)
2747 {
2748 	if (!str)
2749 		return -EINVAL;
2750 
2751 	if (!strcmp(str, "off"))
2752 		srso_cmd = SRSO_CMD_OFF;
2753 	else if (!strcmp(str, "microcode"))
2754 		srso_cmd = SRSO_CMD_MICROCODE;
2755 	else if (!strcmp(str, "safe-ret"))
2756 		srso_cmd = SRSO_CMD_SAFE_RET;
2757 	else if (!strcmp(str, "ibpb"))
2758 		srso_cmd = SRSO_CMD_IBPB;
2759 	else if (!strcmp(str, "ibpb-vmexit"))
2760 		srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT;
2761 	else
2762 		pr_err("Ignoring unknown SRSO option (%s).", str);
2763 
2764 	return 0;
2765 }
2766 early_param("spec_rstack_overflow", srso_parse_cmdline);
2767 
2768 #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2769 
srso_select_mitigation(void)2770 static void __init srso_select_mitigation(void)
2771 {
2772 	bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE);
2773 
2774 	if (!boot_cpu_has_bug(X86_BUG_SRSO) ||
2775 	    cpu_mitigations_off() ||
2776 	    srso_cmd == SRSO_CMD_OFF) {
2777 		if (boot_cpu_has(X86_FEATURE_SBPB))
2778 			x86_pred_cmd = PRED_CMD_SBPB;
2779 		goto out;
2780 	}
2781 
2782 	if (has_microcode) {
2783 		/*
2784 		 * Zen1/2 with SMT off aren't vulnerable after the right
2785 		 * IBPB microcode has been applied.
2786 		 *
2787 		 * Zen1/2 don't have SBPB, no need to try to enable it here.
2788 		 */
2789 		if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2790 			setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2791 			goto out;
2792 		}
2793 
2794 		if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2795 			srso_mitigation = SRSO_MITIGATION_IBPB;
2796 			goto out;
2797 		}
2798 	} else {
2799 		pr_warn("IBPB-extending microcode not applied!\n");
2800 		pr_warn(SRSO_NOTICE);
2801 
2802 		/* may be overwritten by SRSO_CMD_SAFE_RET below */
2803 		srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
2804 	}
2805 
2806 	switch (srso_cmd) {
2807 	case SRSO_CMD_MICROCODE:
2808 		if (has_microcode) {
2809 			srso_mitigation = SRSO_MITIGATION_MICROCODE;
2810 			pr_warn(SRSO_NOTICE);
2811 		}
2812 		break;
2813 
2814 	case SRSO_CMD_SAFE_RET:
2815 		if (boot_cpu_has(X86_FEATURE_SRSO_USER_KERNEL_NO))
2816 			goto ibpb_on_vmexit;
2817 
2818 		if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
2819 			/*
2820 			 * Enable the return thunk for generated code
2821 			 * like ftrace, static_call, etc.
2822 			 */
2823 			setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2824 			setup_force_cpu_cap(X86_FEATURE_UNRET);
2825 
2826 			if (boot_cpu_data.x86 == 0x19) {
2827 				setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2828 				set_return_thunk(srso_alias_return_thunk);
2829 			} else {
2830 				setup_force_cpu_cap(X86_FEATURE_SRSO);
2831 				set_return_thunk(srso_return_thunk);
2832 			}
2833 			if (has_microcode)
2834 				srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2835 			else
2836 				srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
2837 		} else {
2838 			pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
2839 		}
2840 		break;
2841 
2842 	case SRSO_CMD_IBPB:
2843 		if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
2844 			if (has_microcode) {
2845 				setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
2846 				setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2847 				srso_mitigation = SRSO_MITIGATION_IBPB;
2848 
2849 				/*
2850 				 * IBPB on entry already obviates the need for
2851 				 * software-based untraining so clear those in case some
2852 				 * other mitigation like Retbleed has selected them.
2853 				 */
2854 				setup_clear_cpu_cap(X86_FEATURE_UNRET);
2855 				setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
2856 
2857 				/*
2858 				 * There is no need for RSB filling: entry_ibpb() ensures
2859 				 * all predictions, including the RSB, are invalidated,
2860 				 * regardless of IBPB implementation.
2861 				 */
2862 				setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
2863 			}
2864 		} else {
2865 			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
2866 		}
2867 		break;
2868 
2869 ibpb_on_vmexit:
2870 	case SRSO_CMD_IBPB_ON_VMEXIT:
2871 		if (boot_cpu_has(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) {
2872 			pr_notice("Reducing speculation to address VM/HV SRSO attack vector.\n");
2873 			srso_mitigation = SRSO_MITIGATION_BP_SPEC_REDUCE;
2874 			break;
2875 		}
2876 
2877 		if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
2878 			if (has_microcode) {
2879 				setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2880 				srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2881 
2882 				/*
2883 				 * There is no need for RSB filling: entry_ibpb() ensures
2884 				 * all predictions, including the RSB, are invalidated,
2885 				 * regardless of IBPB implementation.
2886 				 */
2887 				setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
2888 			}
2889 		} else {
2890 			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
2891 		}
2892 		break;
2893 	default:
2894 		break;
2895 	}
2896 
2897 out:
2898 	/*
2899 	 * Clear the feature flag if this mitigation is not selected as that
2900 	 * feature flag controls the BpSpecReduce MSR bit toggling in KVM.
2901 	 */
2902 	if (srso_mitigation != SRSO_MITIGATION_BP_SPEC_REDUCE)
2903 		setup_clear_cpu_cap(X86_FEATURE_SRSO_BP_SPEC_REDUCE);
2904 
2905 	if (srso_mitigation != SRSO_MITIGATION_NONE)
2906 		pr_info("%s\n", srso_strings[srso_mitigation]);
2907 }
2908 
2909 #undef pr_fmt
2910 #define pr_fmt(fmt)	"VMSCAPE: " fmt
2911 
2912 enum vmscape_mitigations {
2913 	VMSCAPE_MITIGATION_NONE,
2914 	VMSCAPE_MITIGATION_AUTO,
2915 	VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER,
2916 	VMSCAPE_MITIGATION_IBPB_ON_VMEXIT,
2917 };
2918 
2919 static const char * const vmscape_strings[] = {
2920 	[VMSCAPE_MITIGATION_NONE]		= "Vulnerable",
2921 	/* [VMSCAPE_MITIGATION_AUTO] */
2922 	[VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER]	= "Mitigation: IBPB before exit to userspace",
2923 	[VMSCAPE_MITIGATION_IBPB_ON_VMEXIT]	= "Mitigation: IBPB on VMEXIT",
2924 };
2925 
2926 static enum vmscape_mitigations vmscape_mitigation __ro_after_init =
2927 	IS_ENABLED(CONFIG_MITIGATION_VMSCAPE) ? VMSCAPE_MITIGATION_AUTO : VMSCAPE_MITIGATION_NONE;
2928 
vmscape_parse_cmdline(char * str)2929 static int __init vmscape_parse_cmdline(char *str)
2930 {
2931 	if (!str)
2932 		return -EINVAL;
2933 
2934 	if (!strcmp(str, "off")) {
2935 		vmscape_mitigation = VMSCAPE_MITIGATION_NONE;
2936 	} else if (!strcmp(str, "ibpb")) {
2937 		vmscape_mitigation = VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER;
2938 	} else if (!strcmp(str, "force")) {
2939 		setup_force_cpu_bug(X86_BUG_VMSCAPE);
2940 		vmscape_mitigation = VMSCAPE_MITIGATION_AUTO;
2941 	} else {
2942 		pr_err("Ignoring unknown vmscape=%s option.\n", str);
2943 	}
2944 
2945 	return 0;
2946 }
2947 early_param("vmscape", vmscape_parse_cmdline);
2948 
vmscape_select_mitigation(void)2949 static void __init vmscape_select_mitigation(void)
2950 {
2951 	if (cpu_mitigations_off() ||
2952 	    !boot_cpu_has_bug(X86_BUG_VMSCAPE) ||
2953 	    !boot_cpu_has(X86_FEATURE_IBPB)) {
2954 		vmscape_mitigation = VMSCAPE_MITIGATION_NONE;
2955 		return;
2956 	}
2957 
2958 	if (vmscape_mitigation == VMSCAPE_MITIGATION_AUTO)
2959 		vmscape_mitigation = VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER;
2960 
2961 	if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB ||
2962 	    srso_mitigation == SRSO_MITIGATION_IBPB_ON_VMEXIT)
2963 		vmscape_mitigation = VMSCAPE_MITIGATION_IBPB_ON_VMEXIT;
2964 
2965 	if (vmscape_mitigation == VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER)
2966 		setup_force_cpu_cap(X86_FEATURE_IBPB_EXIT_TO_USER);
2967 
2968 	pr_info("%s\n", vmscape_strings[vmscape_mitigation]);
2969 }
2970 
2971 #undef pr_fmt
2972 #define pr_fmt(fmt) fmt
2973 
2974 #define VMSCAPE_MSG_SMT "VMSCAPE: SMT on, STIBP is required for full protection. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/vmscape.html for more details.\n"
2975 
cpu_bugs_smt_update(void)2976 void cpu_bugs_smt_update(void)
2977 {
2978 	mutex_lock(&spec_ctrl_mutex);
2979 
2980 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2981 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2982 		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
2983 
2984 	switch (spectre_v2_user_stibp) {
2985 	case SPECTRE_V2_USER_NONE:
2986 		break;
2987 	case SPECTRE_V2_USER_STRICT:
2988 	case SPECTRE_V2_USER_STRICT_PREFERRED:
2989 		update_stibp_strict();
2990 		break;
2991 	case SPECTRE_V2_USER_PRCTL:
2992 	case SPECTRE_V2_USER_SECCOMP:
2993 		update_indir_branch_cond();
2994 		break;
2995 	}
2996 
2997 	switch (mds_mitigation) {
2998 	case MDS_MITIGATION_FULL:
2999 	case MDS_MITIGATION_VMWERV:
3000 		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
3001 			pr_warn_once(MDS_MSG_SMT);
3002 		update_mds_branch_idle();
3003 		break;
3004 	case MDS_MITIGATION_OFF:
3005 		break;
3006 	}
3007 
3008 	switch (taa_mitigation) {
3009 	case TAA_MITIGATION_VERW:
3010 	case TAA_MITIGATION_UCODE_NEEDED:
3011 		if (sched_smt_active())
3012 			pr_warn_once(TAA_MSG_SMT);
3013 		break;
3014 	case TAA_MITIGATION_TSX_DISABLED:
3015 	case TAA_MITIGATION_OFF:
3016 		break;
3017 	}
3018 
3019 	switch (mmio_mitigation) {
3020 	case MMIO_MITIGATION_VERW:
3021 	case MMIO_MITIGATION_UCODE_NEEDED:
3022 		if (sched_smt_active())
3023 			pr_warn_once(MMIO_MSG_SMT);
3024 		break;
3025 	case MMIO_MITIGATION_OFF:
3026 		break;
3027 	}
3028 
3029 	switch (tsa_mitigation) {
3030 	case TSA_MITIGATION_USER_KERNEL:
3031 	case TSA_MITIGATION_VM:
3032 	case TSA_MITIGATION_FULL:
3033 	case TSA_MITIGATION_UCODE_NEEDED:
3034 		/*
3035 		 * TSA-SQ can potentially lead to info leakage between
3036 		 * SMT threads.
3037 		 */
3038 		if (sched_smt_active())
3039 			static_branch_enable(&cpu_buf_idle_clear);
3040 		else
3041 			static_branch_disable(&cpu_buf_idle_clear);
3042 		break;
3043 	case TSA_MITIGATION_NONE:
3044 		break;
3045 	}
3046 
3047 	switch (vmscape_mitigation) {
3048 	case VMSCAPE_MITIGATION_NONE:
3049 	case VMSCAPE_MITIGATION_AUTO:
3050 		break;
3051 	case VMSCAPE_MITIGATION_IBPB_ON_VMEXIT:
3052 	case VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER:
3053 		/*
3054 		 * Hypervisors can be attacked across-threads, warn for SMT when
3055 		 * STIBP is not already enabled system-wide.
3056 		 *
3057 		 * Intel eIBRS (!AUTOIBRS) implies STIBP on.
3058 		 */
3059 		if (!sched_smt_active() ||
3060 		    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
3061 		    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ||
3062 		    (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
3063 		     !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
3064 			break;
3065 		pr_warn_once(VMSCAPE_MSG_SMT);
3066 		break;
3067 	}
3068 
3069 	mutex_unlock(&spec_ctrl_mutex);
3070 }
3071 
3072 #ifdef CONFIG_SYSFS
3073 
3074 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
3075 
3076 #if IS_ENABLED(CONFIG_KVM_INTEL)
3077 static const char * const l1tf_vmx_states[] = {
3078 	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
3079 	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
3080 	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
3081 	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
3082 	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
3083 	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
3084 };
3085 
l1tf_show_state(char * buf)3086 static ssize_t l1tf_show_state(char *buf)
3087 {
3088 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
3089 		return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
3090 
3091 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
3092 	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
3093 	     sched_smt_active())) {
3094 		return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
3095 				  l1tf_vmx_states[l1tf_vmx_mitigation]);
3096 	}
3097 
3098 	return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
3099 			  l1tf_vmx_states[l1tf_vmx_mitigation],
3100 			  sched_smt_active() ? "vulnerable" : "disabled");
3101 }
3102 
itlb_multihit_show_state(char * buf)3103 static ssize_t itlb_multihit_show_state(char *buf)
3104 {
3105 	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
3106 	    !boot_cpu_has(X86_FEATURE_VMX))
3107 		return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
3108 	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
3109 		return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
3110 	else if (itlb_multihit_kvm_mitigation)
3111 		return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
3112 	else
3113 		return sysfs_emit(buf, "KVM: Vulnerable\n");
3114 }
3115 #else
l1tf_show_state(char * buf)3116 static ssize_t l1tf_show_state(char *buf)
3117 {
3118 	return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
3119 }
3120 
itlb_multihit_show_state(char * buf)3121 static ssize_t itlb_multihit_show_state(char *buf)
3122 {
3123 	return sysfs_emit(buf, "Processor vulnerable\n");
3124 }
3125 #endif
3126 
mds_show_state(char * buf)3127 static ssize_t mds_show_state(char *buf)
3128 {
3129 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
3130 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
3131 				  mds_strings[mds_mitigation]);
3132 	}
3133 
3134 	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
3135 		return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
3136 				  (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
3137 				   sched_smt_active() ? "mitigated" : "disabled"));
3138 	}
3139 
3140 	return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
3141 			  sched_smt_active() ? "vulnerable" : "disabled");
3142 }
3143 
tsx_async_abort_show_state(char * buf)3144 static ssize_t tsx_async_abort_show_state(char *buf)
3145 {
3146 	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
3147 	    (taa_mitigation == TAA_MITIGATION_OFF))
3148 		return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
3149 
3150 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
3151 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
3152 				  taa_strings[taa_mitigation]);
3153 	}
3154 
3155 	return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
3156 			  sched_smt_active() ? "vulnerable" : "disabled");
3157 }
3158 
mmio_stale_data_show_state(char * buf)3159 static ssize_t mmio_stale_data_show_state(char *buf)
3160 {
3161 	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
3162 		return sysfs_emit(buf, "Unknown: No mitigations\n");
3163 
3164 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
3165 		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
3166 
3167 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
3168 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
3169 				  mmio_strings[mmio_mitigation]);
3170 	}
3171 
3172 	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
3173 			  sched_smt_active() ? "vulnerable" : "disabled");
3174 }
3175 
rfds_show_state(char * buf)3176 static ssize_t rfds_show_state(char *buf)
3177 {
3178 	return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]);
3179 }
3180 
its_show_state(char * buf)3181 static ssize_t its_show_state(char *buf)
3182 {
3183 	return sysfs_emit(buf, "%s\n", its_strings[its_mitigation]);
3184 }
3185 
stibp_state(void)3186 static char *stibp_state(void)
3187 {
3188 	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
3189 	    !boot_cpu_has(X86_FEATURE_AUTOIBRS))
3190 		return "";
3191 
3192 	switch (spectre_v2_user_stibp) {
3193 	case SPECTRE_V2_USER_NONE:
3194 		return "; STIBP: disabled";
3195 	case SPECTRE_V2_USER_STRICT:
3196 		return "; STIBP: forced";
3197 	case SPECTRE_V2_USER_STRICT_PREFERRED:
3198 		return "; STIBP: always-on";
3199 	case SPECTRE_V2_USER_PRCTL:
3200 	case SPECTRE_V2_USER_SECCOMP:
3201 		if (static_key_enabled(&switch_to_cond_stibp))
3202 			return "; STIBP: conditional";
3203 	}
3204 	return "";
3205 }
3206 
ibpb_state(void)3207 static char *ibpb_state(void)
3208 {
3209 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
3210 		if (static_key_enabled(&switch_mm_always_ibpb))
3211 			return "; IBPB: always-on";
3212 		if (static_key_enabled(&switch_mm_cond_ibpb))
3213 			return "; IBPB: conditional";
3214 		return "; IBPB: disabled";
3215 	}
3216 	return "";
3217 }
3218 
pbrsb_eibrs_state(void)3219 static char *pbrsb_eibrs_state(void)
3220 {
3221 	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
3222 		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
3223 		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
3224 			return "; PBRSB-eIBRS: SW sequence";
3225 		else
3226 			return "; PBRSB-eIBRS: Vulnerable";
3227 	} else {
3228 		return "; PBRSB-eIBRS: Not affected";
3229 	}
3230 }
3231 
spectre_bhi_state(void)3232 static const char *spectre_bhi_state(void)
3233 {
3234 	if (!boot_cpu_has_bug(X86_BUG_BHI))
3235 		return "; BHI: Not affected";
3236 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW))
3237 		return "; BHI: BHI_DIS_S";
3238 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP))
3239 		return "; BHI: SW loop, KVM: SW loop";
3240 	else if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
3241 		 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE) &&
3242 		 rrsba_disabled)
3243 		return "; BHI: Retpoline";
3244 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT))
3245 		return "; BHI: Vulnerable, KVM: SW loop";
3246 
3247 	return "; BHI: Vulnerable";
3248 }
3249 
spectre_v2_show_state(char * buf)3250 static ssize_t spectre_v2_show_state(char *buf)
3251 {
3252 	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
3253 		return sysfs_emit(buf, "Vulnerable: LFENCE\n");
3254 
3255 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
3256 		return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
3257 
3258 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
3259 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
3260 		return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
3261 
3262 	return sysfs_emit(buf, "%s%s%s%s%s%s%s%s\n",
3263 			  spectre_v2_strings[spectre_v2_enabled],
3264 			  ibpb_state(),
3265 			  boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "",
3266 			  stibp_state(),
3267 			  boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "",
3268 			  pbrsb_eibrs_state(),
3269 			  spectre_bhi_state(),
3270 			  /* this should always be at the end */
3271 			  spectre_v2_module_string());
3272 }
3273 
srbds_show_state(char * buf)3274 static ssize_t srbds_show_state(char *buf)
3275 {
3276 	return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
3277 }
3278 
retbleed_show_state(char * buf)3279 static ssize_t retbleed_show_state(char *buf)
3280 {
3281 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
3282 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
3283 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
3284 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
3285 			return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
3286 
3287 		return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
3288 				  !sched_smt_active() ? "disabled" :
3289 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
3290 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
3291 				  "enabled with STIBP protection" : "vulnerable");
3292 	}
3293 
3294 	return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
3295 }
3296 
srso_show_state(char * buf)3297 static ssize_t srso_show_state(char *buf)
3298 {
3299 	if (boot_cpu_has(X86_FEATURE_SRSO_NO))
3300 		return sysfs_emit(buf, "Mitigation: SMT disabled\n");
3301 
3302 	return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
3303 }
3304 
gds_show_state(char * buf)3305 static ssize_t gds_show_state(char *buf)
3306 {
3307 	return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
3308 }
3309 
tsa_show_state(char * buf)3310 static ssize_t tsa_show_state(char *buf)
3311 {
3312 	return sysfs_emit(buf, "%s\n", tsa_strings[tsa_mitigation]);
3313 }
3314 
vmscape_show_state(char * buf)3315 static ssize_t vmscape_show_state(char *buf)
3316 {
3317 	return sysfs_emit(buf, "%s\n", vmscape_strings[vmscape_mitigation]);
3318 }
3319 
cpu_show_common(struct device * dev,struct device_attribute * attr,char * buf,unsigned int bug)3320 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
3321 			       char *buf, unsigned int bug)
3322 {
3323 	if (!boot_cpu_has_bug(bug))
3324 		return sysfs_emit(buf, "Not affected\n");
3325 
3326 	switch (bug) {
3327 	case X86_BUG_CPU_MELTDOWN:
3328 		if (boot_cpu_has(X86_FEATURE_PTI))
3329 			return sysfs_emit(buf, "Mitigation: PTI\n");
3330 
3331 		if (hypervisor_is_type(X86_HYPER_XEN_PV))
3332 			return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
3333 
3334 		break;
3335 
3336 	case X86_BUG_SPECTRE_V1:
3337 		return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
3338 
3339 	case X86_BUG_SPECTRE_V2:
3340 		return spectre_v2_show_state(buf);
3341 
3342 	case X86_BUG_SPEC_STORE_BYPASS:
3343 		return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
3344 
3345 	case X86_BUG_L1TF:
3346 		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
3347 			return l1tf_show_state(buf);
3348 		break;
3349 
3350 	case X86_BUG_MDS:
3351 		return mds_show_state(buf);
3352 
3353 	case X86_BUG_TAA:
3354 		return tsx_async_abort_show_state(buf);
3355 
3356 	case X86_BUG_ITLB_MULTIHIT:
3357 		return itlb_multihit_show_state(buf);
3358 
3359 	case X86_BUG_SRBDS:
3360 		return srbds_show_state(buf);
3361 
3362 	case X86_BUG_MMIO_STALE_DATA:
3363 	case X86_BUG_MMIO_UNKNOWN:
3364 		return mmio_stale_data_show_state(buf);
3365 
3366 	case X86_BUG_RETBLEED:
3367 		return retbleed_show_state(buf);
3368 
3369 	case X86_BUG_SRSO:
3370 		return srso_show_state(buf);
3371 
3372 	case X86_BUG_GDS:
3373 		return gds_show_state(buf);
3374 
3375 	case X86_BUG_RFDS:
3376 		return rfds_show_state(buf);
3377 
3378 	case X86_BUG_ITS:
3379 		return its_show_state(buf);
3380 
3381 	case X86_BUG_TSA:
3382 		return tsa_show_state(buf);
3383 
3384 	case X86_BUG_VMSCAPE:
3385 		return vmscape_show_state(buf);
3386 
3387 	default:
3388 		break;
3389 	}
3390 
3391 	return sysfs_emit(buf, "Vulnerable\n");
3392 }
3393 
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)3394 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
3395 {
3396 	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
3397 }
3398 
cpu_show_spectre_v1(struct device * dev,struct device_attribute * attr,char * buf)3399 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
3400 {
3401 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
3402 }
3403 
cpu_show_spectre_v2(struct device * dev,struct device_attribute * attr,char * buf)3404 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
3405 {
3406 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
3407 }
3408 
cpu_show_spec_store_bypass(struct device * dev,struct device_attribute * attr,char * buf)3409 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
3410 {
3411 	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
3412 }
3413 
cpu_show_l1tf(struct device * dev,struct device_attribute * attr,char * buf)3414 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
3415 {
3416 	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
3417 }
3418 
cpu_show_mds(struct device * dev,struct device_attribute * attr,char * buf)3419 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
3420 {
3421 	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
3422 }
3423 
cpu_show_tsx_async_abort(struct device * dev,struct device_attribute * attr,char * buf)3424 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
3425 {
3426 	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
3427 }
3428 
cpu_show_itlb_multihit(struct device * dev,struct device_attribute * attr,char * buf)3429 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
3430 {
3431 	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
3432 }
3433 
cpu_show_srbds(struct device * dev,struct device_attribute * attr,char * buf)3434 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
3435 {
3436 	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
3437 }
3438 
cpu_show_mmio_stale_data(struct device * dev,struct device_attribute * attr,char * buf)3439 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
3440 {
3441 	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
3442 		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
3443 	else
3444 		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
3445 }
3446 
cpu_show_retbleed(struct device * dev,struct device_attribute * attr,char * buf)3447 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
3448 {
3449 	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
3450 }
3451 
cpu_show_spec_rstack_overflow(struct device * dev,struct device_attribute * attr,char * buf)3452 ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
3453 {
3454 	return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
3455 }
3456 
cpu_show_gds(struct device * dev,struct device_attribute * attr,char * buf)3457 ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
3458 {
3459 	return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
3460 }
3461 
cpu_show_reg_file_data_sampling(struct device * dev,struct device_attribute * attr,char * buf)3462 ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf)
3463 {
3464 	return cpu_show_common(dev, attr, buf, X86_BUG_RFDS);
3465 }
3466 
cpu_show_indirect_target_selection(struct device * dev,struct device_attribute * attr,char * buf)3467 ssize_t cpu_show_indirect_target_selection(struct device *dev, struct device_attribute *attr, char *buf)
3468 {
3469 	return cpu_show_common(dev, attr, buf, X86_BUG_ITS);
3470 }
3471 
cpu_show_tsa(struct device * dev,struct device_attribute * attr,char * buf)3472 ssize_t cpu_show_tsa(struct device *dev, struct device_attribute *attr, char *buf)
3473 {
3474 	return cpu_show_common(dev, attr, buf, X86_BUG_TSA);
3475 }
3476 
cpu_show_vmscape(struct device * dev,struct device_attribute * attr,char * buf)3477 ssize_t cpu_show_vmscape(struct device *dev, struct device_attribute *attr, char *buf)
3478 {
3479 	return cpu_show_common(dev, attr, buf, X86_BUG_VMSCAPE);
3480 }
3481 #endif
3482 
__warn_thunk(void)3483 void __warn_thunk(void)
3484 {
3485 	WARN_ONCE(1, "Unpatched return thunk in use. This should not happen!\n");
3486 }
3487