1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/filelock.h>
9 #include <linux/mm.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <linux/rw_hint.h>
24 #include <trace/events/writeback.h>
25 #include "internal.h"
26 
27 #undef CREATE_TRACE_POINTS
28 #include <trace/hooks/vmscan.h>
29 #include <trace/hooks/fs.h>
30 
31 /*
32  * Inode locking rules:
33  *
34  * inode->i_lock protects:
35  *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
36  * Inode LRU list locks protect:
37  *   inode->i_sb->s_inode_lru, inode->i_lru
38  * inode->i_sb->s_inode_list_lock protects:
39  *   inode->i_sb->s_inodes, inode->i_sb_list
40  * bdi->wb.list_lock protects:
41  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
42  * inode_hash_lock protects:
43  *   inode_hashtable, inode->i_hash
44  *
45  * Lock ordering:
46  *
47  * inode->i_sb->s_inode_list_lock
48  *   inode->i_lock
49  *     Inode LRU list locks
50  *
51  * bdi->wb.list_lock
52  *   inode->i_lock
53  *
54  * inode_hash_lock
55  *   inode->i_sb->s_inode_list_lock
56  *   inode->i_lock
57  *
58  * iunique_lock
59  *   inode_hash_lock
60  */
61 
62 static unsigned int i_hash_mask __ro_after_init;
63 static unsigned int i_hash_shift __ro_after_init;
64 static struct hlist_head *inode_hashtable __ro_after_init;
65 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
66 
67 /*
68  * Empty aops. Can be used for the cases where the user does not
69  * define any of the address_space operations.
70  */
71 const struct address_space_operations empty_aops = {
72 };
73 EXPORT_SYMBOL(empty_aops);
74 
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77 
78 static struct kmem_cache *inode_cachep __ro_after_init;
79 
get_nr_inodes(void)80 static long get_nr_inodes(void)
81 {
82 	int i;
83 	long sum = 0;
84 	for_each_possible_cpu(i)
85 		sum += per_cpu(nr_inodes, i);
86 	return sum < 0 ? 0 : sum;
87 }
88 
get_nr_inodes_unused(void)89 static inline long get_nr_inodes_unused(void)
90 {
91 	int i;
92 	long sum = 0;
93 	for_each_possible_cpu(i)
94 		sum += per_cpu(nr_unused, i);
95 	return sum < 0 ? 0 : sum;
96 }
97 
get_nr_dirty_inodes(void)98 long get_nr_dirty_inodes(void)
99 {
100 	/* not actually dirty inodes, but a wild approximation */
101 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 	return nr_dirty > 0 ? nr_dirty : 0;
103 }
104 
105 /*
106  * Handle nr_inode sysctl
107  */
108 #ifdef CONFIG_SYSCTL
109 /*
110  * Statistics gathering..
111  */
112 static struct inodes_stat_t inodes_stat;
113 
proc_nr_inodes(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)114 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer,
115 			  size_t *lenp, loff_t *ppos)
116 {
117 	inodes_stat.nr_inodes = get_nr_inodes();
118 	inodes_stat.nr_unused = get_nr_inodes_unused();
119 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
120 }
121 
122 static struct ctl_table inodes_sysctls[] = {
123 	{
124 		.procname	= "inode-nr",
125 		.data		= &inodes_stat,
126 		.maxlen		= 2*sizeof(long),
127 		.mode		= 0444,
128 		.proc_handler	= proc_nr_inodes,
129 	},
130 	{
131 		.procname	= "inode-state",
132 		.data		= &inodes_stat,
133 		.maxlen		= 7*sizeof(long),
134 		.mode		= 0444,
135 		.proc_handler	= proc_nr_inodes,
136 	},
137 };
138 
init_fs_inode_sysctls(void)139 static int __init init_fs_inode_sysctls(void)
140 {
141 	register_sysctl_init("fs", inodes_sysctls);
142 	return 0;
143 }
144 early_initcall(init_fs_inode_sysctls);
145 #endif
146 
no_open(struct inode * inode,struct file * file)147 static int no_open(struct inode *inode, struct file *file)
148 {
149 	return -ENXIO;
150 }
151 
152 /**
153  * inode_init_always_gfp - perform inode structure initialisation
154  * @sb: superblock inode belongs to
155  * @inode: inode to initialise
156  * @gfp: allocation flags
157  *
158  * These are initializations that need to be done on every inode
159  * allocation as the fields are not initialised by slab allocation.
160  * If there are additional allocations required @gfp is used.
161  */
inode_init_always_gfp(struct super_block * sb,struct inode * inode,gfp_t gfp)162 int inode_init_always_gfp(struct super_block *sb, struct inode *inode, gfp_t gfp)
163 {
164 	static const struct inode_operations empty_iops;
165 	static const struct file_operations no_open_fops = {.open = no_open};
166 	struct address_space *const mapping = &inode->i_data;
167 
168 	inode->i_sb = sb;
169 	inode->i_blkbits = sb->s_blocksize_bits;
170 	inode->i_flags = 0;
171 	inode->i_state = 0;
172 	atomic64_set(&inode->i_sequence, 0);
173 	atomic_set(&inode->i_count, 1);
174 	inode->i_op = &empty_iops;
175 	inode->i_fop = &no_open_fops;
176 	inode->i_ino = 0;
177 	inode->__i_nlink = 1;
178 	inode->i_opflags = 0;
179 	if (sb->s_xattr)
180 		inode->i_opflags |= IOP_XATTR;
181 	i_uid_write(inode, 0);
182 	i_gid_write(inode, 0);
183 	atomic_set(&inode->i_writecount, 0);
184 	inode->i_size = 0;
185 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
186 	inode->i_blocks = 0;
187 	inode->i_bytes = 0;
188 	inode->i_generation = 0;
189 	inode->i_pipe = NULL;
190 	inode->i_cdev = NULL;
191 	inode->i_link = NULL;
192 	inode->i_dir_seq = 0;
193 	inode->i_rdev = 0;
194 	inode->dirtied_when = 0;
195 
196 #ifdef CONFIG_CGROUP_WRITEBACK
197 	inode->i_wb_frn_winner = 0;
198 	inode->i_wb_frn_avg_time = 0;
199 	inode->i_wb_frn_history = 0;
200 #endif
201 
202 	spin_lock_init(&inode->i_lock);
203 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
204 
205 	init_rwsem(&inode->i_rwsem);
206 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
207 
208 	atomic_set(&inode->i_dio_count, 0);
209 
210 	mapping->a_ops = &empty_aops;
211 	mapping->host = inode;
212 	mapping->flags = 0;
213 	mapping->wb_err = 0;
214 	atomic_set(&mapping->i_mmap_writable, 0);
215 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
216 	atomic_set(&mapping->nr_thps, 0);
217 #endif
218 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
219 	mapping->i_private_data = NULL;
220 	mapping->writeback_index = 0;
221 	init_rwsem(&mapping->invalidate_lock);
222 	lockdep_set_class_and_name(&mapping->invalidate_lock,
223 				   &sb->s_type->invalidate_lock_key,
224 				   "mapping.invalidate_lock");
225 	if (sb->s_iflags & SB_I_STABLE_WRITES)
226 		mapping_set_stable_writes(mapping);
227 	inode->i_private = NULL;
228 	inode->i_mapping = mapping;
229 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
230 #ifdef CONFIG_FS_POSIX_ACL
231 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
232 #endif
233 
234 #ifdef CONFIG_FSNOTIFY
235 	inode->i_fsnotify_mask = 0;
236 #endif
237 	inode->i_flctx = NULL;
238 
239 	if (unlikely(security_inode_alloc(inode, gfp)))
240 		return -ENOMEM;
241 
242 	this_cpu_inc(nr_inodes);
243 
244 	return 0;
245 }
246 EXPORT_SYMBOL(inode_init_always_gfp);
247 
free_inode_nonrcu(struct inode * inode)248 void free_inode_nonrcu(struct inode *inode)
249 {
250 	kmem_cache_free(inode_cachep, inode);
251 }
252 EXPORT_SYMBOL(free_inode_nonrcu);
253 
i_callback(struct rcu_head * head)254 static void i_callback(struct rcu_head *head)
255 {
256 	struct inode *inode = container_of(head, struct inode, i_rcu);
257 	if (inode->free_inode)
258 		inode->free_inode(inode);
259 	else
260 		free_inode_nonrcu(inode);
261 }
262 
alloc_inode(struct super_block * sb)263 static struct inode *alloc_inode(struct super_block *sb)
264 {
265 	const struct super_operations *ops = sb->s_op;
266 	struct inode *inode;
267 
268 	if (ops->alloc_inode)
269 		inode = ops->alloc_inode(sb);
270 	else
271 		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
272 
273 	if (!inode)
274 		return NULL;
275 
276 	if (unlikely(inode_init_always(sb, inode))) {
277 		if (ops->destroy_inode) {
278 			ops->destroy_inode(inode);
279 			if (!ops->free_inode)
280 				return NULL;
281 		}
282 		inode->free_inode = ops->free_inode;
283 		i_callback(&inode->i_rcu);
284 		return NULL;
285 	}
286 
287 	return inode;
288 }
289 
__destroy_inode(struct inode * inode)290 void __destroy_inode(struct inode *inode)
291 {
292 	BUG_ON(inode_has_buffers(inode));
293 	inode_detach_wb(inode);
294 	security_inode_free(inode);
295 	fsnotify_inode_delete(inode);
296 	locks_free_lock_context(inode);
297 	if (!inode->i_nlink) {
298 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
299 		atomic_long_dec(&inode->i_sb->s_remove_count);
300 	}
301 
302 #ifdef CONFIG_FS_POSIX_ACL
303 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
304 		posix_acl_release(inode->i_acl);
305 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
306 		posix_acl_release(inode->i_default_acl);
307 #endif
308 	this_cpu_dec(nr_inodes);
309 }
310 EXPORT_SYMBOL(__destroy_inode);
311 
destroy_inode(struct inode * inode)312 static void destroy_inode(struct inode *inode)
313 {
314 	const struct super_operations *ops = inode->i_sb->s_op;
315 
316 	BUG_ON(!list_empty(&inode->i_lru));
317 	__destroy_inode(inode);
318 	if (ops->destroy_inode) {
319 		ops->destroy_inode(inode);
320 		if (!ops->free_inode)
321 			return;
322 	}
323 	inode->free_inode = ops->free_inode;
324 	call_rcu(&inode->i_rcu, i_callback);
325 }
326 
327 /**
328  * drop_nlink - directly drop an inode's link count
329  * @inode: inode
330  *
331  * This is a low-level filesystem helper to replace any
332  * direct filesystem manipulation of i_nlink.  In cases
333  * where we are attempting to track writes to the
334  * filesystem, a decrement to zero means an imminent
335  * write when the file is truncated and actually unlinked
336  * on the filesystem.
337  */
drop_nlink(struct inode * inode)338 void drop_nlink(struct inode *inode)
339 {
340 	WARN_ON(inode->i_nlink == 0);
341 	inode->__i_nlink--;
342 	if (!inode->i_nlink)
343 		atomic_long_inc(&inode->i_sb->s_remove_count);
344 }
345 EXPORT_SYMBOL(drop_nlink);
346 
347 /**
348  * clear_nlink - directly zero an inode's link count
349  * @inode: inode
350  *
351  * This is a low-level filesystem helper to replace any
352  * direct filesystem manipulation of i_nlink.  See
353  * drop_nlink() for why we care about i_nlink hitting zero.
354  */
clear_nlink(struct inode * inode)355 void clear_nlink(struct inode *inode)
356 {
357 	if (inode->i_nlink) {
358 		inode->__i_nlink = 0;
359 		atomic_long_inc(&inode->i_sb->s_remove_count);
360 	}
361 }
362 EXPORT_SYMBOL(clear_nlink);
363 
364 /**
365  * set_nlink - directly set an inode's link count
366  * @inode: inode
367  * @nlink: new nlink (should be non-zero)
368  *
369  * This is a low-level filesystem helper to replace any
370  * direct filesystem manipulation of i_nlink.
371  */
set_nlink(struct inode * inode,unsigned int nlink)372 void set_nlink(struct inode *inode, unsigned int nlink)
373 {
374 	if (!nlink) {
375 		clear_nlink(inode);
376 	} else {
377 		/* Yes, some filesystems do change nlink from zero to one */
378 		if (inode->i_nlink == 0)
379 			atomic_long_dec(&inode->i_sb->s_remove_count);
380 
381 		inode->__i_nlink = nlink;
382 	}
383 }
384 EXPORT_SYMBOL(set_nlink);
385 
386 /**
387  * inc_nlink - directly increment an inode's link count
388  * @inode: inode
389  *
390  * This is a low-level filesystem helper to replace any
391  * direct filesystem manipulation of i_nlink.  Currently,
392  * it is only here for parity with dec_nlink().
393  */
inc_nlink(struct inode * inode)394 void inc_nlink(struct inode *inode)
395 {
396 	if (unlikely(inode->i_nlink == 0)) {
397 		WARN_ON(!(inode->i_state & I_LINKABLE));
398 		atomic_long_dec(&inode->i_sb->s_remove_count);
399 	}
400 
401 	inode->__i_nlink++;
402 }
403 EXPORT_SYMBOL(inc_nlink);
404 
__address_space_init_once(struct address_space * mapping)405 static void __address_space_init_once(struct address_space *mapping)
406 {
407 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
408 	init_rwsem(&mapping->i_mmap_rwsem);
409 	INIT_LIST_HEAD(&mapping->i_private_list);
410 	spin_lock_init(&mapping->i_private_lock);
411 	mapping->i_mmap = RB_ROOT_CACHED;
412 }
413 
address_space_init_once(struct address_space * mapping)414 void address_space_init_once(struct address_space *mapping)
415 {
416 	memset(mapping, 0, sizeof(*mapping));
417 	__address_space_init_once(mapping);
418 }
419 EXPORT_SYMBOL(address_space_init_once);
420 
421 /*
422  * These are initializations that only need to be done
423  * once, because the fields are idempotent across use
424  * of the inode, so let the slab aware of that.
425  */
inode_init_once(struct inode * inode)426 void inode_init_once(struct inode *inode)
427 {
428 	memset(inode, 0, sizeof(*inode));
429 	INIT_HLIST_NODE(&inode->i_hash);
430 	INIT_LIST_HEAD(&inode->i_devices);
431 	INIT_LIST_HEAD(&inode->i_io_list);
432 	INIT_LIST_HEAD(&inode->i_wb_list);
433 	INIT_LIST_HEAD(&inode->i_lru);
434 	INIT_LIST_HEAD(&inode->i_sb_list);
435 	__address_space_init_once(&inode->i_data);
436 	i_size_ordered_init(inode);
437 }
438 EXPORT_SYMBOL(inode_init_once);
439 
init_once(void * foo)440 static void init_once(void *foo)
441 {
442 	struct inode *inode = (struct inode *) foo;
443 
444 	inode_init_once(inode);
445 }
446 
447 /*
448  * get additional reference to inode; caller must already hold one.
449  */
ihold(struct inode * inode)450 void ihold(struct inode *inode)
451 {
452 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
453 }
454 EXPORT_SYMBOL(ihold);
455 
__inode_add_lru(struct inode * inode,bool rotate)456 static void __inode_add_lru(struct inode *inode, bool rotate)
457 {
458 	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
459 		return;
460 	if (atomic_read(&inode->i_count))
461 		return;
462 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
463 		return;
464 	if (!mapping_shrinkable(&inode->i_data))
465 		return;
466 
467 	if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
468 		this_cpu_inc(nr_unused);
469 	else if (rotate)
470 		inode->i_state |= I_REFERENCED;
471 }
472 
inode_bit_waitqueue(struct wait_bit_queue_entry * wqe,struct inode * inode,u32 bit)473 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe,
474 					    struct inode *inode, u32 bit)
475 {
476         void *bit_address;
477 
478         bit_address = inode_state_wait_address(inode, bit);
479         init_wait_var_entry(wqe, bit_address, 0);
480         return __var_waitqueue(bit_address);
481 }
482 EXPORT_SYMBOL(inode_bit_waitqueue);
483 
484 /*
485  * Add inode to LRU if needed (inode is unused and clean).
486  *
487  * Needs inode->i_lock held.
488  */
inode_add_lru(struct inode * inode)489 void inode_add_lru(struct inode *inode)
490 {
491 	__inode_add_lru(inode, false);
492 }
493 
inode_lru_list_del(struct inode * inode)494 static void inode_lru_list_del(struct inode *inode)
495 {
496 	if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
497 		this_cpu_dec(nr_unused);
498 }
499 
inode_pin_lru_isolating(struct inode * inode)500 static void inode_pin_lru_isolating(struct inode *inode)
501 {
502 	lockdep_assert_held(&inode->i_lock);
503 	WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE));
504 	inode->i_state |= I_LRU_ISOLATING;
505 }
506 
inode_unpin_lru_isolating(struct inode * inode)507 static void inode_unpin_lru_isolating(struct inode *inode)
508 {
509 	spin_lock(&inode->i_lock);
510 	WARN_ON(!(inode->i_state & I_LRU_ISOLATING));
511 	inode->i_state &= ~I_LRU_ISOLATING;
512 	/* Called with inode->i_lock which ensures memory ordering. */
513 	inode_wake_up_bit(inode, __I_LRU_ISOLATING);
514 	spin_unlock(&inode->i_lock);
515 }
516 
inode_wait_for_lru_isolating(struct inode * inode)517 static void inode_wait_for_lru_isolating(struct inode *inode)
518 {
519 	struct wait_bit_queue_entry wqe;
520 	struct wait_queue_head *wq_head;
521 
522 	lockdep_assert_held(&inode->i_lock);
523 	if (!(inode->i_state & I_LRU_ISOLATING))
524 		return;
525 
526 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_LRU_ISOLATING);
527 	for (;;) {
528 		prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
529 		/*
530 		 * Checking I_LRU_ISOLATING with inode->i_lock guarantees
531 		 * memory ordering.
532 		 */
533 		if (!(inode->i_state & I_LRU_ISOLATING))
534 			break;
535 		spin_unlock(&inode->i_lock);
536 		schedule();
537 		spin_lock(&inode->i_lock);
538 	}
539 	finish_wait(wq_head, &wqe.wq_entry);
540 	WARN_ON(inode->i_state & I_LRU_ISOLATING);
541 }
542 
543 /**
544  * inode_sb_list_add - add inode to the superblock list of inodes
545  * @inode: inode to add
546  */
inode_sb_list_add(struct inode * inode)547 void inode_sb_list_add(struct inode *inode)
548 {
549 	spin_lock(&inode->i_sb->s_inode_list_lock);
550 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
551 	spin_unlock(&inode->i_sb->s_inode_list_lock);
552 }
553 EXPORT_SYMBOL_GPL(inode_sb_list_add);
554 
inode_sb_list_del(struct inode * inode)555 static inline void inode_sb_list_del(struct inode *inode)
556 {
557 	if (!list_empty(&inode->i_sb_list)) {
558 		spin_lock(&inode->i_sb->s_inode_list_lock);
559 		list_del_init(&inode->i_sb_list);
560 		spin_unlock(&inode->i_sb->s_inode_list_lock);
561 	}
562 }
563 
hash(struct super_block * sb,unsigned long hashval)564 static unsigned long hash(struct super_block *sb, unsigned long hashval)
565 {
566 	unsigned long tmp;
567 
568 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
569 			L1_CACHE_BYTES;
570 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
571 	return tmp & i_hash_mask;
572 }
573 
574 /**
575  *	__insert_inode_hash - hash an inode
576  *	@inode: unhashed inode
577  *	@hashval: unsigned long value used to locate this object in the
578  *		inode_hashtable.
579  *
580  *	Add an inode to the inode hash for this superblock.
581  */
__insert_inode_hash(struct inode * inode,unsigned long hashval)582 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
583 {
584 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
585 
586 	spin_lock(&inode_hash_lock);
587 	spin_lock(&inode->i_lock);
588 	hlist_add_head_rcu(&inode->i_hash, b);
589 	spin_unlock(&inode->i_lock);
590 	spin_unlock(&inode_hash_lock);
591 }
592 EXPORT_SYMBOL(__insert_inode_hash);
593 
594 /**
595  *	__remove_inode_hash - remove an inode from the hash
596  *	@inode: inode to unhash
597  *
598  *	Remove an inode from the superblock.
599  */
__remove_inode_hash(struct inode * inode)600 void __remove_inode_hash(struct inode *inode)
601 {
602 	spin_lock(&inode_hash_lock);
603 	spin_lock(&inode->i_lock);
604 	hlist_del_init_rcu(&inode->i_hash);
605 	spin_unlock(&inode->i_lock);
606 	spin_unlock(&inode_hash_lock);
607 }
608 EXPORT_SYMBOL(__remove_inode_hash);
609 
dump_mapping(const struct address_space * mapping)610 void dump_mapping(const struct address_space *mapping)
611 {
612 	struct inode *host;
613 	const struct address_space_operations *a_ops;
614 	struct hlist_node *dentry_first;
615 	struct dentry *dentry_ptr;
616 	struct dentry dentry;
617 	char fname[64] = {};
618 	unsigned long ino;
619 
620 	/*
621 	 * If mapping is an invalid pointer, we don't want to crash
622 	 * accessing it, so probe everything depending on it carefully.
623 	 */
624 	if (get_kernel_nofault(host, &mapping->host) ||
625 	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
626 		pr_warn("invalid mapping:%px\n", mapping);
627 		return;
628 	}
629 
630 	if (!host) {
631 		pr_warn("aops:%ps\n", a_ops);
632 		return;
633 	}
634 
635 	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
636 	    get_kernel_nofault(ino, &host->i_ino)) {
637 		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
638 		return;
639 	}
640 
641 	if (!dentry_first) {
642 		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
643 		return;
644 	}
645 
646 	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
647 	if (get_kernel_nofault(dentry, dentry_ptr) ||
648 	    !dentry.d_parent || !dentry.d_name.name) {
649 		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
650 				a_ops, ino, dentry_ptr);
651 		return;
652 	}
653 
654 	if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0)
655 		strscpy(fname, "<invalid>");
656 	/*
657 	 * Even if strncpy_from_kernel_nofault() succeeded,
658 	 * the fname could be unreliable
659 	 */
660 	pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n",
661 		a_ops, ino, fname);
662 }
663 
clear_inode(struct inode * inode)664 void clear_inode(struct inode *inode)
665 {
666 	/*
667 	 * We have to cycle the i_pages lock here because reclaim can be in the
668 	 * process of removing the last page (in __filemap_remove_folio())
669 	 * and we must not free the mapping under it.
670 	 */
671 	xa_lock_irq(&inode->i_data.i_pages);
672 	BUG_ON(inode->i_data.nrpages);
673 	/*
674 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
675 	 * two known and long-standing ways in which nodes may get left behind
676 	 * (when deep radix-tree node allocation failed partway; or when THP
677 	 * collapse_file() failed). Until those two known cases are cleaned up,
678 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
679 	 * nor even WARN_ON(!mapping_empty).
680 	 */
681 	xa_unlock_irq(&inode->i_data.i_pages);
682 	BUG_ON(!list_empty(&inode->i_data.i_private_list));
683 	BUG_ON(!(inode->i_state & I_FREEING));
684 	BUG_ON(inode->i_state & I_CLEAR);
685 	BUG_ON(!list_empty(&inode->i_wb_list));
686 	/* don't need i_lock here, no concurrent mods to i_state */
687 	inode->i_state = I_FREEING | I_CLEAR;
688 }
689 EXPORT_SYMBOL(clear_inode);
690 
691 /*
692  * Free the inode passed in, removing it from the lists it is still connected
693  * to. We remove any pages still attached to the inode and wait for any IO that
694  * is still in progress before finally destroying the inode.
695  *
696  * An inode must already be marked I_FREEING so that we avoid the inode being
697  * moved back onto lists if we race with other code that manipulates the lists
698  * (e.g. writeback_single_inode). The caller is responsible for setting this.
699  *
700  * An inode must already be removed from the LRU list before being evicted from
701  * the cache. This should occur atomically with setting the I_FREEING state
702  * flag, so no inodes here should ever be on the LRU when being evicted.
703  */
evict(struct inode * inode)704 static void evict(struct inode *inode)
705 {
706 	const struct super_operations *op = inode->i_sb->s_op;
707 
708 	BUG_ON(!(inode->i_state & I_FREEING));
709 	BUG_ON(!list_empty(&inode->i_lru));
710 
711 	if (!list_empty(&inode->i_io_list))
712 		inode_io_list_del(inode);
713 
714 	trace_android_vh_evict(inode);
715 	inode_sb_list_del(inode);
716 
717 	spin_lock(&inode->i_lock);
718 	inode_wait_for_lru_isolating(inode);
719 
720 	/*
721 	 * Wait for flusher thread to be done with the inode so that filesystem
722 	 * does not start destroying it while writeback is still running. Since
723 	 * the inode has I_FREEING set, flusher thread won't start new work on
724 	 * the inode.  We just have to wait for running writeback to finish.
725 	 */
726 	inode_wait_for_writeback(inode);
727 	spin_unlock(&inode->i_lock);
728 
729 	if (op->evict_inode) {
730 		op->evict_inode(inode);
731 	} else {
732 		truncate_inode_pages_final(&inode->i_data);
733 		clear_inode(inode);
734 	}
735 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
736 		cd_forget(inode);
737 
738 	remove_inode_hash(inode);
739 
740 	/*
741 	 * Wake up waiters in __wait_on_freeing_inode().
742 	 *
743 	 * Lockless hash lookup may end up finding the inode before we removed
744 	 * it above, but only lock it *after* we are done with the wakeup below.
745 	 * In this case the potential waiter cannot safely block.
746 	 *
747 	 * The inode being unhashed after the call to remove_inode_hash() is
748 	 * used as an indicator whether blocking on it is safe.
749 	 */
750 	spin_lock(&inode->i_lock);
751 	/*
752 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
753 	 * ___wait_var_event() either sees the bit cleared or
754 	 * waitqueue_active() check in wake_up_var() sees the waiter.
755 	 */
756 	smp_mb();
757 	inode_wake_up_bit(inode, __I_NEW);
758 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
759 	spin_unlock(&inode->i_lock);
760 
761 	destroy_inode(inode);
762 }
763 
764 /*
765  * dispose_list - dispose of the contents of a local list
766  * @head: the head of the list to free
767  *
768  * Dispose-list gets a local list with local inodes in it, so it doesn't
769  * need to worry about list corruption and SMP locks.
770  */
dispose_list(struct list_head * head)771 static void dispose_list(struct list_head *head)
772 {
773 	while (!list_empty(head)) {
774 		struct inode *inode;
775 
776 		inode = list_first_entry(head, struct inode, i_lru);
777 		list_del_init(&inode->i_lru);
778 
779 		evict(inode);
780 		cond_resched();
781 	}
782 }
783 
784 /**
785  * evict_inodes	- evict all evictable inodes for a superblock
786  * @sb:		superblock to operate on
787  *
788  * Make sure that no inodes with zero refcount are retained.  This is
789  * called by superblock shutdown after having SB_ACTIVE flag removed,
790  * so any inode reaching zero refcount during or after that call will
791  * be immediately evicted.
792  */
evict_inodes(struct super_block * sb)793 void evict_inodes(struct super_block *sb)
794 {
795 	struct inode *inode, *next;
796 	LIST_HEAD(dispose);
797 
798 again:
799 	spin_lock(&sb->s_inode_list_lock);
800 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
801 		if (atomic_read(&inode->i_count))
802 			continue;
803 
804 		spin_lock(&inode->i_lock);
805 		if (atomic_read(&inode->i_count)) {
806 			spin_unlock(&inode->i_lock);
807 			continue;
808 		}
809 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
810 			spin_unlock(&inode->i_lock);
811 			continue;
812 		}
813 
814 		inode->i_state |= I_FREEING;
815 		inode_lru_list_del(inode);
816 		spin_unlock(&inode->i_lock);
817 		list_add(&inode->i_lru, &dispose);
818 
819 		/*
820 		 * We can have a ton of inodes to evict at unmount time given
821 		 * enough memory, check to see if we need to go to sleep for a
822 		 * bit so we don't livelock.
823 		 */
824 		if (need_resched()) {
825 			spin_unlock(&sb->s_inode_list_lock);
826 			cond_resched();
827 			dispose_list(&dispose);
828 			goto again;
829 		}
830 	}
831 	spin_unlock(&sb->s_inode_list_lock);
832 
833 	dispose_list(&dispose);
834 }
835 EXPORT_SYMBOL_GPL(evict_inodes);
836 
837 /**
838  * invalidate_inodes	- attempt to free all inodes on a superblock
839  * @sb:		superblock to operate on
840  *
841  * Attempts to free all inodes (including dirty inodes) for a given superblock.
842  */
invalidate_inodes(struct super_block * sb)843 void invalidate_inodes(struct super_block *sb)
844 {
845 	struct inode *inode, *next;
846 	LIST_HEAD(dispose);
847 
848 again:
849 	spin_lock(&sb->s_inode_list_lock);
850 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
851 		spin_lock(&inode->i_lock);
852 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
853 			spin_unlock(&inode->i_lock);
854 			continue;
855 		}
856 		if (atomic_read(&inode->i_count)) {
857 			spin_unlock(&inode->i_lock);
858 			continue;
859 		}
860 
861 		inode->i_state |= I_FREEING;
862 		inode_lru_list_del(inode);
863 		spin_unlock(&inode->i_lock);
864 		list_add(&inode->i_lru, &dispose);
865 		if (need_resched()) {
866 			spin_unlock(&sb->s_inode_list_lock);
867 			cond_resched();
868 			dispose_list(&dispose);
869 			goto again;
870 		}
871 	}
872 	spin_unlock(&sb->s_inode_list_lock);
873 
874 	dispose_list(&dispose);
875 }
876 
877 /*
878  * Isolate the inode from the LRU in preparation for freeing it.
879  *
880  * If the inode has the I_REFERENCED flag set, then it means that it has been
881  * used recently - the flag is set in iput_final(). When we encounter such an
882  * inode, clear the flag and move it to the back of the LRU so it gets another
883  * pass through the LRU before it gets reclaimed. This is necessary because of
884  * the fact we are doing lazy LRU updates to minimise lock contention so the
885  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
886  * with this flag set because they are the inodes that are out of order.
887  */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)888 static enum lru_status inode_lru_isolate(struct list_head *item,
889 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
890 {
891 	struct list_head *freeable = arg;
892 	struct inode	*inode = container_of(item, struct inode, i_lru);
893 	bool skip = false;
894 
895 	/*
896 	 * We are inverting the lru lock/inode->i_lock here, so use a
897 	 * trylock. If we fail to get the lock, just skip it.
898 	 */
899 	if (!spin_trylock(&inode->i_lock))
900 		return LRU_SKIP;
901 
902 	trace_android_vh_inode_lru_isolate(inode, &skip);
903 	if (skip) {
904 		spin_unlock(&inode->i_lock);
905 		return LRU_SKIP;
906 	}
907 
908 	/*
909 	 * Inodes can get referenced, redirtied, or repopulated while
910 	 * they're already on the LRU, and this can make them
911 	 * unreclaimable for a while. Remove them lazily here; iput,
912 	 * sync, or the last page cache deletion will requeue them.
913 	 */
914 	if (atomic_read(&inode->i_count) ||
915 	    (inode->i_state & ~I_REFERENCED) ||
916 	    !mapping_shrinkable(&inode->i_data)) {
917 		list_lru_isolate(lru, &inode->i_lru);
918 		spin_unlock(&inode->i_lock);
919 		this_cpu_dec(nr_unused);
920 		return LRU_REMOVED;
921 	}
922 
923 	/* Recently referenced inodes get one more pass */
924 	if (inode->i_state & I_REFERENCED) {
925 		inode->i_state &= ~I_REFERENCED;
926 		spin_unlock(&inode->i_lock);
927 		return LRU_ROTATE;
928 	}
929 
930 	/*
931 	 * On highmem systems, mapping_shrinkable() permits dropping
932 	 * page cache in order to free up struct inodes: lowmem might
933 	 * be under pressure before the cache inside the highmem zone.
934 	 */
935 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
936 		inode_pin_lru_isolating(inode);
937 		spin_unlock(&inode->i_lock);
938 		spin_unlock(lru_lock);
939 		if (remove_inode_buffers(inode)) {
940 			unsigned long reap;
941 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
942 			if (current_is_kswapd())
943 				__count_vm_events(KSWAPD_INODESTEAL, reap);
944 			else
945 				__count_vm_events(PGINODESTEAL, reap);
946 			mm_account_reclaimed_pages(reap);
947 		}
948 		inode_unpin_lru_isolating(inode);
949 		spin_lock(lru_lock);
950 		return LRU_RETRY;
951 	}
952 
953 	WARN_ON(inode->i_state & I_NEW);
954 	inode->i_state |= I_FREEING;
955 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
956 	spin_unlock(&inode->i_lock);
957 
958 	this_cpu_dec(nr_unused);
959 	return LRU_REMOVED;
960 }
961 
962 /*
963  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
964  * This is called from the superblock shrinker function with a number of inodes
965  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
966  * then are freed outside inode_lock by dispose_list().
967  */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)968 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
969 {
970 	LIST_HEAD(freeable);
971 	long freed;
972 
973 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
974 				     inode_lru_isolate, &freeable);
975 	dispose_list(&freeable);
976 	return freed;
977 }
978 
979 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked);
980 /*
981  * Called with the inode lock held.
982  */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data,bool is_inode_hash_locked)983 static struct inode *find_inode(struct super_block *sb,
984 				struct hlist_head *head,
985 				int (*test)(struct inode *, void *),
986 				void *data, bool is_inode_hash_locked)
987 {
988 	struct inode *inode = NULL;
989 
990 	if (is_inode_hash_locked)
991 		lockdep_assert_held(&inode_hash_lock);
992 	else
993 		lockdep_assert_not_held(&inode_hash_lock);
994 
995 	rcu_read_lock();
996 repeat:
997 	hlist_for_each_entry_rcu(inode, head, i_hash) {
998 		if (inode->i_sb != sb)
999 			continue;
1000 		if (!test(inode, data))
1001 			continue;
1002 		spin_lock(&inode->i_lock);
1003 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
1004 			__wait_on_freeing_inode(inode, is_inode_hash_locked);
1005 			goto repeat;
1006 		}
1007 		if (unlikely(inode->i_state & I_CREATING)) {
1008 			spin_unlock(&inode->i_lock);
1009 			rcu_read_unlock();
1010 			return ERR_PTR(-ESTALE);
1011 		}
1012 		__iget(inode);
1013 		spin_unlock(&inode->i_lock);
1014 		rcu_read_unlock();
1015 		return inode;
1016 	}
1017 	rcu_read_unlock();
1018 	return NULL;
1019 }
1020 
1021 /*
1022  * find_inode_fast is the fast path version of find_inode, see the comment at
1023  * iget_locked for details.
1024  */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino,bool is_inode_hash_locked)1025 static struct inode *find_inode_fast(struct super_block *sb,
1026 				struct hlist_head *head, unsigned long ino,
1027 				bool is_inode_hash_locked)
1028 {
1029 	struct inode *inode = NULL;
1030 
1031 	if (is_inode_hash_locked)
1032 		lockdep_assert_held(&inode_hash_lock);
1033 	else
1034 		lockdep_assert_not_held(&inode_hash_lock);
1035 
1036 	rcu_read_lock();
1037 repeat:
1038 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1039 		if (inode->i_ino != ino)
1040 			continue;
1041 		if (inode->i_sb != sb)
1042 			continue;
1043 		spin_lock(&inode->i_lock);
1044 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
1045 			__wait_on_freeing_inode(inode, is_inode_hash_locked);
1046 			goto repeat;
1047 		}
1048 		if (unlikely(inode->i_state & I_CREATING)) {
1049 			spin_unlock(&inode->i_lock);
1050 			rcu_read_unlock();
1051 			return ERR_PTR(-ESTALE);
1052 		}
1053 		__iget(inode);
1054 		spin_unlock(&inode->i_lock);
1055 		rcu_read_unlock();
1056 		return inode;
1057 	}
1058 	rcu_read_unlock();
1059 	return NULL;
1060 }
1061 
1062 /*
1063  * Each cpu owns a range of LAST_INO_BATCH numbers.
1064  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
1065  * to renew the exhausted range.
1066  *
1067  * This does not significantly increase overflow rate because every CPU can
1068  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
1069  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
1070  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
1071  * overflow rate by 2x, which does not seem too significant.
1072  *
1073  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1074  * error if st_ino won't fit in target struct field. Use 32bit counter
1075  * here to attempt to avoid that.
1076  */
1077 #define LAST_INO_BATCH 1024
1078 static DEFINE_PER_CPU(unsigned int, last_ino);
1079 
get_next_ino(void)1080 unsigned int get_next_ino(void)
1081 {
1082 	unsigned int *p = &get_cpu_var(last_ino);
1083 	unsigned int res = *p;
1084 
1085 #ifdef CONFIG_SMP
1086 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
1087 		static atomic_t shared_last_ino;
1088 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
1089 
1090 		res = next - LAST_INO_BATCH;
1091 	}
1092 #endif
1093 
1094 	res++;
1095 	/* get_next_ino should not provide a 0 inode number */
1096 	if (unlikely(!res))
1097 		res++;
1098 	*p = res;
1099 	put_cpu_var(last_ino);
1100 	return res;
1101 }
1102 EXPORT_SYMBOL(get_next_ino);
1103 
1104 /**
1105  *	new_inode_pseudo 	- obtain an inode
1106  *	@sb: superblock
1107  *
1108  *	Allocates a new inode for given superblock.
1109  *	Inode wont be chained in superblock s_inodes list
1110  *	This means :
1111  *	- fs can't be unmount
1112  *	- quotas, fsnotify, writeback can't work
1113  */
new_inode_pseudo(struct super_block * sb)1114 struct inode *new_inode_pseudo(struct super_block *sb)
1115 {
1116 	return alloc_inode(sb);
1117 }
1118 
1119 /**
1120  *	new_inode 	- obtain an inode
1121  *	@sb: superblock
1122  *
1123  *	Allocates a new inode for given superblock. The default gfp_mask
1124  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1125  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1126  *	for the page cache are not reclaimable or migratable,
1127  *	mapping_set_gfp_mask() must be called with suitable flags on the
1128  *	newly created inode's mapping
1129  *
1130  */
new_inode(struct super_block * sb)1131 struct inode *new_inode(struct super_block *sb)
1132 {
1133 	struct inode *inode;
1134 
1135 	inode = new_inode_pseudo(sb);
1136 	if (inode)
1137 		inode_sb_list_add(inode);
1138 	return inode;
1139 }
1140 EXPORT_SYMBOL(new_inode);
1141 
1142 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)1143 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1144 {
1145 	if (S_ISDIR(inode->i_mode)) {
1146 		struct file_system_type *type = inode->i_sb->s_type;
1147 
1148 		/* Set new key only if filesystem hasn't already changed it */
1149 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1150 			/*
1151 			 * ensure nobody is actually holding i_mutex
1152 			 */
1153 			// mutex_destroy(&inode->i_mutex);
1154 			init_rwsem(&inode->i_rwsem);
1155 			lockdep_set_class(&inode->i_rwsem,
1156 					  &type->i_mutex_dir_key);
1157 		}
1158 	}
1159 }
1160 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1161 #endif
1162 
1163 /**
1164  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1165  * @inode:	new inode to unlock
1166  *
1167  * Called when the inode is fully initialised to clear the new state of the
1168  * inode and wake up anyone waiting for the inode to finish initialisation.
1169  */
unlock_new_inode(struct inode * inode)1170 void unlock_new_inode(struct inode *inode)
1171 {
1172 	lockdep_annotate_inode_mutex_key(inode);
1173 	spin_lock(&inode->i_lock);
1174 	WARN_ON(!(inode->i_state & I_NEW));
1175 	inode->i_state &= ~I_NEW & ~I_CREATING;
1176 	/*
1177 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
1178 	 * ___wait_var_event() either sees the bit cleared or
1179 	 * waitqueue_active() check in wake_up_var() sees the waiter.
1180 	 */
1181 	smp_mb();
1182 	inode_wake_up_bit(inode, __I_NEW);
1183 	spin_unlock(&inode->i_lock);
1184 }
1185 EXPORT_SYMBOL(unlock_new_inode);
1186 
discard_new_inode(struct inode * inode)1187 void discard_new_inode(struct inode *inode)
1188 {
1189 	lockdep_annotate_inode_mutex_key(inode);
1190 	spin_lock(&inode->i_lock);
1191 	WARN_ON(!(inode->i_state & I_NEW));
1192 	inode->i_state &= ~I_NEW;
1193 	/*
1194 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
1195 	 * ___wait_var_event() either sees the bit cleared or
1196 	 * waitqueue_active() check in wake_up_var() sees the waiter.
1197 	 */
1198 	smp_mb();
1199 	inode_wake_up_bit(inode, __I_NEW);
1200 	spin_unlock(&inode->i_lock);
1201 	iput(inode);
1202 }
1203 EXPORT_SYMBOL(discard_new_inode);
1204 
1205 /**
1206  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1207  *
1208  * Lock any non-NULL argument. Passed objects must not be directories.
1209  * Zero, one or two objects may be locked by this function.
1210  *
1211  * @inode1: first inode to lock
1212  * @inode2: second inode to lock
1213  */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1214 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1215 {
1216 	if (inode1)
1217 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1218 	if (inode2)
1219 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1220 	if (inode1 > inode2)
1221 		swap(inode1, inode2);
1222 	if (inode1)
1223 		inode_lock(inode1);
1224 	if (inode2 && inode2 != inode1)
1225 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1226 }
1227 EXPORT_SYMBOL(lock_two_nondirectories);
1228 
1229 /**
1230  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1231  * @inode1: first inode to unlock
1232  * @inode2: second inode to unlock
1233  */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1234 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1235 {
1236 	if (inode1) {
1237 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1238 		inode_unlock(inode1);
1239 	}
1240 	if (inode2 && inode2 != inode1) {
1241 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1242 		inode_unlock(inode2);
1243 	}
1244 }
1245 EXPORT_SYMBOL(unlock_two_nondirectories);
1246 
1247 /**
1248  * inode_insert5 - obtain an inode from a mounted file system
1249  * @inode:	pre-allocated inode to use for insert to cache
1250  * @hashval:	hash value (usually inode number) to get
1251  * @test:	callback used for comparisons between inodes
1252  * @set:	callback used to initialize a new struct inode
1253  * @data:	opaque data pointer to pass to @test and @set
1254  *
1255  * Search for the inode specified by @hashval and @data in the inode cache,
1256  * and if present it is return it with an increased reference count. This is
1257  * a variant of iget5_locked() for callers that don't want to fail on memory
1258  * allocation of inode.
1259  *
1260  * If the inode is not in cache, insert the pre-allocated inode to cache and
1261  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1262  * to fill it in before unlocking it via unlock_new_inode().
1263  *
1264  * Note both @test and @set are called with the inode_hash_lock held, so can't
1265  * sleep.
1266  */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1267 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1268 			    int (*test)(struct inode *, void *),
1269 			    int (*set)(struct inode *, void *), void *data)
1270 {
1271 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1272 	struct inode *old;
1273 
1274 again:
1275 	spin_lock(&inode_hash_lock);
1276 	old = find_inode(inode->i_sb, head, test, data, true);
1277 	if (unlikely(old)) {
1278 		/*
1279 		 * Uhhuh, somebody else created the same inode under us.
1280 		 * Use the old inode instead of the preallocated one.
1281 		 */
1282 		spin_unlock(&inode_hash_lock);
1283 		if (IS_ERR(old))
1284 			return NULL;
1285 		wait_on_inode(old);
1286 		if (unlikely(inode_unhashed(old))) {
1287 			iput(old);
1288 			goto again;
1289 		}
1290 		return old;
1291 	}
1292 
1293 	if (set && unlikely(set(inode, data))) {
1294 		inode = NULL;
1295 		goto unlock;
1296 	}
1297 
1298 	/*
1299 	 * Return the locked inode with I_NEW set, the
1300 	 * caller is responsible for filling in the contents
1301 	 */
1302 	spin_lock(&inode->i_lock);
1303 	inode->i_state |= I_NEW;
1304 	hlist_add_head_rcu(&inode->i_hash, head);
1305 	spin_unlock(&inode->i_lock);
1306 
1307 	/*
1308 	 * Add inode to the sb list if it's not already. It has I_NEW at this
1309 	 * point, so it should be safe to test i_sb_list locklessly.
1310 	 */
1311 	if (list_empty(&inode->i_sb_list))
1312 		inode_sb_list_add(inode);
1313 unlock:
1314 	spin_unlock(&inode_hash_lock);
1315 
1316 	return inode;
1317 }
1318 EXPORT_SYMBOL(inode_insert5);
1319 
1320 /**
1321  * iget5_locked - obtain an inode from a mounted file system
1322  * @sb:		super block of file system
1323  * @hashval:	hash value (usually inode number) to get
1324  * @test:	callback used for comparisons between inodes
1325  * @set:	callback used to initialize a new struct inode
1326  * @data:	opaque data pointer to pass to @test and @set
1327  *
1328  * Search for the inode specified by @hashval and @data in the inode cache,
1329  * and if present it is return it with an increased reference count. This is
1330  * a generalized version of iget_locked() for file systems where the inode
1331  * number is not sufficient for unique identification of an inode.
1332  *
1333  * If the inode is not in cache, allocate a new inode and return it locked,
1334  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1335  * before unlocking it via unlock_new_inode().
1336  *
1337  * Note both @test and @set are called with the inode_hash_lock held, so can't
1338  * sleep.
1339  */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1340 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1341 		int (*test)(struct inode *, void *),
1342 		int (*set)(struct inode *, void *), void *data)
1343 {
1344 	struct inode *inode = ilookup5(sb, hashval, test, data);
1345 
1346 	if (!inode) {
1347 		struct inode *new = alloc_inode(sb);
1348 
1349 		if (new) {
1350 			inode = inode_insert5(new, hashval, test, set, data);
1351 			if (unlikely(inode != new))
1352 				destroy_inode(new);
1353 		}
1354 	}
1355 	return inode;
1356 }
1357 EXPORT_SYMBOL(iget5_locked);
1358 
1359 /**
1360  * iget5_locked_rcu - obtain an inode from a mounted file system
1361  * @sb:		super block of file system
1362  * @hashval:	hash value (usually inode number) to get
1363  * @test:	callback used for comparisons between inodes
1364  * @set:	callback used to initialize a new struct inode
1365  * @data:	opaque data pointer to pass to @test and @set
1366  *
1367  * This is equivalent to iget5_locked, except the @test callback must
1368  * tolerate the inode not being stable, including being mid-teardown.
1369  */
iget5_locked_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1370 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval,
1371 		int (*test)(struct inode *, void *),
1372 		int (*set)(struct inode *, void *), void *data)
1373 {
1374 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1375 	struct inode *inode, *new;
1376 
1377 again:
1378 	inode = find_inode(sb, head, test, data, false);
1379 	if (inode) {
1380 		if (IS_ERR(inode))
1381 			return NULL;
1382 		wait_on_inode(inode);
1383 		if (unlikely(inode_unhashed(inode))) {
1384 			iput(inode);
1385 			goto again;
1386 		}
1387 		return inode;
1388 	}
1389 
1390 	new = alloc_inode(sb);
1391 	if (new) {
1392 		inode = inode_insert5(new, hashval, test, set, data);
1393 		if (unlikely(inode != new))
1394 			destroy_inode(new);
1395 	}
1396 	return inode;
1397 }
1398 EXPORT_SYMBOL_GPL(iget5_locked_rcu);
1399 
1400 /**
1401  * iget_locked - obtain an inode from a mounted file system
1402  * @sb:		super block of file system
1403  * @ino:	inode number to get
1404  *
1405  * Search for the inode specified by @ino in the inode cache and if present
1406  * return it with an increased reference count. This is for file systems
1407  * where the inode number is sufficient for unique identification of an inode.
1408  *
1409  * If the inode is not in cache, allocate a new inode and return it locked,
1410  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1411  * before unlocking it via unlock_new_inode().
1412  */
iget_locked(struct super_block * sb,unsigned long ino)1413 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1414 {
1415 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1416 	struct inode *inode;
1417 again:
1418 	inode = find_inode_fast(sb, head, ino, false);
1419 	if (inode) {
1420 		if (IS_ERR(inode))
1421 			return NULL;
1422 		wait_on_inode(inode);
1423 		if (unlikely(inode_unhashed(inode))) {
1424 			iput(inode);
1425 			goto again;
1426 		}
1427 		return inode;
1428 	}
1429 
1430 	inode = alloc_inode(sb);
1431 	if (inode) {
1432 		struct inode *old;
1433 
1434 		spin_lock(&inode_hash_lock);
1435 		/* We released the lock, so.. */
1436 		old = find_inode_fast(sb, head, ino, true);
1437 		if (!old) {
1438 			inode->i_ino = ino;
1439 			spin_lock(&inode->i_lock);
1440 			inode->i_state = I_NEW;
1441 			hlist_add_head_rcu(&inode->i_hash, head);
1442 			spin_unlock(&inode->i_lock);
1443 			inode_sb_list_add(inode);
1444 			spin_unlock(&inode_hash_lock);
1445 
1446 			/* Return the locked inode with I_NEW set, the
1447 			 * caller is responsible for filling in the contents
1448 			 */
1449 			return inode;
1450 		}
1451 
1452 		/*
1453 		 * Uhhuh, somebody else created the same inode under
1454 		 * us. Use the old inode instead of the one we just
1455 		 * allocated.
1456 		 */
1457 		spin_unlock(&inode_hash_lock);
1458 		destroy_inode(inode);
1459 		if (IS_ERR(old))
1460 			return NULL;
1461 		inode = old;
1462 		wait_on_inode(inode);
1463 		if (unlikely(inode_unhashed(inode))) {
1464 			iput(inode);
1465 			goto again;
1466 		}
1467 	}
1468 	return inode;
1469 }
1470 EXPORT_SYMBOL(iget_locked);
1471 
1472 /*
1473  * search the inode cache for a matching inode number.
1474  * If we find one, then the inode number we are trying to
1475  * allocate is not unique and so we should not use it.
1476  *
1477  * Returns 1 if the inode number is unique, 0 if it is not.
1478  */
test_inode_iunique(struct super_block * sb,unsigned long ino)1479 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1480 {
1481 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1482 	struct inode *inode;
1483 
1484 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1485 		if (inode->i_ino == ino && inode->i_sb == sb)
1486 			return 0;
1487 	}
1488 	return 1;
1489 }
1490 
1491 /**
1492  *	iunique - get a unique inode number
1493  *	@sb: superblock
1494  *	@max_reserved: highest reserved inode number
1495  *
1496  *	Obtain an inode number that is unique on the system for a given
1497  *	superblock. This is used by file systems that have no natural
1498  *	permanent inode numbering system. An inode number is returned that
1499  *	is higher than the reserved limit but unique.
1500  *
1501  *	BUGS:
1502  *	With a large number of inodes live on the file system this function
1503  *	currently becomes quite slow.
1504  */
iunique(struct super_block * sb,ino_t max_reserved)1505 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1506 {
1507 	/*
1508 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1509 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1510 	 * here to attempt to avoid that.
1511 	 */
1512 	static DEFINE_SPINLOCK(iunique_lock);
1513 	static unsigned int counter;
1514 	ino_t res;
1515 
1516 	rcu_read_lock();
1517 	spin_lock(&iunique_lock);
1518 	do {
1519 		if (counter <= max_reserved)
1520 			counter = max_reserved + 1;
1521 		res = counter++;
1522 	} while (!test_inode_iunique(sb, res));
1523 	spin_unlock(&iunique_lock);
1524 	rcu_read_unlock();
1525 
1526 	return res;
1527 }
1528 EXPORT_SYMBOL(iunique);
1529 
igrab(struct inode * inode)1530 struct inode *igrab(struct inode *inode)
1531 {
1532 	spin_lock(&inode->i_lock);
1533 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1534 		__iget(inode);
1535 		spin_unlock(&inode->i_lock);
1536 	} else {
1537 		spin_unlock(&inode->i_lock);
1538 		/*
1539 		 * Handle the case where s_op->clear_inode is not been
1540 		 * called yet, and somebody is calling igrab
1541 		 * while the inode is getting freed.
1542 		 */
1543 		inode = NULL;
1544 	}
1545 	return inode;
1546 }
1547 EXPORT_SYMBOL(igrab);
1548 
1549 /**
1550  * ilookup5_nowait - search for an inode in the inode cache
1551  * @sb:		super block of file system to search
1552  * @hashval:	hash value (usually inode number) to search for
1553  * @test:	callback used for comparisons between inodes
1554  * @data:	opaque data pointer to pass to @test
1555  *
1556  * Search for the inode specified by @hashval and @data in the inode cache.
1557  * If the inode is in the cache, the inode is returned with an incremented
1558  * reference count.
1559  *
1560  * Note: I_NEW is not waited upon so you have to be very careful what you do
1561  * with the returned inode.  You probably should be using ilookup5() instead.
1562  *
1563  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1564  */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1565 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1566 		int (*test)(struct inode *, void *), void *data)
1567 {
1568 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1569 	struct inode *inode;
1570 
1571 	spin_lock(&inode_hash_lock);
1572 	inode = find_inode(sb, head, test, data, true);
1573 	spin_unlock(&inode_hash_lock);
1574 
1575 	return IS_ERR(inode) ? NULL : inode;
1576 }
1577 EXPORT_SYMBOL(ilookup5_nowait);
1578 
1579 /**
1580  * ilookup5 - search for an inode in the inode cache
1581  * @sb:		super block of file system to search
1582  * @hashval:	hash value (usually inode number) to search for
1583  * @test:	callback used for comparisons between inodes
1584  * @data:	opaque data pointer to pass to @test
1585  *
1586  * Search for the inode specified by @hashval and @data in the inode cache,
1587  * and if the inode is in the cache, return the inode with an incremented
1588  * reference count.  Waits on I_NEW before returning the inode.
1589  * returned with an incremented reference count.
1590  *
1591  * This is a generalized version of ilookup() for file systems where the
1592  * inode number is not sufficient for unique identification of an inode.
1593  *
1594  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1595  */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1596 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1597 		int (*test)(struct inode *, void *), void *data)
1598 {
1599 	struct inode *inode;
1600 again:
1601 	inode = ilookup5_nowait(sb, hashval, test, data);
1602 	if (inode) {
1603 		wait_on_inode(inode);
1604 		if (unlikely(inode_unhashed(inode))) {
1605 			iput(inode);
1606 			goto again;
1607 		}
1608 	}
1609 	return inode;
1610 }
1611 EXPORT_SYMBOL(ilookup5);
1612 
1613 /**
1614  * ilookup - search for an inode in the inode cache
1615  * @sb:		super block of file system to search
1616  * @ino:	inode number to search for
1617  *
1618  * Search for the inode @ino in the inode cache, and if the inode is in the
1619  * cache, the inode is returned with an incremented reference count.
1620  */
ilookup(struct super_block * sb,unsigned long ino)1621 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1622 {
1623 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1624 	struct inode *inode;
1625 again:
1626 	inode = find_inode_fast(sb, head, ino, false);
1627 
1628 	if (inode) {
1629 		if (IS_ERR(inode))
1630 			return NULL;
1631 		wait_on_inode(inode);
1632 		if (unlikely(inode_unhashed(inode))) {
1633 			iput(inode);
1634 			goto again;
1635 		}
1636 	}
1637 	return inode;
1638 }
1639 EXPORT_SYMBOL(ilookup);
1640 
1641 /**
1642  * find_inode_nowait - find an inode in the inode cache
1643  * @sb:		super block of file system to search
1644  * @hashval:	hash value (usually inode number) to search for
1645  * @match:	callback used for comparisons between inodes
1646  * @data:	opaque data pointer to pass to @match
1647  *
1648  * Search for the inode specified by @hashval and @data in the inode
1649  * cache, where the helper function @match will return 0 if the inode
1650  * does not match, 1 if the inode does match, and -1 if the search
1651  * should be stopped.  The @match function must be responsible for
1652  * taking the i_lock spin_lock and checking i_state for an inode being
1653  * freed or being initialized, and incrementing the reference count
1654  * before returning 1.  It also must not sleep, since it is called with
1655  * the inode_hash_lock spinlock held.
1656  *
1657  * This is a even more generalized version of ilookup5() when the
1658  * function must never block --- find_inode() can block in
1659  * __wait_on_freeing_inode() --- or when the caller can not increment
1660  * the reference count because the resulting iput() might cause an
1661  * inode eviction.  The tradeoff is that the @match funtion must be
1662  * very carefully implemented.
1663  */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1664 struct inode *find_inode_nowait(struct super_block *sb,
1665 				unsigned long hashval,
1666 				int (*match)(struct inode *, unsigned long,
1667 					     void *),
1668 				void *data)
1669 {
1670 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1671 	struct inode *inode, *ret_inode = NULL;
1672 	int mval;
1673 
1674 	spin_lock(&inode_hash_lock);
1675 	hlist_for_each_entry(inode, head, i_hash) {
1676 		if (inode->i_sb != sb)
1677 			continue;
1678 		mval = match(inode, hashval, data);
1679 		if (mval == 0)
1680 			continue;
1681 		if (mval == 1)
1682 			ret_inode = inode;
1683 		goto out;
1684 	}
1685 out:
1686 	spin_unlock(&inode_hash_lock);
1687 	return ret_inode;
1688 }
1689 EXPORT_SYMBOL(find_inode_nowait);
1690 
1691 /**
1692  * find_inode_rcu - find an inode in the inode cache
1693  * @sb:		Super block of file system to search
1694  * @hashval:	Key to hash
1695  * @test:	Function to test match on an inode
1696  * @data:	Data for test function
1697  *
1698  * Search for the inode specified by @hashval and @data in the inode cache,
1699  * where the helper function @test will return 0 if the inode does not match
1700  * and 1 if it does.  The @test function must be responsible for taking the
1701  * i_lock spin_lock and checking i_state for an inode being freed or being
1702  * initialized.
1703  *
1704  * If successful, this will return the inode for which the @test function
1705  * returned 1 and NULL otherwise.
1706  *
1707  * The @test function is not permitted to take a ref on any inode presented.
1708  * It is also not permitted to sleep.
1709  *
1710  * The caller must hold the RCU read lock.
1711  */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1712 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1713 			     int (*test)(struct inode *, void *), void *data)
1714 {
1715 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1716 	struct inode *inode;
1717 
1718 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1719 			 "suspicious find_inode_rcu() usage");
1720 
1721 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1722 		if (inode->i_sb == sb &&
1723 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1724 		    test(inode, data))
1725 			return inode;
1726 	}
1727 	return NULL;
1728 }
1729 EXPORT_SYMBOL(find_inode_rcu);
1730 
1731 /**
1732  * find_inode_by_ino_rcu - Find an inode in the inode cache
1733  * @sb:		Super block of file system to search
1734  * @ino:	The inode number to match
1735  *
1736  * Search for the inode specified by @hashval and @data in the inode cache,
1737  * where the helper function @test will return 0 if the inode does not match
1738  * and 1 if it does.  The @test function must be responsible for taking the
1739  * i_lock spin_lock and checking i_state for an inode being freed or being
1740  * initialized.
1741  *
1742  * If successful, this will return the inode for which the @test function
1743  * returned 1 and NULL otherwise.
1744  *
1745  * The @test function is not permitted to take a ref on any inode presented.
1746  * It is also not permitted to sleep.
1747  *
1748  * The caller must hold the RCU read lock.
1749  */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1750 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1751 				    unsigned long ino)
1752 {
1753 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1754 	struct inode *inode;
1755 
1756 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1757 			 "suspicious find_inode_by_ino_rcu() usage");
1758 
1759 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1760 		if (inode->i_ino == ino &&
1761 		    inode->i_sb == sb &&
1762 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1763 		    return inode;
1764 	}
1765 	return NULL;
1766 }
1767 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1768 
insert_inode_locked(struct inode * inode)1769 int insert_inode_locked(struct inode *inode)
1770 {
1771 	struct super_block *sb = inode->i_sb;
1772 	ino_t ino = inode->i_ino;
1773 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1774 
1775 	while (1) {
1776 		struct inode *old = NULL;
1777 		spin_lock(&inode_hash_lock);
1778 		hlist_for_each_entry(old, head, i_hash) {
1779 			if (old->i_ino != ino)
1780 				continue;
1781 			if (old->i_sb != sb)
1782 				continue;
1783 			spin_lock(&old->i_lock);
1784 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1785 				spin_unlock(&old->i_lock);
1786 				continue;
1787 			}
1788 			break;
1789 		}
1790 		if (likely(!old)) {
1791 			spin_lock(&inode->i_lock);
1792 			inode->i_state |= I_NEW | I_CREATING;
1793 			hlist_add_head_rcu(&inode->i_hash, head);
1794 			spin_unlock(&inode->i_lock);
1795 			spin_unlock(&inode_hash_lock);
1796 			return 0;
1797 		}
1798 		if (unlikely(old->i_state & I_CREATING)) {
1799 			spin_unlock(&old->i_lock);
1800 			spin_unlock(&inode_hash_lock);
1801 			return -EBUSY;
1802 		}
1803 		__iget(old);
1804 		spin_unlock(&old->i_lock);
1805 		spin_unlock(&inode_hash_lock);
1806 		wait_on_inode(old);
1807 		if (unlikely(!inode_unhashed(old))) {
1808 			iput(old);
1809 			return -EBUSY;
1810 		}
1811 		iput(old);
1812 	}
1813 }
1814 EXPORT_SYMBOL(insert_inode_locked);
1815 
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1816 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1817 		int (*test)(struct inode *, void *), void *data)
1818 {
1819 	struct inode *old;
1820 
1821 	inode->i_state |= I_CREATING;
1822 	old = inode_insert5(inode, hashval, test, NULL, data);
1823 
1824 	if (old != inode) {
1825 		iput(old);
1826 		return -EBUSY;
1827 	}
1828 	return 0;
1829 }
1830 EXPORT_SYMBOL(insert_inode_locked4);
1831 
1832 
generic_delete_inode(struct inode * inode)1833 int generic_delete_inode(struct inode *inode)
1834 {
1835 	return 1;
1836 }
1837 EXPORT_SYMBOL(generic_delete_inode);
1838 
1839 /*
1840  * Called when we're dropping the last reference
1841  * to an inode.
1842  *
1843  * Call the FS "drop_inode()" function, defaulting to
1844  * the legacy UNIX filesystem behaviour.  If it tells
1845  * us to evict inode, do so.  Otherwise, retain inode
1846  * in cache if fs is alive, sync and evict if fs is
1847  * shutting down.
1848  */
iput_final(struct inode * inode)1849 static void iput_final(struct inode *inode)
1850 {
1851 	struct super_block *sb = inode->i_sb;
1852 	const struct super_operations *op = inode->i_sb->s_op;
1853 	unsigned long state;
1854 	int drop;
1855 
1856 	WARN_ON(inode->i_state & I_NEW);
1857 
1858 	if (op->drop_inode)
1859 		drop = op->drop_inode(inode);
1860 	else
1861 		drop = generic_drop_inode(inode);
1862 
1863 	if (!drop &&
1864 	    !(inode->i_state & I_DONTCACHE) &&
1865 	    (sb->s_flags & SB_ACTIVE)) {
1866 		__inode_add_lru(inode, true);
1867 		spin_unlock(&inode->i_lock);
1868 		return;
1869 	}
1870 
1871 	state = inode->i_state;
1872 	if (!drop) {
1873 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1874 		spin_unlock(&inode->i_lock);
1875 
1876 		write_inode_now(inode, 1);
1877 
1878 		spin_lock(&inode->i_lock);
1879 		state = inode->i_state;
1880 		WARN_ON(state & I_NEW);
1881 		state &= ~I_WILL_FREE;
1882 	}
1883 
1884 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1885 	if (!list_empty(&inode->i_lru))
1886 		inode_lru_list_del(inode);
1887 	spin_unlock(&inode->i_lock);
1888 
1889 	evict(inode);
1890 }
1891 
1892 /**
1893  *	iput	- put an inode
1894  *	@inode: inode to put
1895  *
1896  *	Puts an inode, dropping its usage count. If the inode use count hits
1897  *	zero, the inode is then freed and may also be destroyed.
1898  *
1899  *	Consequently, iput() can sleep.
1900  */
iput(struct inode * inode)1901 void iput(struct inode *inode)
1902 {
1903 	if (!inode)
1904 		return;
1905 	BUG_ON(inode->i_state & I_CLEAR);
1906 retry:
1907 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1908 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1909 			atomic_inc(&inode->i_count);
1910 			spin_unlock(&inode->i_lock);
1911 			trace_writeback_lazytime_iput(inode);
1912 			mark_inode_dirty_sync(inode);
1913 			goto retry;
1914 		}
1915 		iput_final(inode);
1916 	}
1917 }
1918 EXPORT_SYMBOL(iput);
1919 
1920 #ifdef CONFIG_BLOCK
1921 /**
1922  *	bmap	- find a block number in a file
1923  *	@inode:  inode owning the block number being requested
1924  *	@block: pointer containing the block to find
1925  *
1926  *	Replaces the value in ``*block`` with the block number on the device holding
1927  *	corresponding to the requested block number in the file.
1928  *	That is, asked for block 4 of inode 1 the function will replace the
1929  *	4 in ``*block``, with disk block relative to the disk start that holds that
1930  *	block of the file.
1931  *
1932  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1933  *	hole, returns 0 and ``*block`` is also set to 0.
1934  */
bmap(struct inode * inode,sector_t * block)1935 int bmap(struct inode *inode, sector_t *block)
1936 {
1937 	if (!inode->i_mapping->a_ops->bmap)
1938 		return -EINVAL;
1939 
1940 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1941 	return 0;
1942 }
1943 EXPORT_SYMBOL(bmap);
1944 #endif
1945 
1946 /*
1947  * With relative atime, only update atime if the previous atime is
1948  * earlier than or equal to either the ctime or mtime,
1949  * or if at least a day has passed since the last atime update.
1950  */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1951 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1952 			     struct timespec64 now)
1953 {
1954 	struct timespec64 atime, mtime, ctime;
1955 
1956 	if (!(mnt->mnt_flags & MNT_RELATIME))
1957 		return true;
1958 	/*
1959 	 * Is mtime younger than or equal to atime? If yes, update atime:
1960 	 */
1961 	atime = inode_get_atime(inode);
1962 	mtime = inode_get_mtime(inode);
1963 	if (timespec64_compare(&mtime, &atime) >= 0)
1964 		return true;
1965 	/*
1966 	 * Is ctime younger than or equal to atime? If yes, update atime:
1967 	 */
1968 	ctime = inode_get_ctime(inode);
1969 	if (timespec64_compare(&ctime, &atime) >= 0)
1970 		return true;
1971 
1972 	/*
1973 	 * Is the previous atime value older than a day? If yes,
1974 	 * update atime:
1975 	 */
1976 	if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
1977 		return true;
1978 	/*
1979 	 * Good, we can skip the atime update:
1980 	 */
1981 	return false;
1982 }
1983 
1984 /**
1985  * inode_update_timestamps - update the timestamps on the inode
1986  * @inode: inode to be updated
1987  * @flags: S_* flags that needed to be updated
1988  *
1989  * The update_time function is called when an inode's timestamps need to be
1990  * updated for a read or write operation. This function handles updating the
1991  * actual timestamps. It's up to the caller to ensure that the inode is marked
1992  * dirty appropriately.
1993  *
1994  * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
1995  * attempt to update all three of them. S_ATIME updates can be handled
1996  * independently of the rest.
1997  *
1998  * Returns a set of S_* flags indicating which values changed.
1999  */
inode_update_timestamps(struct inode * inode,int flags)2000 int inode_update_timestamps(struct inode *inode, int flags)
2001 {
2002 	int updated = 0;
2003 	struct timespec64 now;
2004 
2005 	if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
2006 		struct timespec64 ctime = inode_get_ctime(inode);
2007 		struct timespec64 mtime = inode_get_mtime(inode);
2008 
2009 		now = inode_set_ctime_current(inode);
2010 		if (!timespec64_equal(&now, &ctime))
2011 			updated |= S_CTIME;
2012 		if (!timespec64_equal(&now, &mtime)) {
2013 			inode_set_mtime_to_ts(inode, now);
2014 			updated |= S_MTIME;
2015 		}
2016 		if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
2017 			updated |= S_VERSION;
2018 	} else {
2019 		now = current_time(inode);
2020 	}
2021 
2022 	if (flags & S_ATIME) {
2023 		struct timespec64 atime = inode_get_atime(inode);
2024 
2025 		if (!timespec64_equal(&now, &atime)) {
2026 			inode_set_atime_to_ts(inode, now);
2027 			updated |= S_ATIME;
2028 		}
2029 	}
2030 	return updated;
2031 }
2032 EXPORT_SYMBOL(inode_update_timestamps);
2033 
2034 /**
2035  * generic_update_time - update the timestamps on the inode
2036  * @inode: inode to be updated
2037  * @flags: S_* flags that needed to be updated
2038  *
2039  * The update_time function is called when an inode's timestamps need to be
2040  * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
2041  * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
2042  * updates can be handled done independently of the rest.
2043  *
2044  * Returns a S_* mask indicating which fields were updated.
2045  */
generic_update_time(struct inode * inode,int flags)2046 int generic_update_time(struct inode *inode, int flags)
2047 {
2048 	int updated = inode_update_timestamps(inode, flags);
2049 	int dirty_flags = 0;
2050 
2051 	if (updated & (S_ATIME|S_MTIME|S_CTIME))
2052 		dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
2053 	if (updated & S_VERSION)
2054 		dirty_flags |= I_DIRTY_SYNC;
2055 	__mark_inode_dirty(inode, dirty_flags);
2056 	return updated;
2057 }
2058 EXPORT_SYMBOL(generic_update_time);
2059 
2060 /*
2061  * This does the actual work of updating an inodes time or version.  Must have
2062  * had called mnt_want_write() before calling this.
2063  */
inode_update_time(struct inode * inode,int flags)2064 int inode_update_time(struct inode *inode, int flags)
2065 {
2066 	if (inode->i_op->update_time)
2067 		return inode->i_op->update_time(inode, flags);
2068 	generic_update_time(inode, flags);
2069 	return 0;
2070 }
2071 EXPORT_SYMBOL(inode_update_time);
2072 
2073 /**
2074  *	atime_needs_update	-	update the access time
2075  *	@path: the &struct path to update
2076  *	@inode: inode to update
2077  *
2078  *	Update the accessed time on an inode and mark it for writeback.
2079  *	This function automatically handles read only file systems and media,
2080  *	as well as the "noatime" flag and inode specific "noatime" markers.
2081  */
atime_needs_update(const struct path * path,struct inode * inode)2082 bool atime_needs_update(const struct path *path, struct inode *inode)
2083 {
2084 	struct vfsmount *mnt = path->mnt;
2085 	struct timespec64 now, atime;
2086 
2087 	if (inode->i_flags & S_NOATIME)
2088 		return false;
2089 
2090 	/* Atime updates will likely cause i_uid and i_gid to be written
2091 	 * back improprely if their true value is unknown to the vfs.
2092 	 */
2093 	if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
2094 		return false;
2095 
2096 	if (IS_NOATIME(inode))
2097 		return false;
2098 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
2099 		return false;
2100 
2101 	if (mnt->mnt_flags & MNT_NOATIME)
2102 		return false;
2103 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
2104 		return false;
2105 
2106 	now = current_time(inode);
2107 
2108 	if (!relatime_need_update(mnt, inode, now))
2109 		return false;
2110 
2111 	atime = inode_get_atime(inode);
2112 	if (timespec64_equal(&atime, &now))
2113 		return false;
2114 
2115 	return true;
2116 }
2117 
touch_atime(const struct path * path)2118 void touch_atime(const struct path *path)
2119 {
2120 	struct vfsmount *mnt = path->mnt;
2121 	struct inode *inode = d_inode(path->dentry);
2122 
2123 	if (!atime_needs_update(path, inode))
2124 		return;
2125 
2126 	if (!sb_start_write_trylock(inode->i_sb))
2127 		return;
2128 
2129 	if (mnt_get_write_access(mnt) != 0)
2130 		goto skip_update;
2131 	/*
2132 	 * File systems can error out when updating inodes if they need to
2133 	 * allocate new space to modify an inode (such is the case for
2134 	 * Btrfs), but since we touch atime while walking down the path we
2135 	 * really don't care if we failed to update the atime of the file,
2136 	 * so just ignore the return value.
2137 	 * We may also fail on filesystems that have the ability to make parts
2138 	 * of the fs read only, e.g. subvolumes in Btrfs.
2139 	 */
2140 	inode_update_time(inode, S_ATIME);
2141 	mnt_put_write_access(mnt);
2142 skip_update:
2143 	sb_end_write(inode->i_sb);
2144 }
2145 EXPORT_SYMBOL(touch_atime);
2146 
2147 /*
2148  * Return mask of changes for notify_change() that need to be done as a
2149  * response to write or truncate. Return 0 if nothing has to be changed.
2150  * Negative value on error (change should be denied).
2151  */
dentry_needs_remove_privs(struct mnt_idmap * idmap,struct dentry * dentry)2152 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2153 			      struct dentry *dentry)
2154 {
2155 	struct inode *inode = d_inode(dentry);
2156 	int mask = 0;
2157 	int ret;
2158 
2159 	if (IS_NOSEC(inode))
2160 		return 0;
2161 
2162 	mask = setattr_should_drop_suidgid(idmap, inode);
2163 	ret = security_inode_need_killpriv(dentry);
2164 	if (ret < 0)
2165 		return ret;
2166 	if (ret)
2167 		mask |= ATTR_KILL_PRIV;
2168 	return mask;
2169 }
2170 
__remove_privs(struct mnt_idmap * idmap,struct dentry * dentry,int kill)2171 static int __remove_privs(struct mnt_idmap *idmap,
2172 			  struct dentry *dentry, int kill)
2173 {
2174 	struct iattr newattrs;
2175 
2176 	newattrs.ia_valid = ATTR_FORCE | kill;
2177 	/*
2178 	 * Note we call this on write, so notify_change will not
2179 	 * encounter any conflicting delegations:
2180 	 */
2181 	return notify_change(idmap, dentry, &newattrs, NULL);
2182 }
2183 
file_remove_privs_flags(struct file * file,unsigned int flags)2184 int file_remove_privs_flags(struct file *file, unsigned int flags)
2185 {
2186 	struct dentry *dentry = file_dentry(file);
2187 	struct inode *inode = file_inode(file);
2188 	int error = 0;
2189 	int kill;
2190 
2191 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2192 		return 0;
2193 
2194 	kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2195 	if (kill < 0)
2196 		return kill;
2197 
2198 	if (kill) {
2199 		if (flags & IOCB_NOWAIT)
2200 			return -EAGAIN;
2201 
2202 		error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2203 	}
2204 
2205 	if (!error)
2206 		inode_has_no_xattr(inode);
2207 	return error;
2208 }
2209 EXPORT_SYMBOL_GPL(file_remove_privs_flags);
2210 
2211 /**
2212  * file_remove_privs - remove special file privileges (suid, capabilities)
2213  * @file: file to remove privileges from
2214  *
2215  * When file is modified by a write or truncation ensure that special
2216  * file privileges are removed.
2217  *
2218  * Return: 0 on success, negative errno on failure.
2219  */
file_remove_privs(struct file * file)2220 int file_remove_privs(struct file *file)
2221 {
2222 	return file_remove_privs_flags(file, 0);
2223 }
2224 EXPORT_SYMBOL(file_remove_privs);
2225 
inode_needs_update_time(struct inode * inode)2226 static int inode_needs_update_time(struct inode *inode)
2227 {
2228 	int sync_it = 0;
2229 	struct timespec64 now = current_time(inode);
2230 	struct timespec64 ts;
2231 
2232 	/* First try to exhaust all avenues to not sync */
2233 	if (IS_NOCMTIME(inode))
2234 		return 0;
2235 
2236 	ts = inode_get_mtime(inode);
2237 	if (!timespec64_equal(&ts, &now))
2238 		sync_it = S_MTIME;
2239 
2240 	ts = inode_get_ctime(inode);
2241 	if (!timespec64_equal(&ts, &now))
2242 		sync_it |= S_CTIME;
2243 
2244 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2245 		sync_it |= S_VERSION;
2246 
2247 	return sync_it;
2248 }
2249 
__file_update_time(struct file * file,int sync_mode)2250 static int __file_update_time(struct file *file, int sync_mode)
2251 {
2252 	int ret = 0;
2253 	struct inode *inode = file_inode(file);
2254 
2255 	/* try to update time settings */
2256 	if (!mnt_get_write_access_file(file)) {
2257 		ret = inode_update_time(inode, sync_mode);
2258 		mnt_put_write_access_file(file);
2259 	}
2260 
2261 	return ret;
2262 }
2263 
2264 /**
2265  * file_update_time - update mtime and ctime time
2266  * @file: file accessed
2267  *
2268  * Update the mtime and ctime members of an inode and mark the inode for
2269  * writeback. Note that this function is meant exclusively for usage in
2270  * the file write path of filesystems, and filesystems may choose to
2271  * explicitly ignore updates via this function with the _NOCMTIME inode
2272  * flag, e.g. for network filesystem where these imestamps are handled
2273  * by the server. This can return an error for file systems who need to
2274  * allocate space in order to update an inode.
2275  *
2276  * Return: 0 on success, negative errno on failure.
2277  */
file_update_time(struct file * file)2278 int file_update_time(struct file *file)
2279 {
2280 	int ret;
2281 	struct inode *inode = file_inode(file);
2282 
2283 	ret = inode_needs_update_time(inode);
2284 	if (ret <= 0)
2285 		return ret;
2286 
2287 	return __file_update_time(file, ret);
2288 }
2289 EXPORT_SYMBOL(file_update_time);
2290 
2291 /**
2292  * file_modified_flags - handle mandated vfs changes when modifying a file
2293  * @file: file that was modified
2294  * @flags: kiocb flags
2295  *
2296  * When file has been modified ensure that special
2297  * file privileges are removed and time settings are updated.
2298  *
2299  * If IOCB_NOWAIT is set, special file privileges will not be removed and
2300  * time settings will not be updated. It will return -EAGAIN.
2301  *
2302  * Context: Caller must hold the file's inode lock.
2303  *
2304  * Return: 0 on success, negative errno on failure.
2305  */
file_modified_flags(struct file * file,int flags)2306 static int file_modified_flags(struct file *file, int flags)
2307 {
2308 	int ret;
2309 	struct inode *inode = file_inode(file);
2310 
2311 	/*
2312 	 * Clear the security bits if the process is not being run by root.
2313 	 * This keeps people from modifying setuid and setgid binaries.
2314 	 */
2315 	ret = file_remove_privs_flags(file, flags);
2316 	if (ret)
2317 		return ret;
2318 
2319 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2320 		return 0;
2321 
2322 	ret = inode_needs_update_time(inode);
2323 	if (ret <= 0)
2324 		return ret;
2325 	if (flags & IOCB_NOWAIT)
2326 		return -EAGAIN;
2327 
2328 	return __file_update_time(file, ret);
2329 }
2330 
2331 /**
2332  * file_modified - handle mandated vfs changes when modifying a file
2333  * @file: file that was modified
2334  *
2335  * When file has been modified ensure that special
2336  * file privileges are removed and time settings are updated.
2337  *
2338  * Context: Caller must hold the file's inode lock.
2339  *
2340  * Return: 0 on success, negative errno on failure.
2341  */
file_modified(struct file * file)2342 int file_modified(struct file *file)
2343 {
2344 	return file_modified_flags(file, 0);
2345 }
2346 EXPORT_SYMBOL(file_modified);
2347 
2348 /**
2349  * kiocb_modified - handle mandated vfs changes when modifying a file
2350  * @iocb: iocb that was modified
2351  *
2352  * When file has been modified ensure that special
2353  * file privileges are removed and time settings are updated.
2354  *
2355  * Context: Caller must hold the file's inode lock.
2356  *
2357  * Return: 0 on success, negative errno on failure.
2358  */
kiocb_modified(struct kiocb * iocb)2359 int kiocb_modified(struct kiocb *iocb)
2360 {
2361 	return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2362 }
2363 EXPORT_SYMBOL_GPL(kiocb_modified);
2364 
inode_needs_sync(struct inode * inode)2365 int inode_needs_sync(struct inode *inode)
2366 {
2367 	if (IS_SYNC(inode))
2368 		return 1;
2369 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2370 		return 1;
2371 	return 0;
2372 }
2373 EXPORT_SYMBOL(inode_needs_sync);
2374 
2375 /*
2376  * If we try to find an inode in the inode hash while it is being
2377  * deleted, we have to wait until the filesystem completes its
2378  * deletion before reporting that it isn't found.  This function waits
2379  * until the deletion _might_ have completed.  Callers are responsible
2380  * to recheck inode state.
2381  *
2382  * It doesn't matter if I_NEW is not set initially, a call to
2383  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2384  * will DTRT.
2385  */
__wait_on_freeing_inode(struct inode * inode,bool is_inode_hash_locked)2386 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked)
2387 {
2388 	struct wait_bit_queue_entry wqe;
2389 	struct wait_queue_head *wq_head;
2390 
2391 	/*
2392 	 * Handle racing against evict(), see that routine for more details.
2393 	 */
2394 	if (unlikely(inode_unhashed(inode))) {
2395 		WARN_ON(is_inode_hash_locked);
2396 		spin_unlock(&inode->i_lock);
2397 		return;
2398 	}
2399 
2400 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW);
2401 	prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
2402 	spin_unlock(&inode->i_lock);
2403 	rcu_read_unlock();
2404 	if (is_inode_hash_locked)
2405 		spin_unlock(&inode_hash_lock);
2406 	schedule();
2407 	finish_wait(wq_head, &wqe.wq_entry);
2408 	if (is_inode_hash_locked)
2409 		spin_lock(&inode_hash_lock);
2410 	rcu_read_lock();
2411 }
2412 
2413 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2414 static int __init set_ihash_entries(char *str)
2415 {
2416 	if (!str)
2417 		return 0;
2418 	ihash_entries = simple_strtoul(str, &str, 0);
2419 	return 1;
2420 }
2421 __setup("ihash_entries=", set_ihash_entries);
2422 
2423 /*
2424  * Initialize the waitqueues and inode hash table.
2425  */
inode_init_early(void)2426 void __init inode_init_early(void)
2427 {
2428 	/* If hashes are distributed across NUMA nodes, defer
2429 	 * hash allocation until vmalloc space is available.
2430 	 */
2431 	if (hashdist)
2432 		return;
2433 
2434 	inode_hashtable =
2435 		alloc_large_system_hash("Inode-cache",
2436 					sizeof(struct hlist_head),
2437 					ihash_entries,
2438 					14,
2439 					HASH_EARLY | HASH_ZERO,
2440 					&i_hash_shift,
2441 					&i_hash_mask,
2442 					0,
2443 					0);
2444 }
2445 
inode_init(void)2446 void __init inode_init(void)
2447 {
2448 	/* inode slab cache */
2449 	inode_cachep = kmem_cache_create("inode_cache",
2450 					 sizeof(struct inode),
2451 					 0,
2452 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2453 					 SLAB_ACCOUNT),
2454 					 init_once);
2455 
2456 	/* Hash may have been set up in inode_init_early */
2457 	if (!hashdist)
2458 		return;
2459 
2460 	inode_hashtable =
2461 		alloc_large_system_hash("Inode-cache",
2462 					sizeof(struct hlist_head),
2463 					ihash_entries,
2464 					14,
2465 					HASH_ZERO,
2466 					&i_hash_shift,
2467 					&i_hash_mask,
2468 					0,
2469 					0);
2470 }
2471 
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2472 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2473 {
2474 	inode->i_mode = mode;
2475 	if (S_ISCHR(mode)) {
2476 		inode->i_fop = &def_chr_fops;
2477 		inode->i_rdev = rdev;
2478 	} else if (S_ISBLK(mode)) {
2479 		if (IS_ENABLED(CONFIG_BLOCK))
2480 			inode->i_fop = &def_blk_fops;
2481 		inode->i_rdev = rdev;
2482 	} else if (S_ISFIFO(mode))
2483 		inode->i_fop = &pipefifo_fops;
2484 	else if (S_ISSOCK(mode))
2485 		;	/* leave it no_open_fops */
2486 	else
2487 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2488 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2489 				  inode->i_ino);
2490 }
2491 EXPORT_SYMBOL(init_special_inode);
2492 
2493 /**
2494  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2495  * @idmap: idmap of the mount the inode was created from
2496  * @inode: New inode
2497  * @dir: Directory inode
2498  * @mode: mode of the new inode
2499  *
2500  * If the inode has been created through an idmapped mount the idmap of
2501  * the vfsmount must be passed through @idmap. This function will then take
2502  * care to map the inode according to @idmap before checking permissions
2503  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2504  * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2505  */
inode_init_owner(struct mnt_idmap * idmap,struct inode * inode,const struct inode * dir,umode_t mode)2506 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2507 		      const struct inode *dir, umode_t mode)
2508 {
2509 	inode_fsuid_set(inode, idmap);
2510 	if (dir && dir->i_mode & S_ISGID) {
2511 		inode->i_gid = dir->i_gid;
2512 
2513 		/* Directories are special, and always inherit S_ISGID */
2514 		if (S_ISDIR(mode))
2515 			mode |= S_ISGID;
2516 	} else
2517 		inode_fsgid_set(inode, idmap);
2518 	inode->i_mode = mode;
2519 }
2520 EXPORT_SYMBOL(inode_init_owner);
2521 
2522 /**
2523  * inode_owner_or_capable - check current task permissions to inode
2524  * @idmap: idmap of the mount the inode was found from
2525  * @inode: inode being checked
2526  *
2527  * Return true if current either has CAP_FOWNER in a namespace with the
2528  * inode owner uid mapped, or owns the file.
2529  *
2530  * If the inode has been found through an idmapped mount the idmap of
2531  * the vfsmount must be passed through @idmap. This function will then take
2532  * care to map the inode according to @idmap before checking permissions.
2533  * On non-idmapped mounts or if permission checking is to be performed on the
2534  * raw inode simply pass @nop_mnt_idmap.
2535  */
inode_owner_or_capable(struct mnt_idmap * idmap,const struct inode * inode)2536 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2537 			    const struct inode *inode)
2538 {
2539 	vfsuid_t vfsuid;
2540 	struct user_namespace *ns;
2541 
2542 	vfsuid = i_uid_into_vfsuid(idmap, inode);
2543 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2544 		return true;
2545 
2546 	ns = current_user_ns();
2547 	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2548 		return true;
2549 	return false;
2550 }
2551 EXPORT_SYMBOL(inode_owner_or_capable);
2552 
2553 /*
2554  * Direct i/o helper functions
2555  */
inode_dio_finished(const struct inode * inode)2556 bool inode_dio_finished(const struct inode *inode)
2557 {
2558 	return atomic_read(&inode->i_dio_count) == 0;
2559 }
2560 EXPORT_SYMBOL(inode_dio_finished);
2561 
2562 /**
2563  * inode_dio_wait - wait for outstanding DIO requests to finish
2564  * @inode: inode to wait for
2565  *
2566  * Waits for all pending direct I/O requests to finish so that we can
2567  * proceed with a truncate or equivalent operation.
2568  *
2569  * Must be called under a lock that serializes taking new references
2570  * to i_dio_count, usually by inode->i_mutex.
2571  */
inode_dio_wait(struct inode * inode)2572 void inode_dio_wait(struct inode *inode)
2573 {
2574 	wait_var_event(&inode->i_dio_count, inode_dio_finished(inode));
2575 }
2576 EXPORT_SYMBOL(inode_dio_wait);
2577 
inode_dio_wait_interruptible(struct inode * inode)2578 void inode_dio_wait_interruptible(struct inode *inode)
2579 {
2580 	wait_var_event_interruptible(&inode->i_dio_count,
2581 				     inode_dio_finished(inode));
2582 }
2583 EXPORT_SYMBOL(inode_dio_wait_interruptible);
2584 
2585 /*
2586  * inode_set_flags - atomically set some inode flags
2587  *
2588  * Note: the caller should be holding i_mutex, or else be sure that
2589  * they have exclusive access to the inode structure (i.e., while the
2590  * inode is being instantiated).  The reason for the cmpxchg() loop
2591  * --- which wouldn't be necessary if all code paths which modify
2592  * i_flags actually followed this rule, is that there is at least one
2593  * code path which doesn't today so we use cmpxchg() out of an abundance
2594  * of caution.
2595  *
2596  * In the long run, i_mutex is overkill, and we should probably look
2597  * at using the i_lock spinlock to protect i_flags, and then make sure
2598  * it is so documented in include/linux/fs.h and that all code follows
2599  * the locking convention!!
2600  */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2601 void inode_set_flags(struct inode *inode, unsigned int flags,
2602 		     unsigned int mask)
2603 {
2604 	WARN_ON_ONCE(flags & ~mask);
2605 	set_mask_bits(&inode->i_flags, mask, flags);
2606 }
2607 EXPORT_SYMBOL(inode_set_flags);
2608 
inode_nohighmem(struct inode * inode)2609 void inode_nohighmem(struct inode *inode)
2610 {
2611 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2612 }
2613 EXPORT_SYMBOL(inode_nohighmem);
2614 
2615 /**
2616  * timestamp_truncate - Truncate timespec to a granularity
2617  * @t: Timespec
2618  * @inode: inode being updated
2619  *
2620  * Truncate a timespec to the granularity supported by the fs
2621  * containing the inode. Always rounds down. gran must
2622  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2623  */
timestamp_truncate(struct timespec64 t,struct inode * inode)2624 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2625 {
2626 	struct super_block *sb = inode->i_sb;
2627 	unsigned int gran = sb->s_time_gran;
2628 
2629 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2630 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2631 		t.tv_nsec = 0;
2632 
2633 	/* Avoid division in the common cases 1 ns and 1 s. */
2634 	if (gran == 1)
2635 		; /* nothing */
2636 	else if (gran == NSEC_PER_SEC)
2637 		t.tv_nsec = 0;
2638 	else if (gran > 1 && gran < NSEC_PER_SEC)
2639 		t.tv_nsec -= t.tv_nsec % gran;
2640 	else
2641 		WARN(1, "invalid file time granularity: %u", gran);
2642 	return t;
2643 }
2644 EXPORT_SYMBOL(timestamp_truncate);
2645 
2646 /**
2647  * current_time - Return FS time
2648  * @inode: inode.
2649  *
2650  * Return the current time truncated to the time granularity supported by
2651  * the fs.
2652  *
2653  * Note that inode and inode->sb cannot be NULL.
2654  * Otherwise, the function warns and returns time without truncation.
2655  */
current_time(struct inode * inode)2656 struct timespec64 current_time(struct inode *inode)
2657 {
2658 	struct timespec64 now;
2659 
2660 	ktime_get_coarse_real_ts64(&now);
2661 	return timestamp_truncate(now, inode);
2662 }
2663 EXPORT_SYMBOL(current_time);
2664 
2665 /**
2666  * inode_set_ctime_current - set the ctime to current_time
2667  * @inode: inode
2668  *
2669  * Set the inode->i_ctime to the current value for the inode. Returns
2670  * the current value that was assigned to i_ctime.
2671  */
inode_set_ctime_current(struct inode * inode)2672 struct timespec64 inode_set_ctime_current(struct inode *inode)
2673 {
2674 	struct timespec64 now = current_time(inode);
2675 
2676 	inode_set_ctime_to_ts(inode, now);
2677 	return now;
2678 }
2679 EXPORT_SYMBOL(inode_set_ctime_current);
2680 
2681 /**
2682  * in_group_or_capable - check whether caller is CAP_FSETID privileged
2683  * @idmap:	idmap of the mount @inode was found from
2684  * @inode:	inode to check
2685  * @vfsgid:	the new/current vfsgid of @inode
2686  *
2687  * Check wether @vfsgid is in the caller's group list or if the caller is
2688  * privileged with CAP_FSETID over @inode. This can be used to determine
2689  * whether the setgid bit can be kept or must be dropped.
2690  *
2691  * Return: true if the caller is sufficiently privileged, false if not.
2692  */
in_group_or_capable(struct mnt_idmap * idmap,const struct inode * inode,vfsgid_t vfsgid)2693 bool in_group_or_capable(struct mnt_idmap *idmap,
2694 			 const struct inode *inode, vfsgid_t vfsgid)
2695 {
2696 	if (vfsgid_in_group_p(vfsgid))
2697 		return true;
2698 	if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2699 		return true;
2700 	return false;
2701 }
2702 EXPORT_SYMBOL(in_group_or_capable);
2703 
2704 /**
2705  * mode_strip_sgid - handle the sgid bit for non-directories
2706  * @idmap: idmap of the mount the inode was created from
2707  * @dir: parent directory inode
2708  * @mode: mode of the file to be created in @dir
2709  *
2710  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2711  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2712  * either in the group of the parent directory or they have CAP_FSETID
2713  * in their user namespace and are privileged over the parent directory.
2714  * In all other cases, strip the S_ISGID bit from @mode.
2715  *
2716  * Return: the new mode to use for the file
2717  */
mode_strip_sgid(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode)2718 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2719 			const struct inode *dir, umode_t mode)
2720 {
2721 	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2722 		return mode;
2723 	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2724 		return mode;
2725 	if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2726 		return mode;
2727 	return mode & ~S_ISGID;
2728 }
2729 EXPORT_SYMBOL(mode_strip_sgid);
2730