1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  HID support for Linux
4  *
5  *  Copyright (c) 1999 Andreas Gal
6  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8  *  Copyright (c) 2006-2012 Jiri Kosina
9  */
10 
11 /*
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <linux/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35 
36 #include "hid-ids.h"
37 
38 /*
39  * Version Information
40  */
41 
42 #define DRIVER_DESC "HID core driver"
43 
44 static int hid_ignore_special_drivers = 0;
45 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
46 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
47 
48 /*
49  * Convert a signed n-bit integer to signed 32-bit integer.
50  */
51 
snto32(__u32 value,unsigned int n)52 static s32 snto32(__u32 value, unsigned int n)
53 {
54 	if (!value || !n)
55 		return 0;
56 
57 	if (n > 32)
58 		n = 32;
59 
60 	return sign_extend32(value, n - 1);
61 }
62 
63 /*
64  * Convert a signed 32-bit integer to a signed n-bit integer.
65  */
66 
s32ton(__s32 value,unsigned int n)67 static u32 s32ton(__s32 value, unsigned int n)
68 {
69 	s32 a;
70 
71 	if (!value || !n)
72 		return 0;
73 
74 	a = value >> (n - 1);
75 	if (a && a != -1)
76 		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
77 	return value & ((1 << n) - 1);
78 }
79 
80 /*
81  * Register a new report for a device.
82  */
83 
hid_register_report(struct hid_device * device,enum hid_report_type type,unsigned int id,unsigned int application)84 struct hid_report *hid_register_report(struct hid_device *device,
85 				       enum hid_report_type type, unsigned int id,
86 				       unsigned int application)
87 {
88 	struct hid_report_enum *report_enum = device->report_enum + type;
89 	struct hid_report *report;
90 
91 	if (id >= HID_MAX_IDS)
92 		return NULL;
93 	if (report_enum->report_id_hash[id])
94 		return report_enum->report_id_hash[id];
95 
96 	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
97 	if (!report)
98 		return NULL;
99 
100 	if (id != 0)
101 		report_enum->numbered = 1;
102 
103 	report->id = id;
104 	report->type = type;
105 	report->size = 0;
106 	report->device = device;
107 	report->application = application;
108 	report_enum->report_id_hash[id] = report;
109 
110 	list_add_tail(&report->list, &report_enum->report_list);
111 	INIT_LIST_HEAD(&report->field_entry_list);
112 
113 	return report;
114 }
115 EXPORT_SYMBOL_GPL(hid_register_report);
116 
117 /*
118  * Register a new field for this report.
119  */
120 
hid_register_field(struct hid_report * report,unsigned usages)121 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
122 {
123 	struct hid_field *field;
124 
125 	if (report->maxfield == HID_MAX_FIELDS) {
126 		hid_err(report->device, "too many fields in report\n");
127 		return NULL;
128 	}
129 
130 	field = kvzalloc((sizeof(struct hid_field) +
131 			  usages * sizeof(struct hid_usage) +
132 			  3 * usages * sizeof(unsigned int)), GFP_KERNEL);
133 	if (!field)
134 		return NULL;
135 
136 	field->index = report->maxfield++;
137 	report->field[field->index] = field;
138 	field->usage = (struct hid_usage *)(field + 1);
139 	field->value = (s32 *)(field->usage + usages);
140 	field->new_value = (s32 *)(field->value + usages);
141 	field->usages_priorities = (s32 *)(field->new_value + usages);
142 	field->report = report;
143 
144 	return field;
145 }
146 
147 /*
148  * Open a collection. The type/usage is pushed on the stack.
149  */
150 
open_collection(struct hid_parser * parser,unsigned type)151 static int open_collection(struct hid_parser *parser, unsigned type)
152 {
153 	struct hid_collection *collection;
154 	unsigned usage;
155 	int collection_index;
156 
157 	usage = parser->local.usage[0];
158 
159 	if (parser->collection_stack_ptr == parser->collection_stack_size) {
160 		unsigned int *collection_stack;
161 		unsigned int new_size = parser->collection_stack_size +
162 					HID_COLLECTION_STACK_SIZE;
163 
164 		collection_stack = krealloc(parser->collection_stack,
165 					    new_size * sizeof(unsigned int),
166 					    GFP_KERNEL);
167 		if (!collection_stack)
168 			return -ENOMEM;
169 
170 		parser->collection_stack = collection_stack;
171 		parser->collection_stack_size = new_size;
172 	}
173 
174 	if (parser->device->maxcollection == parser->device->collection_size) {
175 		collection = kmalloc(
176 				array3_size(sizeof(struct hid_collection),
177 					    parser->device->collection_size,
178 					    2),
179 				GFP_KERNEL);
180 		if (collection == NULL) {
181 			hid_err(parser->device, "failed to reallocate collection array\n");
182 			return -ENOMEM;
183 		}
184 		memcpy(collection, parser->device->collection,
185 			sizeof(struct hid_collection) *
186 			parser->device->collection_size);
187 		memset(collection + parser->device->collection_size, 0,
188 			sizeof(struct hid_collection) *
189 			parser->device->collection_size);
190 		kfree(parser->device->collection);
191 		parser->device->collection = collection;
192 		parser->device->collection_size *= 2;
193 	}
194 
195 	parser->collection_stack[parser->collection_stack_ptr++] =
196 		parser->device->maxcollection;
197 
198 	collection_index = parser->device->maxcollection++;
199 	collection = parser->device->collection + collection_index;
200 	collection->type = type;
201 	collection->usage = usage;
202 	collection->level = parser->collection_stack_ptr - 1;
203 	collection->parent_idx = (collection->level == 0) ? -1 :
204 		parser->collection_stack[collection->level - 1];
205 
206 	if (type == HID_COLLECTION_APPLICATION)
207 		parser->device->maxapplication++;
208 
209 	return 0;
210 }
211 
212 /*
213  * Close a collection.
214  */
215 
close_collection(struct hid_parser * parser)216 static int close_collection(struct hid_parser *parser)
217 {
218 	if (!parser->collection_stack_ptr) {
219 		hid_err(parser->device, "collection stack underflow\n");
220 		return -EINVAL;
221 	}
222 	parser->collection_stack_ptr--;
223 	return 0;
224 }
225 
226 /*
227  * Climb up the stack, search for the specified collection type
228  * and return the usage.
229  */
230 
hid_lookup_collection(struct hid_parser * parser,unsigned type)231 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
232 {
233 	struct hid_collection *collection = parser->device->collection;
234 	int n;
235 
236 	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
237 		unsigned index = parser->collection_stack[n];
238 		if (collection[index].type == type)
239 			return collection[index].usage;
240 	}
241 	return 0; /* we know nothing about this usage type */
242 }
243 
244 /*
245  * Concatenate usage which defines 16 bits or less with the
246  * currently defined usage page to form a 32 bit usage
247  */
248 
complete_usage(struct hid_parser * parser,unsigned int index)249 static void complete_usage(struct hid_parser *parser, unsigned int index)
250 {
251 	parser->local.usage[index] &= 0xFFFF;
252 	parser->local.usage[index] |=
253 		(parser->global.usage_page & 0xFFFF) << 16;
254 }
255 
256 /*
257  * Add a usage to the temporary parser table.
258  */
259 
hid_add_usage(struct hid_parser * parser,unsigned usage,u8 size)260 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
261 {
262 	if (parser->local.usage_index >= HID_MAX_USAGES) {
263 		hid_err(parser->device, "usage index exceeded\n");
264 		return -1;
265 	}
266 	parser->local.usage[parser->local.usage_index] = usage;
267 
268 	/*
269 	 * If Usage item only includes usage id, concatenate it with
270 	 * currently defined usage page
271 	 */
272 	if (size <= 2)
273 		complete_usage(parser, parser->local.usage_index);
274 
275 	parser->local.usage_size[parser->local.usage_index] = size;
276 	parser->local.collection_index[parser->local.usage_index] =
277 		parser->collection_stack_ptr ?
278 		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
279 	parser->local.usage_index++;
280 	return 0;
281 }
282 
283 /*
284  * Register a new field for this report.
285  */
286 
hid_add_field(struct hid_parser * parser,unsigned report_type,unsigned flags)287 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
288 {
289 	struct hid_report *report;
290 	struct hid_field *field;
291 	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
292 	unsigned int usages;
293 	unsigned int offset;
294 	unsigned int i;
295 	unsigned int application;
296 
297 	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
298 
299 	report = hid_register_report(parser->device, report_type,
300 				     parser->global.report_id, application);
301 	if (!report) {
302 		hid_err(parser->device, "hid_register_report failed\n");
303 		return -1;
304 	}
305 
306 	/* Handle both signed and unsigned cases properly */
307 	if ((parser->global.logical_minimum < 0 &&
308 		parser->global.logical_maximum <
309 		parser->global.logical_minimum) ||
310 		(parser->global.logical_minimum >= 0 &&
311 		(__u32)parser->global.logical_maximum <
312 		(__u32)parser->global.logical_minimum)) {
313 		dbg_hid("logical range invalid 0x%x 0x%x\n",
314 			parser->global.logical_minimum,
315 			parser->global.logical_maximum);
316 		return -1;
317 	}
318 
319 	offset = report->size;
320 	report->size += parser->global.report_size * parser->global.report_count;
321 
322 	if (parser->device->ll_driver->max_buffer_size)
323 		max_buffer_size = parser->device->ll_driver->max_buffer_size;
324 
325 	/* Total size check: Allow for possible report index byte */
326 	if (report->size > (max_buffer_size - 1) << 3) {
327 		hid_err(parser->device, "report is too long\n");
328 		return -1;
329 	}
330 
331 	if (!parser->local.usage_index) /* Ignore padding fields */
332 		return 0;
333 
334 	usages = max_t(unsigned, parser->local.usage_index,
335 				 parser->global.report_count);
336 
337 	field = hid_register_field(report, usages);
338 	if (!field)
339 		return 0;
340 
341 	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
342 	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
343 	field->application = application;
344 
345 	for (i = 0; i < usages; i++) {
346 		unsigned j = i;
347 		/* Duplicate the last usage we parsed if we have excess values */
348 		if (i >= parser->local.usage_index)
349 			j = parser->local.usage_index - 1;
350 		field->usage[i].hid = parser->local.usage[j];
351 		field->usage[i].collection_index =
352 			parser->local.collection_index[j];
353 		field->usage[i].usage_index = i;
354 		field->usage[i].resolution_multiplier = 1;
355 	}
356 
357 	field->maxusage = usages;
358 	field->flags = flags;
359 	field->report_offset = offset;
360 	field->report_type = report_type;
361 	field->report_size = parser->global.report_size;
362 	field->report_count = parser->global.report_count;
363 	field->logical_minimum = parser->global.logical_minimum;
364 	field->logical_maximum = parser->global.logical_maximum;
365 	field->physical_minimum = parser->global.physical_minimum;
366 	field->physical_maximum = parser->global.physical_maximum;
367 	field->unit_exponent = parser->global.unit_exponent;
368 	field->unit = parser->global.unit;
369 
370 	return 0;
371 }
372 
373 /*
374  * Read data value from item.
375  */
376 
item_udata(struct hid_item * item)377 static u32 item_udata(struct hid_item *item)
378 {
379 	switch (item->size) {
380 	case 1: return item->data.u8;
381 	case 2: return item->data.u16;
382 	case 4: return item->data.u32;
383 	}
384 	return 0;
385 }
386 
item_sdata(struct hid_item * item)387 static s32 item_sdata(struct hid_item *item)
388 {
389 	switch (item->size) {
390 	case 1: return item->data.s8;
391 	case 2: return item->data.s16;
392 	case 4: return item->data.s32;
393 	}
394 	return 0;
395 }
396 
397 /*
398  * Process a global item.
399  */
400 
hid_parser_global(struct hid_parser * parser,struct hid_item * item)401 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
402 {
403 	__s32 raw_value;
404 	switch (item->tag) {
405 	case HID_GLOBAL_ITEM_TAG_PUSH:
406 
407 		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
408 			hid_err(parser->device, "global environment stack overflow\n");
409 			return -1;
410 		}
411 
412 		memcpy(parser->global_stack + parser->global_stack_ptr++,
413 			&parser->global, sizeof(struct hid_global));
414 		return 0;
415 
416 	case HID_GLOBAL_ITEM_TAG_POP:
417 
418 		if (!parser->global_stack_ptr) {
419 			hid_err(parser->device, "global environment stack underflow\n");
420 			return -1;
421 		}
422 
423 		memcpy(&parser->global, parser->global_stack +
424 			--parser->global_stack_ptr, sizeof(struct hid_global));
425 		return 0;
426 
427 	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
428 		parser->global.usage_page = item_udata(item);
429 		return 0;
430 
431 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
432 		parser->global.logical_minimum = item_sdata(item);
433 		return 0;
434 
435 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
436 		if (parser->global.logical_minimum < 0)
437 			parser->global.logical_maximum = item_sdata(item);
438 		else
439 			parser->global.logical_maximum = item_udata(item);
440 		return 0;
441 
442 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
443 		parser->global.physical_minimum = item_sdata(item);
444 		return 0;
445 
446 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
447 		if (parser->global.physical_minimum < 0)
448 			parser->global.physical_maximum = item_sdata(item);
449 		else
450 			parser->global.physical_maximum = item_udata(item);
451 		return 0;
452 
453 	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
454 		/* Many devices provide unit exponent as a two's complement
455 		 * nibble due to the common misunderstanding of HID
456 		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
457 		 * both this and the standard encoding. */
458 		raw_value = item_sdata(item);
459 		if (!(raw_value & 0xfffffff0))
460 			parser->global.unit_exponent = snto32(raw_value, 4);
461 		else
462 			parser->global.unit_exponent = raw_value;
463 		return 0;
464 
465 	case HID_GLOBAL_ITEM_TAG_UNIT:
466 		parser->global.unit = item_udata(item);
467 		return 0;
468 
469 	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
470 		parser->global.report_size = item_udata(item);
471 		if (parser->global.report_size > 256) {
472 			hid_err(parser->device, "invalid report_size %d\n",
473 					parser->global.report_size);
474 			return -1;
475 		}
476 		return 0;
477 
478 	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
479 		parser->global.report_count = item_udata(item);
480 		if (parser->global.report_count > HID_MAX_USAGES) {
481 			hid_err(parser->device, "invalid report_count %d\n",
482 					parser->global.report_count);
483 			return -1;
484 		}
485 		return 0;
486 
487 	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
488 		parser->global.report_id = item_udata(item);
489 		if (parser->global.report_id == 0 ||
490 		    parser->global.report_id >= HID_MAX_IDS) {
491 			hid_err(parser->device, "report_id %u is invalid\n",
492 				parser->global.report_id);
493 			return -1;
494 		}
495 		return 0;
496 
497 	default:
498 		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
499 		return -1;
500 	}
501 }
502 
503 /*
504  * Process a local item.
505  */
506 
hid_parser_local(struct hid_parser * parser,struct hid_item * item)507 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
508 {
509 	__u32 data;
510 	unsigned n;
511 	__u32 count;
512 
513 	data = item_udata(item);
514 
515 	switch (item->tag) {
516 	case HID_LOCAL_ITEM_TAG_DELIMITER:
517 
518 		if (data) {
519 			/*
520 			 * We treat items before the first delimiter
521 			 * as global to all usage sets (branch 0).
522 			 * In the moment we process only these global
523 			 * items and the first delimiter set.
524 			 */
525 			if (parser->local.delimiter_depth != 0) {
526 				hid_err(parser->device, "nested delimiters\n");
527 				return -1;
528 			}
529 			parser->local.delimiter_depth++;
530 			parser->local.delimiter_branch++;
531 		} else {
532 			if (parser->local.delimiter_depth < 1) {
533 				hid_err(parser->device, "bogus close delimiter\n");
534 				return -1;
535 			}
536 			parser->local.delimiter_depth--;
537 		}
538 		return 0;
539 
540 	case HID_LOCAL_ITEM_TAG_USAGE:
541 
542 		if (parser->local.delimiter_branch > 1) {
543 			dbg_hid("alternative usage ignored\n");
544 			return 0;
545 		}
546 
547 		return hid_add_usage(parser, data, item->size);
548 
549 	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
550 
551 		if (parser->local.delimiter_branch > 1) {
552 			dbg_hid("alternative usage ignored\n");
553 			return 0;
554 		}
555 
556 		parser->local.usage_minimum = data;
557 		return 0;
558 
559 	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
560 
561 		if (parser->local.delimiter_branch > 1) {
562 			dbg_hid("alternative usage ignored\n");
563 			return 0;
564 		}
565 
566 		count = data - parser->local.usage_minimum;
567 		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
568 			/*
569 			 * We do not warn if the name is not set, we are
570 			 * actually pre-scanning the device.
571 			 */
572 			if (dev_name(&parser->device->dev))
573 				hid_warn(parser->device,
574 					 "ignoring exceeding usage max\n");
575 			data = HID_MAX_USAGES - parser->local.usage_index +
576 				parser->local.usage_minimum - 1;
577 			if (data <= 0) {
578 				hid_err(parser->device,
579 					"no more usage index available\n");
580 				return -1;
581 			}
582 		}
583 
584 		for (n = parser->local.usage_minimum; n <= data; n++)
585 			if (hid_add_usage(parser, n, item->size)) {
586 				dbg_hid("hid_add_usage failed\n");
587 				return -1;
588 			}
589 		return 0;
590 
591 	default:
592 
593 		dbg_hid("unknown local item tag 0x%x\n", item->tag);
594 		return 0;
595 	}
596 	return 0;
597 }
598 
599 /*
600  * Concatenate Usage Pages into Usages where relevant:
601  * As per specification, 6.2.2.8: "When the parser encounters a main item it
602  * concatenates the last declared Usage Page with a Usage to form a complete
603  * usage value."
604  */
605 
hid_concatenate_last_usage_page(struct hid_parser * parser)606 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
607 {
608 	int i;
609 	unsigned int usage_page;
610 	unsigned int current_page;
611 
612 	if (!parser->local.usage_index)
613 		return;
614 
615 	usage_page = parser->global.usage_page;
616 
617 	/*
618 	 * Concatenate usage page again only if last declared Usage Page
619 	 * has not been already used in previous usages concatenation
620 	 */
621 	for (i = parser->local.usage_index - 1; i >= 0; i--) {
622 		if (parser->local.usage_size[i] > 2)
623 			/* Ignore extended usages */
624 			continue;
625 
626 		current_page = parser->local.usage[i] >> 16;
627 		if (current_page == usage_page)
628 			break;
629 
630 		complete_usage(parser, i);
631 	}
632 }
633 
634 /*
635  * Process a main item.
636  */
637 
hid_parser_main(struct hid_parser * parser,struct hid_item * item)638 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
639 {
640 	__u32 data;
641 	int ret;
642 
643 	hid_concatenate_last_usage_page(parser);
644 
645 	data = item_udata(item);
646 
647 	switch (item->tag) {
648 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
649 		ret = open_collection(parser, data & 0xff);
650 		break;
651 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
652 		ret = close_collection(parser);
653 		break;
654 	case HID_MAIN_ITEM_TAG_INPUT:
655 		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
656 		break;
657 	case HID_MAIN_ITEM_TAG_OUTPUT:
658 		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
659 		break;
660 	case HID_MAIN_ITEM_TAG_FEATURE:
661 		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
662 		break;
663 	default:
664 		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
665 		ret = 0;
666 	}
667 
668 	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
669 
670 	return ret;
671 }
672 
673 /*
674  * Process a reserved item.
675  */
676 
hid_parser_reserved(struct hid_parser * parser,struct hid_item * item)677 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
678 {
679 	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
680 	return 0;
681 }
682 
683 /*
684  * Free a report and all registered fields. The field->usage and
685  * field->value table's are allocated behind the field, so we need
686  * only to free(field) itself.
687  */
688 
hid_free_report(struct hid_report * report)689 static void hid_free_report(struct hid_report *report)
690 {
691 	unsigned n;
692 
693 	kfree(report->field_entries);
694 
695 	for (n = 0; n < report->maxfield; n++)
696 		kvfree(report->field[n]);
697 	kfree(report);
698 }
699 
700 /*
701  * Close report. This function returns the device
702  * state to the point prior to hid_open_report().
703  */
hid_close_report(struct hid_device * device)704 static void hid_close_report(struct hid_device *device)
705 {
706 	unsigned i, j;
707 
708 	for (i = 0; i < HID_REPORT_TYPES; i++) {
709 		struct hid_report_enum *report_enum = device->report_enum + i;
710 
711 		for (j = 0; j < HID_MAX_IDS; j++) {
712 			struct hid_report *report = report_enum->report_id_hash[j];
713 			if (report)
714 				hid_free_report(report);
715 		}
716 		memset(report_enum, 0, sizeof(*report_enum));
717 		INIT_LIST_HEAD(&report_enum->report_list);
718 	}
719 
720 	kfree(device->rdesc);
721 	device->rdesc = NULL;
722 	device->rsize = 0;
723 
724 	kfree(device->collection);
725 	device->collection = NULL;
726 	device->collection_size = 0;
727 	device->maxcollection = 0;
728 	device->maxapplication = 0;
729 
730 	device->status &= ~HID_STAT_PARSED;
731 }
732 
733 /*
734  * Free a device structure, all reports, and all fields.
735  */
736 
hiddev_free(struct kref * ref)737 void hiddev_free(struct kref *ref)
738 {
739 	struct hid_device *hid = container_of(ref, struct hid_device, ref);
740 
741 	hid_close_report(hid);
742 	kfree(hid->dev_rdesc);
743 	kfree(hid);
744 }
745 
hid_device_release(struct device * dev)746 static void hid_device_release(struct device *dev)
747 {
748 	struct hid_device *hid = to_hid_device(dev);
749 
750 	kref_put(&hid->ref, hiddev_free);
751 }
752 
753 /*
754  * Fetch a report description item from the data stream. We support long
755  * items, though they are not used yet.
756  */
757 
fetch_item(const __u8 * start,const __u8 * end,struct hid_item * item)758 static const u8 *fetch_item(const __u8 *start, const __u8 *end, struct hid_item *item)
759 {
760 	u8 b;
761 
762 	if ((end - start) <= 0)
763 		return NULL;
764 
765 	b = *start++;
766 
767 	item->type = (b >> 2) & 3;
768 	item->tag  = (b >> 4) & 15;
769 
770 	if (item->tag == HID_ITEM_TAG_LONG) {
771 
772 		item->format = HID_ITEM_FORMAT_LONG;
773 
774 		if ((end - start) < 2)
775 			return NULL;
776 
777 		item->size = *start++;
778 		item->tag  = *start++;
779 
780 		if ((end - start) < item->size)
781 			return NULL;
782 
783 		item->data.longdata = start;
784 		start += item->size;
785 		return start;
786 	}
787 
788 	item->format = HID_ITEM_FORMAT_SHORT;
789 	item->size = b & 3;
790 
791 	switch (item->size) {
792 	case 0:
793 		return start;
794 
795 	case 1:
796 		if ((end - start) < 1)
797 			return NULL;
798 		item->data.u8 = *start++;
799 		return start;
800 
801 	case 2:
802 		if ((end - start) < 2)
803 			return NULL;
804 		item->data.u16 = get_unaligned_le16(start);
805 		start = (__u8 *)((__le16 *)start + 1);
806 		return start;
807 
808 	case 3:
809 		item->size++;
810 		if ((end - start) < 4)
811 			return NULL;
812 		item->data.u32 = get_unaligned_le32(start);
813 		start = (__u8 *)((__le32 *)start + 1);
814 		return start;
815 	}
816 
817 	return NULL;
818 }
819 
hid_scan_input_usage(struct hid_parser * parser,u32 usage)820 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
821 {
822 	struct hid_device *hid = parser->device;
823 
824 	if (usage == HID_DG_CONTACTID)
825 		hid->group = HID_GROUP_MULTITOUCH;
826 }
827 
hid_scan_feature_usage(struct hid_parser * parser,u32 usage)828 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
829 {
830 	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
831 	    parser->global.report_size == 8)
832 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
833 
834 	if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
835 	    parser->global.report_size == 8)
836 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
837 }
838 
hid_scan_collection(struct hid_parser * parser,unsigned type)839 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
840 {
841 	struct hid_device *hid = parser->device;
842 	int i;
843 
844 	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
845 	    (type == HID_COLLECTION_PHYSICAL ||
846 	     type == HID_COLLECTION_APPLICATION))
847 		hid->group = HID_GROUP_SENSOR_HUB;
848 
849 	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
850 	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
851 	    hid->group == HID_GROUP_MULTITOUCH)
852 		hid->group = HID_GROUP_GENERIC;
853 
854 	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
855 		for (i = 0; i < parser->local.usage_index; i++)
856 			if (parser->local.usage[i] == HID_GD_POINTER)
857 				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
858 
859 	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
860 		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
861 
862 	if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
863 		for (i = 0; i < parser->local.usage_index; i++)
864 			if (parser->local.usage[i] ==
865 					(HID_UP_GOOGLEVENDOR | 0x0001))
866 				parser->device->group =
867 					HID_GROUP_VIVALDI;
868 }
869 
hid_scan_main(struct hid_parser * parser,struct hid_item * item)870 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
871 {
872 	__u32 data;
873 	int i;
874 
875 	hid_concatenate_last_usage_page(parser);
876 
877 	data = item_udata(item);
878 
879 	switch (item->tag) {
880 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
881 		hid_scan_collection(parser, data & 0xff);
882 		break;
883 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
884 		break;
885 	case HID_MAIN_ITEM_TAG_INPUT:
886 		/* ignore constant inputs, they will be ignored by hid-input */
887 		if (data & HID_MAIN_ITEM_CONSTANT)
888 			break;
889 		for (i = 0; i < parser->local.usage_index; i++)
890 			hid_scan_input_usage(parser, parser->local.usage[i]);
891 		break;
892 	case HID_MAIN_ITEM_TAG_OUTPUT:
893 		break;
894 	case HID_MAIN_ITEM_TAG_FEATURE:
895 		for (i = 0; i < parser->local.usage_index; i++)
896 			hid_scan_feature_usage(parser, parser->local.usage[i]);
897 		break;
898 	}
899 
900 	/* Reset the local parser environment */
901 	memset(&parser->local, 0, sizeof(parser->local));
902 
903 	return 0;
904 }
905 
906 /*
907  * Scan a report descriptor before the device is added to the bus.
908  * Sets device groups and other properties that determine what driver
909  * to load.
910  */
hid_scan_report(struct hid_device * hid)911 static int hid_scan_report(struct hid_device *hid)
912 {
913 	struct hid_parser *parser;
914 	struct hid_item item;
915 	const __u8 *start = hid->dev_rdesc;
916 	const __u8 *end = start + hid->dev_rsize;
917 	static int (*dispatch_type[])(struct hid_parser *parser,
918 				      struct hid_item *item) = {
919 		hid_scan_main,
920 		hid_parser_global,
921 		hid_parser_local,
922 		hid_parser_reserved
923 	};
924 
925 	parser = vzalloc(sizeof(struct hid_parser));
926 	if (!parser)
927 		return -ENOMEM;
928 
929 	parser->device = hid;
930 	hid->group = HID_GROUP_GENERIC;
931 
932 	/*
933 	 * The parsing is simpler than the one in hid_open_report() as we should
934 	 * be robust against hid errors. Those errors will be raised by
935 	 * hid_open_report() anyway.
936 	 */
937 	while ((start = fetch_item(start, end, &item)) != NULL)
938 		dispatch_type[item.type](parser, &item);
939 
940 	/*
941 	 * Handle special flags set during scanning.
942 	 */
943 	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
944 	    (hid->group == HID_GROUP_MULTITOUCH))
945 		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
946 
947 	/*
948 	 * Vendor specific handlings
949 	 */
950 	switch (hid->vendor) {
951 	case USB_VENDOR_ID_WACOM:
952 		hid->group = HID_GROUP_WACOM;
953 		break;
954 	case USB_VENDOR_ID_SYNAPTICS:
955 		if (hid->group == HID_GROUP_GENERIC)
956 			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
957 			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
958 				/*
959 				 * hid-rmi should take care of them,
960 				 * not hid-generic
961 				 */
962 				hid->group = HID_GROUP_RMI;
963 		break;
964 	}
965 
966 	kfree(parser->collection_stack);
967 	vfree(parser);
968 	return 0;
969 }
970 
971 /**
972  * hid_parse_report - parse device report
973  *
974  * @hid: hid device
975  * @start: report start
976  * @size: report size
977  *
978  * Allocate the device report as read by the bus driver. This function should
979  * only be called from parse() in ll drivers.
980  */
hid_parse_report(struct hid_device * hid,const __u8 * start,unsigned size)981 int hid_parse_report(struct hid_device *hid, const __u8 *start, unsigned size)
982 {
983 	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
984 	if (!hid->dev_rdesc)
985 		return -ENOMEM;
986 	hid->dev_rsize = size;
987 	return 0;
988 }
989 EXPORT_SYMBOL_GPL(hid_parse_report);
990 
991 static const char * const hid_report_names[] = {
992 	"HID_INPUT_REPORT",
993 	"HID_OUTPUT_REPORT",
994 	"HID_FEATURE_REPORT",
995 };
996 /**
997  * hid_validate_values - validate existing device report's value indexes
998  *
999  * @hid: hid device
1000  * @type: which report type to examine
1001  * @id: which report ID to examine (0 for first)
1002  * @field_index: which report field to examine
1003  * @report_counts: expected number of values
1004  *
1005  * Validate the number of values in a given field of a given report, after
1006  * parsing.
1007  */
hid_validate_values(struct hid_device * hid,enum hid_report_type type,unsigned int id,unsigned int field_index,unsigned int report_counts)1008 struct hid_report *hid_validate_values(struct hid_device *hid,
1009 				       enum hid_report_type type, unsigned int id,
1010 				       unsigned int field_index,
1011 				       unsigned int report_counts)
1012 {
1013 	struct hid_report *report;
1014 
1015 	if (type > HID_FEATURE_REPORT) {
1016 		hid_err(hid, "invalid HID report type %u\n", type);
1017 		return NULL;
1018 	}
1019 
1020 	if (id >= HID_MAX_IDS) {
1021 		hid_err(hid, "invalid HID report id %u\n", id);
1022 		return NULL;
1023 	}
1024 
1025 	/*
1026 	 * Explicitly not using hid_get_report() here since it depends on
1027 	 * ->numbered being checked, which may not always be the case when
1028 	 * drivers go to access report values.
1029 	 */
1030 	if (id == 0) {
1031 		/*
1032 		 * Validating on id 0 means we should examine the first
1033 		 * report in the list.
1034 		 */
1035 		report = list_first_entry_or_null(
1036 				&hid->report_enum[type].report_list,
1037 				struct hid_report, list);
1038 	} else {
1039 		report = hid->report_enum[type].report_id_hash[id];
1040 	}
1041 	if (!report) {
1042 		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1043 		return NULL;
1044 	}
1045 	if (report->maxfield <= field_index) {
1046 		hid_err(hid, "not enough fields in %s %u\n",
1047 			hid_report_names[type], id);
1048 		return NULL;
1049 	}
1050 	if (report->field[field_index]->report_count < report_counts) {
1051 		hid_err(hid, "not enough values in %s %u field %u\n",
1052 			hid_report_names[type], id, field_index);
1053 		return NULL;
1054 	}
1055 	return report;
1056 }
1057 EXPORT_SYMBOL_GPL(hid_validate_values);
1058 
hid_calculate_multiplier(struct hid_device * hid,struct hid_field * multiplier)1059 static int hid_calculate_multiplier(struct hid_device *hid,
1060 				     struct hid_field *multiplier)
1061 {
1062 	int m;
1063 	__s32 v = *multiplier->value;
1064 	__s32 lmin = multiplier->logical_minimum;
1065 	__s32 lmax = multiplier->logical_maximum;
1066 	__s32 pmin = multiplier->physical_minimum;
1067 	__s32 pmax = multiplier->physical_maximum;
1068 
1069 	/*
1070 	 * "Because OS implementations will generally divide the control's
1071 	 * reported count by the Effective Resolution Multiplier, designers
1072 	 * should take care not to establish a potential Effective
1073 	 * Resolution Multiplier of zero."
1074 	 * HID Usage Table, v1.12, Section 4.3.1, p31
1075 	 */
1076 	if (lmax - lmin == 0)
1077 		return 1;
1078 	/*
1079 	 * Handling the unit exponent is left as an exercise to whoever
1080 	 * finds a device where that exponent is not 0.
1081 	 */
1082 	m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1083 	if (unlikely(multiplier->unit_exponent != 0)) {
1084 		hid_warn(hid,
1085 			 "unsupported Resolution Multiplier unit exponent %d\n",
1086 			 multiplier->unit_exponent);
1087 	}
1088 
1089 	/* There are no devices with an effective multiplier > 255 */
1090 	if (unlikely(m == 0 || m > 255 || m < -255)) {
1091 		hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1092 		m = 1;
1093 	}
1094 
1095 	return m;
1096 }
1097 
hid_apply_multiplier_to_field(struct hid_device * hid,struct hid_field * field,struct hid_collection * multiplier_collection,int effective_multiplier)1098 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1099 					  struct hid_field *field,
1100 					  struct hid_collection *multiplier_collection,
1101 					  int effective_multiplier)
1102 {
1103 	struct hid_collection *collection;
1104 	struct hid_usage *usage;
1105 	int i;
1106 
1107 	/*
1108 	 * If multiplier_collection is NULL, the multiplier applies
1109 	 * to all fields in the report.
1110 	 * Otherwise, it is the Logical Collection the multiplier applies to
1111 	 * but our field may be in a subcollection of that collection.
1112 	 */
1113 	for (i = 0; i < field->maxusage; i++) {
1114 		usage = &field->usage[i];
1115 
1116 		collection = &hid->collection[usage->collection_index];
1117 		while (collection->parent_idx != -1 &&
1118 		       collection != multiplier_collection)
1119 			collection = &hid->collection[collection->parent_idx];
1120 
1121 		if (collection->parent_idx != -1 ||
1122 		    multiplier_collection == NULL)
1123 			usage->resolution_multiplier = effective_multiplier;
1124 
1125 	}
1126 }
1127 
hid_apply_multiplier(struct hid_device * hid,struct hid_field * multiplier)1128 static void hid_apply_multiplier(struct hid_device *hid,
1129 				 struct hid_field *multiplier)
1130 {
1131 	struct hid_report_enum *rep_enum;
1132 	struct hid_report *rep;
1133 	struct hid_field *field;
1134 	struct hid_collection *multiplier_collection;
1135 	int effective_multiplier;
1136 	int i;
1137 
1138 	/*
1139 	 * "The Resolution Multiplier control must be contained in the same
1140 	 * Logical Collection as the control(s) to which it is to be applied.
1141 	 * If no Resolution Multiplier is defined, then the Resolution
1142 	 * Multiplier defaults to 1.  If more than one control exists in a
1143 	 * Logical Collection, the Resolution Multiplier is associated with
1144 	 * all controls in the collection. If no Logical Collection is
1145 	 * defined, the Resolution Multiplier is associated with all
1146 	 * controls in the report."
1147 	 * HID Usage Table, v1.12, Section 4.3.1, p30
1148 	 *
1149 	 * Thus, search from the current collection upwards until we find a
1150 	 * logical collection. Then search all fields for that same parent
1151 	 * collection. Those are the fields the multiplier applies to.
1152 	 *
1153 	 * If we have more than one multiplier, it will overwrite the
1154 	 * applicable fields later.
1155 	 */
1156 	multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1157 	while (multiplier_collection->parent_idx != -1 &&
1158 	       multiplier_collection->type != HID_COLLECTION_LOGICAL)
1159 		multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1160 	if (multiplier_collection->type != HID_COLLECTION_LOGICAL)
1161 		multiplier_collection = NULL;
1162 
1163 	effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1164 
1165 	rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1166 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1167 		for (i = 0; i < rep->maxfield; i++) {
1168 			field = rep->field[i];
1169 			hid_apply_multiplier_to_field(hid, field,
1170 						      multiplier_collection,
1171 						      effective_multiplier);
1172 		}
1173 	}
1174 }
1175 
1176 /*
1177  * hid_setup_resolution_multiplier - set up all resolution multipliers
1178  *
1179  * @device: hid device
1180  *
1181  * Search for all Resolution Multiplier Feature Reports and apply their
1182  * value to all matching Input items. This only updates the internal struct
1183  * fields.
1184  *
1185  * The Resolution Multiplier is applied by the hardware. If the multiplier
1186  * is anything other than 1, the hardware will send pre-multiplied events
1187  * so that the same physical interaction generates an accumulated
1188  *	accumulated_value = value * * multiplier
1189  * This may be achieved by sending
1190  * - "value * multiplier" for each event, or
1191  * - "value" but "multiplier" times as frequently, or
1192  * - a combination of the above
1193  * The only guarantee is that the same physical interaction always generates
1194  * an accumulated 'value * multiplier'.
1195  *
1196  * This function must be called before any event processing and after
1197  * any SetRequest to the Resolution Multiplier.
1198  */
hid_setup_resolution_multiplier(struct hid_device * hid)1199 void hid_setup_resolution_multiplier(struct hid_device *hid)
1200 {
1201 	struct hid_report_enum *rep_enum;
1202 	struct hid_report *rep;
1203 	struct hid_usage *usage;
1204 	int i, j;
1205 
1206 	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1207 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1208 		for (i = 0; i < rep->maxfield; i++) {
1209 			/* Ignore if report count is out of bounds. */
1210 			if (rep->field[i]->report_count < 1)
1211 				continue;
1212 
1213 			for (j = 0; j < rep->field[i]->maxusage; j++) {
1214 				usage = &rep->field[i]->usage[j];
1215 				if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1216 					hid_apply_multiplier(hid,
1217 							     rep->field[i]);
1218 			}
1219 		}
1220 	}
1221 }
1222 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1223 
1224 /**
1225  * hid_open_report - open a driver-specific device report
1226  *
1227  * @device: hid device
1228  *
1229  * Parse a report description into a hid_device structure. Reports are
1230  * enumerated, fields are attached to these reports.
1231  * 0 returned on success, otherwise nonzero error value.
1232  *
1233  * This function (or the equivalent hid_parse() macro) should only be
1234  * called from probe() in drivers, before starting the device.
1235  */
hid_open_report(struct hid_device * device)1236 int hid_open_report(struct hid_device *device)
1237 {
1238 	struct hid_parser *parser;
1239 	struct hid_item item;
1240 	unsigned int size;
1241 	const __u8 *start;
1242 	__u8 *buf;
1243 	const __u8 *end;
1244 	const __u8 *next;
1245 	int ret;
1246 	int i;
1247 	static int (*dispatch_type[])(struct hid_parser *parser,
1248 				      struct hid_item *item) = {
1249 		hid_parser_main,
1250 		hid_parser_global,
1251 		hid_parser_local,
1252 		hid_parser_reserved
1253 	};
1254 
1255 	if (WARN_ON(device->status & HID_STAT_PARSED))
1256 		return -EBUSY;
1257 
1258 	start = device->dev_rdesc;
1259 	if (WARN_ON(!start))
1260 		return -ENODEV;
1261 	size = device->dev_rsize;
1262 
1263 	/* call_hid_bpf_rdesc_fixup() ensures we work on a copy of rdesc */
1264 	buf = call_hid_bpf_rdesc_fixup(device, start, &size);
1265 	if (buf == NULL)
1266 		return -ENOMEM;
1267 
1268 	if (device->driver->report_fixup)
1269 		start = device->driver->report_fixup(device, buf, &size);
1270 	else
1271 		start = buf;
1272 
1273 	start = kmemdup(start, size, GFP_KERNEL);
1274 	kfree(buf);
1275 	if (start == NULL)
1276 		return -ENOMEM;
1277 
1278 	device->rdesc = start;
1279 	device->rsize = size;
1280 
1281 	parser = vzalloc(sizeof(struct hid_parser));
1282 	if (!parser) {
1283 		ret = -ENOMEM;
1284 		goto alloc_err;
1285 	}
1286 
1287 	parser->device = device;
1288 
1289 	end = start + size;
1290 
1291 	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1292 				     sizeof(struct hid_collection), GFP_KERNEL);
1293 	if (!device->collection) {
1294 		ret = -ENOMEM;
1295 		goto err;
1296 	}
1297 	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1298 	for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1299 		device->collection[i].parent_idx = -1;
1300 
1301 	ret = -EINVAL;
1302 	while ((next = fetch_item(start, end, &item)) != NULL) {
1303 		start = next;
1304 
1305 		if (item.format != HID_ITEM_FORMAT_SHORT) {
1306 			hid_err(device, "unexpected long global item\n");
1307 			goto err;
1308 		}
1309 
1310 		if (dispatch_type[item.type](parser, &item)) {
1311 			hid_err(device, "item %u %u %u %u parsing failed\n",
1312 				item.format, (unsigned)item.size,
1313 				(unsigned)item.type, (unsigned)item.tag);
1314 			goto err;
1315 		}
1316 
1317 		if (start == end) {
1318 			if (parser->collection_stack_ptr) {
1319 				hid_err(device, "unbalanced collection at end of report description\n");
1320 				goto err;
1321 			}
1322 			if (parser->local.delimiter_depth) {
1323 				hid_err(device, "unbalanced delimiter at end of report description\n");
1324 				goto err;
1325 			}
1326 
1327 			/*
1328 			 * fetch initial values in case the device's
1329 			 * default multiplier isn't the recommended 1
1330 			 */
1331 			hid_setup_resolution_multiplier(device);
1332 
1333 			kfree(parser->collection_stack);
1334 			vfree(parser);
1335 			device->status |= HID_STAT_PARSED;
1336 
1337 			return 0;
1338 		}
1339 	}
1340 
1341 	hid_err(device, "item fetching failed at offset %u/%u\n",
1342 		size - (unsigned int)(end - start), size);
1343 err:
1344 	kfree(parser->collection_stack);
1345 alloc_err:
1346 	vfree(parser);
1347 	hid_close_report(device);
1348 	return ret;
1349 }
1350 EXPORT_SYMBOL_GPL(hid_open_report);
1351 
1352 /*
1353  * Extract/implement a data field from/to a little endian report (bit array).
1354  *
1355  * Code sort-of follows HID spec:
1356  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1357  *
1358  * While the USB HID spec allows unlimited length bit fields in "report
1359  * descriptors", most devices never use more than 16 bits.
1360  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1361  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1362  */
1363 
__extract(u8 * report,unsigned offset,int n)1364 static u32 __extract(u8 *report, unsigned offset, int n)
1365 {
1366 	unsigned int idx = offset / 8;
1367 	unsigned int bit_nr = 0;
1368 	unsigned int bit_shift = offset % 8;
1369 	int bits_to_copy = 8 - bit_shift;
1370 	u32 value = 0;
1371 	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1372 
1373 	while (n > 0) {
1374 		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1375 		n -= bits_to_copy;
1376 		bit_nr += bits_to_copy;
1377 		bits_to_copy = 8;
1378 		bit_shift = 0;
1379 		idx++;
1380 	}
1381 
1382 	return value & mask;
1383 }
1384 
hid_field_extract(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n)1385 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1386 			unsigned offset, unsigned n)
1387 {
1388 	if (n > 32) {
1389 		hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1390 			      __func__, n, current->comm);
1391 		n = 32;
1392 	}
1393 
1394 	return __extract(report, offset, n);
1395 }
1396 EXPORT_SYMBOL_GPL(hid_field_extract);
1397 
1398 /*
1399  * "implement" : set bits in a little endian bit stream.
1400  * Same concepts as "extract" (see comments above).
1401  * The data mangled in the bit stream remains in little endian
1402  * order the whole time. It make more sense to talk about
1403  * endianness of register values by considering a register
1404  * a "cached" copy of the little endian bit stream.
1405  */
1406 
__implement(u8 * report,unsigned offset,int n,u32 value)1407 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1408 {
1409 	unsigned int idx = offset / 8;
1410 	unsigned int bit_shift = offset % 8;
1411 	int bits_to_set = 8 - bit_shift;
1412 
1413 	while (n - bits_to_set >= 0) {
1414 		report[idx] &= ~(0xff << bit_shift);
1415 		report[idx] |= value << bit_shift;
1416 		value >>= bits_to_set;
1417 		n -= bits_to_set;
1418 		bits_to_set = 8;
1419 		bit_shift = 0;
1420 		idx++;
1421 	}
1422 
1423 	/* last nibble */
1424 	if (n) {
1425 		u8 bit_mask = ((1U << n) - 1);
1426 		report[idx] &= ~(bit_mask << bit_shift);
1427 		report[idx] |= value << bit_shift;
1428 	}
1429 }
1430 
implement(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n,u32 value)1431 static void implement(const struct hid_device *hid, u8 *report,
1432 		      unsigned offset, unsigned n, u32 value)
1433 {
1434 	if (unlikely(n > 32)) {
1435 		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1436 			 __func__, n, current->comm);
1437 		n = 32;
1438 	} else if (n < 32) {
1439 		u32 m = (1U << n) - 1;
1440 
1441 		if (unlikely(value > m)) {
1442 			hid_warn(hid,
1443 				 "%s() called with too large value %d (n: %d)! (%s)\n",
1444 				 __func__, value, n, current->comm);
1445 			value &= m;
1446 		}
1447 	}
1448 
1449 	__implement(report, offset, n, value);
1450 }
1451 
1452 /*
1453  * Search an array for a value.
1454  */
1455 
search(__s32 * array,__s32 value,unsigned n)1456 static int search(__s32 *array, __s32 value, unsigned n)
1457 {
1458 	while (n--) {
1459 		if (*array++ == value)
1460 			return 0;
1461 	}
1462 	return -1;
1463 }
1464 
1465 /**
1466  * hid_match_report - check if driver's raw_event should be called
1467  *
1468  * @hid: hid device
1469  * @report: hid report to match against
1470  *
1471  * compare hid->driver->report_table->report_type to report->type
1472  */
hid_match_report(struct hid_device * hid,struct hid_report * report)1473 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1474 {
1475 	const struct hid_report_id *id = hid->driver->report_table;
1476 
1477 	if (!id) /* NULL means all */
1478 		return 1;
1479 
1480 	for (; id->report_type != HID_TERMINATOR; id++)
1481 		if (id->report_type == HID_ANY_ID ||
1482 				id->report_type == report->type)
1483 			return 1;
1484 	return 0;
1485 }
1486 
1487 /**
1488  * hid_match_usage - check if driver's event should be called
1489  *
1490  * @hid: hid device
1491  * @usage: usage to match against
1492  *
1493  * compare hid->driver->usage_table->usage_{type,code} to
1494  * usage->usage_{type,code}
1495  */
hid_match_usage(struct hid_device * hid,struct hid_usage * usage)1496 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1497 {
1498 	const struct hid_usage_id *id = hid->driver->usage_table;
1499 
1500 	if (!id) /* NULL means all */
1501 		return 1;
1502 
1503 	for (; id->usage_type != HID_ANY_ID - 1; id++)
1504 		if ((id->usage_hid == HID_ANY_ID ||
1505 				id->usage_hid == usage->hid) &&
1506 				(id->usage_type == HID_ANY_ID ||
1507 				id->usage_type == usage->type) &&
1508 				(id->usage_code == HID_ANY_ID ||
1509 				 id->usage_code == usage->code))
1510 			return 1;
1511 	return 0;
1512 }
1513 
hid_process_event(struct hid_device * hid,struct hid_field * field,struct hid_usage * usage,__s32 value,int interrupt)1514 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1515 		struct hid_usage *usage, __s32 value, int interrupt)
1516 {
1517 	struct hid_driver *hdrv = hid->driver;
1518 	int ret;
1519 
1520 	if (!list_empty(&hid->debug_list))
1521 		hid_dump_input(hid, usage, value);
1522 
1523 	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1524 		ret = hdrv->event(hid, field, usage, value);
1525 		if (ret != 0) {
1526 			if (ret < 0)
1527 				hid_err(hid, "%s's event failed with %d\n",
1528 						hdrv->name, ret);
1529 			return;
1530 		}
1531 	}
1532 
1533 	if (hid->claimed & HID_CLAIMED_INPUT)
1534 		hidinput_hid_event(hid, field, usage, value);
1535 	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1536 		hid->hiddev_hid_event(hid, field, usage, value);
1537 }
1538 
1539 /*
1540  * Checks if the given value is valid within this field
1541  */
hid_array_value_is_valid(struct hid_field * field,__s32 value)1542 static inline int hid_array_value_is_valid(struct hid_field *field,
1543 					   __s32 value)
1544 {
1545 	__s32 min = field->logical_minimum;
1546 
1547 	/*
1548 	 * Value needs to be between logical min and max, and
1549 	 * (value - min) is used as an index in the usage array.
1550 	 * This array is of size field->maxusage
1551 	 */
1552 	return value >= min &&
1553 	       value <= field->logical_maximum &&
1554 	       value - min < field->maxusage;
1555 }
1556 
1557 /*
1558  * Fetch the field from the data. The field content is stored for next
1559  * report processing (we do differential reporting to the layer).
1560  */
hid_input_fetch_field(struct hid_device * hid,struct hid_field * field,__u8 * data)1561 static void hid_input_fetch_field(struct hid_device *hid,
1562 				  struct hid_field *field,
1563 				  __u8 *data)
1564 {
1565 	unsigned n;
1566 	unsigned count = field->report_count;
1567 	unsigned offset = field->report_offset;
1568 	unsigned size = field->report_size;
1569 	__s32 min = field->logical_minimum;
1570 	__s32 *value;
1571 
1572 	value = field->new_value;
1573 	memset(value, 0, count * sizeof(__s32));
1574 	field->ignored = false;
1575 
1576 	for (n = 0; n < count; n++) {
1577 
1578 		value[n] = min < 0 ?
1579 			snto32(hid_field_extract(hid, data, offset + n * size,
1580 			       size), size) :
1581 			hid_field_extract(hid, data, offset + n * size, size);
1582 
1583 		/* Ignore report if ErrorRollOver */
1584 		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1585 		    hid_array_value_is_valid(field, value[n]) &&
1586 		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1587 			field->ignored = true;
1588 			return;
1589 		}
1590 	}
1591 }
1592 
1593 /*
1594  * Process a received variable field.
1595  */
1596 
hid_input_var_field(struct hid_device * hid,struct hid_field * field,int interrupt)1597 static void hid_input_var_field(struct hid_device *hid,
1598 				struct hid_field *field,
1599 				int interrupt)
1600 {
1601 	unsigned int count = field->report_count;
1602 	__s32 *value = field->new_value;
1603 	unsigned int n;
1604 
1605 	for (n = 0; n < count; n++)
1606 		hid_process_event(hid,
1607 				  field,
1608 				  &field->usage[n],
1609 				  value[n],
1610 				  interrupt);
1611 
1612 	memcpy(field->value, value, count * sizeof(__s32));
1613 }
1614 
1615 /*
1616  * Process a received array field. The field content is stored for
1617  * next report processing (we do differential reporting to the layer).
1618  */
1619 
hid_input_array_field(struct hid_device * hid,struct hid_field * field,int interrupt)1620 static void hid_input_array_field(struct hid_device *hid,
1621 				  struct hid_field *field,
1622 				  int interrupt)
1623 {
1624 	unsigned int n;
1625 	unsigned int count = field->report_count;
1626 	__s32 min = field->logical_minimum;
1627 	__s32 *value;
1628 
1629 	value = field->new_value;
1630 
1631 	/* ErrorRollOver */
1632 	if (field->ignored)
1633 		return;
1634 
1635 	for (n = 0; n < count; n++) {
1636 		if (hid_array_value_is_valid(field, field->value[n]) &&
1637 		    search(value, field->value[n], count))
1638 			hid_process_event(hid,
1639 					  field,
1640 					  &field->usage[field->value[n] - min],
1641 					  0,
1642 					  interrupt);
1643 
1644 		if (hid_array_value_is_valid(field, value[n]) &&
1645 		    search(field->value, value[n], count))
1646 			hid_process_event(hid,
1647 					  field,
1648 					  &field->usage[value[n] - min],
1649 					  1,
1650 					  interrupt);
1651 	}
1652 
1653 	memcpy(field->value, value, count * sizeof(__s32));
1654 }
1655 
1656 /*
1657  * Analyse a received report, and fetch the data from it. The field
1658  * content is stored for next report processing (we do differential
1659  * reporting to the layer).
1660  */
hid_process_report(struct hid_device * hid,struct hid_report * report,__u8 * data,int interrupt)1661 static void hid_process_report(struct hid_device *hid,
1662 			       struct hid_report *report,
1663 			       __u8 *data,
1664 			       int interrupt)
1665 {
1666 	unsigned int a;
1667 	struct hid_field_entry *entry;
1668 	struct hid_field *field;
1669 
1670 	/* first retrieve all incoming values in data */
1671 	for (a = 0; a < report->maxfield; a++)
1672 		hid_input_fetch_field(hid, report->field[a], data);
1673 
1674 	if (!list_empty(&report->field_entry_list)) {
1675 		/* INPUT_REPORT, we have a priority list of fields */
1676 		list_for_each_entry(entry,
1677 				    &report->field_entry_list,
1678 				    list) {
1679 			field = entry->field;
1680 
1681 			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1682 				hid_process_event(hid,
1683 						  field,
1684 						  &field->usage[entry->index],
1685 						  field->new_value[entry->index],
1686 						  interrupt);
1687 			else
1688 				hid_input_array_field(hid, field, interrupt);
1689 		}
1690 
1691 		/* we need to do the memcpy at the end for var items */
1692 		for (a = 0; a < report->maxfield; a++) {
1693 			field = report->field[a];
1694 
1695 			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1696 				memcpy(field->value, field->new_value,
1697 				       field->report_count * sizeof(__s32));
1698 		}
1699 	} else {
1700 		/* FEATURE_REPORT, regular processing */
1701 		for (a = 0; a < report->maxfield; a++) {
1702 			field = report->field[a];
1703 
1704 			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1705 				hid_input_var_field(hid, field, interrupt);
1706 			else
1707 				hid_input_array_field(hid, field, interrupt);
1708 		}
1709 	}
1710 }
1711 
1712 /*
1713  * Insert a given usage_index in a field in the list
1714  * of processed usages in the report.
1715  *
1716  * The elements of lower priority score are processed
1717  * first.
1718  */
__hid_insert_field_entry(struct hid_device * hid,struct hid_report * report,struct hid_field_entry * entry,struct hid_field * field,unsigned int usage_index)1719 static void __hid_insert_field_entry(struct hid_device *hid,
1720 				     struct hid_report *report,
1721 				     struct hid_field_entry *entry,
1722 				     struct hid_field *field,
1723 				     unsigned int usage_index)
1724 {
1725 	struct hid_field_entry *next;
1726 
1727 	entry->field = field;
1728 	entry->index = usage_index;
1729 	entry->priority = field->usages_priorities[usage_index];
1730 
1731 	/* insert the element at the correct position */
1732 	list_for_each_entry(next,
1733 			    &report->field_entry_list,
1734 			    list) {
1735 		/*
1736 		 * the priority of our element is strictly higher
1737 		 * than the next one, insert it before
1738 		 */
1739 		if (entry->priority > next->priority) {
1740 			list_add_tail(&entry->list, &next->list);
1741 			return;
1742 		}
1743 	}
1744 
1745 	/* lowest priority score: insert at the end */
1746 	list_add_tail(&entry->list, &report->field_entry_list);
1747 }
1748 
hid_report_process_ordering(struct hid_device * hid,struct hid_report * report)1749 static void hid_report_process_ordering(struct hid_device *hid,
1750 					struct hid_report *report)
1751 {
1752 	struct hid_field *field;
1753 	struct hid_field_entry *entries;
1754 	unsigned int a, u, usages;
1755 	unsigned int count = 0;
1756 
1757 	/* count the number of individual fields in the report */
1758 	for (a = 0; a < report->maxfield; a++) {
1759 		field = report->field[a];
1760 
1761 		if (field->flags & HID_MAIN_ITEM_VARIABLE)
1762 			count += field->report_count;
1763 		else
1764 			count++;
1765 	}
1766 
1767 	/* allocate the memory to process the fields */
1768 	entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1769 	if (!entries)
1770 		return;
1771 
1772 	report->field_entries = entries;
1773 
1774 	/*
1775 	 * walk through all fields in the report and
1776 	 * store them by priority order in report->field_entry_list
1777 	 *
1778 	 * - Var elements are individualized (field + usage_index)
1779 	 * - Arrays are taken as one, we can not chose an order for them
1780 	 */
1781 	usages = 0;
1782 	for (a = 0; a < report->maxfield; a++) {
1783 		field = report->field[a];
1784 
1785 		if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1786 			for (u = 0; u < field->report_count; u++) {
1787 				__hid_insert_field_entry(hid, report,
1788 							 &entries[usages],
1789 							 field, u);
1790 				usages++;
1791 			}
1792 		} else {
1793 			__hid_insert_field_entry(hid, report, &entries[usages],
1794 						 field, 0);
1795 			usages++;
1796 		}
1797 	}
1798 }
1799 
hid_process_ordering(struct hid_device * hid)1800 static void hid_process_ordering(struct hid_device *hid)
1801 {
1802 	struct hid_report *report;
1803 	struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1804 
1805 	list_for_each_entry(report, &report_enum->report_list, list)
1806 		hid_report_process_ordering(hid, report);
1807 }
1808 
1809 /*
1810  * Output the field into the report.
1811  */
1812 
hid_output_field(const struct hid_device * hid,struct hid_field * field,__u8 * data)1813 static void hid_output_field(const struct hid_device *hid,
1814 			     struct hid_field *field, __u8 *data)
1815 {
1816 	unsigned count = field->report_count;
1817 	unsigned offset = field->report_offset;
1818 	unsigned size = field->report_size;
1819 	unsigned n;
1820 
1821 	for (n = 0; n < count; n++) {
1822 		if (field->logical_minimum < 0)	/* signed values */
1823 			implement(hid, data, offset + n * size, size,
1824 				  s32ton(field->value[n], size));
1825 		else				/* unsigned values */
1826 			implement(hid, data, offset + n * size, size,
1827 				  field->value[n]);
1828 	}
1829 }
1830 
1831 /*
1832  * Compute the size of a report.
1833  */
hid_compute_report_size(struct hid_report * report)1834 static size_t hid_compute_report_size(struct hid_report *report)
1835 {
1836 	if (report->size)
1837 		return ((report->size - 1) >> 3) + 1;
1838 
1839 	return 0;
1840 }
1841 
1842 /*
1843  * Create a report. 'data' has to be allocated using
1844  * hid_alloc_report_buf() so that it has proper size.
1845  */
1846 
hid_output_report(struct hid_report * report,__u8 * data)1847 void hid_output_report(struct hid_report *report, __u8 *data)
1848 {
1849 	unsigned n;
1850 
1851 	if (report->id > 0)
1852 		*data++ = report->id;
1853 
1854 	memset(data, 0, hid_compute_report_size(report));
1855 	for (n = 0; n < report->maxfield; n++)
1856 		hid_output_field(report->device, report->field[n], data);
1857 }
1858 EXPORT_SYMBOL_GPL(hid_output_report);
1859 
1860 /*
1861  * Allocator for buffer that is going to be passed to hid_output_report()
1862  */
hid_alloc_report_buf(struct hid_report * report,gfp_t flags)1863 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1864 {
1865 	/*
1866 	 * 7 extra bytes are necessary to achieve proper functionality
1867 	 * of implement() working on 8 byte chunks
1868 	 * 1 extra byte for the report ID if it is null (not used) so
1869 	 * we can reserve that extra byte in the first position of the buffer
1870 	 * when sending it to .raw_request()
1871 	 */
1872 
1873 	u32 len = hid_report_len(report) + 7 + (report->id == 0);
1874 
1875 	return kzalloc(len, flags);
1876 }
1877 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1878 
1879 /*
1880  * Set a field value. The report this field belongs to has to be
1881  * created and transferred to the device, to set this value in the
1882  * device.
1883  */
1884 
hid_set_field(struct hid_field * field,unsigned offset,__s32 value)1885 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1886 {
1887 	unsigned size;
1888 
1889 	if (!field)
1890 		return -1;
1891 
1892 	size = field->report_size;
1893 
1894 	hid_dump_input(field->report->device, field->usage + offset, value);
1895 
1896 	if (offset >= field->report_count) {
1897 		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1898 				offset, field->report_count);
1899 		return -1;
1900 	}
1901 	if (field->logical_minimum < 0) {
1902 		if (value != snto32(s32ton(value, size), size)) {
1903 			hid_err(field->report->device, "value %d is out of range\n", value);
1904 			return -1;
1905 		}
1906 	}
1907 	field->value[offset] = value;
1908 	return 0;
1909 }
1910 EXPORT_SYMBOL_GPL(hid_set_field);
1911 
hid_find_field(struct hid_device * hdev,unsigned int report_type,unsigned int application,unsigned int usage)1912 struct hid_field *hid_find_field(struct hid_device *hdev, unsigned int report_type,
1913 				 unsigned int application, unsigned int usage)
1914 {
1915 	struct list_head *report_list = &hdev->report_enum[report_type].report_list;
1916 	struct hid_report *report;
1917 	int i, j;
1918 
1919 	list_for_each_entry(report, report_list, list) {
1920 		if (report->application != application)
1921 			continue;
1922 
1923 		for (i = 0; i < report->maxfield; i++) {
1924 			struct hid_field *field = report->field[i];
1925 
1926 			for (j = 0; j < field->maxusage; j++) {
1927 				if (field->usage[j].hid == usage)
1928 					return field;
1929 			}
1930 		}
1931 	}
1932 
1933 	return NULL;
1934 }
1935 EXPORT_SYMBOL_GPL(hid_find_field);
1936 
hid_get_report(struct hid_report_enum * report_enum,const u8 * data)1937 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1938 		const u8 *data)
1939 {
1940 	struct hid_report *report;
1941 	unsigned int n = 0;	/* Normally report number is 0 */
1942 
1943 	/* Device uses numbered reports, data[0] is report number */
1944 	if (report_enum->numbered)
1945 		n = *data;
1946 
1947 	report = report_enum->report_id_hash[n];
1948 	if (report == NULL)
1949 		dbg_hid("undefined report_id %u received\n", n);
1950 
1951 	return report;
1952 }
1953 
1954 /*
1955  * Implement a generic .request() callback, using .raw_request()
1956  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1957  */
__hid_request(struct hid_device * hid,struct hid_report * report,enum hid_class_request reqtype)1958 int __hid_request(struct hid_device *hid, struct hid_report *report,
1959 		enum hid_class_request reqtype)
1960 {
1961 	char *buf, *data_buf;
1962 	int ret;
1963 	u32 len;
1964 
1965 	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1966 	if (!buf)
1967 		return -ENOMEM;
1968 
1969 	data_buf = buf;
1970 	len = hid_report_len(report);
1971 
1972 	if (report->id == 0) {
1973 		/* reserve the first byte for the report ID */
1974 		data_buf++;
1975 		len++;
1976 	}
1977 
1978 	if (reqtype == HID_REQ_SET_REPORT)
1979 		hid_output_report(report, data_buf);
1980 
1981 	ret = hid_hw_raw_request(hid, report->id, buf, len, report->type, reqtype);
1982 	if (ret < 0) {
1983 		dbg_hid("unable to complete request: %d\n", ret);
1984 		goto out;
1985 	}
1986 
1987 	if (reqtype == HID_REQ_GET_REPORT)
1988 		hid_input_report(hid, report->type, buf, ret, 0);
1989 
1990 	ret = 0;
1991 
1992 out:
1993 	kfree(buf);
1994 	return ret;
1995 }
1996 EXPORT_SYMBOL_GPL(__hid_request);
1997 
hid_report_raw_event(struct hid_device * hid,enum hid_report_type type,u8 * data,u32 size,int interrupt)1998 int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
1999 			 int interrupt)
2000 {
2001 	struct hid_report_enum *report_enum = hid->report_enum + type;
2002 	struct hid_report *report;
2003 	struct hid_driver *hdrv;
2004 	int max_buffer_size = HID_MAX_BUFFER_SIZE;
2005 	u32 rsize, csize = size;
2006 	u8 *cdata = data;
2007 	int ret = 0;
2008 
2009 	report = hid_get_report(report_enum, data);
2010 	if (!report)
2011 		goto out;
2012 
2013 	if (report_enum->numbered) {
2014 		cdata++;
2015 		csize--;
2016 	}
2017 
2018 	rsize = hid_compute_report_size(report);
2019 
2020 	if (hid->ll_driver->max_buffer_size)
2021 		max_buffer_size = hid->ll_driver->max_buffer_size;
2022 
2023 	if (report_enum->numbered && rsize >= max_buffer_size)
2024 		rsize = max_buffer_size - 1;
2025 	else if (rsize > max_buffer_size)
2026 		rsize = max_buffer_size;
2027 
2028 	if (csize < rsize) {
2029 		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
2030 				csize, rsize);
2031 		memset(cdata + csize, 0, rsize - csize);
2032 	}
2033 
2034 	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
2035 		hid->hiddev_report_event(hid, report);
2036 	if (hid->claimed & HID_CLAIMED_HIDRAW) {
2037 		ret = hidraw_report_event(hid, data, size);
2038 		if (ret)
2039 			goto out;
2040 	}
2041 
2042 	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2043 		hid_process_report(hid, report, cdata, interrupt);
2044 		hdrv = hid->driver;
2045 		if (hdrv && hdrv->report)
2046 			hdrv->report(hid, report);
2047 	}
2048 
2049 	if (hid->claimed & HID_CLAIMED_INPUT)
2050 		hidinput_report_event(hid, report);
2051 out:
2052 	return ret;
2053 }
2054 EXPORT_SYMBOL_GPL(hid_report_raw_event);
2055 
2056 
__hid_input_report(struct hid_device * hid,enum hid_report_type type,u8 * data,u32 size,int interrupt,u64 source,bool from_bpf,bool lock_already_taken)2057 static int __hid_input_report(struct hid_device *hid, enum hid_report_type type,
2058 			      u8 *data, u32 size, int interrupt, u64 source, bool from_bpf,
2059 			      bool lock_already_taken)
2060 {
2061 	struct hid_report_enum *report_enum;
2062 	struct hid_driver *hdrv;
2063 	struct hid_report *report;
2064 	int ret = 0;
2065 
2066 	if (!hid)
2067 		return -ENODEV;
2068 
2069 	ret = down_trylock(&hid->driver_input_lock);
2070 	if (lock_already_taken && !ret) {
2071 		up(&hid->driver_input_lock);
2072 		return -EINVAL;
2073 	} else if (!lock_already_taken && ret) {
2074 		return -EBUSY;
2075 	}
2076 
2077 	if (!hid->driver) {
2078 		ret = -ENODEV;
2079 		goto unlock;
2080 	}
2081 	report_enum = hid->report_enum + type;
2082 	hdrv = hid->driver;
2083 
2084 	data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt, source, from_bpf);
2085 	if (IS_ERR(data)) {
2086 		ret = PTR_ERR(data);
2087 		goto unlock;
2088 	}
2089 
2090 	if (!size) {
2091 		dbg_hid("empty report\n");
2092 		ret = -1;
2093 		goto unlock;
2094 	}
2095 
2096 	/* Avoid unnecessary overhead if debugfs is disabled */
2097 	if (!list_empty(&hid->debug_list))
2098 		hid_dump_report(hid, type, data, size);
2099 
2100 	report = hid_get_report(report_enum, data);
2101 
2102 	if (!report) {
2103 		ret = -1;
2104 		goto unlock;
2105 	}
2106 
2107 	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2108 		ret = hdrv->raw_event(hid, report, data, size);
2109 		if (ret < 0)
2110 			goto unlock;
2111 	}
2112 
2113 	ret = hid_report_raw_event(hid, type, data, size, interrupt);
2114 
2115 unlock:
2116 	if (!lock_already_taken)
2117 		up(&hid->driver_input_lock);
2118 	return ret;
2119 }
2120 
2121 /**
2122  * hid_input_report - report data from lower layer (usb, bt...)
2123  *
2124  * @hid: hid device
2125  * @type: HID report type (HID_*_REPORT)
2126  * @data: report contents
2127  * @size: size of data parameter
2128  * @interrupt: distinguish between interrupt and control transfers
2129  *
2130  * This is data entry for lower layers.
2131  */
hid_input_report(struct hid_device * hid,enum hid_report_type type,u8 * data,u32 size,int interrupt)2132 int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2133 		     int interrupt)
2134 {
2135 	return __hid_input_report(hid, type, data, size, interrupt, 0,
2136 				  false, /* from_bpf */
2137 				  false /* lock_already_taken */);
2138 }
2139 EXPORT_SYMBOL_GPL(hid_input_report);
2140 
hid_match_one_id(const struct hid_device * hdev,const struct hid_device_id * id)2141 bool hid_match_one_id(const struct hid_device *hdev,
2142 		      const struct hid_device_id *id)
2143 {
2144 	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2145 		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2146 		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2147 		(id->product == HID_ANY_ID || id->product == hdev->product);
2148 }
2149 
hid_match_id(const struct hid_device * hdev,const struct hid_device_id * id)2150 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2151 		const struct hid_device_id *id)
2152 {
2153 	for (; id->bus; id++)
2154 		if (hid_match_one_id(hdev, id))
2155 			return id;
2156 
2157 	return NULL;
2158 }
2159 EXPORT_SYMBOL_GPL(hid_match_id);
2160 
2161 static const struct hid_device_id hid_hiddev_list[] = {
2162 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2163 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2164 	{ }
2165 };
2166 
hid_hiddev(struct hid_device * hdev)2167 static bool hid_hiddev(struct hid_device *hdev)
2168 {
2169 	return !!hid_match_id(hdev, hid_hiddev_list);
2170 }
2171 
2172 
2173 static ssize_t
read_report_descriptor(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)2174 read_report_descriptor(struct file *filp, struct kobject *kobj,
2175 		struct bin_attribute *attr,
2176 		char *buf, loff_t off, size_t count)
2177 {
2178 	struct device *dev = kobj_to_dev(kobj);
2179 	struct hid_device *hdev = to_hid_device(dev);
2180 
2181 	if (off >= hdev->rsize)
2182 		return 0;
2183 
2184 	if (off + count > hdev->rsize)
2185 		count = hdev->rsize - off;
2186 
2187 	memcpy(buf, hdev->rdesc + off, count);
2188 
2189 	return count;
2190 }
2191 
2192 static ssize_t
show_country(struct device * dev,struct device_attribute * attr,char * buf)2193 show_country(struct device *dev, struct device_attribute *attr,
2194 		char *buf)
2195 {
2196 	struct hid_device *hdev = to_hid_device(dev);
2197 
2198 	return sprintf(buf, "%02x\n", hdev->country & 0xff);
2199 }
2200 
2201 static struct bin_attribute dev_bin_attr_report_desc = {
2202 	.attr = { .name = "report_descriptor", .mode = 0444 },
2203 	.read = read_report_descriptor,
2204 	.size = HID_MAX_DESCRIPTOR_SIZE,
2205 };
2206 
2207 static const struct device_attribute dev_attr_country = {
2208 	.attr = { .name = "country", .mode = 0444 },
2209 	.show = show_country,
2210 };
2211 
hid_connect(struct hid_device * hdev,unsigned int connect_mask)2212 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2213 {
2214 	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2215 		"Joystick", "Gamepad", "Keyboard", "Keypad",
2216 		"Multi-Axis Controller"
2217 	};
2218 	const char *type, *bus;
2219 	char buf[64] = "";
2220 	unsigned int i;
2221 	int len;
2222 	int ret;
2223 
2224 	ret = hid_bpf_connect_device(hdev);
2225 	if (ret)
2226 		return ret;
2227 
2228 	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2229 		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2230 	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2231 		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2232 	if (hdev->bus != BUS_USB)
2233 		connect_mask &= ~HID_CONNECT_HIDDEV;
2234 	if (hid_hiddev(hdev))
2235 		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2236 
2237 	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2238 				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2239 		hdev->claimed |= HID_CLAIMED_INPUT;
2240 
2241 	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2242 			!hdev->hiddev_connect(hdev,
2243 				connect_mask & HID_CONNECT_HIDDEV_FORCE))
2244 		hdev->claimed |= HID_CLAIMED_HIDDEV;
2245 	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2246 		hdev->claimed |= HID_CLAIMED_HIDRAW;
2247 
2248 	if (connect_mask & HID_CONNECT_DRIVER)
2249 		hdev->claimed |= HID_CLAIMED_DRIVER;
2250 
2251 	/* Drivers with the ->raw_event callback set are not required to connect
2252 	 * to any other listener. */
2253 	if (!hdev->claimed && !hdev->driver->raw_event) {
2254 		hid_err(hdev, "device has no listeners, quitting\n");
2255 		return -ENODEV;
2256 	}
2257 
2258 	hid_process_ordering(hdev);
2259 
2260 	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2261 			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2262 		hdev->ff_init(hdev);
2263 
2264 	len = 0;
2265 	if (hdev->claimed & HID_CLAIMED_INPUT)
2266 		len += sprintf(buf + len, "input");
2267 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2268 		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2269 				((struct hiddev *)hdev->hiddev)->minor);
2270 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2271 		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2272 				((struct hidraw *)hdev->hidraw)->minor);
2273 
2274 	type = "Device";
2275 	for (i = 0; i < hdev->maxcollection; i++) {
2276 		struct hid_collection *col = &hdev->collection[i];
2277 		if (col->type == HID_COLLECTION_APPLICATION &&
2278 		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2279 		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2280 			type = types[col->usage & 0xffff];
2281 			break;
2282 		}
2283 	}
2284 
2285 	switch (hdev->bus) {
2286 	case BUS_USB:
2287 		bus = "USB";
2288 		break;
2289 	case BUS_BLUETOOTH:
2290 		bus = "BLUETOOTH";
2291 		break;
2292 	case BUS_I2C:
2293 		bus = "I2C";
2294 		break;
2295 	case BUS_VIRTUAL:
2296 		bus = "VIRTUAL";
2297 		break;
2298 	case BUS_INTEL_ISHTP:
2299 	case BUS_AMD_SFH:
2300 		bus = "SENSOR HUB";
2301 		break;
2302 	default:
2303 		bus = "<UNKNOWN>";
2304 	}
2305 
2306 	ret = device_create_file(&hdev->dev, &dev_attr_country);
2307 	if (ret)
2308 		hid_warn(hdev,
2309 			 "can't create sysfs country code attribute err: %d\n", ret);
2310 
2311 	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2312 		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2313 		 type, hdev->name, hdev->phys);
2314 
2315 	return 0;
2316 }
2317 EXPORT_SYMBOL_GPL(hid_connect);
2318 
hid_disconnect(struct hid_device * hdev)2319 void hid_disconnect(struct hid_device *hdev)
2320 {
2321 	device_remove_file(&hdev->dev, &dev_attr_country);
2322 	if (hdev->claimed & HID_CLAIMED_INPUT)
2323 		hidinput_disconnect(hdev);
2324 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2325 		hdev->hiddev_disconnect(hdev);
2326 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2327 		hidraw_disconnect(hdev);
2328 	hdev->claimed = 0;
2329 
2330 	hid_bpf_disconnect_device(hdev);
2331 }
2332 EXPORT_SYMBOL_GPL(hid_disconnect);
2333 
2334 /**
2335  * hid_hw_start - start underlying HW
2336  * @hdev: hid device
2337  * @connect_mask: which outputs to connect, see HID_CONNECT_*
2338  *
2339  * Call this in probe function *after* hid_parse. This will setup HW
2340  * buffers and start the device (if not defeirred to device open).
2341  * hid_hw_stop must be called if this was successful.
2342  */
hid_hw_start(struct hid_device * hdev,unsigned int connect_mask)2343 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2344 {
2345 	int error;
2346 
2347 	error = hdev->ll_driver->start(hdev);
2348 	if (error)
2349 		return error;
2350 
2351 	if (connect_mask) {
2352 		error = hid_connect(hdev, connect_mask);
2353 		if (error) {
2354 			hdev->ll_driver->stop(hdev);
2355 			return error;
2356 		}
2357 	}
2358 
2359 	return 0;
2360 }
2361 EXPORT_SYMBOL_GPL(hid_hw_start);
2362 
2363 /**
2364  * hid_hw_stop - stop underlying HW
2365  * @hdev: hid device
2366  *
2367  * This is usually called from remove function or from probe when something
2368  * failed and hid_hw_start was called already.
2369  */
hid_hw_stop(struct hid_device * hdev)2370 void hid_hw_stop(struct hid_device *hdev)
2371 {
2372 	hid_disconnect(hdev);
2373 	hdev->ll_driver->stop(hdev);
2374 }
2375 EXPORT_SYMBOL_GPL(hid_hw_stop);
2376 
2377 /**
2378  * hid_hw_open - signal underlying HW to start delivering events
2379  * @hdev: hid device
2380  *
2381  * Tell underlying HW to start delivering events from the device.
2382  * This function should be called sometime after successful call
2383  * to hid_hw_start().
2384  */
hid_hw_open(struct hid_device * hdev)2385 int hid_hw_open(struct hid_device *hdev)
2386 {
2387 	int ret;
2388 
2389 	ret = mutex_lock_killable(&hdev->ll_open_lock);
2390 	if (ret)
2391 		return ret;
2392 
2393 	if (!hdev->ll_open_count++) {
2394 		ret = hdev->ll_driver->open(hdev);
2395 		if (ret)
2396 			hdev->ll_open_count--;
2397 	}
2398 
2399 	mutex_unlock(&hdev->ll_open_lock);
2400 	return ret;
2401 }
2402 EXPORT_SYMBOL_GPL(hid_hw_open);
2403 
2404 /**
2405  * hid_hw_close - signal underlaying HW to stop delivering events
2406  *
2407  * @hdev: hid device
2408  *
2409  * This function indicates that we are not interested in the events
2410  * from this device anymore. Delivery of events may or may not stop,
2411  * depending on the number of users still outstanding.
2412  */
hid_hw_close(struct hid_device * hdev)2413 void hid_hw_close(struct hid_device *hdev)
2414 {
2415 	mutex_lock(&hdev->ll_open_lock);
2416 	if (!--hdev->ll_open_count)
2417 		hdev->ll_driver->close(hdev);
2418 	mutex_unlock(&hdev->ll_open_lock);
2419 }
2420 EXPORT_SYMBOL_GPL(hid_hw_close);
2421 
2422 /**
2423  * hid_hw_request - send report request to device
2424  *
2425  * @hdev: hid device
2426  * @report: report to send
2427  * @reqtype: hid request type
2428  */
hid_hw_request(struct hid_device * hdev,struct hid_report * report,enum hid_class_request reqtype)2429 void hid_hw_request(struct hid_device *hdev,
2430 		    struct hid_report *report, enum hid_class_request reqtype)
2431 {
2432 	if (hdev->ll_driver->request)
2433 		return hdev->ll_driver->request(hdev, report, reqtype);
2434 
2435 	__hid_request(hdev, report, reqtype);
2436 }
2437 EXPORT_SYMBOL_GPL(hid_hw_request);
2438 
__hid_hw_raw_request(struct hid_device * hdev,unsigned char reportnum,__u8 * buf,size_t len,enum hid_report_type rtype,enum hid_class_request reqtype,u64 source,bool from_bpf)2439 int __hid_hw_raw_request(struct hid_device *hdev,
2440 			 unsigned char reportnum, __u8 *buf,
2441 			 size_t len, enum hid_report_type rtype,
2442 			 enum hid_class_request reqtype,
2443 			 u64 source, bool from_bpf)
2444 {
2445 	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2446 	int ret;
2447 
2448 	if (hdev->ll_driver->max_buffer_size)
2449 		max_buffer_size = hdev->ll_driver->max_buffer_size;
2450 
2451 	if (len < 1 || len > max_buffer_size || !buf)
2452 		return -EINVAL;
2453 
2454 	ret = dispatch_hid_bpf_raw_requests(hdev, reportnum, buf, len, rtype,
2455 					    reqtype, source, from_bpf);
2456 	if (ret)
2457 		return ret;
2458 
2459 	return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2460 					    rtype, reqtype);
2461 }
2462 
2463 /**
2464  * hid_hw_raw_request - send report request to device
2465  *
2466  * @hdev: hid device
2467  * @reportnum: report ID
2468  * @buf: in/out data to transfer
2469  * @len: length of buf
2470  * @rtype: HID report type
2471  * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2472  *
2473  * Return: count of data transferred, negative if error
2474  *
2475  * Same behavior as hid_hw_request, but with raw buffers instead.
2476  */
hid_hw_raw_request(struct hid_device * hdev,unsigned char reportnum,__u8 * buf,size_t len,enum hid_report_type rtype,enum hid_class_request reqtype)2477 int hid_hw_raw_request(struct hid_device *hdev,
2478 		       unsigned char reportnum, __u8 *buf,
2479 		       size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2480 {
2481 	return __hid_hw_raw_request(hdev, reportnum, buf, len, rtype, reqtype, 0, false);
2482 }
2483 EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2484 
__hid_hw_output_report(struct hid_device * hdev,__u8 * buf,size_t len,u64 source,bool from_bpf)2485 int __hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len, u64 source,
2486 			   bool from_bpf)
2487 {
2488 	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2489 	int ret;
2490 
2491 	if (hdev->ll_driver->max_buffer_size)
2492 		max_buffer_size = hdev->ll_driver->max_buffer_size;
2493 
2494 	if (len < 1 || len > max_buffer_size || !buf)
2495 		return -EINVAL;
2496 
2497 	ret = dispatch_hid_bpf_output_report(hdev, buf, len, source, from_bpf);
2498 	if (ret)
2499 		return ret;
2500 
2501 	if (hdev->ll_driver->output_report)
2502 		return hdev->ll_driver->output_report(hdev, buf, len);
2503 
2504 	return -ENOSYS;
2505 }
2506 
2507 /**
2508  * hid_hw_output_report - send output report to device
2509  *
2510  * @hdev: hid device
2511  * @buf: raw data to transfer
2512  * @len: length of buf
2513  *
2514  * Return: count of data transferred, negative if error
2515  */
hid_hw_output_report(struct hid_device * hdev,__u8 * buf,size_t len)2516 int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2517 {
2518 	return __hid_hw_output_report(hdev, buf, len, 0, false);
2519 }
2520 EXPORT_SYMBOL_GPL(hid_hw_output_report);
2521 
2522 #ifdef CONFIG_PM
hid_driver_suspend(struct hid_device * hdev,pm_message_t state)2523 int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2524 {
2525 	if (hdev->driver && hdev->driver->suspend)
2526 		return hdev->driver->suspend(hdev, state);
2527 
2528 	return 0;
2529 }
2530 EXPORT_SYMBOL_GPL(hid_driver_suspend);
2531 
hid_driver_reset_resume(struct hid_device * hdev)2532 int hid_driver_reset_resume(struct hid_device *hdev)
2533 {
2534 	if (hdev->driver && hdev->driver->reset_resume)
2535 		return hdev->driver->reset_resume(hdev);
2536 
2537 	return 0;
2538 }
2539 EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2540 
hid_driver_resume(struct hid_device * hdev)2541 int hid_driver_resume(struct hid_device *hdev)
2542 {
2543 	if (hdev->driver && hdev->driver->resume)
2544 		return hdev->driver->resume(hdev);
2545 
2546 	return 0;
2547 }
2548 EXPORT_SYMBOL_GPL(hid_driver_resume);
2549 #endif /* CONFIG_PM */
2550 
2551 struct hid_dynid {
2552 	struct list_head list;
2553 	struct hid_device_id id;
2554 };
2555 
2556 /**
2557  * new_id_store - add a new HID device ID to this driver and re-probe devices
2558  * @drv: target device driver
2559  * @buf: buffer for scanning device ID data
2560  * @count: input size
2561  *
2562  * Adds a new dynamic hid device ID to this driver,
2563  * and causes the driver to probe for all devices again.
2564  */
new_id_store(struct device_driver * drv,const char * buf,size_t count)2565 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2566 		size_t count)
2567 {
2568 	struct hid_driver *hdrv = to_hid_driver(drv);
2569 	struct hid_dynid *dynid;
2570 	__u32 bus, vendor, product;
2571 	unsigned long driver_data = 0;
2572 	int ret;
2573 
2574 	ret = sscanf(buf, "%x %x %x %lx",
2575 			&bus, &vendor, &product, &driver_data);
2576 	if (ret < 3)
2577 		return -EINVAL;
2578 
2579 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2580 	if (!dynid)
2581 		return -ENOMEM;
2582 
2583 	dynid->id.bus = bus;
2584 	dynid->id.group = HID_GROUP_ANY;
2585 	dynid->id.vendor = vendor;
2586 	dynid->id.product = product;
2587 	dynid->id.driver_data = driver_data;
2588 
2589 	spin_lock(&hdrv->dyn_lock);
2590 	list_add_tail(&dynid->list, &hdrv->dyn_list);
2591 	spin_unlock(&hdrv->dyn_lock);
2592 
2593 	ret = driver_attach(&hdrv->driver);
2594 
2595 	return ret ? : count;
2596 }
2597 static DRIVER_ATTR_WO(new_id);
2598 
2599 static struct attribute *hid_drv_attrs[] = {
2600 	&driver_attr_new_id.attr,
2601 	NULL,
2602 };
2603 ATTRIBUTE_GROUPS(hid_drv);
2604 
hid_free_dynids(struct hid_driver * hdrv)2605 static void hid_free_dynids(struct hid_driver *hdrv)
2606 {
2607 	struct hid_dynid *dynid, *n;
2608 
2609 	spin_lock(&hdrv->dyn_lock);
2610 	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2611 		list_del(&dynid->list);
2612 		kfree(dynid);
2613 	}
2614 	spin_unlock(&hdrv->dyn_lock);
2615 }
2616 
hid_match_device(struct hid_device * hdev,struct hid_driver * hdrv)2617 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2618 					     struct hid_driver *hdrv)
2619 {
2620 	struct hid_dynid *dynid;
2621 
2622 	spin_lock(&hdrv->dyn_lock);
2623 	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2624 		if (hid_match_one_id(hdev, &dynid->id)) {
2625 			spin_unlock(&hdrv->dyn_lock);
2626 			return &dynid->id;
2627 		}
2628 	}
2629 	spin_unlock(&hdrv->dyn_lock);
2630 
2631 	return hid_match_id(hdev, hdrv->id_table);
2632 }
2633 EXPORT_SYMBOL_GPL(hid_match_device);
2634 
hid_bus_match(struct device * dev,const struct device_driver * drv)2635 static int hid_bus_match(struct device *dev, const struct device_driver *drv)
2636 {
2637 	struct hid_driver *hdrv = to_hid_driver(drv);
2638 	struct hid_device *hdev = to_hid_device(dev);
2639 
2640 	return hid_match_device(hdev, hdrv) != NULL;
2641 }
2642 
2643 /**
2644  * hid_compare_device_paths - check if both devices share the same path
2645  * @hdev_a: hid device
2646  * @hdev_b: hid device
2647  * @separator: char to use as separator
2648  *
2649  * Check if two devices share the same path up to the last occurrence of
2650  * the separator char. Both paths must exist (i.e., zero-length paths
2651  * don't match).
2652  */
hid_compare_device_paths(struct hid_device * hdev_a,struct hid_device * hdev_b,char separator)2653 bool hid_compare_device_paths(struct hid_device *hdev_a,
2654 			      struct hid_device *hdev_b, char separator)
2655 {
2656 	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2657 	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2658 
2659 	if (n1 != n2 || n1 <= 0 || n2 <= 0)
2660 		return false;
2661 
2662 	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2663 }
2664 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2665 
hid_check_device_match(struct hid_device * hdev,struct hid_driver * hdrv,const struct hid_device_id ** id)2666 static bool hid_check_device_match(struct hid_device *hdev,
2667 				   struct hid_driver *hdrv,
2668 				   const struct hid_device_id **id)
2669 {
2670 	*id = hid_match_device(hdev, hdrv);
2671 	if (!*id)
2672 		return false;
2673 
2674 	if (hdrv->match)
2675 		return hdrv->match(hdev, hid_ignore_special_drivers);
2676 
2677 	/*
2678 	 * hid-generic implements .match(), so we must be dealing with a
2679 	 * different HID driver here, and can simply check if
2680 	 * hid_ignore_special_drivers or HID_QUIRK_IGNORE_SPECIAL_DRIVER
2681 	 * are set or not.
2682 	 */
2683 	return !hid_ignore_special_drivers && !(hdev->quirks & HID_QUIRK_IGNORE_SPECIAL_DRIVER);
2684 }
2685 
__hid_device_probe(struct hid_device * hdev,struct hid_driver * hdrv)2686 static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv)
2687 {
2688 	const struct hid_device_id *id;
2689 	int ret;
2690 
2691 	if (!hid_check_device_match(hdev, hdrv, &id))
2692 		return -ENODEV;
2693 
2694 	hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL);
2695 	if (!hdev->devres_group_id)
2696 		return -ENOMEM;
2697 
2698 	/* reset the quirks that has been previously set */
2699 	hdev->quirks = hid_lookup_quirk(hdev);
2700 	hdev->driver = hdrv;
2701 
2702 	if (hdrv->probe) {
2703 		ret = hdrv->probe(hdev, id);
2704 	} else { /* default probe */
2705 		ret = hid_open_report(hdev);
2706 		if (!ret)
2707 			ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2708 	}
2709 
2710 	/*
2711 	 * Note that we are not closing the devres group opened above so
2712 	 * even resources that were attached to the device after probe is
2713 	 * run are released when hid_device_remove() is executed. This is
2714 	 * needed as some drivers would allocate additional resources,
2715 	 * for example when updating firmware.
2716 	 */
2717 
2718 	if (ret) {
2719 		devres_release_group(&hdev->dev, hdev->devres_group_id);
2720 		hid_close_report(hdev);
2721 		hdev->driver = NULL;
2722 	}
2723 
2724 	return ret;
2725 }
2726 
hid_device_probe(struct device * dev)2727 static int hid_device_probe(struct device *dev)
2728 {
2729 	struct hid_device *hdev = to_hid_device(dev);
2730 	struct hid_driver *hdrv = to_hid_driver(dev->driver);
2731 	int ret = 0;
2732 
2733 	if (down_interruptible(&hdev->driver_input_lock))
2734 		return -EINTR;
2735 
2736 	hdev->io_started = false;
2737 	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2738 
2739 	if (!hdev->driver)
2740 		ret = __hid_device_probe(hdev, hdrv);
2741 
2742 	if (!hdev->io_started)
2743 		up(&hdev->driver_input_lock);
2744 
2745 	return ret;
2746 }
2747 
hid_device_remove(struct device * dev)2748 static void hid_device_remove(struct device *dev)
2749 {
2750 	struct hid_device *hdev = to_hid_device(dev);
2751 	struct hid_driver *hdrv;
2752 
2753 	down(&hdev->driver_input_lock);
2754 	hdev->io_started = false;
2755 
2756 	hdrv = hdev->driver;
2757 	if (hdrv) {
2758 		if (hdrv->remove)
2759 			hdrv->remove(hdev);
2760 		else /* default remove */
2761 			hid_hw_stop(hdev);
2762 
2763 		/* Release all devres resources allocated by the driver */
2764 		devres_release_group(&hdev->dev, hdev->devres_group_id);
2765 
2766 		hid_close_report(hdev);
2767 		hdev->driver = NULL;
2768 	}
2769 
2770 	if (!hdev->io_started)
2771 		up(&hdev->driver_input_lock);
2772 }
2773 
modalias_show(struct device * dev,struct device_attribute * a,char * buf)2774 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2775 			     char *buf)
2776 {
2777 	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2778 
2779 	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2780 			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2781 }
2782 static DEVICE_ATTR_RO(modalias);
2783 
2784 static struct attribute *hid_dev_attrs[] = {
2785 	&dev_attr_modalias.attr,
2786 	NULL,
2787 };
2788 static struct bin_attribute *hid_dev_bin_attrs[] = {
2789 	&dev_bin_attr_report_desc,
2790 	NULL
2791 };
2792 static const struct attribute_group hid_dev_group = {
2793 	.attrs = hid_dev_attrs,
2794 	.bin_attrs = hid_dev_bin_attrs,
2795 };
2796 __ATTRIBUTE_GROUPS(hid_dev);
2797 
hid_uevent(const struct device * dev,struct kobj_uevent_env * env)2798 static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env)
2799 {
2800 	const struct hid_device *hdev = to_hid_device(dev);
2801 
2802 	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2803 			hdev->bus, hdev->vendor, hdev->product))
2804 		return -ENOMEM;
2805 
2806 	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2807 		return -ENOMEM;
2808 
2809 	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2810 		return -ENOMEM;
2811 
2812 	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2813 		return -ENOMEM;
2814 
2815 	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2816 			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2817 		return -ENOMEM;
2818 
2819 	return 0;
2820 }
2821 
2822 const struct bus_type hid_bus_type = {
2823 	.name		= "hid",
2824 	.dev_groups	= hid_dev_groups,
2825 	.drv_groups	= hid_drv_groups,
2826 	.match		= hid_bus_match,
2827 	.probe		= hid_device_probe,
2828 	.remove		= hid_device_remove,
2829 	.uevent		= hid_uevent,
2830 };
2831 EXPORT_SYMBOL(hid_bus_type);
2832 
hid_add_device(struct hid_device * hdev)2833 int hid_add_device(struct hid_device *hdev)
2834 {
2835 	static atomic_t id = ATOMIC_INIT(0);
2836 	int ret;
2837 
2838 	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2839 		return -EBUSY;
2840 
2841 	hdev->quirks = hid_lookup_quirk(hdev);
2842 
2843 	/* we need to kill them here, otherwise they will stay allocated to
2844 	 * wait for coming driver */
2845 	if (hid_ignore(hdev))
2846 		return -ENODEV;
2847 
2848 	/*
2849 	 * Check for the mandatory transport channel.
2850 	 */
2851 	 if (!hdev->ll_driver->raw_request) {
2852 		hid_err(hdev, "transport driver missing .raw_request()\n");
2853 		return -EINVAL;
2854 	 }
2855 
2856 	/*
2857 	 * Read the device report descriptor once and use as template
2858 	 * for the driver-specific modifications.
2859 	 */
2860 	ret = hdev->ll_driver->parse(hdev);
2861 	if (ret)
2862 		return ret;
2863 	if (!hdev->dev_rdesc)
2864 		return -ENODEV;
2865 
2866 	/*
2867 	 * Scan generic devices for group information
2868 	 */
2869 	if (hid_ignore_special_drivers) {
2870 		hdev->group = HID_GROUP_GENERIC;
2871 	} else if (!hdev->group &&
2872 		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2873 		ret = hid_scan_report(hdev);
2874 		if (ret)
2875 			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2876 	}
2877 
2878 	hdev->id = atomic_inc_return(&id);
2879 
2880 	/* XXX hack, any other cleaner solution after the driver core
2881 	 * is converted to allow more than 20 bytes as the device name? */
2882 	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2883 		     hdev->vendor, hdev->product, hdev->id);
2884 
2885 	hid_debug_register(hdev, dev_name(&hdev->dev));
2886 	ret = device_add(&hdev->dev);
2887 	if (!ret)
2888 		hdev->status |= HID_STAT_ADDED;
2889 	else
2890 		hid_debug_unregister(hdev);
2891 
2892 	return ret;
2893 }
2894 EXPORT_SYMBOL_GPL(hid_add_device);
2895 
2896 /**
2897  * hid_allocate_device - allocate new hid device descriptor
2898  *
2899  * Allocate and initialize hid device, so that hid_destroy_device might be
2900  * used to free it.
2901  *
2902  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2903  * error value.
2904  */
hid_allocate_device(void)2905 struct hid_device *hid_allocate_device(void)
2906 {
2907 	struct hid_device *hdev;
2908 	int ret = -ENOMEM;
2909 
2910 	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2911 	if (hdev == NULL)
2912 		return ERR_PTR(ret);
2913 
2914 	device_initialize(&hdev->dev);
2915 	hdev->dev.release = hid_device_release;
2916 	hdev->dev.bus = &hid_bus_type;
2917 	device_enable_async_suspend(&hdev->dev);
2918 
2919 	hid_close_report(hdev);
2920 
2921 	init_waitqueue_head(&hdev->debug_wait);
2922 	INIT_LIST_HEAD(&hdev->debug_list);
2923 	spin_lock_init(&hdev->debug_list_lock);
2924 	sema_init(&hdev->driver_input_lock, 1);
2925 	mutex_init(&hdev->ll_open_lock);
2926 	kref_init(&hdev->ref);
2927 
2928 	ret = hid_bpf_device_init(hdev);
2929 	if (ret)
2930 		goto out_err;
2931 
2932 	return hdev;
2933 
2934 out_err:
2935 	hid_destroy_device(hdev);
2936 	return ERR_PTR(ret);
2937 }
2938 EXPORT_SYMBOL_GPL(hid_allocate_device);
2939 
hid_remove_device(struct hid_device * hdev)2940 static void hid_remove_device(struct hid_device *hdev)
2941 {
2942 	if (hdev->status & HID_STAT_ADDED) {
2943 		device_del(&hdev->dev);
2944 		hid_debug_unregister(hdev);
2945 		hdev->status &= ~HID_STAT_ADDED;
2946 	}
2947 	kfree(hdev->dev_rdesc);
2948 	hdev->dev_rdesc = NULL;
2949 	hdev->dev_rsize = 0;
2950 }
2951 
2952 /**
2953  * hid_destroy_device - free previously allocated device
2954  *
2955  * @hdev: hid device
2956  *
2957  * If you allocate hid_device through hid_allocate_device, you should ever
2958  * free by this function.
2959  */
hid_destroy_device(struct hid_device * hdev)2960 void hid_destroy_device(struct hid_device *hdev)
2961 {
2962 	hid_bpf_destroy_device(hdev);
2963 	hid_remove_device(hdev);
2964 	put_device(&hdev->dev);
2965 }
2966 EXPORT_SYMBOL_GPL(hid_destroy_device);
2967 
2968 
__hid_bus_reprobe_drivers(struct device * dev,void * data)2969 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2970 {
2971 	struct hid_driver *hdrv = data;
2972 	struct hid_device *hdev = to_hid_device(dev);
2973 
2974 	if (hdev->driver == hdrv &&
2975 	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
2976 	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2977 		return device_reprobe(dev);
2978 
2979 	return 0;
2980 }
2981 
__hid_bus_driver_added(struct device_driver * drv,void * data)2982 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2983 {
2984 	struct hid_driver *hdrv = to_hid_driver(drv);
2985 
2986 	if (hdrv->match) {
2987 		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2988 				 __hid_bus_reprobe_drivers);
2989 	}
2990 
2991 	return 0;
2992 }
2993 
__bus_removed_driver(struct device_driver * drv,void * data)2994 static int __bus_removed_driver(struct device_driver *drv, void *data)
2995 {
2996 	return bus_rescan_devices(&hid_bus_type);
2997 }
2998 
__hid_register_driver(struct hid_driver * hdrv,struct module * owner,const char * mod_name)2999 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
3000 		const char *mod_name)
3001 {
3002 	int ret;
3003 
3004 	hdrv->driver.name = hdrv->name;
3005 	hdrv->driver.bus = &hid_bus_type;
3006 	hdrv->driver.owner = owner;
3007 	hdrv->driver.mod_name = mod_name;
3008 
3009 	INIT_LIST_HEAD(&hdrv->dyn_list);
3010 	spin_lock_init(&hdrv->dyn_lock);
3011 
3012 	ret = driver_register(&hdrv->driver);
3013 
3014 	if (ret == 0)
3015 		bus_for_each_drv(&hid_bus_type, NULL, NULL,
3016 				 __hid_bus_driver_added);
3017 
3018 	return ret;
3019 }
3020 EXPORT_SYMBOL_GPL(__hid_register_driver);
3021 
hid_unregister_driver(struct hid_driver * hdrv)3022 void hid_unregister_driver(struct hid_driver *hdrv)
3023 {
3024 	driver_unregister(&hdrv->driver);
3025 	hid_free_dynids(hdrv);
3026 
3027 	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
3028 }
3029 EXPORT_SYMBOL_GPL(hid_unregister_driver);
3030 
hid_check_keys_pressed(struct hid_device * hid)3031 int hid_check_keys_pressed(struct hid_device *hid)
3032 {
3033 	struct hid_input *hidinput;
3034 	int i;
3035 
3036 	if (!(hid->claimed & HID_CLAIMED_INPUT))
3037 		return 0;
3038 
3039 	list_for_each_entry(hidinput, &hid->inputs, list) {
3040 		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
3041 			if (hidinput->input->key[i])
3042 				return 1;
3043 	}
3044 
3045 	return 0;
3046 }
3047 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
3048 
3049 #ifdef CONFIG_HID_BPF
3050 static struct hid_ops __hid_ops = {
3051 	.hid_get_report = hid_get_report,
3052 	.hid_hw_raw_request = __hid_hw_raw_request,
3053 	.hid_hw_output_report = __hid_hw_output_report,
3054 	.hid_input_report = __hid_input_report,
3055 	.owner = THIS_MODULE,
3056 	.bus_type = &hid_bus_type,
3057 };
3058 #endif
3059 
hid_init(void)3060 static int __init hid_init(void)
3061 {
3062 	int ret;
3063 
3064 	ret = bus_register(&hid_bus_type);
3065 	if (ret) {
3066 		pr_err("can't register hid bus\n");
3067 		goto err;
3068 	}
3069 
3070 #ifdef CONFIG_HID_BPF
3071 	hid_ops = &__hid_ops;
3072 #endif
3073 
3074 	ret = hidraw_init();
3075 	if (ret)
3076 		goto err_bus;
3077 
3078 	hid_debug_init();
3079 
3080 	return 0;
3081 err_bus:
3082 	bus_unregister(&hid_bus_type);
3083 err:
3084 	return ret;
3085 }
3086 
hid_exit(void)3087 static void __exit hid_exit(void)
3088 {
3089 #ifdef CONFIG_HID_BPF
3090 	hid_ops = NULL;
3091 #endif
3092 	hid_debug_exit();
3093 	hidraw_exit();
3094 	bus_unregister(&hid_bus_type);
3095 	hid_quirks_exit(HID_BUS_ANY);
3096 }
3097 
3098 module_init(hid_init);
3099 module_exit(hid_exit);
3100 
3101 MODULE_AUTHOR("Andreas Gal");
3102 MODULE_AUTHOR("Vojtech Pavlik");
3103 MODULE_AUTHOR("Jiri Kosina");
3104 MODULE_DESCRIPTION("HID support for Linux");
3105 MODULE_LICENSE("GPL");
3106