• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/mmu_context.h>
48 #include <linux/module.h>
49 #include <linux/mutex_api.h>
50 #include <linux/plist.h>
51 #include <linux/poll.h>
52 #include <linux/proc_fs.h>
53 #include <linux/profile.h>
54 #include <linux/psi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/seq_file.h>
57 #include <linux/seqlock.h>
58 #include <linux/softirq.h>
59 #include <linux/spinlock_api.h>
60 #include <linux/static_key.h>
61 #include <linux/stop_machine.h>
62 #include <linux/syscalls_api.h>
63 #include <linux/syscalls.h>
64 #include <linux/tick.h>
65 #include <linux/topology.h>
66 #include <linux/types.h>
67 #include <linux/u64_stats_sync_api.h>
68 #include <linux/uaccess.h>
69 #include <linux/wait_api.h>
70 #include <linux/wait_bit.h>
71 #include <linux/workqueue_api.h>
72 #include <linux/delayacct.h>
73 #include <linux/android_vendor.h>
74 #include <linux/android_kabi.h>
75 
76 #include <trace/events/power.h>
77 #include <trace/events/sched.h>
78 
79 #include "../workqueue_internal.h"
80 
81 struct rq;
82 struct cfs_rq;
83 struct rt_rq;
84 struct sched_group;
85 struct cpuidle_state;
86 
87 #ifdef CONFIG_PARAVIRT
88 # include <asm/paravirt.h>
89 # include <asm/paravirt_api_clock.h>
90 #endif
91 
92 #include <asm/barrier.h>
93 
94 #include "cpupri.h"
95 #include "cpudeadline.h"
96 
97 #ifdef CONFIG_SCHED_DEBUG
98 # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
99 #else
100 # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
101 #endif
102 
103 /* task_struct::on_rq states: */
104 #define TASK_ON_RQ_QUEUED	1
105 #define TASK_ON_RQ_MIGRATING	2
106 
107 extern __read_mostly int scheduler_running;
108 
109 extern unsigned long calc_load_update;
110 extern atomic_long_t calc_load_tasks;
111 
112 extern unsigned int sysctl_sched_child_runs_first;
113 
114 extern void calc_global_load_tick(struct rq *this_rq);
115 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
116 
117 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
118 
119 extern int sysctl_sched_rt_period;
120 extern int sysctl_sched_rt_runtime;
121 extern int sched_rr_timeslice;
122 
123 /*
124  * Asymmetric CPU capacity bits
125  */
126 struct asym_cap_data {
127 	struct list_head link;
128 	struct rcu_head rcu;
129 	unsigned long capacity;
130 	unsigned long cpus[];
131 };
132 
133 extern struct list_head asym_cap_list;
134 
135 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
136 
137 /*
138  * Helpers for converting nanosecond timing to jiffy resolution
139  */
140 #define NS_TO_JIFFIES(time)	((unsigned long)(time) / (NSEC_PER_SEC/HZ))
141 
142 /*
143  * Increase resolution of nice-level calculations for 64-bit architectures.
144  * The extra resolution improves shares distribution and load balancing of
145  * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group
146  * hierarchies, especially on larger systems. This is not a user-visible change
147  * and does not change the user-interface for setting shares/weights.
148  *
149  * We increase resolution only if we have enough bits to allow this increased
150  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
151  * are pretty high and the returns do not justify the increased costs.
152  *
153  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
154  * increase coverage and consistency always enable it on 64-bit platforms.
155  */
156 #ifdef CONFIG_64BIT
157 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
158 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
159 # define scale_load_down(w)					\
160 ({								\
161 	unsigned long __w = (w);				\
162 								\
163 	if (__w)						\
164 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT);	\
165 	__w;							\
166 })
167 #else
168 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
169 # define scale_load(w)		(w)
170 # define scale_load_down(w)	(w)
171 #endif
172 
173 /*
174  * Task weight (visible to users) and its load (invisible to users) have
175  * independent resolution, but they should be well calibrated. We use
176  * scale_load() and scale_load_down(w) to convert between them. The
177  * following must be true:
178  *
179  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
180  *
181  */
182 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
183 
184 /*
185  * Single value that decides SCHED_DEADLINE internal math precision.
186  * 10 -> just above 1us
187  * 9  -> just above 0.5us
188  */
189 #define DL_SCALE		10
190 
191 /*
192  * Single value that denotes runtime == period, ie unlimited time.
193  */
194 #define RUNTIME_INF		((u64)~0ULL)
195 
idle_policy(int policy)196 static inline int idle_policy(int policy)
197 {
198 	return policy == SCHED_IDLE;
199 }
200 
normal_policy(int policy)201 static inline int normal_policy(int policy)
202 {
203 #ifdef CONFIG_SCHED_CLASS_EXT
204 	if (policy == SCHED_EXT)
205 		return true;
206 #endif
207 	return policy == SCHED_NORMAL;
208 }
209 
fair_policy(int policy)210 static inline int fair_policy(int policy)
211 {
212 	return normal_policy(policy) || policy == SCHED_BATCH;
213 }
214 
rt_policy(int policy)215 static inline int rt_policy(int policy)
216 {
217 	return policy == SCHED_FIFO || policy == SCHED_RR;
218 }
219 
dl_policy(int policy)220 static inline int dl_policy(int policy)
221 {
222 	return policy == SCHED_DEADLINE;
223 }
224 
valid_policy(int policy)225 static inline bool valid_policy(int policy)
226 {
227 	return idle_policy(policy) || fair_policy(policy) ||
228 		rt_policy(policy) || dl_policy(policy);
229 }
230 
task_has_idle_policy(struct task_struct * p)231 static inline int task_has_idle_policy(struct task_struct *p)
232 {
233 	return idle_policy(p->policy);
234 }
235 
task_has_rt_policy(struct task_struct * p)236 static inline int task_has_rt_policy(struct task_struct *p)
237 {
238 	return rt_policy(p->policy);
239 }
240 
task_has_dl_policy(struct task_struct * p)241 static inline int task_has_dl_policy(struct task_struct *p)
242 {
243 	return dl_policy(p->policy);
244 }
245 
246 #define cap_scale(v, s)		((v)*(s) >> SCHED_CAPACITY_SHIFT)
247 
update_avg(u64 * avg,u64 sample)248 static inline void update_avg(u64 *avg, u64 sample)
249 {
250 	s64 diff = sample - *avg;
251 
252 	*avg += diff / 8;
253 }
254 
255 /*
256  * Shifting a value by an exponent greater *or equal* to the size of said value
257  * is UB; cap at size-1.
258  */
259 #define shr_bound(val, shift)							\
260 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
261 
262 /*
263  * cgroup weight knobs should use the common MIN, DFL and MAX values which are
264  * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it
265  * maps pretty well onto the shares value used by scheduler and the round-trip
266  * conversions preserve the original value over the entire range.
267  */
sched_weight_from_cgroup(unsigned long cgrp_weight)268 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight)
269 {
270 	return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL);
271 }
272 
sched_weight_to_cgroup(unsigned long weight)273 static inline unsigned long sched_weight_to_cgroup(unsigned long weight)
274 {
275 	return clamp_t(unsigned long,
276 		       DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024),
277 		       CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
278 }
279 
280 /*
281  * !! For sched_setattr_nocheck() (kernel) only !!
282  *
283  * This is actually gross. :(
284  *
285  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
286  * tasks, but still be able to sleep. We need this on platforms that cannot
287  * atomically change clock frequency. Remove once fast switching will be
288  * available on such platforms.
289  *
290  * SUGOV stands for SchedUtil GOVernor.
291  */
292 #define SCHED_FLAG_SUGOV	0x10000000
293 
294 #define SCHED_DL_FLAGS		(SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
295 
dl_entity_is_special(const struct sched_dl_entity * dl_se)296 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
297 {
298 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
299 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
300 #else
301 	return false;
302 #endif
303 }
304 
305 /*
306  * Tells if entity @a should preempt entity @b.
307  */
dl_entity_preempt(const struct sched_dl_entity * a,const struct sched_dl_entity * b)308 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
309 				     const struct sched_dl_entity *b)
310 {
311 	return dl_entity_is_special(a) ||
312 	       dl_time_before(a->deadline, b->deadline);
313 }
314 
315 /*
316  * This is the priority-queue data structure of the RT scheduling class:
317  */
318 struct rt_prio_array {
319 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
320 	struct list_head queue[MAX_RT_PRIO];
321 };
322 
323 struct rt_bandwidth {
324 	/* nests inside the rq lock: */
325 	raw_spinlock_t		rt_runtime_lock;
326 	ktime_t			rt_period;
327 	u64			rt_runtime;
328 	struct hrtimer		rt_period_timer;
329 	unsigned int		rt_period_active;
330 };
331 
dl_bandwidth_enabled(void)332 static inline int dl_bandwidth_enabled(void)
333 {
334 	return sysctl_sched_rt_runtime >= 0;
335 }
336 
337 /*
338  * To keep the bandwidth of -deadline tasks under control
339  * we need some place where:
340  *  - store the maximum -deadline bandwidth of each cpu;
341  *  - cache the fraction of bandwidth that is currently allocated in
342  *    each root domain;
343  *
344  * This is all done in the data structure below. It is similar to the
345  * one used for RT-throttling (rt_bandwidth), with the main difference
346  * that, since here we are only interested in admission control, we
347  * do not decrease any runtime while the group "executes", neither we
348  * need a timer to replenish it.
349  *
350  * With respect to SMP, bandwidth is given on a per root domain basis,
351  * meaning that:
352  *  - bw (< 100%) is the deadline bandwidth of each CPU;
353  *  - total_bw is the currently allocated bandwidth in each root domain;
354  */
355 struct dl_bw {
356 	raw_spinlock_t		lock;
357 	u64			bw;
358 	u64			total_bw;
359 };
360 
361 extern void init_dl_bw(struct dl_bw *dl_b);
362 extern int  sched_dl_global_validate(void);
363 extern void sched_dl_do_global(void);
364 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
365 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
366 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
367 extern bool __checkparam_dl(const struct sched_attr *attr);
368 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
369 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
370 extern int  dl_bw_check_overflow(int cpu);
371 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec);
372 /*
373  * SCHED_DEADLINE supports servers (nested scheduling) with the following
374  * interface:
375  *
376  *   dl_se::rq -- runqueue we belong to.
377  *
378  *   dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
379  *                           returns NULL.
380  *
381  *   dl_server_update() -- called from update_curr_common(), propagates runtime
382  *                         to the server.
383  *
384  *   dl_server_start() -- start the server when it has tasks; it will stop
385  *			  automatically when there are no more tasks, per
386  *			  dl_se::server_pick() returning NULL.
387  *
388  *   dl_server_stop() -- (force) stop the server; use when updating
389  *                       parameters.
390  *
391  *   dl_server_init() -- initializes the server.
392  *
393  * When started the dl_server will (per dl_defer) schedule a timer for its
394  * zero-laxity point -- that is, unlike regular EDF tasks which run ASAP, a
395  * server will run at the very end of its period.
396  *
397  * This is done such that any runtime from the target class can be accounted
398  * against the server -- through dl_server_update() above -- such that when it
399  * becomes time to run, it might already be out of runtime and get deferred
400  * until the next period. In this case dl_server_timer() will alternate
401  * between defer and replenish but never actually enqueue the server.
402  *
403  * Only when the target class does not manage to exhaust the server's runtime
404  * (there's actualy starvation in the given period), will the dl_server get on
405  * the runqueue. Once queued it will pick tasks from the target class and run
406  * them until either its runtime is exhaused, at which point its back to
407  * dl_server_timer, or until there are no more tasks to run, at which point
408  * the dl_server stops itself.
409  *
410  * By stopping at this point the dl_server retains bandwidth, which, if a new
411  * task wakes up imminently (starting the server again), can be used --
412  * subject to CBS wakeup rules -- without having to wait for the next period.
413  *
414  * Additionally, because of the dl_defer behaviour the start/stop behaviour is
415  * naturally thottled to once per period, avoiding high context switch
416  * workloads from spamming the hrtimer program/cancel paths.
417  */
418 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
419 extern void dl_server_start(struct sched_dl_entity *dl_se);
420 extern void dl_server_stop(struct sched_dl_entity *dl_se);
421 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
422 		    dl_server_pick_f pick_task);
423 
424 extern void dl_server_update_idle_time(struct rq *rq,
425 		    struct task_struct *p);
426 extern void fair_server_init(struct rq *rq);
427 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq);
428 extern int dl_server_apply_params(struct sched_dl_entity *dl_se,
429 		    u64 runtime, u64 period, bool init);
430 
dl_server_active(struct sched_dl_entity * dl_se)431 static inline bool dl_server_active(struct sched_dl_entity *dl_se)
432 {
433 	return dl_se->dl_server_active;
434 }
435 
436 #ifdef CONFIG_CGROUP_SCHED
437 
438 extern struct list_head task_groups;
439 
440 struct cfs_bandwidth {
441 #ifdef CONFIG_CFS_BANDWIDTH
442 	raw_spinlock_t		lock;
443 	ktime_t			period;
444 	u64			quota;
445 	u64			runtime;
446 	u64			burst;
447 	u64			runtime_snap;
448 	s64			hierarchical_quota;
449 
450 	u8			idle;
451 	u8			period_active;
452 	u8			slack_started;
453 	struct hrtimer		period_timer;
454 	struct hrtimer		slack_timer;
455 	struct list_head	throttled_cfs_rq;
456 
457 	/* Statistics: */
458 	int			nr_periods;
459 	int			nr_throttled;
460 	int			nr_burst;
461 	u64			throttled_time;
462 	u64			burst_time;
463 #endif
464 };
465 
466 /* Task group related information */
467 struct task_group {
468 	struct cgroup_subsys_state css;
469 
470 #ifdef CONFIG_GROUP_SCHED_WEIGHT
471 	/* A positive value indicates that this is a SCHED_IDLE group. */
472 	int			idle;
473 #endif
474 
475 #ifdef CONFIG_FAIR_GROUP_SCHED
476 	/* schedulable entities of this group on each CPU */
477 	struct sched_entity	**se;
478 	/* runqueue "owned" by this group on each CPU */
479 	struct cfs_rq		**cfs_rq;
480 	unsigned long		shares;
481 #ifdef	CONFIG_SMP
482 	/*
483 	 * load_avg can be heavily contended at clock tick time, so put
484 	 * it in its own cache-line separated from the fields above which
485 	 * will also be accessed at each tick.
486 	 */
487 	atomic_long_t		load_avg ____cacheline_aligned;
488 #endif
489 #endif
490 
491 #ifdef CONFIG_RT_GROUP_SCHED
492 	struct sched_rt_entity	**rt_se;
493 	struct rt_rq		**rt_rq;
494 
495 	struct rt_bandwidth	rt_bandwidth;
496 #endif
497 
498 #ifdef CONFIG_EXT_GROUP_SCHED
499 	u32			scx_flags;	/* SCX_TG_* */
500 	u32			scx_weight;
501 #endif
502 
503 	struct rcu_head		rcu;
504 	struct list_head	list;
505 
506 	struct task_group	*parent;
507 	struct list_head	siblings;
508 	struct list_head	children;
509 
510 #ifdef CONFIG_SCHED_AUTOGROUP
511 	struct autogroup	*autogroup;
512 #endif
513 
514 	struct cfs_bandwidth	cfs_bandwidth;
515 
516 #ifdef CONFIG_UCLAMP_TASK_GROUP
517 	/* The two decimal precision [%] value requested from user-space */
518 	unsigned int		uclamp_pct[UCLAMP_CNT];
519 	/* Clamp values requested for a task group */
520 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
521 	/* Effective clamp values used for a task group */
522 	struct uclamp_se	uclamp[UCLAMP_CNT];
523 	/* Latency-sensitive flag used for a task group */
524 	unsigned int		latency_sensitive;
525 
526 	ANDROID_VENDOR_DATA_ARRAY(1, 4);
527 #endif
528 
529 	ANDROID_KABI_RESERVE(1);
530 	ANDROID_KABI_RESERVE(2);
531 	ANDROID_KABI_RESERVE(3);
532 	ANDROID_KABI_RESERVE(4);
533 };
534 
535 #ifdef CONFIG_GROUP_SCHED_WEIGHT
536 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
537 
538 /*
539  * A weight of 0 or 1 can cause arithmetics problems.
540  * A weight of a cfs_rq is the sum of weights of which entities
541  * are queued on this cfs_rq, so a weight of a entity should not be
542  * too large, so as the shares value of a task group.
543  * (The default weight is 1024 - so there's no practical
544  *  limitation from this.)
545  */
546 #define MIN_SHARES		(1UL <<  1)
547 #define MAX_SHARES		(1UL << 18)
548 #endif
549 
550 typedef int (*tg_visitor)(struct task_group *, void *);
551 
552 extern int walk_tg_tree_from(struct task_group *from,
553 			     tg_visitor down, tg_visitor up, void *data);
554 
555 /*
556  * Iterate the full tree, calling @down when first entering a node and @up when
557  * leaving it for the final time.
558  *
559  * Caller must hold rcu_lock or sufficient equivalent.
560  */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)561 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
562 {
563 	return walk_tg_tree_from(&root_task_group, down, up, data);
564 }
565 
css_tg(struct cgroup_subsys_state * css)566 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
567 {
568 	return css ? container_of(css, struct task_group, css) : NULL;
569 }
570 
571 extern int tg_nop(struct task_group *tg, void *data);
572 
573 #ifdef CONFIG_FAIR_GROUP_SCHED
574 extern void free_fair_sched_group(struct task_group *tg);
575 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
576 extern void online_fair_sched_group(struct task_group *tg);
577 extern void unregister_fair_sched_group(struct task_group *tg);
578 #else
free_fair_sched_group(struct task_group * tg)579 static inline void free_fair_sched_group(struct task_group *tg) { }
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)580 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
581 {
582        return 1;
583 }
online_fair_sched_group(struct task_group * tg)584 static inline void online_fair_sched_group(struct task_group *tg) { }
unregister_fair_sched_group(struct task_group * tg)585 static inline void unregister_fair_sched_group(struct task_group *tg) { }
586 #endif
587 
588 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
589 			struct sched_entity *se, int cpu,
590 			struct sched_entity *parent);
591 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
592 
593 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
594 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
595 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
596 extern bool cfs_task_bw_constrained(struct task_struct *p);
597 
598 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
599 		struct sched_rt_entity *rt_se, int cpu,
600 		struct sched_rt_entity *parent);
601 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
602 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
603 extern long sched_group_rt_runtime(struct task_group *tg);
604 extern long sched_group_rt_period(struct task_group *tg);
605 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
606 
607 extern struct task_group *sched_create_group(struct task_group *parent);
608 extern void sched_online_group(struct task_group *tg,
609 			       struct task_group *parent);
610 extern void sched_destroy_group(struct task_group *tg);
611 extern void sched_release_group(struct task_group *tg);
612 
613 extern void sched_move_task(struct task_struct *tsk, bool for_autogroup);
614 
615 #ifdef CONFIG_FAIR_GROUP_SCHED
616 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
617 
618 extern int sched_group_set_idle(struct task_group *tg, long idle);
619 
620 #ifdef CONFIG_SMP
621 extern void set_task_rq_fair(struct sched_entity *se,
622 			     struct cfs_rq *prev, struct cfs_rq *next);
623 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)624 static inline void set_task_rq_fair(struct sched_entity *se,
625 			     struct cfs_rq *prev, struct cfs_rq *next) { }
626 #endif /* CONFIG_SMP */
627 #else /* !CONFIG_FAIR_GROUP_SCHED */
sched_group_set_shares(struct task_group * tg,unsigned long shares)628 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; }
sched_group_set_idle(struct task_group * tg,long idle)629 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; }
630 #endif /* CONFIG_FAIR_GROUP_SCHED */
631 
632 #else /* CONFIG_CGROUP_SCHED */
633 
634 struct cfs_bandwidth { };
635 
cfs_task_bw_constrained(struct task_struct * p)636 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
637 
638 #endif	/* CONFIG_CGROUP_SCHED */
639 
640 extern void unregister_rt_sched_group(struct task_group *tg);
641 extern void free_rt_sched_group(struct task_group *tg);
642 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
643 
644 /*
645  * u64_u32_load/u64_u32_store
646  *
647  * Use a copy of a u64 value to protect against data race. This is only
648  * applicable for 32-bits architectures.
649  */
650 #ifdef CONFIG_64BIT
651 # define u64_u32_load_copy(var, copy)		var
652 # define u64_u32_store_copy(var, copy, val)	(var = val)
653 #else
654 # define u64_u32_load_copy(var, copy)					\
655 ({									\
656 	u64 __val, __val_copy;						\
657 	do {								\
658 		__val_copy = copy;					\
659 		/*							\
660 		 * paired with u64_u32_store_copy(), ordering access	\
661 		 * to var and copy.					\
662 		 */							\
663 		smp_rmb();						\
664 		__val = var;						\
665 	} while (__val != __val_copy);					\
666 	__val;								\
667 })
668 # define u64_u32_store_copy(var, copy, val)				\
669 do {									\
670 	typeof(val) __val = (val);					\
671 	var = __val;							\
672 	/*								\
673 	 * paired with u64_u32_load_copy(), ordering access to var and	\
674 	 * copy.							\
675 	 */								\
676 	smp_wmb();							\
677 	copy = __val;							\
678 } while (0)
679 #endif
680 # define u64_u32_load(var)		u64_u32_load_copy(var, var##_copy)
681 # define u64_u32_store(var, val)	u64_u32_store_copy(var, var##_copy, val)
682 
683 struct balance_callback {
684 	struct balance_callback *next;
685 	void (*func)(struct rq *rq);
686 };
687 
688 /* CFS-related fields in a runqueue */
689 struct cfs_rq {
690 	struct load_weight	load;
691 	unsigned int		nr_running;
692 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
693 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
694 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
695 	unsigned int		h_nr_delayed;
696 
697 	s64			avg_vruntime;
698 	u64			avg_load;
699 
700 	u64			min_vruntime;
701 #ifdef CONFIG_SCHED_CORE
702 	unsigned int		forceidle_seq;
703 	u64			min_vruntime_fi;
704 #endif
705 
706 	struct rb_root_cached	tasks_timeline;
707 
708 	/*
709 	 * 'curr' points to currently running entity on this cfs_rq.
710 	 * It is set to NULL otherwise (i.e when none are currently running).
711 	 */
712 	struct sched_entity	*curr;
713 	struct sched_entity	*next;
714 
715 #ifdef CONFIG_SMP
716 	/*
717 	 * CFS load tracking
718 	 */
719 	struct sched_avg	avg;
720 #ifndef CONFIG_64BIT
721 	u64			last_update_time_copy;
722 #endif
723 	struct {
724 		raw_spinlock_t	lock ____cacheline_aligned;
725 		int		nr;
726 		unsigned long	load_avg;
727 		unsigned long	util_avg;
728 		unsigned long	runnable_avg;
729 	} removed;
730 
731 #ifdef CONFIG_FAIR_GROUP_SCHED
732 	u64			last_update_tg_load_avg;
733 	unsigned long		tg_load_avg_contrib;
734 	long			propagate;
735 	long			prop_runnable_sum;
736 
737 	/*
738 	 *   h_load = weight * f(tg)
739 	 *
740 	 * Where f(tg) is the recursive weight fraction assigned to
741 	 * this group.
742 	 */
743 	unsigned long		h_load;
744 	u64			last_h_load_update;
745 	struct sched_entity	*h_load_next;
746 #endif /* CONFIG_FAIR_GROUP_SCHED */
747 #endif /* CONFIG_SMP */
748 
749 #ifdef CONFIG_FAIR_GROUP_SCHED
750 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
751 
752 	/*
753 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
754 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
755 	 * (like users, containers etc.)
756 	 *
757 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
758 	 * This list is used during load balance.
759 	 */
760 	int			on_list;
761 	struct list_head	leaf_cfs_rq_list;
762 	struct task_group	*tg;	/* group that "owns" this runqueue */
763 
764 	/* Locally cached copy of our task_group's idle value */
765 	int			idle;
766 
767 #ifdef CONFIG_CFS_BANDWIDTH
768 	int			runtime_enabled;
769 	s64			runtime_remaining;
770 
771 	u64			throttled_pelt_idle;
772 #ifndef CONFIG_64BIT
773 	u64                     throttled_pelt_idle_copy;
774 #endif
775 	u64			throttled_clock;
776 	u64			throttled_clock_pelt;
777 	u64			throttled_clock_pelt_time;
778 	u64			throttled_clock_self;
779 	u64			throttled_clock_self_time;
780 	int			throttled;
781 	int			throttle_count;
782 	struct list_head	throttled_list;
783 	struct list_head	throttled_csd_list;
784 #endif /* CONFIG_CFS_BANDWIDTH */
785 #endif /* CONFIG_FAIR_GROUP_SCHED */
786 };
787 
788 #ifdef CONFIG_SCHED_CLASS_EXT
789 /* scx_rq->flags, protected by the rq lock */
790 enum scx_rq_flags {
791 	/*
792 	 * A hotplugged CPU starts scheduling before rq_online_scx(). Track
793 	 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called
794 	 * only while the BPF scheduler considers the CPU to be online.
795 	 */
796 	SCX_RQ_ONLINE		= 1 << 0,
797 	SCX_RQ_CAN_STOP_TICK	= 1 << 1,
798 	SCX_RQ_BAL_PENDING	= 1 << 2, /* balance hasn't run yet */
799 	SCX_RQ_BAL_KEEP		= 1 << 3, /* balance decided to keep current */
800 	SCX_RQ_BYPASSING	= 1 << 4,
801 
802 	SCX_RQ_IN_WAKEUP	= 1 << 16,
803 	SCX_RQ_IN_BALANCE	= 1 << 17,
804 };
805 
806 struct scx_rq {
807 	struct scx_dispatch_q	local_dsq;
808 	struct list_head	runnable_list;		/* runnable tasks on this rq */
809 	struct list_head	ddsp_deferred_locals;	/* deferred ddsps from enq */
810 	unsigned long		ops_qseq;
811 	u64			extra_enq_flags;	/* see move_task_to_local_dsq() */
812 	u32			nr_running;
813 	u32			flags;
814 	u32			cpuperf_target;		/* [0, SCHED_CAPACITY_SCALE] */
815 	bool			cpu_released;
816 	cpumask_var_t		cpus_to_kick;
817 	cpumask_var_t		cpus_to_kick_if_idle;
818 	cpumask_var_t		cpus_to_preempt;
819 	cpumask_var_t		cpus_to_wait;
820 	unsigned long		pnt_seq;
821 	struct balance_callback	deferred_bal_cb;
822 	struct irq_work		deferred_irq_work;
823 	struct irq_work		kick_cpus_irq_work;
824 };
825 #endif /* CONFIG_SCHED_CLASS_EXT */
826 
rt_bandwidth_enabled(void)827 static inline int rt_bandwidth_enabled(void)
828 {
829 	return sysctl_sched_rt_runtime >= 0;
830 }
831 
832 /* RT IPI pull logic requires IRQ_WORK */
833 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
834 # define HAVE_RT_PUSH_IPI
835 #endif
836 
837 /* Real-Time classes' related field in a runqueue: */
838 struct rt_rq {
839 	struct rt_prio_array	active;
840 	unsigned int		rt_nr_running;
841 	unsigned int		rr_nr_running;
842 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
843 	struct {
844 		int		curr; /* highest queued rt task prio */
845 #ifdef CONFIG_SMP
846 		int		next; /* next highest */
847 #endif
848 	} highest_prio;
849 #endif
850 #ifdef CONFIG_SMP
851 	bool			overloaded;
852 	struct plist_head	pushable_tasks;
853 
854 #endif /* CONFIG_SMP */
855 	int			rt_queued;
856 
857 #ifdef CONFIG_RT_GROUP_SCHED
858 	int			rt_throttled;
859 	u64			rt_time;
860 	u64			rt_runtime;
861 	/* Nests inside the rq lock: */
862 	raw_spinlock_t		rt_runtime_lock;
863 
864 	unsigned int		rt_nr_boosted;
865 
866 	struct rq		*rq;
867 	struct task_group	*tg;
868 #endif
869 };
870 
rt_rq_is_runnable(struct rt_rq * rt_rq)871 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
872 {
873 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
874 }
875 
876 /* Deadline class' related fields in a runqueue */
877 struct dl_rq {
878 	/* runqueue is an rbtree, ordered by deadline */
879 	struct rb_root_cached	root;
880 
881 	unsigned int		dl_nr_running;
882 
883 #ifdef CONFIG_SMP
884 	/*
885 	 * Deadline values of the currently executing and the
886 	 * earliest ready task on this rq. Caching these facilitates
887 	 * the decision whether or not a ready but not running task
888 	 * should migrate somewhere else.
889 	 */
890 	struct {
891 		u64		curr;
892 		u64		next;
893 	} earliest_dl;
894 
895 	bool			overloaded;
896 
897 	/*
898 	 * Tasks on this rq that can be pushed away. They are kept in
899 	 * an rb-tree, ordered by tasks' deadlines, with caching
900 	 * of the leftmost (earliest deadline) element.
901 	 */
902 	struct rb_root_cached	pushable_dl_tasks_root;
903 #else
904 	struct dl_bw		dl_bw;
905 #endif
906 	/*
907 	 * "Active utilization" for this runqueue: increased when a
908 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
909 	 * task blocks
910 	 */
911 	u64			running_bw;
912 
913 	/*
914 	 * Utilization of the tasks "assigned" to this runqueue (including
915 	 * the tasks that are in runqueue and the tasks that executed on this
916 	 * CPU and blocked). Increased when a task moves to this runqueue, and
917 	 * decreased when the task moves away (migrates, changes scheduling
918 	 * policy, or terminates).
919 	 * This is needed to compute the "inactive utilization" for the
920 	 * runqueue (inactive utilization = this_bw - running_bw).
921 	 */
922 	u64			this_bw;
923 	u64			extra_bw;
924 
925 	/*
926 	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
927 	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
928 	 */
929 	u64			max_bw;
930 
931 	/*
932 	 * Inverse of the fraction of CPU utilization that can be reclaimed
933 	 * by the GRUB algorithm.
934 	 */
935 	u64			bw_ratio;
936 };
937 
938 #ifdef CONFIG_FAIR_GROUP_SCHED
939 
940 /* An entity is a task if it doesn't "own" a runqueue */
941 #define entity_is_task(se)	(!se->my_q)
942 
se_update_runnable(struct sched_entity * se)943 static inline void se_update_runnable(struct sched_entity *se)
944 {
945 	if (!entity_is_task(se)) {
946 		struct cfs_rq *cfs_rq = se->my_q;
947 
948 		se->runnable_weight = cfs_rq->h_nr_running - cfs_rq->h_nr_delayed;
949 	}
950 }
951 
se_runnable(struct sched_entity * se)952 static inline long se_runnable(struct sched_entity *se)
953 {
954 	if (se->sched_delayed)
955 		return false;
956 
957 	if (entity_is_task(se))
958 		return !!se->on_rq;
959 	else
960 		return se->runnable_weight;
961 }
962 
963 #else /* !CONFIG_FAIR_GROUP_SCHED: */
964 
965 #define entity_is_task(se)	1
966 
se_update_runnable(struct sched_entity * se)967 static inline void se_update_runnable(struct sched_entity *se) { }
968 
se_runnable(struct sched_entity * se)969 static inline long se_runnable(struct sched_entity *se)
970 {
971 	if (se->sched_delayed)
972 		return false;
973 
974 	return !!se->on_rq;
975 }
976 
977 #endif /* !CONFIG_FAIR_GROUP_SCHED */
978 
979 #ifdef CONFIG_SMP
980 /*
981  * XXX we want to get rid of these helpers and use the full load resolution.
982  */
se_weight(struct sched_entity * se)983 static inline long se_weight(struct sched_entity *se)
984 {
985 	return scale_load_down(se->load.weight);
986 }
987 
988 
sched_asym_prefer(int a,int b)989 static inline bool sched_asym_prefer(int a, int b)
990 {
991 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
992 }
993 
994 struct perf_domain {
995 	struct em_perf_domain *em_pd;
996 	struct perf_domain *next;
997 	struct rcu_head rcu;
998 };
999 
1000 /*
1001  * We add the notion of a root-domain which will be used to define per-domain
1002  * variables. Each exclusive cpuset essentially defines an island domain by
1003  * fully partitioning the member CPUs from any other cpuset. Whenever a new
1004  * exclusive cpuset is created, we also create and attach a new root-domain
1005  * object.
1006  *
1007  */
1008 struct root_domain {
1009 	atomic_t		refcount;
1010 	atomic_t		rto_count;
1011 	struct rcu_head		rcu;
1012 	cpumask_var_t		span;
1013 	cpumask_var_t		online;
1014 
1015 	/*
1016 	 * Indicate pullable load on at least one CPU, e.g:
1017 	 * - More than one runnable task
1018 	 * - Running task is misfit
1019 	 */
1020 	bool			overloaded;
1021 
1022 	/* Indicate one or more CPUs over-utilized (tipping point) */
1023 	bool			overutilized;
1024 
1025 	/*
1026 	 * The bit corresponding to a CPU gets set here if such CPU has more
1027 	 * than one runnable -deadline task (as it is below for RT tasks).
1028 	 */
1029 	cpumask_var_t		dlo_mask;
1030 	atomic_t		dlo_count;
1031 	struct dl_bw		dl_bw;
1032 	struct cpudl		cpudl;
1033 
1034 	/*
1035 	 * Indicate whether a root_domain's dl_bw has been checked or
1036 	 * updated. It's monotonously increasing value.
1037 	 *
1038 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
1039 	 * that u64 is 'big enough'. So that shouldn't be a concern.
1040 	 */
1041 	u64 visit_gen;
1042 
1043 #ifdef HAVE_RT_PUSH_IPI
1044 	/*
1045 	 * For IPI pull requests, loop across the rto_mask.
1046 	 */
1047 	struct irq_work		rto_push_work;
1048 	raw_spinlock_t		rto_lock;
1049 	/* These are only updated and read within rto_lock */
1050 	int			rto_loop;
1051 	int			rto_cpu;
1052 	/* These atomics are updated outside of a lock */
1053 	atomic_t		rto_loop_next;
1054 	atomic_t		rto_loop_start;
1055 #endif
1056 	/*
1057 	 * The "RT overload" flag: it gets set if a CPU has more than
1058 	 * one runnable RT task.
1059 	 */
1060 	cpumask_var_t		rto_mask;
1061 	struct cpupri		cpupri;
1062 
1063 	/*
1064 	 * NULL-terminated list of performance domains intersecting with the
1065 	 * CPUs of the rd. Protected by RCU.
1066 	 */
1067 	struct perf_domain __rcu *pd;
1068 
1069 	ANDROID_VENDOR_DATA(1);
1070 
1071 	ANDROID_KABI_RESERVE(1);
1072 	ANDROID_KABI_RESERVE(2);
1073 	ANDROID_KABI_RESERVE(3);
1074 	ANDROID_KABI_RESERVE(4);
1075 };
1076 
1077 extern void init_defrootdomain(void);
1078 extern int sched_init_domains(const struct cpumask *cpu_map);
1079 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
1080 extern void sched_get_rd(struct root_domain *rd);
1081 extern void sched_put_rd(struct root_domain *rd);
1082 
get_rd_overloaded(struct root_domain * rd)1083 static inline int get_rd_overloaded(struct root_domain *rd)
1084 {
1085 	return READ_ONCE(rd->overloaded);
1086 }
1087 
set_rd_overloaded(struct root_domain * rd,int status)1088 static inline void set_rd_overloaded(struct root_domain *rd, int status)
1089 {
1090 	if (get_rd_overloaded(rd) != status)
1091 		WRITE_ONCE(rd->overloaded, status);
1092 }
1093 
1094 #ifdef HAVE_RT_PUSH_IPI
1095 extern void rto_push_irq_work_func(struct irq_work *work);
1096 #endif
1097 extern struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu);
1098 #endif /* CONFIG_SMP */
1099 
1100 #ifdef CONFIG_UCLAMP_TASK
1101 /*
1102  * struct uclamp_bucket - Utilization clamp bucket
1103  * @value: utilization clamp value for tasks on this clamp bucket
1104  * @tasks: number of RUNNABLE tasks on this clamp bucket
1105  *
1106  * Keep track of how many tasks are RUNNABLE for a given utilization
1107  * clamp value.
1108  */
1109 struct uclamp_bucket {
1110 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
1111 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
1112 };
1113 
1114 /*
1115  * struct uclamp_rq - rq's utilization clamp
1116  * @value: currently active clamp values for a rq
1117  * @bucket: utilization clamp buckets affecting a rq
1118  *
1119  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
1120  * A clamp value is affecting a rq when there is at least one task RUNNABLE
1121  * (or actually running) with that value.
1122  *
1123  * There are up to UCLAMP_CNT possible different clamp values, currently there
1124  * are only two: minimum utilization and maximum utilization.
1125  *
1126  * All utilization clamping values are MAX aggregated, since:
1127  * - for util_min: we want to run the CPU at least at the max of the minimum
1128  *   utilization required by its currently RUNNABLE tasks.
1129  * - for util_max: we want to allow the CPU to run up to the max of the
1130  *   maximum utilization allowed by its currently RUNNABLE tasks.
1131  *
1132  * Since on each system we expect only a limited number of different
1133  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
1134  * the metrics required to compute all the per-rq utilization clamp values.
1135  */
1136 struct uclamp_rq {
1137 	unsigned int value;
1138 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
1139 };
1140 
1141 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
1142 #endif /* CONFIG_UCLAMP_TASK */
1143 
1144 typedef enum misfit_reason {
1145 	MISFIT_PERF,		/* Requires moving to a more performant CPU */
1146 } misfit_reason_t;
1147 
1148 /*
1149  * This is the main, per-CPU runqueue data structure.
1150  *
1151  * Locking rule: those places that want to lock multiple runqueues
1152  * (such as the load balancing or the thread migration code), lock
1153  * acquire operations must be ordered by ascending &runqueue.
1154  */
1155 struct rq {
1156 	/* runqueue lock: */
1157 	raw_spinlock_t		__lock;
1158 
1159 	unsigned int		nr_running;
1160 #ifdef CONFIG_NUMA_BALANCING
1161 	unsigned int		nr_numa_running;
1162 	unsigned int		nr_preferred_running;
1163 	unsigned int		numa_migrate_on;
1164 #endif
1165 #ifdef CONFIG_NO_HZ_COMMON
1166 #ifdef CONFIG_SMP
1167 	unsigned long		last_blocked_load_update_tick;
1168 	unsigned int		has_blocked_load;
1169 	call_single_data_t	nohz_csd;
1170 #endif /* CONFIG_SMP */
1171 	unsigned int		nohz_tick_stopped;
1172 	atomic_t		nohz_flags;
1173 #endif /* CONFIG_NO_HZ_COMMON */
1174 
1175 #ifdef CONFIG_SMP
1176 	unsigned int		ttwu_pending;
1177 #endif
1178 	u64			nr_switches;
1179 
1180 #ifdef CONFIG_UCLAMP_TASK
1181 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
1182 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
1183 	unsigned int		uclamp_flags;
1184 #define UCLAMP_FLAG_IDLE 0x01
1185 #endif
1186 
1187 	struct cfs_rq		cfs;
1188 	struct rt_rq		rt;
1189 	struct dl_rq		dl;
1190 #ifdef CONFIG_SCHED_CLASS_EXT
1191 	struct scx_rq		scx;
1192 #endif
1193 
1194 	struct sched_dl_entity	fair_server;
1195 
1196 #ifdef CONFIG_FAIR_GROUP_SCHED
1197 	/* list of leaf cfs_rq on this CPU: */
1198 	struct list_head	leaf_cfs_rq_list;
1199 	struct list_head	*tmp_alone_branch;
1200 #endif /* CONFIG_FAIR_GROUP_SCHED */
1201 
1202 	/*
1203 	 * This is part of a global counter where only the total sum
1204 	 * over all CPUs matters. A task can increase this counter on
1205 	 * one CPU and if it got migrated afterwards it may decrease
1206 	 * it on another CPU. Always updated under the runqueue lock:
1207 	 */
1208 	unsigned int		nr_uninterruptible;
1209 
1210 #ifdef CONFIG_SCHED_PROXY_EXEC
1211 	struct task_struct __rcu	*donor;  /* Scheduling context */
1212 	struct task_struct __rcu	*curr;   /* Execution context */
1213 #else
1214 	union {
1215 		struct task_struct __rcu *donor; /* Scheduler context */
1216 		struct task_struct __rcu *curr;  /* Execution context */
1217 	};
1218 #endif
1219 	struct sched_dl_entity	*dl_server;
1220 	struct task_struct	*idle;
1221 	struct task_struct	*stop;
1222 	unsigned long		next_balance;
1223 	struct mm_struct	*prev_mm;
1224 
1225 	unsigned int		clock_update_flags;
1226 	u64			clock;
1227 	/* Ensure that all clocks are in the same cache line */
1228 	u64			clock_task ____cacheline_aligned;
1229 	u64			clock_task_mult;
1230 	u64			clock_pelt;
1231 	unsigned long		lost_idle_time;
1232 	u64			clock_pelt_idle;
1233 	u64			clock_idle;
1234 #ifndef CONFIG_64BIT
1235 	u64			clock_pelt_idle_copy;
1236 	u64			clock_idle_copy;
1237 #endif
1238 
1239 	atomic_t		nr_iowait;
1240 
1241 #ifdef CONFIG_SCHED_DEBUG
1242 	u64 last_seen_need_resched_ns;
1243 	int ticks_without_resched;
1244 #endif
1245 
1246 #ifdef CONFIG_MEMBARRIER
1247 	int membarrier_state;
1248 #endif
1249 
1250 #ifdef CONFIG_SMP
1251 	struct root_domain		*rd;
1252 	struct sched_domain __rcu	*sd;
1253 
1254 	unsigned long		cpu_capacity;
1255 
1256 	struct balance_callback *balance_callback;
1257 
1258 	unsigned char		nohz_idle_balance;
1259 	unsigned char		idle_balance;
1260 
1261 	unsigned long		misfit_task_load;
1262 
1263 	/* For active balancing */
1264 	int			active_balance;
1265 	int			push_cpu;
1266 	struct cpu_stop_work	active_balance_work;
1267 
1268 	/* CPU of this runqueue: */
1269 	int			cpu;
1270 	int			online;
1271 
1272 	struct list_head cfs_tasks;
1273 
1274 	struct sched_avg	avg_rt;
1275 	struct sched_avg	avg_dl;
1276 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1277 	struct sched_avg	avg_irq;
1278 #endif
1279 #ifdef CONFIG_SCHED_HW_PRESSURE
1280 	struct sched_avg	avg_hw;
1281 #endif
1282 	u64			idle_stamp;
1283 	u64			avg_idle;
1284 
1285 	/* This is used to determine avg_idle's max value */
1286 	u64			max_idle_balance_cost;
1287 
1288 #ifdef CONFIG_HOTPLUG_CPU
1289 	struct rcuwait		hotplug_wait;
1290 #endif
1291 #endif /* CONFIG_SMP */
1292 
1293 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1294 	u64			prev_irq_time;
1295 	u64			psi_irq_time;
1296 #endif
1297 #ifdef CONFIG_PARAVIRT
1298 	u64			prev_steal_time;
1299 #endif
1300 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1301 	u64			prev_steal_time_rq;
1302 #endif
1303 
1304 	/* calc_load related fields */
1305 	unsigned long		calc_load_update;
1306 	long			calc_load_active;
1307 
1308 #ifdef CONFIG_SCHED_HRTICK
1309 #ifdef CONFIG_SMP
1310 	call_single_data_t	hrtick_csd;
1311 #endif
1312 	struct hrtimer		hrtick_timer;
1313 	ktime_t			hrtick_time;
1314 #endif
1315 
1316 #ifdef CONFIG_SCHEDSTATS
1317 	/* latency stats */
1318 	struct sched_info	rq_sched_info;
1319 	unsigned long long	rq_cpu_time;
1320 
1321 	/* sys_sched_yield() stats */
1322 	unsigned int		yld_count;
1323 
1324 	/* schedule() stats */
1325 	unsigned int		sched_count;
1326 	unsigned int		sched_goidle;
1327 
1328 	/* try_to_wake_up() stats */
1329 	unsigned int		ttwu_count;
1330 	unsigned int		ttwu_local;
1331 #endif
1332 
1333 #ifdef CONFIG_CPU_IDLE
1334 	/* Must be inspected within a RCU lock section */
1335 	struct cpuidle_state	*idle_state;
1336 #endif
1337 
1338 #ifdef CONFIG_SMP
1339 	unsigned int		nr_pinned;
1340 #endif
1341 	unsigned int		push_busy;
1342 	struct cpu_stop_work	push_work;
1343 
1344 #ifdef CONFIG_SCHED_CORE
1345 	/* per rq */
1346 	struct rq		*core;
1347 	struct task_struct	*core_pick;
1348 	struct sched_dl_entity	*core_dl_server;
1349 	unsigned int		core_enabled;
1350 	unsigned int		core_sched_seq;
1351 	struct rb_root		core_tree;
1352 
1353 	/* shared state -- careful with sched_core_cpu_deactivate() */
1354 	unsigned int		core_task_seq;
1355 	unsigned int		core_pick_seq;
1356 	unsigned long		core_cookie;
1357 	unsigned int		core_forceidle_count;
1358 	unsigned int		core_forceidle_seq;
1359 	unsigned int		core_forceidle_occupation;
1360 	u64			core_forceidle_start;
1361 #endif
1362 
1363 	/* Scratch cpumask to be temporarily used under rq_lock */
1364 	cpumask_var_t		scratch_mask;
1365 
1366 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1367 	call_single_data_t	cfsb_csd;
1368 	struct list_head	cfsb_csd_list;
1369 #endif
1370 
1371 #ifdef CONFIG_SMP
1372 	misfit_reason_t		misfit_reason;
1373 #endif
1374 
1375 	ANDROID_KABI_RESERVE(1);
1376 	ANDROID_KABI_RESERVE(2);
1377 	ANDROID_KABI_RESERVE(3);
1378 	ANDROID_KABI_RESERVE(4);
1379 	ANDROID_OEM_DATA_ARRAY(1, 16);
1380 };
1381 
1382 #ifdef CONFIG_FAIR_GROUP_SCHED
1383 
1384 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1385 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1386 {
1387 	return cfs_rq->rq;
1388 }
1389 
1390 #else
1391 
rq_of(struct cfs_rq * cfs_rq)1392 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1393 {
1394 	return container_of(cfs_rq, struct rq, cfs);
1395 }
1396 #endif
1397 
cpu_of(struct rq * rq)1398 static inline int cpu_of(struct rq *rq)
1399 {
1400 #ifdef CONFIG_SMP
1401 	return rq->cpu;
1402 #else
1403 	return 0;
1404 #endif
1405 }
1406 
1407 #define MDF_PUSH		0x01
1408 
is_migration_disabled(struct task_struct * p)1409 static inline bool is_migration_disabled(struct task_struct *p)
1410 {
1411 #ifdef CONFIG_SMP
1412 	return p->migration_disabled;
1413 #else
1414 	return false;
1415 #endif
1416 }
1417 
1418 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1419 
1420 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1421 #define this_rq()		this_cpu_ptr(&runqueues)
1422 #define task_rq(p)		cpu_rq(task_cpu(p))
1423 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1424 #define raw_rq()		raw_cpu_ptr(&runqueues)
1425 
1426 #ifdef CONFIG_SCHED_PROXY_EXEC
rq_set_donor(struct rq * rq,struct task_struct * t)1427 static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
1428 {
1429 	rcu_assign_pointer(rq->donor, t);
1430 }
1431 #else
rq_set_donor(struct rq * rq,struct task_struct * t)1432 static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
1433 {
1434 	/* Do nothing */
1435 }
1436 #endif
1437 
1438 #ifdef CONFIG_SCHED_CORE
1439 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1440 
1441 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1442 
sched_core_enabled(struct rq * rq)1443 static inline bool sched_core_enabled(struct rq *rq)
1444 {
1445 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1446 }
1447 
sched_core_disabled(void)1448 static inline bool sched_core_disabled(void)
1449 {
1450 	return !static_branch_unlikely(&__sched_core_enabled);
1451 }
1452 
1453 /*
1454  * Be careful with this function; not for general use. The return value isn't
1455  * stable unless you actually hold a relevant rq->__lock.
1456  */
rq_lockp(struct rq * rq)1457 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1458 {
1459 	if (sched_core_enabled(rq))
1460 		return &rq->core->__lock;
1461 
1462 	return &rq->__lock;
1463 }
1464 
__rq_lockp(struct rq * rq)1465 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1466 {
1467 	if (rq->core_enabled)
1468 		return &rq->core->__lock;
1469 
1470 	return &rq->__lock;
1471 }
1472 
1473 extern bool
1474 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi);
1475 
1476 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1477 
1478 /*
1479  * Helpers to check if the CPU's core cookie matches with the task's cookie
1480  * when core scheduling is enabled.
1481  * A special case is that the task's cookie always matches with CPU's core
1482  * cookie if the CPU is in an idle core.
1483  */
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1484 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1485 {
1486 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1487 	if (!sched_core_enabled(rq))
1488 		return true;
1489 
1490 	return rq->core->core_cookie == p->core_cookie;
1491 }
1492 
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1493 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1494 {
1495 	bool idle_core = true;
1496 	int cpu;
1497 
1498 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1499 	if (!sched_core_enabled(rq))
1500 		return true;
1501 
1502 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1503 		if (!available_idle_cpu(cpu)) {
1504 			idle_core = false;
1505 			break;
1506 		}
1507 	}
1508 
1509 	/*
1510 	 * A CPU in an idle core is always the best choice for tasks with
1511 	 * cookies.
1512 	 */
1513 	return idle_core || rq->core->core_cookie == p->core_cookie;
1514 }
1515 
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1516 static inline bool sched_group_cookie_match(struct rq *rq,
1517 					    struct task_struct *p,
1518 					    struct sched_group *group)
1519 {
1520 	int cpu;
1521 
1522 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1523 	if (!sched_core_enabled(rq))
1524 		return true;
1525 
1526 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1527 		if (sched_core_cookie_match(cpu_rq(cpu), p))
1528 			return true;
1529 	}
1530 	return false;
1531 }
1532 
sched_core_enqueued(struct task_struct * p)1533 static inline bool sched_core_enqueued(struct task_struct *p)
1534 {
1535 	return !RB_EMPTY_NODE(&p->core_node);
1536 }
1537 
1538 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1539 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1540 
1541 extern void sched_core_get(void);
1542 extern void sched_core_put(void);
1543 
1544 #else /* !CONFIG_SCHED_CORE: */
1545 
sched_core_enabled(struct rq * rq)1546 static inline bool sched_core_enabled(struct rq *rq)
1547 {
1548 	return false;
1549 }
1550 
sched_core_disabled(void)1551 static inline bool sched_core_disabled(void)
1552 {
1553 	return true;
1554 }
1555 
rq_lockp(struct rq * rq)1556 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1557 {
1558 	return &rq->__lock;
1559 }
1560 
__rq_lockp(struct rq * rq)1561 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1562 {
1563 	return &rq->__lock;
1564 }
1565 
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1566 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1567 {
1568 	return true;
1569 }
1570 
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1571 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1572 {
1573 	return true;
1574 }
1575 
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1576 static inline bool sched_group_cookie_match(struct rq *rq,
1577 					    struct task_struct *p,
1578 					    struct sched_group *group)
1579 {
1580 	return true;
1581 }
1582 
1583 #endif /* !CONFIG_SCHED_CORE */
1584 
lockdep_assert_rq_held(struct rq * rq)1585 static inline void lockdep_assert_rq_held(struct rq *rq)
1586 {
1587 	lockdep_assert_held(__rq_lockp(rq));
1588 }
1589 
1590 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1591 extern bool raw_spin_rq_trylock(struct rq *rq);
1592 extern void raw_spin_rq_unlock(struct rq *rq);
1593 
raw_spin_rq_lock(struct rq * rq)1594 static inline void raw_spin_rq_lock(struct rq *rq)
1595 {
1596 	raw_spin_rq_lock_nested(rq, 0);
1597 }
1598 
raw_spin_rq_lock_irq(struct rq * rq)1599 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1600 {
1601 	local_irq_disable();
1602 	raw_spin_rq_lock(rq);
1603 }
1604 
raw_spin_rq_unlock_irq(struct rq * rq)1605 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1606 {
1607 	raw_spin_rq_unlock(rq);
1608 	local_irq_enable();
1609 }
1610 
_raw_spin_rq_lock_irqsave(struct rq * rq)1611 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1612 {
1613 	unsigned long flags;
1614 
1615 	local_irq_save(flags);
1616 	raw_spin_rq_lock(rq);
1617 
1618 	return flags;
1619 }
1620 
raw_spin_rq_unlock_irqrestore(struct rq * rq,unsigned long flags)1621 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1622 {
1623 	raw_spin_rq_unlock(rq);
1624 	local_irq_restore(flags);
1625 }
1626 
1627 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1628 do {						\
1629 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1630 } while (0)
1631 
1632 #ifdef CONFIG_SCHED_SMT
1633 extern void __update_idle_core(struct rq *rq);
1634 
update_idle_core(struct rq * rq)1635 static inline void update_idle_core(struct rq *rq)
1636 {
1637 	if (static_branch_unlikely(&sched_smt_present))
1638 		__update_idle_core(rq);
1639 }
1640 
1641 #else
update_idle_core(struct rq * rq)1642 static inline void update_idle_core(struct rq *rq) { }
1643 #endif
1644 
1645 #ifdef CONFIG_FAIR_GROUP_SCHED
1646 
task_of(struct sched_entity * se)1647 static inline struct task_struct *task_of(struct sched_entity *se)
1648 {
1649 	SCHED_WARN_ON(!entity_is_task(se));
1650 	return container_of(se, struct task_struct, se);
1651 }
1652 
task_cfs_rq(struct task_struct * p)1653 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1654 {
1655 	return p->se.cfs_rq;
1656 }
1657 
1658 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(const struct sched_entity * se)1659 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1660 {
1661 	return se->cfs_rq;
1662 }
1663 
1664 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1665 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1666 {
1667 	return grp->my_q;
1668 }
1669 
1670 #else /* !CONFIG_FAIR_GROUP_SCHED: */
1671 
1672 #define task_of(_se)		container_of(_se, struct task_struct, se)
1673 
task_cfs_rq(const struct task_struct * p)1674 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1675 {
1676 	return &task_rq(p)->cfs;
1677 }
1678 
cfs_rq_of(const struct sched_entity * se)1679 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1680 {
1681 	const struct task_struct *p = task_of(se);
1682 	struct rq *rq = task_rq(p);
1683 
1684 	return &rq->cfs;
1685 }
1686 
1687 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1688 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1689 {
1690 	return NULL;
1691 }
1692 
1693 #endif /* !CONFIG_FAIR_GROUP_SCHED */
1694 
1695 extern void update_rq_clock(struct rq *rq);
1696 
1697 /*
1698  * rq::clock_update_flags bits
1699  *
1700  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1701  *  call to __schedule(). This is an optimisation to avoid
1702  *  neighbouring rq clock updates.
1703  *
1704  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1705  *  in effect and calls to update_rq_clock() are being ignored.
1706  *
1707  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1708  *  made to update_rq_clock() since the last time rq::lock was pinned.
1709  *
1710  * If inside of __schedule(), clock_update_flags will have been
1711  * shifted left (a left shift is a cheap operation for the fast path
1712  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1713  *
1714  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1715  *
1716  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1717  * one position though, because the next rq_unpin_lock() will shift it
1718  * back.
1719  */
1720 #define RQCF_REQ_SKIP		0x01
1721 #define RQCF_ACT_SKIP		0x02
1722 #define RQCF_UPDATED		0x04
1723 
assert_clock_updated(struct rq * rq)1724 static inline void assert_clock_updated(struct rq *rq)
1725 {
1726 	/*
1727 	 * The only reason for not seeing a clock update since the
1728 	 * last rq_pin_lock() is if we're currently skipping updates.
1729 	 */
1730 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1731 }
1732 
rq_clock(struct rq * rq)1733 static inline u64 rq_clock(struct rq *rq)
1734 {
1735 	lockdep_assert_rq_held(rq);
1736 	assert_clock_updated(rq);
1737 
1738 	return rq->clock;
1739 }
1740 
rq_clock_task(struct rq * rq)1741 static inline u64 rq_clock_task(struct rq *rq)
1742 {
1743 	lockdep_assert_rq_held(rq);
1744 	assert_clock_updated(rq);
1745 
1746 	return rq->clock_task;
1747 }
1748 
rq_clock_skip_update(struct rq * rq)1749 static inline void rq_clock_skip_update(struct rq *rq)
1750 {
1751 	lockdep_assert_rq_held(rq);
1752 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1753 }
1754 
1755 /*
1756  * See rt task throttling, which is the only time a skip
1757  * request is canceled.
1758  */
rq_clock_cancel_skipupdate(struct rq * rq)1759 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1760 {
1761 	lockdep_assert_rq_held(rq);
1762 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1763 }
1764 
1765 /*
1766  * During cpu offlining and rq wide unthrottling, we can trigger
1767  * an update_rq_clock() for several cfs and rt runqueues (Typically
1768  * when using list_for_each_entry_*)
1769  * rq_clock_start_loop_update() can be called after updating the clock
1770  * once and before iterating over the list to prevent multiple update.
1771  * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1772  * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1773  */
rq_clock_start_loop_update(struct rq * rq)1774 static inline void rq_clock_start_loop_update(struct rq *rq)
1775 {
1776 	lockdep_assert_rq_held(rq);
1777 	SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1778 	rq->clock_update_flags |= RQCF_ACT_SKIP;
1779 }
1780 
rq_clock_stop_loop_update(struct rq * rq)1781 static inline void rq_clock_stop_loop_update(struct rq *rq)
1782 {
1783 	lockdep_assert_rq_held(rq);
1784 	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1785 }
1786 
1787 struct rq_flags {
1788 	unsigned long flags;
1789 	struct pin_cookie cookie;
1790 #ifdef CONFIG_SCHED_DEBUG
1791 	/*
1792 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1793 	 * current pin context is stashed here in case it needs to be
1794 	 * restored in rq_repin_lock().
1795 	 */
1796 	unsigned int clock_update_flags;
1797 #endif
1798 };
1799 
1800 #ifdef CONFIG_SMP
1801 extern struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1802 				 struct task_struct *p, int dest_cpu);
1803 #endif
1804 
1805 extern struct balance_callback balance_push_callback;
1806 
1807 /*
1808  * Lockdep annotation that avoids accidental unlocks; it's like a
1809  * sticky/continuous lockdep_assert_held().
1810  *
1811  * This avoids code that has access to 'struct rq *rq' (basically everything in
1812  * the scheduler) from accidentally unlocking the rq if they do not also have a
1813  * copy of the (on-stack) 'struct rq_flags rf'.
1814  *
1815  * Also see Documentation/locking/lockdep-design.rst.
1816  */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1817 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1818 {
1819 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1820 
1821 #ifdef CONFIG_SCHED_DEBUG
1822 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1823 	rf->clock_update_flags = 0;
1824 # ifdef CONFIG_SMP
1825 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1826 # endif
1827 #endif
1828 }
1829 
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1830 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1831 {
1832 #ifdef CONFIG_SCHED_DEBUG
1833 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1834 		rf->clock_update_flags = RQCF_UPDATED;
1835 #endif
1836 
1837 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1838 }
1839 
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1840 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1841 {
1842 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1843 
1844 #ifdef CONFIG_SCHED_DEBUG
1845 	/*
1846 	 * Restore the value we stashed in @rf for this pin context.
1847 	 */
1848 	rq->clock_update_flags |= rf->clock_update_flags;
1849 #endif
1850 }
1851 
1852 extern
1853 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1854 	__acquires(rq->lock);
1855 
1856 extern
1857 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1858 	__acquires(p->pi_lock)
1859 	__acquires(rq->lock);
1860 
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1861 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1862 	__releases(rq->lock)
1863 {
1864 	rq_unpin_lock(rq, rf);
1865 	raw_spin_rq_unlock(rq);
1866 }
1867 
1868 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1869 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1870 	__releases(rq->lock)
1871 	__releases(p->pi_lock)
1872 {
1873 	rq_unpin_lock(rq, rf);
1874 	raw_spin_rq_unlock(rq);
1875 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1876 }
1877 
1878 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
1879 		    _T->rq = task_rq_lock(_T->lock, &_T->rf),
1880 		    task_rq_unlock(_T->rq, _T->lock, &_T->rf),
1881 		    struct rq *rq; struct rq_flags rf)
1882 
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1883 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1884 	__acquires(rq->lock)
1885 {
1886 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1887 	rq_pin_lock(rq, rf);
1888 }
1889 
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1890 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1891 	__acquires(rq->lock)
1892 {
1893 	raw_spin_rq_lock_irq(rq);
1894 	rq_pin_lock(rq, rf);
1895 }
1896 
rq_lock(struct rq * rq,struct rq_flags * rf)1897 static inline void rq_lock(struct rq *rq, struct rq_flags *rf)
1898 	__acquires(rq->lock)
1899 {
1900 	raw_spin_rq_lock(rq);
1901 	rq_pin_lock(rq, rf);
1902 }
1903 
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1904 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1905 	__releases(rq->lock)
1906 {
1907 	rq_unpin_lock(rq, rf);
1908 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1909 }
1910 
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1911 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1912 	__releases(rq->lock)
1913 {
1914 	rq_unpin_lock(rq, rf);
1915 	raw_spin_rq_unlock_irq(rq);
1916 }
1917 
rq_unlock(struct rq * rq,struct rq_flags * rf)1918 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf)
1919 	__releases(rq->lock)
1920 {
1921 	rq_unpin_lock(rq, rf);
1922 	raw_spin_rq_unlock(rq);
1923 }
1924 
1925 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1926 		    rq_lock(_T->lock, &_T->rf),
1927 		    rq_unlock(_T->lock, &_T->rf),
1928 		    struct rq_flags rf)
1929 
1930 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1931 		    rq_lock_irq(_T->lock, &_T->rf),
1932 		    rq_unlock_irq(_T->lock, &_T->rf),
1933 		    struct rq_flags rf)
1934 
1935 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1936 		    rq_lock_irqsave(_T->lock, &_T->rf),
1937 		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1938 		    struct rq_flags rf)
1939 
this_rq_lock_irq(struct rq_flags * rf)1940 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf)
1941 	__acquires(rq->lock)
1942 {
1943 	struct rq *rq;
1944 
1945 	local_irq_disable();
1946 	rq = this_rq();
1947 	rq_lock(rq, rf);
1948 
1949 	return rq;
1950 }
1951 
1952 #ifdef CONFIG_NUMA
1953 
1954 enum numa_topology_type {
1955 	NUMA_DIRECT,
1956 	NUMA_GLUELESS_MESH,
1957 	NUMA_BACKPLANE,
1958 };
1959 
1960 extern enum numa_topology_type sched_numa_topology_type;
1961 extern int sched_max_numa_distance;
1962 extern bool find_numa_distance(int distance);
1963 extern void sched_init_numa(int offline_node);
1964 extern void sched_update_numa(int cpu, bool online);
1965 extern void sched_domains_numa_masks_set(unsigned int cpu);
1966 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1967 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1968 
1969 #else /* !CONFIG_NUMA: */
1970 
sched_init_numa(int offline_node)1971 static inline void sched_init_numa(int offline_node) { }
sched_update_numa(int cpu,bool online)1972 static inline void sched_update_numa(int cpu, bool online) { }
sched_domains_numa_masks_set(unsigned int cpu)1973 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1974 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1975 
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1976 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1977 {
1978 	return nr_cpu_ids;
1979 }
1980 
1981 #endif /* !CONFIG_NUMA */
1982 
1983 #ifdef CONFIG_NUMA_BALANCING
1984 
1985 /* The regions in numa_faults array from task_struct */
1986 enum numa_faults_stats {
1987 	NUMA_MEM = 0,
1988 	NUMA_CPU,
1989 	NUMA_MEMBUF,
1990 	NUMA_CPUBUF
1991 };
1992 
1993 extern void sched_setnuma(struct task_struct *p, int node);
1994 extern int migrate_task_to(struct task_struct *p, int cpu);
1995 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1996 
1997 #else /* !CONFIG_NUMA_BALANCING: */
1998 
1999 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)2000 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2001 {
2002 }
2003 
2004 #endif /* !CONFIG_NUMA_BALANCING */
2005 
2006 #ifdef CONFIG_SMP
2007 
2008 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
2009 			int cpu, int scpu);
2010 
2011 static inline void
queue_balance_callback(struct rq * rq,struct balance_callback * head,void (* func)(struct rq * rq))2012 queue_balance_callback(struct rq *rq,
2013 		       struct balance_callback *head,
2014 		       void (*func)(struct rq *rq))
2015 {
2016 	lockdep_assert_rq_held(rq);
2017 
2018 	/*
2019 	 * Don't (re)queue an already queued item; nor queue anything when
2020 	 * balance_push() is active, see the comment with
2021 	 * balance_push_callback.
2022 	 */
2023 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
2024 		return;
2025 
2026 	head->func = func;
2027 	head->next = rq->balance_callback;
2028 	rq->balance_callback = head;
2029 }
2030 
2031 #define rcu_dereference_check_sched_domain(p) \
2032 	rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex))
2033 
2034 /*
2035  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
2036  * See destroy_sched_domains: call_rcu for details.
2037  *
2038  * The domain tree of any CPU may only be accessed from within
2039  * preempt-disabled sections.
2040  */
2041 #define for_each_domain(cpu, __sd) \
2042 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
2043 			__sd; __sd = __sd->parent)
2044 
2045 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
2046 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
2047 static const unsigned int SD_SHARED_CHILD_MASK =
2048 #include <linux/sched/sd_flags.h>
2049 0;
2050 #undef SD_FLAG
2051 
2052 /**
2053  * highest_flag_domain - Return highest sched_domain containing flag.
2054  * @cpu:	The CPU whose highest level of sched domain is to
2055  *		be returned.
2056  * @flag:	The flag to check for the highest sched_domain
2057  *		for the given CPU.
2058  *
2059  * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
2060  * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
2061  */
highest_flag_domain(int cpu,int flag)2062 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
2063 {
2064 	struct sched_domain *sd, *hsd = NULL;
2065 
2066 	for_each_domain(cpu, sd) {
2067 		if (sd->flags & flag) {
2068 			hsd = sd;
2069 			continue;
2070 		}
2071 
2072 		/*
2073 		 * Stop the search if @flag is known to be shared at lower
2074 		 * levels. It will not be found further up.
2075 		 */
2076 		if (flag & SD_SHARED_CHILD_MASK)
2077 			break;
2078 	}
2079 
2080 	return hsd;
2081 }
2082 
lowest_flag_domain(int cpu,int flag)2083 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
2084 {
2085 	struct sched_domain *sd;
2086 
2087 	for_each_domain(cpu, sd) {
2088 		if (sd->flags & flag)
2089 			break;
2090 	}
2091 
2092 	return sd;
2093 }
2094 
2095 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
2096 DECLARE_PER_CPU(int, sd_llc_size);
2097 DECLARE_PER_CPU(int, sd_llc_id);
2098 DECLARE_PER_CPU(int, sd_share_id);
2099 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
2100 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
2101 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
2102 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
2103 
2104 extern struct static_key_false sched_asym_cpucapacity;
2105 extern struct static_key_false sched_cluster_active;
2106 
sched_asym_cpucap_active(void)2107 static __always_inline bool sched_asym_cpucap_active(void)
2108 {
2109 	return static_branch_unlikely(&sched_asym_cpucapacity);
2110 }
2111 
2112 struct sched_group_capacity {
2113 	atomic_t		ref;
2114 	/*
2115 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
2116 	 * for a single CPU.
2117 	 */
2118 	unsigned long		capacity;
2119 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
2120 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
2121 	unsigned long		next_update;
2122 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
2123 
2124 #ifdef CONFIG_SCHED_DEBUG
2125 	int			id;
2126 #endif
2127 
2128 	unsigned long		cpumask[];		/* Balance mask */
2129 };
2130 
2131 struct sched_group {
2132 	struct sched_group	*next;			/* Must be a circular list */
2133 	atomic_t		ref;
2134 
2135 	unsigned int		group_weight;
2136 	unsigned int		cores;
2137 	struct sched_group_capacity *sgc;
2138 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
2139 	int			flags;
2140 
2141 	/*
2142 	 * The CPUs this group covers.
2143 	 *
2144 	 * NOTE: this field is variable length. (Allocated dynamically
2145 	 * by attaching extra space to the end of the structure,
2146 	 * depending on how many CPUs the kernel has booted up with)
2147 	 */
2148 	unsigned long		cpumask[];
2149 };
2150 
sched_group_span(struct sched_group * sg)2151 static inline struct cpumask *sched_group_span(struct sched_group *sg)
2152 {
2153 	return to_cpumask(sg->cpumask);
2154 }
2155 
2156 /*
2157  * See build_balance_mask().
2158  */
group_balance_mask(struct sched_group * sg)2159 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
2160 {
2161 	return to_cpumask(sg->sgc->cpumask);
2162 }
2163 
2164 extern int group_balance_cpu(struct sched_group *sg);
2165 
2166 #ifdef CONFIG_SCHED_DEBUG
2167 extern void update_sched_domain_debugfs(void);
2168 extern void dirty_sched_domain_sysctl(int cpu);
2169 #else
update_sched_domain_debugfs(void)2170 static inline void update_sched_domain_debugfs(void) { }
dirty_sched_domain_sysctl(int cpu)2171 static inline void dirty_sched_domain_sysctl(int cpu) { }
2172 #endif
2173 
2174 extern int sched_update_scaling(void);
2175 
task_user_cpus(struct task_struct * p)2176 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
2177 {
2178 	if (!p->user_cpus_ptr)
2179 		return cpu_possible_mask; /* &init_task.cpus_mask */
2180 	return p->user_cpus_ptr;
2181 }
2182 
2183 #endif /* CONFIG_SMP */
2184 
2185 #ifdef CONFIG_CGROUP_SCHED
2186 
2187 /*
2188  * Return the group to which this tasks belongs.
2189  *
2190  * We cannot use task_css() and friends because the cgroup subsystem
2191  * changes that value before the cgroup_subsys::attach() method is called,
2192  * therefore we cannot pin it and might observe the wrong value.
2193  *
2194  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
2195  * core changes this before calling sched_move_task().
2196  *
2197  * Instead we use a 'copy' which is updated from sched_move_task() while
2198  * holding both task_struct::pi_lock and rq::lock.
2199  */
task_group(struct task_struct * p)2200 static inline struct task_group *task_group(struct task_struct *p)
2201 {
2202 	return p->sched_task_group;
2203 }
2204 
2205 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)2206 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2207 {
2208 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2209 	struct task_group *tg = task_group(p);
2210 #endif
2211 
2212 #ifdef CONFIG_FAIR_GROUP_SCHED
2213 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2214 	p->se.cfs_rq = tg->cfs_rq[cpu];
2215 	p->se.parent = tg->se[cpu];
2216 	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2217 #endif
2218 
2219 #ifdef CONFIG_RT_GROUP_SCHED
2220 	p->rt.rt_rq  = tg->rt_rq[cpu];
2221 	p->rt.parent = tg->rt_se[cpu];
2222 #endif
2223 }
2224 
2225 #else /* !CONFIG_CGROUP_SCHED: */
2226 
set_task_rq(struct task_struct * p,unsigned int cpu)2227 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2228 
task_group(struct task_struct * p)2229 static inline struct task_group *task_group(struct task_struct *p)
2230 {
2231 	return NULL;
2232 }
2233 
2234 #endif /* !CONFIG_CGROUP_SCHED */
2235 
__set_task_cpu(struct task_struct * p,unsigned int cpu)2236 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2237 {
2238 	set_task_rq(p, cpu);
2239 #ifdef CONFIG_SMP
2240 	/*
2241 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2242 	 * successfully executed on another CPU. We must ensure that updates of
2243 	 * per-task data have been completed by this moment.
2244 	 */
2245 	smp_wmb();
2246 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2247 	p->wake_cpu = cpu;
2248 #endif
2249 }
2250 
2251 /*
2252  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2253  */
2254 #ifdef CONFIG_SCHED_DEBUG
2255 # define const_debug __read_mostly
2256 #else
2257 # define const_debug const
2258 #endif
2259 
2260 #define SCHED_FEAT(name, enabled)	\
2261 	__SCHED_FEAT_##name ,
2262 
2263 enum {
2264 #include "features.h"
2265 	__SCHED_FEAT_NR,
2266 };
2267 
2268 #undef SCHED_FEAT
2269 
2270 #ifdef CONFIG_SCHED_DEBUG
2271 
2272 /*
2273  * To support run-time toggling of sched features, all the translation units
2274  * (but core.c) reference the sysctl_sched_features defined in core.c.
2275  */
2276 extern const_debug unsigned int sysctl_sched_features;
2277 
2278 #ifdef CONFIG_JUMP_LABEL
2279 
2280 #define SCHED_FEAT(name, enabled)					\
2281 static __always_inline bool static_branch_##name(struct static_key *key) \
2282 {									\
2283 	return static_key_##enabled(key);				\
2284 }
2285 
2286 #include "features.h"
2287 #undef SCHED_FEAT
2288 
2289 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2290 extern const char * const sched_feat_names[__SCHED_FEAT_NR];
2291 
2292 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2293 
2294 #else /* !CONFIG_JUMP_LABEL: */
2295 
2296 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2297 
2298 #endif /* !CONFIG_JUMP_LABEL */
2299 
2300 #else /* !SCHED_DEBUG: */
2301 
2302 /*
2303  * Each translation unit has its own copy of sysctl_sched_features to allow
2304  * constants propagation at compile time and compiler optimization based on
2305  * features default.
2306  */
2307 #define SCHED_FEAT(name, enabled)	\
2308 	(1UL << __SCHED_FEAT_##name) * enabled |
2309 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2310 #include "features.h"
2311 	0;
2312 #undef SCHED_FEAT
2313 
2314 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2315 
2316 #endif /* !SCHED_DEBUG */
2317 
2318 extern struct static_key_false sched_numa_balancing;
2319 extern struct static_key_false sched_schedstats;
2320 
global_rt_period(void)2321 static inline u64 global_rt_period(void)
2322 {
2323 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2324 }
2325 
global_rt_runtime(void)2326 static inline u64 global_rt_runtime(void)
2327 {
2328 	if (sysctl_sched_rt_runtime < 0)
2329 		return RUNTIME_INF;
2330 
2331 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2332 }
2333 
2334 /*
2335  * Is p the current execution context?
2336  */
task_current(struct rq * rq,struct task_struct * p)2337 static inline int task_current(struct rq *rq, struct task_struct *p)
2338 {
2339 	return rq->curr == p;
2340 }
2341 
2342 /*
2343  * Is p the current scheduling context?
2344  *
2345  * Note that it might be the current execution context at the same time if
2346  * rq->curr == rq->donor == p.
2347  */
task_current_donor(struct rq * rq,struct task_struct * p)2348 static inline int task_current_donor(struct rq *rq, struct task_struct *p)
2349 {
2350 	return rq->donor == p;
2351 }
2352 
task_is_blocked(struct task_struct * p)2353 static inline bool task_is_blocked(struct task_struct *p)
2354 {
2355 	if (!sched_proxy_exec())
2356 		return false;
2357 
2358 	return !!p->blocked_on && p->blocked_on_state != BO_RUNNABLE;
2359 }
2360 
task_on_cpu(struct rq * rq,struct task_struct * p)2361 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2362 {
2363 #ifdef CONFIG_SMP
2364 	return p->on_cpu;
2365 #else
2366 	return task_current(rq, p);
2367 #endif
2368 }
2369 
task_on_rq_queued(struct task_struct * p)2370 static inline int task_on_rq_queued(struct task_struct *p)
2371 {
2372 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED;
2373 }
2374 
task_on_rq_migrating(struct task_struct * p)2375 static inline int task_on_rq_migrating(struct task_struct *p)
2376 {
2377 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2378 }
2379 
2380 /* Wake flags. The first three directly map to some SD flag value */
2381 #define WF_EXEC			0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2382 #define WF_FORK			0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2383 #define WF_TTWU			0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2384 
2385 #define WF_SYNC			0x10 /* Waker goes to sleep after wakeup */
2386 #define WF_MIGRATED		0x20 /* Internal use, task got migrated */
2387 #define WF_CURRENT_CPU		0x40 /* Prefer to move the wakee to the current CPU. */
2388 #define WF_RQ_SELECTED		0x80 /* ->select_task_rq() was called */
2389 
2390 #define WF_ANDROID_VENDOR	0x1000 /* Vendor specific for Android */
2391 
2392 #ifdef CONFIG_SMP
2393 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2394 static_assert(WF_FORK == SD_BALANCE_FORK);
2395 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2396 #endif
2397 
2398 /*
2399  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2400  * of tasks with abnormal "nice" values across CPUs the contribution that
2401  * each task makes to its run queue's load is weighted according to its
2402  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2403  * scaled version of the new time slice allocation that they receive on time
2404  * slice expiry etc.
2405  */
2406 
2407 #define WEIGHT_IDLEPRIO		3
2408 #define WMULT_IDLEPRIO		1431655765
2409 
2410 extern const int		sched_prio_to_weight[40];
2411 extern const u32		sched_prio_to_wmult[40];
2412 
2413 /*
2414  * {de,en}queue flags:
2415  *
2416  * DEQUEUE_SLEEP  - task is no longer runnable
2417  * ENQUEUE_WAKEUP - task just became runnable
2418  *
2419  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2420  *                are in a known state which allows modification. Such pairs
2421  *                should preserve as much state as possible.
2422  *
2423  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2424  *        in the runqueue.
2425  *
2426  * NOCLOCK - skip the update_rq_clock() (avoids double updates)
2427  *
2428  * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
2429  *
2430  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2431  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2432  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2433  * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called
2434  *
2435  */
2436 
2437 #define DEQUEUE_SLEEP		0x01 /* Matches ENQUEUE_WAKEUP */
2438 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2439 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2440 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2441 #define DEQUEUE_SPECIAL		0x10
2442 #define DEQUEUE_MIGRATING	0x100 /* Matches ENQUEUE_MIGRATING */
2443 #define DEQUEUE_DELAYED		0x200 /* Matches ENQUEUE_DELAYED */
2444 
2445 #define ENQUEUE_WAKEUP		0x01
2446 #define ENQUEUE_RESTORE		0x02
2447 #define ENQUEUE_MOVE		0x04
2448 #define ENQUEUE_NOCLOCK		0x08
2449 
2450 #define ENQUEUE_HEAD		0x10
2451 #define ENQUEUE_REPLENISH	0x20
2452 #ifdef CONFIG_SMP
2453 #define ENQUEUE_MIGRATED	0x40
2454 #else
2455 #define ENQUEUE_MIGRATED	0x00
2456 #endif
2457 #define ENQUEUE_INITIAL		0x80
2458 #define ENQUEUE_MIGRATING	0x100
2459 #define ENQUEUE_DELAYED		0x200
2460 #define ENQUEUE_RQ_SELECTED	0x400
2461 
2462 #define ENQUEUE_WAKEUP_SYNC	0x80
2463 
2464 #define RETRY_TASK		((void *)-1UL)
2465 
2466 struct affinity_context {
2467 	const struct cpumask	*new_mask;
2468 	struct cpumask		*user_mask;
2469 	unsigned int		flags;
2470 };
2471 
2472 extern s64 update_curr_common(struct rq *rq);
2473 
2474 struct sched_class {
2475 
2476 #ifdef CONFIG_UCLAMP_TASK
2477 	int uclamp_enabled;
2478 #endif
2479 
2480 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2481 	bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2482 	void (*yield_task)   (struct rq *rq);
2483 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2484 
2485 	void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2486 
2487 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2488 	struct task_struct *(*pick_task)(struct rq *rq);
2489 	/*
2490 	 * Optional! When implemented pick_next_task() should be equivalent to:
2491 	 *
2492 	 *   next = pick_task();
2493 	 *   if (next) {
2494 	 *       put_prev_task(prev);
2495 	 *       set_next_task_first(next);
2496 	 *   }
2497 	 */
2498 	struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev);
2499 
2500 	void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next);
2501 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2502 
2503 #ifdef CONFIG_SMP
2504 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2505 
2506 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2507 
2508 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2509 
2510 	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2511 
2512 	void (*rq_online)(struct rq *rq);
2513 	void (*rq_offline)(struct rq *rq);
2514 
2515 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2516 #endif
2517 
2518 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2519 	void (*task_fork)(struct task_struct *p);
2520 	void (*task_dead)(struct task_struct *p);
2521 
2522 	/*
2523 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2524 	 * cannot assume the switched_from/switched_to pair is serialized by
2525 	 * rq->lock. They are however serialized by p->pi_lock.
2526 	 */
2527 	void (*switching_to) (struct rq *this_rq, struct task_struct *task);
2528 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2529 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2530 	void (*reweight_task)(struct rq *this_rq, struct task_struct *task,
2531 			      const struct load_weight *lw);
2532 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2533 			      int oldprio);
2534 
2535 	unsigned int (*get_rr_interval)(struct rq *rq,
2536 					struct task_struct *task);
2537 
2538 	void (*update_curr)(struct rq *rq);
2539 
2540 #ifdef CONFIG_FAIR_GROUP_SCHED
2541 	void (*task_change_group)(struct task_struct *p);
2542 #endif
2543 
2544 #ifdef CONFIG_SCHED_CORE
2545 	int (*task_is_throttled)(struct task_struct *p, int cpu);
2546 #endif
2547 };
2548 
put_prev_task(struct rq * rq,struct task_struct * prev)2549 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2550 {
2551 	WARN_ON_ONCE(rq->donor != prev);
2552 	prev->sched_class->put_prev_task(rq, prev, NULL);
2553 }
2554 
set_next_task(struct rq * rq,struct task_struct * next)2555 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2556 {
2557 	next->sched_class->set_next_task(rq, next, false);
2558 }
2559 
2560 static inline void
__put_prev_set_next_dl_server(struct rq * rq,struct task_struct * prev,struct task_struct * next)2561 __put_prev_set_next_dl_server(struct rq *rq,
2562 			      struct task_struct *prev,
2563 			      struct task_struct *next)
2564 {
2565 	prev->dl_server = NULL;
2566 	next->dl_server = rq->dl_server;
2567 	rq->dl_server = NULL;
2568 }
2569 
put_prev_set_next_task(struct rq * rq,struct task_struct * prev,struct task_struct * next)2570 static inline void put_prev_set_next_task(struct rq *rq,
2571 					  struct task_struct *prev,
2572 					  struct task_struct *next)
2573 {
2574 	WARN_ON_ONCE(rq->donor != prev);
2575 
2576 	__put_prev_set_next_dl_server(rq, prev, next);
2577 
2578 	if (next == prev)
2579 		return;
2580 
2581 	prev->sched_class->put_prev_task(rq, prev, next);
2582 	next->sched_class->set_next_task(rq, next, true);
2583 }
2584 
2585 /*
2586  * Helper to define a sched_class instance; each one is placed in a separate
2587  * section which is ordered by the linker script:
2588  *
2589  *   include/asm-generic/vmlinux.lds.h
2590  *
2591  * *CAREFUL* they are laid out in *REVERSE* order!!!
2592  *
2593  * Also enforce alignment on the instance, not the type, to guarantee layout.
2594  */
2595 #define DEFINE_SCHED_CLASS(name) \
2596 const struct sched_class name##_sched_class \
2597 	__aligned(__alignof__(struct sched_class)) \
2598 	__section("__" #name "_sched_class")
2599 
2600 /* Defined in include/asm-generic/vmlinux.lds.h */
2601 extern struct sched_class __sched_class_highest[];
2602 extern struct sched_class __sched_class_lowest[];
2603 
2604 extern const struct sched_class stop_sched_class;
2605 extern const struct sched_class dl_sched_class;
2606 extern const struct sched_class rt_sched_class;
2607 extern const struct sched_class fair_sched_class;
2608 extern const struct sched_class idle_sched_class;
2609 
2610 #ifdef CONFIG_SCHED_CLASS_EXT
2611 extern const struct sched_class ext_sched_class;
2612 
2613 DECLARE_STATIC_KEY_FALSE(__scx_ops_enabled);	/* SCX BPF scheduler loaded */
2614 DECLARE_STATIC_KEY_FALSE(__scx_switched_all);	/* all fair class tasks on SCX */
2615 
2616 #define scx_enabled()		static_branch_unlikely(&__scx_ops_enabled)
2617 #define scx_switched_all()	static_branch_unlikely(&__scx_switched_all)
2618 #else /* !CONFIG_SCHED_CLASS_EXT */
2619 #define scx_enabled()		false
2620 #define scx_switched_all()	false
2621 #endif /* !CONFIG_SCHED_CLASS_EXT */
2622 
2623 /*
2624  * Iterate only active classes. SCX can take over all fair tasks or be
2625  * completely disabled. If the former, skip fair. If the latter, skip SCX.
2626  */
next_active_class(const struct sched_class * class)2627 static inline const struct sched_class *next_active_class(const struct sched_class *class)
2628 {
2629 	class++;
2630 #ifdef CONFIG_SCHED_CLASS_EXT
2631 	if (scx_switched_all() && class == &fair_sched_class)
2632 		class++;
2633 	if (!scx_enabled() && class == &ext_sched_class)
2634 		class++;
2635 #endif
2636 	return class;
2637 }
2638 
2639 #define for_class_range(class, _from, _to) \
2640 	for (class = (_from); class < (_to); class++)
2641 
2642 #define for_each_class(class) \
2643 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2644 
2645 #define for_active_class_range(class, _from, _to)				\
2646 	for (class = (_from); class != (_to); class = next_active_class(class))
2647 
2648 #define for_each_active_class(class)						\
2649 	for_active_class_range(class, __sched_class_highest, __sched_class_lowest)
2650 
2651 #define sched_class_above(_a, _b)	((_a) < (_b))
2652 
sched_stop_runnable(struct rq * rq)2653 static inline bool sched_stop_runnable(struct rq *rq)
2654 {
2655 	return rq->stop && task_on_rq_queued(rq->stop);
2656 }
2657 
sched_dl_runnable(struct rq * rq)2658 static inline bool sched_dl_runnable(struct rq *rq)
2659 {
2660 	return rq->dl.dl_nr_running > 0;
2661 }
2662 
sched_rt_runnable(struct rq * rq)2663 static inline bool sched_rt_runnable(struct rq *rq)
2664 {
2665 	return rq->rt.rt_queued > 0;
2666 }
2667 
sched_fair_runnable(struct rq * rq)2668 static inline bool sched_fair_runnable(struct rq *rq)
2669 {
2670 	return rq->cfs.nr_running > 0;
2671 }
2672 
2673 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2674 extern struct task_struct *pick_task_idle(struct rq *rq);
2675 
2676 #define SCA_CHECK		0x01
2677 #define SCA_MIGRATE_DISABLE	0x02
2678 #define SCA_MIGRATE_ENABLE	0x04
2679 #define SCA_USER		0x08
2680 
2681 #ifdef CONFIG_SMP
2682 
2683 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2684 
2685 extern void sched_balance_trigger(struct rq *rq);
2686 
2687 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx);
2688 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2689 
task_allowed_on_cpu(struct task_struct * p,int cpu)2690 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
2691 {
2692 	/* When not in the task's cpumask, no point in looking further. */
2693 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2694 		return false;
2695 
2696 	/* Can @cpu run a user thread? */
2697 	if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p))
2698 		return false;
2699 
2700 	return true;
2701 }
2702 
alloc_user_cpus_ptr(int node)2703 static inline cpumask_t *alloc_user_cpus_ptr(int node)
2704 {
2705 	/*
2706 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2707 	 */
2708 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2709 
2710 	return kmalloc_node(size, GFP_KERNEL, node);
2711 }
2712 
get_push_task(struct rq * rq)2713 static inline struct task_struct *get_push_task(struct rq *rq)
2714 {
2715 	struct task_struct *p = rq->donor;
2716 
2717 	lockdep_assert_rq_held(rq);
2718 
2719 	if (rq->push_busy)
2720 		return NULL;
2721 
2722 	if (p->nr_cpus_allowed == 1)
2723 		return NULL;
2724 
2725 	if (p->migration_disabled)
2726 		return NULL;
2727 
2728 	rq->push_busy = true;
2729 	return get_task_struct(p);
2730 }
2731 
2732 extern int push_cpu_stop(void *arg);
2733 
2734 extern unsigned long __read_mostly max_load_balance_interval;
2735 #else /* !CONFIG_SMP: */
2736 
task_allowed_on_cpu(struct task_struct * p,int cpu)2737 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
2738 {
2739 	return true;
2740 }
2741 
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)2742 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2743 					 struct affinity_context *ctx)
2744 {
2745 	return set_cpus_allowed_ptr(p, ctx->new_mask);
2746 }
2747 
alloc_user_cpus_ptr(int node)2748 static inline cpumask_t *alloc_user_cpus_ptr(int node)
2749 {
2750 	return NULL;
2751 }
2752 
2753 #endif /* !CONFIG_SMP */
2754 
2755 #ifdef CONFIG_CPU_IDLE
2756 
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2757 static inline void idle_set_state(struct rq *rq,
2758 				  struct cpuidle_state *idle_state)
2759 {
2760 	rq->idle_state = idle_state;
2761 }
2762 
idle_get_state(struct rq * rq)2763 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2764 {
2765 	SCHED_WARN_ON(!rcu_read_lock_held());
2766 
2767 	return rq->idle_state;
2768 }
2769 
2770 #else /* !CONFIG_CPU_IDLE: */
2771 
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2772 static inline void idle_set_state(struct rq *rq,
2773 				  struct cpuidle_state *idle_state)
2774 {
2775 }
2776 
idle_get_state(struct rq * rq)2777 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2778 {
2779 	return NULL;
2780 }
2781 
2782 #endif /* !CONFIG_CPU_IDLE */
2783 
2784 extern void schedule_idle(void);
2785 asmlinkage void schedule_user(void);
2786 
2787 extern void sysrq_sched_debug_show(void);
2788 extern void sched_init_granularity(void);
2789 extern void update_max_interval(void);
2790 
2791 extern void init_sched_dl_class(void);
2792 extern void init_sched_rt_class(void);
2793 extern void init_sched_fair_class(void);
2794 
2795 extern void resched_curr(struct rq *rq);
2796 extern void resched_cpu(int cpu);
2797 
2798 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2799 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2800 
2801 extern void init_dl_entity(struct sched_dl_entity *dl_se);
2802 
2803 #define BW_SHIFT		20
2804 #define BW_UNIT			(1 << BW_SHIFT)
2805 #define RATIO_SHIFT		8
2806 #define MAX_BW_BITS		(64 - BW_SHIFT)
2807 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2808 
2809 extern unsigned long to_ratio(u64 period, u64 runtime);
2810 
2811 extern void init_entity_runnable_average(struct sched_entity *se);
2812 extern void post_init_entity_util_avg(struct task_struct *p);
2813 
2814 #ifdef CONFIG_NO_HZ_FULL
2815 extern bool sched_can_stop_tick(struct rq *rq);
2816 extern int __init sched_tick_offload_init(void);
2817 
2818 /*
2819  * Tick may be needed by tasks in the runqueue depending on their policy and
2820  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2821  * nohz mode if necessary.
2822  */
sched_update_tick_dependency(struct rq * rq)2823 static inline void sched_update_tick_dependency(struct rq *rq)
2824 {
2825 	int cpu = cpu_of(rq);
2826 
2827 	if (!tick_nohz_full_cpu(cpu))
2828 		return;
2829 
2830 	if (sched_can_stop_tick(rq))
2831 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2832 	else
2833 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2834 }
2835 #else /* !CONFIG_NO_HZ_FULL: */
sched_tick_offload_init(void)2836 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2837 static inline void sched_update_tick_dependency(struct rq *rq) { }
2838 #endif /* !CONFIG_NO_HZ_FULL */
2839 
add_nr_running(struct rq * rq,unsigned count)2840 static inline void add_nr_running(struct rq *rq, unsigned count)
2841 {
2842 	unsigned prev_nr = rq->nr_running;
2843 
2844 	rq->nr_running = prev_nr + count;
2845 	if (trace_sched_update_nr_running_tp_enabled()) {
2846 		call_trace_sched_update_nr_running(rq, count);
2847 	}
2848 
2849 #ifdef CONFIG_SMP
2850 	if (prev_nr < 2 && rq->nr_running >= 2)
2851 		set_rd_overloaded(rq->rd, 1);
2852 #endif
2853 
2854 	sched_update_tick_dependency(rq);
2855 }
2856 
sub_nr_running(struct rq * rq,unsigned count)2857 static inline void sub_nr_running(struct rq *rq, unsigned count)
2858 {
2859 	rq->nr_running -= count;
2860 	if (trace_sched_update_nr_running_tp_enabled()) {
2861 		call_trace_sched_update_nr_running(rq, -count);
2862 	}
2863 
2864 	/* Check if we still need preemption */
2865 	sched_update_tick_dependency(rq);
2866 }
2867 
__block_task(struct rq * rq,struct task_struct * p)2868 static inline void __block_task(struct rq *rq, struct task_struct *p)
2869 {
2870 	if (p->sched_contributes_to_load)
2871 		rq->nr_uninterruptible++;
2872 
2873 	if (p->in_iowait) {
2874 		atomic_inc(&rq->nr_iowait);
2875 		delayacct_blkio_start();
2876 	}
2877 
2878 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2879 
2880 	/*
2881 	 * The moment this write goes through, ttwu() can swoop in and migrate
2882 	 * this task, rendering our rq->__lock ineffective.
2883 	 *
2884 	 * __schedule()				try_to_wake_up()
2885 	 *   LOCK rq->__lock			  LOCK p->pi_lock
2886 	 *   pick_next_task()
2887 	 *     pick_next_task_fair()
2888 	 *       pick_next_entity()
2889 	 *         dequeue_entities()
2890 	 *           __block_task()
2891 	 *             RELEASE p->on_rq = 0	  if (p->on_rq && ...)
2892 	 *					    break;
2893 	 *
2894 	 *					  ACQUIRE (after ctrl-dep)
2895 	 *
2896 	 *					  cpu = select_task_rq();
2897 	 *					  set_task_cpu(p, cpu);
2898 	 *					  ttwu_queue()
2899 	 *					    ttwu_do_activate()
2900 	 *					      LOCK rq->__lock
2901 	 *					      activate_task()
2902 	 *					        STORE p->on_rq = 1
2903 	 *   UNLOCK rq->__lock
2904 	 *
2905 	 * Callers must ensure to not reference @p after this -- we no longer
2906 	 * own it.
2907 	 */
2908 	smp_store_release(&p->on_rq, 0);
2909 }
2910 
2911 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2912 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2913 
2914 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2915 
2916 #ifdef CONFIG_PREEMPT_RT
2917 # define SCHED_NR_MIGRATE_BREAK 8
2918 #else
2919 # define SCHED_NR_MIGRATE_BREAK 32
2920 #endif
2921 
2922 extern const_debug unsigned int sysctl_sched_nr_migrate;
2923 extern const_debug unsigned int sysctl_sched_migration_cost;
2924 
2925 extern unsigned int sysctl_sched_base_slice;
2926 
2927 #ifdef CONFIG_SCHED_DEBUG
2928 extern int sysctl_resched_latency_warn_ms;
2929 extern int sysctl_resched_latency_warn_once;
2930 
2931 extern unsigned int sysctl_sched_tunable_scaling;
2932 
2933 extern unsigned int sysctl_numa_balancing_scan_delay;
2934 extern unsigned int sysctl_numa_balancing_scan_period_min;
2935 extern unsigned int sysctl_numa_balancing_scan_period_max;
2936 extern unsigned int sysctl_numa_balancing_scan_size;
2937 extern unsigned int sysctl_numa_balancing_hot_threshold;
2938 #endif
2939 
2940 #ifdef CONFIG_SCHED_HRTICK
2941 
2942 /*
2943  * Use hrtick when:
2944  *  - enabled by features
2945  *  - hrtimer is actually high res
2946  */
hrtick_enabled(struct rq * rq)2947 static inline int hrtick_enabled(struct rq *rq)
2948 {
2949 	if (!cpu_active(cpu_of(rq)))
2950 		return 0;
2951 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2952 }
2953 
hrtick_enabled_fair(struct rq * rq)2954 static inline int hrtick_enabled_fair(struct rq *rq)
2955 {
2956 	if (!sched_feat(HRTICK))
2957 		return 0;
2958 	return hrtick_enabled(rq);
2959 }
2960 
hrtick_enabled_dl(struct rq * rq)2961 static inline int hrtick_enabled_dl(struct rq *rq)
2962 {
2963 	if (!sched_feat(HRTICK_DL))
2964 		return 0;
2965 	return hrtick_enabled(rq);
2966 }
2967 
2968 extern void hrtick_start(struct rq *rq, u64 delay);
2969 
2970 #else /* !CONFIG_SCHED_HRTICK: */
2971 
hrtick_enabled_fair(struct rq * rq)2972 static inline int hrtick_enabled_fair(struct rq *rq)
2973 {
2974 	return 0;
2975 }
2976 
hrtick_enabled_dl(struct rq * rq)2977 static inline int hrtick_enabled_dl(struct rq *rq)
2978 {
2979 	return 0;
2980 }
2981 
hrtick_enabled(struct rq * rq)2982 static inline int hrtick_enabled(struct rq *rq)
2983 {
2984 	return 0;
2985 }
2986 
2987 #endif /* !CONFIG_SCHED_HRTICK */
2988 
2989 #ifndef arch_scale_freq_tick
arch_scale_freq_tick(void)2990 static __always_inline void arch_scale_freq_tick(void) { }
2991 #endif
2992 
2993 #ifndef arch_scale_freq_capacity
2994 /**
2995  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2996  * @cpu: the CPU in question.
2997  *
2998  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2999  *
3000  *     f_curr
3001  *     ------ * SCHED_CAPACITY_SCALE
3002  *     f_max
3003  */
3004 static __always_inline
arch_scale_freq_capacity(int cpu)3005 unsigned long arch_scale_freq_capacity(int cpu)
3006 {
3007 	return SCHED_CAPACITY_SCALE;
3008 }
3009 #endif
3010 
3011 #ifdef CONFIG_SCHED_DEBUG
3012 /*
3013  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
3014  * acquire rq lock instead of rq_lock(). So at the end of these two functions
3015  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
3016  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
3017  */
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)3018 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
3019 {
3020 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
3021 	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
3022 #ifdef CONFIG_SMP
3023 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
3024 #endif
3025 }
3026 #else
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)3027 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) { }
3028 #endif
3029 
3030 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)				\
3031 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__)			\
3032 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2)	\
3033 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;			\
3034   _lock; return _t; }
3035 
3036 #ifdef CONFIG_SMP
3037 
rq_order_less(struct rq * rq1,struct rq * rq2)3038 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
3039 {
3040 #ifdef CONFIG_SCHED_CORE
3041 	/*
3042 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
3043 	 * order by core-id first and cpu-id second.
3044 	 *
3045 	 * Notably:
3046 	 *
3047 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
3048 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
3049 	 *
3050 	 * when only cpu-id is considered.
3051 	 */
3052 	if (rq1->core->cpu < rq2->core->cpu)
3053 		return true;
3054 	if (rq1->core->cpu > rq2->core->cpu)
3055 		return false;
3056 
3057 	/*
3058 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
3059 	 */
3060 #endif
3061 	return rq1->cpu < rq2->cpu;
3062 }
3063 
3064 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
3065 
3066 #ifdef CONFIG_PREEMPTION
3067 
3068 /*
3069  * fair double_lock_balance: Safely acquires both rq->locks in a fair
3070  * way at the expense of forcing extra atomic operations in all
3071  * invocations.  This assures that the double_lock is acquired using the
3072  * same underlying policy as the spinlock_t on this architecture, which
3073  * reduces latency compared to the unfair variant below.  However, it
3074  * also adds more overhead and therefore may reduce throughput.
3075  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)3076 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
3077 	__releases(this_rq->lock)
3078 	__acquires(busiest->lock)
3079 	__acquires(this_rq->lock)
3080 {
3081 	raw_spin_rq_unlock(this_rq);
3082 	double_rq_lock(this_rq, busiest);
3083 
3084 	return 1;
3085 }
3086 
3087 #else /* !CONFIG_PREEMPTION: */
3088 /*
3089  * Unfair double_lock_balance: Optimizes throughput at the expense of
3090  * latency by eliminating extra atomic operations when the locks are
3091  * already in proper order on entry.  This favors lower CPU-ids and will
3092  * grant the double lock to lower CPUs over higher ids under contention,
3093  * regardless of entry order into the function.
3094  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)3095 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
3096 	__releases(this_rq->lock)
3097 	__acquires(busiest->lock)
3098 	__acquires(this_rq->lock)
3099 {
3100 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
3101 	    likely(raw_spin_rq_trylock(busiest))) {
3102 		double_rq_clock_clear_update(this_rq, busiest);
3103 		return 0;
3104 	}
3105 
3106 	if (rq_order_less(this_rq, busiest)) {
3107 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
3108 		double_rq_clock_clear_update(this_rq, busiest);
3109 		return 0;
3110 	}
3111 
3112 	raw_spin_rq_unlock(this_rq);
3113 	double_rq_lock(this_rq, busiest);
3114 
3115 	return 1;
3116 }
3117 
3118 #endif /* !CONFIG_PREEMPTION */
3119 
3120 /*
3121  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
3122  */
double_lock_balance(struct rq * this_rq,struct rq * busiest)3123 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
3124 {
3125 	lockdep_assert_irqs_disabled();
3126 
3127 	return _double_lock_balance(this_rq, busiest);
3128 }
3129 
double_unlock_balance(struct rq * this_rq,struct rq * busiest)3130 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
3131 	__releases(busiest->lock)
3132 {
3133 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
3134 		raw_spin_rq_unlock(busiest);
3135 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
3136 }
3137 
double_lock(spinlock_t * l1,spinlock_t * l2)3138 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
3139 {
3140 	if (l1 > l2)
3141 		swap(l1, l2);
3142 
3143 	spin_lock(l1);
3144 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3145 }
3146 
double_lock_irq(spinlock_t * l1,spinlock_t * l2)3147 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
3148 {
3149 	if (l1 > l2)
3150 		swap(l1, l2);
3151 
3152 	spin_lock_irq(l1);
3153 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3154 }
3155 
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)3156 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
3157 {
3158 	if (l1 > l2)
3159 		swap(l1, l2);
3160 
3161 	raw_spin_lock(l1);
3162 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3163 }
3164 
double_raw_unlock(raw_spinlock_t * l1,raw_spinlock_t * l2)3165 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
3166 {
3167 	raw_spin_unlock(l1);
3168 	raw_spin_unlock(l2);
3169 }
3170 
3171 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
3172 		    double_raw_lock(_T->lock, _T->lock2),
3173 		    double_raw_unlock(_T->lock, _T->lock2))
3174 
3175 /*
3176  * double_rq_unlock - safely unlock two runqueues
3177  *
3178  * Note this does not restore interrupts like task_rq_unlock,
3179  * you need to do so manually after calling.
3180  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)3181 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3182 	__releases(rq1->lock)
3183 	__releases(rq2->lock)
3184 {
3185 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
3186 		raw_spin_rq_unlock(rq2);
3187 	else
3188 		__release(rq2->lock);
3189 	raw_spin_rq_unlock(rq1);
3190 }
3191 
3192 extern void set_rq_online (struct rq *rq);
3193 extern void set_rq_offline(struct rq *rq);
3194 
3195 extern bool sched_smp_initialized;
3196 
__revalidate_rq_state(struct task_struct * task,struct rq * rq,struct rq * lowest)3197 static inline bool __revalidate_rq_state(struct task_struct *task, struct rq *rq,
3198 					 struct rq *lowest)
3199 {
3200 	/*
3201 	 * We had to unlock the run queue. In the mean time, task could have
3202 	 * migrated already or had its affinity changed. Also make sure that it
3203 	 * wasn't scheduled on its rq. It is possible the task was scheduled,
3204 	 * set "migrate_disabled" and then got preempted, so we must check the
3205 	 * task migration disable flag here too.
3206 	 */
3207 	if (task_rq(task) != rq)
3208 		return false;
3209 
3210 	if (!cpumask_test_cpu(lowest->cpu, &task->cpus_mask))
3211 		return false;
3212 
3213 	if (task_on_cpu(rq, task))
3214 		return false;
3215 
3216 	if (is_migration_disabled(task))
3217 		return false;
3218 
3219 	if (!task_on_rq_queued(task))
3220 		return false;
3221 
3222 	return true;
3223 }
3224 
3225 #else /* !CONFIG_SMP: */
3226 
3227 /*
3228  * double_rq_lock - safely lock two runqueues
3229  *
3230  * Note this does not disable interrupts like task_rq_lock,
3231  * you need to do so manually before calling.
3232  */
double_rq_lock(struct rq * rq1,struct rq * rq2)3233 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
3234 	__acquires(rq1->lock)
3235 	__acquires(rq2->lock)
3236 {
3237 	WARN_ON_ONCE(!irqs_disabled());
3238 	WARN_ON_ONCE(rq1 != rq2);
3239 	raw_spin_rq_lock(rq1);
3240 	__acquire(rq2->lock);	/* Fake it out ;) */
3241 	double_rq_clock_clear_update(rq1, rq2);
3242 }
3243 
3244 /*
3245  * double_rq_unlock - safely unlock two runqueues
3246  *
3247  * Note this does not restore interrupts like task_rq_unlock,
3248  * you need to do so manually after calling.
3249  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)3250 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3251 	__releases(rq1->lock)
3252 	__releases(rq2->lock)
3253 {
3254 	WARN_ON_ONCE(rq1 != rq2);
3255 	raw_spin_rq_unlock(rq1);
3256 	__release(rq2->lock);
3257 }
3258 
3259 #endif /* !CONFIG_SMP */
3260 
3261 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
3262 		    double_rq_lock(_T->lock, _T->lock2),
3263 		    double_rq_unlock(_T->lock, _T->lock2))
3264 
3265 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
3266 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
3267 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
3268 
3269 #ifdef	CONFIG_SCHED_DEBUG
3270 extern bool sched_debug_verbose;
3271 
3272 extern void print_cfs_stats(struct seq_file *m, int cpu);
3273 extern void print_rt_stats(struct seq_file *m, int cpu);
3274 extern void print_dl_stats(struct seq_file *m, int cpu);
3275 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
3276 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
3277 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
3278 
3279 extern void resched_latency_warn(int cpu, u64 latency);
3280 # ifdef CONFIG_NUMA_BALANCING
3281 extern void show_numa_stats(struct task_struct *p, struct seq_file *m);
3282 extern void
3283 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
3284 		 unsigned long tpf, unsigned long gsf, unsigned long gpf);
3285 # endif /* CONFIG_NUMA_BALANCING */
3286 #else /* !CONFIG_SCHED_DEBUG: */
resched_latency_warn(int cpu,u64 latency)3287 static inline void resched_latency_warn(int cpu, u64 latency) { }
3288 #endif /* !CONFIG_SCHED_DEBUG */
3289 
3290 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
3291 extern void init_rt_rq(struct rt_rq *rt_rq);
3292 extern void init_dl_rq(struct dl_rq *dl_rq);
3293 
3294 extern void cfs_bandwidth_usage_inc(void);
3295 extern void cfs_bandwidth_usage_dec(void);
3296 
3297 #ifdef CONFIG_NO_HZ_COMMON
3298 
3299 #define NOHZ_BALANCE_KICK_BIT	0
3300 #define NOHZ_STATS_KICK_BIT	1
3301 #define NOHZ_NEWILB_KICK_BIT	2
3302 #define NOHZ_NEXT_KICK_BIT	3
3303 
3304 /* Run sched_balance_domains() */
3305 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
3306 /* Update blocked load */
3307 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
3308 /* Update blocked load when entering idle */
3309 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
3310 /* Update nohz.next_balance */
3311 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
3312 
3313 #define NOHZ_KICK_MASK		(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
3314 
3315 #define nohz_flags(cpu)		(&cpu_rq(cpu)->nohz_flags)
3316 
3317 extern void nohz_balance_exit_idle(struct rq *rq);
3318 #else /* !CONFIG_NO_HZ_COMMON: */
nohz_balance_exit_idle(struct rq * rq)3319 static inline void nohz_balance_exit_idle(struct rq *rq) { }
3320 #endif /* !CONFIG_NO_HZ_COMMON */
3321 
3322 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
3323 extern void nohz_run_idle_balance(int cpu);
3324 #else
nohz_run_idle_balance(int cpu)3325 static inline void nohz_run_idle_balance(int cpu) { }
3326 #endif
3327 
3328 #include "stats.h"
3329 
3330 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
3331 
3332 extern void __sched_core_account_forceidle(struct rq *rq);
3333 
sched_core_account_forceidle(struct rq * rq)3334 static inline void sched_core_account_forceidle(struct rq *rq)
3335 {
3336 	if (schedstat_enabled())
3337 		__sched_core_account_forceidle(rq);
3338 }
3339 
3340 extern void __sched_core_tick(struct rq *rq);
3341 
sched_core_tick(struct rq * rq)3342 static inline void sched_core_tick(struct rq *rq)
3343 {
3344 	if (sched_core_enabled(rq) && schedstat_enabled())
3345 		__sched_core_tick(rq);
3346 }
3347 
3348 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */
3349 
sched_core_account_forceidle(struct rq * rq)3350 static inline void sched_core_account_forceidle(struct rq *rq) { }
3351 
sched_core_tick(struct rq * rq)3352 static inline void sched_core_tick(struct rq *rq) { }
3353 
3354 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */
3355 
3356 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3357 
3358 struct irqtime {
3359 	u64			total;
3360 	u64			tick_delta;
3361 	u64			irq_start_time;
3362 	struct u64_stats_sync	sync;
3363 };
3364 
3365 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
3366 
3367 /*
3368  * Returns the irqtime minus the softirq time computed by ksoftirqd.
3369  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
3370  * and never move forward.
3371  */
irq_time_read(int cpu)3372 static inline u64 irq_time_read(int cpu)
3373 {
3374 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
3375 	unsigned int seq;
3376 	u64 total;
3377 
3378 	do {
3379 		seq = __u64_stats_fetch_begin(&irqtime->sync);
3380 		total = irqtime->total;
3381 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
3382 
3383 	return total;
3384 }
3385 
3386 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3387 
3388 #ifdef CONFIG_CPU_FREQ
3389 
3390 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
3391 
3392 /**
3393  * cpufreq_update_util - Take a note about CPU utilization changes.
3394  * @rq: Runqueue to carry out the update for.
3395  * @flags: Update reason flags.
3396  *
3397  * This function is called by the scheduler on the CPU whose utilization is
3398  * being updated.
3399  *
3400  * It can only be called from RCU-sched read-side critical sections.
3401  *
3402  * The way cpufreq is currently arranged requires it to evaluate the CPU
3403  * performance state (frequency/voltage) on a regular basis to prevent it from
3404  * being stuck in a completely inadequate performance level for too long.
3405  * That is not guaranteed to happen if the updates are only triggered from CFS
3406  * and DL, though, because they may not be coming in if only RT tasks are
3407  * active all the time (or there are RT tasks only).
3408  *
3409  * As a workaround for that issue, this function is called periodically by the
3410  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
3411  * but that really is a band-aid.  Going forward it should be replaced with
3412  * solutions targeted more specifically at RT tasks.
3413  */
cpufreq_update_util(struct rq * rq,unsigned int flags)3414 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
3415 {
3416 	struct update_util_data *data;
3417 
3418 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
3419 						  cpu_of(rq)));
3420 	if (data)
3421 		data->func(data, rq_clock(rq), flags);
3422 }
3423 #else /* !CONFIG_CPU_FREQ: */
cpufreq_update_util(struct rq * rq,unsigned int flags)3424 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { }
3425 #endif /* !CONFIG_CPU_FREQ */
3426 
3427 #ifdef arch_scale_freq_capacity
3428 # ifndef arch_scale_freq_invariant
3429 #  define arch_scale_freq_invariant()	true
3430 # endif
3431 #else
3432 # define arch_scale_freq_invariant()	false
3433 #endif
3434 
3435 #ifdef CONFIG_SMP
3436 
3437 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3438 				 unsigned long *min,
3439 				 unsigned long *max);
3440 
3441 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
3442 				 unsigned long min,
3443 				 unsigned long max);
3444 
3445 
3446 /*
3447  * Verify the fitness of task @p to run on @cpu taking into account the
3448  * CPU original capacity and the runtime/deadline ratio of the task.
3449  *
3450  * The function will return true if the original capacity of @cpu is
3451  * greater than or equal to task's deadline density right shifted by
3452  * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3453  */
dl_task_fits_capacity(struct task_struct * p,int cpu)3454 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3455 {
3456 	unsigned long cap = arch_scale_cpu_capacity(cpu);
3457 
3458 	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3459 }
3460 
cpu_bw_dl(struct rq * rq)3461 static inline unsigned long cpu_bw_dl(struct rq *rq)
3462 {
3463 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3464 }
3465 
cpu_util_dl(struct rq * rq)3466 static inline unsigned long cpu_util_dl(struct rq *rq)
3467 {
3468 	return READ_ONCE(rq->avg_dl.util_avg);
3469 }
3470 
3471 
3472 extern unsigned long cpu_util_cfs(int cpu);
3473 extern unsigned long cpu_util_cfs_boost(int cpu);
3474 
cpu_util_rt(struct rq * rq)3475 static inline unsigned long cpu_util_rt(struct rq *rq)
3476 {
3477 	return READ_ONCE(rq->avg_rt.util_avg);
3478 }
3479 
3480 #else /* !CONFIG_SMP */
update_other_load_avgs(struct rq * rq)3481 static inline bool update_other_load_avgs(struct rq *rq) { return false; }
3482 #endif /* CONFIG_SMP */
3483 
3484 #ifdef CONFIG_UCLAMP_TASK
3485 
3486 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3487 
3488 /*
3489  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3490  * by default in the fast path and only gets turned on once userspace performs
3491  * an operation that requires it.
3492  *
3493  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3494  * hence is active.
3495  */
uclamp_is_used(void)3496 static inline bool uclamp_is_used(void)
3497 {
3498 	return static_branch_likely(&sched_uclamp_used);
3499 }
3500 
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3501 static inline unsigned long uclamp_rq_get(struct rq *rq,
3502 					  enum uclamp_id clamp_id)
3503 {
3504 	return READ_ONCE(rq->uclamp[clamp_id].value);
3505 }
3506 
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3507 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3508 				 unsigned int value)
3509 {
3510 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3511 }
3512 
uclamp_rq_is_idle(struct rq * rq)3513 static inline bool uclamp_rq_is_idle(struct rq *rq)
3514 {
3515 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3516 }
3517 
3518 /* Is the rq being capped/throttled by uclamp_max? */
uclamp_rq_is_capped(struct rq * rq)3519 static inline bool uclamp_rq_is_capped(struct rq *rq)
3520 {
3521 	unsigned long rq_util;
3522 	unsigned long max_util;
3523 
3524 	if (!uclamp_is_used())
3525 		return false;
3526 
3527 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3528 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3529 
3530 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3531 }
3532 
3533 #define for_each_clamp_id(clamp_id) \
3534 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
3535 
3536 extern unsigned int sysctl_sched_uclamp_util_min_rt_default;
3537 
3538 
uclamp_none(enum uclamp_id clamp_id)3539 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
3540 {
3541 	if (clamp_id == UCLAMP_MIN)
3542 		return 0;
3543 	return SCHED_CAPACITY_SCALE;
3544 }
3545 
3546 /* Integer rounded range for each bucket */
3547 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
3548 
uclamp_bucket_id(unsigned int clamp_value)3549 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
3550 {
3551 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
3552 }
3553 
3554 static inline void
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)3555 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined)
3556 {
3557 	uc_se->value = value;
3558 	uc_se->bucket_id = uclamp_bucket_id(value);
3559 	uc_se->user_defined = user_defined;
3560 }
3561 
3562 #else /* !CONFIG_UCLAMP_TASK: */
3563 
3564 static inline unsigned long
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)3565 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
3566 {
3567 	if (clamp_id == UCLAMP_MIN)
3568 		return 0;
3569 
3570 	return SCHED_CAPACITY_SCALE;
3571 }
3572 
uclamp_rq_is_capped(struct rq * rq)3573 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3574 
uclamp_is_used(void)3575 static inline bool uclamp_is_used(void)
3576 {
3577 	return false;
3578 }
3579 
3580 static inline unsigned long
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3581 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id)
3582 {
3583 	if (clamp_id == UCLAMP_MIN)
3584 		return 0;
3585 
3586 	return SCHED_CAPACITY_SCALE;
3587 }
3588 
3589 static inline void
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3590 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value)
3591 {
3592 }
3593 
uclamp_rq_is_idle(struct rq * rq)3594 static inline bool uclamp_rq_is_idle(struct rq *rq)
3595 {
3596 	return false;
3597 }
3598 
3599 #endif /* !CONFIG_UCLAMP_TASK */
3600 
3601 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3602 
cpu_util_irq(struct rq * rq)3603 static inline unsigned long cpu_util_irq(struct rq *rq)
3604 {
3605 	return READ_ONCE(rq->avg_irq.util_avg);
3606 }
3607 
3608 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3609 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3610 {
3611 	util *= (max - irq);
3612 	util /= max;
3613 
3614 	return util;
3615 
3616 }
3617 
3618 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */
3619 
cpu_util_irq(struct rq * rq)3620 static inline unsigned long cpu_util_irq(struct rq *rq)
3621 {
3622 	return 0;
3623 }
3624 
3625 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3626 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3627 {
3628 	return util;
3629 }
3630 
3631 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */
3632 
3633 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3634 
3635 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3636 
3637 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3638 
sched_energy_enabled(void)3639 static inline bool sched_energy_enabled(void)
3640 {
3641 	return static_branch_unlikely(&sched_energy_present);
3642 }
3643 
3644 extern struct cpufreq_governor schedutil_gov;
3645 
3646 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3647 
3648 #define perf_domain_span(pd) NULL
3649 
sched_energy_enabled(void)3650 static inline bool sched_energy_enabled(void) { return false; }
3651 
3652 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3653 
3654 #ifdef CONFIG_MEMBARRIER
3655 
3656 /*
3657  * The scheduler provides memory barriers required by membarrier between:
3658  * - prior user-space memory accesses and store to rq->membarrier_state,
3659  * - store to rq->membarrier_state and following user-space memory accesses.
3660  * In the same way it provides those guarantees around store to rq->curr.
3661  */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3662 static inline void membarrier_switch_mm(struct rq *rq,
3663 					struct mm_struct *prev_mm,
3664 					struct mm_struct *next_mm)
3665 {
3666 	int membarrier_state;
3667 
3668 	if (prev_mm == next_mm)
3669 		return;
3670 
3671 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3672 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3673 		return;
3674 
3675 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3676 }
3677 
3678 #else /* !CONFIG_MEMBARRIER :*/
3679 
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3680 static inline void membarrier_switch_mm(struct rq *rq,
3681 					struct mm_struct *prev_mm,
3682 					struct mm_struct *next_mm)
3683 {
3684 }
3685 
3686 #endif /* !CONFIG_MEMBARRIER */
3687 
3688 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)3689 static inline bool is_per_cpu_kthread(struct task_struct *p)
3690 {
3691 	if (!(p->flags & PF_KTHREAD))
3692 		return false;
3693 
3694 	if (p->nr_cpus_allowed != 1)
3695 		return false;
3696 
3697 	return true;
3698 }
3699 #endif
3700 
3701 extern void swake_up_all_locked(struct swait_queue_head *q);
3702 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3703 
3704 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3705 
3706 #ifdef CONFIG_PREEMPT_DYNAMIC
3707 extern int preempt_dynamic_mode;
3708 extern int sched_dynamic_mode(const char *str);
3709 extern void sched_dynamic_update(int mode);
3710 #endif
3711 
3712 #ifdef CONFIG_SCHED_MM_CID
3713 
3714 #define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3715 #define MM_CID_SCAN_DELAY	100			/* 100ms */
3716 
3717 extern raw_spinlock_t cid_lock;
3718 extern int use_cid_lock;
3719 
3720 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3721 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3722 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3723 extern void init_sched_mm_cid(struct task_struct *t);
3724 
__mm_cid_put(struct mm_struct * mm,int cid)3725 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3726 {
3727 	if (cid < 0)
3728 		return;
3729 	cpumask_clear_cpu(cid, mm_cidmask(mm));
3730 }
3731 
3732 /*
3733  * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3734  * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3735  * be held to transition to other states.
3736  *
3737  * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3738  * consistent across CPUs, which prevents use of this_cpu_cmpxchg.
3739  */
mm_cid_put_lazy(struct task_struct * t)3740 static inline void mm_cid_put_lazy(struct task_struct *t)
3741 {
3742 	struct mm_struct *mm = t->mm;
3743 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3744 	int cid;
3745 
3746 	lockdep_assert_irqs_disabled();
3747 	cid = __this_cpu_read(pcpu_cid->cid);
3748 	if (!mm_cid_is_lazy_put(cid) ||
3749 	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3750 		return;
3751 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3752 }
3753 
mm_cid_pcpu_unset(struct mm_struct * mm)3754 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3755 {
3756 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3757 	int cid, res;
3758 
3759 	lockdep_assert_irqs_disabled();
3760 	cid = __this_cpu_read(pcpu_cid->cid);
3761 	for (;;) {
3762 		if (mm_cid_is_unset(cid))
3763 			return MM_CID_UNSET;
3764 		/*
3765 		 * Attempt transition from valid or lazy-put to unset.
3766 		 */
3767 		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3768 		if (res == cid)
3769 			break;
3770 		cid = res;
3771 	}
3772 	return cid;
3773 }
3774 
mm_cid_put(struct mm_struct * mm)3775 static inline void mm_cid_put(struct mm_struct *mm)
3776 {
3777 	int cid;
3778 
3779 	lockdep_assert_irqs_disabled();
3780 	cid = mm_cid_pcpu_unset(mm);
3781 	if (cid == MM_CID_UNSET)
3782 		return;
3783 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3784 }
3785 
__mm_cid_try_get(struct mm_struct * mm)3786 static inline int __mm_cid_try_get(struct mm_struct *mm)
3787 {
3788 	struct cpumask *cpumask;
3789 	int cid;
3790 
3791 	cpumask = mm_cidmask(mm);
3792 	/*
3793 	 * Retry finding first zero bit if the mask is temporarily
3794 	 * filled. This only happens during concurrent remote-clear
3795 	 * which owns a cid without holding a rq lock.
3796 	 */
3797 	for (;;) {
3798 		cid = cpumask_first_zero(cpumask);
3799 		if (cid < nr_cpu_ids)
3800 			break;
3801 		cpu_relax();
3802 	}
3803 	if (cpumask_test_and_set_cpu(cid, cpumask))
3804 		return -1;
3805 
3806 	return cid;
3807 }
3808 
3809 /*
3810  * Save a snapshot of the current runqueue time of this cpu
3811  * with the per-cpu cid value, allowing to estimate how recently it was used.
3812  */
mm_cid_snapshot_time(struct rq * rq,struct mm_struct * mm)3813 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3814 {
3815 	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3816 
3817 	lockdep_assert_rq_held(rq);
3818 	WRITE_ONCE(pcpu_cid->time, rq->clock);
3819 }
3820 
__mm_cid_get(struct rq * rq,struct mm_struct * mm)3821 static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
3822 {
3823 	int cid;
3824 
3825 	/*
3826 	 * All allocations (even those using the cid_lock) are lock-free. If
3827 	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3828 	 * guarantee forward progress.
3829 	 */
3830 	if (!READ_ONCE(use_cid_lock)) {
3831 		cid = __mm_cid_try_get(mm);
3832 		if (cid >= 0)
3833 			goto end;
3834 		raw_spin_lock(&cid_lock);
3835 	} else {
3836 		raw_spin_lock(&cid_lock);
3837 		cid = __mm_cid_try_get(mm);
3838 		if (cid >= 0)
3839 			goto unlock;
3840 	}
3841 
3842 	/*
3843 	 * cid concurrently allocated. Retry while forcing following
3844 	 * allocations to use the cid_lock to ensure forward progress.
3845 	 */
3846 	WRITE_ONCE(use_cid_lock, 1);
3847 	/*
3848 	 * Set use_cid_lock before allocation. Only care about program order
3849 	 * because this is only required for forward progress.
3850 	 */
3851 	barrier();
3852 	/*
3853 	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3854 	 * all newcoming allocations observe the use_cid_lock flag set.
3855 	 */
3856 	do {
3857 		cid = __mm_cid_try_get(mm);
3858 		cpu_relax();
3859 	} while (cid < 0);
3860 	/*
3861 	 * Allocate before clearing use_cid_lock. Only care about
3862 	 * program order because this is for forward progress.
3863 	 */
3864 	barrier();
3865 	WRITE_ONCE(use_cid_lock, 0);
3866 unlock:
3867 	raw_spin_unlock(&cid_lock);
3868 end:
3869 	mm_cid_snapshot_time(rq, mm);
3870 
3871 	return cid;
3872 }
3873 
mm_cid_get(struct rq * rq,struct mm_struct * mm)3874 static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
3875 {
3876 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3877 	struct cpumask *cpumask;
3878 	int cid;
3879 
3880 	lockdep_assert_rq_held(rq);
3881 	cpumask = mm_cidmask(mm);
3882 	cid = __this_cpu_read(pcpu_cid->cid);
3883 	if (mm_cid_is_valid(cid)) {
3884 		mm_cid_snapshot_time(rq, mm);
3885 		return cid;
3886 	}
3887 	if (mm_cid_is_lazy_put(cid)) {
3888 		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3889 			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3890 	}
3891 	cid = __mm_cid_get(rq, mm);
3892 	__this_cpu_write(pcpu_cid->cid, cid);
3893 
3894 	return cid;
3895 }
3896 
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3897 static inline void switch_mm_cid(struct rq *rq,
3898 				 struct task_struct *prev,
3899 				 struct task_struct *next)
3900 {
3901 	/*
3902 	 * Provide a memory barrier between rq->curr store and load of
3903 	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3904 	 *
3905 	 * Should be adapted if context_switch() is modified.
3906 	 */
3907 	if (!next->mm) {                                // to kernel
3908 		/*
3909 		 * user -> kernel transition does not guarantee a barrier, but
3910 		 * we can use the fact that it performs an atomic operation in
3911 		 * mmgrab().
3912 		 */
3913 		if (prev->mm)                           // from user
3914 			smp_mb__after_mmgrab();
3915 		/*
3916 		 * kernel -> kernel transition does not change rq->curr->mm
3917 		 * state. It stays NULL.
3918 		 */
3919 	} else {                                        // to user
3920 		/*
3921 		 * kernel -> user transition does not provide a barrier
3922 		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3923 		 * Provide it here.
3924 		 */
3925 		if (!prev->mm) {                        // from kernel
3926 			smp_mb();
3927 		} else {				// from user
3928 			/*
3929 			 * user->user transition relies on an implicit
3930 			 * memory barrier in switch_mm() when
3931 			 * current->mm changes. If the architecture
3932 			 * switch_mm() does not have an implicit memory
3933 			 * barrier, it is emitted here.  If current->mm
3934 			 * is unchanged, no barrier is needed.
3935 			 */
3936 			smp_mb__after_switch_mm();
3937 		}
3938 	}
3939 	if (prev->mm_cid_active) {
3940 		mm_cid_snapshot_time(rq, prev->mm);
3941 		mm_cid_put_lazy(prev);
3942 		prev->mm_cid = -1;
3943 	}
3944 	if (next->mm_cid_active)
3945 		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
3946 }
3947 
3948 #else /* !CONFIG_SCHED_MM_CID: */
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3949 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
sched_mm_cid_migrate_from(struct task_struct * t)3950 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)3951 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)3952 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
init_sched_mm_cid(struct task_struct * t)3953 static inline void init_sched_mm_cid(struct task_struct *t) { }
3954 #endif /* !CONFIG_SCHED_MM_CID */
3955 
3956 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3957 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3958 #ifdef CONFIG_SMP
3959 static inline
__move_queued_task_locked(struct rq * src_rq,struct rq * dst_rq,struct task_struct * task)3960 void __move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task)
3961 {
3962 	lockdep_assert_rq_held(src_rq);
3963 	lockdep_assert_rq_held(dst_rq);
3964 
3965 	deactivate_task(src_rq, task, 0);
3966 	set_task_cpu(task, dst_rq->cpu);
3967 	activate_task(dst_rq, task, 0);
3968 }
3969 
3970 static inline
__task_is_pushable(struct rq * rq,struct task_struct * p,int cpu)3971 int __task_is_pushable(struct rq *rq, struct task_struct *p, int cpu)
3972 {
3973 	if (!task_on_cpu(rq, p))
3974 		return cpumask_test_cpu(cpu, &p->cpus_mask) ? 1 : -1;
3975 
3976 	return 0;
3977 }
3978 #endif /* CONFIG_SMP */
3979 
3980 #ifdef CONFIG_SCHED_PROXY_EXEC
3981 void move_queued_task_locked(struct rq *rq, struct rq *dst_rq, struct task_struct *task);
3982 int task_is_pushable(struct rq *rq, struct task_struct *p, int cpu);
3983 struct task_struct *find_exec_ctx(struct rq *rq, struct task_struct *p);
3984 #else /* !CONFIG_SCHED_PROXY_EXEC */
3985 #ifdef CONFIG_SMP
3986 static inline
move_queued_task_locked(struct rq * rq,struct rq * dst_rq,struct task_struct * task)3987 void move_queued_task_locked(struct rq *rq, struct rq *dst_rq, struct task_struct *task)
3988 {
3989 	__move_queued_task_locked(rq, dst_rq, task);
3990 }
3991 
3992 static inline
task_is_pushable(struct rq * rq,struct task_struct * p,int cpu)3993 int task_is_pushable(struct rq *rq, struct task_struct *p, int cpu)
3994 {
3995 	return __task_is_pushable(rq, p, cpu);
3996 }
3997 #endif
3998 static inline
find_exec_ctx(struct rq * rq,struct task_struct * p)3999 struct task_struct *find_exec_ctx(struct rq *rq, struct task_struct *p)
4000 {
4001 	return p;
4002 }
4003 #endif /* CONFIG_SCHED_PROXY_EXEC */
4004 
4005 #ifdef CONFIG_RT_MUTEXES
4006 
__rt_effective_prio(struct task_struct * pi_task,int prio)4007 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4008 {
4009 	if (pi_task)
4010 		prio = min(prio, pi_task->prio);
4011 
4012 	return prio;
4013 }
4014 
rt_effective_prio(struct task_struct * p,int prio)4015 static inline int rt_effective_prio(struct task_struct *p, int prio)
4016 {
4017 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4018 
4019 	return __rt_effective_prio(pi_task, prio);
4020 }
4021 
4022 #else /* !CONFIG_RT_MUTEXES: */
4023 
rt_effective_prio(struct task_struct * p,int prio)4024 static inline int rt_effective_prio(struct task_struct *p, int prio)
4025 {
4026 	return prio;
4027 }
4028 
4029 #endif /* !CONFIG_RT_MUTEXES */
4030 
4031 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi);
4032 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
4033 extern const struct sched_class *__setscheduler_class(int policy, int prio);
4034 extern void set_load_weight(struct task_struct *p, bool update_load);
4035 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
4036 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags);
4037 
4038 extern void check_class_changing(struct rq *rq, struct task_struct *p,
4039 				 const struct sched_class *prev_class);
4040 extern void check_class_changed(struct rq *rq, struct task_struct *p,
4041 				const struct sched_class *prev_class,
4042 				int oldprio);
4043 
4044 #ifdef CONFIG_SMP
4045 extern struct balance_callback *splice_balance_callbacks(struct rq *rq);
4046 extern void balance_callbacks(struct rq *rq, struct balance_callback *head);
4047 #else
4048 
splice_balance_callbacks(struct rq * rq)4049 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
4050 {
4051 	return NULL;
4052 }
4053 
balance_callbacks(struct rq * rq,struct balance_callback * head)4054 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
4055 {
4056 }
4057 
4058 #endif
4059 
4060 #ifdef CONFIG_SCHED_CLASS_EXT
4061 /*
4062  * Used by SCX in the enable/disable paths to move tasks between sched_classes
4063  * and establish invariants.
4064  */
4065 struct sched_enq_and_set_ctx {
4066 	struct task_struct	*p;
4067 	int			queue_flags;
4068 	bool			queued;
4069 	bool			running;
4070 };
4071 
4072 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
4073 			    struct sched_enq_and_set_ctx *ctx);
4074 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx);
4075 
4076 #endif /* CONFIG_SCHED_CLASS_EXT */
4077 
4078 #include "ext.h"
4079 
4080 
4081 #ifdef CONFIG_RT_SOFTIRQ_AWARE_SCHED
4082 extern bool cpu_busy_with_softirqs(int cpu);
4083 #else
cpu_busy_with_softirqs(int cpu)4084 static inline bool cpu_busy_with_softirqs(int cpu)
4085 {
4086 	return false;
4087 }
4088 #endif /* CONFIG_RT_SOFTIRQ_AWARE_SCHED */
4089 
4090 #endif /* _KERNEL_SCHED_SCHED_H */
4091