1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * High-resolution kernel timers
8 *
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
12 *
13 * Started by: Thomas Gleixner and Ingo Molnar
14 *
15 * Credits:
16 * Based on the original timer wheel code
17 *
18 * Help, testing, suggestions, bugfixes, improvements were
19 * provided by:
20 *
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22 * et. al.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/sched/isolation.h>
42 #include <linux/timer.h>
43 #include <linux/freezer.h>
44 #include <linux/compat.h>
45
46 #include <linux/uaccess.h>
47
48 #include <trace/events/timer.h>
49 #include <trace/hooks/syscall_check.h>
50
51 #include "tick-internal.h"
52
53 EXPORT_TRACEPOINT_SYMBOL_GPL(hrtimer_expire_entry);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(hrtimer_expire_exit);
55
56 /*
57 * Masks for selecting the soft and hard context timers from
58 * cpu_base->active
59 */
60 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
61 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
62 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
63 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
64
65 static void retrigger_next_event(void *arg);
66
67 /*
68 * The timer bases:
69 *
70 * There are more clockids than hrtimer bases. Thus, we index
71 * into the timer bases by the hrtimer_base_type enum. When trying
72 * to reach a base using a clockid, hrtimer_clockid_to_base()
73 * is used to convert from clockid to the proper hrtimer_base_type.
74 */
75 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
76 {
77 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
78 .clock_base =
79 {
80 {
81 .index = HRTIMER_BASE_MONOTONIC,
82 .clockid = CLOCK_MONOTONIC,
83 .get_time = &ktime_get,
84 },
85 {
86 .index = HRTIMER_BASE_REALTIME,
87 .clockid = CLOCK_REALTIME,
88 .get_time = &ktime_get_real,
89 },
90 {
91 .index = HRTIMER_BASE_BOOTTIME,
92 .clockid = CLOCK_BOOTTIME,
93 .get_time = &ktime_get_boottime,
94 },
95 {
96 .index = HRTIMER_BASE_TAI,
97 .clockid = CLOCK_TAI,
98 .get_time = &ktime_get_clocktai,
99 },
100 {
101 .index = HRTIMER_BASE_MONOTONIC_SOFT,
102 .clockid = CLOCK_MONOTONIC,
103 .get_time = &ktime_get,
104 },
105 {
106 .index = HRTIMER_BASE_REALTIME_SOFT,
107 .clockid = CLOCK_REALTIME,
108 .get_time = &ktime_get_real,
109 },
110 {
111 .index = HRTIMER_BASE_BOOTTIME_SOFT,
112 .clockid = CLOCK_BOOTTIME,
113 .get_time = &ktime_get_boottime,
114 },
115 {
116 .index = HRTIMER_BASE_TAI_SOFT,
117 .clockid = CLOCK_TAI,
118 .get_time = &ktime_get_clocktai,
119 },
120 },
121 .csd = CSD_INIT(retrigger_next_event, NULL)
122 };
123
hrtimer_base_is_online(struct hrtimer_cpu_base * base)124 static inline bool hrtimer_base_is_online(struct hrtimer_cpu_base *base)
125 {
126 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
127 return true;
128 else
129 return likely(base->online);
130 }
131
132 /*
133 * Functions and macros which are different for UP/SMP systems are kept in a
134 * single place
135 */
136 #ifdef CONFIG_SMP
137
138 /*
139 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
140 * such that hrtimer_callback_running() can unconditionally dereference
141 * timer->base->cpu_base
142 */
143 static struct hrtimer_cpu_base migration_cpu_base = {
144 .clock_base = { {
145 .cpu_base = &migration_cpu_base,
146 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
147 &migration_cpu_base.lock),
148 }, },
149 };
150
151 #define migration_base migration_cpu_base.clock_base[0]
152
153 /*
154 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
155 * means that all timers which are tied to this base via timer->base are
156 * locked, and the base itself is locked too.
157 *
158 * So __run_timers/migrate_timers can safely modify all timers which could
159 * be found on the lists/queues.
160 *
161 * When the timer's base is locked, and the timer removed from list, it is
162 * possible to set timer->base = &migration_base and drop the lock: the timer
163 * remains locked.
164 */
165 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)166 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
167 unsigned long *flags)
168 __acquires(&timer->base->lock)
169 {
170 struct hrtimer_clock_base *base;
171
172 for (;;) {
173 base = READ_ONCE(timer->base);
174 if (likely(base != &migration_base)) {
175 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
176 if (likely(base == timer->base))
177 return base;
178 /* The timer has migrated to another CPU: */
179 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
180 }
181 cpu_relax();
182 }
183 }
184
185 /*
186 * Check if the elected target is suitable considering its next
187 * event and the hotplug state of the current CPU.
188 *
189 * If the elected target is remote and its next event is after the timer
190 * to queue, then a remote reprogram is necessary. However there is no
191 * guarantee the IPI handling the operation would arrive in time to meet
192 * the high resolution deadline. In this case the local CPU becomes a
193 * preferred target, unless it is offline.
194 *
195 * High and low resolution modes are handled the same way for simplicity.
196 *
197 * Called with cpu_base->lock of target cpu held.
198 */
hrtimer_suitable_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base,struct hrtimer_cpu_base * new_cpu_base,struct hrtimer_cpu_base * this_cpu_base)199 static bool hrtimer_suitable_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base,
200 struct hrtimer_cpu_base *new_cpu_base,
201 struct hrtimer_cpu_base *this_cpu_base)
202 {
203 ktime_t expires;
204
205 /*
206 * The local CPU clockevent can be reprogrammed. Also get_target_base()
207 * guarantees it is online.
208 */
209 if (new_cpu_base == this_cpu_base)
210 return true;
211
212 /*
213 * The offline local CPU can't be the default target if the
214 * next remote target event is after this timer. Keep the
215 * elected new base. An IPI will we issued to reprogram
216 * it as a last resort.
217 */
218 if (!hrtimer_base_is_online(this_cpu_base))
219 return true;
220
221 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
222
223 return expires >= new_base->cpu_base->expires_next;
224 }
225
get_target_base(struct hrtimer_cpu_base * base,int pinned)226 static inline struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, int pinned)
227 {
228 if (!hrtimer_base_is_online(base)) {
229 int cpu = cpumask_any_and(cpu_online_mask, housekeeping_cpumask(HK_TYPE_TIMER));
230
231 return &per_cpu(hrtimer_bases, cpu);
232 }
233
234 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
235 if (static_branch_likely(&timers_migration_enabled) && !pinned)
236 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
237 #endif
238 return base;
239 }
240
241 /*
242 * We switch the timer base to a power-optimized selected CPU target,
243 * if:
244 * - NO_HZ_COMMON is enabled
245 * - timer migration is enabled
246 * - the timer callback is not running
247 * - the timer is not the first expiring timer on the new target
248 *
249 * If one of the above requirements is not fulfilled we move the timer
250 * to the current CPU or leave it on the previously assigned CPU if
251 * the timer callback is currently running.
252 */
253 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)254 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
255 int pinned)
256 {
257 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
258 struct hrtimer_clock_base *new_base;
259 int basenum = base->index;
260
261 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
262 new_cpu_base = get_target_base(this_cpu_base, pinned);
263 again:
264 new_base = &new_cpu_base->clock_base[basenum];
265
266 if (base != new_base) {
267 /*
268 * We are trying to move timer to new_base.
269 * However we can't change timer's base while it is running,
270 * so we keep it on the same CPU. No hassle vs. reprogramming
271 * the event source in the high resolution case. The softirq
272 * code will take care of this when the timer function has
273 * completed. There is no conflict as we hold the lock until
274 * the timer is enqueued.
275 */
276 if (unlikely(hrtimer_callback_running(timer)))
277 return base;
278
279 /* See the comment in lock_hrtimer_base() */
280 WRITE_ONCE(timer->base, &migration_base);
281 raw_spin_unlock(&base->cpu_base->lock);
282 raw_spin_lock(&new_base->cpu_base->lock);
283
284 if (!hrtimer_suitable_target(timer, new_base, new_cpu_base,
285 this_cpu_base)) {
286 raw_spin_unlock(&new_base->cpu_base->lock);
287 raw_spin_lock(&base->cpu_base->lock);
288 new_cpu_base = this_cpu_base;
289 WRITE_ONCE(timer->base, base);
290 goto again;
291 }
292 WRITE_ONCE(timer->base, new_base);
293 } else {
294 if (!hrtimer_suitable_target(timer, new_base, new_cpu_base, this_cpu_base)) {
295 new_cpu_base = this_cpu_base;
296 goto again;
297 }
298 }
299 return new_base;
300 }
301
302 #else /* CONFIG_SMP */
303
304 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)305 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
306 __acquires(&timer->base->cpu_base->lock)
307 {
308 struct hrtimer_clock_base *base = timer->base;
309
310 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
311
312 return base;
313 }
314
315 # define switch_hrtimer_base(t, b, p) (b)
316
317 #endif /* !CONFIG_SMP */
318
319 /*
320 * Functions for the union type storage format of ktime_t which are
321 * too large for inlining:
322 */
323 #if BITS_PER_LONG < 64
324 /*
325 * Divide a ktime value by a nanosecond value
326 */
__ktime_divns(const ktime_t kt,s64 div)327 s64 __ktime_divns(const ktime_t kt, s64 div)
328 {
329 int sft = 0;
330 s64 dclc;
331 u64 tmp;
332
333 dclc = ktime_to_ns(kt);
334 tmp = dclc < 0 ? -dclc : dclc;
335
336 /* Make sure the divisor is less than 2^32: */
337 while (div >> 32) {
338 sft++;
339 div >>= 1;
340 }
341 tmp >>= sft;
342 do_div(tmp, (u32) div);
343 return dclc < 0 ? -tmp : tmp;
344 }
345 EXPORT_SYMBOL_GPL(__ktime_divns);
346 #endif /* BITS_PER_LONG >= 64 */
347
348 /*
349 * Add two ktime values and do a safety check for overflow:
350 */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)351 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
352 {
353 ktime_t res = ktime_add_unsafe(lhs, rhs);
354
355 /*
356 * We use KTIME_SEC_MAX here, the maximum timeout which we can
357 * return to user space in a timespec:
358 */
359 if (res < 0 || res < lhs || res < rhs)
360 res = ktime_set(KTIME_SEC_MAX, 0);
361
362 return res;
363 }
364
365 EXPORT_SYMBOL_GPL(ktime_add_safe);
366
367 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
368
369 static const struct debug_obj_descr hrtimer_debug_descr;
370
hrtimer_debug_hint(void * addr)371 static void *hrtimer_debug_hint(void *addr)
372 {
373 return ((struct hrtimer *) addr)->function;
374 }
375
376 /*
377 * fixup_init is called when:
378 * - an active object is initialized
379 */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)380 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
381 {
382 struct hrtimer *timer = addr;
383
384 switch (state) {
385 case ODEBUG_STATE_ACTIVE:
386 hrtimer_cancel(timer);
387 debug_object_init(timer, &hrtimer_debug_descr);
388 return true;
389 default:
390 return false;
391 }
392 }
393
394 /*
395 * fixup_activate is called when:
396 * - an active object is activated
397 * - an unknown non-static object is activated
398 */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)399 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
400 {
401 switch (state) {
402 case ODEBUG_STATE_ACTIVE:
403 WARN_ON(1);
404 fallthrough;
405 default:
406 return false;
407 }
408 }
409
410 /*
411 * fixup_free is called when:
412 * - an active object is freed
413 */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)414 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
415 {
416 struct hrtimer *timer = addr;
417
418 switch (state) {
419 case ODEBUG_STATE_ACTIVE:
420 hrtimer_cancel(timer);
421 debug_object_free(timer, &hrtimer_debug_descr);
422 return true;
423 default:
424 return false;
425 }
426 }
427
428 static const struct debug_obj_descr hrtimer_debug_descr = {
429 .name = "hrtimer",
430 .debug_hint = hrtimer_debug_hint,
431 .fixup_init = hrtimer_fixup_init,
432 .fixup_activate = hrtimer_fixup_activate,
433 .fixup_free = hrtimer_fixup_free,
434 };
435
debug_hrtimer_init(struct hrtimer * timer)436 static inline void debug_hrtimer_init(struct hrtimer *timer)
437 {
438 debug_object_init(timer, &hrtimer_debug_descr);
439 }
440
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)441 static inline void debug_hrtimer_activate(struct hrtimer *timer,
442 enum hrtimer_mode mode)
443 {
444 debug_object_activate(timer, &hrtimer_debug_descr);
445 }
446
debug_hrtimer_deactivate(struct hrtimer * timer)447 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
448 {
449 debug_object_deactivate(timer, &hrtimer_debug_descr);
450 }
451
452 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
453 enum hrtimer_mode mode);
454
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)455 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
456 enum hrtimer_mode mode)
457 {
458 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
459 __hrtimer_init(timer, clock_id, mode);
460 }
461 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
462
463 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
464 clockid_t clock_id, enum hrtimer_mode mode);
465
hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)466 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
467 clockid_t clock_id, enum hrtimer_mode mode)
468 {
469 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
470 __hrtimer_init_sleeper(sl, clock_id, mode);
471 }
472 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
473
destroy_hrtimer_on_stack(struct hrtimer * timer)474 void destroy_hrtimer_on_stack(struct hrtimer *timer)
475 {
476 debug_object_free(timer, &hrtimer_debug_descr);
477 }
478 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
479
480 #else
481
debug_hrtimer_init(struct hrtimer * timer)482 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)483 static inline void debug_hrtimer_activate(struct hrtimer *timer,
484 enum hrtimer_mode mode) { }
debug_hrtimer_deactivate(struct hrtimer * timer)485 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
486 #endif
487
488 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)489 debug_init(struct hrtimer *timer, clockid_t clockid,
490 enum hrtimer_mode mode)
491 {
492 debug_hrtimer_init(timer);
493 trace_hrtimer_init(timer, clockid, mode);
494 }
495
debug_activate(struct hrtimer * timer,enum hrtimer_mode mode)496 static inline void debug_activate(struct hrtimer *timer,
497 enum hrtimer_mode mode)
498 {
499 debug_hrtimer_activate(timer, mode);
500 trace_hrtimer_start(timer, mode);
501 }
502
debug_deactivate(struct hrtimer * timer)503 static inline void debug_deactivate(struct hrtimer *timer)
504 {
505 debug_hrtimer_deactivate(timer);
506 trace_hrtimer_cancel(timer);
507 }
508
509 static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base * cpu_base,unsigned int * active)510 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
511 {
512 unsigned int idx;
513
514 if (!*active)
515 return NULL;
516
517 idx = __ffs(*active);
518 *active &= ~(1U << idx);
519
520 return &cpu_base->clock_base[idx];
521 }
522
523 #define for_each_active_base(base, cpu_base, active) \
524 while ((base = __next_base((cpu_base), &(active))))
525
__hrtimer_next_event_base(struct hrtimer_cpu_base * cpu_base,const struct hrtimer * exclude,unsigned int active,ktime_t expires_next)526 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
527 const struct hrtimer *exclude,
528 unsigned int active,
529 ktime_t expires_next)
530 {
531 struct hrtimer_clock_base *base;
532 ktime_t expires;
533
534 for_each_active_base(base, cpu_base, active) {
535 struct timerqueue_node *next;
536 struct hrtimer *timer;
537
538 next = timerqueue_getnext(&base->active);
539 timer = container_of(next, struct hrtimer, node);
540 if (timer == exclude) {
541 /* Get to the next timer in the queue. */
542 next = timerqueue_iterate_next(next);
543 if (!next)
544 continue;
545
546 timer = container_of(next, struct hrtimer, node);
547 }
548 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
549 if (expires < expires_next) {
550 expires_next = expires;
551
552 /* Skip cpu_base update if a timer is being excluded. */
553 if (exclude)
554 continue;
555
556 if (timer->is_soft)
557 cpu_base->softirq_next_timer = timer;
558 else
559 cpu_base->next_timer = timer;
560 }
561 }
562 /*
563 * clock_was_set() might have changed base->offset of any of
564 * the clock bases so the result might be negative. Fix it up
565 * to prevent a false positive in clockevents_program_event().
566 */
567 if (expires_next < 0)
568 expires_next = 0;
569 return expires_next;
570 }
571
572 /*
573 * Recomputes cpu_base::*next_timer and returns the earliest expires_next
574 * but does not set cpu_base::*expires_next, that is done by
575 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
576 * cpu_base::*expires_next right away, reprogramming logic would no longer
577 * work.
578 *
579 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
580 * those timers will get run whenever the softirq gets handled, at the end of
581 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
582 *
583 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
584 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
585 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
586 *
587 * @active_mask must be one of:
588 * - HRTIMER_ACTIVE_ALL,
589 * - HRTIMER_ACTIVE_SOFT, or
590 * - HRTIMER_ACTIVE_HARD.
591 */
592 static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base * cpu_base,unsigned int active_mask)593 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
594 {
595 unsigned int active;
596 struct hrtimer *next_timer = NULL;
597 ktime_t expires_next = KTIME_MAX;
598
599 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
600 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
601 cpu_base->softirq_next_timer = NULL;
602 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
603 active, KTIME_MAX);
604
605 next_timer = cpu_base->softirq_next_timer;
606 }
607
608 if (active_mask & HRTIMER_ACTIVE_HARD) {
609 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
610 cpu_base->next_timer = next_timer;
611 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
612 expires_next);
613 }
614
615 return expires_next;
616 }
617
hrtimer_update_next_event(struct hrtimer_cpu_base * cpu_base)618 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
619 {
620 ktime_t expires_next, soft = KTIME_MAX;
621
622 /*
623 * If the soft interrupt has already been activated, ignore the
624 * soft bases. They will be handled in the already raised soft
625 * interrupt.
626 */
627 if (!cpu_base->softirq_activated) {
628 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
629 /*
630 * Update the soft expiry time. clock_settime() might have
631 * affected it.
632 */
633 cpu_base->softirq_expires_next = soft;
634 }
635
636 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
637 /*
638 * If a softirq timer is expiring first, update cpu_base->next_timer
639 * and program the hardware with the soft expiry time.
640 */
641 if (expires_next > soft) {
642 cpu_base->next_timer = cpu_base->softirq_next_timer;
643 expires_next = soft;
644 }
645
646 return expires_next;
647 }
648
hrtimer_update_base(struct hrtimer_cpu_base * base)649 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
650 {
651 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
652 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
653 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
654
655 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
656 offs_real, offs_boot, offs_tai);
657
658 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
659 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
660 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
661
662 return now;
663 }
664
665 /*
666 * Is the high resolution mode active ?
667 */
hrtimer_hres_active(struct hrtimer_cpu_base * cpu_base)668 static inline int hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
669 {
670 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
671 cpu_base->hres_active : 0;
672 }
673
__hrtimer_reprogram(struct hrtimer_cpu_base * cpu_base,struct hrtimer * next_timer,ktime_t expires_next)674 static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
675 struct hrtimer *next_timer,
676 ktime_t expires_next)
677 {
678 cpu_base->expires_next = expires_next;
679
680 /*
681 * If hres is not active, hardware does not have to be
682 * reprogrammed yet.
683 *
684 * If a hang was detected in the last timer interrupt then we
685 * leave the hang delay active in the hardware. We want the
686 * system to make progress. That also prevents the following
687 * scenario:
688 * T1 expires 50ms from now
689 * T2 expires 5s from now
690 *
691 * T1 is removed, so this code is called and would reprogram
692 * the hardware to 5s from now. Any hrtimer_start after that
693 * will not reprogram the hardware due to hang_detected being
694 * set. So we'd effectively block all timers until the T2 event
695 * fires.
696 */
697 if (!hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
698 return;
699
700 tick_program_event(expires_next, 1);
701 }
702
703 /*
704 * Reprogram the event source with checking both queues for the
705 * next event
706 * Called with interrupts disabled and base->lock held
707 */
708 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)709 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
710 {
711 ktime_t expires_next;
712
713 expires_next = hrtimer_update_next_event(cpu_base);
714
715 if (skip_equal && expires_next == cpu_base->expires_next)
716 return;
717
718 __hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next);
719 }
720
721 /* High resolution timer related functions */
722 #ifdef CONFIG_HIGH_RES_TIMERS
723
724 /*
725 * High resolution timer enabled ?
726 */
727 static bool hrtimer_hres_enabled __read_mostly = true;
728 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
729 EXPORT_SYMBOL_GPL(hrtimer_resolution);
730
731 /*
732 * Enable / Disable high resolution mode
733 */
setup_hrtimer_hres(char * str)734 static int __init setup_hrtimer_hres(char *str)
735 {
736 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
737 }
738
739 __setup("highres=", setup_hrtimer_hres);
740
741 /*
742 * hrtimer_high_res_enabled - query, if the highres mode is enabled
743 */
hrtimer_is_hres_enabled(void)744 static inline int hrtimer_is_hres_enabled(void)
745 {
746 return hrtimer_hres_enabled;
747 }
748
749 /*
750 * Switch to high resolution mode
751 */
hrtimer_switch_to_hres(void)752 static void hrtimer_switch_to_hres(void)
753 {
754 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
755
756 if (tick_init_highres()) {
757 pr_warn("Could not switch to high resolution mode on CPU %u\n",
758 base->cpu);
759 return;
760 }
761 base->hres_active = 1;
762 hrtimer_resolution = HIGH_RES_NSEC;
763
764 tick_setup_sched_timer(true);
765 /* "Retrigger" the interrupt to get things going */
766 retrigger_next_event(NULL);
767 }
768
769 #else
770
hrtimer_is_hres_enabled(void)771 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)772 static inline void hrtimer_switch_to_hres(void) { }
773
774 #endif /* CONFIG_HIGH_RES_TIMERS */
775 /*
776 * Retrigger next event is called after clock was set with interrupts
777 * disabled through an SMP function call or directly from low level
778 * resume code.
779 *
780 * This is only invoked when:
781 * - CONFIG_HIGH_RES_TIMERS is enabled.
782 * - CONFIG_NOHZ_COMMON is enabled
783 *
784 * For the other cases this function is empty and because the call sites
785 * are optimized out it vanishes as well, i.e. no need for lots of
786 * #ifdeffery.
787 */
retrigger_next_event(void * arg)788 static void retrigger_next_event(void *arg)
789 {
790 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
791
792 /*
793 * When high resolution mode or nohz is active, then the offsets of
794 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the
795 * next tick will take care of that.
796 *
797 * If high resolution mode is active then the next expiring timer
798 * must be reevaluated and the clock event device reprogrammed if
799 * necessary.
800 *
801 * In the NOHZ case the update of the offset and the reevaluation
802 * of the next expiring timer is enough. The return from the SMP
803 * function call will take care of the reprogramming in case the
804 * CPU was in a NOHZ idle sleep.
805 *
806 * In periodic low resolution mode, the next softirq expiration
807 * must also be updated.
808 */
809 raw_spin_lock(&base->lock);
810 hrtimer_update_base(base);
811 if (hrtimer_hres_active(base))
812 hrtimer_force_reprogram(base, 0);
813 else
814 hrtimer_update_next_event(base);
815 raw_spin_unlock(&base->lock);
816 }
817
818 /*
819 * When a timer is enqueued and expires earlier than the already enqueued
820 * timers, we have to check, whether it expires earlier than the timer for
821 * which the clock event device was armed.
822 *
823 * Called with interrupts disabled and base->cpu_base.lock held
824 */
hrtimer_reprogram(struct hrtimer * timer,bool reprogram)825 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
826 {
827 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
828 struct hrtimer_clock_base *base = timer->base;
829 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
830
831 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
832
833 /*
834 * CLOCK_REALTIME timer might be requested with an absolute
835 * expiry time which is less than base->offset. Set it to 0.
836 */
837 if (expires < 0)
838 expires = 0;
839
840 if (timer->is_soft) {
841 /*
842 * soft hrtimer could be started on a remote CPU. In this
843 * case softirq_expires_next needs to be updated on the
844 * remote CPU. The soft hrtimer will not expire before the
845 * first hard hrtimer on the remote CPU -
846 * hrtimer_check_target() prevents this case.
847 */
848 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
849
850 if (timer_cpu_base->softirq_activated)
851 return;
852
853 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
854 return;
855
856 timer_cpu_base->softirq_next_timer = timer;
857 timer_cpu_base->softirq_expires_next = expires;
858
859 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
860 !reprogram)
861 return;
862 }
863
864 /*
865 * If the timer is not on the current cpu, we cannot reprogram
866 * the other cpus clock event device.
867 */
868 if (base->cpu_base != cpu_base)
869 return;
870
871 if (expires >= cpu_base->expires_next)
872 return;
873
874 /*
875 * If the hrtimer interrupt is running, then it will reevaluate the
876 * clock bases and reprogram the clock event device.
877 */
878 if (cpu_base->in_hrtirq)
879 return;
880
881 cpu_base->next_timer = timer;
882
883 __hrtimer_reprogram(cpu_base, timer, expires);
884 }
885
update_needs_ipi(struct hrtimer_cpu_base * cpu_base,unsigned int active)886 static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base,
887 unsigned int active)
888 {
889 struct hrtimer_clock_base *base;
890 unsigned int seq;
891 ktime_t expires;
892
893 /*
894 * Update the base offsets unconditionally so the following
895 * checks whether the SMP function call is required works.
896 *
897 * The update is safe even when the remote CPU is in the hrtimer
898 * interrupt or the hrtimer soft interrupt and expiring affected
899 * bases. Either it will see the update before handling a base or
900 * it will see it when it finishes the processing and reevaluates
901 * the next expiring timer.
902 */
903 seq = cpu_base->clock_was_set_seq;
904 hrtimer_update_base(cpu_base);
905
906 /*
907 * If the sequence did not change over the update then the
908 * remote CPU already handled it.
909 */
910 if (seq == cpu_base->clock_was_set_seq)
911 return false;
912
913 /*
914 * If the remote CPU is currently handling an hrtimer interrupt, it
915 * will reevaluate the first expiring timer of all clock bases
916 * before reprogramming. Nothing to do here.
917 */
918 if (cpu_base->in_hrtirq)
919 return false;
920
921 /*
922 * Walk the affected clock bases and check whether the first expiring
923 * timer in a clock base is moving ahead of the first expiring timer of
924 * @cpu_base. If so, the IPI must be invoked because per CPU clock
925 * event devices cannot be remotely reprogrammed.
926 */
927 active &= cpu_base->active_bases;
928
929 for_each_active_base(base, cpu_base, active) {
930 struct timerqueue_node *next;
931
932 next = timerqueue_getnext(&base->active);
933 expires = ktime_sub(next->expires, base->offset);
934 if (expires < cpu_base->expires_next)
935 return true;
936
937 /* Extra check for softirq clock bases */
938 if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT)
939 continue;
940 if (cpu_base->softirq_activated)
941 continue;
942 if (expires < cpu_base->softirq_expires_next)
943 return true;
944 }
945 return false;
946 }
947
948 /*
949 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and
950 * CLOCK_BOOTTIME (for late sleep time injection).
951 *
952 * This requires to update the offsets for these clocks
953 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this
954 * also requires to eventually reprogram the per CPU clock event devices
955 * when the change moves an affected timer ahead of the first expiring
956 * timer on that CPU. Obviously remote per CPU clock event devices cannot
957 * be reprogrammed. The other reason why an IPI has to be sent is when the
958 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets
959 * in the tick, which obviously might be stopped, so this has to bring out
960 * the remote CPU which might sleep in idle to get this sorted.
961 */
clock_was_set(unsigned int bases)962 void clock_was_set(unsigned int bases)
963 {
964 struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases);
965 cpumask_var_t mask;
966 int cpu;
967
968 if (!hrtimer_hres_active(cpu_base) && !tick_nohz_active)
969 goto out_timerfd;
970
971 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
972 on_each_cpu(retrigger_next_event, NULL, 1);
973 goto out_timerfd;
974 }
975
976 /* Avoid interrupting CPUs if possible */
977 cpus_read_lock();
978 for_each_online_cpu(cpu) {
979 unsigned long flags;
980
981 cpu_base = &per_cpu(hrtimer_bases, cpu);
982 raw_spin_lock_irqsave(&cpu_base->lock, flags);
983
984 if (update_needs_ipi(cpu_base, bases))
985 cpumask_set_cpu(cpu, mask);
986
987 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
988 }
989
990 preempt_disable();
991 smp_call_function_many(mask, retrigger_next_event, NULL, 1);
992 preempt_enable();
993 cpus_read_unlock();
994 free_cpumask_var(mask);
995
996 out_timerfd:
997 timerfd_clock_was_set();
998 }
999
clock_was_set_work(struct work_struct * work)1000 static void clock_was_set_work(struct work_struct *work)
1001 {
1002 clock_was_set(CLOCK_SET_WALL);
1003 }
1004
1005 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
1006
1007 /*
1008 * Called from timekeeping code to reprogram the hrtimer interrupt device
1009 * on all cpus and to notify timerfd.
1010 */
clock_was_set_delayed(void)1011 void clock_was_set_delayed(void)
1012 {
1013 schedule_work(&hrtimer_work);
1014 }
1015
1016 /*
1017 * Called during resume either directly from via timekeeping_resume()
1018 * or in the case of s2idle from tick_unfreeze() to ensure that the
1019 * hrtimers are up to date.
1020 */
hrtimers_resume_local(void)1021 void hrtimers_resume_local(void)
1022 {
1023 lockdep_assert_irqs_disabled();
1024 /* Retrigger on the local CPU */
1025 retrigger_next_event(NULL);
1026 }
1027
1028 /*
1029 * Counterpart to lock_hrtimer_base above:
1030 */
1031 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)1032 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
1033 __releases(&timer->base->cpu_base->lock)
1034 {
1035 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
1036 }
1037
1038 /**
1039 * hrtimer_forward() - forward the timer expiry
1040 * @timer: hrtimer to forward
1041 * @now: forward past this time
1042 * @interval: the interval to forward
1043 *
1044 * Forward the timer expiry so it will expire in the future.
1045 *
1046 * .. note::
1047 * This only updates the timer expiry value and does not requeue the timer.
1048 *
1049 * There is also a variant of the function hrtimer_forward_now().
1050 *
1051 * Context: Can be safely called from the callback function of @timer. If called
1052 * from other contexts @timer must neither be enqueued nor running the
1053 * callback and the caller needs to take care of serialization.
1054 *
1055 * Return: The number of overruns are returned.
1056 */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)1057 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
1058 {
1059 u64 orun = 1;
1060 ktime_t delta;
1061
1062 delta = ktime_sub(now, hrtimer_get_expires(timer));
1063
1064 if (delta < 0)
1065 return 0;
1066
1067 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
1068 return 0;
1069
1070 if (interval < hrtimer_resolution)
1071 interval = hrtimer_resolution;
1072
1073 if (unlikely(delta >= interval)) {
1074 s64 incr = ktime_to_ns(interval);
1075
1076 orun = ktime_divns(delta, incr);
1077 hrtimer_add_expires_ns(timer, incr * orun);
1078 if (hrtimer_get_expires_tv64(timer) > now)
1079 return orun;
1080 /*
1081 * This (and the ktime_add() below) is the
1082 * correction for exact:
1083 */
1084 orun++;
1085 }
1086 hrtimer_add_expires(timer, interval);
1087
1088 return orun;
1089 }
1090 EXPORT_SYMBOL_GPL(hrtimer_forward);
1091
1092 /*
1093 * enqueue_hrtimer - internal function to (re)start a timer
1094 *
1095 * The timer is inserted in expiry order. Insertion into the
1096 * red black tree is O(log(n)). Must hold the base lock.
1097 *
1098 * Returns 1 when the new timer is the leftmost timer in the tree.
1099 */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,enum hrtimer_mode mode)1100 static int enqueue_hrtimer(struct hrtimer *timer,
1101 struct hrtimer_clock_base *base,
1102 enum hrtimer_mode mode)
1103 {
1104 debug_activate(timer, mode);
1105 WARN_ON_ONCE(!base->cpu_base->online);
1106
1107 base->cpu_base->active_bases |= 1 << base->index;
1108
1109 /* Pairs with the lockless read in hrtimer_is_queued() */
1110 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
1111
1112 return timerqueue_add(&base->active, &timer->node);
1113 }
1114
1115 /*
1116 * __remove_hrtimer - internal function to remove a timer
1117 *
1118 * Caller must hold the base lock.
1119 *
1120 * High resolution timer mode reprograms the clock event device when the
1121 * timer is the one which expires next. The caller can disable this by setting
1122 * reprogram to zero. This is useful, when the context does a reprogramming
1123 * anyway (e.g. timer interrupt)
1124 */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,u8 newstate,int reprogram)1125 static void __remove_hrtimer(struct hrtimer *timer,
1126 struct hrtimer_clock_base *base,
1127 u8 newstate, int reprogram)
1128 {
1129 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1130 u8 state = timer->state;
1131
1132 /* Pairs with the lockless read in hrtimer_is_queued() */
1133 WRITE_ONCE(timer->state, newstate);
1134 if (!(state & HRTIMER_STATE_ENQUEUED))
1135 return;
1136
1137 if (!timerqueue_del(&base->active, &timer->node))
1138 cpu_base->active_bases &= ~(1 << base->index);
1139
1140 /*
1141 * Note: If reprogram is false we do not update
1142 * cpu_base->next_timer. This happens when we remove the first
1143 * timer on a remote cpu. No harm as we never dereference
1144 * cpu_base->next_timer. So the worst thing what can happen is
1145 * an superfluous call to hrtimer_force_reprogram() on the
1146 * remote cpu later on if the same timer gets enqueued again.
1147 */
1148 if (reprogram && timer == cpu_base->next_timer)
1149 hrtimer_force_reprogram(cpu_base, 1);
1150 }
1151
1152 /*
1153 * remove hrtimer, called with base lock held
1154 */
1155 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,bool restart,bool keep_local)1156 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1157 bool restart, bool keep_local)
1158 {
1159 u8 state = timer->state;
1160
1161 if (state & HRTIMER_STATE_ENQUEUED) {
1162 bool reprogram;
1163
1164 /*
1165 * Remove the timer and force reprogramming when high
1166 * resolution mode is active and the timer is on the current
1167 * CPU. If we remove a timer on another CPU, reprogramming is
1168 * skipped. The interrupt event on this CPU is fired and
1169 * reprogramming happens in the interrupt handler. This is a
1170 * rare case and less expensive than a smp call.
1171 */
1172 debug_deactivate(timer);
1173 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1174
1175 /*
1176 * If the timer is not restarted then reprogramming is
1177 * required if the timer is local. If it is local and about
1178 * to be restarted, avoid programming it twice (on removal
1179 * and a moment later when it's requeued).
1180 */
1181 if (!restart)
1182 state = HRTIMER_STATE_INACTIVE;
1183 else
1184 reprogram &= !keep_local;
1185
1186 __remove_hrtimer(timer, base, state, reprogram);
1187 return 1;
1188 }
1189 return 0;
1190 }
1191
hrtimer_update_lowres(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)1192 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1193 const enum hrtimer_mode mode)
1194 {
1195 #ifdef CONFIG_TIME_LOW_RES
1196 /*
1197 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1198 * granular time values. For relative timers we add hrtimer_resolution
1199 * (i.e. one jiffy) to prevent short timeouts.
1200 */
1201 timer->is_rel = mode & HRTIMER_MODE_REL;
1202 if (timer->is_rel)
1203 tim = ktime_add_safe(tim, hrtimer_resolution);
1204 #endif
1205 return tim;
1206 }
1207
1208 static void
hrtimer_update_softirq_timer(struct hrtimer_cpu_base * cpu_base,bool reprogram)1209 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1210 {
1211 ktime_t expires;
1212
1213 /*
1214 * Find the next SOFT expiration.
1215 */
1216 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1217
1218 /*
1219 * reprogramming needs to be triggered, even if the next soft
1220 * hrtimer expires at the same time than the next hard
1221 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1222 */
1223 if (expires == KTIME_MAX)
1224 return;
1225
1226 /*
1227 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1228 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1229 */
1230 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1231 }
1232
__hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode,struct hrtimer_clock_base * base)1233 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1234 u64 delta_ns, const enum hrtimer_mode mode,
1235 struct hrtimer_clock_base *base)
1236 {
1237 struct hrtimer_cpu_base *this_cpu_base = this_cpu_ptr(&hrtimer_bases);
1238 struct hrtimer_clock_base *new_base;
1239 bool force_local, first;
1240
1241 /*
1242 * If the timer is on the local cpu base and is the first expiring
1243 * timer then this might end up reprogramming the hardware twice
1244 * (on removal and on enqueue). To avoid that by prevent the
1245 * reprogram on removal, keep the timer local to the current CPU
1246 * and enforce reprogramming after it is queued no matter whether
1247 * it is the new first expiring timer again or not.
1248 */
1249 force_local = base->cpu_base == this_cpu_base;
1250 force_local &= base->cpu_base->next_timer == timer;
1251
1252 /*
1253 * Don't force local queuing if this enqueue happens on a unplugged
1254 * CPU after hrtimer_cpu_dying() has been invoked.
1255 */
1256 force_local &= this_cpu_base->online;
1257
1258 /*
1259 * Remove an active timer from the queue. In case it is not queued
1260 * on the current CPU, make sure that remove_hrtimer() updates the
1261 * remote data correctly.
1262 *
1263 * If it's on the current CPU and the first expiring timer, then
1264 * skip reprogramming, keep the timer local and enforce
1265 * reprogramming later if it was the first expiring timer. This
1266 * avoids programming the underlying clock event twice (once at
1267 * removal and once after enqueue).
1268 */
1269 remove_hrtimer(timer, base, true, force_local);
1270
1271 if (mode & HRTIMER_MODE_REL)
1272 tim = ktime_add_safe(tim, base->get_time());
1273
1274 tim = hrtimer_update_lowres(timer, tim, mode);
1275
1276 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1277
1278 /* Switch the timer base, if necessary: */
1279 if (!force_local) {
1280 new_base = switch_hrtimer_base(timer, base,
1281 mode & HRTIMER_MODE_PINNED);
1282 } else {
1283 new_base = base;
1284 }
1285
1286 first = enqueue_hrtimer(timer, new_base, mode);
1287 if (!force_local) {
1288 /*
1289 * If the current CPU base is online, then the timer is
1290 * never queued on a remote CPU if it would be the first
1291 * expiring timer there.
1292 */
1293 if (hrtimer_base_is_online(this_cpu_base))
1294 return first;
1295
1296 /*
1297 * Timer was enqueued remote because the current base is
1298 * already offline. If the timer is the first to expire,
1299 * kick the remote CPU to reprogram the clock event.
1300 */
1301 if (first) {
1302 struct hrtimer_cpu_base *new_cpu_base = new_base->cpu_base;
1303
1304 smp_call_function_single_async(new_cpu_base->cpu, &new_cpu_base->csd);
1305 }
1306 return 0;
1307 }
1308
1309 /*
1310 * Timer was forced to stay on the current CPU to avoid
1311 * reprogramming on removal and enqueue. Force reprogram the
1312 * hardware by evaluating the new first expiring timer.
1313 */
1314 hrtimer_force_reprogram(new_base->cpu_base, 1);
1315 return 0;
1316 }
1317
1318 /**
1319 * hrtimer_start_range_ns - (re)start an hrtimer
1320 * @timer: the timer to be added
1321 * @tim: expiry time
1322 * @delta_ns: "slack" range for the timer
1323 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1324 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1325 * softirq based mode is considered for debug purpose only!
1326 */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode)1327 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1328 u64 delta_ns, const enum hrtimer_mode mode)
1329 {
1330 struct hrtimer_clock_base *base;
1331 unsigned long flags;
1332
1333 if (WARN_ON_ONCE(!timer->function))
1334 return;
1335 /*
1336 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1337 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1338 * expiry mode because unmarked timers are moved to softirq expiry.
1339 */
1340 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1341 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1342 else
1343 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1344
1345 base = lock_hrtimer_base(timer, &flags);
1346
1347 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1348 hrtimer_reprogram(timer, true);
1349
1350 unlock_hrtimer_base(timer, &flags);
1351 }
1352 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1353
1354 /**
1355 * hrtimer_try_to_cancel - try to deactivate a timer
1356 * @timer: hrtimer to stop
1357 *
1358 * Returns:
1359 *
1360 * * 0 when the timer was not active
1361 * * 1 when the timer was active
1362 * * -1 when the timer is currently executing the callback function and
1363 * cannot be stopped
1364 */
hrtimer_try_to_cancel(struct hrtimer * timer)1365 int hrtimer_try_to_cancel(struct hrtimer *timer)
1366 {
1367 struct hrtimer_clock_base *base;
1368 unsigned long flags;
1369 int ret = -1;
1370
1371 /*
1372 * Check lockless first. If the timer is not active (neither
1373 * enqueued nor running the callback, nothing to do here. The
1374 * base lock does not serialize against a concurrent enqueue,
1375 * so we can avoid taking it.
1376 */
1377 if (!hrtimer_active(timer))
1378 return 0;
1379
1380 base = lock_hrtimer_base(timer, &flags);
1381
1382 if (!hrtimer_callback_running(timer))
1383 ret = remove_hrtimer(timer, base, false, false);
1384
1385 unlock_hrtimer_base(timer, &flags);
1386
1387 return ret;
1388
1389 }
1390 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1391
1392 #ifdef CONFIG_PREEMPT_RT
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1393 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1394 {
1395 spin_lock_init(&base->softirq_expiry_lock);
1396 }
1397
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1398 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1399 __acquires(&base->softirq_expiry_lock)
1400 {
1401 spin_lock(&base->softirq_expiry_lock);
1402 }
1403
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1404 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1405 __releases(&base->softirq_expiry_lock)
1406 {
1407 spin_unlock(&base->softirq_expiry_lock);
1408 }
1409
1410 /*
1411 * The counterpart to hrtimer_cancel_wait_running().
1412 *
1413 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1414 * the timer callback to finish. Drop expiry_lock and reacquire it. That
1415 * allows the waiter to acquire the lock and make progress.
1416 */
hrtimer_sync_wait_running(struct hrtimer_cpu_base * cpu_base,unsigned long flags)1417 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1418 unsigned long flags)
1419 {
1420 if (atomic_read(&cpu_base->timer_waiters)) {
1421 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1422 spin_unlock(&cpu_base->softirq_expiry_lock);
1423 spin_lock(&cpu_base->softirq_expiry_lock);
1424 raw_spin_lock_irq(&cpu_base->lock);
1425 }
1426 }
1427
1428 #ifdef CONFIG_SMP
is_migration_base(struct hrtimer_clock_base * base)1429 static __always_inline bool is_migration_base(struct hrtimer_clock_base *base)
1430 {
1431 return base == &migration_base;
1432 }
1433 #else
is_migration_base(struct hrtimer_clock_base * base)1434 static __always_inline bool is_migration_base(struct hrtimer_clock_base *base)
1435 {
1436 return false;
1437 }
1438 #endif
1439
1440 /*
1441 * This function is called on PREEMPT_RT kernels when the fast path
1442 * deletion of a timer failed because the timer callback function was
1443 * running.
1444 *
1445 * This prevents priority inversion: if the soft irq thread is preempted
1446 * in the middle of a timer callback, then calling del_timer_sync() can
1447 * lead to two issues:
1448 *
1449 * - If the caller is on a remote CPU then it has to spin wait for the timer
1450 * handler to complete. This can result in unbound priority inversion.
1451 *
1452 * - If the caller originates from the task which preempted the timer
1453 * handler on the same CPU, then spin waiting for the timer handler to
1454 * complete is never going to end.
1455 */
hrtimer_cancel_wait_running(const struct hrtimer * timer)1456 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1457 {
1458 /* Lockless read. Prevent the compiler from reloading it below */
1459 struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1460
1461 /*
1462 * Just relax if the timer expires in hard interrupt context or if
1463 * it is currently on the migration base.
1464 */
1465 if (!timer->is_soft || is_migration_base(base)) {
1466 cpu_relax();
1467 return;
1468 }
1469
1470 /*
1471 * Mark the base as contended and grab the expiry lock, which is
1472 * held by the softirq across the timer callback. Drop the lock
1473 * immediately so the softirq can expire the next timer. In theory
1474 * the timer could already be running again, but that's more than
1475 * unlikely and just causes another wait loop.
1476 */
1477 atomic_inc(&base->cpu_base->timer_waiters);
1478 spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1479 atomic_dec(&base->cpu_base->timer_waiters);
1480 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1481 }
1482 #else
1483 static inline void
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1484 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1485 static inline void
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1486 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1487 static inline void
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1488 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
hrtimer_sync_wait_running(struct hrtimer_cpu_base * base,unsigned long flags)1489 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1490 unsigned long flags) { }
1491 #endif
1492
1493 /**
1494 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1495 * @timer: the timer to be cancelled
1496 *
1497 * Returns:
1498 * 0 when the timer was not active
1499 * 1 when the timer was active
1500 */
hrtimer_cancel(struct hrtimer * timer)1501 int hrtimer_cancel(struct hrtimer *timer)
1502 {
1503 int ret;
1504
1505 do {
1506 ret = hrtimer_try_to_cancel(timer);
1507
1508 if (ret < 0)
1509 hrtimer_cancel_wait_running(timer);
1510 } while (ret < 0);
1511 return ret;
1512 }
1513 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1514
1515 /**
1516 * __hrtimer_get_remaining - get remaining time for the timer
1517 * @timer: the timer to read
1518 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1519 */
__hrtimer_get_remaining(const struct hrtimer * timer,bool adjust)1520 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1521 {
1522 unsigned long flags;
1523 ktime_t rem;
1524
1525 lock_hrtimer_base(timer, &flags);
1526 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1527 rem = hrtimer_expires_remaining_adjusted(timer);
1528 else
1529 rem = hrtimer_expires_remaining(timer);
1530 unlock_hrtimer_base(timer, &flags);
1531
1532 return rem;
1533 }
1534 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1535
1536 #ifdef CONFIG_NO_HZ_COMMON
1537 /**
1538 * hrtimer_get_next_event - get the time until next expiry event
1539 *
1540 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1541 */
hrtimer_get_next_event(void)1542 u64 hrtimer_get_next_event(void)
1543 {
1544 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1545 u64 expires = KTIME_MAX;
1546 unsigned long flags;
1547
1548 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1549
1550 if (!hrtimer_hres_active(cpu_base))
1551 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1552
1553 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1554
1555 return expires;
1556 }
1557
1558 /**
1559 * hrtimer_next_event_without - time until next expiry event w/o one timer
1560 * @exclude: timer to exclude
1561 *
1562 * Returns the next expiry time over all timers except for the @exclude one or
1563 * KTIME_MAX if none of them is pending.
1564 */
hrtimer_next_event_without(const struct hrtimer * exclude)1565 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1566 {
1567 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1568 u64 expires = KTIME_MAX;
1569 unsigned long flags;
1570
1571 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1572
1573 if (hrtimer_hres_active(cpu_base)) {
1574 unsigned int active;
1575
1576 if (!cpu_base->softirq_activated) {
1577 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1578 expires = __hrtimer_next_event_base(cpu_base, exclude,
1579 active, KTIME_MAX);
1580 }
1581 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1582 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1583 expires);
1584 }
1585
1586 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1587
1588 return expires;
1589 }
1590 #endif
1591
hrtimer_clockid_to_base(clockid_t clock_id)1592 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1593 {
1594 switch (clock_id) {
1595 case CLOCK_REALTIME:
1596 return HRTIMER_BASE_REALTIME;
1597 case CLOCK_MONOTONIC:
1598 return HRTIMER_BASE_MONOTONIC;
1599 case CLOCK_BOOTTIME:
1600 return HRTIMER_BASE_BOOTTIME;
1601 case CLOCK_TAI:
1602 return HRTIMER_BASE_TAI;
1603 default:
1604 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1605 return HRTIMER_BASE_MONOTONIC;
1606 }
1607 }
1608
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1609 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1610 enum hrtimer_mode mode)
1611 {
1612 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1613 struct hrtimer_cpu_base *cpu_base;
1614 int base;
1615
1616 /*
1617 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1618 * marked for hard interrupt expiry mode are moved into soft
1619 * interrupt context for latency reasons and because the callbacks
1620 * can invoke functions which might sleep on RT, e.g. spin_lock().
1621 */
1622 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1623 softtimer = true;
1624
1625 memset(timer, 0, sizeof(struct hrtimer));
1626
1627 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1628
1629 /*
1630 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1631 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1632 * ensure POSIX compliance.
1633 */
1634 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1635 clock_id = CLOCK_MONOTONIC;
1636
1637 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1638 base += hrtimer_clockid_to_base(clock_id);
1639 timer->is_soft = softtimer;
1640 timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1641 timer->base = &cpu_base->clock_base[base];
1642 timerqueue_init(&timer->node);
1643 }
1644
1645 /**
1646 * hrtimer_init - initialize a timer to the given clock
1647 * @timer: the timer to be initialized
1648 * @clock_id: the clock to be used
1649 * @mode: The modes which are relevant for initialization:
1650 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1651 * HRTIMER_MODE_REL_SOFT
1652 *
1653 * The PINNED variants of the above can be handed in,
1654 * but the PINNED bit is ignored as pinning happens
1655 * when the hrtimer is started
1656 */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1657 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1658 enum hrtimer_mode mode)
1659 {
1660 debug_init(timer, clock_id, mode);
1661 __hrtimer_init(timer, clock_id, mode);
1662 }
1663 EXPORT_SYMBOL_GPL(hrtimer_init);
1664
1665 /*
1666 * A timer is active, when it is enqueued into the rbtree or the
1667 * callback function is running or it's in the state of being migrated
1668 * to another cpu.
1669 *
1670 * It is important for this function to not return a false negative.
1671 */
hrtimer_active(const struct hrtimer * timer)1672 bool hrtimer_active(const struct hrtimer *timer)
1673 {
1674 struct hrtimer_clock_base *base;
1675 unsigned int seq;
1676
1677 do {
1678 base = READ_ONCE(timer->base);
1679 seq = raw_read_seqcount_begin(&base->seq);
1680
1681 if (timer->state != HRTIMER_STATE_INACTIVE ||
1682 base->running == timer)
1683 return true;
1684
1685 } while (read_seqcount_retry(&base->seq, seq) ||
1686 base != READ_ONCE(timer->base));
1687
1688 return false;
1689 }
1690 EXPORT_SYMBOL_GPL(hrtimer_active);
1691
1692 /*
1693 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1694 * distinct sections:
1695 *
1696 * - queued: the timer is queued
1697 * - callback: the timer is being ran
1698 * - post: the timer is inactive or (re)queued
1699 *
1700 * On the read side we ensure we observe timer->state and cpu_base->running
1701 * from the same section, if anything changed while we looked at it, we retry.
1702 * This includes timer->base changing because sequence numbers alone are
1703 * insufficient for that.
1704 *
1705 * The sequence numbers are required because otherwise we could still observe
1706 * a false negative if the read side got smeared over multiple consecutive
1707 * __run_hrtimer() invocations.
1708 */
1709
__run_hrtimer(struct hrtimer_cpu_base * cpu_base,struct hrtimer_clock_base * base,struct hrtimer * timer,ktime_t * now,unsigned long flags)1710 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1711 struct hrtimer_clock_base *base,
1712 struct hrtimer *timer, ktime_t *now,
1713 unsigned long flags) __must_hold(&cpu_base->lock)
1714 {
1715 enum hrtimer_restart (*fn)(struct hrtimer *);
1716 bool expires_in_hardirq;
1717 int restart;
1718
1719 lockdep_assert_held(&cpu_base->lock);
1720
1721 debug_deactivate(timer);
1722 base->running = timer;
1723
1724 /*
1725 * Separate the ->running assignment from the ->state assignment.
1726 *
1727 * As with a regular write barrier, this ensures the read side in
1728 * hrtimer_active() cannot observe base->running == NULL &&
1729 * timer->state == INACTIVE.
1730 */
1731 raw_write_seqcount_barrier(&base->seq);
1732
1733 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1734 fn = timer->function;
1735
1736 /*
1737 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1738 * timer is restarted with a period then it becomes an absolute
1739 * timer. If its not restarted it does not matter.
1740 */
1741 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1742 timer->is_rel = false;
1743
1744 /*
1745 * The timer is marked as running in the CPU base, so it is
1746 * protected against migration to a different CPU even if the lock
1747 * is dropped.
1748 */
1749 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1750 trace_hrtimer_expire_entry(timer, now);
1751 expires_in_hardirq = lockdep_hrtimer_enter(timer);
1752
1753 restart = fn(timer);
1754
1755 lockdep_hrtimer_exit(expires_in_hardirq);
1756 trace_hrtimer_expire_exit(timer);
1757 raw_spin_lock_irq(&cpu_base->lock);
1758
1759 /*
1760 * Note: We clear the running state after enqueue_hrtimer and
1761 * we do not reprogram the event hardware. Happens either in
1762 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1763 *
1764 * Note: Because we dropped the cpu_base->lock above,
1765 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1766 * for us already.
1767 */
1768 if (restart != HRTIMER_NORESTART &&
1769 !(timer->state & HRTIMER_STATE_ENQUEUED))
1770 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1771
1772 /*
1773 * Separate the ->running assignment from the ->state assignment.
1774 *
1775 * As with a regular write barrier, this ensures the read side in
1776 * hrtimer_active() cannot observe base->running.timer == NULL &&
1777 * timer->state == INACTIVE.
1778 */
1779 raw_write_seqcount_barrier(&base->seq);
1780
1781 WARN_ON_ONCE(base->running != timer);
1782 base->running = NULL;
1783 }
1784
__hrtimer_run_queues(struct hrtimer_cpu_base * cpu_base,ktime_t now,unsigned long flags,unsigned int active_mask)1785 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1786 unsigned long flags, unsigned int active_mask)
1787 {
1788 struct hrtimer_clock_base *base;
1789 unsigned int active = cpu_base->active_bases & active_mask;
1790
1791 for_each_active_base(base, cpu_base, active) {
1792 struct timerqueue_node *node;
1793 ktime_t basenow;
1794
1795 basenow = ktime_add(now, base->offset);
1796
1797 while ((node = timerqueue_getnext(&base->active))) {
1798 struct hrtimer *timer;
1799
1800 timer = container_of(node, struct hrtimer, node);
1801
1802 /*
1803 * The immediate goal for using the softexpires is
1804 * minimizing wakeups, not running timers at the
1805 * earliest interrupt after their soft expiration.
1806 * This allows us to avoid using a Priority Search
1807 * Tree, which can answer a stabbing query for
1808 * overlapping intervals and instead use the simple
1809 * BST we already have.
1810 * We don't add extra wakeups by delaying timers that
1811 * are right-of a not yet expired timer, because that
1812 * timer will have to trigger a wakeup anyway.
1813 */
1814 if (basenow < hrtimer_get_softexpires_tv64(timer))
1815 break;
1816
1817 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1818 if (active_mask == HRTIMER_ACTIVE_SOFT)
1819 hrtimer_sync_wait_running(cpu_base, flags);
1820 }
1821 }
1822 }
1823
hrtimer_run_softirq(void)1824 static __latent_entropy void hrtimer_run_softirq(void)
1825 {
1826 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1827 unsigned long flags;
1828 ktime_t now;
1829
1830 hrtimer_cpu_base_lock_expiry(cpu_base);
1831 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1832
1833 now = hrtimer_update_base(cpu_base);
1834 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1835
1836 cpu_base->softirq_activated = 0;
1837 hrtimer_update_softirq_timer(cpu_base, true);
1838
1839 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1840 hrtimer_cpu_base_unlock_expiry(cpu_base);
1841 }
1842
1843 #ifdef CONFIG_HIGH_RES_TIMERS
1844
1845 /*
1846 * High resolution timer interrupt
1847 * Called with interrupts disabled
1848 */
hrtimer_interrupt(struct clock_event_device * dev)1849 void hrtimer_interrupt(struct clock_event_device *dev)
1850 {
1851 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1852 ktime_t expires_next, now, entry_time, delta;
1853 unsigned long flags;
1854 int retries = 0;
1855
1856 BUG_ON(!cpu_base->hres_active);
1857 cpu_base->nr_events++;
1858 dev->next_event = KTIME_MAX;
1859
1860 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1861 entry_time = now = hrtimer_update_base(cpu_base);
1862 retry:
1863 cpu_base->in_hrtirq = 1;
1864 /*
1865 * We set expires_next to KTIME_MAX here with cpu_base->lock
1866 * held to prevent that a timer is enqueued in our queue via
1867 * the migration code. This does not affect enqueueing of
1868 * timers which run their callback and need to be requeued on
1869 * this CPU.
1870 */
1871 cpu_base->expires_next = KTIME_MAX;
1872
1873 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1874 cpu_base->softirq_expires_next = KTIME_MAX;
1875 cpu_base->softirq_activated = 1;
1876 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1877 }
1878
1879 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1880
1881 /* Reevaluate the clock bases for the [soft] next expiry */
1882 expires_next = hrtimer_update_next_event(cpu_base);
1883 /*
1884 * Store the new expiry value so the migration code can verify
1885 * against it.
1886 */
1887 cpu_base->expires_next = expires_next;
1888 cpu_base->in_hrtirq = 0;
1889 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1890
1891 /* Reprogramming necessary ? */
1892 if (!tick_program_event(expires_next, 0)) {
1893 cpu_base->hang_detected = 0;
1894 return;
1895 }
1896
1897 /*
1898 * The next timer was already expired due to:
1899 * - tracing
1900 * - long lasting callbacks
1901 * - being scheduled away when running in a VM
1902 *
1903 * We need to prevent that we loop forever in the hrtimer
1904 * interrupt routine. We give it 3 attempts to avoid
1905 * overreacting on some spurious event.
1906 *
1907 * Acquire base lock for updating the offsets and retrieving
1908 * the current time.
1909 */
1910 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1911 now = hrtimer_update_base(cpu_base);
1912 cpu_base->nr_retries++;
1913 if (++retries < 3)
1914 goto retry;
1915 /*
1916 * Give the system a chance to do something else than looping
1917 * here. We stored the entry time, so we know exactly how long
1918 * we spent here. We schedule the next event this amount of
1919 * time away.
1920 */
1921 cpu_base->nr_hangs++;
1922 cpu_base->hang_detected = 1;
1923 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1924
1925 delta = ktime_sub(now, entry_time);
1926 if ((unsigned int)delta > cpu_base->max_hang_time)
1927 cpu_base->max_hang_time = (unsigned int) delta;
1928 /*
1929 * Limit it to a sensible value as we enforce a longer
1930 * delay. Give the CPU at least 100ms to catch up.
1931 */
1932 if (delta > 100 * NSEC_PER_MSEC)
1933 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1934 else
1935 expires_next = ktime_add(now, delta);
1936 tick_program_event(expires_next, 1);
1937 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1938 }
1939 #endif /* !CONFIG_HIGH_RES_TIMERS */
1940
1941 /*
1942 * Called from run_local_timers in hardirq context every jiffy
1943 */
hrtimer_run_queues(void)1944 void hrtimer_run_queues(void)
1945 {
1946 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1947 unsigned long flags;
1948 ktime_t now;
1949
1950 if (hrtimer_hres_active(cpu_base))
1951 return;
1952
1953 /*
1954 * This _is_ ugly: We have to check periodically, whether we
1955 * can switch to highres and / or nohz mode. The clocksource
1956 * switch happens with xtime_lock held. Notification from
1957 * there only sets the check bit in the tick_oneshot code,
1958 * otherwise we might deadlock vs. xtime_lock.
1959 */
1960 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1961 hrtimer_switch_to_hres();
1962 return;
1963 }
1964
1965 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1966 now = hrtimer_update_base(cpu_base);
1967
1968 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1969 cpu_base->softirq_expires_next = KTIME_MAX;
1970 cpu_base->softirq_activated = 1;
1971 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1972 }
1973
1974 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1975 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1976 }
1977
1978 /*
1979 * Sleep related functions:
1980 */
hrtimer_wakeup(struct hrtimer * timer)1981 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1982 {
1983 struct hrtimer_sleeper *t =
1984 container_of(timer, struct hrtimer_sleeper, timer);
1985 struct task_struct *task = t->task;
1986
1987 t->task = NULL;
1988 if (task)
1989 wake_up_process(task);
1990
1991 return HRTIMER_NORESTART;
1992 }
1993
1994 /**
1995 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1996 * @sl: sleeper to be started
1997 * @mode: timer mode abs/rel
1998 *
1999 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
2000 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
2001 */
hrtimer_sleeper_start_expires(struct hrtimer_sleeper * sl,enum hrtimer_mode mode)2002 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
2003 enum hrtimer_mode mode)
2004 {
2005 /*
2006 * Make the enqueue delivery mode check work on RT. If the sleeper
2007 * was initialized for hard interrupt delivery, force the mode bit.
2008 * This is a special case for hrtimer_sleepers because
2009 * hrtimer_init_sleeper() determines the delivery mode on RT so the
2010 * fiddling with this decision is avoided at the call sites.
2011 */
2012 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
2013 mode |= HRTIMER_MODE_HARD;
2014
2015 hrtimer_start_expires(&sl->timer, mode);
2016 }
2017 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
2018
__hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)2019 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
2020 clockid_t clock_id, enum hrtimer_mode mode)
2021 {
2022 /*
2023 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
2024 * marked for hard interrupt expiry mode are moved into soft
2025 * interrupt context either for latency reasons or because the
2026 * hrtimer callback takes regular spinlocks or invokes other
2027 * functions which are not suitable for hard interrupt context on
2028 * PREEMPT_RT.
2029 *
2030 * The hrtimer_sleeper callback is RT compatible in hard interrupt
2031 * context, but there is a latency concern: Untrusted userspace can
2032 * spawn many threads which arm timers for the same expiry time on
2033 * the same CPU. That causes a latency spike due to the wakeup of
2034 * a gazillion threads.
2035 *
2036 * OTOH, privileged real-time user space applications rely on the
2037 * low latency of hard interrupt wakeups. If the current task is in
2038 * a real-time scheduling class, mark the mode for hard interrupt
2039 * expiry.
2040 */
2041 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
2042 if (rt_or_dl_task_policy(current) && !(mode & HRTIMER_MODE_SOFT))
2043 mode |= HRTIMER_MODE_HARD;
2044 }
2045
2046 __hrtimer_init(&sl->timer, clock_id, mode);
2047 sl->timer.function = hrtimer_wakeup;
2048 sl->task = current;
2049 }
2050
2051 /**
2052 * hrtimer_init_sleeper - initialize sleeper to the given clock
2053 * @sl: sleeper to be initialized
2054 * @clock_id: the clock to be used
2055 * @mode: timer mode abs/rel
2056 */
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)2057 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
2058 enum hrtimer_mode mode)
2059 {
2060 debug_init(&sl->timer, clock_id, mode);
2061 __hrtimer_init_sleeper(sl, clock_id, mode);
2062
2063 }
2064 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
2065
nanosleep_copyout(struct restart_block * restart,struct timespec64 * ts)2066 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
2067 {
2068 switch(restart->nanosleep.type) {
2069 #ifdef CONFIG_COMPAT_32BIT_TIME
2070 case TT_COMPAT:
2071 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
2072 return -EFAULT;
2073 break;
2074 #endif
2075 case TT_NATIVE:
2076 if (put_timespec64(ts, restart->nanosleep.rmtp))
2077 return -EFAULT;
2078 break;
2079 default:
2080 BUG();
2081 }
2082 return -ERESTART_RESTARTBLOCK;
2083 }
2084
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)2085 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
2086 {
2087 struct restart_block *restart;
2088
2089 do {
2090 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2091 hrtimer_sleeper_start_expires(t, mode);
2092
2093 if (likely(t->task))
2094 schedule();
2095
2096 hrtimer_cancel(&t->timer);
2097 mode = HRTIMER_MODE_ABS;
2098
2099 } while (t->task && !signal_pending(current));
2100
2101 __set_current_state(TASK_RUNNING);
2102
2103 if (!t->task)
2104 return 0;
2105
2106 restart = ¤t->restart_block;
2107 if (restart->nanosleep.type != TT_NONE) {
2108 ktime_t rem = hrtimer_expires_remaining(&t->timer);
2109 struct timespec64 rmt;
2110
2111 if (rem <= 0)
2112 return 0;
2113 rmt = ktime_to_timespec64(rem);
2114
2115 return nanosleep_copyout(restart, &rmt);
2116 }
2117 return -ERESTART_RESTARTBLOCK;
2118 }
2119
hrtimer_nanosleep_restart(struct restart_block * restart)2120 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
2121 {
2122 struct hrtimer_sleeper t;
2123 int ret;
2124
2125 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
2126 HRTIMER_MODE_ABS);
2127 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
2128 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
2129 destroy_hrtimer_on_stack(&t.timer);
2130 return ret;
2131 }
2132
hrtimer_nanosleep(ktime_t rqtp,const enum hrtimer_mode mode,const clockid_t clockid)2133 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
2134 const clockid_t clockid)
2135 {
2136 struct restart_block *restart;
2137 struct hrtimer_sleeper t;
2138 int ret = 0;
2139
2140 hrtimer_init_sleeper_on_stack(&t, clockid, mode);
2141 hrtimer_set_expires_range_ns(&t.timer, rqtp, current->timer_slack_ns);
2142 ret = do_nanosleep(&t, mode);
2143 if (ret != -ERESTART_RESTARTBLOCK)
2144 goto out;
2145
2146 /* Absolute timers do not update the rmtp value and restart: */
2147 if (mode == HRTIMER_MODE_ABS) {
2148 ret = -ERESTARTNOHAND;
2149 goto out;
2150 }
2151
2152 restart = ¤t->restart_block;
2153 restart->nanosleep.clockid = t.timer.base->clockid;
2154 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2155 set_restart_fn(restart, hrtimer_nanosleep_restart);
2156 out:
2157 destroy_hrtimer_on_stack(&t.timer);
2158 return ret;
2159 }
2160
2161 #ifdef CONFIG_64BIT
2162
SYSCALL_DEFINE2(nanosleep,struct __kernel_timespec __user *,rqtp,struct __kernel_timespec __user *,rmtp)2163 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2164 struct __kernel_timespec __user *, rmtp)
2165 {
2166 struct timespec64 tu;
2167
2168 if (get_timespec64(&tu, rqtp))
2169 return -EFAULT;
2170
2171 if (!timespec64_valid(&tu))
2172 return -EINVAL;
2173
2174 trace_android_vh_check_nanosleep_syscall(&tu);
2175 current->restart_block.fn = do_no_restart_syscall;
2176 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2177 current->restart_block.nanosleep.rmtp = rmtp;
2178 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2179 CLOCK_MONOTONIC);
2180 }
2181
2182 #endif
2183
2184 #ifdef CONFIG_COMPAT_32BIT_TIME
2185
SYSCALL_DEFINE2(nanosleep_time32,struct old_timespec32 __user *,rqtp,struct old_timespec32 __user *,rmtp)2186 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2187 struct old_timespec32 __user *, rmtp)
2188 {
2189 struct timespec64 tu;
2190
2191 if (get_old_timespec32(&tu, rqtp))
2192 return -EFAULT;
2193
2194 if (!timespec64_valid(&tu))
2195 return -EINVAL;
2196
2197 trace_android_vh_check_nanosleep_syscall(&tu);
2198 current->restart_block.fn = do_no_restart_syscall;
2199 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2200 current->restart_block.nanosleep.compat_rmtp = rmtp;
2201 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2202 CLOCK_MONOTONIC);
2203 }
2204 #endif
2205
2206 /*
2207 * Functions related to boot-time initialization:
2208 */
hrtimers_prepare_cpu(unsigned int cpu)2209 int hrtimers_prepare_cpu(unsigned int cpu)
2210 {
2211 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2212 int i;
2213
2214 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2215 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2216
2217 clock_b->cpu_base = cpu_base;
2218 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2219 timerqueue_init_head(&clock_b->active);
2220 }
2221
2222 cpu_base->cpu = cpu;
2223 hrtimer_cpu_base_init_expiry_lock(cpu_base);
2224 return 0;
2225 }
2226
hrtimers_cpu_starting(unsigned int cpu)2227 int hrtimers_cpu_starting(unsigned int cpu)
2228 {
2229 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
2230
2231 /* Clear out any left over state from a CPU down operation */
2232 cpu_base->active_bases = 0;
2233 cpu_base->hres_active = 0;
2234 cpu_base->hang_detected = 0;
2235 cpu_base->next_timer = NULL;
2236 cpu_base->softirq_next_timer = NULL;
2237 cpu_base->expires_next = KTIME_MAX;
2238 cpu_base->softirq_expires_next = KTIME_MAX;
2239 cpu_base->online = 1;
2240 return 0;
2241 }
2242
2243 #ifdef CONFIG_HOTPLUG_CPU
2244
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)2245 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2246 struct hrtimer_clock_base *new_base)
2247 {
2248 struct hrtimer *timer;
2249 struct timerqueue_node *node;
2250
2251 while ((node = timerqueue_getnext(&old_base->active))) {
2252 timer = container_of(node, struct hrtimer, node);
2253 BUG_ON(hrtimer_callback_running(timer));
2254 debug_deactivate(timer);
2255
2256 /*
2257 * Mark it as ENQUEUED not INACTIVE otherwise the
2258 * timer could be seen as !active and just vanish away
2259 * under us on another CPU
2260 */
2261 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2262 timer->base = new_base;
2263 /*
2264 * Enqueue the timers on the new cpu. This does not
2265 * reprogram the event device in case the timer
2266 * expires before the earliest on this CPU, but we run
2267 * hrtimer_interrupt after we migrated everything to
2268 * sort out already expired timers and reprogram the
2269 * event device.
2270 */
2271 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2272 }
2273 }
2274
hrtimers_cpu_dying(unsigned int dying_cpu)2275 int hrtimers_cpu_dying(unsigned int dying_cpu)
2276 {
2277 int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER));
2278 struct hrtimer_cpu_base *old_base, *new_base;
2279
2280 old_base = this_cpu_ptr(&hrtimer_bases);
2281 new_base = &per_cpu(hrtimer_bases, ncpu);
2282
2283 /*
2284 * The caller is globally serialized and nobody else
2285 * takes two locks at once, deadlock is not possible.
2286 */
2287 raw_spin_lock(&old_base->lock);
2288 raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING);
2289
2290 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2291 migrate_hrtimer_list(&old_base->clock_base[i],
2292 &new_base->clock_base[i]);
2293 }
2294
2295 /* Tell the other CPU to retrigger the next event */
2296 smp_call_function_single(ncpu, retrigger_next_event, NULL, 0);
2297
2298 raw_spin_unlock(&new_base->lock);
2299 old_base->online = 0;
2300 raw_spin_unlock(&old_base->lock);
2301
2302 return 0;
2303 }
2304
2305 #endif /* CONFIG_HOTPLUG_CPU */
2306
hrtimers_init(void)2307 void __init hrtimers_init(void)
2308 {
2309 hrtimers_prepare_cpu(smp_processor_id());
2310 hrtimers_cpu_starting(smp_processor_id());
2311 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2312 }
2313
2314 /**
2315 * schedule_hrtimeout_range_clock - sleep until timeout
2316 * @expires: timeout value (ktime_t)
2317 * @delta: slack in expires timeout (ktime_t)
2318 * @mode: timer mode
2319 * @clock_id: timer clock to be used
2320 */
2321 int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,u64 delta,const enum hrtimer_mode mode,clockid_t clock_id)2322 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2323 const enum hrtimer_mode mode, clockid_t clock_id)
2324 {
2325 struct hrtimer_sleeper t;
2326
2327 /*
2328 * Optimize when a zero timeout value is given. It does not
2329 * matter whether this is an absolute or a relative time.
2330 */
2331 if (expires && *expires == 0) {
2332 __set_current_state(TASK_RUNNING);
2333 return 0;
2334 }
2335
2336 /*
2337 * A NULL parameter means "infinite"
2338 */
2339 if (!expires) {
2340 schedule();
2341 return -EINTR;
2342 }
2343
2344 hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2345 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2346 hrtimer_sleeper_start_expires(&t, mode);
2347
2348 if (likely(t.task))
2349 schedule();
2350
2351 hrtimer_cancel(&t.timer);
2352 destroy_hrtimer_on_stack(&t.timer);
2353
2354 __set_current_state(TASK_RUNNING);
2355
2356 return !t.task ? 0 : -EINTR;
2357 }
2358 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock);
2359
2360 /**
2361 * schedule_hrtimeout_range - sleep until timeout
2362 * @expires: timeout value (ktime_t)
2363 * @delta: slack in expires timeout (ktime_t)
2364 * @mode: timer mode
2365 *
2366 * Make the current task sleep until the given expiry time has
2367 * elapsed. The routine will return immediately unless
2368 * the current task state has been set (see set_current_state()).
2369 *
2370 * The @delta argument gives the kernel the freedom to schedule the
2371 * actual wakeup to a time that is both power and performance friendly
2372 * for regular (non RT/DL) tasks.
2373 * The kernel give the normal best effort behavior for "@expires+@delta",
2374 * but may decide to fire the timer earlier, but no earlier than @expires.
2375 *
2376 * You can set the task state as follows -
2377 *
2378 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2379 * pass before the routine returns unless the current task is explicitly
2380 * woken up, (e.g. by wake_up_process()).
2381 *
2382 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2383 * delivered to the current task or the current task is explicitly woken
2384 * up.
2385 *
2386 * The current task state is guaranteed to be TASK_RUNNING when this
2387 * routine returns.
2388 *
2389 * Returns 0 when the timer has expired. If the task was woken before the
2390 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2391 * by an explicit wakeup, it returns -EINTR.
2392 */
schedule_hrtimeout_range(ktime_t * expires,u64 delta,const enum hrtimer_mode mode)2393 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2394 const enum hrtimer_mode mode)
2395 {
2396 return schedule_hrtimeout_range_clock(expires, delta, mode,
2397 CLOCK_MONOTONIC);
2398 }
2399 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2400
2401 /**
2402 * schedule_hrtimeout - sleep until timeout
2403 * @expires: timeout value (ktime_t)
2404 * @mode: timer mode
2405 *
2406 * Make the current task sleep until the given expiry time has
2407 * elapsed. The routine will return immediately unless
2408 * the current task state has been set (see set_current_state()).
2409 *
2410 * You can set the task state as follows -
2411 *
2412 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2413 * pass before the routine returns unless the current task is explicitly
2414 * woken up, (e.g. by wake_up_process()).
2415 *
2416 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2417 * delivered to the current task or the current task is explicitly woken
2418 * up.
2419 *
2420 * The current task state is guaranteed to be TASK_RUNNING when this
2421 * routine returns.
2422 *
2423 * Returns 0 when the timer has expired. If the task was woken before the
2424 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2425 * by an explicit wakeup, it returns -EINTR.
2426 */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)2427 int __sched schedule_hrtimeout(ktime_t *expires,
2428 const enum hrtimer_mode mode)
2429 {
2430 return schedule_hrtimeout_range(expires, 0, mode);
2431 }
2432 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2433