1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2 /*
3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved.
6 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
10 */
11
12 #ifndef IB_VERBS_H
13 #define IB_VERBS_H
14
15 #include <linux/ethtool.h>
16 #include <linux/types.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/kref.h>
20 #include <linux/list.h>
21 #include <linux/rwsem.h>
22 #include <linux/workqueue.h>
23 #include <linux/irq_poll.h>
24 #include <uapi/linux/if_ether.h>
25 #include <net/ipv6.h>
26 #include <net/ip.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 #include <linux/netdevice.h>
30 #include <linux/refcount.h>
31 #include <linux/if_link.h>
32 #include <linux/atomic.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/uaccess.h>
35 #include <linux/cgroup_rdma.h>
36 #include <linux/irqflags.h>
37 #include <linux/preempt.h>
38 #include <linux/dim.h>
39 #include <uapi/rdma/ib_user_verbs.h>
40 #include <rdma/rdma_counter.h>
41 #include <rdma/restrack.h>
42 #include <rdma/signature.h>
43 #include <uapi/rdma/rdma_user_ioctl.h>
44 #include <uapi/rdma/ib_user_ioctl_verbs.h>
45
46 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
47
48 struct ib_umem_odp;
49 struct ib_uqp_object;
50 struct ib_usrq_object;
51 struct ib_uwq_object;
52 struct rdma_cm_id;
53 struct ib_port;
54 struct hw_stats_device_data;
55
56 extern struct workqueue_struct *ib_wq;
57 extern struct workqueue_struct *ib_comp_wq;
58 extern struct workqueue_struct *ib_comp_unbound_wq;
59
60 struct ib_ucq_object;
61
62 __printf(3, 4) __cold
63 void ibdev_printk(const char *level, const struct ib_device *ibdev,
64 const char *format, ...);
65 __printf(2, 3) __cold
66 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
67 __printf(2, 3) __cold
68 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
69 __printf(2, 3) __cold
70 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
71 __printf(2, 3) __cold
72 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
73 __printf(2, 3) __cold
74 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
75 __printf(2, 3) __cold
76 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
77 __printf(2, 3) __cold
78 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
79
80 #if defined(CONFIG_DYNAMIC_DEBUG) || \
81 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
82 #define ibdev_dbg(__dev, format, args...) \
83 dynamic_ibdev_dbg(__dev, format, ##args)
84 #else
85 __printf(2, 3) __cold
86 static inline
ibdev_dbg(const struct ib_device * ibdev,const char * format,...)87 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
88 #endif
89
90 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
91 do { \
92 static DEFINE_RATELIMIT_STATE(_rs, \
93 DEFAULT_RATELIMIT_INTERVAL, \
94 DEFAULT_RATELIMIT_BURST); \
95 if (__ratelimit(&_rs)) \
96 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
97 } while (0)
98
99 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
100 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
101 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
102 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
103 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
104 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
105 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
106 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
107 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
108 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
109 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
110 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
111 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
112 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
113
114 #if defined(CONFIG_DYNAMIC_DEBUG) || \
115 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
116 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
117 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
118 do { \
119 static DEFINE_RATELIMIT_STATE(_rs, \
120 DEFAULT_RATELIMIT_INTERVAL, \
121 DEFAULT_RATELIMIT_BURST); \
122 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
123 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
124 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
125 ##__VA_ARGS__); \
126 } while (0)
127 #else
128 __printf(2, 3) __cold
129 static inline
ibdev_dbg_ratelimited(const struct ib_device * ibdev,const char * format,...)130 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
131 #endif
132
133 union ib_gid {
134 u8 raw[16];
135 struct {
136 __be64 subnet_prefix;
137 __be64 interface_id;
138 } global;
139 };
140
141 extern union ib_gid zgid;
142
143 enum ib_gid_type {
144 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
145 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
146 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
147 IB_GID_TYPE_SIZE
148 };
149
150 #define ROCE_V2_UDP_DPORT 4791
151 struct ib_gid_attr {
152 struct net_device __rcu *ndev;
153 struct ib_device *device;
154 union ib_gid gid;
155 enum ib_gid_type gid_type;
156 u16 index;
157 u32 port_num;
158 };
159
160 enum {
161 /* set the local administered indication */
162 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
163 };
164
165 enum rdma_transport_type {
166 RDMA_TRANSPORT_IB,
167 RDMA_TRANSPORT_IWARP,
168 RDMA_TRANSPORT_USNIC,
169 RDMA_TRANSPORT_USNIC_UDP,
170 RDMA_TRANSPORT_UNSPECIFIED,
171 };
172
173 enum rdma_protocol_type {
174 RDMA_PROTOCOL_IB,
175 RDMA_PROTOCOL_IBOE,
176 RDMA_PROTOCOL_IWARP,
177 RDMA_PROTOCOL_USNIC_UDP
178 };
179
180 __attribute_const__ enum rdma_transport_type
181 rdma_node_get_transport(unsigned int node_type);
182
183 enum rdma_network_type {
184 RDMA_NETWORK_IB,
185 RDMA_NETWORK_ROCE_V1,
186 RDMA_NETWORK_IPV4,
187 RDMA_NETWORK_IPV6
188 };
189
ib_network_to_gid_type(enum rdma_network_type network_type)190 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
191 {
192 if (network_type == RDMA_NETWORK_IPV4 ||
193 network_type == RDMA_NETWORK_IPV6)
194 return IB_GID_TYPE_ROCE_UDP_ENCAP;
195 else if (network_type == RDMA_NETWORK_ROCE_V1)
196 return IB_GID_TYPE_ROCE;
197 else
198 return IB_GID_TYPE_IB;
199 }
200
201 static inline enum rdma_network_type
rdma_gid_attr_network_type(const struct ib_gid_attr * attr)202 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
203 {
204 if (attr->gid_type == IB_GID_TYPE_IB)
205 return RDMA_NETWORK_IB;
206
207 if (attr->gid_type == IB_GID_TYPE_ROCE)
208 return RDMA_NETWORK_ROCE_V1;
209
210 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
211 return RDMA_NETWORK_IPV4;
212 else
213 return RDMA_NETWORK_IPV6;
214 }
215
216 enum rdma_link_layer {
217 IB_LINK_LAYER_UNSPECIFIED,
218 IB_LINK_LAYER_INFINIBAND,
219 IB_LINK_LAYER_ETHERNET,
220 };
221
222 enum ib_device_cap_flags {
223 IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
224 IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
225 IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
226 IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
227 IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
228 IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
229 IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
230 IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
231 IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
232 /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
233 IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
234 IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
235 IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
236 IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
237 IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
238
239 /* Reserved, old SEND_W_INV = 1 << 16,*/
240 IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
241 /*
242 * Devices should set IB_DEVICE_UD_IP_SUM if they support
243 * insertion of UDP and TCP checksum on outgoing UD IPoIB
244 * messages and can verify the validity of checksum for
245 * incoming messages. Setting this flag implies that the
246 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
247 */
248 IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
249 IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
250
251 /*
252 * This device supports the IB "base memory management extension",
253 * which includes support for fast registrations (IB_WR_REG_MR,
254 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
255 * also be set by any iWarp device which must support FRs to comply
256 * to the iWarp verbs spec. iWarp devices also support the
257 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
258 * stag.
259 */
260 IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
261 IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
262 IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
263 IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
264 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
265 IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
266 IB_DEVICE_MANAGED_FLOW_STEERING =
267 IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
268 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
269 IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
270 /* The device supports padding incoming writes to cacheline. */
271 IB_DEVICE_PCI_WRITE_END_PADDING =
272 IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
273 /* Placement type attributes */
274 IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
275 IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
276 IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
277 };
278
279 enum ib_kernel_cap_flags {
280 /*
281 * This device supports a per-device lkey or stag that can be
282 * used without performing a memory registration for the local
283 * memory. Note that ULPs should never check this flag, but
284 * instead of use the local_dma_lkey flag in the ib_pd structure,
285 * which will always contain a usable lkey.
286 */
287 IBK_LOCAL_DMA_LKEY = 1 << 0,
288 /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
289 IBK_INTEGRITY_HANDOVER = 1 << 1,
290 /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
291 IBK_ON_DEMAND_PAGING = 1 << 2,
292 /* IB_MR_TYPE_SG_GAPS is supported */
293 IBK_SG_GAPS_REG = 1 << 3,
294 /* Driver supports RDMA_NLDEV_CMD_DELLINK */
295 IBK_ALLOW_USER_UNREG = 1 << 4,
296
297 /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
298 IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
299 /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
300 IBK_UD_TSO = 1 << 6,
301 /* iopib will use the device ops:
302 * get_vf_config
303 * get_vf_guid
304 * get_vf_stats
305 * set_vf_guid
306 * set_vf_link_state
307 */
308 IBK_VIRTUAL_FUNCTION = 1 << 7,
309 /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
310 IBK_RDMA_NETDEV_OPA = 1 << 8,
311 };
312
313 enum ib_atomic_cap {
314 IB_ATOMIC_NONE,
315 IB_ATOMIC_HCA,
316 IB_ATOMIC_GLOB
317 };
318
319 enum ib_odp_general_cap_bits {
320 IB_ODP_SUPPORT = 1 << 0,
321 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
322 };
323
324 enum ib_odp_transport_cap_bits {
325 IB_ODP_SUPPORT_SEND = 1 << 0,
326 IB_ODP_SUPPORT_RECV = 1 << 1,
327 IB_ODP_SUPPORT_WRITE = 1 << 2,
328 IB_ODP_SUPPORT_READ = 1 << 3,
329 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
330 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
331 };
332
333 struct ib_odp_caps {
334 uint64_t general_caps;
335 struct {
336 uint32_t rc_odp_caps;
337 uint32_t uc_odp_caps;
338 uint32_t ud_odp_caps;
339 uint32_t xrc_odp_caps;
340 } per_transport_caps;
341 };
342
343 struct ib_rss_caps {
344 /* Corresponding bit will be set if qp type from
345 * 'enum ib_qp_type' is supported, e.g.
346 * supported_qpts |= 1 << IB_QPT_UD
347 */
348 u32 supported_qpts;
349 u32 max_rwq_indirection_tables;
350 u32 max_rwq_indirection_table_size;
351 };
352
353 enum ib_tm_cap_flags {
354 /* Support tag matching with rendezvous offload for RC transport */
355 IB_TM_CAP_RNDV_RC = 1 << 0,
356 };
357
358 struct ib_tm_caps {
359 /* Max size of RNDV header */
360 u32 max_rndv_hdr_size;
361 /* Max number of entries in tag matching list */
362 u32 max_num_tags;
363 /* From enum ib_tm_cap_flags */
364 u32 flags;
365 /* Max number of outstanding list operations */
366 u32 max_ops;
367 /* Max number of SGE in tag matching entry */
368 u32 max_sge;
369 };
370
371 struct ib_cq_init_attr {
372 unsigned int cqe;
373 u32 comp_vector;
374 u32 flags;
375 };
376
377 enum ib_cq_attr_mask {
378 IB_CQ_MODERATE = 1 << 0,
379 };
380
381 struct ib_cq_caps {
382 u16 max_cq_moderation_count;
383 u16 max_cq_moderation_period;
384 };
385
386 struct ib_dm_mr_attr {
387 u64 length;
388 u64 offset;
389 u32 access_flags;
390 };
391
392 struct ib_dm_alloc_attr {
393 u64 length;
394 u32 alignment;
395 u32 flags;
396 };
397
398 struct ib_device_attr {
399 u64 fw_ver;
400 __be64 sys_image_guid;
401 u64 max_mr_size;
402 u64 page_size_cap;
403 u32 vendor_id;
404 u32 vendor_part_id;
405 u32 hw_ver;
406 int max_qp;
407 int max_qp_wr;
408 u64 device_cap_flags;
409 u64 kernel_cap_flags;
410 int max_send_sge;
411 int max_recv_sge;
412 int max_sge_rd;
413 int max_cq;
414 int max_cqe;
415 int max_mr;
416 int max_pd;
417 int max_qp_rd_atom;
418 int max_ee_rd_atom;
419 int max_res_rd_atom;
420 int max_qp_init_rd_atom;
421 int max_ee_init_rd_atom;
422 enum ib_atomic_cap atomic_cap;
423 enum ib_atomic_cap masked_atomic_cap;
424 int max_ee;
425 int max_rdd;
426 int max_mw;
427 int max_raw_ipv6_qp;
428 int max_raw_ethy_qp;
429 int max_mcast_grp;
430 int max_mcast_qp_attach;
431 int max_total_mcast_qp_attach;
432 int max_ah;
433 int max_srq;
434 int max_srq_wr;
435 int max_srq_sge;
436 unsigned int max_fast_reg_page_list_len;
437 unsigned int max_pi_fast_reg_page_list_len;
438 u16 max_pkeys;
439 u8 local_ca_ack_delay;
440 int sig_prot_cap;
441 int sig_guard_cap;
442 struct ib_odp_caps odp_caps;
443 uint64_t timestamp_mask;
444 uint64_t hca_core_clock; /* in KHZ */
445 struct ib_rss_caps rss_caps;
446 u32 max_wq_type_rq;
447 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
448 struct ib_tm_caps tm_caps;
449 struct ib_cq_caps cq_caps;
450 u64 max_dm_size;
451 /* Max entries for sgl for optimized performance per READ */
452 u32 max_sgl_rd;
453 };
454
455 enum ib_mtu {
456 IB_MTU_256 = 1,
457 IB_MTU_512 = 2,
458 IB_MTU_1024 = 3,
459 IB_MTU_2048 = 4,
460 IB_MTU_4096 = 5
461 };
462
463 enum opa_mtu {
464 OPA_MTU_8192 = 6,
465 OPA_MTU_10240 = 7
466 };
467
ib_mtu_enum_to_int(enum ib_mtu mtu)468 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
469 {
470 switch (mtu) {
471 case IB_MTU_256: return 256;
472 case IB_MTU_512: return 512;
473 case IB_MTU_1024: return 1024;
474 case IB_MTU_2048: return 2048;
475 case IB_MTU_4096: return 4096;
476 default: return -1;
477 }
478 }
479
ib_mtu_int_to_enum(int mtu)480 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
481 {
482 if (mtu >= 4096)
483 return IB_MTU_4096;
484 else if (mtu >= 2048)
485 return IB_MTU_2048;
486 else if (mtu >= 1024)
487 return IB_MTU_1024;
488 else if (mtu >= 512)
489 return IB_MTU_512;
490 else
491 return IB_MTU_256;
492 }
493
opa_mtu_enum_to_int(enum opa_mtu mtu)494 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
495 {
496 switch (mtu) {
497 case OPA_MTU_8192:
498 return 8192;
499 case OPA_MTU_10240:
500 return 10240;
501 default:
502 return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
503 }
504 }
505
opa_mtu_int_to_enum(int mtu)506 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
507 {
508 if (mtu >= 10240)
509 return OPA_MTU_10240;
510 else if (mtu >= 8192)
511 return OPA_MTU_8192;
512 else
513 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
514 }
515
516 enum ib_port_state {
517 IB_PORT_NOP = 0,
518 IB_PORT_DOWN = 1,
519 IB_PORT_INIT = 2,
520 IB_PORT_ARMED = 3,
521 IB_PORT_ACTIVE = 4,
522 IB_PORT_ACTIVE_DEFER = 5
523 };
524
525 enum ib_port_phys_state {
526 IB_PORT_PHYS_STATE_SLEEP = 1,
527 IB_PORT_PHYS_STATE_POLLING = 2,
528 IB_PORT_PHYS_STATE_DISABLED = 3,
529 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
530 IB_PORT_PHYS_STATE_LINK_UP = 5,
531 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
532 IB_PORT_PHYS_STATE_PHY_TEST = 7,
533 };
534
535 enum ib_port_width {
536 IB_WIDTH_1X = 1,
537 IB_WIDTH_2X = 16,
538 IB_WIDTH_4X = 2,
539 IB_WIDTH_8X = 4,
540 IB_WIDTH_12X = 8
541 };
542
ib_width_enum_to_int(enum ib_port_width width)543 static inline int ib_width_enum_to_int(enum ib_port_width width)
544 {
545 switch (width) {
546 case IB_WIDTH_1X: return 1;
547 case IB_WIDTH_2X: return 2;
548 case IB_WIDTH_4X: return 4;
549 case IB_WIDTH_8X: return 8;
550 case IB_WIDTH_12X: return 12;
551 default: return -1;
552 }
553 }
554
555 enum ib_port_speed {
556 IB_SPEED_SDR = 1,
557 IB_SPEED_DDR = 2,
558 IB_SPEED_QDR = 4,
559 IB_SPEED_FDR10 = 8,
560 IB_SPEED_FDR = 16,
561 IB_SPEED_EDR = 32,
562 IB_SPEED_HDR = 64,
563 IB_SPEED_NDR = 128,
564 IB_SPEED_XDR = 256,
565 };
566
567 enum ib_stat_flag {
568 IB_STAT_FLAG_OPTIONAL = 1 << 0,
569 };
570
571 /**
572 * struct rdma_stat_desc
573 * @name - The name of the counter
574 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
575 * @priv - Driver private information; Core code should not use
576 */
577 struct rdma_stat_desc {
578 const char *name;
579 unsigned int flags;
580 const void *priv;
581 };
582
583 /**
584 * struct rdma_hw_stats
585 * @lock - Mutex to protect parallel write access to lifespan and values
586 * of counters, which are 64bits and not guaranteed to be written
587 * atomicaly on 32bits systems.
588 * @timestamp - Used by the core code to track when the last update was
589 * @lifespan - Used by the core code to determine how old the counters
590 * should be before being updated again. Stored in jiffies, defaults
591 * to 10 milliseconds, drivers can override the default be specifying
592 * their own value during their allocation routine.
593 * @descs - Array of pointers to static descriptors used for the counters
594 * in directory.
595 * @is_disabled - A bitmap to indicate each counter is currently disabled
596 * or not.
597 * @num_counters - How many hardware counters there are. If name is
598 * shorter than this number, a kernel oops will result. Driver authors
599 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
600 * in their code to prevent this.
601 * @value - Array of u64 counters that are accessed by the sysfs code and
602 * filled in by the drivers get_stats routine
603 */
604 struct rdma_hw_stats {
605 struct mutex lock; /* Protect lifespan and values[] */
606 unsigned long timestamp;
607 unsigned long lifespan;
608 const struct rdma_stat_desc *descs;
609 unsigned long *is_disabled;
610 int num_counters;
611 u64 value[] __counted_by(num_counters);
612 };
613
614 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
615
616 struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
617 const struct rdma_stat_desc *descs, int num_counters,
618 unsigned long lifespan);
619
620 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
621
622 /* Define bits for the various functionality this port needs to be supported by
623 * the core.
624 */
625 /* Management 0x00000FFF */
626 #define RDMA_CORE_CAP_IB_MAD 0x00000001
627 #define RDMA_CORE_CAP_IB_SMI 0x00000002
628 #define RDMA_CORE_CAP_IB_CM 0x00000004
629 #define RDMA_CORE_CAP_IW_CM 0x00000008
630 #define RDMA_CORE_CAP_IB_SA 0x00000010
631 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
632
633 /* Address format 0x000FF000 */
634 #define RDMA_CORE_CAP_AF_IB 0x00001000
635 #define RDMA_CORE_CAP_ETH_AH 0x00002000
636 #define RDMA_CORE_CAP_OPA_AH 0x00004000
637 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
638
639 /* Protocol 0xFFF00000 */
640 #define RDMA_CORE_CAP_PROT_IB 0x00100000
641 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
642 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
643 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
644 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
645 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000
646
647 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
648 | RDMA_CORE_CAP_PROT_ROCE \
649 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
650
651 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
652 | RDMA_CORE_CAP_IB_MAD \
653 | RDMA_CORE_CAP_IB_SMI \
654 | RDMA_CORE_CAP_IB_CM \
655 | RDMA_CORE_CAP_IB_SA \
656 | RDMA_CORE_CAP_AF_IB)
657 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
658 | RDMA_CORE_CAP_IB_MAD \
659 | RDMA_CORE_CAP_IB_CM \
660 | RDMA_CORE_CAP_AF_IB \
661 | RDMA_CORE_CAP_ETH_AH)
662 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
663 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
664 | RDMA_CORE_CAP_IB_MAD \
665 | RDMA_CORE_CAP_IB_CM \
666 | RDMA_CORE_CAP_AF_IB \
667 | RDMA_CORE_CAP_ETH_AH)
668 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
669 | RDMA_CORE_CAP_IW_CM)
670 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
671 | RDMA_CORE_CAP_OPA_MAD)
672
673 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
674
675 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
676
677 struct ib_port_attr {
678 u64 subnet_prefix;
679 enum ib_port_state state;
680 enum ib_mtu max_mtu;
681 enum ib_mtu active_mtu;
682 u32 phys_mtu;
683 int gid_tbl_len;
684 unsigned int ip_gids:1;
685 /* This is the value from PortInfo CapabilityMask, defined by IBA */
686 u32 port_cap_flags;
687 u32 max_msg_sz;
688 u32 bad_pkey_cntr;
689 u32 qkey_viol_cntr;
690 u16 pkey_tbl_len;
691 u32 sm_lid;
692 u32 lid;
693 u8 lmc;
694 u8 max_vl_num;
695 u8 sm_sl;
696 u8 subnet_timeout;
697 u8 init_type_reply;
698 u8 active_width;
699 u16 active_speed;
700 u8 phys_state;
701 u16 port_cap_flags2;
702 };
703
704 enum ib_device_modify_flags {
705 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
706 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
707 };
708
709 #define IB_DEVICE_NODE_DESC_MAX 64
710
711 struct ib_device_modify {
712 u64 sys_image_guid;
713 char node_desc[IB_DEVICE_NODE_DESC_MAX];
714 };
715
716 enum ib_port_modify_flags {
717 IB_PORT_SHUTDOWN = 1,
718 IB_PORT_INIT_TYPE = (1<<2),
719 IB_PORT_RESET_QKEY_CNTR = (1<<3),
720 IB_PORT_OPA_MASK_CHG = (1<<4)
721 };
722
723 struct ib_port_modify {
724 u32 set_port_cap_mask;
725 u32 clr_port_cap_mask;
726 u8 init_type;
727 };
728
729 enum ib_event_type {
730 IB_EVENT_CQ_ERR,
731 IB_EVENT_QP_FATAL,
732 IB_EVENT_QP_REQ_ERR,
733 IB_EVENT_QP_ACCESS_ERR,
734 IB_EVENT_COMM_EST,
735 IB_EVENT_SQ_DRAINED,
736 IB_EVENT_PATH_MIG,
737 IB_EVENT_PATH_MIG_ERR,
738 IB_EVENT_DEVICE_FATAL,
739 IB_EVENT_PORT_ACTIVE,
740 IB_EVENT_PORT_ERR,
741 IB_EVENT_LID_CHANGE,
742 IB_EVENT_PKEY_CHANGE,
743 IB_EVENT_SM_CHANGE,
744 IB_EVENT_SRQ_ERR,
745 IB_EVENT_SRQ_LIMIT_REACHED,
746 IB_EVENT_QP_LAST_WQE_REACHED,
747 IB_EVENT_CLIENT_REREGISTER,
748 IB_EVENT_GID_CHANGE,
749 IB_EVENT_WQ_FATAL,
750 };
751
752 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
753
754 struct ib_event {
755 struct ib_device *device;
756 union {
757 struct ib_cq *cq;
758 struct ib_qp *qp;
759 struct ib_srq *srq;
760 struct ib_wq *wq;
761 u32 port_num;
762 } element;
763 enum ib_event_type event;
764 };
765
766 struct ib_event_handler {
767 struct ib_device *device;
768 void (*handler)(struct ib_event_handler *, struct ib_event *);
769 struct list_head list;
770 };
771
772 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
773 do { \
774 (_ptr)->device = _device; \
775 (_ptr)->handler = _handler; \
776 INIT_LIST_HEAD(&(_ptr)->list); \
777 } while (0)
778
779 struct ib_global_route {
780 const struct ib_gid_attr *sgid_attr;
781 union ib_gid dgid;
782 u32 flow_label;
783 u8 sgid_index;
784 u8 hop_limit;
785 u8 traffic_class;
786 };
787
788 struct ib_grh {
789 __be32 version_tclass_flow;
790 __be16 paylen;
791 u8 next_hdr;
792 u8 hop_limit;
793 union ib_gid sgid;
794 union ib_gid dgid;
795 };
796
797 union rdma_network_hdr {
798 struct ib_grh ibgrh;
799 struct {
800 /* The IB spec states that if it's IPv4, the header
801 * is located in the last 20 bytes of the header.
802 */
803 u8 reserved[20];
804 struct iphdr roce4grh;
805 };
806 };
807
808 #define IB_QPN_MASK 0xFFFFFF
809
810 enum {
811 IB_MULTICAST_QPN = 0xffffff
812 };
813
814 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
815 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
816
817 enum ib_ah_flags {
818 IB_AH_GRH = 1
819 };
820
821 enum ib_rate {
822 IB_RATE_PORT_CURRENT = 0,
823 IB_RATE_2_5_GBPS = 2,
824 IB_RATE_5_GBPS = 5,
825 IB_RATE_10_GBPS = 3,
826 IB_RATE_20_GBPS = 6,
827 IB_RATE_30_GBPS = 4,
828 IB_RATE_40_GBPS = 7,
829 IB_RATE_60_GBPS = 8,
830 IB_RATE_80_GBPS = 9,
831 IB_RATE_120_GBPS = 10,
832 IB_RATE_14_GBPS = 11,
833 IB_RATE_56_GBPS = 12,
834 IB_RATE_112_GBPS = 13,
835 IB_RATE_168_GBPS = 14,
836 IB_RATE_25_GBPS = 15,
837 IB_RATE_100_GBPS = 16,
838 IB_RATE_200_GBPS = 17,
839 IB_RATE_300_GBPS = 18,
840 IB_RATE_28_GBPS = 19,
841 IB_RATE_50_GBPS = 20,
842 IB_RATE_400_GBPS = 21,
843 IB_RATE_600_GBPS = 22,
844 IB_RATE_800_GBPS = 23,
845 };
846
847 /**
848 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
849 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
850 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
851 * @rate: rate to convert.
852 */
853 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
854
855 /**
856 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
857 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
858 * @rate: rate to convert.
859 */
860 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
861
862
863 /**
864 * enum ib_mr_type - memory region type
865 * @IB_MR_TYPE_MEM_REG: memory region that is used for
866 * normal registration
867 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
868 * register any arbitrary sg lists (without
869 * the normal mr constraints - see
870 * ib_map_mr_sg)
871 * @IB_MR_TYPE_DM: memory region that is used for device
872 * memory registration
873 * @IB_MR_TYPE_USER: memory region that is used for the user-space
874 * application
875 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations
876 * without address translations (VA=PA)
877 * @IB_MR_TYPE_INTEGRITY: memory region that is used for
878 * data integrity operations
879 */
880 enum ib_mr_type {
881 IB_MR_TYPE_MEM_REG,
882 IB_MR_TYPE_SG_GAPS,
883 IB_MR_TYPE_DM,
884 IB_MR_TYPE_USER,
885 IB_MR_TYPE_DMA,
886 IB_MR_TYPE_INTEGRITY,
887 };
888
889 enum ib_mr_status_check {
890 IB_MR_CHECK_SIG_STATUS = 1,
891 };
892
893 /**
894 * struct ib_mr_status - Memory region status container
895 *
896 * @fail_status: Bitmask of MR checks status. For each
897 * failed check a corresponding status bit is set.
898 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
899 * failure.
900 */
901 struct ib_mr_status {
902 u32 fail_status;
903 struct ib_sig_err sig_err;
904 };
905
906 /**
907 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
908 * enum.
909 * @mult: multiple to convert.
910 */
911 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
912
913 struct rdma_ah_init_attr {
914 struct rdma_ah_attr *ah_attr;
915 u32 flags;
916 struct net_device *xmit_slave;
917 };
918
919 enum rdma_ah_attr_type {
920 RDMA_AH_ATTR_TYPE_UNDEFINED,
921 RDMA_AH_ATTR_TYPE_IB,
922 RDMA_AH_ATTR_TYPE_ROCE,
923 RDMA_AH_ATTR_TYPE_OPA,
924 };
925
926 struct ib_ah_attr {
927 u16 dlid;
928 u8 src_path_bits;
929 };
930
931 struct roce_ah_attr {
932 u8 dmac[ETH_ALEN];
933 };
934
935 struct opa_ah_attr {
936 u32 dlid;
937 u8 src_path_bits;
938 bool make_grd;
939 };
940
941 struct rdma_ah_attr {
942 struct ib_global_route grh;
943 u8 sl;
944 u8 static_rate;
945 u32 port_num;
946 u8 ah_flags;
947 enum rdma_ah_attr_type type;
948 union {
949 struct ib_ah_attr ib;
950 struct roce_ah_attr roce;
951 struct opa_ah_attr opa;
952 };
953 };
954
955 enum ib_wc_status {
956 IB_WC_SUCCESS,
957 IB_WC_LOC_LEN_ERR,
958 IB_WC_LOC_QP_OP_ERR,
959 IB_WC_LOC_EEC_OP_ERR,
960 IB_WC_LOC_PROT_ERR,
961 IB_WC_WR_FLUSH_ERR,
962 IB_WC_MW_BIND_ERR,
963 IB_WC_BAD_RESP_ERR,
964 IB_WC_LOC_ACCESS_ERR,
965 IB_WC_REM_INV_REQ_ERR,
966 IB_WC_REM_ACCESS_ERR,
967 IB_WC_REM_OP_ERR,
968 IB_WC_RETRY_EXC_ERR,
969 IB_WC_RNR_RETRY_EXC_ERR,
970 IB_WC_LOC_RDD_VIOL_ERR,
971 IB_WC_REM_INV_RD_REQ_ERR,
972 IB_WC_REM_ABORT_ERR,
973 IB_WC_INV_EECN_ERR,
974 IB_WC_INV_EEC_STATE_ERR,
975 IB_WC_FATAL_ERR,
976 IB_WC_RESP_TIMEOUT_ERR,
977 IB_WC_GENERAL_ERR
978 };
979
980 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
981
982 enum ib_wc_opcode {
983 IB_WC_SEND = IB_UVERBS_WC_SEND,
984 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
985 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
986 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
987 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
988 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
989 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
990 IB_WC_LSO = IB_UVERBS_WC_TSO,
991 IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
992 IB_WC_REG_MR,
993 IB_WC_MASKED_COMP_SWAP,
994 IB_WC_MASKED_FETCH_ADD,
995 IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
996 /*
997 * Set value of IB_WC_RECV so consumers can test if a completion is a
998 * receive by testing (opcode & IB_WC_RECV).
999 */
1000 IB_WC_RECV = 1 << 7,
1001 IB_WC_RECV_RDMA_WITH_IMM
1002 };
1003
1004 enum ib_wc_flags {
1005 IB_WC_GRH = 1,
1006 IB_WC_WITH_IMM = (1<<1),
1007 IB_WC_WITH_INVALIDATE = (1<<2),
1008 IB_WC_IP_CSUM_OK = (1<<3),
1009 IB_WC_WITH_SMAC = (1<<4),
1010 IB_WC_WITH_VLAN = (1<<5),
1011 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1012 };
1013
1014 struct ib_wc {
1015 union {
1016 u64 wr_id;
1017 struct ib_cqe *wr_cqe;
1018 };
1019 enum ib_wc_status status;
1020 enum ib_wc_opcode opcode;
1021 u32 vendor_err;
1022 u32 byte_len;
1023 struct ib_qp *qp;
1024 union {
1025 __be32 imm_data;
1026 u32 invalidate_rkey;
1027 } ex;
1028 u32 src_qp;
1029 u32 slid;
1030 int wc_flags;
1031 u16 pkey_index;
1032 u8 sl;
1033 u8 dlid_path_bits;
1034 u32 port_num; /* valid only for DR SMPs on switches */
1035 u8 smac[ETH_ALEN];
1036 u16 vlan_id;
1037 u8 network_hdr_type;
1038 };
1039
1040 enum ib_cq_notify_flags {
1041 IB_CQ_SOLICITED = 1 << 0,
1042 IB_CQ_NEXT_COMP = 1 << 1,
1043 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1044 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1045 };
1046
1047 enum ib_srq_type {
1048 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1049 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1050 IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1051 };
1052
ib_srq_has_cq(enum ib_srq_type srq_type)1053 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1054 {
1055 return srq_type == IB_SRQT_XRC ||
1056 srq_type == IB_SRQT_TM;
1057 }
1058
1059 enum ib_srq_attr_mask {
1060 IB_SRQ_MAX_WR = 1 << 0,
1061 IB_SRQ_LIMIT = 1 << 1,
1062 };
1063
1064 struct ib_srq_attr {
1065 u32 max_wr;
1066 u32 max_sge;
1067 u32 srq_limit;
1068 };
1069
1070 struct ib_srq_init_attr {
1071 void (*event_handler)(struct ib_event *, void *);
1072 void *srq_context;
1073 struct ib_srq_attr attr;
1074 enum ib_srq_type srq_type;
1075
1076 struct {
1077 struct ib_cq *cq;
1078 union {
1079 struct {
1080 struct ib_xrcd *xrcd;
1081 } xrc;
1082
1083 struct {
1084 u32 max_num_tags;
1085 } tag_matching;
1086 };
1087 } ext;
1088 };
1089
1090 struct ib_qp_cap {
1091 u32 max_send_wr;
1092 u32 max_recv_wr;
1093 u32 max_send_sge;
1094 u32 max_recv_sge;
1095 u32 max_inline_data;
1096
1097 /*
1098 * Maximum number of rdma_rw_ctx structures in flight at a time.
1099 * ib_create_qp() will calculate the right amount of needed WRs
1100 * and MRs based on this.
1101 */
1102 u32 max_rdma_ctxs;
1103 };
1104
1105 enum ib_sig_type {
1106 IB_SIGNAL_ALL_WR,
1107 IB_SIGNAL_REQ_WR
1108 };
1109
1110 enum ib_qp_type {
1111 /*
1112 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1113 * here (and in that order) since the MAD layer uses them as
1114 * indices into a 2-entry table.
1115 */
1116 IB_QPT_SMI,
1117 IB_QPT_GSI,
1118
1119 IB_QPT_RC = IB_UVERBS_QPT_RC,
1120 IB_QPT_UC = IB_UVERBS_QPT_UC,
1121 IB_QPT_UD = IB_UVERBS_QPT_UD,
1122 IB_QPT_RAW_IPV6,
1123 IB_QPT_RAW_ETHERTYPE,
1124 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1125 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1126 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1127 IB_QPT_MAX,
1128 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1129 /* Reserve a range for qp types internal to the low level driver.
1130 * These qp types will not be visible at the IB core layer, so the
1131 * IB_QPT_MAX usages should not be affected in the core layer
1132 */
1133 IB_QPT_RESERVED1 = 0x1000,
1134 IB_QPT_RESERVED2,
1135 IB_QPT_RESERVED3,
1136 IB_QPT_RESERVED4,
1137 IB_QPT_RESERVED5,
1138 IB_QPT_RESERVED6,
1139 IB_QPT_RESERVED7,
1140 IB_QPT_RESERVED8,
1141 IB_QPT_RESERVED9,
1142 IB_QPT_RESERVED10,
1143 };
1144
1145 enum ib_qp_create_flags {
1146 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1147 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK =
1148 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1149 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1150 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1151 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1152 IB_QP_CREATE_NETIF_QP = 1 << 5,
1153 IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
1154 IB_QP_CREATE_NETDEV_USE = 1 << 7,
1155 IB_QP_CREATE_SCATTER_FCS =
1156 IB_UVERBS_QP_CREATE_SCATTER_FCS,
1157 IB_QP_CREATE_CVLAN_STRIPPING =
1158 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1159 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1160 IB_QP_CREATE_PCI_WRITE_END_PADDING =
1161 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1162 /* reserve bits 26-31 for low level drivers' internal use */
1163 IB_QP_CREATE_RESERVED_START = 1 << 26,
1164 IB_QP_CREATE_RESERVED_END = 1 << 31,
1165 };
1166
1167 /*
1168 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1169 * callback to destroy the passed in QP.
1170 */
1171
1172 struct ib_qp_init_attr {
1173 /* This callback occurs in workqueue context */
1174 void (*event_handler)(struct ib_event *, void *);
1175
1176 void *qp_context;
1177 struct ib_cq *send_cq;
1178 struct ib_cq *recv_cq;
1179 struct ib_srq *srq;
1180 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1181 struct ib_qp_cap cap;
1182 enum ib_sig_type sq_sig_type;
1183 enum ib_qp_type qp_type;
1184 u32 create_flags;
1185
1186 /*
1187 * Only needed for special QP types, or when using the RW API.
1188 */
1189 u32 port_num;
1190 struct ib_rwq_ind_table *rwq_ind_tbl;
1191 u32 source_qpn;
1192 };
1193
1194 struct ib_qp_open_attr {
1195 void (*event_handler)(struct ib_event *, void *);
1196 void *qp_context;
1197 u32 qp_num;
1198 enum ib_qp_type qp_type;
1199 };
1200
1201 enum ib_rnr_timeout {
1202 IB_RNR_TIMER_655_36 = 0,
1203 IB_RNR_TIMER_000_01 = 1,
1204 IB_RNR_TIMER_000_02 = 2,
1205 IB_RNR_TIMER_000_03 = 3,
1206 IB_RNR_TIMER_000_04 = 4,
1207 IB_RNR_TIMER_000_06 = 5,
1208 IB_RNR_TIMER_000_08 = 6,
1209 IB_RNR_TIMER_000_12 = 7,
1210 IB_RNR_TIMER_000_16 = 8,
1211 IB_RNR_TIMER_000_24 = 9,
1212 IB_RNR_TIMER_000_32 = 10,
1213 IB_RNR_TIMER_000_48 = 11,
1214 IB_RNR_TIMER_000_64 = 12,
1215 IB_RNR_TIMER_000_96 = 13,
1216 IB_RNR_TIMER_001_28 = 14,
1217 IB_RNR_TIMER_001_92 = 15,
1218 IB_RNR_TIMER_002_56 = 16,
1219 IB_RNR_TIMER_003_84 = 17,
1220 IB_RNR_TIMER_005_12 = 18,
1221 IB_RNR_TIMER_007_68 = 19,
1222 IB_RNR_TIMER_010_24 = 20,
1223 IB_RNR_TIMER_015_36 = 21,
1224 IB_RNR_TIMER_020_48 = 22,
1225 IB_RNR_TIMER_030_72 = 23,
1226 IB_RNR_TIMER_040_96 = 24,
1227 IB_RNR_TIMER_061_44 = 25,
1228 IB_RNR_TIMER_081_92 = 26,
1229 IB_RNR_TIMER_122_88 = 27,
1230 IB_RNR_TIMER_163_84 = 28,
1231 IB_RNR_TIMER_245_76 = 29,
1232 IB_RNR_TIMER_327_68 = 30,
1233 IB_RNR_TIMER_491_52 = 31
1234 };
1235
1236 enum ib_qp_attr_mask {
1237 IB_QP_STATE = 1,
1238 IB_QP_CUR_STATE = (1<<1),
1239 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1240 IB_QP_ACCESS_FLAGS = (1<<3),
1241 IB_QP_PKEY_INDEX = (1<<4),
1242 IB_QP_PORT = (1<<5),
1243 IB_QP_QKEY = (1<<6),
1244 IB_QP_AV = (1<<7),
1245 IB_QP_PATH_MTU = (1<<8),
1246 IB_QP_TIMEOUT = (1<<9),
1247 IB_QP_RETRY_CNT = (1<<10),
1248 IB_QP_RNR_RETRY = (1<<11),
1249 IB_QP_RQ_PSN = (1<<12),
1250 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1251 IB_QP_ALT_PATH = (1<<14),
1252 IB_QP_MIN_RNR_TIMER = (1<<15),
1253 IB_QP_SQ_PSN = (1<<16),
1254 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1255 IB_QP_PATH_MIG_STATE = (1<<18),
1256 IB_QP_CAP = (1<<19),
1257 IB_QP_DEST_QPN = (1<<20),
1258 IB_QP_RESERVED1 = (1<<21),
1259 IB_QP_RESERVED2 = (1<<22),
1260 IB_QP_RESERVED3 = (1<<23),
1261 IB_QP_RESERVED4 = (1<<24),
1262 IB_QP_RATE_LIMIT = (1<<25),
1263
1264 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1265 };
1266
1267 enum ib_qp_state {
1268 IB_QPS_RESET,
1269 IB_QPS_INIT,
1270 IB_QPS_RTR,
1271 IB_QPS_RTS,
1272 IB_QPS_SQD,
1273 IB_QPS_SQE,
1274 IB_QPS_ERR
1275 };
1276
1277 enum ib_mig_state {
1278 IB_MIG_MIGRATED,
1279 IB_MIG_REARM,
1280 IB_MIG_ARMED
1281 };
1282
1283 enum ib_mw_type {
1284 IB_MW_TYPE_1 = 1,
1285 IB_MW_TYPE_2 = 2
1286 };
1287
1288 struct ib_qp_attr {
1289 enum ib_qp_state qp_state;
1290 enum ib_qp_state cur_qp_state;
1291 enum ib_mtu path_mtu;
1292 enum ib_mig_state path_mig_state;
1293 u32 qkey;
1294 u32 rq_psn;
1295 u32 sq_psn;
1296 u32 dest_qp_num;
1297 int qp_access_flags;
1298 struct ib_qp_cap cap;
1299 struct rdma_ah_attr ah_attr;
1300 struct rdma_ah_attr alt_ah_attr;
1301 u16 pkey_index;
1302 u16 alt_pkey_index;
1303 u8 en_sqd_async_notify;
1304 u8 sq_draining;
1305 u8 max_rd_atomic;
1306 u8 max_dest_rd_atomic;
1307 u8 min_rnr_timer;
1308 u32 port_num;
1309 u8 timeout;
1310 u8 retry_cnt;
1311 u8 rnr_retry;
1312 u32 alt_port_num;
1313 u8 alt_timeout;
1314 u32 rate_limit;
1315 struct net_device *xmit_slave;
1316 };
1317
1318 enum ib_wr_opcode {
1319 /* These are shared with userspace */
1320 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1321 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1322 IB_WR_SEND = IB_UVERBS_WR_SEND,
1323 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1324 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1325 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1326 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1327 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1328 IB_WR_LSO = IB_UVERBS_WR_TSO,
1329 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1330 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1331 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1332 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1333 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1334 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1335 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1336 IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1337 IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1338
1339 /* These are kernel only and can not be issued by userspace */
1340 IB_WR_REG_MR = 0x20,
1341 IB_WR_REG_MR_INTEGRITY,
1342
1343 /* reserve values for low level drivers' internal use.
1344 * These values will not be used at all in the ib core layer.
1345 */
1346 IB_WR_RESERVED1 = 0xf0,
1347 IB_WR_RESERVED2,
1348 IB_WR_RESERVED3,
1349 IB_WR_RESERVED4,
1350 IB_WR_RESERVED5,
1351 IB_WR_RESERVED6,
1352 IB_WR_RESERVED7,
1353 IB_WR_RESERVED8,
1354 IB_WR_RESERVED9,
1355 IB_WR_RESERVED10,
1356 };
1357
1358 enum ib_send_flags {
1359 IB_SEND_FENCE = 1,
1360 IB_SEND_SIGNALED = (1<<1),
1361 IB_SEND_SOLICITED = (1<<2),
1362 IB_SEND_INLINE = (1<<3),
1363 IB_SEND_IP_CSUM = (1<<4),
1364
1365 /* reserve bits 26-31 for low level drivers' internal use */
1366 IB_SEND_RESERVED_START = (1 << 26),
1367 IB_SEND_RESERVED_END = (1 << 31),
1368 };
1369
1370 struct ib_sge {
1371 u64 addr;
1372 u32 length;
1373 u32 lkey;
1374 };
1375
1376 struct ib_cqe {
1377 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1378 };
1379
1380 struct ib_send_wr {
1381 struct ib_send_wr *next;
1382 union {
1383 u64 wr_id;
1384 struct ib_cqe *wr_cqe;
1385 };
1386 struct ib_sge *sg_list;
1387 int num_sge;
1388 enum ib_wr_opcode opcode;
1389 int send_flags;
1390 union {
1391 __be32 imm_data;
1392 u32 invalidate_rkey;
1393 } ex;
1394 };
1395
1396 struct ib_rdma_wr {
1397 struct ib_send_wr wr;
1398 u64 remote_addr;
1399 u32 rkey;
1400 };
1401
rdma_wr(const struct ib_send_wr * wr)1402 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1403 {
1404 return container_of(wr, struct ib_rdma_wr, wr);
1405 }
1406
1407 struct ib_atomic_wr {
1408 struct ib_send_wr wr;
1409 u64 remote_addr;
1410 u64 compare_add;
1411 u64 swap;
1412 u64 compare_add_mask;
1413 u64 swap_mask;
1414 u32 rkey;
1415 };
1416
atomic_wr(const struct ib_send_wr * wr)1417 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1418 {
1419 return container_of(wr, struct ib_atomic_wr, wr);
1420 }
1421
1422 struct ib_ud_wr {
1423 struct ib_send_wr wr;
1424 struct ib_ah *ah;
1425 void *header;
1426 int hlen;
1427 int mss;
1428 u32 remote_qpn;
1429 u32 remote_qkey;
1430 u16 pkey_index; /* valid for GSI only */
1431 u32 port_num; /* valid for DR SMPs on switch only */
1432 };
1433
ud_wr(const struct ib_send_wr * wr)1434 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1435 {
1436 return container_of(wr, struct ib_ud_wr, wr);
1437 }
1438
1439 struct ib_reg_wr {
1440 struct ib_send_wr wr;
1441 struct ib_mr *mr;
1442 u32 key;
1443 int access;
1444 };
1445
reg_wr(const struct ib_send_wr * wr)1446 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1447 {
1448 return container_of(wr, struct ib_reg_wr, wr);
1449 }
1450
1451 struct ib_recv_wr {
1452 struct ib_recv_wr *next;
1453 union {
1454 u64 wr_id;
1455 struct ib_cqe *wr_cqe;
1456 };
1457 struct ib_sge *sg_list;
1458 int num_sge;
1459 };
1460
1461 enum ib_access_flags {
1462 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1463 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1464 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1465 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1466 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1467 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1468 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1469 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1470 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1471 IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1472 IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1473
1474 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1475 IB_ACCESS_SUPPORTED =
1476 ((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
1477 };
1478
1479 /*
1480 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1481 * are hidden here instead of a uapi header!
1482 */
1483 enum ib_mr_rereg_flags {
1484 IB_MR_REREG_TRANS = 1,
1485 IB_MR_REREG_PD = (1<<1),
1486 IB_MR_REREG_ACCESS = (1<<2),
1487 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1488 };
1489
1490 struct ib_umem;
1491
1492 enum rdma_remove_reason {
1493 /*
1494 * Userspace requested uobject deletion or initial try
1495 * to remove uobject via cleanup. Call could fail
1496 */
1497 RDMA_REMOVE_DESTROY,
1498 /* Context deletion. This call should delete the actual object itself */
1499 RDMA_REMOVE_CLOSE,
1500 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1501 RDMA_REMOVE_DRIVER_REMOVE,
1502 /* uobj is being cleaned-up before being committed */
1503 RDMA_REMOVE_ABORT,
1504 /* The driver failed to destroy the uobject and is being disconnected */
1505 RDMA_REMOVE_DRIVER_FAILURE,
1506 };
1507
1508 struct ib_rdmacg_object {
1509 #ifdef CONFIG_CGROUP_RDMA
1510 struct rdma_cgroup *cg; /* owner rdma cgroup */
1511 #endif
1512 };
1513
1514 struct ib_ucontext {
1515 struct ib_device *device;
1516 struct ib_uverbs_file *ufile;
1517
1518 struct ib_rdmacg_object cg_obj;
1519 /*
1520 * Implementation details of the RDMA core, don't use in drivers:
1521 */
1522 struct rdma_restrack_entry res;
1523 struct xarray mmap_xa;
1524 };
1525
1526 struct ib_uobject {
1527 u64 user_handle; /* handle given to us by userspace */
1528 /* ufile & ucontext owning this object */
1529 struct ib_uverbs_file *ufile;
1530 /* FIXME, save memory: ufile->context == context */
1531 struct ib_ucontext *context; /* associated user context */
1532 void *object; /* containing object */
1533 struct list_head list; /* link to context's list */
1534 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1535 int id; /* index into kernel idr */
1536 struct kref ref;
1537 atomic_t usecnt; /* protects exclusive access */
1538 struct rcu_head rcu; /* kfree_rcu() overhead */
1539
1540 const struct uverbs_api_object *uapi_object;
1541 };
1542
1543 struct ib_udata {
1544 const void __user *inbuf;
1545 void __user *outbuf;
1546 size_t inlen;
1547 size_t outlen;
1548 };
1549
1550 struct ib_pd {
1551 u32 local_dma_lkey;
1552 u32 flags;
1553 struct ib_device *device;
1554 struct ib_uobject *uobject;
1555 atomic_t usecnt; /* count all resources */
1556
1557 u32 unsafe_global_rkey;
1558
1559 /*
1560 * Implementation details of the RDMA core, don't use in drivers:
1561 */
1562 struct ib_mr *__internal_mr;
1563 struct rdma_restrack_entry res;
1564 };
1565
1566 struct ib_xrcd {
1567 struct ib_device *device;
1568 atomic_t usecnt; /* count all exposed resources */
1569 struct inode *inode;
1570 struct rw_semaphore tgt_qps_rwsem;
1571 struct xarray tgt_qps;
1572 };
1573
1574 struct ib_ah {
1575 struct ib_device *device;
1576 struct ib_pd *pd;
1577 struct ib_uobject *uobject;
1578 const struct ib_gid_attr *sgid_attr;
1579 enum rdma_ah_attr_type type;
1580 };
1581
1582 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1583
1584 enum ib_poll_context {
1585 IB_POLL_SOFTIRQ, /* poll from softirq context */
1586 IB_POLL_WORKQUEUE, /* poll from workqueue */
1587 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1588 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1589
1590 IB_POLL_DIRECT, /* caller context, no hw completions */
1591 };
1592
1593 struct ib_cq {
1594 struct ib_device *device;
1595 struct ib_ucq_object *uobject;
1596 ib_comp_handler comp_handler;
1597 void (*event_handler)(struct ib_event *, void *);
1598 void *cq_context;
1599 int cqe;
1600 unsigned int cqe_used;
1601 atomic_t usecnt; /* count number of work queues */
1602 enum ib_poll_context poll_ctx;
1603 struct ib_wc *wc;
1604 struct list_head pool_entry;
1605 union {
1606 struct irq_poll iop;
1607 struct work_struct work;
1608 };
1609 struct workqueue_struct *comp_wq;
1610 struct dim *dim;
1611
1612 /* updated only by trace points */
1613 ktime_t timestamp;
1614 u8 interrupt:1;
1615 u8 shared:1;
1616 unsigned int comp_vector;
1617
1618 /*
1619 * Implementation details of the RDMA core, don't use in drivers:
1620 */
1621 struct rdma_restrack_entry res;
1622 };
1623
1624 struct ib_srq {
1625 struct ib_device *device;
1626 struct ib_pd *pd;
1627 struct ib_usrq_object *uobject;
1628 void (*event_handler)(struct ib_event *, void *);
1629 void *srq_context;
1630 enum ib_srq_type srq_type;
1631 atomic_t usecnt;
1632
1633 struct {
1634 struct ib_cq *cq;
1635 union {
1636 struct {
1637 struct ib_xrcd *xrcd;
1638 u32 srq_num;
1639 } xrc;
1640 };
1641 } ext;
1642
1643 /*
1644 * Implementation details of the RDMA core, don't use in drivers:
1645 */
1646 struct rdma_restrack_entry res;
1647 };
1648
1649 enum ib_raw_packet_caps {
1650 /*
1651 * Strip cvlan from incoming packet and report it in the matching work
1652 * completion is supported.
1653 */
1654 IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1655 IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1656 /*
1657 * Scatter FCS field of an incoming packet to host memory is supported.
1658 */
1659 IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1660 /* Checksum offloads are supported (for both send and receive). */
1661 IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1662 /*
1663 * When a packet is received for an RQ with no receive WQEs, the
1664 * packet processing is delayed.
1665 */
1666 IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1667 };
1668
1669 enum ib_wq_type {
1670 IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1671 };
1672
1673 enum ib_wq_state {
1674 IB_WQS_RESET,
1675 IB_WQS_RDY,
1676 IB_WQS_ERR
1677 };
1678
1679 struct ib_wq {
1680 struct ib_device *device;
1681 struct ib_uwq_object *uobject;
1682 void *wq_context;
1683 void (*event_handler)(struct ib_event *, void *);
1684 struct ib_pd *pd;
1685 struct ib_cq *cq;
1686 u32 wq_num;
1687 enum ib_wq_state state;
1688 enum ib_wq_type wq_type;
1689 atomic_t usecnt;
1690 };
1691
1692 enum ib_wq_flags {
1693 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1694 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1695 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1696 IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1697 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1698 };
1699
1700 struct ib_wq_init_attr {
1701 void *wq_context;
1702 enum ib_wq_type wq_type;
1703 u32 max_wr;
1704 u32 max_sge;
1705 struct ib_cq *cq;
1706 void (*event_handler)(struct ib_event *, void *);
1707 u32 create_flags; /* Use enum ib_wq_flags */
1708 };
1709
1710 enum ib_wq_attr_mask {
1711 IB_WQ_STATE = 1 << 0,
1712 IB_WQ_CUR_STATE = 1 << 1,
1713 IB_WQ_FLAGS = 1 << 2,
1714 };
1715
1716 struct ib_wq_attr {
1717 enum ib_wq_state wq_state;
1718 enum ib_wq_state curr_wq_state;
1719 u32 flags; /* Use enum ib_wq_flags */
1720 u32 flags_mask; /* Use enum ib_wq_flags */
1721 };
1722
1723 struct ib_rwq_ind_table {
1724 struct ib_device *device;
1725 struct ib_uobject *uobject;
1726 atomic_t usecnt;
1727 u32 ind_tbl_num;
1728 u32 log_ind_tbl_size;
1729 struct ib_wq **ind_tbl;
1730 };
1731
1732 struct ib_rwq_ind_table_init_attr {
1733 u32 log_ind_tbl_size;
1734 /* Each entry is a pointer to Receive Work Queue */
1735 struct ib_wq **ind_tbl;
1736 };
1737
1738 enum port_pkey_state {
1739 IB_PORT_PKEY_NOT_VALID = 0,
1740 IB_PORT_PKEY_VALID = 1,
1741 IB_PORT_PKEY_LISTED = 2,
1742 };
1743
1744 struct ib_qp_security;
1745
1746 struct ib_port_pkey {
1747 enum port_pkey_state state;
1748 u16 pkey_index;
1749 u32 port_num;
1750 struct list_head qp_list;
1751 struct list_head to_error_list;
1752 struct ib_qp_security *sec;
1753 };
1754
1755 struct ib_ports_pkeys {
1756 struct ib_port_pkey main;
1757 struct ib_port_pkey alt;
1758 };
1759
1760 struct ib_qp_security {
1761 struct ib_qp *qp;
1762 struct ib_device *dev;
1763 /* Hold this mutex when changing port and pkey settings. */
1764 struct mutex mutex;
1765 struct ib_ports_pkeys *ports_pkeys;
1766 /* A list of all open shared QP handles. Required to enforce security
1767 * properly for all users of a shared QP.
1768 */
1769 struct list_head shared_qp_list;
1770 void *security;
1771 bool destroying;
1772 atomic_t error_list_count;
1773 struct completion error_complete;
1774 int error_comps_pending;
1775 };
1776
1777 /*
1778 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1779 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1780 */
1781 struct ib_qp {
1782 struct ib_device *device;
1783 struct ib_pd *pd;
1784 struct ib_cq *send_cq;
1785 struct ib_cq *recv_cq;
1786 spinlock_t mr_lock;
1787 int mrs_used;
1788 struct list_head rdma_mrs;
1789 struct list_head sig_mrs;
1790 struct ib_srq *srq;
1791 struct completion srq_completion;
1792 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1793 struct list_head xrcd_list;
1794
1795 /* count times opened, mcast attaches, flow attaches */
1796 atomic_t usecnt;
1797 struct list_head open_list;
1798 struct ib_qp *real_qp;
1799 struct ib_uqp_object *uobject;
1800 void (*event_handler)(struct ib_event *, void *);
1801 void (*registered_event_handler)(struct ib_event *, void *);
1802 void *qp_context;
1803 /* sgid_attrs associated with the AV's */
1804 const struct ib_gid_attr *av_sgid_attr;
1805 const struct ib_gid_attr *alt_path_sgid_attr;
1806 u32 qp_num;
1807 u32 max_write_sge;
1808 u32 max_read_sge;
1809 enum ib_qp_type qp_type;
1810 struct ib_rwq_ind_table *rwq_ind_tbl;
1811 struct ib_qp_security *qp_sec;
1812 u32 port;
1813
1814 bool integrity_en;
1815 /*
1816 * Implementation details of the RDMA core, don't use in drivers:
1817 */
1818 struct rdma_restrack_entry res;
1819
1820 /* The counter the qp is bind to */
1821 struct rdma_counter *counter;
1822 };
1823
1824 struct ib_dm {
1825 struct ib_device *device;
1826 u32 length;
1827 u32 flags;
1828 struct ib_uobject *uobject;
1829 atomic_t usecnt;
1830 };
1831
1832 struct ib_mr {
1833 struct ib_device *device;
1834 struct ib_pd *pd;
1835 u32 lkey;
1836 u32 rkey;
1837 u64 iova;
1838 u64 length;
1839 unsigned int page_size;
1840 enum ib_mr_type type;
1841 bool need_inval;
1842 union {
1843 struct ib_uobject *uobject; /* user */
1844 struct list_head qp_entry; /* FR */
1845 };
1846
1847 struct ib_dm *dm;
1848 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1849 /*
1850 * Implementation details of the RDMA core, don't use in drivers:
1851 */
1852 struct rdma_restrack_entry res;
1853 };
1854
1855 struct ib_mw {
1856 struct ib_device *device;
1857 struct ib_pd *pd;
1858 struct ib_uobject *uobject;
1859 u32 rkey;
1860 enum ib_mw_type type;
1861 };
1862
1863 /* Supported steering options */
1864 enum ib_flow_attr_type {
1865 /* steering according to rule specifications */
1866 IB_FLOW_ATTR_NORMAL = 0x0,
1867 /* default unicast and multicast rule -
1868 * receive all Eth traffic which isn't steered to any QP
1869 */
1870 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1871 /* default multicast rule -
1872 * receive all Eth multicast traffic which isn't steered to any QP
1873 */
1874 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1875 /* sniffer rule - receive all port traffic */
1876 IB_FLOW_ATTR_SNIFFER = 0x3
1877 };
1878
1879 /* Supported steering header types */
1880 enum ib_flow_spec_type {
1881 /* L2 headers*/
1882 IB_FLOW_SPEC_ETH = 0x20,
1883 IB_FLOW_SPEC_IB = 0x22,
1884 /* L3 header*/
1885 IB_FLOW_SPEC_IPV4 = 0x30,
1886 IB_FLOW_SPEC_IPV6 = 0x31,
1887 IB_FLOW_SPEC_ESP = 0x34,
1888 /* L4 headers*/
1889 IB_FLOW_SPEC_TCP = 0x40,
1890 IB_FLOW_SPEC_UDP = 0x41,
1891 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1892 IB_FLOW_SPEC_GRE = 0x51,
1893 IB_FLOW_SPEC_MPLS = 0x60,
1894 IB_FLOW_SPEC_INNER = 0x100,
1895 /* Actions */
1896 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1897 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1898 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
1899 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
1900 };
1901 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1902 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1903
1904 enum ib_flow_flags {
1905 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1906 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1907 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
1908 };
1909
1910 struct ib_flow_eth_filter {
1911 u8 dst_mac[6];
1912 u8 src_mac[6];
1913 __be16 ether_type;
1914 __be16 vlan_tag;
1915 };
1916
1917 struct ib_flow_spec_eth {
1918 u32 type;
1919 u16 size;
1920 struct ib_flow_eth_filter val;
1921 struct ib_flow_eth_filter mask;
1922 };
1923
1924 struct ib_flow_ib_filter {
1925 __be16 dlid;
1926 __u8 sl;
1927 };
1928
1929 struct ib_flow_spec_ib {
1930 u32 type;
1931 u16 size;
1932 struct ib_flow_ib_filter val;
1933 struct ib_flow_ib_filter mask;
1934 };
1935
1936 /* IPv4 header flags */
1937 enum ib_ipv4_flags {
1938 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1939 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1940 last have this flag set */
1941 };
1942
1943 struct ib_flow_ipv4_filter {
1944 __be32 src_ip;
1945 __be32 dst_ip;
1946 u8 proto;
1947 u8 tos;
1948 u8 ttl;
1949 u8 flags;
1950 };
1951
1952 struct ib_flow_spec_ipv4 {
1953 u32 type;
1954 u16 size;
1955 struct ib_flow_ipv4_filter val;
1956 struct ib_flow_ipv4_filter mask;
1957 };
1958
1959 struct ib_flow_ipv6_filter {
1960 u8 src_ip[16];
1961 u8 dst_ip[16];
1962 __be32 flow_label;
1963 u8 next_hdr;
1964 u8 traffic_class;
1965 u8 hop_limit;
1966 } __packed;
1967
1968 struct ib_flow_spec_ipv6 {
1969 u32 type;
1970 u16 size;
1971 struct ib_flow_ipv6_filter val;
1972 struct ib_flow_ipv6_filter mask;
1973 };
1974
1975 struct ib_flow_tcp_udp_filter {
1976 __be16 dst_port;
1977 __be16 src_port;
1978 };
1979
1980 struct ib_flow_spec_tcp_udp {
1981 u32 type;
1982 u16 size;
1983 struct ib_flow_tcp_udp_filter val;
1984 struct ib_flow_tcp_udp_filter mask;
1985 };
1986
1987 struct ib_flow_tunnel_filter {
1988 __be32 tunnel_id;
1989 };
1990
1991 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1992 * the tunnel_id from val has the vni value
1993 */
1994 struct ib_flow_spec_tunnel {
1995 u32 type;
1996 u16 size;
1997 struct ib_flow_tunnel_filter val;
1998 struct ib_flow_tunnel_filter mask;
1999 };
2000
2001 struct ib_flow_esp_filter {
2002 __be32 spi;
2003 __be32 seq;
2004 };
2005
2006 struct ib_flow_spec_esp {
2007 u32 type;
2008 u16 size;
2009 struct ib_flow_esp_filter val;
2010 struct ib_flow_esp_filter mask;
2011 };
2012
2013 struct ib_flow_gre_filter {
2014 __be16 c_ks_res0_ver;
2015 __be16 protocol;
2016 __be32 key;
2017 };
2018
2019 struct ib_flow_spec_gre {
2020 u32 type;
2021 u16 size;
2022 struct ib_flow_gre_filter val;
2023 struct ib_flow_gre_filter mask;
2024 };
2025
2026 struct ib_flow_mpls_filter {
2027 __be32 tag;
2028 };
2029
2030 struct ib_flow_spec_mpls {
2031 u32 type;
2032 u16 size;
2033 struct ib_flow_mpls_filter val;
2034 struct ib_flow_mpls_filter mask;
2035 };
2036
2037 struct ib_flow_spec_action_tag {
2038 enum ib_flow_spec_type type;
2039 u16 size;
2040 u32 tag_id;
2041 };
2042
2043 struct ib_flow_spec_action_drop {
2044 enum ib_flow_spec_type type;
2045 u16 size;
2046 };
2047
2048 struct ib_flow_spec_action_handle {
2049 enum ib_flow_spec_type type;
2050 u16 size;
2051 struct ib_flow_action *act;
2052 };
2053
2054 enum ib_counters_description {
2055 IB_COUNTER_PACKETS,
2056 IB_COUNTER_BYTES,
2057 };
2058
2059 struct ib_flow_spec_action_count {
2060 enum ib_flow_spec_type type;
2061 u16 size;
2062 struct ib_counters *counters;
2063 };
2064
2065 union ib_flow_spec {
2066 struct {
2067 u32 type;
2068 u16 size;
2069 };
2070 struct ib_flow_spec_eth eth;
2071 struct ib_flow_spec_ib ib;
2072 struct ib_flow_spec_ipv4 ipv4;
2073 struct ib_flow_spec_tcp_udp tcp_udp;
2074 struct ib_flow_spec_ipv6 ipv6;
2075 struct ib_flow_spec_tunnel tunnel;
2076 struct ib_flow_spec_esp esp;
2077 struct ib_flow_spec_gre gre;
2078 struct ib_flow_spec_mpls mpls;
2079 struct ib_flow_spec_action_tag flow_tag;
2080 struct ib_flow_spec_action_drop drop;
2081 struct ib_flow_spec_action_handle action;
2082 struct ib_flow_spec_action_count flow_count;
2083 };
2084
2085 struct ib_flow_attr {
2086 enum ib_flow_attr_type type;
2087 u16 size;
2088 u16 priority;
2089 u32 flags;
2090 u8 num_of_specs;
2091 u32 port;
2092 union ib_flow_spec flows[];
2093 };
2094
2095 struct ib_flow {
2096 struct ib_qp *qp;
2097 struct ib_device *device;
2098 struct ib_uobject *uobject;
2099 };
2100
2101 enum ib_flow_action_type {
2102 IB_FLOW_ACTION_UNSPECIFIED,
2103 IB_FLOW_ACTION_ESP = 1,
2104 };
2105
2106 struct ib_flow_action_attrs_esp_keymats {
2107 enum ib_uverbs_flow_action_esp_keymat protocol;
2108 union {
2109 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2110 } keymat;
2111 };
2112
2113 struct ib_flow_action_attrs_esp_replays {
2114 enum ib_uverbs_flow_action_esp_replay protocol;
2115 union {
2116 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2117 } replay;
2118 };
2119
2120 enum ib_flow_action_attrs_esp_flags {
2121 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2122 * This is done in order to share the same flags between user-space and
2123 * kernel and spare an unnecessary translation.
2124 */
2125
2126 /* Kernel flags */
2127 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
2128 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2129 };
2130
2131 struct ib_flow_spec_list {
2132 struct ib_flow_spec_list *next;
2133 union ib_flow_spec spec;
2134 };
2135
2136 struct ib_flow_action_attrs_esp {
2137 struct ib_flow_action_attrs_esp_keymats *keymat;
2138 struct ib_flow_action_attrs_esp_replays *replay;
2139 struct ib_flow_spec_list *encap;
2140 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2141 * Value of 0 is a valid value.
2142 */
2143 u32 esn;
2144 u32 spi;
2145 u32 seq;
2146 u32 tfc_pad;
2147 /* Use enum ib_flow_action_attrs_esp_flags */
2148 u64 flags;
2149 u64 hard_limit_pkts;
2150 };
2151
2152 struct ib_flow_action {
2153 struct ib_device *device;
2154 struct ib_uobject *uobject;
2155 enum ib_flow_action_type type;
2156 atomic_t usecnt;
2157 };
2158
2159 struct ib_mad;
2160
2161 enum ib_process_mad_flags {
2162 IB_MAD_IGNORE_MKEY = 1,
2163 IB_MAD_IGNORE_BKEY = 2,
2164 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2165 };
2166
2167 enum ib_mad_result {
2168 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2169 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2170 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2171 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2172 };
2173
2174 struct ib_port_cache {
2175 u64 subnet_prefix;
2176 struct ib_pkey_cache *pkey;
2177 struct ib_gid_table *gid;
2178 u8 lmc;
2179 enum ib_port_state port_state;
2180 };
2181
2182 struct ib_port_immutable {
2183 int pkey_tbl_len;
2184 int gid_tbl_len;
2185 u32 core_cap_flags;
2186 u32 max_mad_size;
2187 };
2188
2189 struct ib_port_data {
2190 struct ib_device *ib_dev;
2191
2192 struct ib_port_immutable immutable;
2193
2194 spinlock_t pkey_list_lock;
2195
2196 spinlock_t netdev_lock;
2197
2198 struct list_head pkey_list;
2199
2200 struct ib_port_cache cache;
2201
2202 struct net_device __rcu *netdev;
2203 netdevice_tracker netdev_tracker;
2204 struct hlist_node ndev_hash_link;
2205 struct rdma_port_counter port_counter;
2206 struct ib_port *sysfs;
2207 };
2208
2209 /* rdma netdev type - specifies protocol type */
2210 enum rdma_netdev_t {
2211 RDMA_NETDEV_OPA_VNIC,
2212 RDMA_NETDEV_IPOIB,
2213 };
2214
2215 /**
2216 * struct rdma_netdev - rdma netdev
2217 * For cases where netstack interfacing is required.
2218 */
2219 struct rdma_netdev {
2220 void *clnt_priv;
2221 struct ib_device *hca;
2222 u32 port_num;
2223 int mtu;
2224
2225 /*
2226 * cleanup function must be specified.
2227 * FIXME: This is only used for OPA_VNIC and that usage should be
2228 * removed too.
2229 */
2230 void (*free_rdma_netdev)(struct net_device *netdev);
2231
2232 /* control functions */
2233 void (*set_id)(struct net_device *netdev, int id);
2234 /* send packet */
2235 int (*send)(struct net_device *dev, struct sk_buff *skb,
2236 struct ib_ah *address, u32 dqpn);
2237 /* multicast */
2238 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2239 union ib_gid *gid, u16 mlid,
2240 int set_qkey, u32 qkey);
2241 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2242 union ib_gid *gid, u16 mlid);
2243 /* timeout */
2244 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2245 };
2246
2247 struct rdma_netdev_alloc_params {
2248 size_t sizeof_priv;
2249 unsigned int txqs;
2250 unsigned int rxqs;
2251 void *param;
2252
2253 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2254 struct net_device *netdev, void *param);
2255 };
2256
2257 struct ib_odp_counters {
2258 atomic64_t faults;
2259 atomic64_t invalidations;
2260 atomic64_t prefetch;
2261 };
2262
2263 struct ib_counters {
2264 struct ib_device *device;
2265 struct ib_uobject *uobject;
2266 /* num of objects attached */
2267 atomic_t usecnt;
2268 };
2269
2270 struct ib_counters_read_attr {
2271 u64 *counters_buff;
2272 u32 ncounters;
2273 u32 flags; /* use enum ib_read_counters_flags */
2274 };
2275
2276 struct uverbs_attr_bundle;
2277 struct iw_cm_id;
2278 struct iw_cm_conn_param;
2279
2280 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2281 .size_##ib_struct = \
2282 (sizeof(struct drv_struct) + \
2283 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2284 BUILD_BUG_ON_ZERO( \
2285 !__same_type(((struct drv_struct *)NULL)->member, \
2286 struct ib_struct)))
2287
2288 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2289 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2290 gfp, false))
2291
2292 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \
2293 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2294 GFP_KERNEL, true))
2295
2296 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \
2297 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2298
2299 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2300
2301 struct rdma_user_mmap_entry {
2302 struct kref ref;
2303 struct ib_ucontext *ucontext;
2304 unsigned long start_pgoff;
2305 size_t npages;
2306 bool driver_removed;
2307 };
2308
2309 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2310 static inline u64
rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry * entry)2311 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2312 {
2313 return (u64)entry->start_pgoff << PAGE_SHIFT;
2314 }
2315
2316 /**
2317 * struct ib_device_ops - InfiniBand device operations
2318 * This structure defines all the InfiniBand device operations, providers will
2319 * need to define the supported operations, otherwise they will be set to null.
2320 */
2321 struct ib_device_ops {
2322 struct module *owner;
2323 enum rdma_driver_id driver_id;
2324 u32 uverbs_abi_ver;
2325 unsigned int uverbs_no_driver_id_binding:1;
2326
2327 /*
2328 * NOTE: New drivers should not make use of device_group; instead new
2329 * device parameter should be exposed via netlink command. This
2330 * mechanism exists only for existing drivers.
2331 */
2332 const struct attribute_group *device_group;
2333 const struct attribute_group **port_groups;
2334
2335 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2336 const struct ib_send_wr **bad_send_wr);
2337 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2338 const struct ib_recv_wr **bad_recv_wr);
2339 void (*drain_rq)(struct ib_qp *qp);
2340 void (*drain_sq)(struct ib_qp *qp);
2341 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2342 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2343 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2344 int (*post_srq_recv)(struct ib_srq *srq,
2345 const struct ib_recv_wr *recv_wr,
2346 const struct ib_recv_wr **bad_recv_wr);
2347 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2348 u32 port_num, const struct ib_wc *in_wc,
2349 const struct ib_grh *in_grh,
2350 const struct ib_mad *in_mad, struct ib_mad *out_mad,
2351 size_t *out_mad_size, u16 *out_mad_pkey_index);
2352 int (*query_device)(struct ib_device *device,
2353 struct ib_device_attr *device_attr,
2354 struct ib_udata *udata);
2355 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2356 struct ib_device_modify *device_modify);
2357 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2358 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2359 int comp_vector);
2360 int (*query_port)(struct ib_device *device, u32 port_num,
2361 struct ib_port_attr *port_attr);
2362 int (*modify_port)(struct ib_device *device, u32 port_num,
2363 int port_modify_mask,
2364 struct ib_port_modify *port_modify);
2365 /**
2366 * The following mandatory functions are used only at device
2367 * registration. Keep functions such as these at the end of this
2368 * structure to avoid cache line misses when accessing struct ib_device
2369 * in fast paths.
2370 */
2371 int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2372 struct ib_port_immutable *immutable);
2373 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2374 u32 port_num);
2375 /**
2376 * When calling get_netdev, the HW vendor's driver should return the
2377 * net device of device @device at port @port_num or NULL if such
2378 * a net device doesn't exist. The vendor driver should call dev_hold
2379 * on this net device. The HW vendor's device driver must guarantee
2380 * that this function returns NULL before the net device has finished
2381 * NETDEV_UNREGISTER state.
2382 */
2383 struct net_device *(*get_netdev)(struct ib_device *device,
2384 u32 port_num);
2385 /**
2386 * rdma netdev operation
2387 *
2388 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2389 * must return -EOPNOTSUPP if it doesn't support the specified type.
2390 */
2391 struct net_device *(*alloc_rdma_netdev)(
2392 struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2393 const char *name, unsigned char name_assign_type,
2394 void (*setup)(struct net_device *));
2395
2396 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2397 enum rdma_netdev_t type,
2398 struct rdma_netdev_alloc_params *params);
2399 /**
2400 * query_gid should be return GID value for @device, when @port_num
2401 * link layer is either IB or iWarp. It is no-op if @port_num port
2402 * is RoCE link layer.
2403 */
2404 int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2405 union ib_gid *gid);
2406 /**
2407 * When calling add_gid, the HW vendor's driver should add the gid
2408 * of device of port at gid index available at @attr. Meta-info of
2409 * that gid (for example, the network device related to this gid) is
2410 * available at @attr. @context allows the HW vendor driver to store
2411 * extra information together with a GID entry. The HW vendor driver may
2412 * allocate memory to contain this information and store it in @context
2413 * when a new GID entry is written to. Params are consistent until the
2414 * next call of add_gid or delete_gid. The function should return 0 on
2415 * success or error otherwise. The function could be called
2416 * concurrently for different ports. This function is only called when
2417 * roce_gid_table is used.
2418 */
2419 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2420 /**
2421 * When calling del_gid, the HW vendor's driver should delete the
2422 * gid of device @device at gid index gid_index of port port_num
2423 * available in @attr.
2424 * Upon the deletion of a GID entry, the HW vendor must free any
2425 * allocated memory. The caller will clear @context afterwards.
2426 * This function is only called when roce_gid_table is used.
2427 */
2428 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2429 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2430 u16 *pkey);
2431 int (*alloc_ucontext)(struct ib_ucontext *context,
2432 struct ib_udata *udata);
2433 void (*dealloc_ucontext)(struct ib_ucontext *context);
2434 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2435 /**
2436 * This will be called once refcount of an entry in mmap_xa reaches
2437 * zero. The type of the memory that was mapped may differ between
2438 * entries and is opaque to the rdma_user_mmap interface.
2439 * Therefore needs to be implemented by the driver in mmap_free.
2440 */
2441 void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2442 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2443 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2444 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2445 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2446 struct ib_udata *udata);
2447 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2448 struct ib_udata *udata);
2449 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2450 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2451 int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2452 int (*create_srq)(struct ib_srq *srq,
2453 struct ib_srq_init_attr *srq_init_attr,
2454 struct ib_udata *udata);
2455 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2456 enum ib_srq_attr_mask srq_attr_mask,
2457 struct ib_udata *udata);
2458 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2459 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2460 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2461 struct ib_udata *udata);
2462 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2463 int qp_attr_mask, struct ib_udata *udata);
2464 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2465 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2466 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2467 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2468 struct uverbs_attr_bundle *attrs);
2469 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2470 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2471 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2472 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2473 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2474 u64 virt_addr, int mr_access_flags,
2475 struct ib_udata *udata);
2476 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2477 u64 length, u64 virt_addr, int fd,
2478 int mr_access_flags,
2479 struct uverbs_attr_bundle *attrs);
2480 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2481 u64 length, u64 virt_addr,
2482 int mr_access_flags, struct ib_pd *pd,
2483 struct ib_udata *udata);
2484 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2485 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2486 u32 max_num_sg);
2487 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2488 u32 max_num_data_sg,
2489 u32 max_num_meta_sg);
2490 int (*advise_mr)(struct ib_pd *pd,
2491 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2492 struct ib_sge *sg_list, u32 num_sge,
2493 struct uverbs_attr_bundle *attrs);
2494
2495 /*
2496 * Kernel users should universally support relaxed ordering (RO), as
2497 * they are designed to read data only after observing the CQE and use
2498 * the DMA API correctly.
2499 *
2500 * Some drivers implicitly enable RO if platform supports it.
2501 */
2502 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2503 unsigned int *sg_offset);
2504 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2505 struct ib_mr_status *mr_status);
2506 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2507 int (*dealloc_mw)(struct ib_mw *mw);
2508 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2509 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2510 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2511 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2512 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2513 struct ib_flow_attr *flow_attr,
2514 struct ib_udata *udata);
2515 int (*destroy_flow)(struct ib_flow *flow_id);
2516 int (*destroy_flow_action)(struct ib_flow_action *action);
2517 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2518 int state);
2519 int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2520 struct ifla_vf_info *ivf);
2521 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2522 struct ifla_vf_stats *stats);
2523 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2524 struct ifla_vf_guid *node_guid,
2525 struct ifla_vf_guid *port_guid);
2526 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2527 int type);
2528 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2529 struct ib_wq_init_attr *init_attr,
2530 struct ib_udata *udata);
2531 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2532 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2533 u32 wq_attr_mask, struct ib_udata *udata);
2534 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2535 struct ib_rwq_ind_table_init_attr *init_attr,
2536 struct ib_udata *udata);
2537 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2538 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2539 struct ib_ucontext *context,
2540 struct ib_dm_alloc_attr *attr,
2541 struct uverbs_attr_bundle *attrs);
2542 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2543 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2544 struct ib_dm_mr_attr *attr,
2545 struct uverbs_attr_bundle *attrs);
2546 int (*create_counters)(struct ib_counters *counters,
2547 struct uverbs_attr_bundle *attrs);
2548 int (*destroy_counters)(struct ib_counters *counters);
2549 int (*read_counters)(struct ib_counters *counters,
2550 struct ib_counters_read_attr *counters_read_attr,
2551 struct uverbs_attr_bundle *attrs);
2552 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2553 int data_sg_nents, unsigned int *data_sg_offset,
2554 struct scatterlist *meta_sg, int meta_sg_nents,
2555 unsigned int *meta_sg_offset);
2556
2557 /**
2558 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2559 * fill in the driver initialized data. The struct is kfree()'ed by
2560 * the sysfs core when the device is removed. A lifespan of -1 in the
2561 * return struct tells the core to set a default lifespan.
2562 */
2563 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2564 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2565 u32 port_num);
2566 /**
2567 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2568 * @index - The index in the value array we wish to have updated, or
2569 * num_counters if we want all stats updated
2570 * Return codes -
2571 * < 0 - Error, no counters updated
2572 * index - Updated the single counter pointed to by index
2573 * num_counters - Updated all counters (will reset the timestamp
2574 * and prevent further calls for lifespan milliseconds)
2575 * Drivers are allowed to update all counters in leiu of just the
2576 * one given in index at their option
2577 */
2578 int (*get_hw_stats)(struct ib_device *device,
2579 struct rdma_hw_stats *stats, u32 port, int index);
2580
2581 /**
2582 * modify_hw_stat - Modify the counter configuration
2583 * @enable: true/false when enable/disable a counter
2584 * Return codes - 0 on success or error code otherwise.
2585 */
2586 int (*modify_hw_stat)(struct ib_device *device, u32 port,
2587 unsigned int counter_index, bool enable);
2588 /**
2589 * Allows rdma drivers to add their own restrack attributes.
2590 */
2591 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2592 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2593 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2594 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2595 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2596 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2597 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2598 int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq);
2599 int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq);
2600
2601 /* Device lifecycle callbacks */
2602 /*
2603 * Called after the device becomes registered, before clients are
2604 * attached
2605 */
2606 int (*enable_driver)(struct ib_device *dev);
2607 /*
2608 * This is called as part of ib_dealloc_device().
2609 */
2610 void (*dealloc_driver)(struct ib_device *dev);
2611
2612 /* iWarp CM callbacks */
2613 void (*iw_add_ref)(struct ib_qp *qp);
2614 void (*iw_rem_ref)(struct ib_qp *qp);
2615 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2616 int (*iw_connect)(struct iw_cm_id *cm_id,
2617 struct iw_cm_conn_param *conn_param);
2618 int (*iw_accept)(struct iw_cm_id *cm_id,
2619 struct iw_cm_conn_param *conn_param);
2620 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2621 u8 pdata_len);
2622 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2623 int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2624 /**
2625 * counter_bind_qp - Bind a QP to a counter.
2626 * @counter - The counter to be bound. If counter->id is zero then
2627 * the driver needs to allocate a new counter and set counter->id
2628 */
2629 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2630 /**
2631 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2632 * counter and bind it onto the default one
2633 */
2634 int (*counter_unbind_qp)(struct ib_qp *qp);
2635 /**
2636 * counter_dealloc -De-allocate the hw counter
2637 */
2638 int (*counter_dealloc)(struct rdma_counter *counter);
2639 /**
2640 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2641 * the driver initialized data.
2642 */
2643 struct rdma_hw_stats *(*counter_alloc_stats)(
2644 struct rdma_counter *counter);
2645 /**
2646 * counter_update_stats - Query the stats value of this counter
2647 */
2648 int (*counter_update_stats)(struct rdma_counter *counter);
2649
2650 /**
2651 * Allows rdma drivers to add their own restrack attributes
2652 * dumped via 'rdma stat' iproute2 command.
2653 */
2654 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2655
2656 /* query driver for its ucontext properties */
2657 int (*query_ucontext)(struct ib_ucontext *context,
2658 struct uverbs_attr_bundle *attrs);
2659
2660 /*
2661 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2662 * Everyone else relies on Linux memory management model.
2663 */
2664 int (*get_numa_node)(struct ib_device *dev);
2665
2666 /**
2667 * add_sub_dev - Add a sub IB device
2668 */
2669 struct ib_device *(*add_sub_dev)(struct ib_device *parent,
2670 enum rdma_nl_dev_type type,
2671 const char *name);
2672
2673 /**
2674 * del_sub_dev - Delete a sub IB device
2675 */
2676 void (*del_sub_dev)(struct ib_device *sub_dev);
2677
2678 DECLARE_RDMA_OBJ_SIZE(ib_ah);
2679 DECLARE_RDMA_OBJ_SIZE(ib_counters);
2680 DECLARE_RDMA_OBJ_SIZE(ib_cq);
2681 DECLARE_RDMA_OBJ_SIZE(ib_mw);
2682 DECLARE_RDMA_OBJ_SIZE(ib_pd);
2683 DECLARE_RDMA_OBJ_SIZE(ib_qp);
2684 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2685 DECLARE_RDMA_OBJ_SIZE(ib_srq);
2686 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2687 DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2688 };
2689
2690 struct ib_core_device {
2691 /* device must be the first element in structure until,
2692 * union of ib_core_device and device exists in ib_device.
2693 */
2694 struct device dev;
2695 possible_net_t rdma_net;
2696 struct kobject *ports_kobj;
2697 struct list_head port_list;
2698 struct ib_device *owner; /* reach back to owner ib_device */
2699 };
2700
2701 struct rdma_restrack_root;
2702 struct ib_device {
2703 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2704 struct device *dma_device;
2705 struct ib_device_ops ops;
2706 char name[IB_DEVICE_NAME_MAX];
2707 struct rcu_head rcu_head;
2708
2709 struct list_head event_handler_list;
2710 /* Protects event_handler_list */
2711 struct rw_semaphore event_handler_rwsem;
2712
2713 /* Protects QP's event_handler calls and open_qp list */
2714 spinlock_t qp_open_list_lock;
2715
2716 struct rw_semaphore client_data_rwsem;
2717 struct xarray client_data;
2718 struct mutex unregistration_lock;
2719
2720 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2721 rwlock_t cache_lock;
2722 /**
2723 * port_data is indexed by port number
2724 */
2725 struct ib_port_data *port_data;
2726
2727 int num_comp_vectors;
2728
2729 union {
2730 struct device dev;
2731 struct ib_core_device coredev;
2732 };
2733
2734 /* First group is for device attributes,
2735 * Second group is for driver provided attributes (optional).
2736 * Third group is for the hw_stats
2737 * It is a NULL terminated array.
2738 */
2739 const struct attribute_group *groups[4];
2740 u8 hw_stats_attr_index;
2741
2742 u64 uverbs_cmd_mask;
2743
2744 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2745 __be64 node_guid;
2746 u32 local_dma_lkey;
2747 u16 is_switch:1;
2748 /* Indicates kernel verbs support, should not be used in drivers */
2749 u16 kverbs_provider:1;
2750 /* CQ adaptive moderation (RDMA DIM) */
2751 u16 use_cq_dim:1;
2752 u8 node_type;
2753 u32 phys_port_cnt;
2754 struct ib_device_attr attrs;
2755 struct hw_stats_device_data *hw_stats_data;
2756
2757 #ifdef CONFIG_CGROUP_RDMA
2758 struct rdmacg_device cg_device;
2759 #endif
2760
2761 u32 index;
2762
2763 spinlock_t cq_pools_lock;
2764 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2765
2766 struct rdma_restrack_root *res;
2767
2768 const struct uapi_definition *driver_def;
2769
2770 /*
2771 * Positive refcount indicates that the device is currently
2772 * registered and cannot be unregistered.
2773 */
2774 refcount_t refcount;
2775 struct completion unreg_completion;
2776 struct work_struct unregistration_work;
2777
2778 const struct rdma_link_ops *link_ops;
2779
2780 /* Protects compat_devs xarray modifications */
2781 struct mutex compat_devs_mutex;
2782 /* Maintains compat devices for each net namespace */
2783 struct xarray compat_devs;
2784
2785 /* Used by iWarp CM */
2786 char iw_ifname[IFNAMSIZ];
2787 u32 iw_driver_flags;
2788 u32 lag_flags;
2789
2790 /* A parent device has a list of sub-devices */
2791 struct mutex subdev_lock;
2792 struct list_head subdev_list_head;
2793
2794 /* A sub device has a type and a parent */
2795 enum rdma_nl_dev_type type;
2796 struct ib_device *parent;
2797 struct list_head subdev_list;
2798
2799 enum rdma_nl_name_assign_type name_assign_type;
2800 };
2801
rdma_zalloc_obj(struct ib_device * dev,size_t size,gfp_t gfp,bool is_numa_aware)2802 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2803 gfp_t gfp, bool is_numa_aware)
2804 {
2805 if (is_numa_aware && dev->ops.get_numa_node)
2806 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2807
2808 return kzalloc(size, gfp);
2809 }
2810
2811 struct ib_client_nl_info;
2812 struct ib_client {
2813 const char *name;
2814 int (*add)(struct ib_device *ibdev);
2815 void (*remove)(struct ib_device *, void *client_data);
2816 void (*rename)(struct ib_device *dev, void *client_data);
2817 int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2818 struct ib_client_nl_info *res);
2819 int (*get_global_nl_info)(struct ib_client_nl_info *res);
2820
2821 /* Returns the net_dev belonging to this ib_client and matching the
2822 * given parameters.
2823 * @dev: An RDMA device that the net_dev use for communication.
2824 * @port: A physical port number on the RDMA device.
2825 * @pkey: P_Key that the net_dev uses if applicable.
2826 * @gid: A GID that the net_dev uses to communicate.
2827 * @addr: An IP address the net_dev is configured with.
2828 * @client_data: The device's client data set by ib_set_client_data().
2829 *
2830 * An ib_client that implements a net_dev on top of RDMA devices
2831 * (such as IP over IB) should implement this callback, allowing the
2832 * rdma_cm module to find the right net_dev for a given request.
2833 *
2834 * The caller is responsible for calling dev_put on the returned
2835 * netdev. */
2836 struct net_device *(*get_net_dev_by_params)(
2837 struct ib_device *dev,
2838 u32 port,
2839 u16 pkey,
2840 const union ib_gid *gid,
2841 const struct sockaddr *addr,
2842 void *client_data);
2843
2844 refcount_t uses;
2845 struct completion uses_zero;
2846 u32 client_id;
2847
2848 /* kverbs are not required by the client */
2849 u8 no_kverbs_req:1;
2850 };
2851
2852 /*
2853 * IB block DMA iterator
2854 *
2855 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2856 * to a HW supported page size.
2857 */
2858 struct ib_block_iter {
2859 /* internal states */
2860 struct scatterlist *__sg; /* sg holding the current aligned block */
2861 dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2862 size_t __sg_numblocks; /* ib_umem_num_dma_blocks() */
2863 unsigned int __sg_nents; /* number of SG entries */
2864 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2865 unsigned int __pg_bit; /* alignment of current block */
2866 };
2867
2868 struct ib_device *_ib_alloc_device(size_t size);
2869 #define ib_alloc_device(drv_struct, member) \
2870 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2871 BUILD_BUG_ON_ZERO(offsetof( \
2872 struct drv_struct, member))), \
2873 struct drv_struct, member)
2874
2875 void ib_dealloc_device(struct ib_device *device);
2876
2877 void ib_get_device_fw_str(struct ib_device *device, char *str);
2878
2879 int ib_register_device(struct ib_device *device, const char *name,
2880 struct device *dma_device);
2881 void ib_unregister_device(struct ib_device *device);
2882 void ib_unregister_driver(enum rdma_driver_id driver_id);
2883 void ib_unregister_device_and_put(struct ib_device *device);
2884 void ib_unregister_device_queued(struct ib_device *ib_dev);
2885
2886 int ib_register_client (struct ib_client *client);
2887 void ib_unregister_client(struct ib_client *client);
2888
2889 void __rdma_block_iter_start(struct ib_block_iter *biter,
2890 struct scatterlist *sglist,
2891 unsigned int nents,
2892 unsigned long pgsz);
2893 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2894
2895 /**
2896 * rdma_block_iter_dma_address - get the aligned dma address of the current
2897 * block held by the block iterator.
2898 * @biter: block iterator holding the memory block
2899 */
2900 static inline dma_addr_t
rdma_block_iter_dma_address(struct ib_block_iter * biter)2901 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2902 {
2903 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2904 }
2905
2906 /**
2907 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2908 * @sglist: sglist to iterate over
2909 * @biter: block iterator holding the memory block
2910 * @nents: maximum number of sg entries to iterate over
2911 * @pgsz: best HW supported page size to use
2912 *
2913 * Callers may use rdma_block_iter_dma_address() to get each
2914 * blocks aligned DMA address.
2915 */
2916 #define rdma_for_each_block(sglist, biter, nents, pgsz) \
2917 for (__rdma_block_iter_start(biter, sglist, nents, \
2918 pgsz); \
2919 __rdma_block_iter_next(biter);)
2920
2921 /**
2922 * ib_get_client_data - Get IB client context
2923 * @device:Device to get context for
2924 * @client:Client to get context for
2925 *
2926 * ib_get_client_data() returns the client context data set with
2927 * ib_set_client_data(). This can only be called while the client is
2928 * registered to the device, once the ib_client remove() callback returns this
2929 * cannot be called.
2930 */
ib_get_client_data(struct ib_device * device,struct ib_client * client)2931 static inline void *ib_get_client_data(struct ib_device *device,
2932 struct ib_client *client)
2933 {
2934 return xa_load(&device->client_data, client->client_id);
2935 }
2936 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2937 void *data);
2938 void ib_set_device_ops(struct ib_device *device,
2939 const struct ib_device_ops *ops);
2940
2941 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2942 unsigned long pfn, unsigned long size, pgprot_t prot,
2943 struct rdma_user_mmap_entry *entry);
2944 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2945 struct rdma_user_mmap_entry *entry,
2946 size_t length);
2947 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2948 struct rdma_user_mmap_entry *entry,
2949 size_t length, u32 min_pgoff,
2950 u32 max_pgoff);
2951
2952 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
2953 void rdma_user_mmap_disassociate(struct ib_device *device);
2954 #else
rdma_user_mmap_disassociate(struct ib_device * device)2955 static inline void rdma_user_mmap_disassociate(struct ib_device *device)
2956 {
2957 }
2958 #endif
2959
2960 static inline int
rdma_user_mmap_entry_insert_exact(struct ib_ucontext * ucontext,struct rdma_user_mmap_entry * entry,size_t length,u32 pgoff)2961 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
2962 struct rdma_user_mmap_entry *entry,
2963 size_t length, u32 pgoff)
2964 {
2965 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
2966 pgoff);
2967 }
2968
2969 struct rdma_user_mmap_entry *
2970 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2971 unsigned long pgoff);
2972 struct rdma_user_mmap_entry *
2973 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2974 struct vm_area_struct *vma);
2975 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2976
2977 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2978
ib_copy_from_udata(void * dest,struct ib_udata * udata,size_t len)2979 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2980 {
2981 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2982 }
2983
ib_copy_to_udata(struct ib_udata * udata,void * src,size_t len)2984 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2985 {
2986 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2987 }
2988
ib_is_buffer_cleared(const void __user * p,size_t len)2989 static inline bool ib_is_buffer_cleared(const void __user *p,
2990 size_t len)
2991 {
2992 bool ret;
2993 u8 *buf;
2994
2995 if (len > USHRT_MAX)
2996 return false;
2997
2998 buf = memdup_user(p, len);
2999 if (IS_ERR(buf))
3000 return false;
3001
3002 ret = !memchr_inv(buf, 0, len);
3003 kfree(buf);
3004 return ret;
3005 }
3006
ib_is_udata_cleared(struct ib_udata * udata,size_t offset,size_t len)3007 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
3008 size_t offset,
3009 size_t len)
3010 {
3011 return ib_is_buffer_cleared(udata->inbuf + offset, len);
3012 }
3013
3014 /**
3015 * ib_modify_qp_is_ok - Check that the supplied attribute mask
3016 * contains all required attributes and no attributes not allowed for
3017 * the given QP state transition.
3018 * @cur_state: Current QP state
3019 * @next_state: Next QP state
3020 * @type: QP type
3021 * @mask: Mask of supplied QP attributes
3022 *
3023 * This function is a helper function that a low-level driver's
3024 * modify_qp method can use to validate the consumer's input. It
3025 * checks that cur_state and next_state are valid QP states, that a
3026 * transition from cur_state to next_state is allowed by the IB spec,
3027 * and that the attribute mask supplied is allowed for the transition.
3028 */
3029 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
3030 enum ib_qp_type type, enum ib_qp_attr_mask mask);
3031
3032 void ib_register_event_handler(struct ib_event_handler *event_handler);
3033 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3034 void ib_dispatch_event(const struct ib_event *event);
3035
3036 int ib_query_port(struct ib_device *device,
3037 u32 port_num, struct ib_port_attr *port_attr);
3038
3039 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3040 u32 port_num);
3041
3042 /**
3043 * rdma_cap_ib_switch - Check if the device is IB switch
3044 * @device: Device to check
3045 *
3046 * Device driver is responsible for setting is_switch bit on
3047 * in ib_device structure at init time.
3048 *
3049 * Return: true if the device is IB switch.
3050 */
rdma_cap_ib_switch(const struct ib_device * device)3051 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3052 {
3053 return device->is_switch;
3054 }
3055
3056 /**
3057 * rdma_start_port - Return the first valid port number for the device
3058 * specified
3059 *
3060 * @device: Device to be checked
3061 *
3062 * Return start port number
3063 */
rdma_start_port(const struct ib_device * device)3064 static inline u32 rdma_start_port(const struct ib_device *device)
3065 {
3066 return rdma_cap_ib_switch(device) ? 0 : 1;
3067 }
3068
3069 /**
3070 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3071 * @device - The struct ib_device * to iterate over
3072 * @iter - The unsigned int to store the port number
3073 */
3074 #define rdma_for_each_port(device, iter) \
3075 for (iter = rdma_start_port(device + \
3076 BUILD_BUG_ON_ZERO(!__same_type(u32, \
3077 iter))); \
3078 iter <= rdma_end_port(device); iter++)
3079
3080 /**
3081 * rdma_end_port - Return the last valid port number for the device
3082 * specified
3083 *
3084 * @device: Device to be checked
3085 *
3086 * Return last port number
3087 */
rdma_end_port(const struct ib_device * device)3088 static inline u32 rdma_end_port(const struct ib_device *device)
3089 {
3090 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3091 }
3092
rdma_is_port_valid(const struct ib_device * device,unsigned int port)3093 static inline int rdma_is_port_valid(const struct ib_device *device,
3094 unsigned int port)
3095 {
3096 return (port >= rdma_start_port(device) &&
3097 port <= rdma_end_port(device));
3098 }
3099
rdma_is_grh_required(const struct ib_device * device,u32 port_num)3100 static inline bool rdma_is_grh_required(const struct ib_device *device,
3101 u32 port_num)
3102 {
3103 return device->port_data[port_num].immutable.core_cap_flags &
3104 RDMA_CORE_PORT_IB_GRH_REQUIRED;
3105 }
3106
rdma_protocol_ib(const struct ib_device * device,u32 port_num)3107 static inline bool rdma_protocol_ib(const struct ib_device *device,
3108 u32 port_num)
3109 {
3110 return device->port_data[port_num].immutable.core_cap_flags &
3111 RDMA_CORE_CAP_PROT_IB;
3112 }
3113
rdma_protocol_roce(const struct ib_device * device,u32 port_num)3114 static inline bool rdma_protocol_roce(const struct ib_device *device,
3115 u32 port_num)
3116 {
3117 return device->port_data[port_num].immutable.core_cap_flags &
3118 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3119 }
3120
rdma_protocol_roce_udp_encap(const struct ib_device * device,u32 port_num)3121 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3122 u32 port_num)
3123 {
3124 return device->port_data[port_num].immutable.core_cap_flags &
3125 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3126 }
3127
rdma_protocol_roce_eth_encap(const struct ib_device * device,u32 port_num)3128 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3129 u32 port_num)
3130 {
3131 return device->port_data[port_num].immutable.core_cap_flags &
3132 RDMA_CORE_CAP_PROT_ROCE;
3133 }
3134
rdma_protocol_iwarp(const struct ib_device * device,u32 port_num)3135 static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3136 u32 port_num)
3137 {
3138 return device->port_data[port_num].immutable.core_cap_flags &
3139 RDMA_CORE_CAP_PROT_IWARP;
3140 }
3141
rdma_ib_or_roce(const struct ib_device * device,u32 port_num)3142 static inline bool rdma_ib_or_roce(const struct ib_device *device,
3143 u32 port_num)
3144 {
3145 return rdma_protocol_ib(device, port_num) ||
3146 rdma_protocol_roce(device, port_num);
3147 }
3148
rdma_protocol_raw_packet(const struct ib_device * device,u32 port_num)3149 static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3150 u32 port_num)
3151 {
3152 return device->port_data[port_num].immutable.core_cap_flags &
3153 RDMA_CORE_CAP_PROT_RAW_PACKET;
3154 }
3155
rdma_protocol_usnic(const struct ib_device * device,u32 port_num)3156 static inline bool rdma_protocol_usnic(const struct ib_device *device,
3157 u32 port_num)
3158 {
3159 return device->port_data[port_num].immutable.core_cap_flags &
3160 RDMA_CORE_CAP_PROT_USNIC;
3161 }
3162
3163 /**
3164 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3165 * Management Datagrams.
3166 * @device: Device to check
3167 * @port_num: Port number to check
3168 *
3169 * Management Datagrams (MAD) are a required part of the InfiniBand
3170 * specification and are supported on all InfiniBand devices. A slightly
3171 * extended version are also supported on OPA interfaces.
3172 *
3173 * Return: true if the port supports sending/receiving of MAD packets.
3174 */
rdma_cap_ib_mad(const struct ib_device * device,u32 port_num)3175 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3176 {
3177 return device->port_data[port_num].immutable.core_cap_flags &
3178 RDMA_CORE_CAP_IB_MAD;
3179 }
3180
3181 /**
3182 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3183 * Management Datagrams.
3184 * @device: Device to check
3185 * @port_num: Port number to check
3186 *
3187 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3188 * datagrams with their own versions. These OPA MADs share many but not all of
3189 * the characteristics of InfiniBand MADs.
3190 *
3191 * OPA MADs differ in the following ways:
3192 *
3193 * 1) MADs are variable size up to 2K
3194 * IBTA defined MADs remain fixed at 256 bytes
3195 * 2) OPA SMPs must carry valid PKeys
3196 * 3) OPA SMP packets are a different format
3197 *
3198 * Return: true if the port supports OPA MAD packet formats.
3199 */
rdma_cap_opa_mad(struct ib_device * device,u32 port_num)3200 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3201 {
3202 return device->port_data[port_num].immutable.core_cap_flags &
3203 RDMA_CORE_CAP_OPA_MAD;
3204 }
3205
3206 /**
3207 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3208 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3209 * @device: Device to check
3210 * @port_num: Port number to check
3211 *
3212 * Each InfiniBand node is required to provide a Subnet Management Agent
3213 * that the subnet manager can access. Prior to the fabric being fully
3214 * configured by the subnet manager, the SMA is accessed via a well known
3215 * interface called the Subnet Management Interface (SMI). This interface
3216 * uses directed route packets to communicate with the SM to get around the
3217 * chicken and egg problem of the SM needing to know what's on the fabric
3218 * in order to configure the fabric, and needing to configure the fabric in
3219 * order to send packets to the devices on the fabric. These directed
3220 * route packets do not need the fabric fully configured in order to reach
3221 * their destination. The SMI is the only method allowed to send
3222 * directed route packets on an InfiniBand fabric.
3223 *
3224 * Return: true if the port provides an SMI.
3225 */
rdma_cap_ib_smi(const struct ib_device * device,u32 port_num)3226 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3227 {
3228 return device->port_data[port_num].immutable.core_cap_flags &
3229 RDMA_CORE_CAP_IB_SMI;
3230 }
3231
3232 /**
3233 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3234 * Communication Manager.
3235 * @device: Device to check
3236 * @port_num: Port number to check
3237 *
3238 * The InfiniBand Communication Manager is one of many pre-defined General
3239 * Service Agents (GSA) that are accessed via the General Service
3240 * Interface (GSI). It's role is to facilitate establishment of connections
3241 * between nodes as well as other management related tasks for established
3242 * connections.
3243 *
3244 * Return: true if the port supports an IB CM (this does not guarantee that
3245 * a CM is actually running however).
3246 */
rdma_cap_ib_cm(const struct ib_device * device,u32 port_num)3247 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3248 {
3249 return device->port_data[port_num].immutable.core_cap_flags &
3250 RDMA_CORE_CAP_IB_CM;
3251 }
3252
3253 /**
3254 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3255 * Communication Manager.
3256 * @device: Device to check
3257 * @port_num: Port number to check
3258 *
3259 * Similar to above, but specific to iWARP connections which have a different
3260 * managment protocol than InfiniBand.
3261 *
3262 * Return: true if the port supports an iWARP CM (this does not guarantee that
3263 * a CM is actually running however).
3264 */
rdma_cap_iw_cm(const struct ib_device * device,u32 port_num)3265 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3266 {
3267 return device->port_data[port_num].immutable.core_cap_flags &
3268 RDMA_CORE_CAP_IW_CM;
3269 }
3270
3271 /**
3272 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3273 * Subnet Administration.
3274 * @device: Device to check
3275 * @port_num: Port number to check
3276 *
3277 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3278 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3279 * fabrics, devices should resolve routes to other hosts by contacting the
3280 * SA to query the proper route.
3281 *
3282 * Return: true if the port should act as a client to the fabric Subnet
3283 * Administration interface. This does not imply that the SA service is
3284 * running locally.
3285 */
rdma_cap_ib_sa(const struct ib_device * device,u32 port_num)3286 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3287 {
3288 return device->port_data[port_num].immutable.core_cap_flags &
3289 RDMA_CORE_CAP_IB_SA;
3290 }
3291
3292 /**
3293 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3294 * Multicast.
3295 * @device: Device to check
3296 * @port_num: Port number to check
3297 *
3298 * InfiniBand multicast registration is more complex than normal IPv4 or
3299 * IPv6 multicast registration. Each Host Channel Adapter must register
3300 * with the Subnet Manager when it wishes to join a multicast group. It
3301 * should do so only once regardless of how many queue pairs it subscribes
3302 * to this group. And it should leave the group only after all queue pairs
3303 * attached to the group have been detached.
3304 *
3305 * Return: true if the port must undertake the additional adminstrative
3306 * overhead of registering/unregistering with the SM and tracking of the
3307 * total number of queue pairs attached to the multicast group.
3308 */
rdma_cap_ib_mcast(const struct ib_device * device,u32 port_num)3309 static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3310 u32 port_num)
3311 {
3312 return rdma_cap_ib_sa(device, port_num);
3313 }
3314
3315 /**
3316 * rdma_cap_af_ib - Check if the port of device has the capability
3317 * Native Infiniband Address.
3318 * @device: Device to check
3319 * @port_num: Port number to check
3320 *
3321 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3322 * GID. RoCE uses a different mechanism, but still generates a GID via
3323 * a prescribed mechanism and port specific data.
3324 *
3325 * Return: true if the port uses a GID address to identify devices on the
3326 * network.
3327 */
rdma_cap_af_ib(const struct ib_device * device,u32 port_num)3328 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3329 {
3330 return device->port_data[port_num].immutable.core_cap_flags &
3331 RDMA_CORE_CAP_AF_IB;
3332 }
3333
3334 /**
3335 * rdma_cap_eth_ah - Check if the port of device has the capability
3336 * Ethernet Address Handle.
3337 * @device: Device to check
3338 * @port_num: Port number to check
3339 *
3340 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3341 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3342 * port. Normally, packet headers are generated by the sending host
3343 * adapter, but when sending connectionless datagrams, we must manually
3344 * inject the proper headers for the fabric we are communicating over.
3345 *
3346 * Return: true if we are running as a RoCE port and must force the
3347 * addition of a Global Route Header built from our Ethernet Address
3348 * Handle into our header list for connectionless packets.
3349 */
rdma_cap_eth_ah(const struct ib_device * device,u32 port_num)3350 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3351 {
3352 return device->port_data[port_num].immutable.core_cap_flags &
3353 RDMA_CORE_CAP_ETH_AH;
3354 }
3355
3356 /**
3357 * rdma_cap_opa_ah - Check if the port of device supports
3358 * OPA Address handles
3359 * @device: Device to check
3360 * @port_num: Port number to check
3361 *
3362 * Return: true if we are running on an OPA device which supports
3363 * the extended OPA addressing.
3364 */
rdma_cap_opa_ah(struct ib_device * device,u32 port_num)3365 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3366 {
3367 return (device->port_data[port_num].immutable.core_cap_flags &
3368 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3369 }
3370
3371 /**
3372 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3373 *
3374 * @device: Device
3375 * @port_num: Port number
3376 *
3377 * This MAD size includes the MAD headers and MAD payload. No other headers
3378 * are included.
3379 *
3380 * Return the max MAD size required by the Port. Will return 0 if the port
3381 * does not support MADs
3382 */
rdma_max_mad_size(const struct ib_device * device,u32 port_num)3383 static inline size_t rdma_max_mad_size(const struct ib_device *device,
3384 u32 port_num)
3385 {
3386 return device->port_data[port_num].immutable.max_mad_size;
3387 }
3388
3389 /**
3390 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3391 * @device: Device to check
3392 * @port_num: Port number to check
3393 *
3394 * RoCE GID table mechanism manages the various GIDs for a device.
3395 *
3396 * NOTE: if allocating the port's GID table has failed, this call will still
3397 * return true, but any RoCE GID table API will fail.
3398 *
3399 * Return: true if the port uses RoCE GID table mechanism in order to manage
3400 * its GIDs.
3401 */
rdma_cap_roce_gid_table(const struct ib_device * device,u32 port_num)3402 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3403 u32 port_num)
3404 {
3405 return rdma_protocol_roce(device, port_num) &&
3406 device->ops.add_gid && device->ops.del_gid;
3407 }
3408
3409 /*
3410 * Check if the device supports READ W/ INVALIDATE.
3411 */
rdma_cap_read_inv(struct ib_device * dev,u32 port_num)3412 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3413 {
3414 /*
3415 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3416 * has support for it yet.
3417 */
3418 return rdma_protocol_iwarp(dev, port_num);
3419 }
3420
3421 /**
3422 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3423 * @device: Device
3424 * @port_num: 1 based Port number
3425 *
3426 * Return true if port is an Intel OPA port , false if not
3427 */
rdma_core_cap_opa_port(struct ib_device * device,u32 port_num)3428 static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3429 u32 port_num)
3430 {
3431 return (device->port_data[port_num].immutable.core_cap_flags &
3432 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3433 }
3434
3435 /**
3436 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3437 * @device: Device
3438 * @port_num: Port number
3439 * @mtu: enum value of MTU
3440 *
3441 * Return the MTU size supported by the port as an integer value. Will return
3442 * -1 if enum value of mtu is not supported.
3443 */
rdma_mtu_enum_to_int(struct ib_device * device,u32 port,int mtu)3444 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3445 int mtu)
3446 {
3447 if (rdma_core_cap_opa_port(device, port))
3448 return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3449 else
3450 return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3451 }
3452
3453 /**
3454 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3455 * @device: Device
3456 * @port_num: Port number
3457 * @attr: port attribute
3458 *
3459 * Return the MTU size supported by the port as an integer value.
3460 */
rdma_mtu_from_attr(struct ib_device * device,u32 port,struct ib_port_attr * attr)3461 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3462 struct ib_port_attr *attr)
3463 {
3464 if (rdma_core_cap_opa_port(device, port))
3465 return attr->phys_mtu;
3466 else
3467 return ib_mtu_enum_to_int(attr->max_mtu);
3468 }
3469
3470 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3471 int state);
3472 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3473 struct ifla_vf_info *info);
3474 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3475 struct ifla_vf_stats *stats);
3476 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3477 struct ifla_vf_guid *node_guid,
3478 struct ifla_vf_guid *port_guid);
3479 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3480 int type);
3481
3482 int ib_query_pkey(struct ib_device *device,
3483 u32 port_num, u16 index, u16 *pkey);
3484
3485 int ib_modify_device(struct ib_device *device,
3486 int device_modify_mask,
3487 struct ib_device_modify *device_modify);
3488
3489 int ib_modify_port(struct ib_device *device,
3490 u32 port_num, int port_modify_mask,
3491 struct ib_port_modify *port_modify);
3492
3493 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3494 u32 *port_num, u16 *index);
3495
3496 int ib_find_pkey(struct ib_device *device,
3497 u32 port_num, u16 pkey, u16 *index);
3498
3499 enum ib_pd_flags {
3500 /*
3501 * Create a memory registration for all memory in the system and place
3502 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3503 * ULPs to avoid the overhead of dynamic MRs.
3504 *
3505 * This flag is generally considered unsafe and must only be used in
3506 * extremly trusted environments. Every use of it will log a warning
3507 * in the kernel log.
3508 */
3509 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3510 };
3511
3512 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3513 const char *caller);
3514
3515 /**
3516 * ib_alloc_pd - Allocates an unused protection domain.
3517 * @device: The device on which to allocate the protection domain.
3518 * @flags: protection domain flags
3519 *
3520 * A protection domain object provides an association between QPs, shared
3521 * receive queues, address handles, memory regions, and memory windows.
3522 *
3523 * Every PD has a local_dma_lkey which can be used as the lkey value for local
3524 * memory operations.
3525 */
3526 #define ib_alloc_pd(device, flags) \
3527 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3528
3529 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3530
3531 /**
3532 * ib_dealloc_pd - Deallocate kernel PD
3533 * @pd: The protection domain
3534 *
3535 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3536 */
ib_dealloc_pd(struct ib_pd * pd)3537 static inline void ib_dealloc_pd(struct ib_pd *pd)
3538 {
3539 int ret = ib_dealloc_pd_user(pd, NULL);
3540
3541 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3542 }
3543
3544 enum rdma_create_ah_flags {
3545 /* In a sleepable context */
3546 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3547 };
3548
3549 /**
3550 * rdma_create_ah - Creates an address handle for the given address vector.
3551 * @pd: The protection domain associated with the address handle.
3552 * @ah_attr: The attributes of the address vector.
3553 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3554 *
3555 * The address handle is used to reference a local or global destination
3556 * in all UD QP post sends.
3557 */
3558 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3559 u32 flags);
3560
3561 /**
3562 * rdma_create_user_ah - Creates an address handle for the given address vector.
3563 * It resolves destination mac address for ah attribute of RoCE type.
3564 * @pd: The protection domain associated with the address handle.
3565 * @ah_attr: The attributes of the address vector.
3566 * @udata: pointer to user's input output buffer information need by
3567 * provider driver.
3568 *
3569 * It returns 0 on success and returns appropriate error code on error.
3570 * The address handle is used to reference a local or global destination
3571 * in all UD QP post sends.
3572 */
3573 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3574 struct rdma_ah_attr *ah_attr,
3575 struct ib_udata *udata);
3576 /**
3577 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3578 * work completion.
3579 * @hdr: the L3 header to parse
3580 * @net_type: type of header to parse
3581 * @sgid: place to store source gid
3582 * @dgid: place to store destination gid
3583 */
3584 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3585 enum rdma_network_type net_type,
3586 union ib_gid *sgid, union ib_gid *dgid);
3587
3588 /**
3589 * ib_get_rdma_header_version - Get the header version
3590 * @hdr: the L3 header to parse
3591 */
3592 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3593
3594 /**
3595 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3596 * work completion.
3597 * @device: Device on which the received message arrived.
3598 * @port_num: Port on which the received message arrived.
3599 * @wc: Work completion associated with the received message.
3600 * @grh: References the received global route header. This parameter is
3601 * ignored unless the work completion indicates that the GRH is valid.
3602 * @ah_attr: Returned attributes that can be used when creating an address
3603 * handle for replying to the message.
3604 * When ib_init_ah_attr_from_wc() returns success,
3605 * (a) for IB link layer it optionally contains a reference to SGID attribute
3606 * when GRH is present for IB link layer.
3607 * (b) for RoCE link layer it contains a reference to SGID attribute.
3608 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3609 * attributes which are initialized using ib_init_ah_attr_from_wc().
3610 *
3611 */
3612 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3613 const struct ib_wc *wc, const struct ib_grh *grh,
3614 struct rdma_ah_attr *ah_attr);
3615
3616 /**
3617 * ib_create_ah_from_wc - Creates an address handle associated with the
3618 * sender of the specified work completion.
3619 * @pd: The protection domain associated with the address handle.
3620 * @wc: Work completion information associated with a received message.
3621 * @grh: References the received global route header. This parameter is
3622 * ignored unless the work completion indicates that the GRH is valid.
3623 * @port_num: The outbound port number to associate with the address.
3624 *
3625 * The address handle is used to reference a local or global destination
3626 * in all UD QP post sends.
3627 */
3628 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3629 const struct ib_grh *grh, u32 port_num);
3630
3631 /**
3632 * rdma_modify_ah - Modifies the address vector associated with an address
3633 * handle.
3634 * @ah: The address handle to modify.
3635 * @ah_attr: The new address vector attributes to associate with the
3636 * address handle.
3637 */
3638 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3639
3640 /**
3641 * rdma_query_ah - Queries the address vector associated with an address
3642 * handle.
3643 * @ah: The address handle to query.
3644 * @ah_attr: The address vector attributes associated with the address
3645 * handle.
3646 */
3647 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3648
3649 enum rdma_destroy_ah_flags {
3650 /* In a sleepable context */
3651 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3652 };
3653
3654 /**
3655 * rdma_destroy_ah_user - Destroys an address handle.
3656 * @ah: The address handle to destroy.
3657 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3658 * @udata: Valid user data or NULL for kernel objects
3659 */
3660 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3661
3662 /**
3663 * rdma_destroy_ah - Destroys an kernel address handle.
3664 * @ah: The address handle to destroy.
3665 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3666 *
3667 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3668 */
rdma_destroy_ah(struct ib_ah * ah,u32 flags)3669 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3670 {
3671 int ret = rdma_destroy_ah_user(ah, flags, NULL);
3672
3673 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3674 }
3675
3676 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3677 struct ib_srq_init_attr *srq_init_attr,
3678 struct ib_usrq_object *uobject,
3679 struct ib_udata *udata);
3680 static inline struct ib_srq *
ib_create_srq(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr)3681 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3682 {
3683 if (!pd->device->ops.create_srq)
3684 return ERR_PTR(-EOPNOTSUPP);
3685
3686 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3687 }
3688
3689 /**
3690 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3691 * @srq: The SRQ to modify.
3692 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3693 * the current values of selected SRQ attributes are returned.
3694 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3695 * are being modified.
3696 *
3697 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3698 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3699 * the number of receives queued drops below the limit.
3700 */
3701 int ib_modify_srq(struct ib_srq *srq,
3702 struct ib_srq_attr *srq_attr,
3703 enum ib_srq_attr_mask srq_attr_mask);
3704
3705 /**
3706 * ib_query_srq - Returns the attribute list and current values for the
3707 * specified SRQ.
3708 * @srq: The SRQ to query.
3709 * @srq_attr: The attributes of the specified SRQ.
3710 */
3711 int ib_query_srq(struct ib_srq *srq,
3712 struct ib_srq_attr *srq_attr);
3713
3714 /**
3715 * ib_destroy_srq_user - Destroys the specified SRQ.
3716 * @srq: The SRQ to destroy.
3717 * @udata: Valid user data or NULL for kernel objects
3718 */
3719 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3720
3721 /**
3722 * ib_destroy_srq - Destroys the specified kernel SRQ.
3723 * @srq: The SRQ to destroy.
3724 *
3725 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3726 */
ib_destroy_srq(struct ib_srq * srq)3727 static inline void ib_destroy_srq(struct ib_srq *srq)
3728 {
3729 int ret = ib_destroy_srq_user(srq, NULL);
3730
3731 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3732 }
3733
3734 /**
3735 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3736 * @srq: The SRQ to post the work request on.
3737 * @recv_wr: A list of work requests to post on the receive queue.
3738 * @bad_recv_wr: On an immediate failure, this parameter will reference
3739 * the work request that failed to be posted on the QP.
3740 */
ib_post_srq_recv(struct ib_srq * srq,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3741 static inline int ib_post_srq_recv(struct ib_srq *srq,
3742 const struct ib_recv_wr *recv_wr,
3743 const struct ib_recv_wr **bad_recv_wr)
3744 {
3745 const struct ib_recv_wr *dummy;
3746
3747 return srq->device->ops.post_srq_recv(srq, recv_wr,
3748 bad_recv_wr ? : &dummy);
3749 }
3750
3751 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3752 struct ib_qp_init_attr *qp_init_attr,
3753 const char *caller);
3754 /**
3755 * ib_create_qp - Creates a kernel QP associated with the specific protection
3756 * domain.
3757 * @pd: The protection domain associated with the QP.
3758 * @init_attr: A list of initial attributes required to create the
3759 * QP. If QP creation succeeds, then the attributes are updated to
3760 * the actual capabilities of the created QP.
3761 */
ib_create_qp(struct ib_pd * pd,struct ib_qp_init_attr * init_attr)3762 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3763 struct ib_qp_init_attr *init_attr)
3764 {
3765 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3766 }
3767
3768 /**
3769 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3770 * @qp: The QP to modify.
3771 * @attr: On input, specifies the QP attributes to modify. On output,
3772 * the current values of selected QP attributes are returned.
3773 * @attr_mask: A bit-mask used to specify which attributes of the QP
3774 * are being modified.
3775 * @udata: pointer to user's input output buffer information
3776 * are being modified.
3777 * It returns 0 on success and returns appropriate error code on error.
3778 */
3779 int ib_modify_qp_with_udata(struct ib_qp *qp,
3780 struct ib_qp_attr *attr,
3781 int attr_mask,
3782 struct ib_udata *udata);
3783
3784 /**
3785 * ib_modify_qp - Modifies the attributes for the specified QP and then
3786 * transitions the QP to the given state.
3787 * @qp: The QP to modify.
3788 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3789 * the current values of selected QP attributes are returned.
3790 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3791 * are being modified.
3792 */
3793 int ib_modify_qp(struct ib_qp *qp,
3794 struct ib_qp_attr *qp_attr,
3795 int qp_attr_mask);
3796
3797 /**
3798 * ib_query_qp - Returns the attribute list and current values for the
3799 * specified QP.
3800 * @qp: The QP to query.
3801 * @qp_attr: The attributes of the specified QP.
3802 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3803 * @qp_init_attr: Additional attributes of the selected QP.
3804 *
3805 * The qp_attr_mask may be used to limit the query to gathering only the
3806 * selected attributes.
3807 */
3808 int ib_query_qp(struct ib_qp *qp,
3809 struct ib_qp_attr *qp_attr,
3810 int qp_attr_mask,
3811 struct ib_qp_init_attr *qp_init_attr);
3812
3813 /**
3814 * ib_destroy_qp - Destroys the specified QP.
3815 * @qp: The QP to destroy.
3816 * @udata: Valid udata or NULL for kernel objects
3817 */
3818 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3819
3820 /**
3821 * ib_destroy_qp - Destroys the specified kernel QP.
3822 * @qp: The QP to destroy.
3823 *
3824 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3825 */
ib_destroy_qp(struct ib_qp * qp)3826 static inline int ib_destroy_qp(struct ib_qp *qp)
3827 {
3828 return ib_destroy_qp_user(qp, NULL);
3829 }
3830
3831 /**
3832 * ib_open_qp - Obtain a reference to an existing sharable QP.
3833 * @xrcd - XRC domain
3834 * @qp_open_attr: Attributes identifying the QP to open.
3835 *
3836 * Returns a reference to a sharable QP.
3837 */
3838 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3839 struct ib_qp_open_attr *qp_open_attr);
3840
3841 /**
3842 * ib_close_qp - Release an external reference to a QP.
3843 * @qp: The QP handle to release
3844 *
3845 * The opened QP handle is released by the caller. The underlying
3846 * shared QP is not destroyed until all internal references are released.
3847 */
3848 int ib_close_qp(struct ib_qp *qp);
3849
3850 /**
3851 * ib_post_send - Posts a list of work requests to the send queue of
3852 * the specified QP.
3853 * @qp: The QP to post the work request on.
3854 * @send_wr: A list of work requests to post on the send queue.
3855 * @bad_send_wr: On an immediate failure, this parameter will reference
3856 * the work request that failed to be posted on the QP.
3857 *
3858 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3859 * error is returned, the QP state shall not be affected,
3860 * ib_post_send() will return an immediate error after queueing any
3861 * earlier work requests in the list.
3862 */
ib_post_send(struct ib_qp * qp,const struct ib_send_wr * send_wr,const struct ib_send_wr ** bad_send_wr)3863 static inline int ib_post_send(struct ib_qp *qp,
3864 const struct ib_send_wr *send_wr,
3865 const struct ib_send_wr **bad_send_wr)
3866 {
3867 const struct ib_send_wr *dummy;
3868
3869 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3870 }
3871
3872 /**
3873 * ib_post_recv - Posts a list of work requests to the receive queue of
3874 * the specified QP.
3875 * @qp: The QP to post the work request on.
3876 * @recv_wr: A list of work requests to post on the receive queue.
3877 * @bad_recv_wr: On an immediate failure, this parameter will reference
3878 * the work request that failed to be posted on the QP.
3879 */
ib_post_recv(struct ib_qp * qp,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3880 static inline int ib_post_recv(struct ib_qp *qp,
3881 const struct ib_recv_wr *recv_wr,
3882 const struct ib_recv_wr **bad_recv_wr)
3883 {
3884 const struct ib_recv_wr *dummy;
3885
3886 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3887 }
3888
3889 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3890 int comp_vector, enum ib_poll_context poll_ctx,
3891 const char *caller);
ib_alloc_cq(struct ib_device * dev,void * private,int nr_cqe,int comp_vector,enum ib_poll_context poll_ctx)3892 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3893 int nr_cqe, int comp_vector,
3894 enum ib_poll_context poll_ctx)
3895 {
3896 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3897 KBUILD_MODNAME);
3898 }
3899
3900 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3901 int nr_cqe, enum ib_poll_context poll_ctx,
3902 const char *caller);
3903
3904 /**
3905 * ib_alloc_cq_any: Allocate kernel CQ
3906 * @dev: The IB device
3907 * @private: Private data attached to the CQE
3908 * @nr_cqe: Number of CQEs in the CQ
3909 * @poll_ctx: Context used for polling the CQ
3910 */
ib_alloc_cq_any(struct ib_device * dev,void * private,int nr_cqe,enum ib_poll_context poll_ctx)3911 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3912 void *private, int nr_cqe,
3913 enum ib_poll_context poll_ctx)
3914 {
3915 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3916 KBUILD_MODNAME);
3917 }
3918
3919 void ib_free_cq(struct ib_cq *cq);
3920 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3921
3922 /**
3923 * ib_create_cq - Creates a CQ on the specified device.
3924 * @device: The device on which to create the CQ.
3925 * @comp_handler: A user-specified callback that is invoked when a
3926 * completion event occurs on the CQ.
3927 * @event_handler: A user-specified callback that is invoked when an
3928 * asynchronous event not associated with a completion occurs on the CQ.
3929 * @cq_context: Context associated with the CQ returned to the user via
3930 * the associated completion and event handlers.
3931 * @cq_attr: The attributes the CQ should be created upon.
3932 *
3933 * Users can examine the cq structure to determine the actual CQ size.
3934 */
3935 struct ib_cq *__ib_create_cq(struct ib_device *device,
3936 ib_comp_handler comp_handler,
3937 void (*event_handler)(struct ib_event *, void *),
3938 void *cq_context,
3939 const struct ib_cq_init_attr *cq_attr,
3940 const char *caller);
3941 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3942 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3943
3944 /**
3945 * ib_resize_cq - Modifies the capacity of the CQ.
3946 * @cq: The CQ to resize.
3947 * @cqe: The minimum size of the CQ.
3948 *
3949 * Users can examine the cq structure to determine the actual CQ size.
3950 */
3951 int ib_resize_cq(struct ib_cq *cq, int cqe);
3952
3953 /**
3954 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3955 * @cq: The CQ to modify.
3956 * @cq_count: number of CQEs that will trigger an event
3957 * @cq_period: max period of time in usec before triggering an event
3958 *
3959 */
3960 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3961
3962 /**
3963 * ib_destroy_cq_user - Destroys the specified CQ.
3964 * @cq: The CQ to destroy.
3965 * @udata: Valid user data or NULL for kernel objects
3966 */
3967 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3968
3969 /**
3970 * ib_destroy_cq - Destroys the specified kernel CQ.
3971 * @cq: The CQ to destroy.
3972 *
3973 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3974 */
ib_destroy_cq(struct ib_cq * cq)3975 static inline void ib_destroy_cq(struct ib_cq *cq)
3976 {
3977 int ret = ib_destroy_cq_user(cq, NULL);
3978
3979 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3980 }
3981
3982 /**
3983 * ib_poll_cq - poll a CQ for completion(s)
3984 * @cq:the CQ being polled
3985 * @num_entries:maximum number of completions to return
3986 * @wc:array of at least @num_entries &struct ib_wc where completions
3987 * will be returned
3988 *
3989 * Poll a CQ for (possibly multiple) completions. If the return value
3990 * is < 0, an error occurred. If the return value is >= 0, it is the
3991 * number of completions returned. If the return value is
3992 * non-negative and < num_entries, then the CQ was emptied.
3993 */
ib_poll_cq(struct ib_cq * cq,int num_entries,struct ib_wc * wc)3994 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3995 struct ib_wc *wc)
3996 {
3997 return cq->device->ops.poll_cq(cq, num_entries, wc);
3998 }
3999
4000 /**
4001 * ib_req_notify_cq - Request completion notification on a CQ.
4002 * @cq: The CQ to generate an event for.
4003 * @flags:
4004 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
4005 * to request an event on the next solicited event or next work
4006 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
4007 * may also be |ed in to request a hint about missed events, as
4008 * described below.
4009 *
4010 * Return Value:
4011 * < 0 means an error occurred while requesting notification
4012 * == 0 means notification was requested successfully, and if
4013 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
4014 * were missed and it is safe to wait for another event. In
4015 * this case is it guaranteed that any work completions added
4016 * to the CQ since the last CQ poll will trigger a completion
4017 * notification event.
4018 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
4019 * in. It means that the consumer must poll the CQ again to
4020 * make sure it is empty to avoid missing an event because of a
4021 * race between requesting notification and an entry being
4022 * added to the CQ. This return value means it is possible
4023 * (but not guaranteed) that a work completion has been added
4024 * to the CQ since the last poll without triggering a
4025 * completion notification event.
4026 */
ib_req_notify_cq(struct ib_cq * cq,enum ib_cq_notify_flags flags)4027 static inline int ib_req_notify_cq(struct ib_cq *cq,
4028 enum ib_cq_notify_flags flags)
4029 {
4030 return cq->device->ops.req_notify_cq(cq, flags);
4031 }
4032
4033 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4034 int comp_vector_hint,
4035 enum ib_poll_context poll_ctx);
4036
4037 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4038
4039 /*
4040 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4041 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4042 * address into the dma address.
4043 */
ib_uses_virt_dma(struct ib_device * dev)4044 static inline bool ib_uses_virt_dma(struct ib_device *dev)
4045 {
4046 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4047 }
4048
4049 /*
4050 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4051 */
ib_dma_pci_p2p_dma_supported(struct ib_device * dev)4052 static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4053 {
4054 if (ib_uses_virt_dma(dev))
4055 return false;
4056
4057 return dma_pci_p2pdma_supported(dev->dma_device);
4058 }
4059
4060 /**
4061 * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer
4062 * @dma_addr: The DMA address
4063 *
4064 * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after
4065 * going through the dma_addr marshalling.
4066 */
ib_virt_dma_to_ptr(u64 dma_addr)4067 static inline void *ib_virt_dma_to_ptr(u64 dma_addr)
4068 {
4069 /* virt_dma mode maps the kvs's directly into the dma addr */
4070 return (void *)(uintptr_t)dma_addr;
4071 }
4072
4073 /**
4074 * ib_virt_dma_to_page - Convert a dma_addr to a struct page
4075 * @dma_addr: The DMA address
4076 *
4077 * Used by ib_uses_virt_dma() device to get back to the struct page after going
4078 * through the dma_addr marshalling.
4079 */
ib_virt_dma_to_page(u64 dma_addr)4080 static inline struct page *ib_virt_dma_to_page(u64 dma_addr)
4081 {
4082 return virt_to_page(ib_virt_dma_to_ptr(dma_addr));
4083 }
4084
4085 /**
4086 * ib_dma_mapping_error - check a DMA addr for error
4087 * @dev: The device for which the dma_addr was created
4088 * @dma_addr: The DMA address to check
4089 */
ib_dma_mapping_error(struct ib_device * dev,u64 dma_addr)4090 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4091 {
4092 if (ib_uses_virt_dma(dev))
4093 return 0;
4094 return dma_mapping_error(dev->dma_device, dma_addr);
4095 }
4096
4097 /**
4098 * ib_dma_map_single - Map a kernel virtual address to DMA address
4099 * @dev: The device for which the dma_addr is to be created
4100 * @cpu_addr: The kernel virtual address
4101 * @size: The size of the region in bytes
4102 * @direction: The direction of the DMA
4103 */
ib_dma_map_single(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction)4104 static inline u64 ib_dma_map_single(struct ib_device *dev,
4105 void *cpu_addr, size_t size,
4106 enum dma_data_direction direction)
4107 {
4108 if (ib_uses_virt_dma(dev))
4109 return (uintptr_t)cpu_addr;
4110 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4111 }
4112
4113 /**
4114 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4115 * @dev: The device for which the DMA address was created
4116 * @addr: The DMA address
4117 * @size: The size of the region in bytes
4118 * @direction: The direction of the DMA
4119 */
ib_dma_unmap_single(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4120 static inline void ib_dma_unmap_single(struct ib_device *dev,
4121 u64 addr, size_t size,
4122 enum dma_data_direction direction)
4123 {
4124 if (!ib_uses_virt_dma(dev))
4125 dma_unmap_single(dev->dma_device, addr, size, direction);
4126 }
4127
4128 /**
4129 * ib_dma_map_page - Map a physical page to DMA address
4130 * @dev: The device for which the dma_addr is to be created
4131 * @page: The page to be mapped
4132 * @offset: The offset within the page
4133 * @size: The size of the region in bytes
4134 * @direction: The direction of the DMA
4135 */
ib_dma_map_page(struct ib_device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)4136 static inline u64 ib_dma_map_page(struct ib_device *dev,
4137 struct page *page,
4138 unsigned long offset,
4139 size_t size,
4140 enum dma_data_direction direction)
4141 {
4142 if (ib_uses_virt_dma(dev))
4143 return (uintptr_t)(page_address(page) + offset);
4144 return dma_map_page(dev->dma_device, page, offset, size, direction);
4145 }
4146
4147 /**
4148 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4149 * @dev: The device for which the DMA address was created
4150 * @addr: The DMA address
4151 * @size: The size of the region in bytes
4152 * @direction: The direction of the DMA
4153 */
ib_dma_unmap_page(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4154 static inline void ib_dma_unmap_page(struct ib_device *dev,
4155 u64 addr, size_t size,
4156 enum dma_data_direction direction)
4157 {
4158 if (!ib_uses_virt_dma(dev))
4159 dma_unmap_page(dev->dma_device, addr, size, direction);
4160 }
4161
4162 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
ib_dma_map_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4163 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4164 struct scatterlist *sg, int nents,
4165 enum dma_data_direction direction,
4166 unsigned long dma_attrs)
4167 {
4168 if (ib_uses_virt_dma(dev))
4169 return ib_dma_virt_map_sg(dev, sg, nents);
4170 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4171 dma_attrs);
4172 }
4173
ib_dma_unmap_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4174 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4175 struct scatterlist *sg, int nents,
4176 enum dma_data_direction direction,
4177 unsigned long dma_attrs)
4178 {
4179 if (!ib_uses_virt_dma(dev))
4180 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4181 dma_attrs);
4182 }
4183
4184 /**
4185 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4186 * @dev: The device for which the DMA addresses are to be created
4187 * @sg: The sg_table object describing the buffer
4188 * @direction: The direction of the DMA
4189 * @attrs: Optional DMA attributes for the map operation
4190 */
ib_dma_map_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4191 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4192 struct sg_table *sgt,
4193 enum dma_data_direction direction,
4194 unsigned long dma_attrs)
4195 {
4196 int nents;
4197
4198 if (ib_uses_virt_dma(dev)) {
4199 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4200 if (!nents)
4201 return -EIO;
4202 sgt->nents = nents;
4203 return 0;
4204 }
4205 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4206 }
4207
ib_dma_unmap_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4208 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4209 struct sg_table *sgt,
4210 enum dma_data_direction direction,
4211 unsigned long dma_attrs)
4212 {
4213 if (!ib_uses_virt_dma(dev))
4214 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4215 }
4216
4217 /**
4218 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4219 * @dev: The device for which the DMA addresses are to be created
4220 * @sg: The array of scatter/gather entries
4221 * @nents: The number of scatter/gather entries
4222 * @direction: The direction of the DMA
4223 */
ib_dma_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4224 static inline int ib_dma_map_sg(struct ib_device *dev,
4225 struct scatterlist *sg, int nents,
4226 enum dma_data_direction direction)
4227 {
4228 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4229 }
4230
4231 /**
4232 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4233 * @dev: The device for which the DMA addresses were created
4234 * @sg: The array of scatter/gather entries
4235 * @nents: The number of scatter/gather entries
4236 * @direction: The direction of the DMA
4237 */
ib_dma_unmap_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4238 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4239 struct scatterlist *sg, int nents,
4240 enum dma_data_direction direction)
4241 {
4242 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4243 }
4244
4245 /**
4246 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4247 * @dev: The device to query
4248 *
4249 * The returned value represents a size in bytes.
4250 */
ib_dma_max_seg_size(struct ib_device * dev)4251 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4252 {
4253 if (ib_uses_virt_dma(dev))
4254 return UINT_MAX;
4255 return dma_get_max_seg_size(dev->dma_device);
4256 }
4257
4258 /**
4259 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4260 * @dev: The device for which the DMA address was created
4261 * @addr: The DMA address
4262 * @size: The size of the region in bytes
4263 * @dir: The direction of the DMA
4264 */
ib_dma_sync_single_for_cpu(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4265 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4266 u64 addr,
4267 size_t size,
4268 enum dma_data_direction dir)
4269 {
4270 if (!ib_uses_virt_dma(dev))
4271 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4272 }
4273
4274 /**
4275 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4276 * @dev: The device for which the DMA address was created
4277 * @addr: The DMA address
4278 * @size: The size of the region in bytes
4279 * @dir: The direction of the DMA
4280 */
ib_dma_sync_single_for_device(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4281 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4282 u64 addr,
4283 size_t size,
4284 enum dma_data_direction dir)
4285 {
4286 if (!ib_uses_virt_dma(dev))
4287 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4288 }
4289
4290 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4291 * space. This function should be called when 'current' is the owning MM.
4292 */
4293 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4294 u64 virt_addr, int mr_access_flags);
4295
4296 /* ib_advise_mr - give an advice about an address range in a memory region */
4297 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4298 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4299 /**
4300 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4301 * HCA translation table.
4302 * @mr: The memory region to deregister.
4303 * @udata: Valid user data or NULL for kernel object
4304 *
4305 * This function can fail, if the memory region has memory windows bound to it.
4306 */
4307 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4308
4309 /**
4310 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4311 * HCA translation table.
4312 * @mr: The memory region to deregister.
4313 *
4314 * This function can fail, if the memory region has memory windows bound to it.
4315 *
4316 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4317 */
ib_dereg_mr(struct ib_mr * mr)4318 static inline int ib_dereg_mr(struct ib_mr *mr)
4319 {
4320 return ib_dereg_mr_user(mr, NULL);
4321 }
4322
4323 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4324 u32 max_num_sg);
4325
4326 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4327 u32 max_num_data_sg,
4328 u32 max_num_meta_sg);
4329
4330 /**
4331 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4332 * R_Key and L_Key.
4333 * @mr - struct ib_mr pointer to be updated.
4334 * @newkey - new key to be used.
4335 */
ib_update_fast_reg_key(struct ib_mr * mr,u8 newkey)4336 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4337 {
4338 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4339 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4340 }
4341
4342 /**
4343 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4344 * for calculating a new rkey for type 2 memory windows.
4345 * @rkey - the rkey to increment.
4346 */
ib_inc_rkey(u32 rkey)4347 static inline u32 ib_inc_rkey(u32 rkey)
4348 {
4349 const u32 mask = 0x000000ff;
4350 return ((rkey + 1) & mask) | (rkey & ~mask);
4351 }
4352
4353 /**
4354 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4355 * @qp: QP to attach to the multicast group. The QP must be type
4356 * IB_QPT_UD.
4357 * @gid: Multicast group GID.
4358 * @lid: Multicast group LID in host byte order.
4359 *
4360 * In order to send and receive multicast packets, subnet
4361 * administration must have created the multicast group and configured
4362 * the fabric appropriately. The port associated with the specified
4363 * QP must also be a member of the multicast group.
4364 */
4365 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4366
4367 /**
4368 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4369 * @qp: QP to detach from the multicast group.
4370 * @gid: Multicast group GID.
4371 * @lid: Multicast group LID in host byte order.
4372 */
4373 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4374
4375 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4376 struct inode *inode, struct ib_udata *udata);
4377 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4378
ib_check_mr_access(struct ib_device * ib_dev,unsigned int flags)4379 static inline int ib_check_mr_access(struct ib_device *ib_dev,
4380 unsigned int flags)
4381 {
4382 u64 device_cap = ib_dev->attrs.device_cap_flags;
4383
4384 /*
4385 * Local write permission is required if remote write or
4386 * remote atomic permission is also requested.
4387 */
4388 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4389 !(flags & IB_ACCESS_LOCAL_WRITE))
4390 return -EINVAL;
4391
4392 if (flags & ~IB_ACCESS_SUPPORTED)
4393 return -EINVAL;
4394
4395 if (flags & IB_ACCESS_ON_DEMAND &&
4396 !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4397 return -EOPNOTSUPP;
4398
4399 if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4400 !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4401 (flags & IB_ACCESS_FLUSH_PERSISTENT &&
4402 !(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4403 return -EOPNOTSUPP;
4404
4405 return 0;
4406 }
4407
ib_access_writable(int access_flags)4408 static inline bool ib_access_writable(int access_flags)
4409 {
4410 /*
4411 * We have writable memory backing the MR if any of the following
4412 * access flags are set. "Local write" and "remote write" obviously
4413 * require write access. "Remote atomic" can do things like fetch and
4414 * add, which will modify memory, and "MW bind" can change permissions
4415 * by binding a window.
4416 */
4417 return access_flags &
4418 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4419 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4420 }
4421
4422 /**
4423 * ib_check_mr_status: lightweight check of MR status.
4424 * This routine may provide status checks on a selected
4425 * ib_mr. first use is for signature status check.
4426 *
4427 * @mr: A memory region.
4428 * @check_mask: Bitmask of which checks to perform from
4429 * ib_mr_status_check enumeration.
4430 * @mr_status: The container of relevant status checks.
4431 * failed checks will be indicated in the status bitmask
4432 * and the relevant info shall be in the error item.
4433 */
4434 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4435 struct ib_mr_status *mr_status);
4436
4437 /**
4438 * ib_device_try_get: Hold a registration lock
4439 * device: The device to lock
4440 *
4441 * A device under an active registration lock cannot become unregistered. It
4442 * is only possible to obtain a registration lock on a device that is fully
4443 * registered, otherwise this function returns false.
4444 *
4445 * The registration lock is only necessary for actions which require the
4446 * device to still be registered. Uses that only require the device pointer to
4447 * be valid should use get_device(&ibdev->dev) to hold the memory.
4448 *
4449 */
ib_device_try_get(struct ib_device * dev)4450 static inline bool ib_device_try_get(struct ib_device *dev)
4451 {
4452 return refcount_inc_not_zero(&dev->refcount);
4453 }
4454
4455 void ib_device_put(struct ib_device *device);
4456 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4457 enum rdma_driver_id driver_id);
4458 struct ib_device *ib_device_get_by_name(const char *name,
4459 enum rdma_driver_id driver_id);
4460 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4461 u16 pkey, const union ib_gid *gid,
4462 const struct sockaddr *addr);
4463 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4464 unsigned int port);
4465 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
4466 u32 port);
4467 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4468 struct ib_wq_init_attr *init_attr);
4469 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4470
4471 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4472 unsigned int *sg_offset, unsigned int page_size);
4473 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4474 int data_sg_nents, unsigned int *data_sg_offset,
4475 struct scatterlist *meta_sg, int meta_sg_nents,
4476 unsigned int *meta_sg_offset, unsigned int page_size);
4477
4478 static inline int
ib_map_mr_sg_zbva(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)4479 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4480 unsigned int *sg_offset, unsigned int page_size)
4481 {
4482 int n;
4483
4484 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4485 mr->iova = 0;
4486
4487 return n;
4488 }
4489
4490 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4491 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4492
4493 void ib_drain_rq(struct ib_qp *qp);
4494 void ib_drain_sq(struct ib_qp *qp);
4495 void ib_drain_qp(struct ib_qp *qp);
4496
4497 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4498 u8 *width);
4499
rdma_ah_retrieve_dmac(struct rdma_ah_attr * attr)4500 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4501 {
4502 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4503 return attr->roce.dmac;
4504 return NULL;
4505 }
4506
rdma_ah_set_dlid(struct rdma_ah_attr * attr,u32 dlid)4507 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4508 {
4509 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4510 attr->ib.dlid = (u16)dlid;
4511 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4512 attr->opa.dlid = dlid;
4513 }
4514
rdma_ah_get_dlid(const struct rdma_ah_attr * attr)4515 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4516 {
4517 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4518 return attr->ib.dlid;
4519 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4520 return attr->opa.dlid;
4521 return 0;
4522 }
4523
rdma_ah_set_sl(struct rdma_ah_attr * attr,u8 sl)4524 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4525 {
4526 attr->sl = sl;
4527 }
4528
rdma_ah_get_sl(const struct rdma_ah_attr * attr)4529 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4530 {
4531 return attr->sl;
4532 }
4533
rdma_ah_set_path_bits(struct rdma_ah_attr * attr,u8 src_path_bits)4534 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4535 u8 src_path_bits)
4536 {
4537 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4538 attr->ib.src_path_bits = src_path_bits;
4539 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4540 attr->opa.src_path_bits = src_path_bits;
4541 }
4542
rdma_ah_get_path_bits(const struct rdma_ah_attr * attr)4543 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4544 {
4545 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4546 return attr->ib.src_path_bits;
4547 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4548 return attr->opa.src_path_bits;
4549 return 0;
4550 }
4551
rdma_ah_set_make_grd(struct rdma_ah_attr * attr,bool make_grd)4552 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4553 bool make_grd)
4554 {
4555 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4556 attr->opa.make_grd = make_grd;
4557 }
4558
rdma_ah_get_make_grd(const struct rdma_ah_attr * attr)4559 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4560 {
4561 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4562 return attr->opa.make_grd;
4563 return false;
4564 }
4565
rdma_ah_set_port_num(struct rdma_ah_attr * attr,u32 port_num)4566 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4567 {
4568 attr->port_num = port_num;
4569 }
4570
rdma_ah_get_port_num(const struct rdma_ah_attr * attr)4571 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4572 {
4573 return attr->port_num;
4574 }
4575
rdma_ah_set_static_rate(struct rdma_ah_attr * attr,u8 static_rate)4576 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4577 u8 static_rate)
4578 {
4579 attr->static_rate = static_rate;
4580 }
4581
rdma_ah_get_static_rate(const struct rdma_ah_attr * attr)4582 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4583 {
4584 return attr->static_rate;
4585 }
4586
rdma_ah_set_ah_flags(struct rdma_ah_attr * attr,enum ib_ah_flags flag)4587 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4588 enum ib_ah_flags flag)
4589 {
4590 attr->ah_flags = flag;
4591 }
4592
4593 static inline enum ib_ah_flags
rdma_ah_get_ah_flags(const struct rdma_ah_attr * attr)4594 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4595 {
4596 return attr->ah_flags;
4597 }
4598
4599 static inline const struct ib_global_route
rdma_ah_read_grh(const struct rdma_ah_attr * attr)4600 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4601 {
4602 return &attr->grh;
4603 }
4604
4605 /*To retrieve and modify the grh */
4606 static inline struct ib_global_route
rdma_ah_retrieve_grh(struct rdma_ah_attr * attr)4607 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4608 {
4609 return &attr->grh;
4610 }
4611
rdma_ah_set_dgid_raw(struct rdma_ah_attr * attr,void * dgid)4612 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4613 {
4614 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4615
4616 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4617 }
4618
rdma_ah_set_subnet_prefix(struct rdma_ah_attr * attr,__be64 prefix)4619 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4620 __be64 prefix)
4621 {
4622 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4623
4624 grh->dgid.global.subnet_prefix = prefix;
4625 }
4626
rdma_ah_set_interface_id(struct rdma_ah_attr * attr,__be64 if_id)4627 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4628 __be64 if_id)
4629 {
4630 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4631
4632 grh->dgid.global.interface_id = if_id;
4633 }
4634
rdma_ah_set_grh(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 sgid_index,u8 hop_limit,u8 traffic_class)4635 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4636 union ib_gid *dgid, u32 flow_label,
4637 u8 sgid_index, u8 hop_limit,
4638 u8 traffic_class)
4639 {
4640 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4641
4642 attr->ah_flags = IB_AH_GRH;
4643 if (dgid)
4644 grh->dgid = *dgid;
4645 grh->flow_label = flow_label;
4646 grh->sgid_index = sgid_index;
4647 grh->hop_limit = hop_limit;
4648 grh->traffic_class = traffic_class;
4649 grh->sgid_attr = NULL;
4650 }
4651
4652 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4653 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4654 u32 flow_label, u8 hop_limit, u8 traffic_class,
4655 const struct ib_gid_attr *sgid_attr);
4656 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4657 const struct rdma_ah_attr *src);
4658 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4659 const struct rdma_ah_attr *new);
4660 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4661
4662 /**
4663 * rdma_ah_find_type - Return address handle type.
4664 *
4665 * @dev: Device to be checked
4666 * @port_num: Port number
4667 */
rdma_ah_find_type(struct ib_device * dev,u32 port_num)4668 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4669 u32 port_num)
4670 {
4671 if (rdma_protocol_roce(dev, port_num))
4672 return RDMA_AH_ATTR_TYPE_ROCE;
4673 if (rdma_protocol_ib(dev, port_num)) {
4674 if (rdma_cap_opa_ah(dev, port_num))
4675 return RDMA_AH_ATTR_TYPE_OPA;
4676 return RDMA_AH_ATTR_TYPE_IB;
4677 }
4678 if (dev->type == RDMA_DEVICE_TYPE_SMI)
4679 return RDMA_AH_ATTR_TYPE_IB;
4680
4681 return RDMA_AH_ATTR_TYPE_UNDEFINED;
4682 }
4683
4684 /**
4685 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4686 * In the current implementation the only way to
4687 * get the 32bit lid is from other sources for OPA.
4688 * For IB, lids will always be 16bits so cast the
4689 * value accordingly.
4690 *
4691 * @lid: A 32bit LID
4692 */
ib_lid_cpu16(u32 lid)4693 static inline u16 ib_lid_cpu16(u32 lid)
4694 {
4695 WARN_ON_ONCE(lid & 0xFFFF0000);
4696 return (u16)lid;
4697 }
4698
4699 /**
4700 * ib_lid_be16 - Return lid in 16bit BE encoding.
4701 *
4702 * @lid: A 32bit LID
4703 */
ib_lid_be16(u32 lid)4704 static inline __be16 ib_lid_be16(u32 lid)
4705 {
4706 WARN_ON_ONCE(lid & 0xFFFF0000);
4707 return cpu_to_be16((u16)lid);
4708 }
4709
4710 /**
4711 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4712 * vector
4713 * @device: the rdma device
4714 * @comp_vector: index of completion vector
4715 *
4716 * Returns NULL on failure, otherwise a corresponding cpu map of the
4717 * completion vector (returns all-cpus map if the device driver doesn't
4718 * implement get_vector_affinity).
4719 */
4720 static inline const struct cpumask *
ib_get_vector_affinity(struct ib_device * device,int comp_vector)4721 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4722 {
4723 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4724 !device->ops.get_vector_affinity)
4725 return NULL;
4726
4727 return device->ops.get_vector_affinity(device, comp_vector);
4728
4729 }
4730
4731 /**
4732 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4733 * and add their gids, as needed, to the relevant RoCE devices.
4734 *
4735 * @device: the rdma device
4736 */
4737 void rdma_roce_rescan_device(struct ib_device *ibdev);
4738 void rdma_roce_rescan_port(struct ib_device *ib_dev, u32 port);
4739 void roce_del_all_netdev_gids(struct ib_device *ib_dev,
4740 u32 port, struct net_device *ndev);
4741
4742 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4743
4744 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4745
4746 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4747 enum rdma_netdev_t type, const char *name,
4748 unsigned char name_assign_type,
4749 void (*setup)(struct net_device *));
4750
4751 int rdma_init_netdev(struct ib_device *device, u32 port_num,
4752 enum rdma_netdev_t type, const char *name,
4753 unsigned char name_assign_type,
4754 void (*setup)(struct net_device *),
4755 struct net_device *netdev);
4756
4757 /**
4758 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4759 *
4760 * @device: device pointer for which ib_device pointer to retrieve
4761 *
4762 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4763 *
4764 */
rdma_device_to_ibdev(struct device * device)4765 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4766 {
4767 struct ib_core_device *coredev =
4768 container_of(device, struct ib_core_device, dev);
4769
4770 return coredev->owner;
4771 }
4772
4773 /**
4774 * ibdev_to_node - return the NUMA node for a given ib_device
4775 * @dev: device to get the NUMA node for.
4776 */
ibdev_to_node(struct ib_device * ibdev)4777 static inline int ibdev_to_node(struct ib_device *ibdev)
4778 {
4779 struct device *parent = ibdev->dev.parent;
4780
4781 if (!parent)
4782 return NUMA_NO_NODE;
4783 return dev_to_node(parent);
4784 }
4785
4786 /**
4787 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4788 * ib_device holder structure from device pointer.
4789 *
4790 * NOTE: New drivers should not make use of this API; This API is only for
4791 * existing drivers who have exposed sysfs entries using
4792 * ops->device_group.
4793 */
4794 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4795 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4796
4797 bool rdma_dev_access_netns(const struct ib_device *device,
4798 const struct net *net);
4799
4800 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4801 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4802 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4803
4804 /**
4805 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4806 * on the flow_label
4807 *
4808 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4809 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4810 * convention.
4811 */
rdma_flow_label_to_udp_sport(u32 fl)4812 static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4813 {
4814 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4815
4816 fl_low ^= fl_high >> 14;
4817 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4818 }
4819
4820 /**
4821 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4822 * local and remote qpn values
4823 *
4824 * This function folded the multiplication results of two qpns, 24 bit each,
4825 * fields, and converts it to a 20 bit results.
4826 *
4827 * This function will create symmetric flow_label value based on the local
4828 * and remote qpn values. this will allow both the requester and responder
4829 * to calculate the same flow_label for a given connection.
4830 *
4831 * This helper function should be used by driver in case the upper layer
4832 * provide a zero flow_label value. This is to improve entropy of RDMA
4833 * traffic in the network.
4834 */
rdma_calc_flow_label(u32 lqpn,u32 rqpn)4835 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4836 {
4837 u64 v = (u64)lqpn * rqpn;
4838
4839 v ^= v >> 20;
4840 v ^= v >> 40;
4841
4842 return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4843 }
4844
4845 /**
4846 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4847 * label. If flow label is not defined in GRH then
4848 * calculate it based on lqpn/rqpn.
4849 *
4850 * @fl: flow label from GRH
4851 * @lqpn: local qp number
4852 * @rqpn: remote qp number
4853 */
rdma_get_udp_sport(u32 fl,u32 lqpn,u32 rqpn)4854 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4855 {
4856 if (!fl)
4857 fl = rdma_calc_flow_label(lqpn, rqpn);
4858
4859 return rdma_flow_label_to_udp_sport(fl);
4860 }
4861
4862 const struct ib_port_immutable*
4863 ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4864
4865 /** ib_add_sub_device - Add a sub IB device on an existing one
4866 *
4867 * @parent: The IB device that needs to add a sub device
4868 * @type: The type of the new sub device
4869 * @name: The name of the new sub device
4870 *
4871 *
4872 * Return 0 on success, an error code otherwise
4873 */
4874 int ib_add_sub_device(struct ib_device *parent,
4875 enum rdma_nl_dev_type type,
4876 const char *name);
4877
4878
4879 /** ib_del_sub_device_and_put - Delect an IB sub device while holding a 'get'
4880 *
4881 * @sub: The sub device that is going to be deleted
4882 *
4883 * Return 0 on success, an error code otherwise
4884 */
4885 int ib_del_sub_device_and_put(struct ib_device *sub);
4886
ib_mark_name_assigned_by_user(struct ib_device * ibdev)4887 static inline void ib_mark_name_assigned_by_user(struct ib_device *ibdev)
4888 {
4889 ibdev->name_assign_type = RDMA_NAME_ASSIGN_TYPE_USER;
4890 }
4891
4892 #endif /* IB_VERBS_H */
4893