1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "devlink/devlink.h"
17 #include "devlink/devlink_port.h"
18 #include "ice_sf_eth.h"
19 #include "ice_hwmon.h"
20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
21 * ice tracepoint functions. This must be done exactly once across the
22 * ice driver.
23 */
24 #define CREATE_TRACE_POINTS
25 #include "ice_trace.h"
26 #include "ice_eswitch.h"
27 #include "ice_tc_lib.h"
28 #include "ice_vsi_vlan_ops.h"
29 #include <net/xdp_sock_drv.h>
30
31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
32 static const char ice_driver_string[] = DRV_SUMMARY;
33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
34
35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/"
37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
38
39 MODULE_DESCRIPTION(DRV_SUMMARY);
40 MODULE_IMPORT_NS(LIBIE);
41 MODULE_LICENSE("GPL v2");
42 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
43
44 static int debug = -1;
45 module_param(debug, int, 0644);
46 #ifndef CONFIG_DYNAMIC_DEBUG
47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
48 #else
49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
50 #endif /* !CONFIG_DYNAMIC_DEBUG */
51
52 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
53 EXPORT_SYMBOL(ice_xdp_locking_key);
54
55 /**
56 * ice_hw_to_dev - Get device pointer from the hardware structure
57 * @hw: pointer to the device HW structure
58 *
59 * Used to access the device pointer from compilation units which can't easily
60 * include the definition of struct ice_pf without leading to circular header
61 * dependencies.
62 */
ice_hw_to_dev(struct ice_hw * hw)63 struct device *ice_hw_to_dev(struct ice_hw *hw)
64 {
65 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
66
67 return &pf->pdev->dev;
68 }
69
70 static struct workqueue_struct *ice_wq;
71 struct workqueue_struct *ice_lag_wq;
72 static const struct net_device_ops ice_netdev_safe_mode_ops;
73 static const struct net_device_ops ice_netdev_ops;
74
75 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
76
77 static void ice_vsi_release_all(struct ice_pf *pf);
78
79 static int ice_rebuild_channels(struct ice_pf *pf);
80 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
81
82 static int
83 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
84 void *cb_priv, enum tc_setup_type type, void *type_data,
85 void *data,
86 void (*cleanup)(struct flow_block_cb *block_cb));
87
netif_is_ice(const struct net_device * dev)88 bool netif_is_ice(const struct net_device *dev)
89 {
90 return dev && (dev->netdev_ops == &ice_netdev_ops ||
91 dev->netdev_ops == &ice_netdev_safe_mode_ops);
92 }
93
94 /**
95 * ice_get_tx_pending - returns number of Tx descriptors not processed
96 * @ring: the ring of descriptors
97 */
ice_get_tx_pending(struct ice_tx_ring * ring)98 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
99 {
100 u16 head, tail;
101
102 head = ring->next_to_clean;
103 tail = ring->next_to_use;
104
105 if (head != tail)
106 return (head < tail) ?
107 tail - head : (tail + ring->count - head);
108 return 0;
109 }
110
111 /**
112 * ice_check_for_hang_subtask - check for and recover hung queues
113 * @pf: pointer to PF struct
114 */
ice_check_for_hang_subtask(struct ice_pf * pf)115 static void ice_check_for_hang_subtask(struct ice_pf *pf)
116 {
117 struct ice_vsi *vsi = NULL;
118 struct ice_hw *hw;
119 unsigned int i;
120 int packets;
121 u32 v;
122
123 ice_for_each_vsi(pf, v)
124 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
125 vsi = pf->vsi[v];
126 break;
127 }
128
129 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
130 return;
131
132 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
133 return;
134
135 hw = &vsi->back->hw;
136
137 ice_for_each_txq(vsi, i) {
138 struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
139 struct ice_ring_stats *ring_stats;
140
141 if (!tx_ring)
142 continue;
143 if (ice_ring_ch_enabled(tx_ring))
144 continue;
145
146 ring_stats = tx_ring->ring_stats;
147 if (!ring_stats)
148 continue;
149
150 if (tx_ring->desc) {
151 /* If packet counter has not changed the queue is
152 * likely stalled, so force an interrupt for this
153 * queue.
154 *
155 * prev_pkt would be negative if there was no
156 * pending work.
157 */
158 packets = ring_stats->stats.pkts & INT_MAX;
159 if (ring_stats->tx_stats.prev_pkt == packets) {
160 /* Trigger sw interrupt to revive the queue */
161 ice_trigger_sw_intr(hw, tx_ring->q_vector);
162 continue;
163 }
164
165 /* Memory barrier between read of packet count and call
166 * to ice_get_tx_pending()
167 */
168 smp_rmb();
169 ring_stats->tx_stats.prev_pkt =
170 ice_get_tx_pending(tx_ring) ? packets : -1;
171 }
172 }
173 }
174
175 /**
176 * ice_init_mac_fltr - Set initial MAC filters
177 * @pf: board private structure
178 *
179 * Set initial set of MAC filters for PF VSI; configure filters for permanent
180 * address and broadcast address. If an error is encountered, netdevice will be
181 * unregistered.
182 */
ice_init_mac_fltr(struct ice_pf * pf)183 static int ice_init_mac_fltr(struct ice_pf *pf)
184 {
185 struct ice_vsi *vsi;
186 u8 *perm_addr;
187
188 vsi = ice_get_main_vsi(pf);
189 if (!vsi)
190 return -EINVAL;
191
192 perm_addr = vsi->port_info->mac.perm_addr;
193 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
194 }
195
196 /**
197 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
198 * @netdev: the net device on which the sync is happening
199 * @addr: MAC address to sync
200 *
201 * This is a callback function which is called by the in kernel device sync
202 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
203 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
204 * MAC filters from the hardware.
205 */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)206 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
207 {
208 struct ice_netdev_priv *np = netdev_priv(netdev);
209 struct ice_vsi *vsi = np->vsi;
210
211 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
212 ICE_FWD_TO_VSI))
213 return -EINVAL;
214
215 return 0;
216 }
217
218 /**
219 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
220 * @netdev: the net device on which the unsync is happening
221 * @addr: MAC address to unsync
222 *
223 * This is a callback function which is called by the in kernel device unsync
224 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
225 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
226 * delete the MAC filters from the hardware.
227 */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)228 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
229 {
230 struct ice_netdev_priv *np = netdev_priv(netdev);
231 struct ice_vsi *vsi = np->vsi;
232
233 /* Under some circumstances, we might receive a request to delete our
234 * own device address from our uc list. Because we store the device
235 * address in the VSI's MAC filter list, we need to ignore such
236 * requests and not delete our device address from this list.
237 */
238 if (ether_addr_equal(addr, netdev->dev_addr))
239 return 0;
240
241 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
242 ICE_FWD_TO_VSI))
243 return -EINVAL;
244
245 return 0;
246 }
247
248 /**
249 * ice_vsi_fltr_changed - check if filter state changed
250 * @vsi: VSI to be checked
251 *
252 * returns true if filter state has changed, false otherwise.
253 */
ice_vsi_fltr_changed(struct ice_vsi * vsi)254 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
255 {
256 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
257 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
258 }
259
260 /**
261 * ice_set_promisc - Enable promiscuous mode for a given PF
262 * @vsi: the VSI being configured
263 * @promisc_m: mask of promiscuous config bits
264 *
265 */
ice_set_promisc(struct ice_vsi * vsi,u8 promisc_m)266 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
267 {
268 int status;
269
270 if (vsi->type != ICE_VSI_PF)
271 return 0;
272
273 if (ice_vsi_has_non_zero_vlans(vsi)) {
274 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
275 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
276 promisc_m);
277 } else {
278 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
279 promisc_m, 0);
280 }
281 if (status && status != -EEXIST)
282 return status;
283
284 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
285 vsi->vsi_num, promisc_m);
286 return 0;
287 }
288
289 /**
290 * ice_clear_promisc - Disable promiscuous mode for a given PF
291 * @vsi: the VSI being configured
292 * @promisc_m: mask of promiscuous config bits
293 *
294 */
ice_clear_promisc(struct ice_vsi * vsi,u8 promisc_m)295 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
296 {
297 int status;
298
299 if (vsi->type != ICE_VSI_PF)
300 return 0;
301
302 if (ice_vsi_has_non_zero_vlans(vsi)) {
303 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
304 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
305 promisc_m);
306 } else {
307 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
308 promisc_m, 0);
309 }
310
311 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
312 vsi->vsi_num, promisc_m);
313 return status;
314 }
315
316 /**
317 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
318 * @vsi: ptr to the VSI
319 *
320 * Push any outstanding VSI filter changes through the AdminQ.
321 */
ice_vsi_sync_fltr(struct ice_vsi * vsi)322 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
323 {
324 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
325 struct device *dev = ice_pf_to_dev(vsi->back);
326 struct net_device *netdev = vsi->netdev;
327 bool promisc_forced_on = false;
328 struct ice_pf *pf = vsi->back;
329 struct ice_hw *hw = &pf->hw;
330 u32 changed_flags = 0;
331 int err;
332
333 if (!vsi->netdev)
334 return -EINVAL;
335
336 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
337 usleep_range(1000, 2000);
338
339 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
340 vsi->current_netdev_flags = vsi->netdev->flags;
341
342 INIT_LIST_HEAD(&vsi->tmp_sync_list);
343 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
344
345 if (ice_vsi_fltr_changed(vsi)) {
346 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
347 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
348
349 /* grab the netdev's addr_list_lock */
350 netif_addr_lock_bh(netdev);
351 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
352 ice_add_mac_to_unsync_list);
353 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
354 ice_add_mac_to_unsync_list);
355 /* our temp lists are populated. release lock */
356 netif_addr_unlock_bh(netdev);
357 }
358
359 /* Remove MAC addresses in the unsync list */
360 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
361 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
362 if (err) {
363 netdev_err(netdev, "Failed to delete MAC filters\n");
364 /* if we failed because of alloc failures, just bail */
365 if (err == -ENOMEM)
366 goto out;
367 }
368
369 /* Add MAC addresses in the sync list */
370 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
371 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
372 /* If filter is added successfully or already exists, do not go into
373 * 'if' condition and report it as error. Instead continue processing
374 * rest of the function.
375 */
376 if (err && err != -EEXIST) {
377 netdev_err(netdev, "Failed to add MAC filters\n");
378 /* If there is no more space for new umac filters, VSI
379 * should go into promiscuous mode. There should be some
380 * space reserved for promiscuous filters.
381 */
382 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
383 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
384 vsi->state)) {
385 promisc_forced_on = true;
386 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
387 vsi->vsi_num);
388 } else {
389 goto out;
390 }
391 }
392 err = 0;
393 /* check for changes in promiscuous modes */
394 if (changed_flags & IFF_ALLMULTI) {
395 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
396 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
397 if (err) {
398 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
399 goto out_promisc;
400 }
401 } else {
402 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
403 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
404 if (err) {
405 vsi->current_netdev_flags |= IFF_ALLMULTI;
406 goto out_promisc;
407 }
408 }
409 }
410
411 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
412 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
413 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
414 if (vsi->current_netdev_flags & IFF_PROMISC) {
415 /* Apply Rx filter rule to get traffic from wire */
416 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
417 err = ice_set_dflt_vsi(vsi);
418 if (err && err != -EEXIST) {
419 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
420 err, vsi->vsi_num);
421 vsi->current_netdev_flags &=
422 ~IFF_PROMISC;
423 goto out_promisc;
424 }
425 err = 0;
426 vlan_ops->dis_rx_filtering(vsi);
427
428 /* promiscuous mode implies allmulticast so
429 * that VSIs that are in promiscuous mode are
430 * subscribed to multicast packets coming to
431 * the port
432 */
433 err = ice_set_promisc(vsi,
434 ICE_MCAST_PROMISC_BITS);
435 if (err)
436 goto out_promisc;
437 }
438 } else {
439 /* Clear Rx filter to remove traffic from wire */
440 if (ice_is_vsi_dflt_vsi(vsi)) {
441 err = ice_clear_dflt_vsi(vsi);
442 if (err) {
443 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
444 err, vsi->vsi_num);
445 vsi->current_netdev_flags |=
446 IFF_PROMISC;
447 goto out_promisc;
448 }
449 if (vsi->netdev->features &
450 NETIF_F_HW_VLAN_CTAG_FILTER)
451 vlan_ops->ena_rx_filtering(vsi);
452 }
453
454 /* disable allmulti here, but only if allmulti is not
455 * still enabled for the netdev
456 */
457 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
458 err = ice_clear_promisc(vsi,
459 ICE_MCAST_PROMISC_BITS);
460 if (err) {
461 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
462 err, vsi->vsi_num);
463 }
464 }
465 }
466 }
467 goto exit;
468
469 out_promisc:
470 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
471 goto exit;
472 out:
473 /* if something went wrong then set the changed flag so we try again */
474 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
475 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
476 exit:
477 clear_bit(ICE_CFG_BUSY, vsi->state);
478 return err;
479 }
480
481 /**
482 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
483 * @pf: board private structure
484 */
ice_sync_fltr_subtask(struct ice_pf * pf)485 static void ice_sync_fltr_subtask(struct ice_pf *pf)
486 {
487 int v;
488
489 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
490 return;
491
492 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
493
494 ice_for_each_vsi(pf, v)
495 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
496 ice_vsi_sync_fltr(pf->vsi[v])) {
497 /* come back and try again later */
498 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
499 break;
500 }
501 }
502
503 /**
504 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
505 * @pf: the PF
506 * @locked: is the rtnl_lock already held
507 */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)508 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
509 {
510 int node;
511 int v;
512
513 ice_for_each_vsi(pf, v)
514 if (pf->vsi[v])
515 ice_dis_vsi(pf->vsi[v], locked);
516
517 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
518 pf->pf_agg_node[node].num_vsis = 0;
519
520 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
521 pf->vf_agg_node[node].num_vsis = 0;
522 }
523
524 /**
525 * ice_prepare_for_reset - prep for reset
526 * @pf: board private structure
527 * @reset_type: reset type requested
528 *
529 * Inform or close all dependent features in prep for reset.
530 */
531 static void
ice_prepare_for_reset(struct ice_pf * pf,enum ice_reset_req reset_type)532 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
533 {
534 struct ice_hw *hw = &pf->hw;
535 struct ice_vsi *vsi;
536 struct ice_vf *vf;
537 unsigned int bkt;
538
539 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
540
541 /* already prepared for reset */
542 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
543 return;
544
545 synchronize_irq(pf->oicr_irq.virq);
546
547 ice_unplug_aux_dev(pf);
548
549 /* Notify VFs of impending reset */
550 if (ice_check_sq_alive(hw, &hw->mailboxq))
551 ice_vc_notify_reset(pf);
552
553 /* Disable VFs until reset is completed */
554 mutex_lock(&pf->vfs.table_lock);
555 ice_for_each_vf(pf, bkt, vf)
556 ice_set_vf_state_dis(vf);
557 mutex_unlock(&pf->vfs.table_lock);
558
559 if (ice_is_eswitch_mode_switchdev(pf)) {
560 rtnl_lock();
561 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge);
562 rtnl_unlock();
563 }
564
565 /* release ADQ specific HW and SW resources */
566 vsi = ice_get_main_vsi(pf);
567 if (!vsi)
568 goto skip;
569
570 /* to be on safe side, reset orig_rss_size so that normal flow
571 * of deciding rss_size can take precedence
572 */
573 vsi->orig_rss_size = 0;
574
575 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
576 if (reset_type == ICE_RESET_PFR) {
577 vsi->old_ena_tc = vsi->all_enatc;
578 vsi->old_numtc = vsi->all_numtc;
579 } else {
580 ice_remove_q_channels(vsi, true);
581
582 /* for other reset type, do not support channel rebuild
583 * hence reset needed info
584 */
585 vsi->old_ena_tc = 0;
586 vsi->all_enatc = 0;
587 vsi->old_numtc = 0;
588 vsi->all_numtc = 0;
589 vsi->req_txq = 0;
590 vsi->req_rxq = 0;
591 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
592 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
593 }
594 }
595
596 if (vsi->netdev)
597 netif_device_detach(vsi->netdev);
598 skip:
599
600 /* clear SW filtering DB */
601 ice_clear_hw_tbls(hw);
602 /* disable the VSIs and their queues that are not already DOWN */
603 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state);
604 ice_pf_dis_all_vsi(pf, false);
605
606 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
607 ice_ptp_prepare_for_reset(pf, reset_type);
608
609 if (ice_is_feature_supported(pf, ICE_F_GNSS))
610 ice_gnss_exit(pf);
611
612 if (hw->port_info)
613 ice_sched_clear_port(hw->port_info);
614
615 ice_shutdown_all_ctrlq(hw, false);
616
617 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
618 }
619
620 /**
621 * ice_do_reset - Initiate one of many types of resets
622 * @pf: board private structure
623 * @reset_type: reset type requested before this function was called.
624 */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)625 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
626 {
627 struct device *dev = ice_pf_to_dev(pf);
628 struct ice_hw *hw = &pf->hw;
629
630 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
631
632 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
633 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
634 reset_type = ICE_RESET_CORER;
635 }
636
637 ice_prepare_for_reset(pf, reset_type);
638
639 /* trigger the reset */
640 if (ice_reset(hw, reset_type)) {
641 dev_err(dev, "reset %d failed\n", reset_type);
642 set_bit(ICE_RESET_FAILED, pf->state);
643 clear_bit(ICE_RESET_OICR_RECV, pf->state);
644 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
645 clear_bit(ICE_PFR_REQ, pf->state);
646 clear_bit(ICE_CORER_REQ, pf->state);
647 clear_bit(ICE_GLOBR_REQ, pf->state);
648 wake_up(&pf->reset_wait_queue);
649 return;
650 }
651
652 /* PFR is a bit of a special case because it doesn't result in an OICR
653 * interrupt. So for PFR, rebuild after the reset and clear the reset-
654 * associated state bits.
655 */
656 if (reset_type == ICE_RESET_PFR) {
657 pf->pfr_count++;
658 ice_rebuild(pf, reset_type);
659 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
660 clear_bit(ICE_PFR_REQ, pf->state);
661 wake_up(&pf->reset_wait_queue);
662 ice_reset_all_vfs(pf);
663 }
664 }
665
666 /**
667 * ice_reset_subtask - Set up for resetting the device and driver
668 * @pf: board private structure
669 */
ice_reset_subtask(struct ice_pf * pf)670 static void ice_reset_subtask(struct ice_pf *pf)
671 {
672 enum ice_reset_req reset_type = ICE_RESET_INVAL;
673
674 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
675 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
676 * of reset is pending and sets bits in pf->state indicating the reset
677 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
678 * prepare for pending reset if not already (for PF software-initiated
679 * global resets the software should already be prepared for it as
680 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
681 * by firmware or software on other PFs, that bit is not set so prepare
682 * for the reset now), poll for reset done, rebuild and return.
683 */
684 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
685 /* Perform the largest reset requested */
686 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
687 reset_type = ICE_RESET_CORER;
688 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
689 reset_type = ICE_RESET_GLOBR;
690 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
691 reset_type = ICE_RESET_EMPR;
692 /* return if no valid reset type requested */
693 if (reset_type == ICE_RESET_INVAL)
694 return;
695 ice_prepare_for_reset(pf, reset_type);
696
697 /* make sure we are ready to rebuild */
698 if (ice_check_reset(&pf->hw)) {
699 set_bit(ICE_RESET_FAILED, pf->state);
700 } else {
701 /* done with reset. start rebuild */
702 pf->hw.reset_ongoing = false;
703 ice_rebuild(pf, reset_type);
704 /* clear bit to resume normal operations, but
705 * ICE_NEEDS_RESTART bit is set in case rebuild failed
706 */
707 clear_bit(ICE_RESET_OICR_RECV, pf->state);
708 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
709 clear_bit(ICE_PFR_REQ, pf->state);
710 clear_bit(ICE_CORER_REQ, pf->state);
711 clear_bit(ICE_GLOBR_REQ, pf->state);
712 wake_up(&pf->reset_wait_queue);
713 ice_reset_all_vfs(pf);
714 }
715
716 return;
717 }
718
719 /* No pending resets to finish processing. Check for new resets */
720 if (test_bit(ICE_PFR_REQ, pf->state)) {
721 reset_type = ICE_RESET_PFR;
722 if (pf->lag && pf->lag->bonded) {
723 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
724 reset_type = ICE_RESET_CORER;
725 }
726 }
727 if (test_bit(ICE_CORER_REQ, pf->state))
728 reset_type = ICE_RESET_CORER;
729 if (test_bit(ICE_GLOBR_REQ, pf->state))
730 reset_type = ICE_RESET_GLOBR;
731 /* If no valid reset type requested just return */
732 if (reset_type == ICE_RESET_INVAL)
733 return;
734
735 /* reset if not already down or busy */
736 if (!test_bit(ICE_DOWN, pf->state) &&
737 !test_bit(ICE_CFG_BUSY, pf->state)) {
738 ice_do_reset(pf, reset_type);
739 }
740 }
741
742 /**
743 * ice_print_topo_conflict - print topology conflict message
744 * @vsi: the VSI whose topology status is being checked
745 */
ice_print_topo_conflict(struct ice_vsi * vsi)746 static void ice_print_topo_conflict(struct ice_vsi *vsi)
747 {
748 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
749 case ICE_AQ_LINK_TOPO_CONFLICT:
750 case ICE_AQ_LINK_MEDIA_CONFLICT:
751 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
752 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
753 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
754 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
755 break;
756 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
757 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
758 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
759 else
760 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
761 break;
762 default:
763 break;
764 }
765 }
766
767 /**
768 * ice_print_link_msg - print link up or down message
769 * @vsi: the VSI whose link status is being queried
770 * @isup: boolean for if the link is now up or down
771 */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)772 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
773 {
774 struct ice_aqc_get_phy_caps_data *caps;
775 const char *an_advertised;
776 const char *fec_req;
777 const char *speed;
778 const char *fec;
779 const char *fc;
780 const char *an;
781 int status;
782
783 if (!vsi)
784 return;
785
786 if (vsi->current_isup == isup)
787 return;
788
789 vsi->current_isup = isup;
790
791 if (!isup) {
792 netdev_info(vsi->netdev, "NIC Link is Down\n");
793 return;
794 }
795
796 switch (vsi->port_info->phy.link_info.link_speed) {
797 case ICE_AQ_LINK_SPEED_200GB:
798 speed = "200 G";
799 break;
800 case ICE_AQ_LINK_SPEED_100GB:
801 speed = "100 G";
802 break;
803 case ICE_AQ_LINK_SPEED_50GB:
804 speed = "50 G";
805 break;
806 case ICE_AQ_LINK_SPEED_40GB:
807 speed = "40 G";
808 break;
809 case ICE_AQ_LINK_SPEED_25GB:
810 speed = "25 G";
811 break;
812 case ICE_AQ_LINK_SPEED_20GB:
813 speed = "20 G";
814 break;
815 case ICE_AQ_LINK_SPEED_10GB:
816 speed = "10 G";
817 break;
818 case ICE_AQ_LINK_SPEED_5GB:
819 speed = "5 G";
820 break;
821 case ICE_AQ_LINK_SPEED_2500MB:
822 speed = "2.5 G";
823 break;
824 case ICE_AQ_LINK_SPEED_1000MB:
825 speed = "1 G";
826 break;
827 case ICE_AQ_LINK_SPEED_100MB:
828 speed = "100 M";
829 break;
830 default:
831 speed = "Unknown ";
832 break;
833 }
834
835 switch (vsi->port_info->fc.current_mode) {
836 case ICE_FC_FULL:
837 fc = "Rx/Tx";
838 break;
839 case ICE_FC_TX_PAUSE:
840 fc = "Tx";
841 break;
842 case ICE_FC_RX_PAUSE:
843 fc = "Rx";
844 break;
845 case ICE_FC_NONE:
846 fc = "None";
847 break;
848 default:
849 fc = "Unknown";
850 break;
851 }
852
853 /* Get FEC mode based on negotiated link info */
854 switch (vsi->port_info->phy.link_info.fec_info) {
855 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
856 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
857 fec = "RS-FEC";
858 break;
859 case ICE_AQ_LINK_25G_KR_FEC_EN:
860 fec = "FC-FEC/BASE-R";
861 break;
862 default:
863 fec = "NONE";
864 break;
865 }
866
867 /* check if autoneg completed, might be false due to not supported */
868 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
869 an = "True";
870 else
871 an = "False";
872
873 /* Get FEC mode requested based on PHY caps last SW configuration */
874 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
875 if (!caps) {
876 fec_req = "Unknown";
877 an_advertised = "Unknown";
878 goto done;
879 }
880
881 status = ice_aq_get_phy_caps(vsi->port_info, false,
882 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
883 if (status)
884 netdev_info(vsi->netdev, "Get phy capability failed.\n");
885
886 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
887
888 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
889 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
890 fec_req = "RS-FEC";
891 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
892 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
893 fec_req = "FC-FEC/BASE-R";
894 else
895 fec_req = "NONE";
896
897 kfree(caps);
898
899 done:
900 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
901 speed, fec_req, fec, an_advertised, an, fc);
902 ice_print_topo_conflict(vsi);
903 }
904
905 /**
906 * ice_vsi_link_event - update the VSI's netdev
907 * @vsi: the VSI on which the link event occurred
908 * @link_up: whether or not the VSI needs to be set up or down
909 */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)910 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
911 {
912 if (!vsi)
913 return;
914
915 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
916 return;
917
918 if (vsi->type == ICE_VSI_PF) {
919 if (link_up == netif_carrier_ok(vsi->netdev))
920 return;
921
922 if (link_up) {
923 netif_carrier_on(vsi->netdev);
924 netif_tx_wake_all_queues(vsi->netdev);
925 } else {
926 netif_carrier_off(vsi->netdev);
927 netif_tx_stop_all_queues(vsi->netdev);
928 }
929 }
930 }
931
932 /**
933 * ice_set_dflt_mib - send a default config MIB to the FW
934 * @pf: private PF struct
935 *
936 * This function sends a default configuration MIB to the FW.
937 *
938 * If this function errors out at any point, the driver is still able to
939 * function. The main impact is that LFC may not operate as expected.
940 * Therefore an error state in this function should be treated with a DBG
941 * message and continue on with driver rebuild/reenable.
942 */
ice_set_dflt_mib(struct ice_pf * pf)943 static void ice_set_dflt_mib(struct ice_pf *pf)
944 {
945 struct device *dev = ice_pf_to_dev(pf);
946 u8 mib_type, *buf, *lldpmib = NULL;
947 u16 len, typelen, offset = 0;
948 struct ice_lldp_org_tlv *tlv;
949 struct ice_hw *hw = &pf->hw;
950 u32 ouisubtype;
951
952 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
953 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
954 if (!lldpmib) {
955 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
956 __func__);
957 return;
958 }
959
960 /* Add ETS CFG TLV */
961 tlv = (struct ice_lldp_org_tlv *)lldpmib;
962 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
963 ICE_IEEE_ETS_TLV_LEN);
964 tlv->typelen = htons(typelen);
965 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
966 ICE_IEEE_SUBTYPE_ETS_CFG);
967 tlv->ouisubtype = htonl(ouisubtype);
968
969 buf = tlv->tlvinfo;
970 buf[0] = 0;
971
972 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
973 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
974 * Octets 13 - 20 are TSA values - leave as zeros
975 */
976 buf[5] = 0x64;
977 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
978 offset += len + 2;
979 tlv = (struct ice_lldp_org_tlv *)
980 ((char *)tlv + sizeof(tlv->typelen) + len);
981
982 /* Add ETS REC TLV */
983 buf = tlv->tlvinfo;
984 tlv->typelen = htons(typelen);
985
986 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
987 ICE_IEEE_SUBTYPE_ETS_REC);
988 tlv->ouisubtype = htonl(ouisubtype);
989
990 /* First octet of buf is reserved
991 * Octets 1 - 4 map UP to TC - all UPs map to zero
992 * Octets 5 - 12 are BW values - set TC 0 to 100%.
993 * Octets 13 - 20 are TSA value - leave as zeros
994 */
995 buf[5] = 0x64;
996 offset += len + 2;
997 tlv = (struct ice_lldp_org_tlv *)
998 ((char *)tlv + sizeof(tlv->typelen) + len);
999
1000 /* Add PFC CFG TLV */
1001 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1002 ICE_IEEE_PFC_TLV_LEN);
1003 tlv->typelen = htons(typelen);
1004
1005 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1006 ICE_IEEE_SUBTYPE_PFC_CFG);
1007 tlv->ouisubtype = htonl(ouisubtype);
1008
1009 /* Octet 1 left as all zeros - PFC disabled */
1010 buf[0] = 0x08;
1011 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
1012 offset += len + 2;
1013
1014 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1015 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1016
1017 kfree(lldpmib);
1018 }
1019
1020 /**
1021 * ice_check_phy_fw_load - check if PHY FW load failed
1022 * @pf: pointer to PF struct
1023 * @link_cfg_err: bitmap from the link info structure
1024 *
1025 * check if external PHY FW load failed and print an error message if it did
1026 */
ice_check_phy_fw_load(struct ice_pf * pf,u8 link_cfg_err)1027 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1028 {
1029 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1030 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1031 return;
1032 }
1033
1034 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1035 return;
1036
1037 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1038 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1039 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1040 }
1041 }
1042
1043 /**
1044 * ice_check_module_power
1045 * @pf: pointer to PF struct
1046 * @link_cfg_err: bitmap from the link info structure
1047 *
1048 * check module power level returned by a previous call to aq_get_link_info
1049 * and print error messages if module power level is not supported
1050 */
ice_check_module_power(struct ice_pf * pf,u8 link_cfg_err)1051 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1052 {
1053 /* if module power level is supported, clear the flag */
1054 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1055 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1056 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1057 return;
1058 }
1059
1060 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1061 * above block didn't clear this bit, there's nothing to do
1062 */
1063 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1064 return;
1065
1066 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1067 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1068 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1069 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1070 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1071 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1072 }
1073 }
1074
1075 /**
1076 * ice_check_link_cfg_err - check if link configuration failed
1077 * @pf: pointer to the PF struct
1078 * @link_cfg_err: bitmap from the link info structure
1079 *
1080 * print if any link configuration failure happens due to the value in the
1081 * link_cfg_err parameter in the link info structure
1082 */
ice_check_link_cfg_err(struct ice_pf * pf,u8 link_cfg_err)1083 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1084 {
1085 ice_check_module_power(pf, link_cfg_err);
1086 ice_check_phy_fw_load(pf, link_cfg_err);
1087 }
1088
1089 /**
1090 * ice_link_event - process the link event
1091 * @pf: PF that the link event is associated with
1092 * @pi: port_info for the port that the link event is associated with
1093 * @link_up: true if the physical link is up and false if it is down
1094 * @link_speed: current link speed received from the link event
1095 *
1096 * Returns 0 on success and negative on failure
1097 */
1098 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)1099 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1100 u16 link_speed)
1101 {
1102 struct device *dev = ice_pf_to_dev(pf);
1103 struct ice_phy_info *phy_info;
1104 struct ice_vsi *vsi;
1105 u16 old_link_speed;
1106 bool old_link;
1107 int status;
1108
1109 phy_info = &pi->phy;
1110 phy_info->link_info_old = phy_info->link_info;
1111
1112 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1113 old_link_speed = phy_info->link_info_old.link_speed;
1114
1115 /* update the link info structures and re-enable link events,
1116 * don't bail on failure due to other book keeping needed
1117 */
1118 status = ice_update_link_info(pi);
1119 if (status)
1120 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1121 pi->lport, status,
1122 ice_aq_str(pi->hw->adminq.sq_last_status));
1123
1124 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1125
1126 /* Check if the link state is up after updating link info, and treat
1127 * this event as an UP event since the link is actually UP now.
1128 */
1129 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1130 link_up = true;
1131
1132 vsi = ice_get_main_vsi(pf);
1133 if (!vsi || !vsi->port_info)
1134 return -EINVAL;
1135
1136 /* turn off PHY if media was removed */
1137 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1138 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1139 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1140 ice_set_link(vsi, false);
1141 }
1142
1143 /* if the old link up/down and speed is the same as the new */
1144 if (link_up == old_link && link_speed == old_link_speed)
1145 return 0;
1146
1147 ice_ptp_link_change(pf, link_up);
1148
1149 if (ice_is_dcb_active(pf)) {
1150 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1151 ice_dcb_rebuild(pf);
1152 } else {
1153 if (link_up)
1154 ice_set_dflt_mib(pf);
1155 }
1156 ice_vsi_link_event(vsi, link_up);
1157 ice_print_link_msg(vsi, link_up);
1158
1159 ice_vc_notify_link_state(pf);
1160
1161 return 0;
1162 }
1163
1164 /**
1165 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1166 * @pf: board private structure
1167 */
ice_watchdog_subtask(struct ice_pf * pf)1168 static void ice_watchdog_subtask(struct ice_pf *pf)
1169 {
1170 int i;
1171
1172 /* if interface is down do nothing */
1173 if (test_bit(ICE_DOWN, pf->state) ||
1174 test_bit(ICE_CFG_BUSY, pf->state))
1175 return;
1176
1177 /* make sure we don't do these things too often */
1178 if (time_before(jiffies,
1179 pf->serv_tmr_prev + pf->serv_tmr_period))
1180 return;
1181
1182 pf->serv_tmr_prev = jiffies;
1183
1184 /* Update the stats for active netdevs so the network stack
1185 * can look at updated numbers whenever it cares to
1186 */
1187 ice_update_pf_stats(pf);
1188 ice_for_each_vsi(pf, i)
1189 if (pf->vsi[i] && pf->vsi[i]->netdev)
1190 ice_update_vsi_stats(pf->vsi[i]);
1191 }
1192
1193 /**
1194 * ice_init_link_events - enable/initialize link events
1195 * @pi: pointer to the port_info instance
1196 *
1197 * Returns -EIO on failure, 0 on success
1198 */
ice_init_link_events(struct ice_port_info * pi)1199 static int ice_init_link_events(struct ice_port_info *pi)
1200 {
1201 u16 mask;
1202
1203 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1204 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1205 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1206
1207 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1208 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1209 pi->lport);
1210 return -EIO;
1211 }
1212
1213 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1214 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1215 pi->lport);
1216 return -EIO;
1217 }
1218
1219 return 0;
1220 }
1221
1222 /**
1223 * ice_handle_link_event - handle link event via ARQ
1224 * @pf: PF that the link event is associated with
1225 * @event: event structure containing link status info
1226 */
1227 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1228 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1229 {
1230 struct ice_aqc_get_link_status_data *link_data;
1231 struct ice_port_info *port_info;
1232 int status;
1233
1234 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1235 port_info = pf->hw.port_info;
1236 if (!port_info)
1237 return -EINVAL;
1238
1239 status = ice_link_event(pf, port_info,
1240 !!(link_data->link_info & ICE_AQ_LINK_UP),
1241 le16_to_cpu(link_data->link_speed));
1242 if (status)
1243 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1244 status);
1245
1246 return status;
1247 }
1248
1249 /**
1250 * ice_get_fwlog_data - copy the FW log data from ARQ event
1251 * @pf: PF that the FW log event is associated with
1252 * @event: event structure containing FW log data
1253 */
1254 static void
ice_get_fwlog_data(struct ice_pf * pf,struct ice_rq_event_info * event)1255 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event)
1256 {
1257 struct ice_fwlog_data *fwlog;
1258 struct ice_hw *hw = &pf->hw;
1259
1260 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail];
1261
1262 memset(fwlog->data, 0, PAGE_SIZE);
1263 fwlog->data_size = le16_to_cpu(event->desc.datalen);
1264
1265 memcpy(fwlog->data, event->msg_buf, fwlog->data_size);
1266 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size);
1267
1268 if (ice_fwlog_ring_full(&hw->fwlog_ring)) {
1269 /* the rings are full so bump the head to create room */
1270 ice_fwlog_ring_increment(&hw->fwlog_ring.head,
1271 hw->fwlog_ring.size);
1272 }
1273 }
1274
1275 /**
1276 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1277 * @pf: pointer to the PF private structure
1278 * @task: intermediate helper storage and identifier for waiting
1279 * @opcode: the opcode to wait for
1280 *
1281 * Prepares to wait for a specific AdminQ completion event on the ARQ for
1282 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1283 *
1284 * Calls are separated to allow caller registering for event before sending
1285 * the command, which mitigates a race between registering and FW responding.
1286 *
1287 * To obtain only the descriptor contents, pass an task->event with null
1288 * msg_buf. If the complete data buffer is desired, allocate the
1289 * task->event.msg_buf with enough space ahead of time.
1290 */
ice_aq_prep_for_event(struct ice_pf * pf,struct ice_aq_task * task,u16 opcode)1291 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1292 u16 opcode)
1293 {
1294 INIT_HLIST_NODE(&task->entry);
1295 task->opcode = opcode;
1296 task->state = ICE_AQ_TASK_WAITING;
1297
1298 spin_lock_bh(&pf->aq_wait_lock);
1299 hlist_add_head(&task->entry, &pf->aq_wait_list);
1300 spin_unlock_bh(&pf->aq_wait_lock);
1301 }
1302
1303 /**
1304 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1305 * @pf: pointer to the PF private structure
1306 * @task: ptr prepared by ice_aq_prep_for_event()
1307 * @timeout: how long to wait, in jiffies
1308 *
1309 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1310 * current thread will be put to sleep until the specified event occurs or
1311 * until the given timeout is reached.
1312 *
1313 * Returns: zero on success, or a negative error code on failure.
1314 */
ice_aq_wait_for_event(struct ice_pf * pf,struct ice_aq_task * task,unsigned long timeout)1315 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1316 unsigned long timeout)
1317 {
1318 enum ice_aq_task_state *state = &task->state;
1319 struct device *dev = ice_pf_to_dev(pf);
1320 unsigned long start = jiffies;
1321 long ret;
1322 int err;
1323
1324 ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1325 *state != ICE_AQ_TASK_WAITING,
1326 timeout);
1327 switch (*state) {
1328 case ICE_AQ_TASK_NOT_PREPARED:
1329 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1330 err = -EINVAL;
1331 break;
1332 case ICE_AQ_TASK_WAITING:
1333 err = ret < 0 ? ret : -ETIMEDOUT;
1334 break;
1335 case ICE_AQ_TASK_CANCELED:
1336 err = ret < 0 ? ret : -ECANCELED;
1337 break;
1338 case ICE_AQ_TASK_COMPLETE:
1339 err = ret < 0 ? ret : 0;
1340 break;
1341 default:
1342 WARN(1, "Unexpected AdminQ wait task state %u", *state);
1343 err = -EINVAL;
1344 break;
1345 }
1346
1347 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1348 jiffies_to_msecs(jiffies - start),
1349 jiffies_to_msecs(timeout),
1350 task->opcode);
1351
1352 spin_lock_bh(&pf->aq_wait_lock);
1353 hlist_del(&task->entry);
1354 spin_unlock_bh(&pf->aq_wait_lock);
1355
1356 return err;
1357 }
1358
1359 /**
1360 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1361 * @pf: pointer to the PF private structure
1362 * @opcode: the opcode of the event
1363 * @event: the event to check
1364 *
1365 * Loops over the current list of pending threads waiting for an AdminQ event.
1366 * For each matching task, copy the contents of the event into the task
1367 * structure and wake up the thread.
1368 *
1369 * If multiple threads wait for the same opcode, they will all be woken up.
1370 *
1371 * Note that event->msg_buf will only be duplicated if the event has a buffer
1372 * with enough space already allocated. Otherwise, only the descriptor and
1373 * message length will be copied.
1374 *
1375 * Returns: true if an event was found, false otherwise
1376 */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1377 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1378 struct ice_rq_event_info *event)
1379 {
1380 struct ice_rq_event_info *task_ev;
1381 struct ice_aq_task *task;
1382 bool found = false;
1383
1384 spin_lock_bh(&pf->aq_wait_lock);
1385 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1386 if (task->state != ICE_AQ_TASK_WAITING)
1387 continue;
1388 if (task->opcode != opcode)
1389 continue;
1390
1391 task_ev = &task->event;
1392 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1393 task_ev->msg_len = event->msg_len;
1394
1395 /* Only copy the data buffer if a destination was set */
1396 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1397 memcpy(task_ev->msg_buf, event->msg_buf,
1398 event->buf_len);
1399 task_ev->buf_len = event->buf_len;
1400 }
1401
1402 task->state = ICE_AQ_TASK_COMPLETE;
1403 found = true;
1404 }
1405 spin_unlock_bh(&pf->aq_wait_lock);
1406
1407 if (found)
1408 wake_up(&pf->aq_wait_queue);
1409 }
1410
1411 /**
1412 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1413 * @pf: the PF private structure
1414 *
1415 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1416 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1417 */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1418 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1419 {
1420 struct ice_aq_task *task;
1421
1422 spin_lock_bh(&pf->aq_wait_lock);
1423 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1424 task->state = ICE_AQ_TASK_CANCELED;
1425 spin_unlock_bh(&pf->aq_wait_lock);
1426
1427 wake_up(&pf->aq_wait_queue);
1428 }
1429
1430 #define ICE_MBX_OVERFLOW_WATERMARK 64
1431
1432 /**
1433 * __ice_clean_ctrlq - helper function to clean controlq rings
1434 * @pf: ptr to struct ice_pf
1435 * @q_type: specific Control queue type
1436 */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1437 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1438 {
1439 struct device *dev = ice_pf_to_dev(pf);
1440 struct ice_rq_event_info event;
1441 struct ice_hw *hw = &pf->hw;
1442 struct ice_ctl_q_info *cq;
1443 u16 pending, i = 0;
1444 const char *qtype;
1445 u32 oldval, val;
1446
1447 /* Do not clean control queue if/when PF reset fails */
1448 if (test_bit(ICE_RESET_FAILED, pf->state))
1449 return 0;
1450
1451 switch (q_type) {
1452 case ICE_CTL_Q_ADMIN:
1453 cq = &hw->adminq;
1454 qtype = "Admin";
1455 break;
1456 case ICE_CTL_Q_SB:
1457 cq = &hw->sbq;
1458 qtype = "Sideband";
1459 break;
1460 case ICE_CTL_Q_MAILBOX:
1461 cq = &hw->mailboxq;
1462 qtype = "Mailbox";
1463 /* we are going to try to detect a malicious VF, so set the
1464 * state to begin detection
1465 */
1466 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1467 break;
1468 default:
1469 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1470 return 0;
1471 }
1472
1473 /* check for error indications - PF_xx_AxQLEN register layout for
1474 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1475 */
1476 val = rd32(hw, cq->rq.len);
1477 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1478 PF_FW_ARQLEN_ARQCRIT_M)) {
1479 oldval = val;
1480 if (val & PF_FW_ARQLEN_ARQVFE_M)
1481 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1482 qtype);
1483 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1484 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1485 qtype);
1486 }
1487 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1488 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1489 qtype);
1490 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1491 PF_FW_ARQLEN_ARQCRIT_M);
1492 if (oldval != val)
1493 wr32(hw, cq->rq.len, val);
1494 }
1495
1496 val = rd32(hw, cq->sq.len);
1497 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1498 PF_FW_ATQLEN_ATQCRIT_M)) {
1499 oldval = val;
1500 if (val & PF_FW_ATQLEN_ATQVFE_M)
1501 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1502 qtype);
1503 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1504 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1505 qtype);
1506 }
1507 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1508 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1509 qtype);
1510 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1511 PF_FW_ATQLEN_ATQCRIT_M);
1512 if (oldval != val)
1513 wr32(hw, cq->sq.len, val);
1514 }
1515
1516 event.buf_len = cq->rq_buf_size;
1517 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1518 if (!event.msg_buf)
1519 return 0;
1520
1521 do {
1522 struct ice_mbx_data data = {};
1523 u16 opcode;
1524 int ret;
1525
1526 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1527 if (ret == -EALREADY)
1528 break;
1529 if (ret) {
1530 dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1531 ret);
1532 break;
1533 }
1534
1535 opcode = le16_to_cpu(event.desc.opcode);
1536
1537 /* Notify any thread that might be waiting for this event */
1538 ice_aq_check_events(pf, opcode, &event);
1539
1540 switch (opcode) {
1541 case ice_aqc_opc_get_link_status:
1542 if (ice_handle_link_event(pf, &event))
1543 dev_err(dev, "Could not handle link event\n");
1544 break;
1545 case ice_aqc_opc_event_lan_overflow:
1546 ice_vf_lan_overflow_event(pf, &event);
1547 break;
1548 case ice_mbx_opc_send_msg_to_pf:
1549 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) {
1550 ice_vc_process_vf_msg(pf, &event, NULL);
1551 ice_mbx_vf_dec_trig_e830(hw, &event);
1552 } else {
1553 u16 val = hw->mailboxq.num_rq_entries;
1554
1555 data.max_num_msgs_mbx = val;
1556 val = ICE_MBX_OVERFLOW_WATERMARK;
1557 data.async_watermark_val = val;
1558 data.num_msg_proc = i;
1559 data.num_pending_arq = pending;
1560
1561 ice_vc_process_vf_msg(pf, &event, &data);
1562 }
1563 break;
1564 case ice_aqc_opc_fw_logs_event:
1565 ice_get_fwlog_data(pf, &event);
1566 break;
1567 case ice_aqc_opc_lldp_set_mib_change:
1568 ice_dcb_process_lldp_set_mib_change(pf, &event);
1569 break;
1570 default:
1571 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1572 qtype, opcode);
1573 break;
1574 }
1575 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1576
1577 kfree(event.msg_buf);
1578
1579 return pending && (i == ICE_DFLT_IRQ_WORK);
1580 }
1581
1582 /**
1583 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1584 * @hw: pointer to hardware info
1585 * @cq: control queue information
1586 *
1587 * returns true if there are pending messages in a queue, false if there aren't
1588 */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1589 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1590 {
1591 u16 ntu;
1592
1593 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1594 return cq->rq.next_to_clean != ntu;
1595 }
1596
1597 /**
1598 * ice_clean_adminq_subtask - clean the AdminQ rings
1599 * @pf: board private structure
1600 */
ice_clean_adminq_subtask(struct ice_pf * pf)1601 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1602 {
1603 struct ice_hw *hw = &pf->hw;
1604
1605 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1606 return;
1607
1608 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1609 return;
1610
1611 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1612
1613 /* There might be a situation where new messages arrive to a control
1614 * queue between processing the last message and clearing the
1615 * EVENT_PENDING bit. So before exiting, check queue head again (using
1616 * ice_ctrlq_pending) and process new messages if any.
1617 */
1618 if (ice_ctrlq_pending(hw, &hw->adminq))
1619 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1620
1621 ice_flush(hw);
1622 }
1623
1624 /**
1625 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1626 * @pf: board private structure
1627 */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1628 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1629 {
1630 struct ice_hw *hw = &pf->hw;
1631
1632 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1633 return;
1634
1635 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1636 return;
1637
1638 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1639
1640 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1641 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1642
1643 ice_flush(hw);
1644 }
1645
1646 /**
1647 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1648 * @pf: board private structure
1649 */
ice_clean_sbq_subtask(struct ice_pf * pf)1650 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1651 {
1652 struct ice_hw *hw = &pf->hw;
1653
1654 /* if mac_type is not generic, sideband is not supported
1655 * and there's nothing to do here
1656 */
1657 if (!ice_is_generic_mac(hw)) {
1658 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1659 return;
1660 }
1661
1662 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1663 return;
1664
1665 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1666 return;
1667
1668 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1669
1670 if (ice_ctrlq_pending(hw, &hw->sbq))
1671 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1672
1673 ice_flush(hw);
1674 }
1675
1676 /**
1677 * ice_service_task_schedule - schedule the service task to wake up
1678 * @pf: board private structure
1679 *
1680 * If not already scheduled, this puts the task into the work queue.
1681 */
ice_service_task_schedule(struct ice_pf * pf)1682 void ice_service_task_schedule(struct ice_pf *pf)
1683 {
1684 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1685 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1686 !test_bit(ICE_NEEDS_RESTART, pf->state))
1687 queue_work(ice_wq, &pf->serv_task);
1688 }
1689
1690 /**
1691 * ice_service_task_complete - finish up the service task
1692 * @pf: board private structure
1693 */
ice_service_task_complete(struct ice_pf * pf)1694 static void ice_service_task_complete(struct ice_pf *pf)
1695 {
1696 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1697
1698 /* force memory (pf->state) to sync before next service task */
1699 smp_mb__before_atomic();
1700 clear_bit(ICE_SERVICE_SCHED, pf->state);
1701 }
1702
1703 /**
1704 * ice_service_task_stop - stop service task and cancel works
1705 * @pf: board private structure
1706 *
1707 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1708 * 1 otherwise.
1709 */
ice_service_task_stop(struct ice_pf * pf)1710 static int ice_service_task_stop(struct ice_pf *pf)
1711 {
1712 int ret;
1713
1714 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1715
1716 if (pf->serv_tmr.function)
1717 del_timer_sync(&pf->serv_tmr);
1718 if (pf->serv_task.func)
1719 cancel_work_sync(&pf->serv_task);
1720
1721 clear_bit(ICE_SERVICE_SCHED, pf->state);
1722 return ret;
1723 }
1724
1725 /**
1726 * ice_service_task_restart - restart service task and schedule works
1727 * @pf: board private structure
1728 *
1729 * This function is needed for suspend and resume works (e.g WoL scenario)
1730 */
ice_service_task_restart(struct ice_pf * pf)1731 static void ice_service_task_restart(struct ice_pf *pf)
1732 {
1733 clear_bit(ICE_SERVICE_DIS, pf->state);
1734 ice_service_task_schedule(pf);
1735 }
1736
1737 /**
1738 * ice_service_timer - timer callback to schedule service task
1739 * @t: pointer to timer_list
1740 */
ice_service_timer(struct timer_list * t)1741 static void ice_service_timer(struct timer_list *t)
1742 {
1743 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1744
1745 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1746 ice_service_task_schedule(pf);
1747 }
1748
1749 /**
1750 * ice_mdd_maybe_reset_vf - reset VF after MDD event
1751 * @pf: pointer to the PF structure
1752 * @vf: pointer to the VF structure
1753 * @reset_vf_tx: whether Tx MDD has occurred
1754 * @reset_vf_rx: whether Rx MDD has occurred
1755 *
1756 * Since the queue can get stuck on VF MDD events, the PF can be configured to
1757 * automatically reset the VF by enabling the private ethtool flag
1758 * mdd-auto-reset-vf.
1759 */
ice_mdd_maybe_reset_vf(struct ice_pf * pf,struct ice_vf * vf,bool reset_vf_tx,bool reset_vf_rx)1760 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf,
1761 bool reset_vf_tx, bool reset_vf_rx)
1762 {
1763 struct device *dev = ice_pf_to_dev(pf);
1764
1765 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags))
1766 return;
1767
1768 /* VF MDD event counters will be cleared by reset, so print the event
1769 * prior to reset.
1770 */
1771 if (reset_vf_tx)
1772 ice_print_vf_tx_mdd_event(vf);
1773
1774 if (reset_vf_rx)
1775 ice_print_vf_rx_mdd_event(vf);
1776
1777 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n",
1778 pf->hw.pf_id, vf->vf_id);
1779 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1780 }
1781
1782 /**
1783 * ice_handle_mdd_event - handle malicious driver detect event
1784 * @pf: pointer to the PF structure
1785 *
1786 * Called from service task. OICR interrupt handler indicates MDD event.
1787 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1788 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1789 * disable the queue, the PF can be configured to reset the VF using ethtool
1790 * private flag mdd-auto-reset-vf.
1791 */
ice_handle_mdd_event(struct ice_pf * pf)1792 static void ice_handle_mdd_event(struct ice_pf *pf)
1793 {
1794 struct device *dev = ice_pf_to_dev(pf);
1795 struct ice_hw *hw = &pf->hw;
1796 struct ice_vf *vf;
1797 unsigned int bkt;
1798 u32 reg;
1799
1800 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1801 /* Since the VF MDD event logging is rate limited, check if
1802 * there are pending MDD events.
1803 */
1804 ice_print_vfs_mdd_events(pf);
1805 return;
1806 }
1807
1808 /* find what triggered an MDD event */
1809 reg = rd32(hw, GL_MDET_TX_PQM);
1810 if (reg & GL_MDET_TX_PQM_VALID_M) {
1811 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg);
1812 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg);
1813 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg);
1814 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg);
1815
1816 if (netif_msg_tx_err(pf))
1817 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1818 event, queue, pf_num, vf_num);
1819 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1820 }
1821
1822 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1823 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1824 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg);
1825 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg);
1826 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg);
1827 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg);
1828
1829 if (netif_msg_tx_err(pf))
1830 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1831 event, queue, pf_num, vf_num);
1832 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1833 }
1834
1835 reg = rd32(hw, GL_MDET_RX);
1836 if (reg & GL_MDET_RX_VALID_M) {
1837 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg);
1838 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg);
1839 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg);
1840 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg);
1841
1842 if (netif_msg_rx_err(pf))
1843 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1844 event, queue, pf_num, vf_num);
1845 wr32(hw, GL_MDET_RX, 0xffffffff);
1846 }
1847
1848 /* check to see if this PF caused an MDD event */
1849 reg = rd32(hw, PF_MDET_TX_PQM);
1850 if (reg & PF_MDET_TX_PQM_VALID_M) {
1851 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1852 if (netif_msg_tx_err(pf))
1853 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1854 }
1855
1856 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1857 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1858 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1859 if (netif_msg_tx_err(pf))
1860 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1861 }
1862
1863 reg = rd32(hw, PF_MDET_RX);
1864 if (reg & PF_MDET_RX_VALID_M) {
1865 wr32(hw, PF_MDET_RX, 0xFFFF);
1866 if (netif_msg_rx_err(pf))
1867 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1868 }
1869
1870 /* Check to see if one of the VFs caused an MDD event, and then
1871 * increment counters and set print pending
1872 */
1873 mutex_lock(&pf->vfs.table_lock);
1874 ice_for_each_vf(pf, bkt, vf) {
1875 bool reset_vf_tx = false, reset_vf_rx = false;
1876
1877 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1878 if (reg & VP_MDET_TX_PQM_VALID_M) {
1879 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1880 vf->mdd_tx_events.count++;
1881 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1882 if (netif_msg_tx_err(pf))
1883 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1884 vf->vf_id);
1885
1886 reset_vf_tx = true;
1887 }
1888
1889 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1890 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1891 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1892 vf->mdd_tx_events.count++;
1893 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1894 if (netif_msg_tx_err(pf))
1895 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1896 vf->vf_id);
1897
1898 reset_vf_tx = true;
1899 }
1900
1901 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1902 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1903 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1904 vf->mdd_tx_events.count++;
1905 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1906 if (netif_msg_tx_err(pf))
1907 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1908 vf->vf_id);
1909
1910 reset_vf_tx = true;
1911 }
1912
1913 reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1914 if (reg & VP_MDET_RX_VALID_M) {
1915 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1916 vf->mdd_rx_events.count++;
1917 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1918 if (netif_msg_rx_err(pf))
1919 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1920 vf->vf_id);
1921
1922 reset_vf_rx = true;
1923 }
1924
1925 if (reset_vf_tx || reset_vf_rx)
1926 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx,
1927 reset_vf_rx);
1928 }
1929 mutex_unlock(&pf->vfs.table_lock);
1930
1931 ice_print_vfs_mdd_events(pf);
1932 }
1933
1934 /**
1935 * ice_force_phys_link_state - Force the physical link state
1936 * @vsi: VSI to force the physical link state to up/down
1937 * @link_up: true/false indicates to set the physical link to up/down
1938 *
1939 * Force the physical link state by getting the current PHY capabilities from
1940 * hardware and setting the PHY config based on the determined capabilities. If
1941 * link changes a link event will be triggered because both the Enable Automatic
1942 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1943 *
1944 * Returns 0 on success, negative on failure
1945 */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1946 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1947 {
1948 struct ice_aqc_get_phy_caps_data *pcaps;
1949 struct ice_aqc_set_phy_cfg_data *cfg;
1950 struct ice_port_info *pi;
1951 struct device *dev;
1952 int retcode;
1953
1954 if (!vsi || !vsi->port_info || !vsi->back)
1955 return -EINVAL;
1956 if (vsi->type != ICE_VSI_PF)
1957 return 0;
1958
1959 dev = ice_pf_to_dev(vsi->back);
1960
1961 pi = vsi->port_info;
1962
1963 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1964 if (!pcaps)
1965 return -ENOMEM;
1966
1967 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1968 NULL);
1969 if (retcode) {
1970 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1971 vsi->vsi_num, retcode);
1972 retcode = -EIO;
1973 goto out;
1974 }
1975
1976 /* No change in link */
1977 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1978 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1979 goto out;
1980
1981 /* Use the current user PHY configuration. The current user PHY
1982 * configuration is initialized during probe from PHY capabilities
1983 * software mode, and updated on set PHY configuration.
1984 */
1985 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1986 if (!cfg) {
1987 retcode = -ENOMEM;
1988 goto out;
1989 }
1990
1991 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1992 if (link_up)
1993 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1994 else
1995 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1996
1997 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1998 if (retcode) {
1999 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2000 vsi->vsi_num, retcode);
2001 retcode = -EIO;
2002 }
2003
2004 kfree(cfg);
2005 out:
2006 kfree(pcaps);
2007 return retcode;
2008 }
2009
2010 /**
2011 * ice_init_nvm_phy_type - Initialize the NVM PHY type
2012 * @pi: port info structure
2013 *
2014 * Initialize nvm_phy_type_[low|high] for link lenient mode support
2015 */
ice_init_nvm_phy_type(struct ice_port_info * pi)2016 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
2017 {
2018 struct ice_aqc_get_phy_caps_data *pcaps;
2019 struct ice_pf *pf = pi->hw->back;
2020 int err;
2021
2022 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2023 if (!pcaps)
2024 return -ENOMEM;
2025
2026 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
2027 pcaps, NULL);
2028
2029 if (err) {
2030 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2031 goto out;
2032 }
2033
2034 pf->nvm_phy_type_hi = pcaps->phy_type_high;
2035 pf->nvm_phy_type_lo = pcaps->phy_type_low;
2036
2037 out:
2038 kfree(pcaps);
2039 return err;
2040 }
2041
2042 /**
2043 * ice_init_link_dflt_override - Initialize link default override
2044 * @pi: port info structure
2045 *
2046 * Initialize link default override and PHY total port shutdown during probe
2047 */
ice_init_link_dflt_override(struct ice_port_info * pi)2048 static void ice_init_link_dflt_override(struct ice_port_info *pi)
2049 {
2050 struct ice_link_default_override_tlv *ldo;
2051 struct ice_pf *pf = pi->hw->back;
2052
2053 ldo = &pf->link_dflt_override;
2054 if (ice_get_link_default_override(ldo, pi))
2055 return;
2056
2057 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2058 return;
2059
2060 /* Enable Total Port Shutdown (override/replace link-down-on-close
2061 * ethtool private flag) for ports with Port Disable bit set.
2062 */
2063 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2064 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2065 }
2066
2067 /**
2068 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2069 * @pi: port info structure
2070 *
2071 * If default override is enabled, initialize the user PHY cfg speed and FEC
2072 * settings using the default override mask from the NVM.
2073 *
2074 * The PHY should only be configured with the default override settings the
2075 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2076 * is used to indicate that the user PHY cfg default override is initialized
2077 * and the PHY has not been configured with the default override settings. The
2078 * state is set here, and cleared in ice_configure_phy the first time the PHY is
2079 * configured.
2080 *
2081 * This function should be called only if the FW doesn't support default
2082 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2083 */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)2084 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2085 {
2086 struct ice_link_default_override_tlv *ldo;
2087 struct ice_aqc_set_phy_cfg_data *cfg;
2088 struct ice_phy_info *phy = &pi->phy;
2089 struct ice_pf *pf = pi->hw->back;
2090
2091 ldo = &pf->link_dflt_override;
2092
2093 /* If link default override is enabled, use to mask NVM PHY capabilities
2094 * for speed and FEC default configuration.
2095 */
2096 cfg = &phy->curr_user_phy_cfg;
2097
2098 if (ldo->phy_type_low || ldo->phy_type_high) {
2099 cfg->phy_type_low = pf->nvm_phy_type_lo &
2100 cpu_to_le64(ldo->phy_type_low);
2101 cfg->phy_type_high = pf->nvm_phy_type_hi &
2102 cpu_to_le64(ldo->phy_type_high);
2103 }
2104 cfg->link_fec_opt = ldo->fec_options;
2105 phy->curr_user_fec_req = ICE_FEC_AUTO;
2106
2107 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2108 }
2109
2110 /**
2111 * ice_init_phy_user_cfg - Initialize the PHY user configuration
2112 * @pi: port info structure
2113 *
2114 * Initialize the current user PHY configuration, speed, FEC, and FC requested
2115 * mode to default. The PHY defaults are from get PHY capabilities topology
2116 * with media so call when media is first available. An error is returned if
2117 * called when media is not available. The PHY initialization completed state is
2118 * set here.
2119 *
2120 * These configurations are used when setting PHY
2121 * configuration. The user PHY configuration is updated on set PHY
2122 * configuration. Returns 0 on success, negative on failure
2123 */
ice_init_phy_user_cfg(struct ice_port_info * pi)2124 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2125 {
2126 struct ice_aqc_get_phy_caps_data *pcaps;
2127 struct ice_phy_info *phy = &pi->phy;
2128 struct ice_pf *pf = pi->hw->back;
2129 int err;
2130
2131 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2132 return -EIO;
2133
2134 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2135 if (!pcaps)
2136 return -ENOMEM;
2137
2138 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2139 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2140 pcaps, NULL);
2141 else
2142 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2143 pcaps, NULL);
2144 if (err) {
2145 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2146 goto err_out;
2147 }
2148
2149 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2150
2151 /* check if lenient mode is supported and enabled */
2152 if (ice_fw_supports_link_override(pi->hw) &&
2153 !(pcaps->module_compliance_enforcement &
2154 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2155 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2156
2157 /* if the FW supports default PHY configuration mode, then the driver
2158 * does not have to apply link override settings. If not,
2159 * initialize user PHY configuration with link override values
2160 */
2161 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2162 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2163 ice_init_phy_cfg_dflt_override(pi);
2164 goto out;
2165 }
2166 }
2167
2168 /* if link default override is not enabled, set user flow control and
2169 * FEC settings based on what get_phy_caps returned
2170 */
2171 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2172 pcaps->link_fec_options);
2173 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2174
2175 out:
2176 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2177 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2178 err_out:
2179 kfree(pcaps);
2180 return err;
2181 }
2182
2183 /**
2184 * ice_configure_phy - configure PHY
2185 * @vsi: VSI of PHY
2186 *
2187 * Set the PHY configuration. If the current PHY configuration is the same as
2188 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2189 * configure the based get PHY capabilities for topology with media.
2190 */
ice_configure_phy(struct ice_vsi * vsi)2191 static int ice_configure_phy(struct ice_vsi *vsi)
2192 {
2193 struct device *dev = ice_pf_to_dev(vsi->back);
2194 struct ice_port_info *pi = vsi->port_info;
2195 struct ice_aqc_get_phy_caps_data *pcaps;
2196 struct ice_aqc_set_phy_cfg_data *cfg;
2197 struct ice_phy_info *phy = &pi->phy;
2198 struct ice_pf *pf = vsi->back;
2199 int err;
2200
2201 /* Ensure we have media as we cannot configure a medialess port */
2202 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2203 return -ENOMEDIUM;
2204
2205 ice_print_topo_conflict(vsi);
2206
2207 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2208 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2209 return -EPERM;
2210
2211 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2212 return ice_force_phys_link_state(vsi, true);
2213
2214 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2215 if (!pcaps)
2216 return -ENOMEM;
2217
2218 /* Get current PHY config */
2219 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2220 NULL);
2221 if (err) {
2222 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2223 vsi->vsi_num, err);
2224 goto done;
2225 }
2226
2227 /* If PHY enable link is configured and configuration has not changed,
2228 * there's nothing to do
2229 */
2230 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2231 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2232 goto done;
2233
2234 /* Use PHY topology as baseline for configuration */
2235 memset(pcaps, 0, sizeof(*pcaps));
2236 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2237 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2238 pcaps, NULL);
2239 else
2240 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2241 pcaps, NULL);
2242 if (err) {
2243 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2244 vsi->vsi_num, err);
2245 goto done;
2246 }
2247
2248 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2249 if (!cfg) {
2250 err = -ENOMEM;
2251 goto done;
2252 }
2253
2254 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2255
2256 /* Speed - If default override pending, use curr_user_phy_cfg set in
2257 * ice_init_phy_user_cfg_ldo.
2258 */
2259 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2260 vsi->back->state)) {
2261 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2262 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2263 } else {
2264 u64 phy_low = 0, phy_high = 0;
2265
2266 ice_update_phy_type(&phy_low, &phy_high,
2267 pi->phy.curr_user_speed_req);
2268 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2269 cfg->phy_type_high = pcaps->phy_type_high &
2270 cpu_to_le64(phy_high);
2271 }
2272
2273 /* Can't provide what was requested; use PHY capabilities */
2274 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2275 cfg->phy_type_low = pcaps->phy_type_low;
2276 cfg->phy_type_high = pcaps->phy_type_high;
2277 }
2278
2279 /* FEC */
2280 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2281
2282 /* Can't provide what was requested; use PHY capabilities */
2283 if (cfg->link_fec_opt !=
2284 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2285 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2286 cfg->link_fec_opt = pcaps->link_fec_options;
2287 }
2288
2289 /* Flow Control - always supported; no need to check against
2290 * capabilities
2291 */
2292 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2293
2294 /* Enable link and link update */
2295 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2296
2297 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2298 if (err)
2299 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2300 vsi->vsi_num, err);
2301
2302 kfree(cfg);
2303 done:
2304 kfree(pcaps);
2305 return err;
2306 }
2307
2308 /**
2309 * ice_check_media_subtask - Check for media
2310 * @pf: pointer to PF struct
2311 *
2312 * If media is available, then initialize PHY user configuration if it is not
2313 * been, and configure the PHY if the interface is up.
2314 */
ice_check_media_subtask(struct ice_pf * pf)2315 static void ice_check_media_subtask(struct ice_pf *pf)
2316 {
2317 struct ice_port_info *pi;
2318 struct ice_vsi *vsi;
2319 int err;
2320
2321 /* No need to check for media if it's already present */
2322 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2323 return;
2324
2325 vsi = ice_get_main_vsi(pf);
2326 if (!vsi)
2327 return;
2328
2329 /* Refresh link info and check if media is present */
2330 pi = vsi->port_info;
2331 err = ice_update_link_info(pi);
2332 if (err)
2333 return;
2334
2335 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2336
2337 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2338 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2339 ice_init_phy_user_cfg(pi);
2340
2341 /* PHY settings are reset on media insertion, reconfigure
2342 * PHY to preserve settings.
2343 */
2344 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2345 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2346 return;
2347
2348 err = ice_configure_phy(vsi);
2349 if (!err)
2350 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2351
2352 /* A Link Status Event will be generated; the event handler
2353 * will complete bringing the interface up
2354 */
2355 }
2356 }
2357
2358 /**
2359 * ice_service_task - manage and run subtasks
2360 * @work: pointer to work_struct contained by the PF struct
2361 */
ice_service_task(struct work_struct * work)2362 static void ice_service_task(struct work_struct *work)
2363 {
2364 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2365 unsigned long start_time = jiffies;
2366
2367 /* subtasks */
2368
2369 /* process reset requests first */
2370 ice_reset_subtask(pf);
2371
2372 /* bail if a reset/recovery cycle is pending or rebuild failed */
2373 if (ice_is_reset_in_progress(pf->state) ||
2374 test_bit(ICE_SUSPENDED, pf->state) ||
2375 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2376 ice_service_task_complete(pf);
2377 return;
2378 }
2379
2380 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2381 struct iidc_event *event;
2382
2383 event = kzalloc(sizeof(*event), GFP_KERNEL);
2384 if (event) {
2385 set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2386 /* report the entire OICR value to AUX driver */
2387 swap(event->reg, pf->oicr_err_reg);
2388 ice_send_event_to_aux(pf, event);
2389 kfree(event);
2390 }
2391 }
2392
2393 /* unplug aux dev per request, if an unplug request came in
2394 * while processing a plug request, this will handle it
2395 */
2396 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2397 ice_unplug_aux_dev(pf);
2398
2399 /* Plug aux device per request */
2400 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2401 ice_plug_aux_dev(pf);
2402
2403 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2404 struct iidc_event *event;
2405
2406 event = kzalloc(sizeof(*event), GFP_KERNEL);
2407 if (event) {
2408 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2409 ice_send_event_to_aux(pf, event);
2410 kfree(event);
2411 }
2412 }
2413
2414 ice_clean_adminq_subtask(pf);
2415 ice_check_media_subtask(pf);
2416 ice_check_for_hang_subtask(pf);
2417 ice_sync_fltr_subtask(pf);
2418 ice_handle_mdd_event(pf);
2419 ice_watchdog_subtask(pf);
2420
2421 if (ice_is_safe_mode(pf)) {
2422 ice_service_task_complete(pf);
2423 return;
2424 }
2425
2426 ice_process_vflr_event(pf);
2427 ice_clean_mailboxq_subtask(pf);
2428 ice_clean_sbq_subtask(pf);
2429 ice_sync_arfs_fltrs(pf);
2430 ice_flush_fdir_ctx(pf);
2431
2432 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2433 ice_service_task_complete(pf);
2434
2435 /* If the tasks have taken longer than one service timer period
2436 * or there is more work to be done, reset the service timer to
2437 * schedule the service task now.
2438 */
2439 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2440 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2441 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2442 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2443 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2444 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2445 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2446 mod_timer(&pf->serv_tmr, jiffies);
2447 }
2448
2449 /**
2450 * ice_set_ctrlq_len - helper function to set controlq length
2451 * @hw: pointer to the HW instance
2452 */
ice_set_ctrlq_len(struct ice_hw * hw)2453 static void ice_set_ctrlq_len(struct ice_hw *hw)
2454 {
2455 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2456 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2457 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2458 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2459 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2460 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2461 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2462 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2463 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2464 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2465 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2466 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2467 }
2468
2469 /**
2470 * ice_schedule_reset - schedule a reset
2471 * @pf: board private structure
2472 * @reset: reset being requested
2473 */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2474 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2475 {
2476 struct device *dev = ice_pf_to_dev(pf);
2477
2478 /* bail out if earlier reset has failed */
2479 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2480 dev_dbg(dev, "earlier reset has failed\n");
2481 return -EIO;
2482 }
2483 /* bail if reset/recovery already in progress */
2484 if (ice_is_reset_in_progress(pf->state)) {
2485 dev_dbg(dev, "Reset already in progress\n");
2486 return -EBUSY;
2487 }
2488
2489 switch (reset) {
2490 case ICE_RESET_PFR:
2491 set_bit(ICE_PFR_REQ, pf->state);
2492 break;
2493 case ICE_RESET_CORER:
2494 set_bit(ICE_CORER_REQ, pf->state);
2495 break;
2496 case ICE_RESET_GLOBR:
2497 set_bit(ICE_GLOBR_REQ, pf->state);
2498 break;
2499 default:
2500 return -EINVAL;
2501 }
2502
2503 ice_service_task_schedule(pf);
2504 return 0;
2505 }
2506
2507 /**
2508 * ice_irq_affinity_notify - Callback for affinity changes
2509 * @notify: context as to what irq was changed
2510 * @mask: the new affinity mask
2511 *
2512 * This is a callback function used by the irq_set_affinity_notifier function
2513 * so that we may register to receive changes to the irq affinity masks.
2514 */
2515 static void
ice_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)2516 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2517 const cpumask_t *mask)
2518 {
2519 struct ice_q_vector *q_vector =
2520 container_of(notify, struct ice_q_vector, affinity_notify);
2521
2522 cpumask_copy(&q_vector->affinity_mask, mask);
2523 }
2524
2525 /**
2526 * ice_irq_affinity_release - Callback for affinity notifier release
2527 * @ref: internal core kernel usage
2528 *
2529 * This is a callback function used by the irq_set_affinity_notifier function
2530 * to inform the current notification subscriber that they will no longer
2531 * receive notifications.
2532 */
ice_irq_affinity_release(struct kref __always_unused * ref)2533 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2534
2535 /**
2536 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2537 * @vsi: the VSI being configured
2538 */
ice_vsi_ena_irq(struct ice_vsi * vsi)2539 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2540 {
2541 struct ice_hw *hw = &vsi->back->hw;
2542 int i;
2543
2544 ice_for_each_q_vector(vsi, i)
2545 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2546
2547 ice_flush(hw);
2548 return 0;
2549 }
2550
2551 /**
2552 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2553 * @vsi: the VSI being configured
2554 * @basename: name for the vector
2555 */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2556 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2557 {
2558 int q_vectors = vsi->num_q_vectors;
2559 struct ice_pf *pf = vsi->back;
2560 struct device *dev;
2561 int rx_int_idx = 0;
2562 int tx_int_idx = 0;
2563 int vector, err;
2564 int irq_num;
2565
2566 dev = ice_pf_to_dev(pf);
2567 for (vector = 0; vector < q_vectors; vector++) {
2568 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2569
2570 irq_num = q_vector->irq.virq;
2571
2572 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2573 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2574 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2575 tx_int_idx++;
2576 } else if (q_vector->rx.rx_ring) {
2577 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2578 "%s-%s-%d", basename, "rx", rx_int_idx++);
2579 } else if (q_vector->tx.tx_ring) {
2580 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2581 "%s-%s-%d", basename, "tx", tx_int_idx++);
2582 } else {
2583 /* skip this unused q_vector */
2584 continue;
2585 }
2586 if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2587 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2588 IRQF_SHARED, q_vector->name,
2589 q_vector);
2590 else
2591 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2592 0, q_vector->name, q_vector);
2593 if (err) {
2594 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2595 err);
2596 goto free_q_irqs;
2597 }
2598
2599 /* register for affinity change notifications */
2600 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2601 struct irq_affinity_notify *affinity_notify;
2602
2603 affinity_notify = &q_vector->affinity_notify;
2604 affinity_notify->notify = ice_irq_affinity_notify;
2605 affinity_notify->release = ice_irq_affinity_release;
2606 irq_set_affinity_notifier(irq_num, affinity_notify);
2607 }
2608
2609 /* assign the mask for this irq */
2610 irq_update_affinity_hint(irq_num, &q_vector->affinity_mask);
2611 }
2612
2613 err = ice_set_cpu_rx_rmap(vsi);
2614 if (err) {
2615 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2616 vsi->vsi_num, ERR_PTR(err));
2617 goto free_q_irqs;
2618 }
2619
2620 vsi->irqs_ready = true;
2621 return 0;
2622
2623 free_q_irqs:
2624 while (vector--) {
2625 irq_num = vsi->q_vectors[vector]->irq.virq;
2626 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2627 irq_set_affinity_notifier(irq_num, NULL);
2628 irq_update_affinity_hint(irq_num, NULL);
2629 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2630 }
2631 return err;
2632 }
2633
2634 /**
2635 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2636 * @vsi: VSI to setup Tx rings used by XDP
2637 *
2638 * Return 0 on success and negative value on error
2639 */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2640 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2641 {
2642 struct device *dev = ice_pf_to_dev(vsi->back);
2643 struct ice_tx_desc *tx_desc;
2644 int i, j;
2645
2646 ice_for_each_xdp_txq(vsi, i) {
2647 u16 xdp_q_idx = vsi->alloc_txq + i;
2648 struct ice_ring_stats *ring_stats;
2649 struct ice_tx_ring *xdp_ring;
2650
2651 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2652 if (!xdp_ring)
2653 goto free_xdp_rings;
2654
2655 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2656 if (!ring_stats) {
2657 ice_free_tx_ring(xdp_ring);
2658 goto free_xdp_rings;
2659 }
2660
2661 xdp_ring->ring_stats = ring_stats;
2662 xdp_ring->q_index = xdp_q_idx;
2663 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2664 xdp_ring->vsi = vsi;
2665 xdp_ring->netdev = NULL;
2666 xdp_ring->dev = dev;
2667 xdp_ring->count = vsi->num_tx_desc;
2668 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2669 if (ice_setup_tx_ring(xdp_ring))
2670 goto free_xdp_rings;
2671 ice_set_ring_xdp(xdp_ring);
2672 spin_lock_init(&xdp_ring->tx_lock);
2673 for (j = 0; j < xdp_ring->count; j++) {
2674 tx_desc = ICE_TX_DESC(xdp_ring, j);
2675 tx_desc->cmd_type_offset_bsz = 0;
2676 }
2677 }
2678
2679 return 0;
2680
2681 free_xdp_rings:
2682 for (; i >= 0; i--) {
2683 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2684 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2685 vsi->xdp_rings[i]->ring_stats = NULL;
2686 ice_free_tx_ring(vsi->xdp_rings[i]);
2687 }
2688 }
2689 return -ENOMEM;
2690 }
2691
2692 /**
2693 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2694 * @vsi: VSI to set the bpf prog on
2695 * @prog: the bpf prog pointer
2696 */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2697 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2698 {
2699 struct bpf_prog *old_prog;
2700 int i;
2701
2702 old_prog = xchg(&vsi->xdp_prog, prog);
2703 ice_for_each_rxq(vsi, i)
2704 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2705
2706 if (old_prog)
2707 bpf_prog_put(old_prog);
2708 }
2709
ice_xdp_ring_from_qid(struct ice_vsi * vsi,int qid)2710 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid)
2711 {
2712 struct ice_q_vector *q_vector;
2713 struct ice_tx_ring *ring;
2714
2715 if (static_key_enabled(&ice_xdp_locking_key))
2716 return vsi->xdp_rings[qid % vsi->num_xdp_txq];
2717
2718 q_vector = vsi->rx_rings[qid]->q_vector;
2719 ice_for_each_tx_ring(ring, q_vector->tx)
2720 if (ice_ring_is_xdp(ring))
2721 return ring;
2722
2723 return NULL;
2724 }
2725
2726 /**
2727 * ice_map_xdp_rings - Map XDP rings to interrupt vectors
2728 * @vsi: the VSI with XDP rings being configured
2729 *
2730 * Map XDP rings to interrupt vectors and perform the configuration steps
2731 * dependent on the mapping.
2732 */
ice_map_xdp_rings(struct ice_vsi * vsi)2733 void ice_map_xdp_rings(struct ice_vsi *vsi)
2734 {
2735 int xdp_rings_rem = vsi->num_xdp_txq;
2736 int v_idx, q_idx;
2737
2738 /* follow the logic from ice_vsi_map_rings_to_vectors */
2739 ice_for_each_q_vector(vsi, v_idx) {
2740 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2741 int xdp_rings_per_v, q_id, q_base;
2742
2743 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2744 vsi->num_q_vectors - v_idx);
2745 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2746
2747 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2748 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2749
2750 xdp_ring->q_vector = q_vector;
2751 xdp_ring->next = q_vector->tx.tx_ring;
2752 q_vector->tx.tx_ring = xdp_ring;
2753 }
2754 xdp_rings_rem -= xdp_rings_per_v;
2755 }
2756
2757 ice_for_each_rxq(vsi, q_idx) {
2758 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi,
2759 q_idx);
2760 ice_tx_xsk_pool(vsi, q_idx);
2761 }
2762 }
2763
2764 /**
2765 * ice_unmap_xdp_rings - Unmap XDP rings from interrupt vectors
2766 * @vsi: the VSI with XDP rings being unmapped
2767 */
ice_unmap_xdp_rings(struct ice_vsi * vsi)2768 static void ice_unmap_xdp_rings(struct ice_vsi *vsi)
2769 {
2770 int v_idx;
2771
2772 ice_for_each_q_vector(vsi, v_idx) {
2773 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2774 struct ice_tx_ring *ring;
2775
2776 ice_for_each_tx_ring(ring, q_vector->tx)
2777 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2778 break;
2779
2780 /* restore the value of last node prior to XDP setup */
2781 q_vector->tx.tx_ring = ring;
2782 }
2783 }
2784
2785 /**
2786 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2787 * @vsi: VSI to bring up Tx rings used by XDP
2788 * @prog: bpf program that will be assigned to VSI
2789 * @cfg_type: create from scratch or restore the existing configuration
2790 *
2791 * Return 0 on success and negative value on error
2792 */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog,enum ice_xdp_cfg cfg_type)2793 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog,
2794 enum ice_xdp_cfg cfg_type)
2795 {
2796 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2797 struct ice_pf *pf = vsi->back;
2798 struct ice_qs_cfg xdp_qs_cfg = {
2799 .qs_mutex = &pf->avail_q_mutex,
2800 .pf_map = pf->avail_txqs,
2801 .pf_map_size = pf->max_pf_txqs,
2802 .q_count = vsi->num_xdp_txq,
2803 .scatter_count = ICE_MAX_SCATTER_TXQS,
2804 .vsi_map = vsi->txq_map,
2805 .vsi_map_offset = vsi->alloc_txq,
2806 .mapping_mode = ICE_VSI_MAP_CONTIG
2807 };
2808 struct device *dev;
2809 int status, i;
2810
2811 dev = ice_pf_to_dev(pf);
2812 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2813 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2814 if (!vsi->xdp_rings)
2815 return -ENOMEM;
2816
2817 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2818 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2819 goto err_map_xdp;
2820
2821 if (static_key_enabled(&ice_xdp_locking_key))
2822 netdev_warn(vsi->netdev,
2823 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2824
2825 if (ice_xdp_alloc_setup_rings(vsi))
2826 goto clear_xdp_rings;
2827
2828 /* omit the scheduler update if in reset path; XDP queues will be
2829 * taken into account at the end of ice_vsi_rebuild, where
2830 * ice_cfg_vsi_lan is being called
2831 */
2832 if (cfg_type == ICE_XDP_CFG_PART)
2833 return 0;
2834
2835 ice_map_xdp_rings(vsi);
2836
2837 /* tell the Tx scheduler that right now we have
2838 * additional queues
2839 */
2840 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2841 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2842
2843 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2844 max_txqs);
2845 if (status) {
2846 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2847 status);
2848 goto unmap_xdp_rings;
2849 }
2850
2851 /* assign the prog only when it's not already present on VSI;
2852 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2853 * VSI rebuild that happens under ethtool -L can expose us to
2854 * the bpf_prog refcount issues as we would be swapping same
2855 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2856 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2857 * this is not harmful as dev_xdp_install bumps the refcount
2858 * before calling the op exposed by the driver;
2859 */
2860 if (!ice_is_xdp_ena_vsi(vsi))
2861 ice_vsi_assign_bpf_prog(vsi, prog);
2862
2863 return 0;
2864 unmap_xdp_rings:
2865 ice_unmap_xdp_rings(vsi);
2866 clear_xdp_rings:
2867 ice_for_each_xdp_txq(vsi, i)
2868 if (vsi->xdp_rings[i]) {
2869 kfree_rcu(vsi->xdp_rings[i], rcu);
2870 vsi->xdp_rings[i] = NULL;
2871 }
2872
2873 err_map_xdp:
2874 mutex_lock(&pf->avail_q_mutex);
2875 ice_for_each_xdp_txq(vsi, i) {
2876 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2877 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2878 }
2879 mutex_unlock(&pf->avail_q_mutex);
2880
2881 devm_kfree(dev, vsi->xdp_rings);
2882 vsi->xdp_rings = NULL;
2883
2884 return -ENOMEM;
2885 }
2886
2887 /**
2888 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2889 * @vsi: VSI to remove XDP rings
2890 * @cfg_type: disable XDP permanently or allow it to be restored later
2891 *
2892 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2893 * resources
2894 */
ice_destroy_xdp_rings(struct ice_vsi * vsi,enum ice_xdp_cfg cfg_type)2895 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type)
2896 {
2897 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2898 struct ice_pf *pf = vsi->back;
2899 int i;
2900
2901 /* q_vectors are freed in reset path so there's no point in detaching
2902 * rings
2903 */
2904 if (cfg_type == ICE_XDP_CFG_PART)
2905 goto free_qmap;
2906
2907 ice_unmap_xdp_rings(vsi);
2908
2909 free_qmap:
2910 mutex_lock(&pf->avail_q_mutex);
2911 ice_for_each_xdp_txq(vsi, i) {
2912 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2913 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2914 }
2915 mutex_unlock(&pf->avail_q_mutex);
2916
2917 ice_for_each_xdp_txq(vsi, i)
2918 if (vsi->xdp_rings[i]) {
2919 if (vsi->xdp_rings[i]->desc) {
2920 synchronize_rcu();
2921 ice_free_tx_ring(vsi->xdp_rings[i]);
2922 }
2923 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2924 vsi->xdp_rings[i]->ring_stats = NULL;
2925 kfree_rcu(vsi->xdp_rings[i], rcu);
2926 vsi->xdp_rings[i] = NULL;
2927 }
2928
2929 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2930 vsi->xdp_rings = NULL;
2931
2932 if (static_key_enabled(&ice_xdp_locking_key))
2933 static_branch_dec(&ice_xdp_locking_key);
2934
2935 if (cfg_type == ICE_XDP_CFG_PART)
2936 return 0;
2937
2938 ice_vsi_assign_bpf_prog(vsi, NULL);
2939
2940 /* notify Tx scheduler that we destroyed XDP queues and bring
2941 * back the old number of child nodes
2942 */
2943 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2944 max_txqs[i] = vsi->num_txq;
2945
2946 /* change number of XDP Tx queues to 0 */
2947 vsi->num_xdp_txq = 0;
2948
2949 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2950 max_txqs);
2951 }
2952
2953 /**
2954 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2955 * @vsi: VSI to schedule napi on
2956 */
ice_vsi_rx_napi_schedule(struct ice_vsi * vsi)2957 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2958 {
2959 int i;
2960
2961 ice_for_each_rxq(vsi, i) {
2962 struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2963
2964 if (READ_ONCE(rx_ring->xsk_pool))
2965 napi_schedule(&rx_ring->q_vector->napi);
2966 }
2967 }
2968
2969 /**
2970 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2971 * @vsi: VSI to determine the count of XDP Tx qs
2972 *
2973 * returns 0 if Tx qs count is higher than at least half of CPU count,
2974 * -ENOMEM otherwise
2975 */
ice_vsi_determine_xdp_res(struct ice_vsi * vsi)2976 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2977 {
2978 u16 avail = ice_get_avail_txq_count(vsi->back);
2979 u16 cpus = num_possible_cpus();
2980
2981 if (avail < cpus / 2)
2982 return -ENOMEM;
2983
2984 if (vsi->type == ICE_VSI_SF)
2985 avail = vsi->alloc_txq;
2986
2987 vsi->num_xdp_txq = min_t(u16, avail, cpus);
2988
2989 if (vsi->num_xdp_txq < cpus)
2990 static_branch_inc(&ice_xdp_locking_key);
2991
2992 return 0;
2993 }
2994
2995 /**
2996 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2997 * @vsi: Pointer to VSI structure
2998 */
ice_max_xdp_frame_size(struct ice_vsi * vsi)2999 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
3000 {
3001 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
3002 return ICE_RXBUF_1664;
3003 else
3004 return ICE_RXBUF_3072;
3005 }
3006
3007 /**
3008 * ice_xdp_setup_prog - Add or remove XDP eBPF program
3009 * @vsi: VSI to setup XDP for
3010 * @prog: XDP program
3011 * @extack: netlink extended ack
3012 */
3013 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)3014 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
3015 struct netlink_ext_ack *extack)
3016 {
3017 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
3018 int ret = 0, xdp_ring_err = 0;
3019 bool if_running;
3020
3021 if (prog && !prog->aux->xdp_has_frags) {
3022 if (frame_size > ice_max_xdp_frame_size(vsi)) {
3023 NL_SET_ERR_MSG_MOD(extack,
3024 "MTU is too large for linear frames and XDP prog does not support frags");
3025 return -EOPNOTSUPP;
3026 }
3027 }
3028
3029 /* hot swap progs and avoid toggling link */
3030 if (ice_is_xdp_ena_vsi(vsi) == !!prog ||
3031 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) {
3032 ice_vsi_assign_bpf_prog(vsi, prog);
3033 return 0;
3034 }
3035
3036 if_running = netif_running(vsi->netdev) &&
3037 !test_and_set_bit(ICE_VSI_DOWN, vsi->state);
3038
3039 /* need to stop netdev while setting up the program for Rx rings */
3040 if (if_running) {
3041 ret = ice_down(vsi);
3042 if (ret) {
3043 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
3044 return ret;
3045 }
3046 }
3047
3048 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
3049 xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
3050 if (xdp_ring_err) {
3051 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
3052 goto resume_if;
3053 } else {
3054 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog,
3055 ICE_XDP_CFG_FULL);
3056 if (xdp_ring_err) {
3057 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
3058 goto resume_if;
3059 }
3060 }
3061 xdp_features_set_redirect_target(vsi->netdev, true);
3062 /* reallocate Rx queues that are used for zero-copy */
3063 xdp_ring_err = ice_realloc_zc_buf(vsi, true);
3064 if (xdp_ring_err)
3065 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
3066 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
3067 xdp_features_clear_redirect_target(vsi->netdev);
3068 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL);
3069 if (xdp_ring_err)
3070 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
3071 /* reallocate Rx queues that were used for zero-copy */
3072 xdp_ring_err = ice_realloc_zc_buf(vsi, false);
3073 if (xdp_ring_err)
3074 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
3075 }
3076
3077 resume_if:
3078 if (if_running)
3079 ret = ice_up(vsi);
3080
3081 if (!ret && prog)
3082 ice_vsi_rx_napi_schedule(vsi);
3083
3084 return (ret || xdp_ring_err) ? -ENOMEM : 0;
3085 }
3086
3087 /**
3088 * ice_xdp_safe_mode - XDP handler for safe mode
3089 * @dev: netdevice
3090 * @xdp: XDP command
3091 */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)3092 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
3093 struct netdev_bpf *xdp)
3094 {
3095 NL_SET_ERR_MSG_MOD(xdp->extack,
3096 "Please provide working DDP firmware package in order to use XDP\n"
3097 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3098 return -EOPNOTSUPP;
3099 }
3100
3101 /**
3102 * ice_xdp - implements XDP handler
3103 * @dev: netdevice
3104 * @xdp: XDP command
3105 */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)3106 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3107 {
3108 struct ice_netdev_priv *np = netdev_priv(dev);
3109 struct ice_vsi *vsi = np->vsi;
3110 int ret;
3111
3112 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) {
3113 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI");
3114 return -EINVAL;
3115 }
3116
3117 mutex_lock(&vsi->xdp_state_lock);
3118
3119 switch (xdp->command) {
3120 case XDP_SETUP_PROG:
3121 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3122 break;
3123 case XDP_SETUP_XSK_POOL:
3124 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id);
3125 break;
3126 default:
3127 ret = -EINVAL;
3128 }
3129
3130 mutex_unlock(&vsi->xdp_state_lock);
3131 return ret;
3132 }
3133
3134 /**
3135 * ice_ena_misc_vector - enable the non-queue interrupts
3136 * @pf: board private structure
3137 */
ice_ena_misc_vector(struct ice_pf * pf)3138 static void ice_ena_misc_vector(struct ice_pf *pf)
3139 {
3140 struct ice_hw *hw = &pf->hw;
3141 u32 pf_intr_start_offset;
3142 u32 val;
3143
3144 /* Disable anti-spoof detection interrupt to prevent spurious event
3145 * interrupts during a function reset. Anti-spoof functionally is
3146 * still supported.
3147 */
3148 val = rd32(hw, GL_MDCK_TX_TDPU);
3149 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3150 wr32(hw, GL_MDCK_TX_TDPU, val);
3151
3152 /* clear things first */
3153 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
3154 rd32(hw, PFINT_OICR); /* read to clear */
3155
3156 val = (PFINT_OICR_ECC_ERR_M |
3157 PFINT_OICR_MAL_DETECT_M |
3158 PFINT_OICR_GRST_M |
3159 PFINT_OICR_PCI_EXCEPTION_M |
3160 PFINT_OICR_VFLR_M |
3161 PFINT_OICR_HMC_ERR_M |
3162 PFINT_OICR_PE_PUSH_M |
3163 PFINT_OICR_PE_CRITERR_M);
3164
3165 wr32(hw, PFINT_OICR_ENA, val);
3166
3167 /* SW_ITR_IDX = 0, but don't change INTENA */
3168 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3169 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3170
3171 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3172 return;
3173 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3174 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3175 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3176 }
3177
3178 /**
3179 * ice_ll_ts_intr - ll_ts interrupt handler
3180 * @irq: interrupt number
3181 * @data: pointer to a q_vector
3182 */
ice_ll_ts_intr(int __always_unused irq,void * data)3183 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data)
3184 {
3185 struct ice_pf *pf = data;
3186 u32 pf_intr_start_offset;
3187 struct ice_ptp_tx *tx;
3188 unsigned long flags;
3189 struct ice_hw *hw;
3190 u32 val;
3191 u8 idx;
3192
3193 hw = &pf->hw;
3194 tx = &pf->ptp.port.tx;
3195 spin_lock_irqsave(&tx->lock, flags);
3196 if (tx->init) {
3197 ice_ptp_complete_tx_single_tstamp(tx);
3198
3199 idx = find_next_bit_wrap(tx->in_use, tx->len,
3200 tx->last_ll_ts_idx_read + 1);
3201 if (idx != tx->len)
3202 ice_ptp_req_tx_single_tstamp(tx, idx);
3203 }
3204 spin_unlock_irqrestore(&tx->lock, flags);
3205
3206 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
3207 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
3208 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3209 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3210 val);
3211
3212 return IRQ_HANDLED;
3213 }
3214
3215 /**
3216 * ice_misc_intr - misc interrupt handler
3217 * @irq: interrupt number
3218 * @data: pointer to a q_vector
3219 */
ice_misc_intr(int __always_unused irq,void * data)3220 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3221 {
3222 struct ice_pf *pf = (struct ice_pf *)data;
3223 irqreturn_t ret = IRQ_HANDLED;
3224 struct ice_hw *hw = &pf->hw;
3225 struct device *dev;
3226 u32 oicr, ena_mask;
3227
3228 dev = ice_pf_to_dev(pf);
3229 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3230 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3231 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3232
3233 oicr = rd32(hw, PFINT_OICR);
3234 ena_mask = rd32(hw, PFINT_OICR_ENA);
3235
3236 if (oicr & PFINT_OICR_SWINT_M) {
3237 ena_mask &= ~PFINT_OICR_SWINT_M;
3238 pf->sw_int_count++;
3239 }
3240
3241 if (oicr & PFINT_OICR_MAL_DETECT_M) {
3242 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3243 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3244 }
3245 if (oicr & PFINT_OICR_VFLR_M) {
3246 /* disable any further VFLR event notifications */
3247 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3248 u32 reg = rd32(hw, PFINT_OICR_ENA);
3249
3250 reg &= ~PFINT_OICR_VFLR_M;
3251 wr32(hw, PFINT_OICR_ENA, reg);
3252 } else {
3253 ena_mask &= ~PFINT_OICR_VFLR_M;
3254 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3255 }
3256 }
3257
3258 if (oicr & PFINT_OICR_GRST_M) {
3259 u32 reset;
3260
3261 /* we have a reset warning */
3262 ena_mask &= ~PFINT_OICR_GRST_M;
3263 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M,
3264 rd32(hw, GLGEN_RSTAT));
3265
3266 if (reset == ICE_RESET_CORER)
3267 pf->corer_count++;
3268 else if (reset == ICE_RESET_GLOBR)
3269 pf->globr_count++;
3270 else if (reset == ICE_RESET_EMPR)
3271 pf->empr_count++;
3272 else
3273 dev_dbg(dev, "Invalid reset type %d\n", reset);
3274
3275 /* If a reset cycle isn't already in progress, we set a bit in
3276 * pf->state so that the service task can start a reset/rebuild.
3277 */
3278 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3279 if (reset == ICE_RESET_CORER)
3280 set_bit(ICE_CORER_RECV, pf->state);
3281 else if (reset == ICE_RESET_GLOBR)
3282 set_bit(ICE_GLOBR_RECV, pf->state);
3283 else
3284 set_bit(ICE_EMPR_RECV, pf->state);
3285
3286 /* There are couple of different bits at play here.
3287 * hw->reset_ongoing indicates whether the hardware is
3288 * in reset. This is set to true when a reset interrupt
3289 * is received and set back to false after the driver
3290 * has determined that the hardware is out of reset.
3291 *
3292 * ICE_RESET_OICR_RECV in pf->state indicates
3293 * that a post reset rebuild is required before the
3294 * driver is operational again. This is set above.
3295 *
3296 * As this is the start of the reset/rebuild cycle, set
3297 * both to indicate that.
3298 */
3299 hw->reset_ongoing = true;
3300 }
3301 }
3302
3303 if (oicr & PFINT_OICR_TSYN_TX_M) {
3304 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3305 if (ice_pf_state_is_nominal(pf) &&
3306 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) {
3307 struct ice_ptp_tx *tx = &pf->ptp.port.tx;
3308 unsigned long flags;
3309 u8 idx;
3310
3311 spin_lock_irqsave(&tx->lock, flags);
3312 idx = find_next_bit_wrap(tx->in_use, tx->len,
3313 tx->last_ll_ts_idx_read + 1);
3314 if (idx != tx->len)
3315 ice_ptp_req_tx_single_tstamp(tx, idx);
3316 spin_unlock_irqrestore(&tx->lock, flags);
3317 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) {
3318 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread);
3319 ret = IRQ_WAKE_THREAD;
3320 }
3321 }
3322
3323 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3324 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3325 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3326
3327 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3328
3329 if (ice_pf_src_tmr_owned(pf)) {
3330 /* Save EVENTs from GLTSYN register */
3331 pf->ptp.ext_ts_irq |= gltsyn_stat &
3332 (GLTSYN_STAT_EVENT0_M |
3333 GLTSYN_STAT_EVENT1_M |
3334 GLTSYN_STAT_EVENT2_M);
3335
3336 ice_ptp_extts_event(pf);
3337 }
3338 }
3339
3340 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3341 if (oicr & ICE_AUX_CRIT_ERR) {
3342 pf->oicr_err_reg |= oicr;
3343 set_bit(ICE_AUX_ERR_PENDING, pf->state);
3344 ena_mask &= ~ICE_AUX_CRIT_ERR;
3345 }
3346
3347 /* Report any remaining unexpected interrupts */
3348 oicr &= ena_mask;
3349 if (oicr) {
3350 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3351 /* If a critical error is pending there is no choice but to
3352 * reset the device.
3353 */
3354 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3355 PFINT_OICR_ECC_ERR_M)) {
3356 set_bit(ICE_PFR_REQ, pf->state);
3357 }
3358 }
3359 ice_service_task_schedule(pf);
3360 if (ret == IRQ_HANDLED)
3361 ice_irq_dynamic_ena(hw, NULL, NULL);
3362
3363 return ret;
3364 }
3365
3366 /**
3367 * ice_misc_intr_thread_fn - misc interrupt thread function
3368 * @irq: interrupt number
3369 * @data: pointer to a q_vector
3370 */
ice_misc_intr_thread_fn(int __always_unused irq,void * data)3371 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3372 {
3373 struct ice_pf *pf = data;
3374 struct ice_hw *hw;
3375
3376 hw = &pf->hw;
3377
3378 if (ice_is_reset_in_progress(pf->state))
3379 goto skip_irq;
3380
3381 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3382 /* Process outstanding Tx timestamps. If there is more work,
3383 * re-arm the interrupt to trigger again.
3384 */
3385 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3386 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3387 ice_flush(hw);
3388 }
3389 }
3390
3391 skip_irq:
3392 ice_irq_dynamic_ena(hw, NULL, NULL);
3393
3394 return IRQ_HANDLED;
3395 }
3396
3397 /**
3398 * ice_dis_ctrlq_interrupts - disable control queue interrupts
3399 * @hw: pointer to HW structure
3400 */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)3401 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3402 {
3403 /* disable Admin queue Interrupt causes */
3404 wr32(hw, PFINT_FW_CTL,
3405 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3406
3407 /* disable Mailbox queue Interrupt causes */
3408 wr32(hw, PFINT_MBX_CTL,
3409 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3410
3411 wr32(hw, PFINT_SB_CTL,
3412 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3413
3414 /* disable Control queue Interrupt causes */
3415 wr32(hw, PFINT_OICR_CTL,
3416 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3417
3418 ice_flush(hw);
3419 }
3420
3421 /**
3422 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup
3423 * @pf: board private structure
3424 */
ice_free_irq_msix_ll_ts(struct ice_pf * pf)3425 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf)
3426 {
3427 int irq_num = pf->ll_ts_irq.virq;
3428
3429 synchronize_irq(irq_num);
3430 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf);
3431
3432 ice_free_irq(pf, pf->ll_ts_irq);
3433 }
3434
3435 /**
3436 * ice_free_irq_msix_misc - Unroll misc vector setup
3437 * @pf: board private structure
3438 */
ice_free_irq_msix_misc(struct ice_pf * pf)3439 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3440 {
3441 int misc_irq_num = pf->oicr_irq.virq;
3442 struct ice_hw *hw = &pf->hw;
3443
3444 ice_dis_ctrlq_interrupts(hw);
3445
3446 /* disable OICR interrupt */
3447 wr32(hw, PFINT_OICR_ENA, 0);
3448 ice_flush(hw);
3449
3450 synchronize_irq(misc_irq_num);
3451 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3452
3453 ice_free_irq(pf, pf->oicr_irq);
3454 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3455 ice_free_irq_msix_ll_ts(pf);
3456 }
3457
3458 /**
3459 * ice_ena_ctrlq_interrupts - enable control queue interrupts
3460 * @hw: pointer to HW structure
3461 * @reg_idx: HW vector index to associate the control queue interrupts with
3462 */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)3463 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3464 {
3465 u32 val;
3466
3467 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3468 PFINT_OICR_CTL_CAUSE_ENA_M);
3469 wr32(hw, PFINT_OICR_CTL, val);
3470
3471 /* enable Admin queue Interrupt causes */
3472 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3473 PFINT_FW_CTL_CAUSE_ENA_M);
3474 wr32(hw, PFINT_FW_CTL, val);
3475
3476 /* enable Mailbox queue Interrupt causes */
3477 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3478 PFINT_MBX_CTL_CAUSE_ENA_M);
3479 wr32(hw, PFINT_MBX_CTL, val);
3480
3481 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) {
3482 /* enable Sideband queue Interrupt causes */
3483 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3484 PFINT_SB_CTL_CAUSE_ENA_M);
3485 wr32(hw, PFINT_SB_CTL, val);
3486 }
3487
3488 ice_flush(hw);
3489 }
3490
3491 /**
3492 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3493 * @pf: board private structure
3494 *
3495 * This sets up the handler for MSIX 0, which is used to manage the
3496 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3497 * when in MSI or Legacy interrupt mode.
3498 */
ice_req_irq_msix_misc(struct ice_pf * pf)3499 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3500 {
3501 struct device *dev = ice_pf_to_dev(pf);
3502 struct ice_hw *hw = &pf->hw;
3503 u32 pf_intr_start_offset;
3504 struct msi_map irq;
3505 int err = 0;
3506
3507 if (!pf->int_name[0])
3508 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3509 dev_driver_string(dev), dev_name(dev));
3510
3511 if (!pf->int_name_ll_ts[0])
3512 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1,
3513 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev));
3514 /* Do not request IRQ but do enable OICR interrupt since settings are
3515 * lost during reset. Note that this function is called only during
3516 * rebuild path and not while reset is in progress.
3517 */
3518 if (ice_is_reset_in_progress(pf->state))
3519 goto skip_req_irq;
3520
3521 /* reserve one vector in irq_tracker for misc interrupts */
3522 irq = ice_alloc_irq(pf, false);
3523 if (irq.index < 0)
3524 return irq.index;
3525
3526 pf->oicr_irq = irq;
3527 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3528 ice_misc_intr_thread_fn, 0,
3529 pf->int_name, pf);
3530 if (err) {
3531 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3532 pf->int_name, err);
3533 ice_free_irq(pf, pf->oicr_irq);
3534 return err;
3535 }
3536
3537 /* reserve one vector in irq_tracker for ll_ts interrupt */
3538 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3539 goto skip_req_irq;
3540
3541 irq = ice_alloc_irq(pf, false);
3542 if (irq.index < 0)
3543 return irq.index;
3544
3545 pf->ll_ts_irq = irq;
3546 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0,
3547 pf->int_name_ll_ts, pf);
3548 if (err) {
3549 dev_err(dev, "devm_request_irq for %s failed: %d\n",
3550 pf->int_name_ll_ts, err);
3551 ice_free_irq(pf, pf->ll_ts_irq);
3552 return err;
3553 }
3554
3555 skip_req_irq:
3556 ice_ena_misc_vector(pf);
3557
3558 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3559 /* This enables LL TS interrupt */
3560 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3561 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3562 wr32(hw, PFINT_SB_CTL,
3563 ((pf->ll_ts_irq.index + pf_intr_start_offset) &
3564 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M);
3565 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3566 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3567
3568 ice_flush(hw);
3569 ice_irq_dynamic_ena(hw, NULL, NULL);
3570
3571 return 0;
3572 }
3573
3574 /**
3575 * ice_set_ops - set netdev and ethtools ops for the given netdev
3576 * @vsi: the VSI associated with the new netdev
3577 */
ice_set_ops(struct ice_vsi * vsi)3578 static void ice_set_ops(struct ice_vsi *vsi)
3579 {
3580 struct net_device *netdev = vsi->netdev;
3581 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3582
3583 if (ice_is_safe_mode(pf)) {
3584 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3585 ice_set_ethtool_safe_mode_ops(netdev);
3586 return;
3587 }
3588
3589 netdev->netdev_ops = &ice_netdev_ops;
3590 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3591 netdev->xdp_metadata_ops = &ice_xdp_md_ops;
3592 ice_set_ethtool_ops(netdev);
3593
3594 if (vsi->type != ICE_VSI_PF)
3595 return;
3596
3597 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3598 NETDEV_XDP_ACT_XSK_ZEROCOPY |
3599 NETDEV_XDP_ACT_RX_SG;
3600 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3601 }
3602
3603 /**
3604 * ice_set_netdev_features - set features for the given netdev
3605 * @netdev: netdev instance
3606 */
ice_set_netdev_features(struct net_device * netdev)3607 void ice_set_netdev_features(struct net_device *netdev)
3608 {
3609 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3610 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3611 netdev_features_t csumo_features;
3612 netdev_features_t vlano_features;
3613 netdev_features_t dflt_features;
3614 netdev_features_t tso_features;
3615
3616 if (ice_is_safe_mode(pf)) {
3617 /* safe mode */
3618 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3619 netdev->hw_features = netdev->features;
3620 return;
3621 }
3622
3623 dflt_features = NETIF_F_SG |
3624 NETIF_F_HIGHDMA |
3625 NETIF_F_NTUPLE |
3626 NETIF_F_RXHASH;
3627
3628 csumo_features = NETIF_F_RXCSUM |
3629 NETIF_F_IP_CSUM |
3630 NETIF_F_SCTP_CRC |
3631 NETIF_F_IPV6_CSUM;
3632
3633 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3634 NETIF_F_HW_VLAN_CTAG_TX |
3635 NETIF_F_HW_VLAN_CTAG_RX;
3636
3637 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3638 if (is_dvm_ena)
3639 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3640
3641 tso_features = NETIF_F_TSO |
3642 NETIF_F_TSO_ECN |
3643 NETIF_F_TSO6 |
3644 NETIF_F_GSO_GRE |
3645 NETIF_F_GSO_UDP_TUNNEL |
3646 NETIF_F_GSO_GRE_CSUM |
3647 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3648 NETIF_F_GSO_PARTIAL |
3649 NETIF_F_GSO_IPXIP4 |
3650 NETIF_F_GSO_IPXIP6 |
3651 NETIF_F_GSO_UDP_L4;
3652
3653 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3654 NETIF_F_GSO_GRE_CSUM;
3655 /* set features that user can change */
3656 netdev->hw_features = dflt_features | csumo_features |
3657 vlano_features | tso_features;
3658
3659 /* add support for HW_CSUM on packets with MPLS header */
3660 netdev->mpls_features = NETIF_F_HW_CSUM |
3661 NETIF_F_TSO |
3662 NETIF_F_TSO6;
3663
3664 /* enable features */
3665 netdev->features |= netdev->hw_features;
3666
3667 netdev->hw_features |= NETIF_F_HW_TC;
3668 netdev->hw_features |= NETIF_F_LOOPBACK;
3669
3670 /* encap and VLAN devices inherit default, csumo and tso features */
3671 netdev->hw_enc_features |= dflt_features | csumo_features |
3672 tso_features;
3673 netdev->vlan_features |= dflt_features | csumo_features |
3674 tso_features;
3675
3676 /* advertise support but don't enable by default since only one type of
3677 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3678 * type turns on the other has to be turned off. This is enforced by the
3679 * ice_fix_features() ndo callback.
3680 */
3681 if (is_dvm_ena)
3682 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3683 NETIF_F_HW_VLAN_STAG_TX;
3684
3685 /* Leave CRC / FCS stripping enabled by default, but allow the value to
3686 * be changed at runtime
3687 */
3688 netdev->hw_features |= NETIF_F_RXFCS;
3689
3690 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3691 }
3692
3693 /**
3694 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3695 * @lut: Lookup table
3696 * @rss_table_size: Lookup table size
3697 * @rss_size: Range of queue number for hashing
3698 */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3699 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3700 {
3701 u16 i;
3702
3703 for (i = 0; i < rss_table_size; i++)
3704 lut[i] = i % rss_size;
3705 }
3706
3707 /**
3708 * ice_pf_vsi_setup - Set up a PF VSI
3709 * @pf: board private structure
3710 * @pi: pointer to the port_info instance
3711 *
3712 * Returns pointer to the successfully allocated VSI software struct
3713 * on success, otherwise returns NULL on failure.
3714 */
3715 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3716 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3717 {
3718 struct ice_vsi_cfg_params params = {};
3719
3720 params.type = ICE_VSI_PF;
3721 params.port_info = pi;
3722 params.flags = ICE_VSI_FLAG_INIT;
3723
3724 return ice_vsi_setup(pf, ¶ms);
3725 }
3726
3727 static struct ice_vsi *
ice_chnl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi,struct ice_channel * ch)3728 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3729 struct ice_channel *ch)
3730 {
3731 struct ice_vsi_cfg_params params = {};
3732
3733 params.type = ICE_VSI_CHNL;
3734 params.port_info = pi;
3735 params.ch = ch;
3736 params.flags = ICE_VSI_FLAG_INIT;
3737
3738 return ice_vsi_setup(pf, ¶ms);
3739 }
3740
3741 /**
3742 * ice_ctrl_vsi_setup - Set up a control VSI
3743 * @pf: board private structure
3744 * @pi: pointer to the port_info instance
3745 *
3746 * Returns pointer to the successfully allocated VSI software struct
3747 * on success, otherwise returns NULL on failure.
3748 */
3749 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3750 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3751 {
3752 struct ice_vsi_cfg_params params = {};
3753
3754 params.type = ICE_VSI_CTRL;
3755 params.port_info = pi;
3756 params.flags = ICE_VSI_FLAG_INIT;
3757
3758 return ice_vsi_setup(pf, ¶ms);
3759 }
3760
3761 /**
3762 * ice_lb_vsi_setup - Set up a loopback VSI
3763 * @pf: board private structure
3764 * @pi: pointer to the port_info instance
3765 *
3766 * Returns pointer to the successfully allocated VSI software struct
3767 * on success, otherwise returns NULL on failure.
3768 */
3769 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3770 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3771 {
3772 struct ice_vsi_cfg_params params = {};
3773
3774 params.type = ICE_VSI_LB;
3775 params.port_info = pi;
3776 params.flags = ICE_VSI_FLAG_INIT;
3777
3778 return ice_vsi_setup(pf, ¶ms);
3779 }
3780
3781 /**
3782 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3783 * @netdev: network interface to be adjusted
3784 * @proto: VLAN TPID
3785 * @vid: VLAN ID to be added
3786 *
3787 * net_device_ops implementation for adding VLAN IDs
3788 */
ice_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)3789 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3790 {
3791 struct ice_netdev_priv *np = netdev_priv(netdev);
3792 struct ice_vsi_vlan_ops *vlan_ops;
3793 struct ice_vsi *vsi = np->vsi;
3794 struct ice_vlan vlan;
3795 int ret;
3796
3797 /* VLAN 0 is added by default during load/reset */
3798 if (!vid)
3799 return 0;
3800
3801 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3802 usleep_range(1000, 2000);
3803
3804 /* Add multicast promisc rule for the VLAN ID to be added if
3805 * all-multicast is currently enabled.
3806 */
3807 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3808 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3809 ICE_MCAST_VLAN_PROMISC_BITS,
3810 vid);
3811 if (ret)
3812 goto finish;
3813 }
3814
3815 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3816
3817 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3818 * packets aren't pruned by the device's internal switch on Rx
3819 */
3820 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3821 ret = vlan_ops->add_vlan(vsi, &vlan);
3822 if (ret)
3823 goto finish;
3824
3825 /* If all-multicast is currently enabled and this VLAN ID is only one
3826 * besides VLAN-0 we have to update look-up type of multicast promisc
3827 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3828 */
3829 if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3830 ice_vsi_num_non_zero_vlans(vsi) == 1) {
3831 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3832 ICE_MCAST_PROMISC_BITS, 0);
3833 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3834 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3835 }
3836
3837 finish:
3838 clear_bit(ICE_CFG_BUSY, vsi->state);
3839
3840 return ret;
3841 }
3842
3843 /**
3844 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3845 * @netdev: network interface to be adjusted
3846 * @proto: VLAN TPID
3847 * @vid: VLAN ID to be removed
3848 *
3849 * net_device_ops implementation for removing VLAN IDs
3850 */
ice_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)3851 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3852 {
3853 struct ice_netdev_priv *np = netdev_priv(netdev);
3854 struct ice_vsi_vlan_ops *vlan_ops;
3855 struct ice_vsi *vsi = np->vsi;
3856 struct ice_vlan vlan;
3857 int ret;
3858
3859 /* don't allow removal of VLAN 0 */
3860 if (!vid)
3861 return 0;
3862
3863 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3864 usleep_range(1000, 2000);
3865
3866 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3867 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3868 if (ret) {
3869 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3870 vsi->vsi_num);
3871 vsi->current_netdev_flags |= IFF_ALLMULTI;
3872 }
3873
3874 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3875
3876 /* Make sure VLAN delete is successful before updating VLAN
3877 * information
3878 */
3879 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3880 ret = vlan_ops->del_vlan(vsi, &vlan);
3881 if (ret)
3882 goto finish;
3883
3884 /* Remove multicast promisc rule for the removed VLAN ID if
3885 * all-multicast is enabled.
3886 */
3887 if (vsi->current_netdev_flags & IFF_ALLMULTI)
3888 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3889 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3890
3891 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3892 /* Update look-up type of multicast promisc rule for VLAN 0
3893 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3894 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3895 */
3896 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3897 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3898 ICE_MCAST_VLAN_PROMISC_BITS,
3899 0);
3900 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3901 ICE_MCAST_PROMISC_BITS, 0);
3902 }
3903 }
3904
3905 finish:
3906 clear_bit(ICE_CFG_BUSY, vsi->state);
3907
3908 return ret;
3909 }
3910
3911 /**
3912 * ice_rep_indr_tc_block_unbind
3913 * @cb_priv: indirection block private data
3914 */
ice_rep_indr_tc_block_unbind(void * cb_priv)3915 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3916 {
3917 struct ice_indr_block_priv *indr_priv = cb_priv;
3918
3919 list_del(&indr_priv->list);
3920 kfree(indr_priv);
3921 }
3922
3923 /**
3924 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3925 * @vsi: VSI struct which has the netdev
3926 */
ice_tc_indir_block_unregister(struct ice_vsi * vsi)3927 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3928 {
3929 struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3930
3931 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3932 ice_rep_indr_tc_block_unbind);
3933 }
3934
3935 /**
3936 * ice_tc_indir_block_register - Register TC indirect block notifications
3937 * @vsi: VSI struct which has the netdev
3938 *
3939 * Returns 0 on success, negative value on failure
3940 */
ice_tc_indir_block_register(struct ice_vsi * vsi)3941 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3942 {
3943 struct ice_netdev_priv *np;
3944
3945 if (!vsi || !vsi->netdev)
3946 return -EINVAL;
3947
3948 np = netdev_priv(vsi->netdev);
3949
3950 INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3951 return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3952 }
3953
3954 /**
3955 * ice_get_avail_q_count - Get count of queues in use
3956 * @pf_qmap: bitmap to get queue use count from
3957 * @lock: pointer to a mutex that protects access to pf_qmap
3958 * @size: size of the bitmap
3959 */
3960 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3961 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3962 {
3963 unsigned long bit;
3964 u16 count = 0;
3965
3966 mutex_lock(lock);
3967 for_each_clear_bit(bit, pf_qmap, size)
3968 count++;
3969 mutex_unlock(lock);
3970
3971 return count;
3972 }
3973
3974 /**
3975 * ice_get_avail_txq_count - Get count of Tx queues in use
3976 * @pf: pointer to an ice_pf instance
3977 */
ice_get_avail_txq_count(struct ice_pf * pf)3978 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3979 {
3980 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3981 pf->max_pf_txqs);
3982 }
3983
3984 /**
3985 * ice_get_avail_rxq_count - Get count of Rx queues in use
3986 * @pf: pointer to an ice_pf instance
3987 */
ice_get_avail_rxq_count(struct ice_pf * pf)3988 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3989 {
3990 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3991 pf->max_pf_rxqs);
3992 }
3993
3994 /**
3995 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3996 * @pf: board private structure to initialize
3997 */
ice_deinit_pf(struct ice_pf * pf)3998 static void ice_deinit_pf(struct ice_pf *pf)
3999 {
4000 ice_service_task_stop(pf);
4001 mutex_destroy(&pf->lag_mutex);
4002 mutex_destroy(&pf->adev_mutex);
4003 mutex_destroy(&pf->sw_mutex);
4004 mutex_destroy(&pf->tc_mutex);
4005 mutex_destroy(&pf->avail_q_mutex);
4006 mutex_destroy(&pf->vfs.table_lock);
4007
4008 if (pf->avail_txqs) {
4009 bitmap_free(pf->avail_txqs);
4010 pf->avail_txqs = NULL;
4011 }
4012
4013 if (pf->avail_rxqs) {
4014 bitmap_free(pf->avail_rxqs);
4015 pf->avail_rxqs = NULL;
4016 }
4017
4018 if (pf->ptp.clock)
4019 ptp_clock_unregister(pf->ptp.clock);
4020
4021 xa_destroy(&pf->dyn_ports);
4022 xa_destroy(&pf->sf_nums);
4023 }
4024
4025 /**
4026 * ice_set_pf_caps - set PFs capability flags
4027 * @pf: pointer to the PF instance
4028 */
ice_set_pf_caps(struct ice_pf * pf)4029 static void ice_set_pf_caps(struct ice_pf *pf)
4030 {
4031 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
4032
4033 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4034 if (func_caps->common_cap.rdma)
4035 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4036 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4037 if (func_caps->common_cap.dcb)
4038 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4039 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
4040 if (func_caps->common_cap.sr_iov_1_1) {
4041 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
4042 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
4043 ICE_MAX_SRIOV_VFS);
4044 }
4045 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
4046 if (func_caps->common_cap.rss_table_size)
4047 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
4048
4049 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
4050 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
4051 u16 unused;
4052
4053 /* ctrl_vsi_idx will be set to a valid value when flow director
4054 * is setup by ice_init_fdir
4055 */
4056 pf->ctrl_vsi_idx = ICE_NO_VSI;
4057 set_bit(ICE_FLAG_FD_ENA, pf->flags);
4058 /* force guaranteed filter pool for PF */
4059 ice_alloc_fd_guar_item(&pf->hw, &unused,
4060 func_caps->fd_fltr_guar);
4061 /* force shared filter pool for PF */
4062 ice_alloc_fd_shrd_item(&pf->hw, &unused,
4063 func_caps->fd_fltr_best_effort);
4064 }
4065
4066 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4067 if (func_caps->common_cap.ieee_1588 &&
4068 !(pf->hw.mac_type == ICE_MAC_E830))
4069 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4070
4071 pf->max_pf_txqs = func_caps->common_cap.num_txq;
4072 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
4073 }
4074
4075 /**
4076 * ice_init_pf - Initialize general software structures (struct ice_pf)
4077 * @pf: board private structure to initialize
4078 */
ice_init_pf(struct ice_pf * pf)4079 static int ice_init_pf(struct ice_pf *pf)
4080 {
4081 ice_set_pf_caps(pf);
4082
4083 mutex_init(&pf->sw_mutex);
4084 mutex_init(&pf->tc_mutex);
4085 mutex_init(&pf->adev_mutex);
4086 mutex_init(&pf->lag_mutex);
4087
4088 INIT_HLIST_HEAD(&pf->aq_wait_list);
4089 spin_lock_init(&pf->aq_wait_lock);
4090 init_waitqueue_head(&pf->aq_wait_queue);
4091
4092 init_waitqueue_head(&pf->reset_wait_queue);
4093
4094 /* setup service timer and periodic service task */
4095 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
4096 pf->serv_tmr_period = HZ;
4097 INIT_WORK(&pf->serv_task, ice_service_task);
4098 clear_bit(ICE_SERVICE_SCHED, pf->state);
4099
4100 mutex_init(&pf->avail_q_mutex);
4101 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
4102 if (!pf->avail_txqs)
4103 return -ENOMEM;
4104
4105 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
4106 if (!pf->avail_rxqs) {
4107 bitmap_free(pf->avail_txqs);
4108 pf->avail_txqs = NULL;
4109 return -ENOMEM;
4110 }
4111
4112 mutex_init(&pf->vfs.table_lock);
4113 hash_init(pf->vfs.table);
4114 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT))
4115 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH,
4116 ICE_MBX_OVERFLOW_WATERMARK);
4117 else
4118 ice_mbx_init_snapshot(&pf->hw);
4119
4120 xa_init(&pf->dyn_ports);
4121 xa_init(&pf->sf_nums);
4122
4123 return 0;
4124 }
4125
4126 /**
4127 * ice_is_wol_supported - check if WoL is supported
4128 * @hw: pointer to hardware info
4129 *
4130 * Check if WoL is supported based on the HW configuration.
4131 * Returns true if NVM supports and enables WoL for this port, false otherwise
4132 */
ice_is_wol_supported(struct ice_hw * hw)4133 bool ice_is_wol_supported(struct ice_hw *hw)
4134 {
4135 u16 wol_ctrl;
4136
4137 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4138 * word) indicates WoL is not supported on the corresponding PF ID.
4139 */
4140 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4141 return false;
4142
4143 return !(BIT(hw->port_info->lport) & wol_ctrl);
4144 }
4145
4146 /**
4147 * ice_vsi_recfg_qs - Change the number of queues on a VSI
4148 * @vsi: VSI being changed
4149 * @new_rx: new number of Rx queues
4150 * @new_tx: new number of Tx queues
4151 * @locked: is adev device_lock held
4152 *
4153 * Only change the number of queues if new_tx, or new_rx is non-0.
4154 *
4155 * Returns 0 on success.
4156 */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx,bool locked)4157 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4158 {
4159 struct ice_pf *pf = vsi->back;
4160 int i, err = 0, timeout = 50;
4161
4162 if (!new_rx && !new_tx)
4163 return -EINVAL;
4164
4165 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4166 timeout--;
4167 if (!timeout)
4168 return -EBUSY;
4169 usleep_range(1000, 2000);
4170 }
4171
4172 if (new_tx)
4173 vsi->req_txq = (u16)new_tx;
4174 if (new_rx)
4175 vsi->req_rxq = (u16)new_rx;
4176
4177 /* set for the next time the netdev is started */
4178 if (!netif_running(vsi->netdev)) {
4179 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4180 if (err)
4181 goto rebuild_err;
4182 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4183 goto done;
4184 }
4185
4186 ice_vsi_close(vsi);
4187 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4188 if (err)
4189 goto rebuild_err;
4190
4191 ice_for_each_traffic_class(i) {
4192 if (vsi->tc_cfg.ena_tc & BIT(i))
4193 netdev_set_tc_queue(vsi->netdev,
4194 vsi->tc_cfg.tc_info[i].netdev_tc,
4195 vsi->tc_cfg.tc_info[i].qcount_tx,
4196 vsi->tc_cfg.tc_info[i].qoffset);
4197 }
4198 ice_pf_dcb_recfg(pf, locked);
4199 ice_vsi_open(vsi);
4200 goto done;
4201
4202 rebuild_err:
4203 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n",
4204 err);
4205 done:
4206 clear_bit(ICE_CFG_BUSY, pf->state);
4207 return err;
4208 }
4209
4210 /**
4211 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4212 * @pf: PF to configure
4213 *
4214 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4215 * VSI can still Tx/Rx VLAN tagged packets.
4216 */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)4217 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4218 {
4219 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4220 struct ice_vsi_ctx *ctxt;
4221 struct ice_hw *hw;
4222 int status;
4223
4224 if (!vsi)
4225 return;
4226
4227 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4228 if (!ctxt)
4229 return;
4230
4231 hw = &pf->hw;
4232 ctxt->info = vsi->info;
4233
4234 ctxt->info.valid_sections =
4235 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4236 ICE_AQ_VSI_PROP_SECURITY_VALID |
4237 ICE_AQ_VSI_PROP_SW_VALID);
4238
4239 /* disable VLAN anti-spoof */
4240 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4241 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4242
4243 /* disable VLAN pruning and keep all other settings */
4244 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4245
4246 /* allow all VLANs on Tx and don't strip on Rx */
4247 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4248 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4249
4250 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4251 if (status) {
4252 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4253 status, ice_aq_str(hw->adminq.sq_last_status));
4254 } else {
4255 vsi->info.sec_flags = ctxt->info.sec_flags;
4256 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4257 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4258 }
4259
4260 kfree(ctxt);
4261 }
4262
4263 /**
4264 * ice_log_pkg_init - log result of DDP package load
4265 * @hw: pointer to hardware info
4266 * @state: state of package load
4267 */
ice_log_pkg_init(struct ice_hw * hw,enum ice_ddp_state state)4268 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4269 {
4270 struct ice_pf *pf = hw->back;
4271 struct device *dev;
4272
4273 dev = ice_pf_to_dev(pf);
4274
4275 switch (state) {
4276 case ICE_DDP_PKG_SUCCESS:
4277 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4278 hw->active_pkg_name,
4279 hw->active_pkg_ver.major,
4280 hw->active_pkg_ver.minor,
4281 hw->active_pkg_ver.update,
4282 hw->active_pkg_ver.draft);
4283 break;
4284 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4285 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4286 hw->active_pkg_name,
4287 hw->active_pkg_ver.major,
4288 hw->active_pkg_ver.minor,
4289 hw->active_pkg_ver.update,
4290 hw->active_pkg_ver.draft);
4291 break;
4292 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4293 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
4294 hw->active_pkg_name,
4295 hw->active_pkg_ver.major,
4296 hw->active_pkg_ver.minor,
4297 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4298 break;
4299 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4300 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4301 hw->active_pkg_name,
4302 hw->active_pkg_ver.major,
4303 hw->active_pkg_ver.minor,
4304 hw->active_pkg_ver.update,
4305 hw->active_pkg_ver.draft,
4306 hw->pkg_name,
4307 hw->pkg_ver.major,
4308 hw->pkg_ver.minor,
4309 hw->pkg_ver.update,
4310 hw->pkg_ver.draft);
4311 break;
4312 case ICE_DDP_PKG_FW_MISMATCH:
4313 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
4314 break;
4315 case ICE_DDP_PKG_INVALID_FILE:
4316 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4317 break;
4318 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4319 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
4320 break;
4321 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4322 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
4323 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4324 break;
4325 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4326 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
4327 break;
4328 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4329 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
4330 break;
4331 case ICE_DDP_PKG_LOAD_ERROR:
4332 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
4333 /* poll for reset to complete */
4334 if (ice_check_reset(hw))
4335 dev_err(dev, "Error resetting device. Please reload the driver\n");
4336 break;
4337 case ICE_DDP_PKG_ERR:
4338 default:
4339 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n");
4340 break;
4341 }
4342 }
4343
4344 /**
4345 * ice_load_pkg - load/reload the DDP Package file
4346 * @firmware: firmware structure when firmware requested or NULL for reload
4347 * @pf: pointer to the PF instance
4348 *
4349 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4350 * initialize HW tables.
4351 */
4352 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)4353 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4354 {
4355 enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4356 struct device *dev = ice_pf_to_dev(pf);
4357 struct ice_hw *hw = &pf->hw;
4358
4359 /* Load DDP Package */
4360 if (firmware && !hw->pkg_copy) {
4361 state = ice_copy_and_init_pkg(hw, firmware->data,
4362 firmware->size);
4363 ice_log_pkg_init(hw, state);
4364 } else if (!firmware && hw->pkg_copy) {
4365 /* Reload package during rebuild after CORER/GLOBR reset */
4366 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4367 ice_log_pkg_init(hw, state);
4368 } else {
4369 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4370 }
4371
4372 if (!ice_is_init_pkg_successful(state)) {
4373 /* Safe Mode */
4374 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4375 return;
4376 }
4377
4378 /* Successful download package is the precondition for advanced
4379 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4380 */
4381 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4382 }
4383
4384 /**
4385 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4386 * @pf: pointer to the PF structure
4387 *
4388 * There is no error returned here because the driver should be able to handle
4389 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4390 * specifically with Tx.
4391 */
ice_verify_cacheline_size(struct ice_pf * pf)4392 static void ice_verify_cacheline_size(struct ice_pf *pf)
4393 {
4394 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4395 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4396 ICE_CACHE_LINE_BYTES);
4397 }
4398
4399 /**
4400 * ice_send_version - update firmware with driver version
4401 * @pf: PF struct
4402 *
4403 * Returns 0 on success, else error code
4404 */
ice_send_version(struct ice_pf * pf)4405 static int ice_send_version(struct ice_pf *pf)
4406 {
4407 struct ice_driver_ver dv;
4408
4409 dv.major_ver = 0xff;
4410 dv.minor_ver = 0xff;
4411 dv.build_ver = 0xff;
4412 dv.subbuild_ver = 0;
4413 strscpy((char *)dv.driver_string, UTS_RELEASE,
4414 sizeof(dv.driver_string));
4415 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4416 }
4417
4418 /**
4419 * ice_init_fdir - Initialize flow director VSI and configuration
4420 * @pf: pointer to the PF instance
4421 *
4422 * returns 0 on success, negative on error
4423 */
ice_init_fdir(struct ice_pf * pf)4424 static int ice_init_fdir(struct ice_pf *pf)
4425 {
4426 struct device *dev = ice_pf_to_dev(pf);
4427 struct ice_vsi *ctrl_vsi;
4428 int err;
4429
4430 /* Side Band Flow Director needs to have a control VSI.
4431 * Allocate it and store it in the PF.
4432 */
4433 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4434 if (!ctrl_vsi) {
4435 dev_dbg(dev, "could not create control VSI\n");
4436 return -ENOMEM;
4437 }
4438
4439 err = ice_vsi_open_ctrl(ctrl_vsi);
4440 if (err) {
4441 dev_dbg(dev, "could not open control VSI\n");
4442 goto err_vsi_open;
4443 }
4444
4445 mutex_init(&pf->hw.fdir_fltr_lock);
4446
4447 err = ice_fdir_create_dflt_rules(pf);
4448 if (err)
4449 goto err_fdir_rule;
4450
4451 return 0;
4452
4453 err_fdir_rule:
4454 ice_fdir_release_flows(&pf->hw);
4455 ice_vsi_close(ctrl_vsi);
4456 err_vsi_open:
4457 ice_vsi_release(ctrl_vsi);
4458 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4459 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4460 pf->ctrl_vsi_idx = ICE_NO_VSI;
4461 }
4462 return err;
4463 }
4464
ice_deinit_fdir(struct ice_pf * pf)4465 static void ice_deinit_fdir(struct ice_pf *pf)
4466 {
4467 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4468
4469 if (!vsi)
4470 return;
4471
4472 ice_vsi_manage_fdir(vsi, false);
4473 ice_vsi_release(vsi);
4474 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4475 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4476 pf->ctrl_vsi_idx = ICE_NO_VSI;
4477 }
4478
4479 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4480 }
4481
4482 /**
4483 * ice_get_opt_fw_name - return optional firmware file name or NULL
4484 * @pf: pointer to the PF instance
4485 */
ice_get_opt_fw_name(struct ice_pf * pf)4486 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4487 {
4488 /* Optional firmware name same as default with additional dash
4489 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4490 */
4491 struct pci_dev *pdev = pf->pdev;
4492 char *opt_fw_filename;
4493 u64 dsn;
4494
4495 /* Determine the name of the optional file using the DSN (two
4496 * dwords following the start of the DSN Capability).
4497 */
4498 dsn = pci_get_dsn(pdev);
4499 if (!dsn)
4500 return NULL;
4501
4502 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4503 if (!opt_fw_filename)
4504 return NULL;
4505
4506 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4507 ICE_DDP_PKG_PATH, dsn);
4508
4509 return opt_fw_filename;
4510 }
4511
4512 /**
4513 * ice_request_fw - Device initialization routine
4514 * @pf: pointer to the PF instance
4515 * @firmware: double pointer to firmware struct
4516 *
4517 * Return: zero when successful, negative values otherwise.
4518 */
ice_request_fw(struct ice_pf * pf,const struct firmware ** firmware)4519 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware)
4520 {
4521 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4522 struct device *dev = ice_pf_to_dev(pf);
4523 int err = 0;
4524
4525 /* optional device-specific DDP (if present) overrides the default DDP
4526 * package file. kernel logs a debug message if the file doesn't exist,
4527 * and warning messages for other errors.
4528 */
4529 if (opt_fw_filename) {
4530 err = firmware_request_nowarn(firmware, opt_fw_filename, dev);
4531 kfree(opt_fw_filename);
4532 if (!err)
4533 return err;
4534 }
4535 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev);
4536 if (err)
4537 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4538
4539 return err;
4540 }
4541
4542 /**
4543 * ice_init_tx_topology - performs Tx topology initialization
4544 * @hw: pointer to the hardware structure
4545 * @firmware: pointer to firmware structure
4546 *
4547 * Return: zero when init was successful, negative values otherwise.
4548 */
4549 static int
ice_init_tx_topology(struct ice_hw * hw,const struct firmware * firmware)4550 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware)
4551 {
4552 u8 num_tx_sched_layers = hw->num_tx_sched_layers;
4553 struct ice_pf *pf = hw->back;
4554 struct device *dev;
4555 int err;
4556
4557 dev = ice_pf_to_dev(pf);
4558 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size);
4559 if (!err) {
4560 if (hw->num_tx_sched_layers > num_tx_sched_layers)
4561 dev_info(dev, "Tx scheduling layers switching feature disabled\n");
4562 else
4563 dev_info(dev, "Tx scheduling layers switching feature enabled\n");
4564 return 0;
4565 } else if (err == -ENODEV) {
4566 /* If we failed to re-initialize the device, we can no longer
4567 * continue loading.
4568 */
4569 dev_warn(dev, "Failed to initialize hardware after applying Tx scheduling configuration.\n");
4570 return err;
4571 } else if (err == -EIO) {
4572 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n");
4573 return 0;
4574 } else if (err == -EEXIST) {
4575 return 0;
4576 }
4577
4578 /* Do not treat this as a fatal error. */
4579 dev_info(dev, "Failed to apply Tx scheduling configuration, err %pe\n",
4580 ERR_PTR(err));
4581 return 0;
4582 }
4583
4584 /**
4585 * ice_init_ddp_config - DDP related configuration
4586 * @hw: pointer to the hardware structure
4587 * @pf: pointer to pf structure
4588 *
4589 * This function loads DDP file from the disk, then initializes Tx
4590 * topology. At the end DDP package is loaded on the card.
4591 *
4592 * Return: zero when init was successful, negative values otherwise.
4593 */
ice_init_ddp_config(struct ice_hw * hw,struct ice_pf * pf)4594 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf)
4595 {
4596 struct device *dev = ice_pf_to_dev(pf);
4597 const struct firmware *firmware = NULL;
4598 int err;
4599
4600 err = ice_request_fw(pf, &firmware);
4601 if (err) {
4602 dev_err(dev, "Fail during requesting FW: %d\n", err);
4603 return err;
4604 }
4605
4606 err = ice_init_tx_topology(hw, firmware);
4607 if (err) {
4608 dev_err(dev, "Fail during initialization of Tx topology: %d\n",
4609 err);
4610 release_firmware(firmware);
4611 return err;
4612 }
4613
4614 /* Download firmware to device */
4615 ice_load_pkg(firmware, pf);
4616 release_firmware(firmware);
4617
4618 return 0;
4619 }
4620
4621 /**
4622 * ice_print_wake_reason - show the wake up cause in the log
4623 * @pf: pointer to the PF struct
4624 */
ice_print_wake_reason(struct ice_pf * pf)4625 static void ice_print_wake_reason(struct ice_pf *pf)
4626 {
4627 u32 wus = pf->wakeup_reason;
4628 const char *wake_str;
4629
4630 /* if no wake event, nothing to print */
4631 if (!wus)
4632 return;
4633
4634 if (wus & PFPM_WUS_LNKC_M)
4635 wake_str = "Link\n";
4636 else if (wus & PFPM_WUS_MAG_M)
4637 wake_str = "Magic Packet\n";
4638 else if (wus & PFPM_WUS_MNG_M)
4639 wake_str = "Management\n";
4640 else if (wus & PFPM_WUS_FW_RST_WK_M)
4641 wake_str = "Firmware Reset\n";
4642 else
4643 wake_str = "Unknown\n";
4644
4645 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4646 }
4647
4648 /**
4649 * ice_pf_fwlog_update_module - update 1 module
4650 * @pf: pointer to the PF struct
4651 * @log_level: log_level to use for the @module
4652 * @module: module to update
4653 */
ice_pf_fwlog_update_module(struct ice_pf * pf,int log_level,int module)4654 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module)
4655 {
4656 struct ice_hw *hw = &pf->hw;
4657
4658 hw->fwlog_cfg.module_entries[module].log_level = log_level;
4659 }
4660
4661 /**
4662 * ice_register_netdev - register netdev
4663 * @vsi: pointer to the VSI struct
4664 */
ice_register_netdev(struct ice_vsi * vsi)4665 static int ice_register_netdev(struct ice_vsi *vsi)
4666 {
4667 int err;
4668
4669 if (!vsi || !vsi->netdev)
4670 return -EIO;
4671
4672 err = register_netdev(vsi->netdev);
4673 if (err)
4674 return err;
4675
4676 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4677 netif_carrier_off(vsi->netdev);
4678 netif_tx_stop_all_queues(vsi->netdev);
4679
4680 return 0;
4681 }
4682
ice_unregister_netdev(struct ice_vsi * vsi)4683 static void ice_unregister_netdev(struct ice_vsi *vsi)
4684 {
4685 if (!vsi || !vsi->netdev)
4686 return;
4687
4688 unregister_netdev(vsi->netdev);
4689 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4690 }
4691
4692 /**
4693 * ice_cfg_netdev - Allocate, configure and register a netdev
4694 * @vsi: the VSI associated with the new netdev
4695 *
4696 * Returns 0 on success, negative value on failure
4697 */
ice_cfg_netdev(struct ice_vsi * vsi)4698 static int ice_cfg_netdev(struct ice_vsi *vsi)
4699 {
4700 struct ice_netdev_priv *np;
4701 struct net_device *netdev;
4702 u8 mac_addr[ETH_ALEN];
4703
4704 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4705 vsi->alloc_rxq);
4706 if (!netdev)
4707 return -ENOMEM;
4708
4709 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4710 vsi->netdev = netdev;
4711 np = netdev_priv(netdev);
4712 np->vsi = vsi;
4713
4714 ice_set_netdev_features(netdev);
4715 ice_set_ops(vsi);
4716
4717 if (vsi->type == ICE_VSI_PF) {
4718 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4719 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4720 eth_hw_addr_set(netdev, mac_addr);
4721 }
4722
4723 netdev->priv_flags |= IFF_UNICAST_FLT;
4724
4725 /* Setup netdev TC information */
4726 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4727
4728 netdev->max_mtu = ICE_MAX_MTU;
4729
4730 return 0;
4731 }
4732
ice_decfg_netdev(struct ice_vsi * vsi)4733 static void ice_decfg_netdev(struct ice_vsi *vsi)
4734 {
4735 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4736 free_netdev(vsi->netdev);
4737 vsi->netdev = NULL;
4738 }
4739
4740 /**
4741 * ice_wait_for_fw - wait for full FW readiness
4742 * @hw: pointer to the hardware structure
4743 * @timeout: milliseconds that can elapse before timing out
4744 */
ice_wait_for_fw(struct ice_hw * hw,u32 timeout)4745 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
4746 {
4747 int fw_loading;
4748 u32 elapsed = 0;
4749
4750 while (elapsed <= timeout) {
4751 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
4752
4753 /* firmware was not yet loaded, we have to wait more */
4754 if (fw_loading) {
4755 elapsed += 100;
4756 msleep(100);
4757 continue;
4758 }
4759 return 0;
4760 }
4761
4762 return -ETIMEDOUT;
4763 }
4764
ice_init_dev(struct ice_pf * pf)4765 int ice_init_dev(struct ice_pf *pf)
4766 {
4767 struct device *dev = ice_pf_to_dev(pf);
4768 struct ice_hw *hw = &pf->hw;
4769 int err;
4770
4771 err = ice_init_hw(hw);
4772 if (err) {
4773 dev_err(dev, "ice_init_hw failed: %d\n", err);
4774 return err;
4775 }
4776
4777 /* Some cards require longer initialization times
4778 * due to necessity of loading FW from an external source.
4779 * This can take even half a minute.
4780 */
4781 if (ice_is_pf_c827(hw)) {
4782 err = ice_wait_for_fw(hw, 30000);
4783 if (err) {
4784 dev_err(dev, "ice_wait_for_fw timed out");
4785 return err;
4786 }
4787 }
4788
4789 ice_init_feature_support(pf);
4790
4791 err = ice_init_ddp_config(hw, pf);
4792
4793 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be
4794 * set in pf->state, which will cause ice_is_safe_mode to return
4795 * true
4796 */
4797 if (err || ice_is_safe_mode(pf)) {
4798 /* we already got function/device capabilities but these don't
4799 * reflect what the driver needs to do in safe mode. Instead of
4800 * adding conditional logic everywhere to ignore these
4801 * device/function capabilities, override them.
4802 */
4803 ice_set_safe_mode_caps(hw);
4804 }
4805
4806 err = ice_init_pf(pf);
4807 if (err) {
4808 dev_err(dev, "ice_init_pf failed: %d\n", err);
4809 goto err_init_pf;
4810 }
4811
4812 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4813 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4814 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4815 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4816 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4817 pf->hw.udp_tunnel_nic.tables[0].n_entries =
4818 pf->hw.tnl.valid_count[TNL_VXLAN];
4819 pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4820 UDP_TUNNEL_TYPE_VXLAN;
4821 }
4822 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4823 pf->hw.udp_tunnel_nic.tables[1].n_entries =
4824 pf->hw.tnl.valid_count[TNL_GENEVE];
4825 pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4826 UDP_TUNNEL_TYPE_GENEVE;
4827 }
4828
4829 err = ice_init_interrupt_scheme(pf);
4830 if (err) {
4831 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4832 err = -EIO;
4833 goto err_init_interrupt_scheme;
4834 }
4835
4836 /* In case of MSIX we are going to setup the misc vector right here
4837 * to handle admin queue events etc. In case of legacy and MSI
4838 * the misc functionality and queue processing is combined in
4839 * the same vector and that gets setup at open.
4840 */
4841 err = ice_req_irq_msix_misc(pf);
4842 if (err) {
4843 dev_err(dev, "setup of misc vector failed: %d\n", err);
4844 goto err_req_irq_msix_misc;
4845 }
4846
4847 return 0;
4848
4849 err_req_irq_msix_misc:
4850 ice_clear_interrupt_scheme(pf);
4851 err_init_interrupt_scheme:
4852 ice_deinit_pf(pf);
4853 err_init_pf:
4854 ice_deinit_hw(hw);
4855 return err;
4856 }
4857
ice_deinit_dev(struct ice_pf * pf)4858 void ice_deinit_dev(struct ice_pf *pf)
4859 {
4860 ice_free_irq_msix_misc(pf);
4861 ice_deinit_pf(pf);
4862 ice_deinit_hw(&pf->hw);
4863
4864 /* Service task is already stopped, so call reset directly. */
4865 ice_reset(&pf->hw, ICE_RESET_PFR);
4866 pci_wait_for_pending_transaction(pf->pdev);
4867 ice_clear_interrupt_scheme(pf);
4868 }
4869
ice_init_features(struct ice_pf * pf)4870 static void ice_init_features(struct ice_pf *pf)
4871 {
4872 struct device *dev = ice_pf_to_dev(pf);
4873
4874 if (ice_is_safe_mode(pf))
4875 return;
4876
4877 /* initialize DDP driven features */
4878 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4879 ice_ptp_init(pf);
4880
4881 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4882 ice_gnss_init(pf);
4883
4884 if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4885 ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4886 ice_dpll_init(pf);
4887
4888 /* Note: Flow director init failure is non-fatal to load */
4889 if (ice_init_fdir(pf))
4890 dev_err(dev, "could not initialize flow director\n");
4891
4892 /* Note: DCB init failure is non-fatal to load */
4893 if (ice_init_pf_dcb(pf, false)) {
4894 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4895 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4896 } else {
4897 ice_cfg_lldp_mib_change(&pf->hw, true);
4898 }
4899
4900 if (ice_init_lag(pf))
4901 dev_warn(dev, "Failed to init link aggregation support\n");
4902
4903 ice_hwmon_init(pf);
4904 }
4905
ice_deinit_features(struct ice_pf * pf)4906 static void ice_deinit_features(struct ice_pf *pf)
4907 {
4908 if (ice_is_safe_mode(pf))
4909 return;
4910
4911 ice_deinit_lag(pf);
4912 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4913 ice_cfg_lldp_mib_change(&pf->hw, false);
4914 ice_deinit_fdir(pf);
4915 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4916 ice_gnss_exit(pf);
4917 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4918 ice_ptp_release(pf);
4919 if (test_bit(ICE_FLAG_DPLL, pf->flags))
4920 ice_dpll_deinit(pf);
4921 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4922 xa_destroy(&pf->eswitch.reprs);
4923 }
4924
ice_init_wakeup(struct ice_pf * pf)4925 static void ice_init_wakeup(struct ice_pf *pf)
4926 {
4927 /* Save wakeup reason register for later use */
4928 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4929
4930 /* check for a power management event */
4931 ice_print_wake_reason(pf);
4932
4933 /* clear wake status, all bits */
4934 wr32(&pf->hw, PFPM_WUS, U32_MAX);
4935
4936 /* Disable WoL at init, wait for user to enable */
4937 device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4938 }
4939
ice_init_link(struct ice_pf * pf)4940 static int ice_init_link(struct ice_pf *pf)
4941 {
4942 struct device *dev = ice_pf_to_dev(pf);
4943 int err;
4944
4945 err = ice_init_link_events(pf->hw.port_info);
4946 if (err) {
4947 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4948 return err;
4949 }
4950
4951 /* not a fatal error if this fails */
4952 err = ice_init_nvm_phy_type(pf->hw.port_info);
4953 if (err)
4954 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4955
4956 /* not a fatal error if this fails */
4957 err = ice_update_link_info(pf->hw.port_info);
4958 if (err)
4959 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4960
4961 ice_init_link_dflt_override(pf->hw.port_info);
4962
4963 ice_check_link_cfg_err(pf,
4964 pf->hw.port_info->phy.link_info.link_cfg_err);
4965
4966 /* if media available, initialize PHY settings */
4967 if (pf->hw.port_info->phy.link_info.link_info &
4968 ICE_AQ_MEDIA_AVAILABLE) {
4969 /* not a fatal error if this fails */
4970 err = ice_init_phy_user_cfg(pf->hw.port_info);
4971 if (err)
4972 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4973
4974 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4975 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4976
4977 if (vsi)
4978 ice_configure_phy(vsi);
4979 }
4980 } else {
4981 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4982 }
4983
4984 return err;
4985 }
4986
ice_init_pf_sw(struct ice_pf * pf)4987 static int ice_init_pf_sw(struct ice_pf *pf)
4988 {
4989 bool dvm = ice_is_dvm_ena(&pf->hw);
4990 struct ice_vsi *vsi;
4991 int err;
4992
4993 /* create switch struct for the switch element created by FW on boot */
4994 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4995 if (!pf->first_sw)
4996 return -ENOMEM;
4997
4998 if (pf->hw.evb_veb)
4999 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
5000 else
5001 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
5002
5003 pf->first_sw->pf = pf;
5004
5005 /* record the sw_id available for later use */
5006 pf->first_sw->sw_id = pf->hw.port_info->sw_id;
5007
5008 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
5009 if (err)
5010 goto err_aq_set_port_params;
5011
5012 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
5013 if (!vsi) {
5014 err = -ENOMEM;
5015 goto err_pf_vsi_setup;
5016 }
5017
5018 return 0;
5019
5020 err_pf_vsi_setup:
5021 err_aq_set_port_params:
5022 kfree(pf->first_sw);
5023 return err;
5024 }
5025
ice_deinit_pf_sw(struct ice_pf * pf)5026 static void ice_deinit_pf_sw(struct ice_pf *pf)
5027 {
5028 struct ice_vsi *vsi = ice_get_main_vsi(pf);
5029
5030 if (!vsi)
5031 return;
5032
5033 ice_vsi_release(vsi);
5034 kfree(pf->first_sw);
5035 }
5036
ice_alloc_vsis(struct ice_pf * pf)5037 static int ice_alloc_vsis(struct ice_pf *pf)
5038 {
5039 struct device *dev = ice_pf_to_dev(pf);
5040
5041 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
5042 if (!pf->num_alloc_vsi)
5043 return -EIO;
5044
5045 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
5046 dev_warn(dev,
5047 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
5048 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
5049 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
5050 }
5051
5052 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
5053 GFP_KERNEL);
5054 if (!pf->vsi)
5055 return -ENOMEM;
5056
5057 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
5058 sizeof(*pf->vsi_stats), GFP_KERNEL);
5059 if (!pf->vsi_stats) {
5060 devm_kfree(dev, pf->vsi);
5061 return -ENOMEM;
5062 }
5063
5064 return 0;
5065 }
5066
ice_dealloc_vsis(struct ice_pf * pf)5067 static void ice_dealloc_vsis(struct ice_pf *pf)
5068 {
5069 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
5070 pf->vsi_stats = NULL;
5071
5072 pf->num_alloc_vsi = 0;
5073 devm_kfree(ice_pf_to_dev(pf), pf->vsi);
5074 pf->vsi = NULL;
5075 }
5076
ice_init_devlink(struct ice_pf * pf)5077 static int ice_init_devlink(struct ice_pf *pf)
5078 {
5079 int err;
5080
5081 err = ice_devlink_register_params(pf);
5082 if (err)
5083 return err;
5084
5085 ice_devlink_init_regions(pf);
5086 ice_devlink_register(pf);
5087
5088 return 0;
5089 }
5090
ice_deinit_devlink(struct ice_pf * pf)5091 static void ice_deinit_devlink(struct ice_pf *pf)
5092 {
5093 ice_devlink_unregister(pf);
5094 ice_devlink_destroy_regions(pf);
5095 ice_devlink_unregister_params(pf);
5096 }
5097
ice_init(struct ice_pf * pf)5098 static int ice_init(struct ice_pf *pf)
5099 {
5100 int err;
5101
5102 err = ice_init_dev(pf);
5103 if (err)
5104 return err;
5105
5106 err = ice_alloc_vsis(pf);
5107 if (err)
5108 goto err_alloc_vsis;
5109
5110 err = ice_init_pf_sw(pf);
5111 if (err)
5112 goto err_init_pf_sw;
5113
5114 ice_init_wakeup(pf);
5115
5116 err = ice_init_link(pf);
5117 if (err)
5118 goto err_init_link;
5119
5120 err = ice_send_version(pf);
5121 if (err)
5122 goto err_init_link;
5123
5124 ice_verify_cacheline_size(pf);
5125
5126 if (ice_is_safe_mode(pf))
5127 ice_set_safe_mode_vlan_cfg(pf);
5128 else
5129 /* print PCI link speed and width */
5130 pcie_print_link_status(pf->pdev);
5131
5132 /* ready to go, so clear down state bit */
5133 clear_bit(ICE_DOWN, pf->state);
5134 clear_bit(ICE_SERVICE_DIS, pf->state);
5135
5136 /* since everything is good, start the service timer */
5137 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5138
5139 return 0;
5140
5141 err_init_link:
5142 ice_deinit_pf_sw(pf);
5143 err_init_pf_sw:
5144 ice_dealloc_vsis(pf);
5145 err_alloc_vsis:
5146 ice_deinit_dev(pf);
5147 return err;
5148 }
5149
ice_deinit(struct ice_pf * pf)5150 static void ice_deinit(struct ice_pf *pf)
5151 {
5152 set_bit(ICE_SERVICE_DIS, pf->state);
5153 set_bit(ICE_DOWN, pf->state);
5154
5155 ice_deinit_pf_sw(pf);
5156 ice_dealloc_vsis(pf);
5157 ice_deinit_dev(pf);
5158 }
5159
5160 /**
5161 * ice_load - load pf by init hw and starting VSI
5162 * @pf: pointer to the pf instance
5163 *
5164 * This function has to be called under devl_lock.
5165 */
ice_load(struct ice_pf * pf)5166 int ice_load(struct ice_pf *pf)
5167 {
5168 struct ice_vsi *vsi;
5169 int err;
5170
5171 devl_assert_locked(priv_to_devlink(pf));
5172
5173 vsi = ice_get_main_vsi(pf);
5174
5175 /* init channel list */
5176 INIT_LIST_HEAD(&vsi->ch_list);
5177
5178 err = ice_cfg_netdev(vsi);
5179 if (err)
5180 return err;
5181
5182 /* Setup DCB netlink interface */
5183 ice_dcbnl_setup(vsi);
5184
5185 err = ice_init_mac_fltr(pf);
5186 if (err)
5187 goto err_init_mac_fltr;
5188
5189 err = ice_devlink_create_pf_port(pf);
5190 if (err)
5191 goto err_devlink_create_pf_port;
5192
5193 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
5194
5195 err = ice_register_netdev(vsi);
5196 if (err)
5197 goto err_register_netdev;
5198
5199 err = ice_tc_indir_block_register(vsi);
5200 if (err)
5201 goto err_tc_indir_block_register;
5202
5203 ice_napi_add(vsi);
5204
5205 ice_init_features(pf);
5206
5207 err = ice_init_rdma(pf);
5208 if (err)
5209 goto err_init_rdma;
5210
5211 ice_service_task_restart(pf);
5212
5213 clear_bit(ICE_DOWN, pf->state);
5214
5215 return 0;
5216
5217 err_init_rdma:
5218 ice_deinit_features(pf);
5219 ice_tc_indir_block_unregister(vsi);
5220 err_tc_indir_block_register:
5221 ice_unregister_netdev(vsi);
5222 err_register_netdev:
5223 ice_devlink_destroy_pf_port(pf);
5224 err_devlink_create_pf_port:
5225 err_init_mac_fltr:
5226 ice_decfg_netdev(vsi);
5227 return err;
5228 }
5229
5230 /**
5231 * ice_unload - unload pf by stopping VSI and deinit hw
5232 * @pf: pointer to the pf instance
5233 *
5234 * This function has to be called under devl_lock.
5235 */
ice_unload(struct ice_pf * pf)5236 void ice_unload(struct ice_pf *pf)
5237 {
5238 struct ice_vsi *vsi = ice_get_main_vsi(pf);
5239
5240 devl_assert_locked(priv_to_devlink(pf));
5241
5242 ice_deinit_rdma(pf);
5243 ice_deinit_features(pf);
5244 ice_tc_indir_block_unregister(vsi);
5245 ice_unregister_netdev(vsi);
5246 ice_devlink_destroy_pf_port(pf);
5247 ice_decfg_netdev(vsi);
5248 }
5249
5250 /**
5251 * ice_probe - Device initialization routine
5252 * @pdev: PCI device information struct
5253 * @ent: entry in ice_pci_tbl
5254 *
5255 * Returns 0 on success, negative on failure
5256 */
5257 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)5258 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5259 {
5260 struct device *dev = &pdev->dev;
5261 struct ice_adapter *adapter;
5262 struct ice_pf *pf;
5263 struct ice_hw *hw;
5264 int err;
5265
5266 if (pdev->is_virtfn) {
5267 dev_err(dev, "can't probe a virtual function\n");
5268 return -EINVAL;
5269 }
5270
5271 /* when under a kdump kernel initiate a reset before enabling the
5272 * device in order to clear out any pending DMA transactions. These
5273 * transactions can cause some systems to machine check when doing
5274 * the pcim_enable_device() below.
5275 */
5276 if (is_kdump_kernel()) {
5277 pci_save_state(pdev);
5278 pci_clear_master(pdev);
5279 err = pcie_flr(pdev);
5280 if (err)
5281 return err;
5282 pci_restore_state(pdev);
5283 }
5284
5285 /* this driver uses devres, see
5286 * Documentation/driver-api/driver-model/devres.rst
5287 */
5288 err = pcim_enable_device(pdev);
5289 if (err)
5290 return err;
5291
5292 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5293 if (err) {
5294 dev_err(dev, "BAR0 I/O map error %d\n", err);
5295 return err;
5296 }
5297
5298 pf = ice_allocate_pf(dev);
5299 if (!pf)
5300 return -ENOMEM;
5301
5302 /* initialize Auxiliary index to invalid value */
5303 pf->aux_idx = -1;
5304
5305 /* set up for high or low DMA */
5306 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5307 if (err) {
5308 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5309 return err;
5310 }
5311
5312 pci_set_master(pdev);
5313
5314 adapter = ice_adapter_get(pdev);
5315 if (IS_ERR(adapter))
5316 return PTR_ERR(adapter);
5317
5318 pf->pdev = pdev;
5319 pf->adapter = adapter;
5320 pci_set_drvdata(pdev, pf);
5321 set_bit(ICE_DOWN, pf->state);
5322 /* Disable service task until DOWN bit is cleared */
5323 set_bit(ICE_SERVICE_DIS, pf->state);
5324
5325 hw = &pf->hw;
5326 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5327 pci_save_state(pdev);
5328
5329 hw->back = pf;
5330 hw->port_info = NULL;
5331 hw->vendor_id = pdev->vendor;
5332 hw->device_id = pdev->device;
5333 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5334 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5335 hw->subsystem_device_id = pdev->subsystem_device;
5336 hw->bus.device = PCI_SLOT(pdev->devfn);
5337 hw->bus.func = PCI_FUNC(pdev->devfn);
5338 ice_set_ctrlq_len(hw);
5339
5340 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5341
5342 #ifndef CONFIG_DYNAMIC_DEBUG
5343 if (debug < -1)
5344 hw->debug_mask = debug;
5345 #endif
5346
5347 err = ice_init(pf);
5348 if (err)
5349 goto err_init;
5350
5351 devl_lock(priv_to_devlink(pf));
5352 err = ice_load(pf);
5353 if (err)
5354 goto err_load;
5355
5356 err = ice_init_devlink(pf);
5357 if (err)
5358 goto err_init_devlink;
5359 devl_unlock(priv_to_devlink(pf));
5360
5361 return 0;
5362
5363 err_init_devlink:
5364 ice_unload(pf);
5365 err_load:
5366 devl_unlock(priv_to_devlink(pf));
5367 ice_deinit(pf);
5368 err_init:
5369 ice_adapter_put(pdev);
5370 return err;
5371 }
5372
5373 /**
5374 * ice_set_wake - enable or disable Wake on LAN
5375 * @pf: pointer to the PF struct
5376 *
5377 * Simple helper for WoL control
5378 */
ice_set_wake(struct ice_pf * pf)5379 static void ice_set_wake(struct ice_pf *pf)
5380 {
5381 struct ice_hw *hw = &pf->hw;
5382 bool wol = pf->wol_ena;
5383
5384 /* clear wake state, otherwise new wake events won't fire */
5385 wr32(hw, PFPM_WUS, U32_MAX);
5386
5387 /* enable / disable APM wake up, no RMW needed */
5388 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5389
5390 /* set magic packet filter enabled */
5391 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5392 }
5393
5394 /**
5395 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5396 * @pf: pointer to the PF struct
5397 *
5398 * Issue firmware command to enable multicast magic wake, making
5399 * sure that any locally administered address (LAA) is used for
5400 * wake, and that PF reset doesn't undo the LAA.
5401 */
ice_setup_mc_magic_wake(struct ice_pf * pf)5402 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5403 {
5404 struct device *dev = ice_pf_to_dev(pf);
5405 struct ice_hw *hw = &pf->hw;
5406 u8 mac_addr[ETH_ALEN];
5407 struct ice_vsi *vsi;
5408 int status;
5409 u8 flags;
5410
5411 if (!pf->wol_ena)
5412 return;
5413
5414 vsi = ice_get_main_vsi(pf);
5415 if (!vsi)
5416 return;
5417
5418 /* Get current MAC address in case it's an LAA */
5419 if (vsi->netdev)
5420 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5421 else
5422 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5423
5424 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5425 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5426 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5427
5428 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5429 if (status)
5430 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5431 status, ice_aq_str(hw->adminq.sq_last_status));
5432 }
5433
5434 /**
5435 * ice_remove - Device removal routine
5436 * @pdev: PCI device information struct
5437 */
ice_remove(struct pci_dev * pdev)5438 static void ice_remove(struct pci_dev *pdev)
5439 {
5440 struct ice_pf *pf = pci_get_drvdata(pdev);
5441 int i;
5442
5443 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5444 if (!ice_is_reset_in_progress(pf->state))
5445 break;
5446 msleep(100);
5447 }
5448
5449 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5450 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5451 ice_free_vfs(pf);
5452 }
5453
5454 ice_hwmon_exit(pf);
5455
5456 ice_service_task_stop(pf);
5457 ice_aq_cancel_waiting_tasks(pf);
5458 set_bit(ICE_DOWN, pf->state);
5459
5460 if (!ice_is_safe_mode(pf))
5461 ice_remove_arfs(pf);
5462
5463 devl_lock(priv_to_devlink(pf));
5464 ice_dealloc_all_dynamic_ports(pf);
5465 ice_deinit_devlink(pf);
5466
5467 ice_unload(pf);
5468 devl_unlock(priv_to_devlink(pf));
5469
5470 ice_deinit(pf);
5471 ice_vsi_release_all(pf);
5472
5473 ice_setup_mc_magic_wake(pf);
5474 ice_set_wake(pf);
5475
5476 ice_adapter_put(pdev);
5477 }
5478
5479 /**
5480 * ice_shutdown - PCI callback for shutting down device
5481 * @pdev: PCI device information struct
5482 */
ice_shutdown(struct pci_dev * pdev)5483 static void ice_shutdown(struct pci_dev *pdev)
5484 {
5485 struct ice_pf *pf = pci_get_drvdata(pdev);
5486
5487 ice_remove(pdev);
5488
5489 if (system_state == SYSTEM_POWER_OFF) {
5490 pci_wake_from_d3(pdev, pf->wol_ena);
5491 pci_set_power_state(pdev, PCI_D3hot);
5492 }
5493 }
5494
5495 /**
5496 * ice_prepare_for_shutdown - prep for PCI shutdown
5497 * @pf: board private structure
5498 *
5499 * Inform or close all dependent features in prep for PCI device shutdown
5500 */
ice_prepare_for_shutdown(struct ice_pf * pf)5501 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5502 {
5503 struct ice_hw *hw = &pf->hw;
5504 u32 v;
5505
5506 /* Notify VFs of impending reset */
5507 if (ice_check_sq_alive(hw, &hw->mailboxq))
5508 ice_vc_notify_reset(pf);
5509
5510 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5511
5512 /* disable the VSIs and their queues that are not already DOWN */
5513 ice_pf_dis_all_vsi(pf, false);
5514
5515 ice_for_each_vsi(pf, v)
5516 if (pf->vsi[v])
5517 pf->vsi[v]->vsi_num = 0;
5518
5519 ice_shutdown_all_ctrlq(hw, true);
5520 }
5521
5522 /**
5523 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5524 * @pf: board private structure to reinitialize
5525 *
5526 * This routine reinitialize interrupt scheme that was cleared during
5527 * power management suspend callback.
5528 *
5529 * This should be called during resume routine to re-allocate the q_vectors
5530 * and reacquire interrupts.
5531 */
ice_reinit_interrupt_scheme(struct ice_pf * pf)5532 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5533 {
5534 struct device *dev = ice_pf_to_dev(pf);
5535 int ret, v;
5536
5537 /* Since we clear MSIX flag during suspend, we need to
5538 * set it back during resume...
5539 */
5540
5541 ret = ice_init_interrupt_scheme(pf);
5542 if (ret) {
5543 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5544 return ret;
5545 }
5546
5547 /* Remap vectors and rings, after successful re-init interrupts */
5548 ice_for_each_vsi(pf, v) {
5549 if (!pf->vsi[v])
5550 continue;
5551
5552 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5553 if (ret)
5554 goto err_reinit;
5555 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5556 rtnl_lock();
5557 ice_vsi_set_napi_queues(pf->vsi[v]);
5558 rtnl_unlock();
5559 }
5560
5561 ret = ice_req_irq_msix_misc(pf);
5562 if (ret) {
5563 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5564 ret);
5565 goto err_reinit;
5566 }
5567
5568 return 0;
5569
5570 err_reinit:
5571 while (v--)
5572 if (pf->vsi[v]) {
5573 rtnl_lock();
5574 ice_vsi_clear_napi_queues(pf->vsi[v]);
5575 rtnl_unlock();
5576 ice_vsi_free_q_vectors(pf->vsi[v]);
5577 }
5578
5579 return ret;
5580 }
5581
5582 /**
5583 * ice_suspend
5584 * @dev: generic device information structure
5585 *
5586 * Power Management callback to quiesce the device and prepare
5587 * for D3 transition.
5588 */
ice_suspend(struct device * dev)5589 static int ice_suspend(struct device *dev)
5590 {
5591 struct pci_dev *pdev = to_pci_dev(dev);
5592 struct ice_pf *pf;
5593 int disabled, v;
5594
5595 pf = pci_get_drvdata(pdev);
5596
5597 if (!ice_pf_state_is_nominal(pf)) {
5598 dev_err(dev, "Device is not ready, no need to suspend it\n");
5599 return -EBUSY;
5600 }
5601
5602 /* Stop watchdog tasks until resume completion.
5603 * Even though it is most likely that the service task is
5604 * disabled if the device is suspended or down, the service task's
5605 * state is controlled by a different state bit, and we should
5606 * store and honor whatever state that bit is in at this point.
5607 */
5608 disabled = ice_service_task_stop(pf);
5609
5610 ice_deinit_rdma(pf);
5611
5612 /* Already suspended?, then there is nothing to do */
5613 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5614 if (!disabled)
5615 ice_service_task_restart(pf);
5616 return 0;
5617 }
5618
5619 if (test_bit(ICE_DOWN, pf->state) ||
5620 ice_is_reset_in_progress(pf->state)) {
5621 dev_err(dev, "can't suspend device in reset or already down\n");
5622 if (!disabled)
5623 ice_service_task_restart(pf);
5624 return 0;
5625 }
5626
5627 ice_setup_mc_magic_wake(pf);
5628
5629 ice_prepare_for_shutdown(pf);
5630
5631 ice_set_wake(pf);
5632
5633 /* Free vectors, clear the interrupt scheme and release IRQs
5634 * for proper hibernation, especially with large number of CPUs.
5635 * Otherwise hibernation might fail when mapping all the vectors back
5636 * to CPU0.
5637 */
5638 ice_free_irq_msix_misc(pf);
5639 ice_for_each_vsi(pf, v) {
5640 if (!pf->vsi[v])
5641 continue;
5642 rtnl_lock();
5643 ice_vsi_clear_napi_queues(pf->vsi[v]);
5644 rtnl_unlock();
5645 ice_vsi_free_q_vectors(pf->vsi[v]);
5646 }
5647 ice_clear_interrupt_scheme(pf);
5648
5649 pci_save_state(pdev);
5650 pci_wake_from_d3(pdev, pf->wol_ena);
5651 pci_set_power_state(pdev, PCI_D3hot);
5652 return 0;
5653 }
5654
5655 /**
5656 * ice_resume - PM callback for waking up from D3
5657 * @dev: generic device information structure
5658 */
ice_resume(struct device * dev)5659 static int ice_resume(struct device *dev)
5660 {
5661 struct pci_dev *pdev = to_pci_dev(dev);
5662 enum ice_reset_req reset_type;
5663 struct ice_pf *pf;
5664 struct ice_hw *hw;
5665 int ret;
5666
5667 pci_set_power_state(pdev, PCI_D0);
5668 pci_restore_state(pdev);
5669 pci_save_state(pdev);
5670
5671 if (!pci_device_is_present(pdev))
5672 return -ENODEV;
5673
5674 ret = pci_enable_device_mem(pdev);
5675 if (ret) {
5676 dev_err(dev, "Cannot enable device after suspend\n");
5677 return ret;
5678 }
5679
5680 pf = pci_get_drvdata(pdev);
5681 hw = &pf->hw;
5682
5683 pf->wakeup_reason = rd32(hw, PFPM_WUS);
5684 ice_print_wake_reason(pf);
5685
5686 /* We cleared the interrupt scheme when we suspended, so we need to
5687 * restore it now to resume device functionality.
5688 */
5689 ret = ice_reinit_interrupt_scheme(pf);
5690 if (ret)
5691 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5692
5693 ret = ice_init_rdma(pf);
5694 if (ret)
5695 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n",
5696 ret);
5697
5698 clear_bit(ICE_DOWN, pf->state);
5699 /* Now perform PF reset and rebuild */
5700 reset_type = ICE_RESET_PFR;
5701 /* re-enable service task for reset, but allow reset to schedule it */
5702 clear_bit(ICE_SERVICE_DIS, pf->state);
5703
5704 if (ice_schedule_reset(pf, reset_type))
5705 dev_err(dev, "Reset during resume failed.\n");
5706
5707 clear_bit(ICE_SUSPENDED, pf->state);
5708 ice_service_task_restart(pf);
5709
5710 /* Restart the service task */
5711 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5712
5713 return 0;
5714 }
5715
5716 /**
5717 * ice_pci_err_detected - warning that PCI error has been detected
5718 * @pdev: PCI device information struct
5719 * @err: the type of PCI error
5720 *
5721 * Called to warn that something happened on the PCI bus and the error handling
5722 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
5723 */
5724 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)5725 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5726 {
5727 struct ice_pf *pf = pci_get_drvdata(pdev);
5728
5729 if (!pf) {
5730 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5731 __func__, err);
5732 return PCI_ERS_RESULT_DISCONNECT;
5733 }
5734
5735 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5736 ice_service_task_stop(pf);
5737
5738 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5739 set_bit(ICE_PFR_REQ, pf->state);
5740 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5741 }
5742 }
5743
5744 return PCI_ERS_RESULT_NEED_RESET;
5745 }
5746
5747 /**
5748 * ice_pci_err_slot_reset - a PCI slot reset has just happened
5749 * @pdev: PCI device information struct
5750 *
5751 * Called to determine if the driver can recover from the PCI slot reset by
5752 * using a register read to determine if the device is recoverable.
5753 */
ice_pci_err_slot_reset(struct pci_dev * pdev)5754 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5755 {
5756 struct ice_pf *pf = pci_get_drvdata(pdev);
5757 pci_ers_result_t result;
5758 int err;
5759 u32 reg;
5760
5761 err = pci_enable_device_mem(pdev);
5762 if (err) {
5763 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5764 err);
5765 result = PCI_ERS_RESULT_DISCONNECT;
5766 } else {
5767 pci_set_master(pdev);
5768 pci_restore_state(pdev);
5769 pci_save_state(pdev);
5770 pci_wake_from_d3(pdev, false);
5771
5772 /* Check for life */
5773 reg = rd32(&pf->hw, GLGEN_RTRIG);
5774 if (!reg)
5775 result = PCI_ERS_RESULT_RECOVERED;
5776 else
5777 result = PCI_ERS_RESULT_DISCONNECT;
5778 }
5779
5780 return result;
5781 }
5782
5783 /**
5784 * ice_pci_err_resume - restart operations after PCI error recovery
5785 * @pdev: PCI device information struct
5786 *
5787 * Called to allow the driver to bring things back up after PCI error and/or
5788 * reset recovery have finished
5789 */
ice_pci_err_resume(struct pci_dev * pdev)5790 static void ice_pci_err_resume(struct pci_dev *pdev)
5791 {
5792 struct ice_pf *pf = pci_get_drvdata(pdev);
5793
5794 if (!pf) {
5795 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5796 __func__);
5797 return;
5798 }
5799
5800 if (test_bit(ICE_SUSPENDED, pf->state)) {
5801 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5802 __func__);
5803 return;
5804 }
5805
5806 ice_restore_all_vfs_msi_state(pf);
5807
5808 ice_do_reset(pf, ICE_RESET_PFR);
5809 ice_service_task_restart(pf);
5810 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5811 }
5812
5813 /**
5814 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5815 * @pdev: PCI device information struct
5816 */
ice_pci_err_reset_prepare(struct pci_dev * pdev)5817 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5818 {
5819 struct ice_pf *pf = pci_get_drvdata(pdev);
5820
5821 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5822 ice_service_task_stop(pf);
5823
5824 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5825 set_bit(ICE_PFR_REQ, pf->state);
5826 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5827 }
5828 }
5829 }
5830
5831 /**
5832 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5833 * @pdev: PCI device information struct
5834 */
ice_pci_err_reset_done(struct pci_dev * pdev)5835 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5836 {
5837 ice_pci_err_resume(pdev);
5838 }
5839
5840 /* ice_pci_tbl - PCI Device ID Table
5841 *
5842 * Wildcard entries (PCI_ANY_ID) should come last
5843 * Last entry must be all 0s
5844 *
5845 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5846 * Class, Class Mask, private data (not used) }
5847 */
5848 static const struct pci_device_id ice_pci_tbl[] = {
5849 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5850 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5851 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5852 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5853 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5854 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5855 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5856 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5857 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5858 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5859 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5860 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5861 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5862 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5863 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5864 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5865 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5866 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5867 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5868 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5869 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5870 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5871 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5872 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5873 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5874 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5875 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), },
5876 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), },
5877 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), },
5878 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), },
5879 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) },
5880 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) },
5881 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) },
5882 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) },
5883 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), },
5884 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), },
5885 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), },
5886 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), },
5887 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), },
5888 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), },
5889 /* required last entry */
5890 {}
5891 };
5892 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5893
5894 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5895
5896 static const struct pci_error_handlers ice_pci_err_handler = {
5897 .error_detected = ice_pci_err_detected,
5898 .slot_reset = ice_pci_err_slot_reset,
5899 .reset_prepare = ice_pci_err_reset_prepare,
5900 .reset_done = ice_pci_err_reset_done,
5901 .resume = ice_pci_err_resume
5902 };
5903
5904 static struct pci_driver ice_driver = {
5905 .name = KBUILD_MODNAME,
5906 .id_table = ice_pci_tbl,
5907 .probe = ice_probe,
5908 .remove = ice_remove,
5909 .driver.pm = pm_sleep_ptr(&ice_pm_ops),
5910 .shutdown = ice_shutdown,
5911 .sriov_configure = ice_sriov_configure,
5912 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5913 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5914 .err_handler = &ice_pci_err_handler
5915 };
5916
5917 /**
5918 * ice_module_init - Driver registration routine
5919 *
5920 * ice_module_init is the first routine called when the driver is
5921 * loaded. All it does is register with the PCI subsystem.
5922 */
ice_module_init(void)5923 static int __init ice_module_init(void)
5924 {
5925 int status = -ENOMEM;
5926
5927 pr_info("%s\n", ice_driver_string);
5928 pr_info("%s\n", ice_copyright);
5929
5930 ice_adv_lnk_speed_maps_init();
5931
5932 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
5933 if (!ice_wq) {
5934 pr_err("Failed to create workqueue\n");
5935 return status;
5936 }
5937
5938 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5939 if (!ice_lag_wq) {
5940 pr_err("Failed to create LAG workqueue\n");
5941 goto err_dest_wq;
5942 }
5943
5944 ice_debugfs_init();
5945
5946 status = pci_register_driver(&ice_driver);
5947 if (status) {
5948 pr_err("failed to register PCI driver, err %d\n", status);
5949 goto err_dest_lag_wq;
5950 }
5951
5952 status = ice_sf_driver_register();
5953 if (status) {
5954 pr_err("Failed to register SF driver, err %d\n", status);
5955 goto err_sf_driver;
5956 }
5957
5958 return 0;
5959
5960 err_sf_driver:
5961 pci_unregister_driver(&ice_driver);
5962 err_dest_lag_wq:
5963 destroy_workqueue(ice_lag_wq);
5964 ice_debugfs_exit();
5965 err_dest_wq:
5966 destroy_workqueue(ice_wq);
5967 return status;
5968 }
5969 module_init(ice_module_init);
5970
5971 /**
5972 * ice_module_exit - Driver exit cleanup routine
5973 *
5974 * ice_module_exit is called just before the driver is removed
5975 * from memory.
5976 */
ice_module_exit(void)5977 static void __exit ice_module_exit(void)
5978 {
5979 ice_sf_driver_unregister();
5980 pci_unregister_driver(&ice_driver);
5981 ice_debugfs_exit();
5982 destroy_workqueue(ice_wq);
5983 destroy_workqueue(ice_lag_wq);
5984 pr_info("module unloaded\n");
5985 }
5986 module_exit(ice_module_exit);
5987
5988 /**
5989 * ice_set_mac_address - NDO callback to set MAC address
5990 * @netdev: network interface device structure
5991 * @pi: pointer to an address structure
5992 *
5993 * Returns 0 on success, negative on failure
5994 */
ice_set_mac_address(struct net_device * netdev,void * pi)5995 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5996 {
5997 struct ice_netdev_priv *np = netdev_priv(netdev);
5998 struct ice_vsi *vsi = np->vsi;
5999 struct ice_pf *pf = vsi->back;
6000 struct ice_hw *hw = &pf->hw;
6001 struct sockaddr *addr = pi;
6002 u8 old_mac[ETH_ALEN];
6003 u8 flags = 0;
6004 u8 *mac;
6005 int err;
6006
6007 mac = (u8 *)addr->sa_data;
6008
6009 if (!is_valid_ether_addr(mac))
6010 return -EADDRNOTAVAIL;
6011
6012 if (test_bit(ICE_DOWN, pf->state) ||
6013 ice_is_reset_in_progress(pf->state)) {
6014 netdev_err(netdev, "can't set mac %pM. device not ready\n",
6015 mac);
6016 return -EBUSY;
6017 }
6018
6019 if (ice_chnl_dmac_fltr_cnt(pf)) {
6020 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
6021 mac);
6022 return -EAGAIN;
6023 }
6024
6025 netif_addr_lock_bh(netdev);
6026 ether_addr_copy(old_mac, netdev->dev_addr);
6027 /* change the netdev's MAC address */
6028 eth_hw_addr_set(netdev, mac);
6029 netif_addr_unlock_bh(netdev);
6030
6031 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
6032 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
6033 if (err && err != -ENOENT) {
6034 err = -EADDRNOTAVAIL;
6035 goto err_update_filters;
6036 }
6037
6038 /* Add filter for new MAC. If filter exists, return success */
6039 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
6040 if (err == -EEXIST) {
6041 /* Although this MAC filter is already present in hardware it's
6042 * possible in some cases (e.g. bonding) that dev_addr was
6043 * modified outside of the driver and needs to be restored back
6044 * to this value.
6045 */
6046 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
6047
6048 return 0;
6049 } else if (err) {
6050 /* error if the new filter addition failed */
6051 err = -EADDRNOTAVAIL;
6052 }
6053
6054 err_update_filters:
6055 if (err) {
6056 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
6057 mac);
6058 netif_addr_lock_bh(netdev);
6059 eth_hw_addr_set(netdev, old_mac);
6060 netif_addr_unlock_bh(netdev);
6061 return err;
6062 }
6063
6064 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
6065 netdev->dev_addr);
6066
6067 /* write new MAC address to the firmware */
6068 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
6069 err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
6070 if (err) {
6071 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
6072 mac, err);
6073 }
6074 return 0;
6075 }
6076
6077 /**
6078 * ice_set_rx_mode - NDO callback to set the netdev filters
6079 * @netdev: network interface device structure
6080 */
ice_set_rx_mode(struct net_device * netdev)6081 static void ice_set_rx_mode(struct net_device *netdev)
6082 {
6083 struct ice_netdev_priv *np = netdev_priv(netdev);
6084 struct ice_vsi *vsi = np->vsi;
6085
6086 if (!vsi || ice_is_switchdev_running(vsi->back))
6087 return;
6088
6089 /* Set the flags to synchronize filters
6090 * ndo_set_rx_mode may be triggered even without a change in netdev
6091 * flags
6092 */
6093 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
6094 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
6095 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
6096
6097 /* schedule our worker thread which will take care of
6098 * applying the new filter changes
6099 */
6100 ice_service_task_schedule(vsi->back);
6101 }
6102
6103 /**
6104 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
6105 * @netdev: network interface device structure
6106 * @queue_index: Queue ID
6107 * @maxrate: maximum bandwidth in Mbps
6108 */
6109 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)6110 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
6111 {
6112 struct ice_netdev_priv *np = netdev_priv(netdev);
6113 struct ice_vsi *vsi = np->vsi;
6114 u16 q_handle;
6115 int status;
6116 u8 tc;
6117
6118 /* Validate maxrate requested is within permitted range */
6119 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
6120 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
6121 maxrate, queue_index);
6122 return -EINVAL;
6123 }
6124
6125 q_handle = vsi->tx_rings[queue_index]->q_handle;
6126 tc = ice_dcb_get_tc(vsi, queue_index);
6127
6128 vsi = ice_locate_vsi_using_queue(vsi, queue_index);
6129 if (!vsi) {
6130 netdev_err(netdev, "Invalid VSI for given queue %d\n",
6131 queue_index);
6132 return -EINVAL;
6133 }
6134
6135 /* Set BW back to default, when user set maxrate to 0 */
6136 if (!maxrate)
6137 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
6138 q_handle, ICE_MAX_BW);
6139 else
6140 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
6141 q_handle, ICE_MAX_BW, maxrate * 1000);
6142 if (status)
6143 netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
6144 status);
6145
6146 return status;
6147 }
6148
6149 /**
6150 * ice_fdb_add - add an entry to the hardware database
6151 * @ndm: the input from the stack
6152 * @tb: pointer to array of nladdr (unused)
6153 * @dev: the net device pointer
6154 * @addr: the MAC address entry being added
6155 * @vid: VLAN ID
6156 * @flags: instructions from stack about fdb operation
6157 * @extack: netlink extended ack
6158 */
6159 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack __always_unused * extack)6160 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
6161 struct net_device *dev, const unsigned char *addr, u16 vid,
6162 u16 flags, struct netlink_ext_ack __always_unused *extack)
6163 {
6164 int err;
6165
6166 if (vid) {
6167 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
6168 return -EINVAL;
6169 }
6170 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
6171 netdev_err(dev, "FDB only supports static addresses\n");
6172 return -EINVAL;
6173 }
6174
6175 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
6176 err = dev_uc_add_excl(dev, addr);
6177 else if (is_multicast_ether_addr(addr))
6178 err = dev_mc_add_excl(dev, addr);
6179 else
6180 err = -EINVAL;
6181
6182 /* Only return duplicate errors if NLM_F_EXCL is set */
6183 if (err == -EEXIST && !(flags & NLM_F_EXCL))
6184 err = 0;
6185
6186 return err;
6187 }
6188
6189 /**
6190 * ice_fdb_del - delete an entry from the hardware database
6191 * @ndm: the input from the stack
6192 * @tb: pointer to array of nladdr (unused)
6193 * @dev: the net device pointer
6194 * @addr: the MAC address entry being added
6195 * @vid: VLAN ID
6196 * @extack: netlink extended ack
6197 */
6198 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid,struct netlink_ext_ack * extack)6199 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
6200 struct net_device *dev, const unsigned char *addr,
6201 __always_unused u16 vid, struct netlink_ext_ack *extack)
6202 {
6203 int err;
6204
6205 if (ndm->ndm_state & NUD_PERMANENT) {
6206 netdev_err(dev, "FDB only supports static addresses\n");
6207 return -EINVAL;
6208 }
6209
6210 if (is_unicast_ether_addr(addr))
6211 err = dev_uc_del(dev, addr);
6212 else if (is_multicast_ether_addr(addr))
6213 err = dev_mc_del(dev, addr);
6214 else
6215 err = -EINVAL;
6216
6217 return err;
6218 }
6219
6220 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6221 NETIF_F_HW_VLAN_CTAG_TX | \
6222 NETIF_F_HW_VLAN_STAG_RX | \
6223 NETIF_F_HW_VLAN_STAG_TX)
6224
6225 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6226 NETIF_F_HW_VLAN_STAG_RX)
6227
6228 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \
6229 NETIF_F_HW_VLAN_STAG_FILTER)
6230
6231 /**
6232 * ice_fix_features - fix the netdev features flags based on device limitations
6233 * @netdev: ptr to the netdev that flags are being fixed on
6234 * @features: features that need to be checked and possibly fixed
6235 *
6236 * Make sure any fixups are made to features in this callback. This enables the
6237 * driver to not have to check unsupported configurations throughout the driver
6238 * because that's the responsiblity of this callback.
6239 *
6240 * Single VLAN Mode (SVM) Supported Features:
6241 * NETIF_F_HW_VLAN_CTAG_FILTER
6242 * NETIF_F_HW_VLAN_CTAG_RX
6243 * NETIF_F_HW_VLAN_CTAG_TX
6244 *
6245 * Double VLAN Mode (DVM) Supported Features:
6246 * NETIF_F_HW_VLAN_CTAG_FILTER
6247 * NETIF_F_HW_VLAN_CTAG_RX
6248 * NETIF_F_HW_VLAN_CTAG_TX
6249 *
6250 * NETIF_F_HW_VLAN_STAG_FILTER
6251 * NETIF_HW_VLAN_STAG_RX
6252 * NETIF_HW_VLAN_STAG_TX
6253 *
6254 * Features that need fixing:
6255 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
6256 * These are mutually exlusive as the VSI context cannot support multiple
6257 * VLAN ethertypes simultaneously for stripping and/or insertion. If this
6258 * is not done, then default to clearing the requested STAG offload
6259 * settings.
6260 *
6261 * All supported filtering has to be enabled or disabled together. For
6262 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled
6263 * together. If this is not done, then default to VLAN filtering disabled.
6264 * These are mutually exclusive as there is currently no way to
6265 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN
6266 * prune rules.
6267 */
6268 static netdev_features_t
ice_fix_features(struct net_device * netdev,netdev_features_t features)6269 ice_fix_features(struct net_device *netdev, netdev_features_t features)
6270 {
6271 struct ice_netdev_priv *np = netdev_priv(netdev);
6272 netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6273 bool cur_ctag, cur_stag, req_ctag, req_stag;
6274
6275 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6276 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6277 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6278
6279 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6280 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6281 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6282
6283 if (req_vlan_fltr != cur_vlan_fltr) {
6284 if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6285 if (req_ctag && req_stag) {
6286 features |= NETIF_VLAN_FILTERING_FEATURES;
6287 } else if (!req_ctag && !req_stag) {
6288 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6289 } else if ((!cur_ctag && req_ctag && !cur_stag) ||
6290 (!cur_stag && req_stag && !cur_ctag)) {
6291 features |= NETIF_VLAN_FILTERING_FEATURES;
6292 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6293 } else if ((cur_ctag && !req_ctag && cur_stag) ||
6294 (cur_stag && !req_stag && cur_ctag)) {
6295 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6296 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6297 }
6298 } else {
6299 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6300 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6301
6302 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6303 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6304 }
6305 }
6306
6307 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6308 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6309 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6310 features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6311 NETIF_F_HW_VLAN_STAG_TX);
6312 }
6313
6314 if (!(netdev->features & NETIF_F_RXFCS) &&
6315 (features & NETIF_F_RXFCS) &&
6316 (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6317 !ice_vsi_has_non_zero_vlans(np->vsi)) {
6318 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6319 features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6320 }
6321
6322 return features;
6323 }
6324
6325 /**
6326 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto
6327 * @vsi: PF's VSI
6328 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order
6329 *
6330 * Store current stripped VLAN proto in ring packet context,
6331 * so it can be accessed more efficiently by packet processing code.
6332 */
6333 static void
ice_set_rx_rings_vlan_proto(struct ice_vsi * vsi,__be16 vlan_ethertype)6334 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype)
6335 {
6336 u16 i;
6337
6338 ice_for_each_alloc_rxq(vsi, i)
6339 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype;
6340 }
6341
6342 /**
6343 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6344 * @vsi: PF's VSI
6345 * @features: features used to determine VLAN offload settings
6346 *
6347 * First, determine the vlan_ethertype based on the VLAN offload bits in
6348 * features. Then determine if stripping and insertion should be enabled or
6349 * disabled. Finally enable or disable VLAN stripping and insertion.
6350 */
6351 static int
ice_set_vlan_offload_features(struct ice_vsi * vsi,netdev_features_t features)6352 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6353 {
6354 bool enable_stripping = true, enable_insertion = true;
6355 struct ice_vsi_vlan_ops *vlan_ops;
6356 int strip_err = 0, insert_err = 0;
6357 u16 vlan_ethertype = 0;
6358
6359 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6360
6361 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6362 vlan_ethertype = ETH_P_8021AD;
6363 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6364 vlan_ethertype = ETH_P_8021Q;
6365
6366 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6367 enable_stripping = false;
6368 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6369 enable_insertion = false;
6370
6371 if (enable_stripping)
6372 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6373 else
6374 strip_err = vlan_ops->dis_stripping(vsi);
6375
6376 if (enable_insertion)
6377 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6378 else
6379 insert_err = vlan_ops->dis_insertion(vsi);
6380
6381 if (strip_err || insert_err)
6382 return -EIO;
6383
6384 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ?
6385 htons(vlan_ethertype) : 0);
6386
6387 return 0;
6388 }
6389
6390 /**
6391 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6392 * @vsi: PF's VSI
6393 * @features: features used to determine VLAN filtering settings
6394 *
6395 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6396 * features.
6397 */
6398 static int
ice_set_vlan_filtering_features(struct ice_vsi * vsi,netdev_features_t features)6399 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6400 {
6401 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6402 int err = 0;
6403
6404 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6405 * if either bit is set. In switchdev mode Rx filtering should never be
6406 * enabled.
6407 */
6408 if ((features &
6409 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) &&
6410 !ice_is_eswitch_mode_switchdev(vsi->back))
6411 err = vlan_ops->ena_rx_filtering(vsi);
6412 else
6413 err = vlan_ops->dis_rx_filtering(vsi);
6414
6415 return err;
6416 }
6417
6418 /**
6419 * ice_set_vlan_features - set VLAN settings based on suggested feature set
6420 * @netdev: ptr to the netdev being adjusted
6421 * @features: the feature set that the stack is suggesting
6422 *
6423 * Only update VLAN settings if the requested_vlan_features are different than
6424 * the current_vlan_features.
6425 */
6426 static int
ice_set_vlan_features(struct net_device * netdev,netdev_features_t features)6427 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6428 {
6429 netdev_features_t current_vlan_features, requested_vlan_features;
6430 struct ice_netdev_priv *np = netdev_priv(netdev);
6431 struct ice_vsi *vsi = np->vsi;
6432 int err;
6433
6434 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6435 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6436 if (current_vlan_features ^ requested_vlan_features) {
6437 if ((features & NETIF_F_RXFCS) &&
6438 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6439 dev_err(ice_pf_to_dev(vsi->back),
6440 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6441 return -EIO;
6442 }
6443
6444 err = ice_set_vlan_offload_features(vsi, features);
6445 if (err)
6446 return err;
6447 }
6448
6449 current_vlan_features = netdev->features &
6450 NETIF_VLAN_FILTERING_FEATURES;
6451 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6452 if (current_vlan_features ^ requested_vlan_features) {
6453 err = ice_set_vlan_filtering_features(vsi, features);
6454 if (err)
6455 return err;
6456 }
6457
6458 return 0;
6459 }
6460
6461 /**
6462 * ice_set_loopback - turn on/off loopback mode on underlying PF
6463 * @vsi: ptr to VSI
6464 * @ena: flag to indicate the on/off setting
6465 */
ice_set_loopback(struct ice_vsi * vsi,bool ena)6466 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6467 {
6468 bool if_running = netif_running(vsi->netdev);
6469 int ret;
6470
6471 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6472 ret = ice_down(vsi);
6473 if (ret) {
6474 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6475 return ret;
6476 }
6477 }
6478 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6479 if (ret)
6480 netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6481 if (if_running)
6482 ret = ice_up(vsi);
6483
6484 return ret;
6485 }
6486
6487 /**
6488 * ice_set_features - set the netdev feature flags
6489 * @netdev: ptr to the netdev being adjusted
6490 * @features: the feature set that the stack is suggesting
6491 */
6492 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)6493 ice_set_features(struct net_device *netdev, netdev_features_t features)
6494 {
6495 netdev_features_t changed = netdev->features ^ features;
6496 struct ice_netdev_priv *np = netdev_priv(netdev);
6497 struct ice_vsi *vsi = np->vsi;
6498 struct ice_pf *pf = vsi->back;
6499 int ret = 0;
6500
6501 /* Don't set any netdev advanced features with device in Safe Mode */
6502 if (ice_is_safe_mode(pf)) {
6503 dev_err(ice_pf_to_dev(pf),
6504 "Device is in Safe Mode - not enabling advanced netdev features\n");
6505 return ret;
6506 }
6507
6508 /* Do not change setting during reset */
6509 if (ice_is_reset_in_progress(pf->state)) {
6510 dev_err(ice_pf_to_dev(pf),
6511 "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6512 return -EBUSY;
6513 }
6514
6515 /* Multiple features can be changed in one call so keep features in
6516 * separate if/else statements to guarantee each feature is checked
6517 */
6518 if (changed & NETIF_F_RXHASH)
6519 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6520
6521 ret = ice_set_vlan_features(netdev, features);
6522 if (ret)
6523 return ret;
6524
6525 /* Turn on receive of FCS aka CRC, and after setting this
6526 * flag the packet data will have the 4 byte CRC appended
6527 */
6528 if (changed & NETIF_F_RXFCS) {
6529 if ((features & NETIF_F_RXFCS) &&
6530 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6531 dev_err(ice_pf_to_dev(vsi->back),
6532 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6533 return -EIO;
6534 }
6535
6536 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6537 ret = ice_down_up(vsi);
6538 if (ret)
6539 return ret;
6540 }
6541
6542 if (changed & NETIF_F_NTUPLE) {
6543 bool ena = !!(features & NETIF_F_NTUPLE);
6544
6545 ice_vsi_manage_fdir(vsi, ena);
6546 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6547 }
6548
6549 /* don't turn off hw_tc_offload when ADQ is already enabled */
6550 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6551 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6552 return -EACCES;
6553 }
6554
6555 if (changed & NETIF_F_HW_TC) {
6556 bool ena = !!(features & NETIF_F_HW_TC);
6557
6558 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6559 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6560 }
6561
6562 if (changed & NETIF_F_LOOPBACK)
6563 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6564
6565 return ret;
6566 }
6567
6568 /**
6569 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6570 * @vsi: VSI to setup VLAN properties for
6571 */
ice_vsi_vlan_setup(struct ice_vsi * vsi)6572 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6573 {
6574 int err;
6575
6576 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6577 if (err)
6578 return err;
6579
6580 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6581 if (err)
6582 return err;
6583
6584 return ice_vsi_add_vlan_zero(vsi);
6585 }
6586
6587 /**
6588 * ice_vsi_cfg_lan - Setup the VSI lan related config
6589 * @vsi: the VSI being configured
6590 *
6591 * Return 0 on success and negative value on error
6592 */
ice_vsi_cfg_lan(struct ice_vsi * vsi)6593 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6594 {
6595 int err;
6596
6597 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6598 ice_set_rx_mode(vsi->netdev);
6599
6600 err = ice_vsi_vlan_setup(vsi);
6601 if (err)
6602 return err;
6603 }
6604 ice_vsi_cfg_dcb_rings(vsi);
6605
6606 err = ice_vsi_cfg_lan_txqs(vsi);
6607 if (!err && ice_is_xdp_ena_vsi(vsi))
6608 err = ice_vsi_cfg_xdp_txqs(vsi);
6609 if (!err)
6610 err = ice_vsi_cfg_rxqs(vsi);
6611
6612 return err;
6613 }
6614
6615 /* THEORY OF MODERATION:
6616 * The ice driver hardware works differently than the hardware that DIMLIB was
6617 * originally made for. ice hardware doesn't have packet count limits that
6618 * can trigger an interrupt, but it *does* have interrupt rate limit support,
6619 * which is hard-coded to a limit of 250,000 ints/second.
6620 * If not using dynamic moderation, the INTRL value can be modified
6621 * by ethtool rx-usecs-high.
6622 */
6623 struct ice_dim {
6624 /* the throttle rate for interrupts, basically worst case delay before
6625 * an initial interrupt fires, value is stored in microseconds.
6626 */
6627 u16 itr;
6628 };
6629
6630 /* Make a different profile for Rx that doesn't allow quite so aggressive
6631 * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6632 * second.
6633 */
6634 static const struct ice_dim rx_profile[] = {
6635 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6636 {8}, /* 125,000 ints/s */
6637 {16}, /* 62,500 ints/s */
6638 {62}, /* 16,129 ints/s */
6639 {126} /* 7,936 ints/s */
6640 };
6641
6642 /* The transmit profile, which has the same sorts of values
6643 * as the previous struct
6644 */
6645 static const struct ice_dim tx_profile[] = {
6646 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6647 {8}, /* 125,000 ints/s */
6648 {40}, /* 16,125 ints/s */
6649 {128}, /* 7,812 ints/s */
6650 {256} /* 3,906 ints/s */
6651 };
6652
ice_tx_dim_work(struct work_struct * work)6653 static void ice_tx_dim_work(struct work_struct *work)
6654 {
6655 struct ice_ring_container *rc;
6656 struct dim *dim;
6657 u16 itr;
6658
6659 dim = container_of(work, struct dim, work);
6660 rc = dim->priv;
6661
6662 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6663
6664 /* look up the values in our local table */
6665 itr = tx_profile[dim->profile_ix].itr;
6666
6667 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6668 ice_write_itr(rc, itr);
6669
6670 dim->state = DIM_START_MEASURE;
6671 }
6672
ice_rx_dim_work(struct work_struct * work)6673 static void ice_rx_dim_work(struct work_struct *work)
6674 {
6675 struct ice_ring_container *rc;
6676 struct dim *dim;
6677 u16 itr;
6678
6679 dim = container_of(work, struct dim, work);
6680 rc = dim->priv;
6681
6682 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6683
6684 /* look up the values in our local table */
6685 itr = rx_profile[dim->profile_ix].itr;
6686
6687 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6688 ice_write_itr(rc, itr);
6689
6690 dim->state = DIM_START_MEASURE;
6691 }
6692
6693 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6694
6695 /**
6696 * ice_init_moderation - set up interrupt moderation
6697 * @q_vector: the vector containing rings to be configured
6698 *
6699 * Set up interrupt moderation registers, with the intent to do the right thing
6700 * when called from reset or from probe, and whether or not dynamic moderation
6701 * is enabled or not. Take special care to write all the registers in both
6702 * dynamic moderation mode or not in order to make sure hardware is in a known
6703 * state.
6704 */
ice_init_moderation(struct ice_q_vector * q_vector)6705 static void ice_init_moderation(struct ice_q_vector *q_vector)
6706 {
6707 struct ice_ring_container *rc;
6708 bool tx_dynamic, rx_dynamic;
6709
6710 rc = &q_vector->tx;
6711 INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6712 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6713 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6714 rc->dim.priv = rc;
6715 tx_dynamic = ITR_IS_DYNAMIC(rc);
6716
6717 /* set the initial TX ITR to match the above */
6718 ice_write_itr(rc, tx_dynamic ?
6719 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6720
6721 rc = &q_vector->rx;
6722 INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6723 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6724 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6725 rc->dim.priv = rc;
6726 rx_dynamic = ITR_IS_DYNAMIC(rc);
6727
6728 /* set the initial RX ITR to match the above */
6729 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6730 rc->itr_setting);
6731
6732 ice_set_q_vector_intrl(q_vector);
6733 }
6734
6735 /**
6736 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6737 * @vsi: the VSI being configured
6738 */
ice_napi_enable_all(struct ice_vsi * vsi)6739 static void ice_napi_enable_all(struct ice_vsi *vsi)
6740 {
6741 int q_idx;
6742
6743 if (!vsi->netdev)
6744 return;
6745
6746 ice_for_each_q_vector(vsi, q_idx) {
6747 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6748
6749 ice_init_moderation(q_vector);
6750
6751 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6752 napi_enable(&q_vector->napi);
6753 }
6754 }
6755
6756 /**
6757 * ice_up_complete - Finish the last steps of bringing up a connection
6758 * @vsi: The VSI being configured
6759 *
6760 * Return 0 on success and negative value on error
6761 */
ice_up_complete(struct ice_vsi * vsi)6762 static int ice_up_complete(struct ice_vsi *vsi)
6763 {
6764 struct ice_pf *pf = vsi->back;
6765 int err;
6766
6767 ice_vsi_cfg_msix(vsi);
6768
6769 /* Enable only Rx rings, Tx rings were enabled by the FW when the
6770 * Tx queue group list was configured and the context bits were
6771 * programmed using ice_vsi_cfg_txqs
6772 */
6773 err = ice_vsi_start_all_rx_rings(vsi);
6774 if (err)
6775 return err;
6776
6777 clear_bit(ICE_VSI_DOWN, vsi->state);
6778 ice_napi_enable_all(vsi);
6779 ice_vsi_ena_irq(vsi);
6780
6781 if (vsi->port_info &&
6782 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6783 ((vsi->netdev && (vsi->type == ICE_VSI_PF ||
6784 vsi->type == ICE_VSI_SF)))) {
6785 ice_print_link_msg(vsi, true);
6786 netif_tx_start_all_queues(vsi->netdev);
6787 netif_carrier_on(vsi->netdev);
6788 ice_ptp_link_change(pf, true);
6789 }
6790
6791 /* Perform an initial read of the statistics registers now to
6792 * set the baseline so counters are ready when interface is up
6793 */
6794 ice_update_eth_stats(vsi);
6795
6796 if (vsi->type == ICE_VSI_PF)
6797 ice_service_task_schedule(pf);
6798
6799 return 0;
6800 }
6801
6802 /**
6803 * ice_up - Bring the connection back up after being down
6804 * @vsi: VSI being configured
6805 */
ice_up(struct ice_vsi * vsi)6806 int ice_up(struct ice_vsi *vsi)
6807 {
6808 int err;
6809
6810 err = ice_vsi_cfg_lan(vsi);
6811 if (!err)
6812 err = ice_up_complete(vsi);
6813
6814 return err;
6815 }
6816
6817 /**
6818 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6819 * @syncp: pointer to u64_stats_sync
6820 * @stats: stats that pkts and bytes count will be taken from
6821 * @pkts: packets stats counter
6822 * @bytes: bytes stats counter
6823 *
6824 * This function fetches stats from the ring considering the atomic operations
6825 * that needs to be performed to read u64 values in 32 bit machine.
6826 */
6827 void
ice_fetch_u64_stats_per_ring(struct u64_stats_sync * syncp,struct ice_q_stats stats,u64 * pkts,u64 * bytes)6828 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6829 struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6830 {
6831 unsigned int start;
6832
6833 do {
6834 start = u64_stats_fetch_begin(syncp);
6835 *pkts = stats.pkts;
6836 *bytes = stats.bytes;
6837 } while (u64_stats_fetch_retry(syncp, start));
6838 }
6839
6840 /**
6841 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6842 * @vsi: the VSI to be updated
6843 * @vsi_stats: the stats struct to be updated
6844 * @rings: rings to work on
6845 * @count: number of rings
6846 */
6847 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct rtnl_link_stats64 * vsi_stats,struct ice_tx_ring ** rings,u16 count)6848 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6849 struct rtnl_link_stats64 *vsi_stats,
6850 struct ice_tx_ring **rings, u16 count)
6851 {
6852 u16 i;
6853
6854 for (i = 0; i < count; i++) {
6855 struct ice_tx_ring *ring;
6856 u64 pkts = 0, bytes = 0;
6857
6858 ring = READ_ONCE(rings[i]);
6859 if (!ring || !ring->ring_stats)
6860 continue;
6861 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6862 ring->ring_stats->stats, &pkts,
6863 &bytes);
6864 vsi_stats->tx_packets += pkts;
6865 vsi_stats->tx_bytes += bytes;
6866 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6867 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6868 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6869 }
6870 }
6871
6872 /**
6873 * ice_update_vsi_ring_stats - Update VSI stats counters
6874 * @vsi: the VSI to be updated
6875 */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)6876 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6877 {
6878 struct rtnl_link_stats64 *net_stats, *stats_prev;
6879 struct rtnl_link_stats64 *vsi_stats;
6880 struct ice_pf *pf = vsi->back;
6881 u64 pkts, bytes;
6882 int i;
6883
6884 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6885 if (!vsi_stats)
6886 return;
6887
6888 /* reset non-netdev (extended) stats */
6889 vsi->tx_restart = 0;
6890 vsi->tx_busy = 0;
6891 vsi->tx_linearize = 0;
6892 vsi->rx_buf_failed = 0;
6893 vsi->rx_page_failed = 0;
6894
6895 rcu_read_lock();
6896
6897 /* update Tx rings counters */
6898 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6899 vsi->num_txq);
6900
6901 /* update Rx rings counters */
6902 ice_for_each_rxq(vsi, i) {
6903 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6904 struct ice_ring_stats *ring_stats;
6905
6906 ring_stats = ring->ring_stats;
6907 ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6908 ring_stats->stats, &pkts,
6909 &bytes);
6910 vsi_stats->rx_packets += pkts;
6911 vsi_stats->rx_bytes += bytes;
6912 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6913 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6914 }
6915
6916 /* update XDP Tx rings counters */
6917 if (ice_is_xdp_ena_vsi(vsi))
6918 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6919 vsi->num_xdp_txq);
6920
6921 rcu_read_unlock();
6922
6923 net_stats = &vsi->net_stats;
6924 stats_prev = &vsi->net_stats_prev;
6925
6926 /* Update netdev counters, but keep in mind that values could start at
6927 * random value after PF reset. And as we increase the reported stat by
6928 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not,
6929 * let's skip this round.
6930 */
6931 if (likely(pf->stat_prev_loaded)) {
6932 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6933 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6934 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6935 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6936 }
6937
6938 stats_prev->tx_packets = vsi_stats->tx_packets;
6939 stats_prev->tx_bytes = vsi_stats->tx_bytes;
6940 stats_prev->rx_packets = vsi_stats->rx_packets;
6941 stats_prev->rx_bytes = vsi_stats->rx_bytes;
6942
6943 kfree(vsi_stats);
6944 }
6945
6946 /**
6947 * ice_update_vsi_stats - Update VSI stats counters
6948 * @vsi: the VSI to be updated
6949 */
ice_update_vsi_stats(struct ice_vsi * vsi)6950 void ice_update_vsi_stats(struct ice_vsi *vsi)
6951 {
6952 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6953 struct ice_eth_stats *cur_es = &vsi->eth_stats;
6954 struct ice_pf *pf = vsi->back;
6955
6956 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6957 test_bit(ICE_CFG_BUSY, pf->state))
6958 return;
6959
6960 /* get stats as recorded by Tx/Rx rings */
6961 ice_update_vsi_ring_stats(vsi);
6962
6963 /* get VSI stats as recorded by the hardware */
6964 ice_update_eth_stats(vsi);
6965
6966 cur_ns->tx_errors = cur_es->tx_errors;
6967 cur_ns->rx_dropped = cur_es->rx_discards;
6968 cur_ns->tx_dropped = cur_es->tx_discards;
6969 cur_ns->multicast = cur_es->rx_multicast;
6970
6971 /* update some more netdev stats if this is main VSI */
6972 if (vsi->type == ICE_VSI_PF) {
6973 cur_ns->rx_crc_errors = pf->stats.crc_errors;
6974 cur_ns->rx_errors = pf->stats.crc_errors +
6975 pf->stats.illegal_bytes +
6976 pf->stats.rx_undersize +
6977 pf->hw_csum_rx_error +
6978 pf->stats.rx_jabber +
6979 pf->stats.rx_fragments +
6980 pf->stats.rx_oversize;
6981 /* record drops from the port level */
6982 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6983 }
6984 }
6985
6986 /**
6987 * ice_update_pf_stats - Update PF port stats counters
6988 * @pf: PF whose stats needs to be updated
6989 */
ice_update_pf_stats(struct ice_pf * pf)6990 void ice_update_pf_stats(struct ice_pf *pf)
6991 {
6992 struct ice_hw_port_stats *prev_ps, *cur_ps;
6993 struct ice_hw *hw = &pf->hw;
6994 u16 fd_ctr_base;
6995 u8 port;
6996
6997 port = hw->port_info->lport;
6998 prev_ps = &pf->stats_prev;
6999 cur_ps = &pf->stats;
7000
7001 if (ice_is_reset_in_progress(pf->state))
7002 pf->stat_prev_loaded = false;
7003
7004 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
7005 &prev_ps->eth.rx_bytes,
7006 &cur_ps->eth.rx_bytes);
7007
7008 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
7009 &prev_ps->eth.rx_unicast,
7010 &cur_ps->eth.rx_unicast);
7011
7012 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
7013 &prev_ps->eth.rx_multicast,
7014 &cur_ps->eth.rx_multicast);
7015
7016 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
7017 &prev_ps->eth.rx_broadcast,
7018 &cur_ps->eth.rx_broadcast);
7019
7020 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
7021 &prev_ps->eth.rx_discards,
7022 &cur_ps->eth.rx_discards);
7023
7024 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
7025 &prev_ps->eth.tx_bytes,
7026 &cur_ps->eth.tx_bytes);
7027
7028 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
7029 &prev_ps->eth.tx_unicast,
7030 &cur_ps->eth.tx_unicast);
7031
7032 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
7033 &prev_ps->eth.tx_multicast,
7034 &cur_ps->eth.tx_multicast);
7035
7036 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
7037 &prev_ps->eth.tx_broadcast,
7038 &cur_ps->eth.tx_broadcast);
7039
7040 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
7041 &prev_ps->tx_dropped_link_down,
7042 &cur_ps->tx_dropped_link_down);
7043
7044 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
7045 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
7046
7047 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
7048 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
7049
7050 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
7051 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
7052
7053 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
7054 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
7055
7056 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
7057 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
7058
7059 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
7060 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
7061
7062 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
7063 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
7064
7065 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
7066 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
7067
7068 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
7069 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
7070
7071 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
7072 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
7073
7074 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
7075 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
7076
7077 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
7078 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
7079
7080 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
7081 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
7082
7083 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
7084 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
7085
7086 fd_ctr_base = hw->fd_ctr_base;
7087
7088 ice_stat_update40(hw,
7089 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
7090 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
7091 &cur_ps->fd_sb_match);
7092 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
7093 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
7094
7095 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
7096 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
7097
7098 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
7099 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
7100
7101 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
7102 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
7103
7104 ice_update_dcb_stats(pf);
7105
7106 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
7107 &prev_ps->crc_errors, &cur_ps->crc_errors);
7108
7109 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
7110 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
7111
7112 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
7113 &prev_ps->mac_local_faults,
7114 &cur_ps->mac_local_faults);
7115
7116 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
7117 &prev_ps->mac_remote_faults,
7118 &cur_ps->mac_remote_faults);
7119
7120 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
7121 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
7122
7123 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
7124 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
7125
7126 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
7127 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
7128
7129 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
7130 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
7131
7132 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
7133
7134 pf->stat_prev_loaded = true;
7135 }
7136
7137 /**
7138 * ice_get_stats64 - get statistics for network device structure
7139 * @netdev: network interface device structure
7140 * @stats: main device statistics structure
7141 */
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)7142 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
7143 {
7144 struct ice_netdev_priv *np = netdev_priv(netdev);
7145 struct rtnl_link_stats64 *vsi_stats;
7146 struct ice_vsi *vsi = np->vsi;
7147
7148 vsi_stats = &vsi->net_stats;
7149
7150 if (!vsi->num_txq || !vsi->num_rxq)
7151 return;
7152
7153 /* netdev packet/byte stats come from ring counter. These are obtained
7154 * by summing up ring counters (done by ice_update_vsi_ring_stats).
7155 * But, only call the update routine and read the registers if VSI is
7156 * not down.
7157 */
7158 if (!test_bit(ICE_VSI_DOWN, vsi->state))
7159 ice_update_vsi_ring_stats(vsi);
7160 stats->tx_packets = vsi_stats->tx_packets;
7161 stats->tx_bytes = vsi_stats->tx_bytes;
7162 stats->rx_packets = vsi_stats->rx_packets;
7163 stats->rx_bytes = vsi_stats->rx_bytes;
7164
7165 /* The rest of the stats can be read from the hardware but instead we
7166 * just return values that the watchdog task has already obtained from
7167 * the hardware.
7168 */
7169 stats->multicast = vsi_stats->multicast;
7170 stats->tx_errors = vsi_stats->tx_errors;
7171 stats->tx_dropped = vsi_stats->tx_dropped;
7172 stats->rx_errors = vsi_stats->rx_errors;
7173 stats->rx_dropped = vsi_stats->rx_dropped;
7174 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
7175 stats->rx_length_errors = vsi_stats->rx_length_errors;
7176 }
7177
7178 /**
7179 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
7180 * @vsi: VSI having NAPI disabled
7181 */
ice_napi_disable_all(struct ice_vsi * vsi)7182 static void ice_napi_disable_all(struct ice_vsi *vsi)
7183 {
7184 int q_idx;
7185
7186 if (!vsi->netdev)
7187 return;
7188
7189 ice_for_each_q_vector(vsi, q_idx) {
7190 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
7191
7192 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
7193 napi_disable(&q_vector->napi);
7194
7195 cancel_work_sync(&q_vector->tx.dim.work);
7196 cancel_work_sync(&q_vector->rx.dim.work);
7197 }
7198 }
7199
7200 /**
7201 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
7202 * @vsi: the VSI being un-configured
7203 */
ice_vsi_dis_irq(struct ice_vsi * vsi)7204 static void ice_vsi_dis_irq(struct ice_vsi *vsi)
7205 {
7206 struct ice_pf *pf = vsi->back;
7207 struct ice_hw *hw = &pf->hw;
7208 u32 val;
7209 int i;
7210
7211 /* disable interrupt causation from each Rx queue; Tx queues are
7212 * handled in ice_vsi_stop_tx_ring()
7213 */
7214 if (vsi->rx_rings) {
7215 ice_for_each_rxq(vsi, i) {
7216 if (vsi->rx_rings[i]) {
7217 u16 reg;
7218
7219 reg = vsi->rx_rings[i]->reg_idx;
7220 val = rd32(hw, QINT_RQCTL(reg));
7221 val &= ~QINT_RQCTL_CAUSE_ENA_M;
7222 wr32(hw, QINT_RQCTL(reg), val);
7223 }
7224 }
7225 }
7226
7227 /* disable each interrupt */
7228 ice_for_each_q_vector(vsi, i) {
7229 if (!vsi->q_vectors[i])
7230 continue;
7231 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
7232 }
7233
7234 ice_flush(hw);
7235
7236 /* don't call synchronize_irq() for VF's from the host */
7237 if (vsi->type == ICE_VSI_VF)
7238 return;
7239
7240 ice_for_each_q_vector(vsi, i)
7241 synchronize_irq(vsi->q_vectors[i]->irq.virq);
7242 }
7243
7244 /**
7245 * ice_down - Shutdown the connection
7246 * @vsi: The VSI being stopped
7247 *
7248 * Caller of this function is expected to set the vsi->state ICE_DOWN bit
7249 */
ice_down(struct ice_vsi * vsi)7250 int ice_down(struct ice_vsi *vsi)
7251 {
7252 int i, tx_err, rx_err, vlan_err = 0;
7253
7254 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
7255
7256 if (vsi->netdev) {
7257 vlan_err = ice_vsi_del_vlan_zero(vsi);
7258 ice_ptp_link_change(vsi->back, false);
7259 netif_carrier_off(vsi->netdev);
7260 netif_tx_disable(vsi->netdev);
7261 }
7262
7263 ice_vsi_dis_irq(vsi);
7264
7265 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
7266 if (tx_err)
7267 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
7268 vsi->vsi_num, tx_err);
7269 if (!tx_err && vsi->xdp_rings) {
7270 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
7271 if (tx_err)
7272 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
7273 vsi->vsi_num, tx_err);
7274 }
7275
7276 rx_err = ice_vsi_stop_all_rx_rings(vsi);
7277 if (rx_err)
7278 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
7279 vsi->vsi_num, rx_err);
7280
7281 ice_napi_disable_all(vsi);
7282
7283 ice_for_each_txq(vsi, i)
7284 ice_clean_tx_ring(vsi->tx_rings[i]);
7285
7286 if (vsi->xdp_rings)
7287 ice_for_each_xdp_txq(vsi, i)
7288 ice_clean_tx_ring(vsi->xdp_rings[i]);
7289
7290 ice_for_each_rxq(vsi, i)
7291 ice_clean_rx_ring(vsi->rx_rings[i]);
7292
7293 if (tx_err || rx_err || vlan_err) {
7294 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
7295 vsi->vsi_num, vsi->vsw->sw_id);
7296 return -EIO;
7297 }
7298
7299 return 0;
7300 }
7301
7302 /**
7303 * ice_down_up - shutdown the VSI connection and bring it up
7304 * @vsi: the VSI to be reconnected
7305 */
ice_down_up(struct ice_vsi * vsi)7306 int ice_down_up(struct ice_vsi *vsi)
7307 {
7308 int ret;
7309
7310 /* if DOWN already set, nothing to do */
7311 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
7312 return 0;
7313
7314 ret = ice_down(vsi);
7315 if (ret)
7316 return ret;
7317
7318 ret = ice_up(vsi);
7319 if (ret) {
7320 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
7321 return ret;
7322 }
7323
7324 return 0;
7325 }
7326
7327 /**
7328 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
7329 * @vsi: VSI having resources allocated
7330 *
7331 * Return 0 on success, negative on failure
7332 */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)7333 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7334 {
7335 int i, err = 0;
7336
7337 if (!vsi->num_txq) {
7338 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7339 vsi->vsi_num);
7340 return -EINVAL;
7341 }
7342
7343 ice_for_each_txq(vsi, i) {
7344 struct ice_tx_ring *ring = vsi->tx_rings[i];
7345
7346 if (!ring)
7347 return -EINVAL;
7348
7349 if (vsi->netdev)
7350 ring->netdev = vsi->netdev;
7351 err = ice_setup_tx_ring(ring);
7352 if (err)
7353 break;
7354 }
7355
7356 return err;
7357 }
7358
7359 /**
7360 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7361 * @vsi: VSI having resources allocated
7362 *
7363 * Return 0 on success, negative on failure
7364 */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)7365 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7366 {
7367 int i, err = 0;
7368
7369 if (!vsi->num_rxq) {
7370 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7371 vsi->vsi_num);
7372 return -EINVAL;
7373 }
7374
7375 ice_for_each_rxq(vsi, i) {
7376 struct ice_rx_ring *ring = vsi->rx_rings[i];
7377
7378 if (!ring)
7379 return -EINVAL;
7380
7381 if (vsi->netdev)
7382 ring->netdev = vsi->netdev;
7383 err = ice_setup_rx_ring(ring);
7384 if (err)
7385 break;
7386 }
7387
7388 return err;
7389 }
7390
7391 /**
7392 * ice_vsi_open_ctrl - open control VSI for use
7393 * @vsi: the VSI to open
7394 *
7395 * Initialization of the Control VSI
7396 *
7397 * Returns 0 on success, negative value on error
7398 */
ice_vsi_open_ctrl(struct ice_vsi * vsi)7399 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7400 {
7401 char int_name[ICE_INT_NAME_STR_LEN];
7402 struct ice_pf *pf = vsi->back;
7403 struct device *dev;
7404 int err;
7405
7406 dev = ice_pf_to_dev(pf);
7407 /* allocate descriptors */
7408 err = ice_vsi_setup_tx_rings(vsi);
7409 if (err)
7410 goto err_setup_tx;
7411
7412 err = ice_vsi_setup_rx_rings(vsi);
7413 if (err)
7414 goto err_setup_rx;
7415
7416 err = ice_vsi_cfg_lan(vsi);
7417 if (err)
7418 goto err_setup_rx;
7419
7420 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7421 dev_driver_string(dev), dev_name(dev));
7422 err = ice_vsi_req_irq_msix(vsi, int_name);
7423 if (err)
7424 goto err_setup_rx;
7425
7426 ice_vsi_cfg_msix(vsi);
7427
7428 err = ice_vsi_start_all_rx_rings(vsi);
7429 if (err)
7430 goto err_up_complete;
7431
7432 clear_bit(ICE_VSI_DOWN, vsi->state);
7433 ice_vsi_ena_irq(vsi);
7434
7435 return 0;
7436
7437 err_up_complete:
7438 ice_down(vsi);
7439 err_setup_rx:
7440 ice_vsi_free_rx_rings(vsi);
7441 err_setup_tx:
7442 ice_vsi_free_tx_rings(vsi);
7443
7444 return err;
7445 }
7446
7447 /**
7448 * ice_vsi_open - Called when a network interface is made active
7449 * @vsi: the VSI to open
7450 *
7451 * Initialization of the VSI
7452 *
7453 * Returns 0 on success, negative value on error
7454 */
ice_vsi_open(struct ice_vsi * vsi)7455 int ice_vsi_open(struct ice_vsi *vsi)
7456 {
7457 char int_name[ICE_INT_NAME_STR_LEN];
7458 struct ice_pf *pf = vsi->back;
7459 int err;
7460
7461 /* allocate descriptors */
7462 err = ice_vsi_setup_tx_rings(vsi);
7463 if (err)
7464 goto err_setup_tx;
7465
7466 err = ice_vsi_setup_rx_rings(vsi);
7467 if (err)
7468 goto err_setup_rx;
7469
7470 err = ice_vsi_cfg_lan(vsi);
7471 if (err)
7472 goto err_setup_rx;
7473
7474 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7475 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7476 err = ice_vsi_req_irq_msix(vsi, int_name);
7477 if (err)
7478 goto err_setup_rx;
7479
7480 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7481
7482 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) {
7483 /* Notify the stack of the actual queue counts. */
7484 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7485 if (err)
7486 goto err_set_qs;
7487
7488 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7489 if (err)
7490 goto err_set_qs;
7491
7492 ice_vsi_set_napi_queues(vsi);
7493 }
7494
7495 err = ice_up_complete(vsi);
7496 if (err)
7497 goto err_up_complete;
7498
7499 return 0;
7500
7501 err_up_complete:
7502 ice_down(vsi);
7503 err_set_qs:
7504 ice_vsi_free_irq(vsi);
7505 err_setup_rx:
7506 ice_vsi_free_rx_rings(vsi);
7507 err_setup_tx:
7508 ice_vsi_free_tx_rings(vsi);
7509
7510 return err;
7511 }
7512
7513 /**
7514 * ice_vsi_release_all - Delete all VSIs
7515 * @pf: PF from which all VSIs are being removed
7516 */
ice_vsi_release_all(struct ice_pf * pf)7517 static void ice_vsi_release_all(struct ice_pf *pf)
7518 {
7519 int err, i;
7520
7521 if (!pf->vsi)
7522 return;
7523
7524 ice_for_each_vsi(pf, i) {
7525 if (!pf->vsi[i])
7526 continue;
7527
7528 if (pf->vsi[i]->type == ICE_VSI_CHNL)
7529 continue;
7530
7531 err = ice_vsi_release(pf->vsi[i]);
7532 if (err)
7533 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7534 i, err, pf->vsi[i]->vsi_num);
7535 }
7536 }
7537
7538 /**
7539 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7540 * @pf: pointer to the PF instance
7541 * @type: VSI type to rebuild
7542 *
7543 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7544 */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)7545 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7546 {
7547 struct device *dev = ice_pf_to_dev(pf);
7548 int i, err;
7549
7550 ice_for_each_vsi(pf, i) {
7551 struct ice_vsi *vsi = pf->vsi[i];
7552
7553 if (!vsi || vsi->type != type)
7554 continue;
7555
7556 /* rebuild the VSI */
7557 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7558 if (err) {
7559 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7560 err, vsi->idx, ice_vsi_type_str(type));
7561 return err;
7562 }
7563
7564 /* replay filters for the VSI */
7565 err = ice_replay_vsi(&pf->hw, vsi->idx);
7566 if (err) {
7567 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7568 err, vsi->idx, ice_vsi_type_str(type));
7569 return err;
7570 }
7571
7572 /* Re-map HW VSI number, using VSI handle that has been
7573 * previously validated in ice_replay_vsi() call above
7574 */
7575 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7576
7577 /* enable the VSI */
7578 err = ice_ena_vsi(vsi, false);
7579 if (err) {
7580 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7581 err, vsi->idx, ice_vsi_type_str(type));
7582 return err;
7583 }
7584
7585 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7586 ice_vsi_type_str(type));
7587 }
7588
7589 return 0;
7590 }
7591
7592 /**
7593 * ice_update_pf_netdev_link - Update PF netdev link status
7594 * @pf: pointer to the PF instance
7595 */
ice_update_pf_netdev_link(struct ice_pf * pf)7596 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7597 {
7598 bool link_up;
7599 int i;
7600
7601 ice_for_each_vsi(pf, i) {
7602 struct ice_vsi *vsi = pf->vsi[i];
7603
7604 if (!vsi || vsi->type != ICE_VSI_PF)
7605 return;
7606
7607 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7608 if (link_up) {
7609 netif_carrier_on(pf->vsi[i]->netdev);
7610 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7611 } else {
7612 netif_carrier_off(pf->vsi[i]->netdev);
7613 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7614 }
7615 }
7616 }
7617
7618 /**
7619 * ice_rebuild - rebuild after reset
7620 * @pf: PF to rebuild
7621 * @reset_type: type of reset
7622 *
7623 * Do not rebuild VF VSI in this flow because that is already handled via
7624 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7625 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7626 * to reset/rebuild all the VF VSI twice.
7627 */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)7628 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7629 {
7630 struct ice_vsi *vsi = ice_get_main_vsi(pf);
7631 struct device *dev = ice_pf_to_dev(pf);
7632 struct ice_hw *hw = &pf->hw;
7633 bool dvm;
7634 int err;
7635
7636 if (test_bit(ICE_DOWN, pf->state))
7637 goto clear_recovery;
7638
7639 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7640
7641 #define ICE_EMP_RESET_SLEEP_MS 5000
7642 if (reset_type == ICE_RESET_EMPR) {
7643 /* If an EMP reset has occurred, any previously pending flash
7644 * update will have completed. We no longer know whether or
7645 * not the NVM update EMP reset is restricted.
7646 */
7647 pf->fw_emp_reset_disabled = false;
7648
7649 msleep(ICE_EMP_RESET_SLEEP_MS);
7650 }
7651
7652 err = ice_init_all_ctrlq(hw);
7653 if (err) {
7654 dev_err(dev, "control queues init failed %d\n", err);
7655 goto err_init_ctrlq;
7656 }
7657
7658 /* if DDP was previously loaded successfully */
7659 if (!ice_is_safe_mode(pf)) {
7660 /* reload the SW DB of filter tables */
7661 if (reset_type == ICE_RESET_PFR)
7662 ice_fill_blk_tbls(hw);
7663 else
7664 /* Reload DDP Package after CORER/GLOBR reset */
7665 ice_load_pkg(NULL, pf);
7666 }
7667
7668 err = ice_clear_pf_cfg(hw);
7669 if (err) {
7670 dev_err(dev, "clear PF configuration failed %d\n", err);
7671 goto err_init_ctrlq;
7672 }
7673
7674 ice_clear_pxe_mode(hw);
7675
7676 err = ice_init_nvm(hw);
7677 if (err) {
7678 dev_err(dev, "ice_init_nvm failed %d\n", err);
7679 goto err_init_ctrlq;
7680 }
7681
7682 err = ice_get_caps(hw);
7683 if (err) {
7684 dev_err(dev, "ice_get_caps failed %d\n", err);
7685 goto err_init_ctrlq;
7686 }
7687
7688 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7689 if (err) {
7690 dev_err(dev, "set_mac_cfg failed %d\n", err);
7691 goto err_init_ctrlq;
7692 }
7693
7694 dvm = ice_is_dvm_ena(hw);
7695
7696 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7697 if (err)
7698 goto err_init_ctrlq;
7699
7700 err = ice_sched_init_port(hw->port_info);
7701 if (err)
7702 goto err_sched_init_port;
7703
7704 /* start misc vector */
7705 err = ice_req_irq_msix_misc(pf);
7706 if (err) {
7707 dev_err(dev, "misc vector setup failed: %d\n", err);
7708 goto err_sched_init_port;
7709 }
7710
7711 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7712 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7713 if (!rd32(hw, PFQF_FD_SIZE)) {
7714 u16 unused, guar, b_effort;
7715
7716 guar = hw->func_caps.fd_fltr_guar;
7717 b_effort = hw->func_caps.fd_fltr_best_effort;
7718
7719 /* force guaranteed filter pool for PF */
7720 ice_alloc_fd_guar_item(hw, &unused, guar);
7721 /* force shared filter pool for PF */
7722 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7723 }
7724 }
7725
7726 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7727 ice_dcb_rebuild(pf);
7728
7729 /* If the PF previously had enabled PTP, PTP init needs to happen before
7730 * the VSI rebuild. If not, this causes the PTP link status events to
7731 * fail.
7732 */
7733 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7734 ice_ptp_rebuild(pf, reset_type);
7735
7736 if (ice_is_feature_supported(pf, ICE_F_GNSS))
7737 ice_gnss_init(pf);
7738
7739 /* rebuild PF VSI */
7740 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7741 if (err) {
7742 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7743 goto err_vsi_rebuild;
7744 }
7745
7746 if (reset_type == ICE_RESET_PFR) {
7747 err = ice_rebuild_channels(pf);
7748 if (err) {
7749 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7750 err);
7751 goto err_vsi_rebuild;
7752 }
7753 }
7754
7755 /* If Flow Director is active */
7756 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7757 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7758 if (err) {
7759 dev_err(dev, "control VSI rebuild failed: %d\n", err);
7760 goto err_vsi_rebuild;
7761 }
7762
7763 /* replay HW Flow Director recipes */
7764 if (hw->fdir_prof)
7765 ice_fdir_replay_flows(hw);
7766
7767 /* replay Flow Director filters */
7768 ice_fdir_replay_fltrs(pf);
7769
7770 ice_rebuild_arfs(pf);
7771 }
7772
7773 if (vsi && vsi->netdev)
7774 netif_device_attach(vsi->netdev);
7775
7776 ice_update_pf_netdev_link(pf);
7777
7778 /* tell the firmware we are up */
7779 err = ice_send_version(pf);
7780 if (err) {
7781 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7782 err);
7783 goto err_vsi_rebuild;
7784 }
7785
7786 ice_replay_post(hw);
7787
7788 /* if we get here, reset flow is successful */
7789 clear_bit(ICE_RESET_FAILED, pf->state);
7790
7791 ice_plug_aux_dev(pf);
7792 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7793 ice_lag_rebuild(pf);
7794
7795 /* Restore timestamp mode settings after VSI rebuild */
7796 ice_ptp_restore_timestamp_mode(pf);
7797 return;
7798
7799 err_vsi_rebuild:
7800 err_sched_init_port:
7801 ice_sched_cleanup_all(hw);
7802 err_init_ctrlq:
7803 ice_shutdown_all_ctrlq(hw, false);
7804 set_bit(ICE_RESET_FAILED, pf->state);
7805 clear_recovery:
7806 /* set this bit in PF state to control service task scheduling */
7807 set_bit(ICE_NEEDS_RESTART, pf->state);
7808 dev_err(dev, "Rebuild failed, unload and reload driver\n");
7809 }
7810
7811 /**
7812 * ice_change_mtu - NDO callback to change the MTU
7813 * @netdev: network interface device structure
7814 * @new_mtu: new value for maximum frame size
7815 *
7816 * Returns 0 on success, negative on failure
7817 */
ice_change_mtu(struct net_device * netdev,int new_mtu)7818 int ice_change_mtu(struct net_device *netdev, int new_mtu)
7819 {
7820 struct ice_netdev_priv *np = netdev_priv(netdev);
7821 struct ice_vsi *vsi = np->vsi;
7822 struct ice_pf *pf = vsi->back;
7823 struct bpf_prog *prog;
7824 u8 count = 0;
7825 int err = 0;
7826
7827 if (new_mtu == (int)netdev->mtu) {
7828 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7829 return 0;
7830 }
7831
7832 prog = vsi->xdp_prog;
7833 if (prog && !prog->aux->xdp_has_frags) {
7834 int frame_size = ice_max_xdp_frame_size(vsi);
7835
7836 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7837 netdev_err(netdev, "max MTU for XDP usage is %d\n",
7838 frame_size - ICE_ETH_PKT_HDR_PAD);
7839 return -EINVAL;
7840 }
7841 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7842 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7843 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7844 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7845 return -EINVAL;
7846 }
7847 }
7848
7849 /* if a reset is in progress, wait for some time for it to complete */
7850 do {
7851 if (ice_is_reset_in_progress(pf->state)) {
7852 count++;
7853 usleep_range(1000, 2000);
7854 } else {
7855 break;
7856 }
7857
7858 } while (count < 100);
7859
7860 if (count == 100) {
7861 netdev_err(netdev, "can't change MTU. Device is busy\n");
7862 return -EBUSY;
7863 }
7864
7865 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu);
7866 err = ice_down_up(vsi);
7867 if (err)
7868 return err;
7869
7870 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7871 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7872
7873 return err;
7874 }
7875
7876 /**
7877 * ice_eth_ioctl - Access the hwtstamp interface
7878 * @netdev: network interface device structure
7879 * @ifr: interface request data
7880 * @cmd: ioctl command
7881 */
ice_eth_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)7882 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7883 {
7884 struct ice_netdev_priv *np = netdev_priv(netdev);
7885 struct ice_pf *pf = np->vsi->back;
7886
7887 switch (cmd) {
7888 case SIOCGHWTSTAMP:
7889 return ice_ptp_get_ts_config(pf, ifr);
7890 case SIOCSHWTSTAMP:
7891 return ice_ptp_set_ts_config(pf, ifr);
7892 default:
7893 return -EOPNOTSUPP;
7894 }
7895 }
7896
7897 /**
7898 * ice_aq_str - convert AQ err code to a string
7899 * @aq_err: the AQ error code to convert
7900 */
ice_aq_str(enum ice_aq_err aq_err)7901 const char *ice_aq_str(enum ice_aq_err aq_err)
7902 {
7903 switch (aq_err) {
7904 case ICE_AQ_RC_OK:
7905 return "OK";
7906 case ICE_AQ_RC_EPERM:
7907 return "ICE_AQ_RC_EPERM";
7908 case ICE_AQ_RC_ENOENT:
7909 return "ICE_AQ_RC_ENOENT";
7910 case ICE_AQ_RC_ENOMEM:
7911 return "ICE_AQ_RC_ENOMEM";
7912 case ICE_AQ_RC_EBUSY:
7913 return "ICE_AQ_RC_EBUSY";
7914 case ICE_AQ_RC_EEXIST:
7915 return "ICE_AQ_RC_EEXIST";
7916 case ICE_AQ_RC_EINVAL:
7917 return "ICE_AQ_RC_EINVAL";
7918 case ICE_AQ_RC_ENOSPC:
7919 return "ICE_AQ_RC_ENOSPC";
7920 case ICE_AQ_RC_ENOSYS:
7921 return "ICE_AQ_RC_ENOSYS";
7922 case ICE_AQ_RC_EMODE:
7923 return "ICE_AQ_RC_EMODE";
7924 case ICE_AQ_RC_ENOSEC:
7925 return "ICE_AQ_RC_ENOSEC";
7926 case ICE_AQ_RC_EBADSIG:
7927 return "ICE_AQ_RC_EBADSIG";
7928 case ICE_AQ_RC_ESVN:
7929 return "ICE_AQ_RC_ESVN";
7930 case ICE_AQ_RC_EBADMAN:
7931 return "ICE_AQ_RC_EBADMAN";
7932 case ICE_AQ_RC_EBADBUF:
7933 return "ICE_AQ_RC_EBADBUF";
7934 }
7935
7936 return "ICE_AQ_RC_UNKNOWN";
7937 }
7938
7939 /**
7940 * ice_set_rss_lut - Set RSS LUT
7941 * @vsi: Pointer to VSI structure
7942 * @lut: Lookup table
7943 * @lut_size: Lookup table size
7944 *
7945 * Returns 0 on success, negative on failure
7946 */
ice_set_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7947 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7948 {
7949 struct ice_aq_get_set_rss_lut_params params = {};
7950 struct ice_hw *hw = &vsi->back->hw;
7951 int status;
7952
7953 if (!lut)
7954 return -EINVAL;
7955
7956 params.vsi_handle = vsi->idx;
7957 params.lut_size = lut_size;
7958 params.lut_type = vsi->rss_lut_type;
7959 params.lut = lut;
7960
7961 status = ice_aq_set_rss_lut(hw, ¶ms);
7962 if (status)
7963 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7964 status, ice_aq_str(hw->adminq.sq_last_status));
7965
7966 return status;
7967 }
7968
7969 /**
7970 * ice_set_rss_key - Set RSS key
7971 * @vsi: Pointer to the VSI structure
7972 * @seed: RSS hash seed
7973 *
7974 * Returns 0 on success, negative on failure
7975 */
ice_set_rss_key(struct ice_vsi * vsi,u8 * seed)7976 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7977 {
7978 struct ice_hw *hw = &vsi->back->hw;
7979 int status;
7980
7981 if (!seed)
7982 return -EINVAL;
7983
7984 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7985 if (status)
7986 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7987 status, ice_aq_str(hw->adminq.sq_last_status));
7988
7989 return status;
7990 }
7991
7992 /**
7993 * ice_get_rss_lut - Get RSS LUT
7994 * @vsi: Pointer to VSI structure
7995 * @lut: Buffer to store the lookup table entries
7996 * @lut_size: Size of buffer to store the lookup table entries
7997 *
7998 * Returns 0 on success, negative on failure
7999 */
ice_get_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)8000 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
8001 {
8002 struct ice_aq_get_set_rss_lut_params params = {};
8003 struct ice_hw *hw = &vsi->back->hw;
8004 int status;
8005
8006 if (!lut)
8007 return -EINVAL;
8008
8009 params.vsi_handle = vsi->idx;
8010 params.lut_size = lut_size;
8011 params.lut_type = vsi->rss_lut_type;
8012 params.lut = lut;
8013
8014 status = ice_aq_get_rss_lut(hw, ¶ms);
8015 if (status)
8016 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
8017 status, ice_aq_str(hw->adminq.sq_last_status));
8018
8019 return status;
8020 }
8021
8022 /**
8023 * ice_get_rss_key - Get RSS key
8024 * @vsi: Pointer to VSI structure
8025 * @seed: Buffer to store the key in
8026 *
8027 * Returns 0 on success, negative on failure
8028 */
ice_get_rss_key(struct ice_vsi * vsi,u8 * seed)8029 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
8030 {
8031 struct ice_hw *hw = &vsi->back->hw;
8032 int status;
8033
8034 if (!seed)
8035 return -EINVAL;
8036
8037 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
8038 if (status)
8039 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
8040 status, ice_aq_str(hw->adminq.sq_last_status));
8041
8042 return status;
8043 }
8044
8045 /**
8046 * ice_set_rss_hfunc - Set RSS HASH function
8047 * @vsi: Pointer to VSI structure
8048 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*)
8049 *
8050 * Returns 0 on success, negative on failure
8051 */
ice_set_rss_hfunc(struct ice_vsi * vsi,u8 hfunc)8052 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc)
8053 {
8054 struct ice_hw *hw = &vsi->back->hw;
8055 struct ice_vsi_ctx *ctx;
8056 bool symm;
8057 int err;
8058
8059 if (hfunc == vsi->rss_hfunc)
8060 return 0;
8061
8062 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ &&
8063 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
8064 return -EOPNOTSUPP;
8065
8066 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8067 if (!ctx)
8068 return -ENOMEM;
8069
8070 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
8071 ctx->info.q_opt_rss = vsi->info.q_opt_rss;
8072 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
8073 ctx->info.q_opt_rss |=
8074 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc);
8075 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
8076 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
8077
8078 err = ice_update_vsi(hw, vsi->idx, ctx, NULL);
8079 if (err) {
8080 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n",
8081 vsi->vsi_num, err);
8082 } else {
8083 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
8084 vsi->rss_hfunc = hfunc;
8085 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n",
8086 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ?
8087 "Symmetric " : "");
8088 }
8089 kfree(ctx);
8090 if (err)
8091 return err;
8092
8093 /* Fix the symmetry setting for all existing RSS configurations */
8094 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
8095 return ice_set_rss_cfg_symm(hw, vsi, symm);
8096 }
8097
8098 /**
8099 * ice_bridge_getlink - Get the hardware bridge mode
8100 * @skb: skb buff
8101 * @pid: process ID
8102 * @seq: RTNL message seq
8103 * @dev: the netdev being configured
8104 * @filter_mask: filter mask passed in
8105 * @nlflags: netlink flags passed in
8106 *
8107 * Return the bridge mode (VEB/VEPA)
8108 */
8109 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)8110 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
8111 struct net_device *dev, u32 filter_mask, int nlflags)
8112 {
8113 struct ice_netdev_priv *np = netdev_priv(dev);
8114 struct ice_vsi *vsi = np->vsi;
8115 struct ice_pf *pf = vsi->back;
8116 u16 bmode;
8117
8118 bmode = pf->first_sw->bridge_mode;
8119
8120 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
8121 filter_mask, NULL);
8122 }
8123
8124 /**
8125 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
8126 * @vsi: Pointer to VSI structure
8127 * @bmode: Hardware bridge mode (VEB/VEPA)
8128 *
8129 * Returns 0 on success, negative on failure
8130 */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)8131 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
8132 {
8133 struct ice_aqc_vsi_props *vsi_props;
8134 struct ice_hw *hw = &vsi->back->hw;
8135 struct ice_vsi_ctx *ctxt;
8136 int ret;
8137
8138 vsi_props = &vsi->info;
8139
8140 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
8141 if (!ctxt)
8142 return -ENOMEM;
8143
8144 ctxt->info = vsi->info;
8145
8146 if (bmode == BRIDGE_MODE_VEB)
8147 /* change from VEPA to VEB mode */
8148 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8149 else
8150 /* change from VEB to VEPA mode */
8151 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8152 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
8153
8154 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
8155 if (ret) {
8156 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
8157 bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
8158 goto out;
8159 }
8160 /* Update sw flags for book keeping */
8161 vsi_props->sw_flags = ctxt->info.sw_flags;
8162
8163 out:
8164 kfree(ctxt);
8165 return ret;
8166 }
8167
8168 /**
8169 * ice_bridge_setlink - Set the hardware bridge mode
8170 * @dev: the netdev being configured
8171 * @nlh: RTNL message
8172 * @flags: bridge setlink flags
8173 * @extack: netlink extended ack
8174 *
8175 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
8176 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
8177 * not already set for all VSIs connected to this switch. And also update the
8178 * unicast switch filter rules for the corresponding switch of the netdev.
8179 */
8180 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)8181 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8182 u16 __always_unused flags,
8183 struct netlink_ext_ack __always_unused *extack)
8184 {
8185 struct ice_netdev_priv *np = netdev_priv(dev);
8186 struct ice_pf *pf = np->vsi->back;
8187 struct nlattr *attr, *br_spec;
8188 struct ice_hw *hw = &pf->hw;
8189 struct ice_sw *pf_sw;
8190 int rem, v, err = 0;
8191
8192 pf_sw = pf->first_sw;
8193 /* find the attribute in the netlink message */
8194 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8195 if (!br_spec)
8196 return -EINVAL;
8197
8198 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
8199 __u16 mode = nla_get_u16(attr);
8200
8201 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
8202 return -EINVAL;
8203 /* Continue if bridge mode is not being flipped */
8204 if (mode == pf_sw->bridge_mode)
8205 continue;
8206 /* Iterates through the PF VSI list and update the loopback
8207 * mode of the VSI
8208 */
8209 ice_for_each_vsi(pf, v) {
8210 if (!pf->vsi[v])
8211 continue;
8212 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
8213 if (err)
8214 return err;
8215 }
8216
8217 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
8218 /* Update the unicast switch filter rules for the corresponding
8219 * switch of the netdev
8220 */
8221 err = ice_update_sw_rule_bridge_mode(hw);
8222 if (err) {
8223 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
8224 mode, err,
8225 ice_aq_str(hw->adminq.sq_last_status));
8226 /* revert hw->evb_veb */
8227 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
8228 return err;
8229 }
8230
8231 pf_sw->bridge_mode = mode;
8232 }
8233
8234 return 0;
8235 }
8236
8237 /**
8238 * ice_tx_timeout - Respond to a Tx Hang
8239 * @netdev: network interface device structure
8240 * @txqueue: Tx queue
8241 */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)8242 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
8243 {
8244 struct ice_netdev_priv *np = netdev_priv(netdev);
8245 struct ice_tx_ring *tx_ring = NULL;
8246 struct ice_vsi *vsi = np->vsi;
8247 struct ice_pf *pf = vsi->back;
8248 u32 i;
8249
8250 pf->tx_timeout_count++;
8251
8252 /* Check if PFC is enabled for the TC to which the queue belongs
8253 * to. If yes then Tx timeout is not caused by a hung queue, no
8254 * need to reset and rebuild
8255 */
8256 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
8257 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
8258 txqueue);
8259 return;
8260 }
8261
8262 /* now that we have an index, find the tx_ring struct */
8263 ice_for_each_txq(vsi, i)
8264 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
8265 if (txqueue == vsi->tx_rings[i]->q_index) {
8266 tx_ring = vsi->tx_rings[i];
8267 break;
8268 }
8269
8270 /* Reset recovery level if enough time has elapsed after last timeout.
8271 * Also ensure no new reset action happens before next timeout period.
8272 */
8273 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
8274 pf->tx_timeout_recovery_level = 1;
8275 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
8276 netdev->watchdog_timeo)))
8277 return;
8278
8279 if (tx_ring) {
8280 struct ice_hw *hw = &pf->hw;
8281 u32 head, val = 0;
8282
8283 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M,
8284 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])));
8285 /* Read interrupt register */
8286 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
8287
8288 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
8289 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
8290 head, tx_ring->next_to_use, val);
8291 }
8292
8293 pf->tx_timeout_last_recovery = jiffies;
8294 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
8295 pf->tx_timeout_recovery_level, txqueue);
8296
8297 switch (pf->tx_timeout_recovery_level) {
8298 case 1:
8299 set_bit(ICE_PFR_REQ, pf->state);
8300 break;
8301 case 2:
8302 set_bit(ICE_CORER_REQ, pf->state);
8303 break;
8304 case 3:
8305 set_bit(ICE_GLOBR_REQ, pf->state);
8306 break;
8307 default:
8308 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
8309 set_bit(ICE_DOWN, pf->state);
8310 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
8311 set_bit(ICE_SERVICE_DIS, pf->state);
8312 break;
8313 }
8314
8315 ice_service_task_schedule(pf);
8316 pf->tx_timeout_recovery_level++;
8317 }
8318
8319 /**
8320 * ice_setup_tc_cls_flower - flower classifier offloads
8321 * @np: net device to configure
8322 * @filter_dev: device on which filter is added
8323 * @cls_flower: offload data
8324 */
8325 static int
ice_setup_tc_cls_flower(struct ice_netdev_priv * np,struct net_device * filter_dev,struct flow_cls_offload * cls_flower)8326 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
8327 struct net_device *filter_dev,
8328 struct flow_cls_offload *cls_flower)
8329 {
8330 struct ice_vsi *vsi = np->vsi;
8331
8332 if (cls_flower->common.chain_index)
8333 return -EOPNOTSUPP;
8334
8335 switch (cls_flower->command) {
8336 case FLOW_CLS_REPLACE:
8337 return ice_add_cls_flower(filter_dev, vsi, cls_flower);
8338 case FLOW_CLS_DESTROY:
8339 return ice_del_cls_flower(vsi, cls_flower);
8340 default:
8341 return -EINVAL;
8342 }
8343 }
8344
8345 /**
8346 * ice_setup_tc_block_cb - callback handler registered for TC block
8347 * @type: TC SETUP type
8348 * @type_data: TC flower offload data that contains user input
8349 * @cb_priv: netdev private data
8350 */
8351 static int
ice_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)8352 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
8353 {
8354 struct ice_netdev_priv *np = cb_priv;
8355
8356 switch (type) {
8357 case TC_SETUP_CLSFLOWER:
8358 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8359 type_data);
8360 default:
8361 return -EOPNOTSUPP;
8362 }
8363 }
8364
8365 /**
8366 * ice_validate_mqprio_qopt - Validate TCF input parameters
8367 * @vsi: Pointer to VSI
8368 * @mqprio_qopt: input parameters for mqprio queue configuration
8369 *
8370 * This function validates MQPRIO params, such as qcount (power of 2 wherever
8371 * needed), and make sure user doesn't specify qcount and BW rate limit
8372 * for TCs, which are more than "num_tc"
8373 */
8374 static int
ice_validate_mqprio_qopt(struct ice_vsi * vsi,struct tc_mqprio_qopt_offload * mqprio_qopt)8375 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
8376 struct tc_mqprio_qopt_offload *mqprio_qopt)
8377 {
8378 int non_power_of_2_qcount = 0;
8379 struct ice_pf *pf = vsi->back;
8380 int max_rss_q_cnt = 0;
8381 u64 sum_min_rate = 0;
8382 struct device *dev;
8383 int i, speed;
8384 u8 num_tc;
8385
8386 if (vsi->type != ICE_VSI_PF)
8387 return -EINVAL;
8388
8389 if (mqprio_qopt->qopt.offset[0] != 0 ||
8390 mqprio_qopt->qopt.num_tc < 1 ||
8391 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8392 return -EINVAL;
8393
8394 dev = ice_pf_to_dev(pf);
8395 vsi->ch_rss_size = 0;
8396 num_tc = mqprio_qopt->qopt.num_tc;
8397 speed = ice_get_link_speed_kbps(vsi);
8398
8399 for (i = 0; num_tc; i++) {
8400 int qcount = mqprio_qopt->qopt.count[i];
8401 u64 max_rate, min_rate, rem;
8402
8403 if (!qcount)
8404 return -EINVAL;
8405
8406 if (is_power_of_2(qcount)) {
8407 if (non_power_of_2_qcount &&
8408 qcount > non_power_of_2_qcount) {
8409 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8410 qcount, non_power_of_2_qcount);
8411 return -EINVAL;
8412 }
8413 if (qcount > max_rss_q_cnt)
8414 max_rss_q_cnt = qcount;
8415 } else {
8416 if (non_power_of_2_qcount &&
8417 qcount != non_power_of_2_qcount) {
8418 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8419 qcount, non_power_of_2_qcount);
8420 return -EINVAL;
8421 }
8422 if (qcount < max_rss_q_cnt) {
8423 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8424 qcount, max_rss_q_cnt);
8425 return -EINVAL;
8426 }
8427 max_rss_q_cnt = qcount;
8428 non_power_of_2_qcount = qcount;
8429 }
8430
8431 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8432 * converts the bandwidth rate limit into Bytes/s when
8433 * passing it down to the driver. So convert input bandwidth
8434 * from Bytes/s to Kbps
8435 */
8436 max_rate = mqprio_qopt->max_rate[i];
8437 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8438
8439 /* min_rate is minimum guaranteed rate and it can't be zero */
8440 min_rate = mqprio_qopt->min_rate[i];
8441 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8442 sum_min_rate += min_rate;
8443
8444 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8445 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8446 min_rate, ICE_MIN_BW_LIMIT);
8447 return -EINVAL;
8448 }
8449
8450 if (max_rate && max_rate > speed) {
8451 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8452 i, max_rate, speed);
8453 return -EINVAL;
8454 }
8455
8456 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8457 if (rem) {
8458 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8459 i, ICE_MIN_BW_LIMIT);
8460 return -EINVAL;
8461 }
8462
8463 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8464 if (rem) {
8465 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8466 i, ICE_MIN_BW_LIMIT);
8467 return -EINVAL;
8468 }
8469
8470 /* min_rate can't be more than max_rate, except when max_rate
8471 * is zero (implies max_rate sought is max line rate). In such
8472 * a case min_rate can be more than max.
8473 */
8474 if (max_rate && min_rate > max_rate) {
8475 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8476 min_rate, max_rate);
8477 return -EINVAL;
8478 }
8479
8480 if (i >= mqprio_qopt->qopt.num_tc - 1)
8481 break;
8482 if (mqprio_qopt->qopt.offset[i + 1] !=
8483 (mqprio_qopt->qopt.offset[i] + qcount))
8484 return -EINVAL;
8485 }
8486 if (vsi->num_rxq <
8487 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8488 return -EINVAL;
8489 if (vsi->num_txq <
8490 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8491 return -EINVAL;
8492
8493 if (sum_min_rate && sum_min_rate > (u64)speed) {
8494 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8495 sum_min_rate, speed);
8496 return -EINVAL;
8497 }
8498
8499 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8500 vsi->ch_rss_size = max_rss_q_cnt;
8501
8502 return 0;
8503 }
8504
8505 /**
8506 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8507 * @pf: ptr to PF device
8508 * @vsi: ptr to VSI
8509 */
ice_add_vsi_to_fdir(struct ice_pf * pf,struct ice_vsi * vsi)8510 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8511 {
8512 struct device *dev = ice_pf_to_dev(pf);
8513 bool added = false;
8514 struct ice_hw *hw;
8515 int flow;
8516
8517 if (!(vsi->num_gfltr || vsi->num_bfltr))
8518 return -EINVAL;
8519
8520 hw = &pf->hw;
8521 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8522 struct ice_fd_hw_prof *prof;
8523 int tun, status;
8524 u64 entry_h;
8525
8526 if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8527 hw->fdir_prof[flow]->cnt))
8528 continue;
8529
8530 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8531 enum ice_flow_priority prio;
8532
8533 /* add this VSI to FDir profile for this flow */
8534 prio = ICE_FLOW_PRIO_NORMAL;
8535 prof = hw->fdir_prof[flow];
8536 status = ice_flow_add_entry(hw, ICE_BLK_FD,
8537 prof->prof_id[tun],
8538 prof->vsi_h[0], vsi->idx,
8539 prio, prof->fdir_seg[tun],
8540 &entry_h);
8541 if (status) {
8542 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8543 vsi->idx, flow);
8544 continue;
8545 }
8546
8547 prof->entry_h[prof->cnt][tun] = entry_h;
8548 }
8549
8550 /* store VSI for filter replay and delete */
8551 prof->vsi_h[prof->cnt] = vsi->idx;
8552 prof->cnt++;
8553
8554 added = true;
8555 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8556 flow);
8557 }
8558
8559 if (!added)
8560 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8561
8562 return 0;
8563 }
8564
8565 /**
8566 * ice_add_channel - add a channel by adding VSI
8567 * @pf: ptr to PF device
8568 * @sw_id: underlying HW switching element ID
8569 * @ch: ptr to channel structure
8570 *
8571 * Add a channel (VSI) using add_vsi and queue_map
8572 */
ice_add_channel(struct ice_pf * pf,u16 sw_id,struct ice_channel * ch)8573 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8574 {
8575 struct device *dev = ice_pf_to_dev(pf);
8576 struct ice_vsi *vsi;
8577
8578 if (ch->type != ICE_VSI_CHNL) {
8579 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8580 return -EINVAL;
8581 }
8582
8583 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8584 if (!vsi || vsi->type != ICE_VSI_CHNL) {
8585 dev_err(dev, "create chnl VSI failure\n");
8586 return -EINVAL;
8587 }
8588
8589 ice_add_vsi_to_fdir(pf, vsi);
8590
8591 ch->sw_id = sw_id;
8592 ch->vsi_num = vsi->vsi_num;
8593 ch->info.mapping_flags = vsi->info.mapping_flags;
8594 ch->ch_vsi = vsi;
8595 /* set the back pointer of channel for newly created VSI */
8596 vsi->ch = ch;
8597
8598 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8599 sizeof(vsi->info.q_mapping));
8600 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8601 sizeof(vsi->info.tc_mapping));
8602
8603 return 0;
8604 }
8605
8606 /**
8607 * ice_chnl_cfg_res
8608 * @vsi: the VSI being setup
8609 * @ch: ptr to channel structure
8610 *
8611 * Configure channel specific resources such as rings, vector.
8612 */
ice_chnl_cfg_res(struct ice_vsi * vsi,struct ice_channel * ch)8613 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8614 {
8615 int i;
8616
8617 for (i = 0; i < ch->num_txq; i++) {
8618 struct ice_q_vector *tx_q_vector, *rx_q_vector;
8619 struct ice_ring_container *rc;
8620 struct ice_tx_ring *tx_ring;
8621 struct ice_rx_ring *rx_ring;
8622
8623 tx_ring = vsi->tx_rings[ch->base_q + i];
8624 rx_ring = vsi->rx_rings[ch->base_q + i];
8625 if (!tx_ring || !rx_ring)
8626 continue;
8627
8628 /* setup ring being channel enabled */
8629 tx_ring->ch = ch;
8630 rx_ring->ch = ch;
8631
8632 /* following code block sets up vector specific attributes */
8633 tx_q_vector = tx_ring->q_vector;
8634 rx_q_vector = rx_ring->q_vector;
8635 if (!tx_q_vector && !rx_q_vector)
8636 continue;
8637
8638 if (tx_q_vector) {
8639 tx_q_vector->ch = ch;
8640 /* setup Tx and Rx ITR setting if DIM is off */
8641 rc = &tx_q_vector->tx;
8642 if (!ITR_IS_DYNAMIC(rc))
8643 ice_write_itr(rc, rc->itr_setting);
8644 }
8645 if (rx_q_vector) {
8646 rx_q_vector->ch = ch;
8647 /* setup Tx and Rx ITR setting if DIM is off */
8648 rc = &rx_q_vector->rx;
8649 if (!ITR_IS_DYNAMIC(rc))
8650 ice_write_itr(rc, rc->itr_setting);
8651 }
8652 }
8653
8654 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8655 * GLINT_ITR register would have written to perform in-context
8656 * update, hence perform flush
8657 */
8658 if (ch->num_txq || ch->num_rxq)
8659 ice_flush(&vsi->back->hw);
8660 }
8661
8662 /**
8663 * ice_cfg_chnl_all_res - configure channel resources
8664 * @vsi: pte to main_vsi
8665 * @ch: ptr to channel structure
8666 *
8667 * This function configures channel specific resources such as flow-director
8668 * counter index, and other resources such as queues, vectors, ITR settings
8669 */
8670 static void
ice_cfg_chnl_all_res(struct ice_vsi * vsi,struct ice_channel * ch)8671 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8672 {
8673 /* configure channel (aka ADQ) resources such as queues, vectors,
8674 * ITR settings for channel specific vectors and anything else
8675 */
8676 ice_chnl_cfg_res(vsi, ch);
8677 }
8678
8679 /**
8680 * ice_setup_hw_channel - setup new channel
8681 * @pf: ptr to PF device
8682 * @vsi: the VSI being setup
8683 * @ch: ptr to channel structure
8684 * @sw_id: underlying HW switching element ID
8685 * @type: type of channel to be created (VMDq2/VF)
8686 *
8687 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8688 * and configures Tx rings accordingly
8689 */
8690 static int
ice_setup_hw_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch,u16 sw_id,u8 type)8691 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8692 struct ice_channel *ch, u16 sw_id, u8 type)
8693 {
8694 struct device *dev = ice_pf_to_dev(pf);
8695 int ret;
8696
8697 ch->base_q = vsi->next_base_q;
8698 ch->type = type;
8699
8700 ret = ice_add_channel(pf, sw_id, ch);
8701 if (ret) {
8702 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8703 return ret;
8704 }
8705
8706 /* configure/setup ADQ specific resources */
8707 ice_cfg_chnl_all_res(vsi, ch);
8708
8709 /* make sure to update the next_base_q so that subsequent channel's
8710 * (aka ADQ) VSI queue map is correct
8711 */
8712 vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8713 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8714 ch->num_rxq);
8715
8716 return 0;
8717 }
8718
8719 /**
8720 * ice_setup_channel - setup new channel using uplink element
8721 * @pf: ptr to PF device
8722 * @vsi: the VSI being setup
8723 * @ch: ptr to channel structure
8724 *
8725 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8726 * and uplink switching element
8727 */
8728 static bool
ice_setup_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch)8729 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8730 struct ice_channel *ch)
8731 {
8732 struct device *dev = ice_pf_to_dev(pf);
8733 u16 sw_id;
8734 int ret;
8735
8736 if (vsi->type != ICE_VSI_PF) {
8737 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8738 return false;
8739 }
8740
8741 sw_id = pf->first_sw->sw_id;
8742
8743 /* create channel (VSI) */
8744 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8745 if (ret) {
8746 dev_err(dev, "failed to setup hw_channel\n");
8747 return false;
8748 }
8749 dev_dbg(dev, "successfully created channel()\n");
8750
8751 return ch->ch_vsi ? true : false;
8752 }
8753
8754 /**
8755 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8756 * @vsi: VSI to be configured
8757 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8758 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8759 */
8760 static int
ice_set_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate,u64 min_tx_rate)8761 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8762 {
8763 int err;
8764
8765 err = ice_set_min_bw_limit(vsi, min_tx_rate);
8766 if (err)
8767 return err;
8768
8769 return ice_set_max_bw_limit(vsi, max_tx_rate);
8770 }
8771
8772 /**
8773 * ice_create_q_channel - function to create channel
8774 * @vsi: VSI to be configured
8775 * @ch: ptr to channel (it contains channel specific params)
8776 *
8777 * This function creates channel (VSI) using num_queues specified by user,
8778 * reconfigs RSS if needed.
8779 */
ice_create_q_channel(struct ice_vsi * vsi,struct ice_channel * ch)8780 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8781 {
8782 struct ice_pf *pf = vsi->back;
8783 struct device *dev;
8784
8785 if (!ch)
8786 return -EINVAL;
8787
8788 dev = ice_pf_to_dev(pf);
8789 if (!ch->num_txq || !ch->num_rxq) {
8790 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8791 return -EINVAL;
8792 }
8793
8794 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8795 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8796 vsi->cnt_q_avail, ch->num_txq);
8797 return -EINVAL;
8798 }
8799
8800 if (!ice_setup_channel(pf, vsi, ch)) {
8801 dev_info(dev, "Failed to setup channel\n");
8802 return -EINVAL;
8803 }
8804 /* configure BW rate limit */
8805 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8806 int ret;
8807
8808 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8809 ch->min_tx_rate);
8810 if (ret)
8811 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8812 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8813 else
8814 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8815 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8816 }
8817
8818 vsi->cnt_q_avail -= ch->num_txq;
8819
8820 return 0;
8821 }
8822
8823 /**
8824 * ice_rem_all_chnl_fltrs - removes all channel filters
8825 * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8826 *
8827 * Remove all advanced switch filters only if they are channel specific
8828 * tc-flower based filter
8829 */
ice_rem_all_chnl_fltrs(struct ice_pf * pf)8830 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8831 {
8832 struct ice_tc_flower_fltr *fltr;
8833 struct hlist_node *node;
8834
8835 /* to remove all channel filters, iterate an ordered list of filters */
8836 hlist_for_each_entry_safe(fltr, node,
8837 &pf->tc_flower_fltr_list,
8838 tc_flower_node) {
8839 struct ice_rule_query_data rule;
8840 int status;
8841
8842 /* for now process only channel specific filters */
8843 if (!ice_is_chnl_fltr(fltr))
8844 continue;
8845
8846 rule.rid = fltr->rid;
8847 rule.rule_id = fltr->rule_id;
8848 rule.vsi_handle = fltr->dest_vsi_handle;
8849 status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8850 if (status) {
8851 if (status == -ENOENT)
8852 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8853 rule.rule_id);
8854 else
8855 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8856 status);
8857 } else if (fltr->dest_vsi) {
8858 /* update advanced switch filter count */
8859 if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8860 u32 flags = fltr->flags;
8861
8862 fltr->dest_vsi->num_chnl_fltr--;
8863 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8864 ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8865 pf->num_dmac_chnl_fltrs--;
8866 }
8867 }
8868
8869 hlist_del(&fltr->tc_flower_node);
8870 kfree(fltr);
8871 }
8872 }
8873
8874 /**
8875 * ice_remove_q_channels - Remove queue channels for the TCs
8876 * @vsi: VSI to be configured
8877 * @rem_fltr: delete advanced switch filter or not
8878 *
8879 * Remove queue channels for the TCs
8880 */
ice_remove_q_channels(struct ice_vsi * vsi,bool rem_fltr)8881 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8882 {
8883 struct ice_channel *ch, *ch_tmp;
8884 struct ice_pf *pf = vsi->back;
8885 int i;
8886
8887 /* remove all tc-flower based filter if they are channel filters only */
8888 if (rem_fltr)
8889 ice_rem_all_chnl_fltrs(pf);
8890
8891 /* remove ntuple filters since queue configuration is being changed */
8892 if (vsi->netdev->features & NETIF_F_NTUPLE) {
8893 struct ice_hw *hw = &pf->hw;
8894
8895 mutex_lock(&hw->fdir_fltr_lock);
8896 ice_fdir_del_all_fltrs(vsi);
8897 mutex_unlock(&hw->fdir_fltr_lock);
8898 }
8899
8900 /* perform cleanup for channels if they exist */
8901 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8902 struct ice_vsi *ch_vsi;
8903
8904 list_del(&ch->list);
8905 ch_vsi = ch->ch_vsi;
8906 if (!ch_vsi) {
8907 kfree(ch);
8908 continue;
8909 }
8910
8911 /* Reset queue contexts */
8912 for (i = 0; i < ch->num_rxq; i++) {
8913 struct ice_tx_ring *tx_ring;
8914 struct ice_rx_ring *rx_ring;
8915
8916 tx_ring = vsi->tx_rings[ch->base_q + i];
8917 rx_ring = vsi->rx_rings[ch->base_q + i];
8918 if (tx_ring) {
8919 tx_ring->ch = NULL;
8920 if (tx_ring->q_vector)
8921 tx_ring->q_vector->ch = NULL;
8922 }
8923 if (rx_ring) {
8924 rx_ring->ch = NULL;
8925 if (rx_ring->q_vector)
8926 rx_ring->q_vector->ch = NULL;
8927 }
8928 }
8929
8930 /* Release FD resources for the channel VSI */
8931 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8932
8933 /* clear the VSI from scheduler tree */
8934 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8935
8936 /* Delete VSI from FW, PF and HW VSI arrays */
8937 ice_vsi_delete(ch->ch_vsi);
8938
8939 /* free the channel */
8940 kfree(ch);
8941 }
8942
8943 /* clear the channel VSI map which is stored in main VSI */
8944 ice_for_each_chnl_tc(i)
8945 vsi->tc_map_vsi[i] = NULL;
8946
8947 /* reset main VSI's all TC information */
8948 vsi->all_enatc = 0;
8949 vsi->all_numtc = 0;
8950 }
8951
8952 /**
8953 * ice_rebuild_channels - rebuild channel
8954 * @pf: ptr to PF
8955 *
8956 * Recreate channel VSIs and replay filters
8957 */
ice_rebuild_channels(struct ice_pf * pf)8958 static int ice_rebuild_channels(struct ice_pf *pf)
8959 {
8960 struct device *dev = ice_pf_to_dev(pf);
8961 struct ice_vsi *main_vsi;
8962 bool rem_adv_fltr = true;
8963 struct ice_channel *ch;
8964 struct ice_vsi *vsi;
8965 int tc_idx = 1;
8966 int i, err;
8967
8968 main_vsi = ice_get_main_vsi(pf);
8969 if (!main_vsi)
8970 return 0;
8971
8972 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8973 main_vsi->old_numtc == 1)
8974 return 0; /* nothing to be done */
8975
8976 /* reconfigure main VSI based on old value of TC and cached values
8977 * for MQPRIO opts
8978 */
8979 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8980 if (err) {
8981 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8982 main_vsi->old_ena_tc, main_vsi->vsi_num);
8983 return err;
8984 }
8985
8986 /* rebuild ADQ VSIs */
8987 ice_for_each_vsi(pf, i) {
8988 enum ice_vsi_type type;
8989
8990 vsi = pf->vsi[i];
8991 if (!vsi || vsi->type != ICE_VSI_CHNL)
8992 continue;
8993
8994 type = vsi->type;
8995
8996 /* rebuild ADQ VSI */
8997 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
8998 if (err) {
8999 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
9000 ice_vsi_type_str(type), vsi->idx, err);
9001 goto cleanup;
9002 }
9003
9004 /* Re-map HW VSI number, using VSI handle that has been
9005 * previously validated in ice_replay_vsi() call above
9006 */
9007 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
9008
9009 /* replay filters for the VSI */
9010 err = ice_replay_vsi(&pf->hw, vsi->idx);
9011 if (err) {
9012 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
9013 ice_vsi_type_str(type), err, vsi->idx);
9014 rem_adv_fltr = false;
9015 goto cleanup;
9016 }
9017 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
9018 ice_vsi_type_str(type), vsi->idx);
9019
9020 /* store ADQ VSI at correct TC index in main VSI's
9021 * map of TC to VSI
9022 */
9023 main_vsi->tc_map_vsi[tc_idx++] = vsi;
9024 }
9025
9026 /* ADQ VSI(s) has been rebuilt successfully, so setup
9027 * channel for main VSI's Tx and Rx rings
9028 */
9029 list_for_each_entry(ch, &main_vsi->ch_list, list) {
9030 struct ice_vsi *ch_vsi;
9031
9032 ch_vsi = ch->ch_vsi;
9033 if (!ch_vsi)
9034 continue;
9035
9036 /* reconfig channel resources */
9037 ice_cfg_chnl_all_res(main_vsi, ch);
9038
9039 /* replay BW rate limit if it is non-zero */
9040 if (!ch->max_tx_rate && !ch->min_tx_rate)
9041 continue;
9042
9043 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
9044 ch->min_tx_rate);
9045 if (err)
9046 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9047 err, ch->max_tx_rate, ch->min_tx_rate,
9048 ch_vsi->vsi_num);
9049 else
9050 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9051 ch->max_tx_rate, ch->min_tx_rate,
9052 ch_vsi->vsi_num);
9053 }
9054
9055 /* reconfig RSS for main VSI */
9056 if (main_vsi->ch_rss_size)
9057 ice_vsi_cfg_rss_lut_key(main_vsi);
9058
9059 return 0;
9060
9061 cleanup:
9062 ice_remove_q_channels(main_vsi, rem_adv_fltr);
9063 return err;
9064 }
9065
9066 /**
9067 * ice_create_q_channels - Add queue channel for the given TCs
9068 * @vsi: VSI to be configured
9069 *
9070 * Configures queue channel mapping to the given TCs
9071 */
ice_create_q_channels(struct ice_vsi * vsi)9072 static int ice_create_q_channels(struct ice_vsi *vsi)
9073 {
9074 struct ice_pf *pf = vsi->back;
9075 struct ice_channel *ch;
9076 int ret = 0, i;
9077
9078 ice_for_each_chnl_tc(i) {
9079 if (!(vsi->all_enatc & BIT(i)))
9080 continue;
9081
9082 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
9083 if (!ch) {
9084 ret = -ENOMEM;
9085 goto err_free;
9086 }
9087 INIT_LIST_HEAD(&ch->list);
9088 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
9089 ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
9090 ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
9091 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
9092 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
9093
9094 /* convert to Kbits/s */
9095 if (ch->max_tx_rate)
9096 ch->max_tx_rate = div_u64(ch->max_tx_rate,
9097 ICE_BW_KBPS_DIVISOR);
9098 if (ch->min_tx_rate)
9099 ch->min_tx_rate = div_u64(ch->min_tx_rate,
9100 ICE_BW_KBPS_DIVISOR);
9101
9102 ret = ice_create_q_channel(vsi, ch);
9103 if (ret) {
9104 dev_err(ice_pf_to_dev(pf),
9105 "failed creating channel TC:%d\n", i);
9106 kfree(ch);
9107 goto err_free;
9108 }
9109 list_add_tail(&ch->list, &vsi->ch_list);
9110 vsi->tc_map_vsi[i] = ch->ch_vsi;
9111 dev_dbg(ice_pf_to_dev(pf),
9112 "successfully created channel: VSI %pK\n", ch->ch_vsi);
9113 }
9114 return 0;
9115
9116 err_free:
9117 ice_remove_q_channels(vsi, false);
9118
9119 return ret;
9120 }
9121
9122 /**
9123 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
9124 * @netdev: net device to configure
9125 * @type_data: TC offload data
9126 */
ice_setup_tc_mqprio_qdisc(struct net_device * netdev,void * type_data)9127 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
9128 {
9129 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
9130 struct ice_netdev_priv *np = netdev_priv(netdev);
9131 struct ice_vsi *vsi = np->vsi;
9132 struct ice_pf *pf = vsi->back;
9133 u16 mode, ena_tc_qdisc = 0;
9134 int cur_txq, cur_rxq;
9135 u8 hw = 0, num_tcf;
9136 struct device *dev;
9137 int ret, i;
9138
9139 dev = ice_pf_to_dev(pf);
9140 num_tcf = mqprio_qopt->qopt.num_tc;
9141 hw = mqprio_qopt->qopt.hw;
9142 mode = mqprio_qopt->mode;
9143 if (!hw) {
9144 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9145 vsi->ch_rss_size = 0;
9146 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9147 goto config_tcf;
9148 }
9149
9150 /* Generate queue region map for number of TCF requested */
9151 for (i = 0; i < num_tcf; i++)
9152 ena_tc_qdisc |= BIT(i);
9153
9154 switch (mode) {
9155 case TC_MQPRIO_MODE_CHANNEL:
9156
9157 if (pf->hw.port_info->is_custom_tx_enabled) {
9158 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
9159 return -EBUSY;
9160 }
9161 ice_tear_down_devlink_rate_tree(pf);
9162
9163 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
9164 if (ret) {
9165 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
9166 ret);
9167 return ret;
9168 }
9169 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9170 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9171 /* don't assume state of hw_tc_offload during driver load
9172 * and set the flag for TC flower filter if hw_tc_offload
9173 * already ON
9174 */
9175 if (vsi->netdev->features & NETIF_F_HW_TC)
9176 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
9177 break;
9178 default:
9179 return -EINVAL;
9180 }
9181
9182 config_tcf:
9183
9184 /* Requesting same TCF configuration as already enabled */
9185 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
9186 mode != TC_MQPRIO_MODE_CHANNEL)
9187 return 0;
9188
9189 /* Pause VSI queues */
9190 ice_dis_vsi(vsi, true);
9191
9192 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
9193 ice_remove_q_channels(vsi, true);
9194
9195 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9196 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
9197 num_online_cpus());
9198 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
9199 num_online_cpus());
9200 } else {
9201 /* logic to rebuild VSI, same like ethtool -L */
9202 u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
9203
9204 for (i = 0; i < num_tcf; i++) {
9205 if (!(ena_tc_qdisc & BIT(i)))
9206 continue;
9207
9208 offset = vsi->mqprio_qopt.qopt.offset[i];
9209 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
9210 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
9211 }
9212 vsi->req_txq = offset + qcount_tx;
9213 vsi->req_rxq = offset + qcount_rx;
9214
9215 /* store away original rss_size info, so that it gets reused
9216 * form ice_vsi_rebuild during tc-qdisc delete stage - to
9217 * determine, what should be the rss_sizefor main VSI
9218 */
9219 vsi->orig_rss_size = vsi->rss_size;
9220 }
9221
9222 /* save current values of Tx and Rx queues before calling VSI rebuild
9223 * for fallback option
9224 */
9225 cur_txq = vsi->num_txq;
9226 cur_rxq = vsi->num_rxq;
9227
9228 /* proceed with rebuild main VSI using correct number of queues */
9229 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
9230 if (ret) {
9231 /* fallback to current number of queues */
9232 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
9233 vsi->req_txq = cur_txq;
9234 vsi->req_rxq = cur_rxq;
9235 clear_bit(ICE_RESET_FAILED, pf->state);
9236 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
9237 dev_err(dev, "Rebuild of main VSI failed again\n");
9238 return ret;
9239 }
9240 }
9241
9242 vsi->all_numtc = num_tcf;
9243 vsi->all_enatc = ena_tc_qdisc;
9244 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
9245 if (ret) {
9246 netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
9247 vsi->vsi_num);
9248 goto exit;
9249 }
9250
9251 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9252 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
9253 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
9254
9255 /* set TC0 rate limit if specified */
9256 if (max_tx_rate || min_tx_rate) {
9257 /* convert to Kbits/s */
9258 if (max_tx_rate)
9259 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
9260 if (min_tx_rate)
9261 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
9262
9263 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
9264 if (!ret) {
9265 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
9266 max_tx_rate, min_tx_rate, vsi->vsi_num);
9267 } else {
9268 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
9269 max_tx_rate, min_tx_rate, vsi->vsi_num);
9270 goto exit;
9271 }
9272 }
9273 ret = ice_create_q_channels(vsi);
9274 if (ret) {
9275 netdev_err(netdev, "failed configuring queue channels\n");
9276 goto exit;
9277 } else {
9278 netdev_dbg(netdev, "successfully configured channels\n");
9279 }
9280 }
9281
9282 if (vsi->ch_rss_size)
9283 ice_vsi_cfg_rss_lut_key(vsi);
9284
9285 exit:
9286 /* if error, reset the all_numtc and all_enatc */
9287 if (ret) {
9288 vsi->all_numtc = 0;
9289 vsi->all_enatc = 0;
9290 }
9291 /* resume VSI */
9292 ice_ena_vsi(vsi, true);
9293
9294 return ret;
9295 }
9296
9297 static LIST_HEAD(ice_block_cb_list);
9298
9299 static int
ice_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)9300 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
9301 void *type_data)
9302 {
9303 struct ice_netdev_priv *np = netdev_priv(netdev);
9304 struct ice_pf *pf = np->vsi->back;
9305 bool locked = false;
9306 int err;
9307
9308 switch (type) {
9309 case TC_SETUP_BLOCK:
9310 return flow_block_cb_setup_simple(type_data,
9311 &ice_block_cb_list,
9312 ice_setup_tc_block_cb,
9313 np, np, true);
9314 case TC_SETUP_QDISC_MQPRIO:
9315 if (ice_is_eswitch_mode_switchdev(pf)) {
9316 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
9317 return -EOPNOTSUPP;
9318 }
9319
9320 if (pf->adev) {
9321 mutex_lock(&pf->adev_mutex);
9322 device_lock(&pf->adev->dev);
9323 locked = true;
9324 if (pf->adev->dev.driver) {
9325 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
9326 err = -EBUSY;
9327 goto adev_unlock;
9328 }
9329 }
9330
9331 /* setup traffic classifier for receive side */
9332 mutex_lock(&pf->tc_mutex);
9333 err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
9334 mutex_unlock(&pf->tc_mutex);
9335
9336 adev_unlock:
9337 if (locked) {
9338 device_unlock(&pf->adev->dev);
9339 mutex_unlock(&pf->adev_mutex);
9340 }
9341 return err;
9342 default:
9343 return -EOPNOTSUPP;
9344 }
9345 return -EOPNOTSUPP;
9346 }
9347
9348 static struct ice_indr_block_priv *
ice_indr_block_priv_lookup(struct ice_netdev_priv * np,struct net_device * netdev)9349 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
9350 struct net_device *netdev)
9351 {
9352 struct ice_indr_block_priv *cb_priv;
9353
9354 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
9355 if (!cb_priv->netdev)
9356 return NULL;
9357 if (cb_priv->netdev == netdev)
9358 return cb_priv;
9359 }
9360 return NULL;
9361 }
9362
9363 static int
ice_indr_setup_block_cb(enum tc_setup_type type,void * type_data,void * indr_priv)9364 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
9365 void *indr_priv)
9366 {
9367 struct ice_indr_block_priv *priv = indr_priv;
9368 struct ice_netdev_priv *np = priv->np;
9369
9370 switch (type) {
9371 case TC_SETUP_CLSFLOWER:
9372 return ice_setup_tc_cls_flower(np, priv->netdev,
9373 (struct flow_cls_offload *)
9374 type_data);
9375 default:
9376 return -EOPNOTSUPP;
9377 }
9378 }
9379
9380 static int
ice_indr_setup_tc_block(struct net_device * netdev,struct Qdisc * sch,struct ice_netdev_priv * np,struct flow_block_offload * f,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9381 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9382 struct ice_netdev_priv *np,
9383 struct flow_block_offload *f, void *data,
9384 void (*cleanup)(struct flow_block_cb *block_cb))
9385 {
9386 struct ice_indr_block_priv *indr_priv;
9387 struct flow_block_cb *block_cb;
9388
9389 if (!ice_is_tunnel_supported(netdev) &&
9390 !(is_vlan_dev(netdev) &&
9391 vlan_dev_real_dev(netdev) == np->vsi->netdev))
9392 return -EOPNOTSUPP;
9393
9394 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9395 return -EOPNOTSUPP;
9396
9397 switch (f->command) {
9398 case FLOW_BLOCK_BIND:
9399 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9400 if (indr_priv)
9401 return -EEXIST;
9402
9403 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9404 if (!indr_priv)
9405 return -ENOMEM;
9406
9407 indr_priv->netdev = netdev;
9408 indr_priv->np = np;
9409 list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9410
9411 block_cb =
9412 flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9413 indr_priv, indr_priv,
9414 ice_rep_indr_tc_block_unbind,
9415 f, netdev, sch, data, np,
9416 cleanup);
9417
9418 if (IS_ERR(block_cb)) {
9419 list_del(&indr_priv->list);
9420 kfree(indr_priv);
9421 return PTR_ERR(block_cb);
9422 }
9423 flow_block_cb_add(block_cb, f);
9424 list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9425 break;
9426 case FLOW_BLOCK_UNBIND:
9427 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9428 if (!indr_priv)
9429 return -ENOENT;
9430
9431 block_cb = flow_block_cb_lookup(f->block,
9432 ice_indr_setup_block_cb,
9433 indr_priv);
9434 if (!block_cb)
9435 return -ENOENT;
9436
9437 flow_indr_block_cb_remove(block_cb, f);
9438
9439 list_del(&block_cb->driver_list);
9440 break;
9441 default:
9442 return -EOPNOTSUPP;
9443 }
9444 return 0;
9445 }
9446
9447 static int
ice_indr_setup_tc_cb(struct net_device * netdev,struct Qdisc * sch,void * cb_priv,enum tc_setup_type type,void * type_data,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9448 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9449 void *cb_priv, enum tc_setup_type type, void *type_data,
9450 void *data,
9451 void (*cleanup)(struct flow_block_cb *block_cb))
9452 {
9453 switch (type) {
9454 case TC_SETUP_BLOCK:
9455 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9456 data, cleanup);
9457
9458 default:
9459 return -EOPNOTSUPP;
9460 }
9461 }
9462
9463 /**
9464 * ice_open - Called when a network interface becomes active
9465 * @netdev: network interface device structure
9466 *
9467 * The open entry point is called when a network interface is made
9468 * active by the system (IFF_UP). At this point all resources needed
9469 * for transmit and receive operations are allocated, the interrupt
9470 * handler is registered with the OS, the netdev watchdog is enabled,
9471 * and the stack is notified that the interface is ready.
9472 *
9473 * Returns 0 on success, negative value on failure
9474 */
ice_open(struct net_device * netdev)9475 int ice_open(struct net_device *netdev)
9476 {
9477 struct ice_netdev_priv *np = netdev_priv(netdev);
9478 struct ice_pf *pf = np->vsi->back;
9479
9480 if (ice_is_reset_in_progress(pf->state)) {
9481 netdev_err(netdev, "can't open net device while reset is in progress");
9482 return -EBUSY;
9483 }
9484
9485 return ice_open_internal(netdev);
9486 }
9487
9488 /**
9489 * ice_open_internal - Called when a network interface becomes active
9490 * @netdev: network interface device structure
9491 *
9492 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9493 * handling routine
9494 *
9495 * Returns 0 on success, negative value on failure
9496 */
ice_open_internal(struct net_device * netdev)9497 int ice_open_internal(struct net_device *netdev)
9498 {
9499 struct ice_netdev_priv *np = netdev_priv(netdev);
9500 struct ice_vsi *vsi = np->vsi;
9501 struct ice_pf *pf = vsi->back;
9502 struct ice_port_info *pi;
9503 int err;
9504
9505 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9506 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9507 return -EIO;
9508 }
9509
9510 netif_carrier_off(netdev);
9511
9512 pi = vsi->port_info;
9513 err = ice_update_link_info(pi);
9514 if (err) {
9515 netdev_err(netdev, "Failed to get link info, error %d\n", err);
9516 return err;
9517 }
9518
9519 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9520
9521 /* Set PHY if there is media, otherwise, turn off PHY */
9522 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9523 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9524 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9525 err = ice_init_phy_user_cfg(pi);
9526 if (err) {
9527 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9528 err);
9529 return err;
9530 }
9531 }
9532
9533 err = ice_configure_phy(vsi);
9534 if (err) {
9535 netdev_err(netdev, "Failed to set physical link up, error %d\n",
9536 err);
9537 return err;
9538 }
9539 } else {
9540 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9541 ice_set_link(vsi, false);
9542 }
9543
9544 err = ice_vsi_open(vsi);
9545 if (err)
9546 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9547 vsi->vsi_num, vsi->vsw->sw_id);
9548
9549 /* Update existing tunnels information */
9550 udp_tunnel_get_rx_info(netdev);
9551
9552 return err;
9553 }
9554
9555 /**
9556 * ice_stop - Disables a network interface
9557 * @netdev: network interface device structure
9558 *
9559 * The stop entry point is called when an interface is de-activated by the OS,
9560 * and the netdevice enters the DOWN state. The hardware is still under the
9561 * driver's control, but the netdev interface is disabled.
9562 *
9563 * Returns success only - not allowed to fail
9564 */
ice_stop(struct net_device * netdev)9565 int ice_stop(struct net_device *netdev)
9566 {
9567 struct ice_netdev_priv *np = netdev_priv(netdev);
9568 struct ice_vsi *vsi = np->vsi;
9569 struct ice_pf *pf = vsi->back;
9570
9571 if (ice_is_reset_in_progress(pf->state)) {
9572 netdev_err(netdev, "can't stop net device while reset is in progress");
9573 return -EBUSY;
9574 }
9575
9576 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9577 int link_err = ice_force_phys_link_state(vsi, false);
9578
9579 if (link_err) {
9580 if (link_err == -ENOMEDIUM)
9581 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9582 vsi->vsi_num);
9583 else
9584 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9585 vsi->vsi_num, link_err);
9586
9587 ice_vsi_close(vsi);
9588 return -EIO;
9589 }
9590 }
9591
9592 ice_vsi_close(vsi);
9593
9594 return 0;
9595 }
9596
9597 /**
9598 * ice_features_check - Validate encapsulated packet conforms to limits
9599 * @skb: skb buffer
9600 * @netdev: This port's netdev
9601 * @features: Offload features that the stack believes apply
9602 */
9603 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)9604 ice_features_check(struct sk_buff *skb,
9605 struct net_device __always_unused *netdev,
9606 netdev_features_t features)
9607 {
9608 bool gso = skb_is_gso(skb);
9609 size_t len;
9610
9611 /* No point in doing any of this if neither checksum nor GSO are
9612 * being requested for this frame. We can rule out both by just
9613 * checking for CHECKSUM_PARTIAL
9614 */
9615 if (skb->ip_summed != CHECKSUM_PARTIAL)
9616 return features;
9617
9618 /* We cannot support GSO if the MSS is going to be less than
9619 * 64 bytes. If it is then we need to drop support for GSO.
9620 */
9621 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9622 features &= ~NETIF_F_GSO_MASK;
9623
9624 len = skb_network_offset(skb);
9625 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9626 goto out_rm_features;
9627
9628 len = skb_network_header_len(skb);
9629 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9630 goto out_rm_features;
9631
9632 if (skb->encapsulation) {
9633 /* this must work for VXLAN frames AND IPIP/SIT frames, and in
9634 * the case of IPIP frames, the transport header pointer is
9635 * after the inner header! So check to make sure that this
9636 * is a GRE or UDP_TUNNEL frame before doing that math.
9637 */
9638 if (gso && (skb_shinfo(skb)->gso_type &
9639 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9640 len = skb_inner_network_header(skb) -
9641 skb_transport_header(skb);
9642 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9643 goto out_rm_features;
9644 }
9645
9646 len = skb_inner_network_header_len(skb);
9647 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9648 goto out_rm_features;
9649 }
9650
9651 return features;
9652 out_rm_features:
9653 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9654 }
9655
9656 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9657 .ndo_open = ice_open,
9658 .ndo_stop = ice_stop,
9659 .ndo_start_xmit = ice_start_xmit,
9660 .ndo_set_mac_address = ice_set_mac_address,
9661 .ndo_validate_addr = eth_validate_addr,
9662 .ndo_change_mtu = ice_change_mtu,
9663 .ndo_get_stats64 = ice_get_stats64,
9664 .ndo_tx_timeout = ice_tx_timeout,
9665 .ndo_bpf = ice_xdp_safe_mode,
9666 };
9667
9668 static const struct net_device_ops ice_netdev_ops = {
9669 .ndo_open = ice_open,
9670 .ndo_stop = ice_stop,
9671 .ndo_start_xmit = ice_start_xmit,
9672 .ndo_select_queue = ice_select_queue,
9673 .ndo_features_check = ice_features_check,
9674 .ndo_fix_features = ice_fix_features,
9675 .ndo_set_rx_mode = ice_set_rx_mode,
9676 .ndo_set_mac_address = ice_set_mac_address,
9677 .ndo_validate_addr = eth_validate_addr,
9678 .ndo_change_mtu = ice_change_mtu,
9679 .ndo_get_stats64 = ice_get_stats64,
9680 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
9681 .ndo_eth_ioctl = ice_eth_ioctl,
9682 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9683 .ndo_set_vf_mac = ice_set_vf_mac,
9684 .ndo_get_vf_config = ice_get_vf_cfg,
9685 .ndo_set_vf_trust = ice_set_vf_trust,
9686 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
9687 .ndo_set_vf_link_state = ice_set_vf_link_state,
9688 .ndo_get_vf_stats = ice_get_vf_stats,
9689 .ndo_set_vf_rate = ice_set_vf_bw,
9690 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9691 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9692 .ndo_setup_tc = ice_setup_tc,
9693 .ndo_set_features = ice_set_features,
9694 .ndo_bridge_getlink = ice_bridge_getlink,
9695 .ndo_bridge_setlink = ice_bridge_setlink,
9696 .ndo_fdb_add = ice_fdb_add,
9697 .ndo_fdb_del = ice_fdb_del,
9698 #ifdef CONFIG_RFS_ACCEL
9699 .ndo_rx_flow_steer = ice_rx_flow_steer,
9700 #endif
9701 .ndo_tx_timeout = ice_tx_timeout,
9702 .ndo_bpf = ice_xdp,
9703 .ndo_xdp_xmit = ice_xdp_xmit,
9704 .ndo_xsk_wakeup = ice_xsk_wakeup,
9705 };
9706