1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Portions Copyright (C) 1992 Drew Eckhardt
4 */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/uuid.h>
26 #include <linux/xarray.h>
27 #include <linux/file.h>
28 #include <linux/lockdep.h>
29 #include <linux/android_vendor.h>
30 #include <linux/android_kabi.h>
31
32 struct module;
33 struct request_queue;
34 struct elevator_queue;
35 struct blk_trace;
36 struct request;
37 struct sg_io_hdr;
38 struct blkcg_gq;
39 struct blk_flush_queue;
40 struct kiocb;
41 struct pr_ops;
42 struct rq_qos;
43 struct blk_queue_stats;
44 struct blk_stat_callback;
45 struct blk_crypto_profile;
46
47 extern const struct device_type disk_type;
48 extern const struct device_type part_type;
49 extern const struct class block_class;
50
51 /*
52 * Maximum number of blkcg policies allowed to be registered concurrently.
53 * Defined here to simplify include dependency.
54 */
55 #define BLKCG_MAX_POLS 6
56
57 #define DISK_MAX_PARTS 256
58 #define DISK_NAME_LEN 32
59
60 #define PARTITION_META_INFO_VOLNAMELTH 64
61 /*
62 * Enough for the string representation of any kind of UUID plus NULL.
63 * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
64 */
65 #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1)
66
67 struct partition_meta_info {
68 char uuid[PARTITION_META_INFO_UUIDLTH];
69 u8 volname[PARTITION_META_INFO_VOLNAMELTH];
70 };
71
72 /**
73 * DOC: genhd capability flags
74 *
75 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
76 * removable media. When set, the device remains present even when media is not
77 * inserted. Shall not be set for devices which are removed entirely when the
78 * media is removed.
79 *
80 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
81 * doesn't appear in sysfs, and can't be opened from userspace or using
82 * blkdev_get*. Used for the underlying components of multipath devices.
83 *
84 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not
85 * scan for partitions from add_disk, and users can't add partitions manually.
86 *
87 */
88 enum {
89 GENHD_FL_REMOVABLE = 1 << 0,
90 GENHD_FL_HIDDEN = 1 << 1,
91 GENHD_FL_NO_PART = 1 << 2,
92 };
93
94 enum {
95 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */
96 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */
97 };
98
99 enum {
100 /* Poll even if events_poll_msecs is unset */
101 DISK_EVENT_FLAG_POLL = 1 << 0,
102 /* Forward events to udev */
103 DISK_EVENT_FLAG_UEVENT = 1 << 1,
104 /* Block event polling when open for exclusive write */
105 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2,
106 };
107
108 struct disk_events;
109 struct badblocks;
110
111 enum blk_integrity_checksum {
112 BLK_INTEGRITY_CSUM_NONE = 0,
113 BLK_INTEGRITY_CSUM_IP = 1,
114 BLK_INTEGRITY_CSUM_CRC = 2,
115 BLK_INTEGRITY_CSUM_CRC64 = 3,
116 } __packed ;
117
118 struct blk_integrity {
119 unsigned char flags;
120 enum blk_integrity_checksum csum_type;
121 unsigned char tuple_size;
122 unsigned char pi_offset;
123 unsigned char interval_exp;
124 unsigned char tag_size;
125
126 ANDROID_KABI_RESERVE(1);
127 ANDROID_KABI_RESERVE(2);
128 };
129
130 typedef unsigned int __bitwise blk_mode_t;
131
132 /* open for reading */
133 #define BLK_OPEN_READ ((__force blk_mode_t)(1 << 0))
134 /* open for writing */
135 #define BLK_OPEN_WRITE ((__force blk_mode_t)(1 << 1))
136 /* open exclusively (vs other exclusive openers */
137 #define BLK_OPEN_EXCL ((__force blk_mode_t)(1 << 2))
138 /* opened with O_NDELAY */
139 #define BLK_OPEN_NDELAY ((__force blk_mode_t)(1 << 3))
140 /* open for "writes" only for ioctls (specialy hack for floppy.c) */
141 #define BLK_OPEN_WRITE_IOCTL ((__force blk_mode_t)(1 << 4))
142 /* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */
143 #define BLK_OPEN_RESTRICT_WRITES ((__force blk_mode_t)(1 << 5))
144 /* return partition scanning errors */
145 #define BLK_OPEN_STRICT_SCAN ((__force blk_mode_t)(1 << 6))
146
147 struct gendisk {
148 /*
149 * major/first_minor/minors should not be set by any new driver, the
150 * block core will take care of allocating them automatically.
151 */
152 int major;
153 int first_minor;
154 int minors;
155
156 char disk_name[DISK_NAME_LEN]; /* name of major driver */
157
158 unsigned short events; /* supported events */
159 unsigned short event_flags; /* flags related to event processing */
160
161 struct xarray part_tbl;
162 struct block_device *part0;
163
164 const struct block_device_operations *fops;
165 struct request_queue *queue;
166 void *private_data;
167
168 struct bio_set bio_split;
169
170 int flags;
171 unsigned long state;
172 #define GD_NEED_PART_SCAN 0
173 #define GD_READ_ONLY 1
174 #define GD_DEAD 2
175 #define GD_NATIVE_CAPACITY 3
176 #define GD_ADDED 4
177 #define GD_SUPPRESS_PART_SCAN 5
178 #define GD_OWNS_QUEUE 6
179
180 struct mutex open_mutex; /* open/close mutex */
181 unsigned open_partitions; /* number of open partitions */
182
183 struct backing_dev_info *bdi;
184 struct kobject queue_kobj; /* the queue/ directory */
185 struct kobject *slave_dir;
186 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
187 struct list_head slave_bdevs;
188 #endif
189 struct timer_rand_state *random;
190 atomic_t sync_io; /* RAID */
191 struct disk_events *ev;
192
193 #ifdef CONFIG_BLK_DEV_ZONED
194 /*
195 * Zoned block device information. Reads of this information must be
196 * protected with blk_queue_enter() / blk_queue_exit(). Modifying this
197 * information is only allowed while no requests are being processed.
198 * See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue().
199 */
200 unsigned int nr_zones;
201 unsigned int zone_capacity;
202 unsigned int last_zone_capacity;
203 unsigned long __rcu *conv_zones_bitmap;
204 unsigned int zone_wplugs_hash_bits;
205 atomic_t nr_zone_wplugs;
206 spinlock_t zone_wplugs_lock;
207 struct mempool_s *zone_wplugs_pool;
208 struct hlist_head *zone_wplugs_hash;
209 struct workqueue_struct *zone_wplugs_wq;
210 #endif /* CONFIG_BLK_DEV_ZONED */
211
212 #if IS_ENABLED(CONFIG_CDROM)
213 struct cdrom_device_info *cdi;
214 #endif
215 int node_id;
216 struct badblocks *bb;
217 struct lockdep_map lockdep_map;
218 u64 diskseq;
219 blk_mode_t open_mode;
220
221 /*
222 * Independent sector access ranges. This is always NULL for
223 * devices that do not have multiple independent access ranges.
224 */
225 struct blk_independent_access_ranges *ia_ranges;
226
227 ANDROID_KABI_RESERVE(1);
228 ANDROID_KABI_RESERVE(2);
229 ANDROID_KABI_RESERVE(3);
230 ANDROID_KABI_RESERVE(4);
231
232 ANDROID_OEM_DATA(1);
233 };
234
235 /**
236 * disk_openers - returns how many openers are there for a disk
237 * @disk: disk to check
238 *
239 * This returns the number of openers for a disk. Note that this value is only
240 * stable if disk->open_mutex is held.
241 *
242 * Note: Due to a quirk in the block layer open code, each open partition is
243 * only counted once even if there are multiple openers.
244 */
disk_openers(struct gendisk * disk)245 static inline unsigned int disk_openers(struct gendisk *disk)
246 {
247 return atomic_read(&disk->part0->bd_openers);
248 }
249
250 /**
251 * disk_has_partscan - return %true if partition scanning is enabled on a disk
252 * @disk: disk to check
253 *
254 * Returns %true if partitions scanning is enabled for @disk, or %false if
255 * partition scanning is disabled either permanently or temporarily.
256 */
disk_has_partscan(struct gendisk * disk)257 static inline bool disk_has_partscan(struct gendisk *disk)
258 {
259 return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) &&
260 !test_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
261 }
262
263 /*
264 * The gendisk is refcounted by the part0 block_device, and the bd_device
265 * therein is also used for device model presentation in sysfs.
266 */
267 #define dev_to_disk(device) \
268 (dev_to_bdev(device)->bd_disk)
269 #define disk_to_dev(disk) \
270 (&((disk)->part0->bd_device))
271
272 #if IS_REACHABLE(CONFIG_CDROM)
273 #define disk_to_cdi(disk) ((disk)->cdi)
274 #else
275 #define disk_to_cdi(disk) NULL
276 #endif
277
disk_devt(struct gendisk * disk)278 static inline dev_t disk_devt(struct gendisk *disk)
279 {
280 return MKDEV(disk->major, disk->first_minor);
281 }
282
283 /* blk_validate_limits() validates bsize, so drivers don't usually need to */
blk_validate_block_size(unsigned long bsize)284 static inline int blk_validate_block_size(unsigned long bsize)
285 {
286 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
287 return -EINVAL;
288
289 return 0;
290 }
291
blk_op_is_passthrough(blk_opf_t op)292 static inline bool blk_op_is_passthrough(blk_opf_t op)
293 {
294 op &= REQ_OP_MASK;
295 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
296 }
297
298 /* flags set by the driver in queue_limits.features */
299 typedef unsigned int __bitwise blk_features_t;
300
301 /* supports a volatile write cache */
302 #define BLK_FEAT_WRITE_CACHE ((__force blk_features_t)(1u << 0))
303
304 /* supports passing on the FUA bit */
305 #define BLK_FEAT_FUA ((__force blk_features_t)(1u << 1))
306
307 /* rotational device (hard drive or floppy) */
308 #define BLK_FEAT_ROTATIONAL ((__force blk_features_t)(1u << 2))
309
310 /* contributes to the random number pool */
311 #define BLK_FEAT_ADD_RANDOM ((__force blk_features_t)(1u << 3))
312
313 /* do disk/partitions IO accounting */
314 #define BLK_FEAT_IO_STAT ((__force blk_features_t)(1u << 4))
315
316 /* don't modify data until writeback is done */
317 #define BLK_FEAT_STABLE_WRITES ((__force blk_features_t)(1u << 5))
318
319 /* always completes in submit context */
320 #define BLK_FEAT_SYNCHRONOUS ((__force blk_features_t)(1u << 6))
321
322 /* supports REQ_NOWAIT */
323 #define BLK_FEAT_NOWAIT ((__force blk_features_t)(1u << 7))
324
325 /* supports DAX */
326 #define BLK_FEAT_DAX ((__force blk_features_t)(1u << 8))
327
328 /* supports I/O polling */
329 #define BLK_FEAT_POLL ((__force blk_features_t)(1u << 9))
330
331 /* is a zoned device */
332 #define BLK_FEAT_ZONED ((__force blk_features_t)(1u << 10))
333
334 /* supports PCI(e) p2p requests */
335 #define BLK_FEAT_PCI_P2PDMA ((__force blk_features_t)(1u << 12))
336
337 /* skip this queue in blk_mq_(un)quiesce_tagset */
338 #define BLK_FEAT_SKIP_TAGSET_QUIESCE ((__force blk_features_t)(1u << 13))
339
340 /* bounce all highmem pages */
341 #define BLK_FEAT_BOUNCE_HIGH ((__force blk_features_t)(1u << 14))
342
343 /* undocumented magic for bcache */
344 #define BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE \
345 ((__force blk_features_t)(1u << 15))
346
347 /*
348 * Flags automatically inherited when stacking limits.
349 */
350 #define BLK_FEAT_INHERIT_MASK \
351 (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_ROTATIONAL | \
352 BLK_FEAT_STABLE_WRITES | BLK_FEAT_ZONED | BLK_FEAT_BOUNCE_HIGH | \
353 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE)
354
355 /* internal flags in queue_limits.flags */
356 typedef unsigned int __bitwise blk_flags_t;
357
358 /* do not send FLUSH/FUA commands despite advertising a write cache */
359 #define BLK_FLAG_WRITE_CACHE_DISABLED ((__force blk_flags_t)(1u << 0))
360
361 /* I/O topology is misaligned */
362 #define BLK_FLAG_MISALIGNED ((__force blk_flags_t)(1u << 1))
363
364 struct queue_limits {
365 blk_features_t features;
366 blk_flags_t flags;
367 unsigned long seg_boundary_mask;
368 unsigned long virt_boundary_mask;
369
370 unsigned int max_hw_sectors;
371 unsigned int max_dev_sectors;
372 unsigned int chunk_sectors;
373 unsigned int max_sectors;
374 unsigned int max_user_sectors;
375 unsigned int max_segment_size;
376 unsigned int min_segment_size;
377 unsigned int physical_block_size;
378 unsigned int logical_block_size;
379 unsigned int alignment_offset;
380 unsigned int io_min;
381 unsigned int io_opt;
382 unsigned int max_discard_sectors;
383 unsigned int max_hw_discard_sectors;
384 unsigned int max_user_discard_sectors;
385 unsigned int max_secure_erase_sectors;
386 unsigned int max_write_zeroes_sectors;
387 unsigned int max_zone_append_sectors;
388 unsigned int discard_granularity;
389 unsigned int discard_alignment;
390 unsigned int zone_write_granularity;
391
392 /* atomic write limits */
393 unsigned int atomic_write_hw_max;
394 unsigned int atomic_write_max_sectors;
395 unsigned int atomic_write_hw_boundary;
396 unsigned int atomic_write_boundary_sectors;
397 unsigned int atomic_write_hw_unit_min;
398 unsigned int atomic_write_unit_min;
399 unsigned int atomic_write_hw_unit_max;
400 unsigned int atomic_write_unit_max;
401
402 unsigned short max_segments;
403 unsigned short max_integrity_segments;
404 unsigned short max_discard_segments;
405
406 unsigned int max_open_zones;
407 unsigned int max_active_zones;
408
409 /*
410 * Drivers that set dma_alignment to less than 511 must be prepared to
411 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
412 * due to possible offsets.
413 */
414 unsigned int dma_alignment;
415 unsigned int dma_pad_mask;
416
417 struct blk_integrity integrity;
418
419 ANDROID_KABI_RESERVE(1);
420 };
421
422 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
423 void *data);
424
425 #define BLK_ALL_ZONES ((unsigned int)-1)
426 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
427 unsigned int nr_zones, report_zones_cb cb, void *data);
428 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
429 sector_t sectors, sector_t nr_sectors);
430 int blk_revalidate_disk_zones(struct gendisk *disk);
431
432 /*
433 * Independent access ranges: struct blk_independent_access_range describes
434 * a range of contiguous sectors that can be accessed using device command
435 * execution resources that are independent from the resources used for
436 * other access ranges. This is typically found with single-LUN multi-actuator
437 * HDDs where each access range is served by a different set of heads.
438 * The set of independent ranges supported by the device is defined using
439 * struct blk_independent_access_ranges. The independent ranges must not overlap
440 * and must include all sectors within the disk capacity (no sector holes
441 * allowed).
442 * For a device with multiple ranges, requests targeting sectors in different
443 * ranges can be executed in parallel. A request can straddle an access range
444 * boundary.
445 */
446 struct blk_independent_access_range {
447 struct kobject kobj;
448 sector_t sector;
449 sector_t nr_sectors;
450 };
451
452 struct blk_independent_access_ranges {
453 struct kobject kobj;
454 bool sysfs_registered;
455 unsigned int nr_ia_ranges;
456 struct blk_independent_access_range ia_range[];
457 };
458
459 struct request_queue {
460 /*
461 * The queue owner gets to use this for whatever they like.
462 * ll_rw_blk doesn't touch it.
463 */
464 void *queuedata;
465
466 struct elevator_queue *elevator;
467
468 const struct blk_mq_ops *mq_ops;
469
470 /* sw queues */
471 struct blk_mq_ctx __percpu *queue_ctx;
472
473 /*
474 * various queue flags, see QUEUE_* below
475 */
476 unsigned long queue_flags;
477
478 unsigned int rq_timeout;
479
480 unsigned int queue_depth;
481
482 refcount_t refs;
483
484 /* hw dispatch queues */
485 unsigned int nr_hw_queues;
486 struct xarray hctx_table;
487
488 struct percpu_ref q_usage_counter;
489 struct lock_class_key io_lock_cls_key;
490 struct lockdep_map io_lockdep_map;
491
492 struct lock_class_key q_lock_cls_key;
493 struct lockdep_map q_lockdep_map;
494
495 struct request *last_merge;
496
497 spinlock_t queue_lock;
498
499 int quiesce_depth;
500
501 struct gendisk *disk;
502
503 /*
504 * mq queue kobject
505 */
506 struct kobject *mq_kobj;
507
508 struct queue_limits limits;
509
510 #ifdef CONFIG_PM
511 struct device *dev;
512 enum rpm_status rpm_status;
513 #endif
514
515 /*
516 * Number of contexts that have called blk_set_pm_only(). If this
517 * counter is above zero then only RQF_PM requests are processed.
518 */
519 atomic_t pm_only;
520
521 struct blk_queue_stats *stats;
522 struct rq_qos *rq_qos;
523 struct mutex rq_qos_mutex;
524
525 /*
526 * ida allocated id for this queue. Used to index queues from
527 * ioctx.
528 */
529 int id;
530
531 /*
532 * queue settings
533 */
534 unsigned long nr_requests; /* Max # of requests */
535
536 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
537 struct blk_crypto_profile *crypto_profile;
538 struct kobject *crypto_kobject;
539 #endif
540
541 struct timer_list timeout;
542 struct work_struct timeout_work;
543
544 atomic_t nr_active_requests_shared_tags;
545
546 struct blk_mq_tags *sched_shared_tags;
547
548 struct list_head icq_list;
549 #ifdef CONFIG_BLK_CGROUP
550 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
551 struct blkcg_gq *root_blkg;
552 struct list_head blkg_list;
553 struct mutex blkcg_mutex;
554 #endif
555
556 int node;
557
558 spinlock_t requeue_lock;
559 struct list_head requeue_list;
560 struct delayed_work requeue_work;
561
562 #ifdef CONFIG_BLK_DEV_IO_TRACE
563 struct blk_trace __rcu *blk_trace;
564 #endif
565 /*
566 * for flush operations
567 */
568 struct blk_flush_queue *fq;
569 struct list_head flush_list;
570
571 struct mutex sysfs_lock;
572 struct mutex sysfs_dir_lock;
573 struct mutex limits_lock;
574
575 /*
576 * for reusing dead hctx instance in case of updating
577 * nr_hw_queues
578 */
579 struct list_head unused_hctx_list;
580 spinlock_t unused_hctx_lock;
581
582 int mq_freeze_depth;
583
584 #ifdef CONFIG_BLK_DEV_THROTTLING
585 /* Throttle data */
586 struct throtl_data *td;
587 #endif
588 struct rcu_head rcu_head;
589 #ifdef CONFIG_LOCKDEP
590 struct task_struct *mq_freeze_owner;
591 int mq_freeze_owner_depth;
592 /*
593 * Records disk & queue state in current context, used in unfreeze
594 * queue
595 */
596 bool mq_freeze_disk_dead;
597 bool mq_freeze_queue_dying;
598 #endif
599 wait_queue_head_t mq_freeze_wq;
600 /*
601 * Protect concurrent access to q_usage_counter by
602 * percpu_ref_kill() and percpu_ref_reinit().
603 */
604 struct mutex mq_freeze_lock;
605
606 struct blk_mq_tag_set *tag_set;
607 struct list_head tag_set_list;
608
609 struct dentry *debugfs_dir;
610 struct dentry *sched_debugfs_dir;
611 struct dentry *rqos_debugfs_dir;
612 /*
613 * Serializes all debugfs metadata operations using the above dentries.
614 */
615 struct mutex debugfs_mutex;
616
617 bool mq_sysfs_init_done;
618
619 ANDROID_KABI_RESERVE(1);
620 ANDROID_KABI_RESERVE(2);
621 ANDROID_KABI_RESERVE(3);
622 ANDROID_KABI_RESERVE(4);
623 ANDROID_OEM_DATA(1);
624 };
625
626 /* Keep blk_queue_flag_name[] in sync with the definitions below */
627 enum {
628 QUEUE_FLAG_DYING, /* queue being torn down */
629 QUEUE_FLAG_NOMERGES, /* disable merge attempts */
630 QUEUE_FLAG_SAME_COMP, /* complete on same CPU-group */
631 QUEUE_FLAG_FAIL_IO, /* fake timeout */
632 QUEUE_FLAG_NOXMERGES, /* No extended merges */
633 QUEUE_FLAG_SAME_FORCE, /* force complete on same CPU */
634 QUEUE_FLAG_INIT_DONE, /* queue is initialized */
635 QUEUE_FLAG_STATS, /* track IO start and completion times */
636 QUEUE_FLAG_REGISTERED, /* queue has been registered to a disk */
637 QUEUE_FLAG_QUIESCED, /* queue has been quiesced */
638 QUEUE_FLAG_RQ_ALLOC_TIME, /* record rq->alloc_time_ns */
639 QUEUE_FLAG_HCTX_ACTIVE, /* at least one blk-mq hctx is active */
640 QUEUE_FLAG_SQ_SCHED, /* single queue style io dispatch */
641 QUEUE_FLAG_MAX
642 };
643
644 #define QUEUE_FLAG_MQ_DEFAULT (1UL << QUEUE_FLAG_SAME_COMP)
645
646 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
647 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
648
649 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
650 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
651 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
652 #define blk_queue_noxmerges(q) \
653 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
654 #define blk_queue_nonrot(q) (!((q)->limits.features & BLK_FEAT_ROTATIONAL))
655 #define blk_queue_io_stat(q) ((q)->limits.features & BLK_FEAT_IO_STAT)
656 #define blk_queue_dax(q) ((q)->limits.features & BLK_FEAT_DAX)
657 #define blk_queue_pci_p2pdma(q) ((q)->limits.features & BLK_FEAT_PCI_P2PDMA)
658 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
659 #define blk_queue_rq_alloc_time(q) \
660 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
661 #else
662 #define blk_queue_rq_alloc_time(q) false
663 #endif
664
665 #define blk_noretry_request(rq) \
666 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
667 REQ_FAILFAST_DRIVER))
668 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
669 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
670 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
671 #define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
672 #define blk_queue_skip_tagset_quiesce(q) \
673 ((q)->limits.features & BLK_FEAT_SKIP_TAGSET_QUIESCE)
674
675 extern void blk_set_pm_only(struct request_queue *q);
676 extern void blk_clear_pm_only(struct request_queue *q);
677
678 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
679
680 #define dma_map_bvec(dev, bv, dir, attrs) \
681 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
682 (dir), (attrs))
683
queue_is_mq(struct request_queue * q)684 static inline bool queue_is_mq(struct request_queue *q)
685 {
686 return q->mq_ops;
687 }
688
689 #ifdef CONFIG_PM
queue_rpm_status(struct request_queue * q)690 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
691 {
692 return q->rpm_status;
693 }
694 #else
queue_rpm_status(struct request_queue * q)695 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
696 {
697 return RPM_ACTIVE;
698 }
699 #endif
700
blk_queue_is_zoned(struct request_queue * q)701 static inline bool blk_queue_is_zoned(struct request_queue *q)
702 {
703 return IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
704 (q->limits.features & BLK_FEAT_ZONED);
705 }
706
707 #ifdef CONFIG_BLK_DEV_ZONED
disk_nr_zones(struct gendisk * disk)708 static inline unsigned int disk_nr_zones(struct gendisk *disk)
709 {
710 return disk->nr_zones;
711 }
712
713 /**
714 * bio_needs_zone_write_plugging - Check if a BIO needs to be handled with zone
715 * write plugging
716 * @bio: The BIO being submitted
717 *
718 * Return true whenever @bio execution needs to be handled through zone
719 * write plugging (using blk_zone_plug_bio()). Return false otherwise.
720 */
bio_needs_zone_write_plugging(struct bio * bio)721 static inline bool bio_needs_zone_write_plugging(struct bio *bio)
722 {
723 enum req_op op = bio_op(bio);
724
725 /*
726 * Only zoned block devices have a zone write plug hash table. But not
727 * all of them have one (e.g. DM devices may not need one).
728 */
729 if (!bio->bi_bdev->bd_disk->zone_wplugs_hash)
730 return false;
731
732 /* Only write operations need zone write plugging. */
733 if (!op_is_write(op))
734 return false;
735
736 /* Ignore empty flush */
737 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
738 return false;
739
740 /* Ignore BIOs that already have been handled by zone write plugging. */
741 if (bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING))
742 return false;
743
744 /*
745 * All zone write operations must be handled through zone write plugging
746 * using blk_zone_plug_bio().
747 */
748 switch (op) {
749 case REQ_OP_ZONE_APPEND:
750 case REQ_OP_WRITE:
751 case REQ_OP_WRITE_ZEROES:
752 case REQ_OP_ZONE_FINISH:
753 case REQ_OP_ZONE_RESET:
754 case REQ_OP_ZONE_RESET_ALL:
755 return true;
756 default:
757 return false;
758 }
759 }
760
761 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs);
762 #else /* CONFIG_BLK_DEV_ZONED */
disk_nr_zones(struct gendisk * disk)763 static inline unsigned int disk_nr_zones(struct gendisk *disk)
764 {
765 return 0;
766 }
767
bio_needs_zone_write_plugging(struct bio * bio)768 static inline bool bio_needs_zone_write_plugging(struct bio *bio)
769 {
770 return false;
771 }
772
blk_zone_plug_bio(struct bio * bio,unsigned int nr_segs)773 static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs)
774 {
775 return false;
776 }
777 #endif /* CONFIG_BLK_DEV_ZONED */
778
disk_zone_no(struct gendisk * disk,sector_t sector)779 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
780 {
781 const sector_t zone_sectors = disk->queue->limits.chunk_sectors;
782
783 if (!blk_queue_is_zoned(disk->queue))
784 return 0;
785 if (is_power_of_2(zone_sectors))
786 return sector >> ilog2(zone_sectors);
787 return div64_u64(sector, zone_sectors);
788 }
789
bdev_nr_zones(struct block_device * bdev)790 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
791 {
792 return disk_nr_zones(bdev->bd_disk);
793 }
794
bdev_max_open_zones(struct block_device * bdev)795 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
796 {
797 return bdev->bd_disk->queue->limits.max_open_zones;
798 }
799
bdev_max_active_zones(struct block_device * bdev)800 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
801 {
802 return bdev->bd_disk->queue->limits.max_active_zones;
803 }
804
blk_queue_depth(struct request_queue * q)805 static inline unsigned int blk_queue_depth(struct request_queue *q)
806 {
807 if (q->queue_depth)
808 return q->queue_depth;
809
810 return q->nr_requests;
811 }
812
813 /*
814 * default timeout for SG_IO if none specified
815 */
816 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
817 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
818
819 /* This should not be used directly - use rq_for_each_segment */
820 #define for_each_bio(_bio) \
821 for (; _bio; _bio = _bio->bi_next)
822
823 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
824 const struct attribute_group **groups);
add_disk(struct gendisk * disk)825 static inline int __must_check add_disk(struct gendisk *disk)
826 {
827 return device_add_disk(NULL, disk, NULL);
828 }
829 void del_gendisk(struct gendisk *gp);
830 void invalidate_disk(struct gendisk *disk);
831 void set_disk_ro(struct gendisk *disk, bool read_only);
832 void disk_uevent(struct gendisk *disk, enum kobject_action action);
833
bdev_partno(const struct block_device * bdev)834 static inline u8 bdev_partno(const struct block_device *bdev)
835 {
836 return atomic_read(&bdev->__bd_flags) & BD_PARTNO;
837 }
838
bdev_test_flag(const struct block_device * bdev,unsigned flag)839 static inline bool bdev_test_flag(const struct block_device *bdev, unsigned flag)
840 {
841 return atomic_read(&bdev->__bd_flags) & flag;
842 }
843
bdev_set_flag(struct block_device * bdev,unsigned flag)844 static inline void bdev_set_flag(struct block_device *bdev, unsigned flag)
845 {
846 atomic_or(flag, &bdev->__bd_flags);
847 }
848
bdev_clear_flag(struct block_device * bdev,unsigned flag)849 static inline void bdev_clear_flag(struct block_device *bdev, unsigned flag)
850 {
851 atomic_andnot(flag, &bdev->__bd_flags);
852 }
853
get_disk_ro(struct gendisk * disk)854 static inline int get_disk_ro(struct gendisk *disk)
855 {
856 return bdev_test_flag(disk->part0, BD_READ_ONLY) ||
857 test_bit(GD_READ_ONLY, &disk->state);
858 }
859
bdev_read_only(struct block_device * bdev)860 static inline int bdev_read_only(struct block_device *bdev)
861 {
862 return bdev_test_flag(bdev, BD_READ_ONLY) || get_disk_ro(bdev->bd_disk);
863 }
864
865 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
866 void disk_force_media_change(struct gendisk *disk);
867 void bdev_mark_dead(struct block_device *bdev, bool surprise);
868
869 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
870 void rand_initialize_disk(struct gendisk *disk);
871
get_start_sect(struct block_device * bdev)872 static inline sector_t get_start_sect(struct block_device *bdev)
873 {
874 return bdev->bd_start_sect;
875 }
876
bdev_nr_sectors(struct block_device * bdev)877 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
878 {
879 return bdev->bd_nr_sectors;
880 }
881
bdev_nr_bytes(struct block_device * bdev)882 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
883 {
884 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
885 }
886
get_capacity(struct gendisk * disk)887 static inline sector_t get_capacity(struct gendisk *disk)
888 {
889 return bdev_nr_sectors(disk->part0);
890 }
891
sb_bdev_nr_blocks(struct super_block * sb)892 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
893 {
894 return bdev_nr_sectors(sb->s_bdev) >>
895 (sb->s_blocksize_bits - SECTOR_SHIFT);
896 }
897
898 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
899
900 void put_disk(struct gendisk *disk);
901 struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node,
902 struct lock_class_key *lkclass);
903
904 /**
905 * blk_alloc_disk - allocate a gendisk structure
906 * @lim: queue limits to be used for this disk.
907 * @node_id: numa node to allocate on
908 *
909 * Allocate and pre-initialize a gendisk structure for use with BIO based
910 * drivers.
911 *
912 * Returns an ERR_PTR on error, else the allocated disk.
913 *
914 * Context: can sleep
915 */
916 #define blk_alloc_disk(lim, node_id) \
917 ({ \
918 static struct lock_class_key __key; \
919 \
920 __blk_alloc_disk(lim, node_id, &__key); \
921 })
922
923 int __register_blkdev(unsigned int major, const char *name,
924 void (*probe)(dev_t devt));
925 #define register_blkdev(major, name) \
926 __register_blkdev(major, name, NULL)
927 void unregister_blkdev(unsigned int major, const char *name);
928
929 bool disk_check_media_change(struct gendisk *disk);
930 void set_capacity(struct gendisk *disk, sector_t size);
931
932 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
933 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
934 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
935 #else
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)936 static inline int bd_link_disk_holder(struct block_device *bdev,
937 struct gendisk *disk)
938 {
939 return 0;
940 }
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)941 static inline void bd_unlink_disk_holder(struct block_device *bdev,
942 struct gendisk *disk)
943 {
944 }
945 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
946
947 dev_t part_devt(struct gendisk *disk, u8 partno);
948 void inc_diskseq(struct gendisk *disk);
949 void blk_request_module(dev_t devt);
950
951 extern int blk_register_queue(struct gendisk *disk);
952 extern void blk_unregister_queue(struct gendisk *disk);
953 void submit_bio_noacct(struct bio *bio);
954 struct bio *bio_split_to_limits(struct bio *bio);
955
956 extern int blk_lld_busy(struct request_queue *q);
957 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
958 extern void blk_queue_exit(struct request_queue *q);
959 extern void blk_sync_queue(struct request_queue *q);
960
961 /* Helper to convert REQ_OP_XXX to its string format XXX */
962 extern const char *blk_op_str(enum req_op op);
963
964 int blk_status_to_errno(blk_status_t status);
965 blk_status_t errno_to_blk_status(int errno);
966 const char *blk_status_to_str(blk_status_t status);
967
968 /* only poll the hardware once, don't continue until a completion was found */
969 #define BLK_POLL_ONESHOT (1 << 0)
970 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
971 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
972 unsigned int flags);
973
bdev_get_queue(struct block_device * bdev)974 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
975 {
976 return bdev->bd_queue; /* this is never NULL */
977 }
978
979 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
980 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
981
bio_zone_no(struct bio * bio)982 static inline unsigned int bio_zone_no(struct bio *bio)
983 {
984 return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
985 }
986
bio_straddles_zones(struct bio * bio)987 static inline bool bio_straddles_zones(struct bio *bio)
988 {
989 return bio_sectors(bio) &&
990 bio_zone_no(bio) !=
991 disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1);
992 }
993
994 /*
995 * Return how much within the boundary is left to be used for I/O at a given
996 * offset.
997 */
blk_boundary_sectors_left(sector_t offset,unsigned int boundary_sectors)998 static inline unsigned int blk_boundary_sectors_left(sector_t offset,
999 unsigned int boundary_sectors)
1000 {
1001 if (unlikely(!is_power_of_2(boundary_sectors)))
1002 return boundary_sectors - sector_div(offset, boundary_sectors);
1003 return boundary_sectors - (offset & (boundary_sectors - 1));
1004 }
1005
1006 /**
1007 * queue_limits_start_update - start an atomic update of queue limits
1008 * @q: queue to update
1009 *
1010 * This functions starts an atomic update of the queue limits. It takes a lock
1011 * to prevent other updates and returns a snapshot of the current limits that
1012 * the caller can modify. The caller must call queue_limits_commit_update()
1013 * to finish the update.
1014 *
1015 * Context: process context. The caller must have frozen the queue or ensured
1016 * that there is outstanding I/O by other means.
1017 */
1018 static inline struct queue_limits
queue_limits_start_update(struct request_queue * q)1019 queue_limits_start_update(struct request_queue *q)
1020 {
1021 mutex_lock(&q->limits_lock);
1022 return q->limits;
1023 }
1024 int queue_limits_commit_update_frozen(struct request_queue *q,
1025 struct queue_limits *lim);
1026 int queue_limits_commit_update(struct request_queue *q,
1027 struct queue_limits *lim);
1028 int queue_limits_set(struct request_queue *q, struct queue_limits *lim);
1029
1030 /**
1031 * queue_limits_cancel_update - cancel an atomic update of queue limits
1032 * @q: queue to update
1033 *
1034 * This functions cancels an atomic update of the queue limits started by
1035 * queue_limits_start_update() and should be used when an error occurs after
1036 * starting update.
1037 */
queue_limits_cancel_update(struct request_queue * q)1038 static inline void queue_limits_cancel_update(struct request_queue *q)
1039 {
1040 mutex_unlock(&q->limits_lock);
1041 }
1042
1043 /*
1044 * These helpers are for drivers that have sloppy feature negotiation and might
1045 * have to disable DISCARD, WRITE_ZEROES or SECURE_DISCARD from the I/O
1046 * completion handler when the device returned an indicator that the respective
1047 * feature is not actually supported. They are racy and the driver needs to
1048 * cope with that. Try to avoid this scheme if you can.
1049 */
blk_queue_disable_discard(struct request_queue * q)1050 static inline void blk_queue_disable_discard(struct request_queue *q)
1051 {
1052 q->limits.max_discard_sectors = 0;
1053 }
1054
blk_queue_disable_secure_erase(struct request_queue * q)1055 static inline void blk_queue_disable_secure_erase(struct request_queue *q)
1056 {
1057 q->limits.max_secure_erase_sectors = 0;
1058 }
1059
blk_queue_disable_write_zeroes(struct request_queue * q)1060 static inline void blk_queue_disable_write_zeroes(struct request_queue *q)
1061 {
1062 q->limits.max_write_zeroes_sectors = 0;
1063 }
1064
1065 /*
1066 * Access functions for manipulating queue properties
1067 */
1068 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1069 extern void blk_set_stacking_limits(struct queue_limits *lim);
1070 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1071 sector_t offset);
1072 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
1073 sector_t offset, const char *pfx);
1074 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1075
1076 struct blk_independent_access_ranges *
1077 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
1078 void disk_set_independent_access_ranges(struct gendisk *disk,
1079 struct blk_independent_access_ranges *iars);
1080
1081 bool __must_check blk_get_queue(struct request_queue *);
1082 extern void blk_put_queue(struct request_queue *);
1083
1084 void blk_mark_disk_dead(struct gendisk *disk);
1085
1086 #ifdef CONFIG_BLOCK
1087 struct rq_list {
1088 struct request *head;
1089 struct request *tail;
1090 };
1091
1092 /*
1093 * blk_plug permits building a queue of related requests by holding the I/O
1094 * fragments for a short period. This allows merging of sequential requests
1095 * into single larger request. As the requests are moved from a per-task list to
1096 * the device's request_queue in a batch, this results in improved scalability
1097 * as the lock contention for request_queue lock is reduced.
1098 *
1099 * It is ok not to disable preemption when adding the request to the plug list
1100 * or when attempting a merge. For details, please see schedule() where
1101 * blk_flush_plug() is called.
1102 */
1103 struct blk_plug {
1104 struct rq_list mq_list; /* blk-mq requests */
1105
1106 /* if ios_left is > 1, we can batch tag/rq allocations */
1107 struct rq_list cached_rqs;
1108 u64 cur_ktime;
1109 unsigned short nr_ios;
1110
1111 unsigned short rq_count;
1112
1113 bool multiple_queues;
1114 bool has_elevator;
1115
1116 struct list_head cb_list; /* md requires an unplug callback */
1117 };
1118
1119 struct blk_plug_cb;
1120 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1121 struct blk_plug_cb {
1122 struct list_head list;
1123 blk_plug_cb_fn callback;
1124 void *data;
1125 };
1126 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1127 void *data, int size);
1128 extern void blk_start_plug(struct blk_plug *);
1129 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1130 extern void blk_finish_plug(struct blk_plug *);
1131
1132 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
blk_flush_plug(struct blk_plug * plug,bool async)1133 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1134 {
1135 if (plug)
1136 __blk_flush_plug(plug, async);
1137 }
1138
1139 /*
1140 * tsk == current here
1141 */
blk_plug_invalidate_ts(struct task_struct * tsk)1142 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1143 {
1144 struct blk_plug *plug = tsk->plug;
1145
1146 if (plug)
1147 plug->cur_ktime = 0;
1148 current->flags &= ~PF_BLOCK_TS;
1149 }
1150
1151 int blkdev_issue_flush(struct block_device *bdev);
1152 long nr_blockdev_pages(void);
1153 #else /* CONFIG_BLOCK */
1154 struct blk_plug {
1155 };
1156
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1157 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1158 unsigned short nr_ios)
1159 {
1160 }
1161
blk_start_plug(struct blk_plug * plug)1162 static inline void blk_start_plug(struct blk_plug *plug)
1163 {
1164 }
1165
blk_finish_plug(struct blk_plug * plug)1166 static inline void blk_finish_plug(struct blk_plug *plug)
1167 {
1168 }
1169
blk_flush_plug(struct blk_plug * plug,bool async)1170 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1171 {
1172 }
1173
blk_plug_invalidate_ts(struct task_struct * tsk)1174 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1175 {
1176 }
1177
blkdev_issue_flush(struct block_device * bdev)1178 static inline int blkdev_issue_flush(struct block_device *bdev)
1179 {
1180 return 0;
1181 }
1182
nr_blockdev_pages(void)1183 static inline long nr_blockdev_pages(void)
1184 {
1185 return 0;
1186 }
1187 #endif /* CONFIG_BLOCK */
1188
1189 extern void blk_io_schedule(void);
1190
1191 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1192 sector_t nr_sects, gfp_t gfp_mask);
1193 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1194 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1195 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1196 sector_t nr_sects, gfp_t gfp);
1197
1198 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1199 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1200 #define BLKDEV_ZERO_KILLABLE (1 << 2) /* interruptible by fatal signals */
1201
1202 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1203 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1204 unsigned flags);
1205 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1206 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1207
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1208 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1209 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1210 {
1211 return blkdev_issue_discard(sb->s_bdev,
1212 block << (sb->s_blocksize_bits -
1213 SECTOR_SHIFT),
1214 nr_blocks << (sb->s_blocksize_bits -
1215 SECTOR_SHIFT),
1216 gfp_mask);
1217 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1218 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1219 sector_t nr_blocks, gfp_t gfp_mask)
1220 {
1221 return blkdev_issue_zeroout(sb->s_bdev,
1222 block << (sb->s_blocksize_bits -
1223 SECTOR_SHIFT),
1224 nr_blocks << (sb->s_blocksize_bits -
1225 SECTOR_SHIFT),
1226 gfp_mask, 0);
1227 }
1228
bdev_is_partition(struct block_device * bdev)1229 static inline bool bdev_is_partition(struct block_device *bdev)
1230 {
1231 return bdev_partno(bdev) != 0;
1232 }
1233
1234 enum blk_default_limits {
1235 BLK_MAX_SEGMENTS = 128,
1236 BLK_SAFE_MAX_SECTORS = 255,
1237 BLK_MAX_SEGMENT_SIZE = 65536,
1238 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1239 };
1240
1241 /*
1242 * Default upper limit for the software max_sectors limit used for
1243 * regular file system I/O. This can be increased through sysfs.
1244 *
1245 * Not to be confused with the max_hw_sector limit that is entirely
1246 * controlled by the driver, usually based on hardware limits.
1247 */
1248 #define BLK_DEF_MAX_SECTORS_CAP 2560u
1249
queue_segment_boundary(const struct request_queue * q)1250 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1251 {
1252 return q->limits.seg_boundary_mask;
1253 }
1254
queue_virt_boundary(const struct request_queue * q)1255 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1256 {
1257 return q->limits.virt_boundary_mask;
1258 }
1259
queue_max_sectors(const struct request_queue * q)1260 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1261 {
1262 return q->limits.max_sectors;
1263 }
1264
queue_max_bytes(struct request_queue * q)1265 static inline unsigned int queue_max_bytes(struct request_queue *q)
1266 {
1267 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1268 }
1269
queue_max_hw_sectors(const struct request_queue * q)1270 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1271 {
1272 return q->limits.max_hw_sectors;
1273 }
1274
queue_max_segments(const struct request_queue * q)1275 static inline unsigned short queue_max_segments(const struct request_queue *q)
1276 {
1277 return q->limits.max_segments;
1278 }
1279
queue_max_discard_segments(const struct request_queue * q)1280 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1281 {
1282 return q->limits.max_discard_segments;
1283 }
1284
queue_max_segment_size(const struct request_queue * q)1285 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1286 {
1287 return q->limits.max_segment_size;
1288 }
1289
1290 static inline unsigned int
queue_limits_max_zone_append_sectors(const struct queue_limits * l)1291 queue_limits_max_zone_append_sectors(const struct queue_limits *l)
1292 {
1293 unsigned int max_sectors = min(l->chunk_sectors, l->max_hw_sectors);
1294
1295 return min_not_zero(l->max_zone_append_sectors, max_sectors);
1296 }
1297
queue_max_zone_append_sectors(struct request_queue * q)1298 static inline unsigned int queue_max_zone_append_sectors(struct request_queue *q)
1299 {
1300 if (!blk_queue_is_zoned(q))
1301 return 0;
1302
1303 return queue_limits_max_zone_append_sectors(&q->limits);
1304 }
1305
queue_emulates_zone_append(struct request_queue * q)1306 static inline bool queue_emulates_zone_append(struct request_queue *q)
1307 {
1308 return blk_queue_is_zoned(q) && !q->limits.max_zone_append_sectors;
1309 }
1310
bdev_emulates_zone_append(struct block_device * bdev)1311 static inline bool bdev_emulates_zone_append(struct block_device *bdev)
1312 {
1313 return queue_emulates_zone_append(bdev_get_queue(bdev));
1314 }
1315
1316 static inline unsigned int
bdev_max_zone_append_sectors(struct block_device * bdev)1317 bdev_max_zone_append_sectors(struct block_device *bdev)
1318 {
1319 return queue_max_zone_append_sectors(bdev_get_queue(bdev));
1320 }
1321
bdev_max_segments(struct block_device * bdev)1322 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1323 {
1324 return queue_max_segments(bdev_get_queue(bdev));
1325 }
1326
queue_logical_block_size(const struct request_queue * q)1327 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1328 {
1329 return q->limits.logical_block_size;
1330 }
1331
bdev_logical_block_size(struct block_device * bdev)1332 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1333 {
1334 return queue_logical_block_size(bdev_get_queue(bdev));
1335 }
1336
queue_physical_block_size(const struct request_queue * q)1337 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1338 {
1339 return q->limits.physical_block_size;
1340 }
1341
bdev_physical_block_size(struct block_device * bdev)1342 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1343 {
1344 return queue_physical_block_size(bdev_get_queue(bdev));
1345 }
1346
queue_io_min(const struct request_queue * q)1347 static inline unsigned int queue_io_min(const struct request_queue *q)
1348 {
1349 return q->limits.io_min;
1350 }
1351
bdev_io_min(struct block_device * bdev)1352 static inline unsigned int bdev_io_min(struct block_device *bdev)
1353 {
1354 return queue_io_min(bdev_get_queue(bdev));
1355 }
1356
queue_io_opt(const struct request_queue * q)1357 static inline unsigned int queue_io_opt(const struct request_queue *q)
1358 {
1359 return q->limits.io_opt;
1360 }
1361
bdev_io_opt(struct block_device * bdev)1362 static inline int bdev_io_opt(struct block_device *bdev)
1363 {
1364 return queue_io_opt(bdev_get_queue(bdev));
1365 }
1366
1367 static inline unsigned int
queue_zone_write_granularity(const struct request_queue * q)1368 queue_zone_write_granularity(const struct request_queue *q)
1369 {
1370 return q->limits.zone_write_granularity;
1371 }
1372
1373 static inline unsigned int
bdev_zone_write_granularity(struct block_device * bdev)1374 bdev_zone_write_granularity(struct block_device *bdev)
1375 {
1376 return queue_zone_write_granularity(bdev_get_queue(bdev));
1377 }
1378
1379 int bdev_alignment_offset(struct block_device *bdev);
1380 unsigned int bdev_discard_alignment(struct block_device *bdev);
1381
bdev_max_discard_sectors(struct block_device * bdev)1382 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1383 {
1384 return bdev_get_queue(bdev)->limits.max_discard_sectors;
1385 }
1386
bdev_discard_granularity(struct block_device * bdev)1387 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1388 {
1389 return bdev_get_queue(bdev)->limits.discard_granularity;
1390 }
1391
1392 static inline unsigned int
bdev_max_secure_erase_sectors(struct block_device * bdev)1393 bdev_max_secure_erase_sectors(struct block_device *bdev)
1394 {
1395 return bdev_get_queue(bdev)->limits.max_secure_erase_sectors;
1396 }
1397
bdev_write_zeroes_sectors(struct block_device * bdev)1398 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1399 {
1400 return bdev_get_queue(bdev)->limits.max_write_zeroes_sectors;
1401 }
1402
bdev_nonrot(struct block_device * bdev)1403 static inline bool bdev_nonrot(struct block_device *bdev)
1404 {
1405 return blk_queue_nonrot(bdev_get_queue(bdev));
1406 }
1407
bdev_synchronous(struct block_device * bdev)1408 static inline bool bdev_synchronous(struct block_device *bdev)
1409 {
1410 return bdev->bd_disk->queue->limits.features & BLK_FEAT_SYNCHRONOUS;
1411 }
1412
bdev_stable_writes(struct block_device * bdev)1413 static inline bool bdev_stable_writes(struct block_device *bdev)
1414 {
1415 struct request_queue *q = bdev_get_queue(bdev);
1416
1417 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1418 q->limits.integrity.csum_type != BLK_INTEGRITY_CSUM_NONE)
1419 return true;
1420 return q->limits.features & BLK_FEAT_STABLE_WRITES;
1421 }
1422
blk_queue_write_cache(struct request_queue * q)1423 static inline bool blk_queue_write_cache(struct request_queue *q)
1424 {
1425 return (q->limits.features & BLK_FEAT_WRITE_CACHE) &&
1426 !(q->limits.flags & BLK_FLAG_WRITE_CACHE_DISABLED);
1427 }
1428
bdev_write_cache(struct block_device * bdev)1429 static inline bool bdev_write_cache(struct block_device *bdev)
1430 {
1431 return blk_queue_write_cache(bdev_get_queue(bdev));
1432 }
1433
bdev_fua(struct block_device * bdev)1434 static inline bool bdev_fua(struct block_device *bdev)
1435 {
1436 return bdev_get_queue(bdev)->limits.features & BLK_FEAT_FUA;
1437 }
1438
bdev_nowait(struct block_device * bdev)1439 static inline bool bdev_nowait(struct block_device *bdev)
1440 {
1441 return bdev->bd_disk->queue->limits.features & BLK_FEAT_NOWAIT;
1442 }
1443
bdev_is_zoned(struct block_device * bdev)1444 static inline bool bdev_is_zoned(struct block_device *bdev)
1445 {
1446 return blk_queue_is_zoned(bdev_get_queue(bdev));
1447 }
1448
bdev_zone_no(struct block_device * bdev,sector_t sec)1449 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
1450 {
1451 return disk_zone_no(bdev->bd_disk, sec);
1452 }
1453
bdev_zone_sectors(struct block_device * bdev)1454 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1455 {
1456 struct request_queue *q = bdev_get_queue(bdev);
1457
1458 if (!blk_queue_is_zoned(q))
1459 return 0;
1460 return q->limits.chunk_sectors;
1461 }
1462
bdev_offset_from_zone_start(struct block_device * bdev,sector_t sector)1463 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
1464 sector_t sector)
1465 {
1466 sector_t zone_sectors = bdev_zone_sectors(bdev);
1467 u64 remainder = 0;
1468
1469 if (!bdev_is_zoned(bdev))
1470 return 0;
1471
1472 if (is_power_of_2(zone_sectors))
1473 return sector & (zone_sectors - 1);
1474
1475 div64_u64_rem(sector, zone_sectors, &remainder);
1476 return remainder;
1477 }
1478
bio_offset_from_zone_start(struct bio * bio)1479 static inline sector_t bio_offset_from_zone_start(struct bio *bio)
1480 {
1481 return bdev_offset_from_zone_start(bio->bi_bdev,
1482 bio->bi_iter.bi_sector);
1483 }
1484
bdev_is_zone_start(struct block_device * bdev,sector_t sector)1485 static inline bool bdev_is_zone_start(struct block_device *bdev,
1486 sector_t sector)
1487 {
1488 return bdev_offset_from_zone_start(bdev, sector) == 0;
1489 }
1490
1491 int blk_zone_issue_zeroout(struct block_device *bdev, sector_t sector,
1492 sector_t nr_sects, gfp_t gfp_mask);
1493
1494 /**
1495 * bdev_zone_is_seq - check if a sector belongs to a sequential write zone
1496 * @bdev: block device to check
1497 * @sector: sector number
1498 *
1499 * Check if @sector on @bdev is contained in a sequential write required zone.
1500 */
bdev_zone_is_seq(struct block_device * bdev,sector_t sector)1501 static inline bool bdev_zone_is_seq(struct block_device *bdev, sector_t sector)
1502 {
1503 bool is_seq = false;
1504
1505 #if IS_ENABLED(CONFIG_BLK_DEV_ZONED)
1506 if (bdev_is_zoned(bdev)) {
1507 struct gendisk *disk = bdev->bd_disk;
1508 unsigned long *bitmap;
1509
1510 rcu_read_lock();
1511 bitmap = rcu_dereference(disk->conv_zones_bitmap);
1512 is_seq = !bitmap ||
1513 !test_bit(disk_zone_no(disk, sector), bitmap);
1514 rcu_read_unlock();
1515 }
1516 #endif
1517
1518 return is_seq;
1519 }
1520
queue_dma_alignment(const struct request_queue * q)1521 static inline int queue_dma_alignment(const struct request_queue *q)
1522 {
1523 return q->limits.dma_alignment;
1524 }
1525
1526 static inline unsigned int
queue_atomic_write_unit_max_bytes(const struct request_queue * q)1527 queue_atomic_write_unit_max_bytes(const struct request_queue *q)
1528 {
1529 return q->limits.atomic_write_unit_max;
1530 }
1531
1532 static inline unsigned int
queue_atomic_write_unit_min_bytes(const struct request_queue * q)1533 queue_atomic_write_unit_min_bytes(const struct request_queue *q)
1534 {
1535 return q->limits.atomic_write_unit_min;
1536 }
1537
1538 static inline unsigned int
queue_atomic_write_boundary_bytes(const struct request_queue * q)1539 queue_atomic_write_boundary_bytes(const struct request_queue *q)
1540 {
1541 return q->limits.atomic_write_boundary_sectors << SECTOR_SHIFT;
1542 }
1543
1544 static inline unsigned int
queue_atomic_write_max_bytes(const struct request_queue * q)1545 queue_atomic_write_max_bytes(const struct request_queue *q)
1546 {
1547 return q->limits.atomic_write_max_sectors << SECTOR_SHIFT;
1548 }
1549
bdev_dma_alignment(struct block_device * bdev)1550 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1551 {
1552 return queue_dma_alignment(bdev_get_queue(bdev));
1553 }
1554
bdev_iter_is_aligned(struct block_device * bdev,struct iov_iter * iter)1555 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1556 struct iov_iter *iter)
1557 {
1558 return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1559 bdev_logical_block_size(bdev) - 1);
1560 }
1561
blk_lim_dma_alignment_and_pad(struct queue_limits * lim)1562 static inline int blk_lim_dma_alignment_and_pad(struct queue_limits *lim)
1563 {
1564 return lim->dma_alignment | lim->dma_pad_mask;
1565 }
1566
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1567 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1568 unsigned int len)
1569 {
1570 unsigned int alignment = blk_lim_dma_alignment_and_pad(&q->limits);
1571
1572 return !(addr & alignment) && !(len & alignment);
1573 }
1574
1575 /* assumes size > 256 */
blksize_bits(unsigned int size)1576 static inline unsigned int blksize_bits(unsigned int size)
1577 {
1578 return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
1579 }
1580
1581 int kblockd_schedule_work(struct work_struct *work);
1582 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1583
1584 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1585 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1586 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1587 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1588
1589 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1590
1591 bool blk_crypto_register(struct blk_crypto_profile *profile,
1592 struct request_queue *q);
1593
1594 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1595
blk_crypto_register(struct blk_crypto_profile * profile,struct request_queue * q)1596 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1597 struct request_queue *q)
1598 {
1599 return true;
1600 }
1601
1602 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1603
1604 enum blk_unique_id {
1605 /* these match the Designator Types specified in SPC */
1606 BLK_UID_T10 = 1,
1607 BLK_UID_EUI64 = 2,
1608 BLK_UID_NAA = 3,
1609 };
1610
1611 struct block_device_operations {
1612 void (*submit_bio)(struct bio *bio);
1613 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1614 unsigned int flags);
1615 int (*open)(struct gendisk *disk, blk_mode_t mode);
1616 void (*release)(struct gendisk *disk);
1617 int (*ioctl)(struct block_device *bdev, blk_mode_t mode,
1618 unsigned cmd, unsigned long arg);
1619 int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode,
1620 unsigned cmd, unsigned long arg);
1621 unsigned int (*check_events) (struct gendisk *disk,
1622 unsigned int clearing);
1623 void (*unlock_native_capacity) (struct gendisk *);
1624 int (*getgeo)(struct block_device *, struct hd_geometry *);
1625 int (*set_read_only)(struct block_device *bdev, bool ro);
1626 void (*free_disk)(struct gendisk *disk);
1627 /* this callback is with swap_lock and sometimes page table lock held */
1628 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1629 int (*report_zones)(struct gendisk *, sector_t sector,
1630 unsigned int nr_zones, report_zones_cb cb, void *data);
1631 char *(*devnode)(struct gendisk *disk, umode_t *mode);
1632 /* returns the length of the identifier or a negative errno: */
1633 int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1634 enum blk_unique_id id_type);
1635 struct module *owner;
1636 const struct pr_ops *pr_ops;
1637
1638 /*
1639 * Special callback for probing GPT entry at a given sector.
1640 * Needed by Android devices, used by GPT scanner and MMC blk
1641 * driver.
1642 */
1643 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1644
1645 ANDROID_KABI_RESERVE(1);
1646 ANDROID_KABI_RESERVE(2);
1647 };
1648
1649 #ifdef CONFIG_COMPAT
1650 extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t,
1651 unsigned int, unsigned long);
1652 #else
1653 #define blkdev_compat_ptr_ioctl NULL
1654 #endif
1655
blk_wake_io_task(struct task_struct * waiter)1656 static inline void blk_wake_io_task(struct task_struct *waiter)
1657 {
1658 /*
1659 * If we're polling, the task itself is doing the completions. For
1660 * that case, we don't need to signal a wakeup, it's enough to just
1661 * mark us as RUNNING.
1662 */
1663 if (waiter == current)
1664 __set_current_state(TASK_RUNNING);
1665 else
1666 wake_up_process(waiter);
1667 }
1668
1669 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1670 unsigned long start_time);
1671 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1672 unsigned int sectors, unsigned long start_time);
1673
1674 unsigned long bio_start_io_acct(struct bio *bio);
1675 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1676 struct block_device *orig_bdev);
1677
1678 /* Check whether @sector is a multiple of the zone size. */
bdev_is_zone_aligned(struct block_device * bdev,sector_t sector)1679 static inline bool bdev_is_zone_aligned(struct block_device *bdev,
1680 sector_t sector)
1681 {
1682 return bdev_is_zone_start(bdev, sector);
1683 }
1684
1685 /**
1686 * bio_end_io_acct - end I/O accounting for bio based drivers
1687 * @bio: bio to end account for
1688 * @start_time: start time returned by bio_start_io_acct()
1689 */
bio_end_io_acct(struct bio * bio,unsigned long start_time)1690 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1691 {
1692 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1693 }
1694
1695 int bdev_read_only(struct block_device *bdev);
1696 int set_blocksize(struct file *file, int size);
1697
1698 int lookup_bdev(const char *pathname, dev_t *dev);
1699
1700 void blkdev_show(struct seq_file *seqf, off_t offset);
1701
1702 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */
1703 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */
1704 #ifdef CONFIG_BLOCK
1705 #define BLKDEV_MAJOR_MAX 512
1706 #else
1707 #define BLKDEV_MAJOR_MAX 0
1708 #endif
1709
1710 struct blk_holder_ops {
1711 void (*mark_dead)(struct block_device *bdev, bool surprise);
1712
1713 /*
1714 * Sync the file system mounted on the block device.
1715 */
1716 void (*sync)(struct block_device *bdev);
1717
1718 /*
1719 * Freeze the file system mounted on the block device.
1720 */
1721 int (*freeze)(struct block_device *bdev);
1722
1723 /*
1724 * Thaw the file system mounted on the block device.
1725 */
1726 int (*thaw)(struct block_device *bdev);
1727 };
1728
1729 /*
1730 * For filesystems using @fs_holder_ops, the @holder argument passed to
1731 * helpers used to open and claim block devices via
1732 * bd_prepare_to_claim() must point to a superblock.
1733 */
1734 extern const struct blk_holder_ops fs_holder_ops;
1735
1736 /*
1737 * Return the correct open flags for blkdev_get_by_* for super block flags
1738 * as stored in sb->s_flags.
1739 */
1740 #define sb_open_mode(flags) \
1741 (BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \
1742 (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE))
1743
1744 struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder,
1745 const struct blk_holder_ops *hops);
1746 struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode,
1747 void *holder, const struct blk_holder_ops *hops);
1748 int bd_prepare_to_claim(struct block_device *bdev, void *holder,
1749 const struct blk_holder_ops *hops);
1750 void bd_abort_claiming(struct block_device *bdev, void *holder);
1751
1752 /* just for blk-cgroup, don't use elsewhere */
1753 struct block_device *blkdev_get_no_open(dev_t dev);
1754 void blkdev_put_no_open(struct block_device *bdev);
1755
1756 struct block_device *I_BDEV(struct inode *inode);
1757 struct block_device *file_bdev(struct file *bdev_file);
1758 bool disk_live(struct gendisk *disk);
1759 unsigned int block_size(struct block_device *bdev);
1760
1761 #ifdef CONFIG_BLOCK
1762 void invalidate_bdev(struct block_device *bdev);
1763 int sync_blockdev(struct block_device *bdev);
1764 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1765 int sync_blockdev_nowait(struct block_device *bdev);
1766 void sync_bdevs(bool wait);
1767 void bdev_statx(struct path *, struct kstat *, u32);
1768 void printk_all_partitions(void);
1769 int __init early_lookup_bdev(const char *pathname, dev_t *dev);
1770 #else
invalidate_bdev(struct block_device * bdev)1771 static inline void invalidate_bdev(struct block_device *bdev)
1772 {
1773 }
sync_blockdev(struct block_device * bdev)1774 static inline int sync_blockdev(struct block_device *bdev)
1775 {
1776 return 0;
1777 }
sync_blockdev_nowait(struct block_device * bdev)1778 static inline int sync_blockdev_nowait(struct block_device *bdev)
1779 {
1780 return 0;
1781 }
sync_bdevs(bool wait)1782 static inline void sync_bdevs(bool wait)
1783 {
1784 }
bdev_statx(struct path * path,struct kstat * stat,u32 request_mask)1785 static inline void bdev_statx(struct path *path, struct kstat *stat,
1786 u32 request_mask)
1787 {
1788 }
printk_all_partitions(void)1789 static inline void printk_all_partitions(void)
1790 {
1791 }
early_lookup_bdev(const char * pathname,dev_t * dev)1792 static inline int early_lookup_bdev(const char *pathname, dev_t *dev)
1793 {
1794 return -EINVAL;
1795 }
1796 #endif /* CONFIG_BLOCK */
1797
1798 int bdev_freeze(struct block_device *bdev);
1799 int bdev_thaw(struct block_device *bdev);
1800 void bdev_fput(struct file *bdev_file);
1801
1802 struct io_comp_batch {
1803 struct rq_list req_list;
1804 bool need_ts;
1805 void (*complete)(struct io_comp_batch *);
1806 };
1807
bdev_can_atomic_write(struct block_device * bdev)1808 static inline bool bdev_can_atomic_write(struct block_device *bdev)
1809 {
1810 struct request_queue *bd_queue = bdev->bd_queue;
1811 struct queue_limits *limits = &bd_queue->limits;
1812
1813 if (!limits->atomic_write_unit_min)
1814 return false;
1815
1816 if (bdev_is_partition(bdev)) {
1817 sector_t bd_start_sect = bdev->bd_start_sect;
1818 unsigned int alignment =
1819 max(limits->atomic_write_unit_min,
1820 limits->atomic_write_hw_boundary);
1821
1822 if (!IS_ALIGNED(bd_start_sect, alignment >> SECTOR_SHIFT))
1823 return false;
1824 }
1825
1826 return true;
1827 }
1828
1829 #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { }
1830
1831 #endif /* _LINUX_BLKDEV_H */
1832