1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <linux/anon_inodes.h>
63 #include <linux/sched/mm.h>
64 #include <linux/uaccess.h>
65 #include <linux/nospec.h>
66 #include <linux/fsnotify.h>
67 #include <linux/fadvise.h>
68 #include <linux/task_work.h>
69 #include <linux/io_uring.h>
70 #include <linux/io_uring/cmd.h>
71 #include <linux/audit.h>
72 #include <linux/security.h>
73 #include <asm/shmparam.h>
74
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
77
78 #include <uapi/linux/io_uring.h>
79
80 #include "io-wq.h"
81
82 #include "io_uring.h"
83 #include "opdef.h"
84 #include "refs.h"
85 #include "tctx.h"
86 #include "register.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 #include "waitid.h"
95 #include "futex.h"
96 #include "napi.h"
97 #include "uring_cmd.h"
98 #include "msg_ring.h"
99 #include "memmap.h"
100
101 #include "timeout.h"
102 #include "poll.h"
103 #include "rw.h"
104 #include "alloc_cache.h"
105 #include "eventfd.h"
106
107 #define IORING_MAX_ENTRIES 32768
108 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
109
110 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
111 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
112
113 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
114 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
115
116 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
117 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
118 REQ_F_ASYNC_DATA)
119
120 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
121 IO_REQ_CLEAN_FLAGS)
122
123 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
124
125 #define IO_COMPL_BATCH 32
126 #define IO_REQ_ALLOC_BATCH 8
127
128 struct io_defer_entry {
129 struct list_head list;
130 struct io_kiocb *req;
131 u32 seq;
132 };
133
134 /* requests with any of those set should undergo io_disarm_next() */
135 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
136 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
137
138 /*
139 * No waiters. It's larger than any valid value of the tw counter
140 * so that tests against ->cq_wait_nr would fail and skip wake_up().
141 */
142 #define IO_CQ_WAKE_INIT (-1U)
143 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
144 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1)
145
146 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
147 struct task_struct *task,
148 bool cancel_all);
149
150 static void io_queue_sqe(struct io_kiocb *req);
151
152 struct kmem_cache *req_cachep;
153 static struct workqueue_struct *iou_wq __ro_after_init;
154
155 static int __read_mostly sysctl_io_uring_disabled;
156 static int __read_mostly sysctl_io_uring_group = -1;
157
158 #ifdef CONFIG_SYSCTL
159 static struct ctl_table kernel_io_uring_disabled_table[] = {
160 {
161 .procname = "io_uring_disabled",
162 .data = &sysctl_io_uring_disabled,
163 .maxlen = sizeof(sysctl_io_uring_disabled),
164 .mode = 0644,
165 .proc_handler = proc_dointvec_minmax,
166 .extra1 = SYSCTL_ZERO,
167 .extra2 = SYSCTL_TWO,
168 },
169 {
170 .procname = "io_uring_group",
171 .data = &sysctl_io_uring_group,
172 .maxlen = sizeof(gid_t),
173 .mode = 0644,
174 .proc_handler = proc_dointvec,
175 },
176 };
177 #endif
178
__io_cqring_events(struct io_ring_ctx * ctx)179 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
180 {
181 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
182 }
183
__io_cqring_events_user(struct io_ring_ctx * ctx)184 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
185 {
186 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
187 }
188
io_match_linked(struct io_kiocb * head)189 static bool io_match_linked(struct io_kiocb *head)
190 {
191 struct io_kiocb *req;
192
193 io_for_each_link(req, head) {
194 if (req->flags & REQ_F_INFLIGHT)
195 return true;
196 }
197 return false;
198 }
199
200 /*
201 * As io_match_task() but protected against racing with linked timeouts.
202 * User must not hold timeout_lock.
203 */
io_match_task_safe(struct io_kiocb * head,struct task_struct * task,bool cancel_all)204 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
205 bool cancel_all)
206 {
207 bool matched;
208
209 if (task && head->task != task)
210 return false;
211 if (cancel_all)
212 return true;
213
214 if (head->flags & REQ_F_LINK_TIMEOUT) {
215 struct io_ring_ctx *ctx = head->ctx;
216
217 /* protect against races with linked timeouts */
218 spin_lock_irq(&ctx->timeout_lock);
219 matched = io_match_linked(head);
220 spin_unlock_irq(&ctx->timeout_lock);
221 } else {
222 matched = io_match_linked(head);
223 }
224 return matched;
225 }
226
req_fail_link_node(struct io_kiocb * req,int res)227 static inline void req_fail_link_node(struct io_kiocb *req, int res)
228 {
229 req_set_fail(req);
230 io_req_set_res(req, res, 0);
231 }
232
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)233 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
234 {
235 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
236 }
237
io_ring_ctx_ref_free(struct percpu_ref * ref)238 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
239 {
240 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
241
242 complete(&ctx->ref_comp);
243 }
244
io_fallback_req_func(struct work_struct * work)245 static __cold void io_fallback_req_func(struct work_struct *work)
246 {
247 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
248 fallback_work.work);
249 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
250 struct io_kiocb *req, *tmp;
251 struct io_tw_state ts = {};
252
253 percpu_ref_get(&ctx->refs);
254 mutex_lock(&ctx->uring_lock);
255 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
256 req->io_task_work.func(req, &ts);
257 io_submit_flush_completions(ctx);
258 mutex_unlock(&ctx->uring_lock);
259 percpu_ref_put(&ctx->refs);
260 }
261
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)262 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
263 {
264 unsigned hash_buckets = 1U << bits;
265 size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
266
267 table->hbs = kmalloc(hash_size, GFP_KERNEL);
268 if (!table->hbs)
269 return -ENOMEM;
270
271 table->hash_bits = bits;
272 init_hash_table(table, hash_buckets);
273 return 0;
274 }
275
io_ring_ctx_alloc(struct io_uring_params * p)276 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
277 {
278 struct io_ring_ctx *ctx;
279 int hash_bits;
280 bool ret;
281
282 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
283 if (!ctx)
284 return NULL;
285
286 xa_init(&ctx->io_bl_xa);
287
288 /*
289 * Use 5 bits less than the max cq entries, that should give us around
290 * 32 entries per hash list if totally full and uniformly spread, but
291 * don't keep too many buckets to not overconsume memory.
292 */
293 hash_bits = ilog2(p->cq_entries) - 5;
294 hash_bits = clamp(hash_bits, 1, 8);
295 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
296 goto err;
297 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
298 goto err;
299 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
300 0, GFP_KERNEL))
301 goto err;
302
303 ctx->flags = p->flags;
304 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
305 init_waitqueue_head(&ctx->sqo_sq_wait);
306 INIT_LIST_HEAD(&ctx->sqd_list);
307 INIT_LIST_HEAD(&ctx->cq_overflow_list);
308 INIT_LIST_HEAD(&ctx->io_buffers_cache);
309 ret = io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
310 sizeof(struct io_rsrc_node));
311 ret |= io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
312 sizeof(struct async_poll));
313 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
314 sizeof(struct io_async_msghdr));
315 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
316 sizeof(struct io_async_rw));
317 ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX,
318 sizeof(struct uring_cache));
319 spin_lock_init(&ctx->msg_lock);
320 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
321 sizeof(struct io_kiocb));
322 ret |= io_futex_cache_init(ctx);
323 if (ret)
324 goto free_ref;
325 init_completion(&ctx->ref_comp);
326 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
327 mutex_init(&ctx->uring_lock);
328 init_waitqueue_head(&ctx->cq_wait);
329 init_waitqueue_head(&ctx->poll_wq);
330 init_waitqueue_head(&ctx->rsrc_quiesce_wq);
331 spin_lock_init(&ctx->completion_lock);
332 spin_lock_init(&ctx->timeout_lock);
333 INIT_WQ_LIST(&ctx->iopoll_list);
334 INIT_LIST_HEAD(&ctx->io_buffers_comp);
335 INIT_LIST_HEAD(&ctx->defer_list);
336 INIT_LIST_HEAD(&ctx->timeout_list);
337 INIT_LIST_HEAD(&ctx->ltimeout_list);
338 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
339 init_llist_head(&ctx->work_llist);
340 INIT_LIST_HEAD(&ctx->tctx_list);
341 ctx->submit_state.free_list.next = NULL;
342 INIT_HLIST_HEAD(&ctx->waitid_list);
343 #ifdef CONFIG_FUTEX
344 INIT_HLIST_HEAD(&ctx->futex_list);
345 #endif
346 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
347 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
348 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
349 io_napi_init(ctx);
350
351 return ctx;
352
353 free_ref:
354 percpu_ref_exit(&ctx->refs);
355 err:
356 io_alloc_cache_free(&ctx->rsrc_node_cache, kfree);
357 io_alloc_cache_free(&ctx->apoll_cache, kfree);
358 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
359 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
360 io_alloc_cache_free(&ctx->uring_cache, kfree);
361 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
362 io_futex_cache_free(ctx);
363 kfree(ctx->cancel_table.hbs);
364 kfree(ctx->cancel_table_locked.hbs);
365 xa_destroy(&ctx->io_bl_xa);
366 kfree(ctx);
367 return NULL;
368 }
369
io_account_cq_overflow(struct io_ring_ctx * ctx)370 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
371 {
372 struct io_rings *r = ctx->rings;
373
374 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
375 ctx->cq_extra--;
376 }
377
req_need_defer(struct io_kiocb * req,u32 seq)378 static bool req_need_defer(struct io_kiocb *req, u32 seq)
379 {
380 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
381 struct io_ring_ctx *ctx = req->ctx;
382
383 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
384 }
385
386 return false;
387 }
388
io_clean_op(struct io_kiocb * req)389 static void io_clean_op(struct io_kiocb *req)
390 {
391 if (req->flags & REQ_F_BUFFER_SELECTED) {
392 spin_lock(&req->ctx->completion_lock);
393 io_kbuf_drop(req);
394 spin_unlock(&req->ctx->completion_lock);
395 }
396
397 if (req->flags & REQ_F_NEED_CLEANUP) {
398 const struct io_cold_def *def = &io_cold_defs[req->opcode];
399
400 if (def->cleanup)
401 def->cleanup(req);
402 }
403 if ((req->flags & REQ_F_POLLED) && req->apoll) {
404 kfree(req->apoll->double_poll);
405 kfree(req->apoll);
406 req->apoll = NULL;
407 }
408 if (req->flags & REQ_F_INFLIGHT) {
409 struct io_uring_task *tctx = req->task->io_uring;
410
411 atomic_dec(&tctx->inflight_tracked);
412 }
413 if (req->flags & REQ_F_CREDS)
414 put_cred(req->creds);
415 if (req->flags & REQ_F_ASYNC_DATA) {
416 kfree(req->async_data);
417 req->async_data = NULL;
418 }
419 req->flags &= ~IO_REQ_CLEAN_FLAGS;
420 }
421
io_req_track_inflight(struct io_kiocb * req)422 static inline void io_req_track_inflight(struct io_kiocb *req)
423 {
424 if (!(req->flags & REQ_F_INFLIGHT)) {
425 req->flags |= REQ_F_INFLIGHT;
426 atomic_inc(&req->task->io_uring->inflight_tracked);
427 }
428 }
429
__io_prep_linked_timeout(struct io_kiocb * req)430 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
431 {
432 if (WARN_ON_ONCE(!req->link))
433 return NULL;
434
435 req->flags &= ~REQ_F_ARM_LTIMEOUT;
436 req->flags |= REQ_F_LINK_TIMEOUT;
437
438 /* linked timeouts should have two refs once prep'ed */
439 io_req_set_refcount(req);
440 __io_req_set_refcount(req->link, 2);
441 return req->link;
442 }
443
io_prep_async_work(struct io_kiocb * req)444 static void io_prep_async_work(struct io_kiocb *req)
445 {
446 const struct io_issue_def *def = &io_issue_defs[req->opcode];
447 struct io_ring_ctx *ctx = req->ctx;
448
449 if (!(req->flags & REQ_F_CREDS)) {
450 req->flags |= REQ_F_CREDS;
451 req->creds = get_current_cred();
452 }
453
454 req->work.list.next = NULL;
455 atomic_set(&req->work.flags, 0);
456 if (req->flags & REQ_F_FORCE_ASYNC)
457 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
458
459 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
460 req->flags |= io_file_get_flags(req->file);
461
462 if (req->file && (req->flags & REQ_F_ISREG)) {
463 bool should_hash = def->hash_reg_file;
464
465 /* don't serialize this request if the fs doesn't need it */
466 if (should_hash && (req->file->f_flags & O_DIRECT) &&
467 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
468 should_hash = false;
469 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
470 io_wq_hash_work(&req->work, file_inode(req->file));
471 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
472 if (def->unbound_nonreg_file)
473 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
474 }
475 }
476
io_prep_async_link(struct io_kiocb * req)477 static void io_prep_async_link(struct io_kiocb *req)
478 {
479 struct io_kiocb *cur;
480
481 if (req->flags & REQ_F_LINK_TIMEOUT) {
482 struct io_ring_ctx *ctx = req->ctx;
483
484 spin_lock_irq(&ctx->timeout_lock);
485 io_for_each_link(cur, req)
486 io_prep_async_work(cur);
487 spin_unlock_irq(&ctx->timeout_lock);
488 } else {
489 io_for_each_link(cur, req)
490 io_prep_async_work(cur);
491 }
492 }
493
io_queue_iowq(struct io_kiocb * req)494 static void io_queue_iowq(struct io_kiocb *req)
495 {
496 struct io_uring_task *tctx = req->task->io_uring;
497
498 BUG_ON(!tctx);
499
500 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
501 io_req_task_queue_fail(req, -ECANCELED);
502 return;
503 }
504
505 /* init ->work of the whole link before punting */
506 io_prep_async_link(req);
507
508 /*
509 * Not expected to happen, but if we do have a bug where this _can_
510 * happen, catch it here and ensure the request is marked as
511 * canceled. That will make io-wq go through the usual work cancel
512 * procedure rather than attempt to run this request (or create a new
513 * worker for it).
514 */
515 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
516 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
517
518 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
519 io_wq_enqueue(tctx->io_wq, &req->work);
520 }
521
io_req_queue_iowq_tw(struct io_kiocb * req,struct io_tw_state * ts)522 static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts)
523 {
524 io_queue_iowq(req);
525 }
526
io_req_queue_iowq(struct io_kiocb * req)527 void io_req_queue_iowq(struct io_kiocb *req)
528 {
529 req->io_task_work.func = io_req_queue_iowq_tw;
530 io_req_task_work_add(req);
531 }
532
io_queue_deferred(struct io_ring_ctx * ctx)533 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
534 {
535 while (!list_empty(&ctx->defer_list)) {
536 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
537 struct io_defer_entry, list);
538
539 if (req_need_defer(de->req, de->seq))
540 break;
541 list_del_init(&de->list);
542 io_req_task_queue(de->req);
543 kfree(de);
544 }
545 }
546
__io_commit_cqring_flush(struct io_ring_ctx * ctx)547 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
548 {
549 if (ctx->poll_activated)
550 io_poll_wq_wake(ctx);
551 if (ctx->off_timeout_used)
552 io_flush_timeouts(ctx);
553 if (ctx->drain_active) {
554 spin_lock(&ctx->completion_lock);
555 io_queue_deferred(ctx);
556 spin_unlock(&ctx->completion_lock);
557 }
558 if (ctx->has_evfd)
559 io_eventfd_flush_signal(ctx);
560 }
561
__io_cq_lock(struct io_ring_ctx * ctx)562 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
563 {
564 if (!ctx->lockless_cq)
565 spin_lock(&ctx->completion_lock);
566 }
567
io_cq_lock(struct io_ring_ctx * ctx)568 static inline void io_cq_lock(struct io_ring_ctx *ctx)
569 __acquires(ctx->completion_lock)
570 {
571 spin_lock(&ctx->completion_lock);
572 }
573
__io_cq_unlock_post(struct io_ring_ctx * ctx)574 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
575 {
576 io_commit_cqring(ctx);
577 if (!ctx->task_complete) {
578 if (!ctx->lockless_cq)
579 spin_unlock(&ctx->completion_lock);
580 /* IOPOLL rings only need to wake up if it's also SQPOLL */
581 if (!ctx->syscall_iopoll)
582 io_cqring_wake(ctx);
583 }
584 io_commit_cqring_flush(ctx);
585 }
586
io_cq_unlock_post(struct io_ring_ctx * ctx)587 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
588 __releases(ctx->completion_lock)
589 {
590 io_commit_cqring(ctx);
591 spin_unlock(&ctx->completion_lock);
592 io_cqring_wake(ctx);
593 io_commit_cqring_flush(ctx);
594 }
595
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool dying)596 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
597 {
598 size_t cqe_size = sizeof(struct io_uring_cqe);
599
600 lockdep_assert_held(&ctx->uring_lock);
601
602 /* don't abort if we're dying, entries must get freed */
603 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
604 return;
605
606 if (ctx->flags & IORING_SETUP_CQE32)
607 cqe_size <<= 1;
608
609 io_cq_lock(ctx);
610 while (!list_empty(&ctx->cq_overflow_list)) {
611 struct io_uring_cqe *cqe;
612 struct io_overflow_cqe *ocqe;
613
614 ocqe = list_first_entry(&ctx->cq_overflow_list,
615 struct io_overflow_cqe, list);
616
617 if (!dying) {
618 if (!io_get_cqe_overflow(ctx, &cqe, true))
619 break;
620 memcpy(cqe, &ocqe->cqe, cqe_size);
621 }
622 list_del(&ocqe->list);
623 kfree(ocqe);
624
625 /*
626 * For silly syzbot cases that deliberately overflow by huge
627 * amounts, check if we need to resched and drop and
628 * reacquire the locks if so. Nothing real would ever hit this.
629 * Ideally we'd have a non-posting unlock for this, but hard
630 * to care for a non-real case.
631 */
632 if (need_resched()) {
633 ctx->cqe_sentinel = ctx->cqe_cached;
634 io_cq_unlock_post(ctx);
635 mutex_unlock(&ctx->uring_lock);
636 cond_resched();
637 mutex_lock(&ctx->uring_lock);
638 io_cq_lock(ctx);
639 }
640 }
641
642 if (list_empty(&ctx->cq_overflow_list)) {
643 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
644 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
645 }
646 io_cq_unlock_post(ctx);
647 }
648
io_cqring_overflow_kill(struct io_ring_ctx * ctx)649 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
650 {
651 if (ctx->rings)
652 __io_cqring_overflow_flush(ctx, true);
653 }
654
io_cqring_do_overflow_flush(struct io_ring_ctx * ctx)655 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
656 {
657 mutex_lock(&ctx->uring_lock);
658 __io_cqring_overflow_flush(ctx, false);
659 mutex_unlock(&ctx->uring_lock);
660 }
661
662 /* can be called by any task */
io_put_task_remote(struct task_struct * task)663 static void io_put_task_remote(struct task_struct *task)
664 {
665 struct io_uring_task *tctx = task->io_uring;
666
667 percpu_counter_sub(&tctx->inflight, 1);
668 if (unlikely(atomic_read(&tctx->in_cancel)))
669 wake_up(&tctx->wait);
670 put_task_struct(task);
671 }
672
673 /* used by a task to put its own references */
io_put_task_local(struct task_struct * task)674 static void io_put_task_local(struct task_struct *task)
675 {
676 task->io_uring->cached_refs++;
677 }
678
679 /* must to be called somewhat shortly after putting a request */
io_put_task(struct task_struct * task)680 static inline void io_put_task(struct task_struct *task)
681 {
682 if (likely(task == current))
683 io_put_task_local(task);
684 else
685 io_put_task_remote(task);
686 }
687
io_task_refs_refill(struct io_uring_task * tctx)688 void io_task_refs_refill(struct io_uring_task *tctx)
689 {
690 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
691
692 percpu_counter_add(&tctx->inflight, refill);
693 refcount_add(refill, ¤t->usage);
694 tctx->cached_refs += refill;
695 }
696
io_uring_drop_tctx_refs(struct task_struct * task)697 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
698 {
699 struct io_uring_task *tctx = task->io_uring;
700 unsigned int refs = tctx->cached_refs;
701
702 if (refs) {
703 tctx->cached_refs = 0;
704 percpu_counter_sub(&tctx->inflight, refs);
705 put_task_struct_many(task, refs);
706 }
707 }
708
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,u64 extra1,u64 extra2)709 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
710 s32 res, u32 cflags, u64 extra1, u64 extra2)
711 {
712 struct io_overflow_cqe *ocqe;
713 size_t ocq_size = sizeof(struct io_overflow_cqe);
714 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
715
716 lockdep_assert_held(&ctx->completion_lock);
717
718 if (is_cqe32)
719 ocq_size += sizeof(struct io_uring_cqe);
720
721 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
722 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
723 if (!ocqe) {
724 /*
725 * If we're in ring overflow flush mode, or in task cancel mode,
726 * or cannot allocate an overflow entry, then we need to drop it
727 * on the floor.
728 */
729 io_account_cq_overflow(ctx);
730 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
731 return false;
732 }
733 if (list_empty(&ctx->cq_overflow_list)) {
734 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
735 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
736
737 }
738 ocqe->cqe.user_data = user_data;
739 ocqe->cqe.res = res;
740 ocqe->cqe.flags = cflags;
741 if (is_cqe32) {
742 ocqe->cqe.big_cqe[0] = extra1;
743 ocqe->cqe.big_cqe[1] = extra2;
744 }
745 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
746 return true;
747 }
748
io_req_cqe_overflow(struct io_kiocb * req)749 static void io_req_cqe_overflow(struct io_kiocb *req)
750 {
751 io_cqring_event_overflow(req->ctx, req->cqe.user_data,
752 req->cqe.res, req->cqe.flags,
753 req->big_cqe.extra1, req->big_cqe.extra2);
754 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
755 }
756
757 /*
758 * writes to the cq entry need to come after reading head; the
759 * control dependency is enough as we're using WRITE_ONCE to
760 * fill the cq entry
761 */
io_cqe_cache_refill(struct io_ring_ctx * ctx,bool overflow)762 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
763 {
764 struct io_rings *rings = ctx->rings;
765 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
766 unsigned int free, queued, len;
767
768 /*
769 * Posting into the CQ when there are pending overflowed CQEs may break
770 * ordering guarantees, which will affect links, F_MORE users and more.
771 * Force overflow the completion.
772 */
773 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
774 return false;
775
776 /* userspace may cheat modifying the tail, be safe and do min */
777 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
778 free = ctx->cq_entries - queued;
779 /* we need a contiguous range, limit based on the current array offset */
780 len = min(free, ctx->cq_entries - off);
781 if (!len)
782 return false;
783
784 if (ctx->flags & IORING_SETUP_CQE32) {
785 off <<= 1;
786 len <<= 1;
787 }
788
789 ctx->cqe_cached = &rings->cqes[off];
790 ctx->cqe_sentinel = ctx->cqe_cached + len;
791 return true;
792 }
793
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)794 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
795 u32 cflags)
796 {
797 struct io_uring_cqe *cqe;
798
799 ctx->cq_extra++;
800
801 /*
802 * If we can't get a cq entry, userspace overflowed the
803 * submission (by quite a lot). Increment the overflow count in
804 * the ring.
805 */
806 if (likely(io_get_cqe(ctx, &cqe))) {
807 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
808
809 WRITE_ONCE(cqe->user_data, user_data);
810 WRITE_ONCE(cqe->res, res);
811 WRITE_ONCE(cqe->flags, cflags);
812
813 if (ctx->flags & IORING_SETUP_CQE32) {
814 WRITE_ONCE(cqe->big_cqe[0], 0);
815 WRITE_ONCE(cqe->big_cqe[1], 0);
816 }
817 return true;
818 }
819 return false;
820 }
821
__io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)822 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res,
823 u32 cflags)
824 {
825 bool filled;
826
827 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
828 if (!filled)
829 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
830
831 return filled;
832 }
833
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)834 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
835 {
836 bool filled;
837
838 io_cq_lock(ctx);
839 filled = __io_post_aux_cqe(ctx, user_data, res, cflags);
840 io_cq_unlock_post(ctx);
841 return filled;
842 }
843
844 /*
845 * Must be called from inline task_work so we now a flush will happen later,
846 * and obviously with ctx->uring_lock held (tw always has that).
847 */
io_add_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)848 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
849 {
850 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
851 spin_lock(&ctx->completion_lock);
852 io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
853 spin_unlock(&ctx->completion_lock);
854 }
855 ctx->submit_state.cq_flush = true;
856 }
857
858 /*
859 * A helper for multishot requests posting additional CQEs.
860 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
861 */
io_req_post_cqe(struct io_kiocb * req,s32 res,u32 cflags)862 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
863 {
864 struct io_ring_ctx *ctx = req->ctx;
865 bool posted;
866
867 /*
868 * If multishot has already posted deferred completions, ensure that
869 * those are flushed first before posting this one. If not, CQEs
870 * could get reordered.
871 */
872 if (!wq_list_empty(&ctx->submit_state.compl_reqs))
873 __io_submit_flush_completions(ctx);
874
875 lockdep_assert(!io_wq_current_is_worker());
876 lockdep_assert_held(&ctx->uring_lock);
877
878 if (!ctx->lockless_cq) {
879 spin_lock(&ctx->completion_lock);
880 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
881 spin_unlock(&ctx->completion_lock);
882 } else {
883 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
884 }
885
886 ctx->submit_state.cq_flush = true;
887 return posted;
888 }
889
io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)890 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
891 {
892 struct io_ring_ctx *ctx = req->ctx;
893
894 /*
895 * All execution paths but io-wq use the deferred completions by
896 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
897 */
898 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
899 return;
900
901 /*
902 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
903 * the submitter task context, IOPOLL protects with uring_lock.
904 */
905 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) {
906 req->io_task_work.func = io_req_task_complete;
907 io_req_task_work_add(req);
908 return;
909 }
910
911 io_cq_lock(ctx);
912 if (!(req->flags & REQ_F_CQE_SKIP)) {
913 if (!io_fill_cqe_req(ctx, req))
914 io_req_cqe_overflow(req);
915 }
916 io_cq_unlock_post(ctx);
917
918 /*
919 * We don't free the request here because we know it's called from
920 * io-wq only, which holds a reference, so it cannot be the last put.
921 */
922 req_ref_put(req);
923 }
924
io_req_defer_failed(struct io_kiocb * req,s32 res)925 void io_req_defer_failed(struct io_kiocb *req, s32 res)
926 __must_hold(&ctx->uring_lock)
927 {
928 const struct io_cold_def *def = &io_cold_defs[req->opcode];
929
930 lockdep_assert_held(&req->ctx->uring_lock);
931
932 req_set_fail(req);
933 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
934 if (def->fail)
935 def->fail(req);
936 io_req_complete_defer(req);
937 }
938
939 /*
940 * Don't initialise the fields below on every allocation, but do that in
941 * advance and keep them valid across allocations.
942 */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)943 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
944 {
945 req->ctx = ctx;
946 req->link = NULL;
947 req->async_data = NULL;
948 /* not necessary, but safer to zero */
949 memset(&req->cqe, 0, sizeof(req->cqe));
950 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
951 }
952
953 /*
954 * A request might get retired back into the request caches even before opcode
955 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
956 * Because of that, io_alloc_req() should be called only under ->uring_lock
957 * and with extra caution to not get a request that is still worked on.
958 */
__io_alloc_req_refill(struct io_ring_ctx * ctx)959 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
960 __must_hold(&ctx->uring_lock)
961 {
962 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
963 void *reqs[IO_REQ_ALLOC_BATCH];
964 int ret;
965
966 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
967
968 /*
969 * Bulk alloc is all-or-nothing. If we fail to get a batch,
970 * retry single alloc to be on the safe side.
971 */
972 if (unlikely(ret <= 0)) {
973 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
974 if (!reqs[0])
975 return false;
976 ret = 1;
977 }
978
979 percpu_ref_get_many(&ctx->refs, ret);
980 while (ret--) {
981 struct io_kiocb *req = reqs[ret];
982
983 io_preinit_req(req, ctx);
984 io_req_add_to_cache(req, ctx);
985 }
986 return true;
987 }
988
io_free_req(struct io_kiocb * req)989 __cold void io_free_req(struct io_kiocb *req)
990 {
991 /* refs were already put, restore them for io_req_task_complete() */
992 req->flags &= ~REQ_F_REFCOUNT;
993 /* we only want to free it, don't post CQEs */
994 req->flags |= REQ_F_CQE_SKIP;
995 req->io_task_work.func = io_req_task_complete;
996 io_req_task_work_add(req);
997 }
998
__io_req_find_next_prep(struct io_kiocb * req)999 static void __io_req_find_next_prep(struct io_kiocb *req)
1000 {
1001 struct io_ring_ctx *ctx = req->ctx;
1002
1003 spin_lock(&ctx->completion_lock);
1004 io_disarm_next(req);
1005 spin_unlock(&ctx->completion_lock);
1006 }
1007
io_req_find_next(struct io_kiocb * req)1008 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1009 {
1010 struct io_kiocb *nxt;
1011
1012 /*
1013 * If LINK is set, we have dependent requests in this chain. If we
1014 * didn't fail this request, queue the first one up, moving any other
1015 * dependencies to the next request. In case of failure, fail the rest
1016 * of the chain.
1017 */
1018 if (unlikely(req->flags & IO_DISARM_MASK))
1019 __io_req_find_next_prep(req);
1020 nxt = req->link;
1021 req->link = NULL;
1022 return nxt;
1023 }
1024
ctx_flush_and_put(struct io_ring_ctx * ctx,struct io_tw_state * ts)1025 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1026 {
1027 if (!ctx)
1028 return;
1029 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1030 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1031
1032 io_submit_flush_completions(ctx);
1033 mutex_unlock(&ctx->uring_lock);
1034 percpu_ref_put(&ctx->refs);
1035 }
1036
1037 /*
1038 * Run queued task_work, returning the number of entries processed in *count.
1039 * If more entries than max_entries are available, stop processing once this
1040 * is reached and return the rest of the list.
1041 */
io_handle_tw_list(struct llist_node * node,unsigned int * count,unsigned int max_entries)1042 struct llist_node *io_handle_tw_list(struct llist_node *node,
1043 unsigned int *count,
1044 unsigned int max_entries)
1045 {
1046 struct io_ring_ctx *ctx = NULL;
1047 struct io_tw_state ts = { };
1048
1049 do {
1050 struct llist_node *next = node->next;
1051 struct io_kiocb *req = container_of(node, struct io_kiocb,
1052 io_task_work.node);
1053
1054 if (req->ctx != ctx) {
1055 ctx_flush_and_put(ctx, &ts);
1056 ctx = req->ctx;
1057 mutex_lock(&ctx->uring_lock);
1058 percpu_ref_get(&ctx->refs);
1059 }
1060 INDIRECT_CALL_2(req->io_task_work.func,
1061 io_poll_task_func, io_req_rw_complete,
1062 req, &ts);
1063 node = next;
1064 (*count)++;
1065 if (unlikely(need_resched())) {
1066 ctx_flush_and_put(ctx, &ts);
1067 ctx = NULL;
1068 cond_resched();
1069 }
1070 } while (node && *count < max_entries);
1071
1072 ctx_flush_and_put(ctx, &ts);
1073 return node;
1074 }
1075
1076 /**
1077 * io_llist_xchg - swap all entries in a lock-less list
1078 * @head: the head of lock-less list to delete all entries
1079 * @new: new entry as the head of the list
1080 *
1081 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1082 * The order of entries returned is from the newest to the oldest added one.
1083 */
io_llist_xchg(struct llist_head * head,struct llist_node * new)1084 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1085 struct llist_node *new)
1086 {
1087 return xchg(&head->first, new);
1088 }
1089
io_fallback_tw(struct io_uring_task * tctx,bool sync)1090 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1091 {
1092 struct llist_node *node = llist_del_all(&tctx->task_list);
1093 struct io_ring_ctx *last_ctx = NULL;
1094 struct io_kiocb *req;
1095
1096 while (node) {
1097 req = container_of(node, struct io_kiocb, io_task_work.node);
1098 node = node->next;
1099 if (last_ctx != req->ctx) {
1100 if (last_ctx) {
1101 if (sync)
1102 flush_delayed_work(&last_ctx->fallback_work);
1103 percpu_ref_put(&last_ctx->refs);
1104 }
1105 last_ctx = req->ctx;
1106 percpu_ref_get(&last_ctx->refs);
1107 }
1108 if (llist_add(&req->io_task_work.node, &last_ctx->fallback_llist))
1109 schedule_delayed_work(&last_ctx->fallback_work, 1);
1110 }
1111
1112 if (last_ctx) {
1113 if (sync)
1114 flush_delayed_work(&last_ctx->fallback_work);
1115 percpu_ref_put(&last_ctx->refs);
1116 }
1117 }
1118
tctx_task_work_run(struct io_uring_task * tctx,unsigned int max_entries,unsigned int * count)1119 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1120 unsigned int max_entries,
1121 unsigned int *count)
1122 {
1123 struct llist_node *node;
1124
1125 if (unlikely(current->flags & PF_EXITING)) {
1126 io_fallback_tw(tctx, true);
1127 return NULL;
1128 }
1129
1130 node = llist_del_all(&tctx->task_list);
1131 if (node) {
1132 node = llist_reverse_order(node);
1133 node = io_handle_tw_list(node, count, max_entries);
1134 }
1135
1136 /* relaxed read is enough as only the task itself sets ->in_cancel */
1137 if (unlikely(atomic_read(&tctx->in_cancel)))
1138 io_uring_drop_tctx_refs(current);
1139
1140 trace_io_uring_task_work_run(tctx, *count);
1141 return node;
1142 }
1143
tctx_task_work(struct callback_head * cb)1144 void tctx_task_work(struct callback_head *cb)
1145 {
1146 struct io_uring_task *tctx;
1147 struct llist_node *ret;
1148 unsigned int count = 0;
1149
1150 tctx = container_of(cb, struct io_uring_task, task_work);
1151 ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1152 /* can't happen */
1153 WARN_ON_ONCE(ret);
1154 }
1155
io_req_local_work_add(struct io_kiocb * req,struct io_ring_ctx * ctx,unsigned flags)1156 static inline void io_req_local_work_add(struct io_kiocb *req,
1157 struct io_ring_ctx *ctx,
1158 unsigned flags)
1159 {
1160 unsigned nr_wait, nr_tw, nr_tw_prev;
1161 struct llist_node *head;
1162
1163 /* See comment above IO_CQ_WAKE_INIT */
1164 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1165
1166 /*
1167 * We don't know how many reuqests is there in the link and whether
1168 * they can even be queued lazily, fall back to non-lazy.
1169 */
1170 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1171 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1172
1173 guard(rcu)();
1174
1175 head = READ_ONCE(ctx->work_llist.first);
1176 do {
1177 nr_tw_prev = 0;
1178 if (head) {
1179 struct io_kiocb *first_req = container_of(head,
1180 struct io_kiocb,
1181 io_task_work.node);
1182 /*
1183 * Might be executed at any moment, rely on
1184 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1185 */
1186 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1187 }
1188
1189 /*
1190 * Theoretically, it can overflow, but that's fine as one of
1191 * previous adds should've tried to wake the task.
1192 */
1193 nr_tw = nr_tw_prev + 1;
1194 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1195 nr_tw = IO_CQ_WAKE_FORCE;
1196
1197 req->nr_tw = nr_tw;
1198 req->io_task_work.node.next = head;
1199 } while (!try_cmpxchg(&ctx->work_llist.first, &head,
1200 &req->io_task_work.node));
1201
1202 /*
1203 * cmpxchg implies a full barrier, which pairs with the barrier
1204 * in set_current_state() on the io_cqring_wait() side. It's used
1205 * to ensure that either we see updated ->cq_wait_nr, or waiters
1206 * going to sleep will observe the work added to the list, which
1207 * is similar to the wait/wawke task state sync.
1208 */
1209
1210 if (!head) {
1211 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1212 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1213 if (ctx->has_evfd)
1214 io_eventfd_signal(ctx);
1215 }
1216
1217 nr_wait = atomic_read(&ctx->cq_wait_nr);
1218 /* not enough or no one is waiting */
1219 if (nr_tw < nr_wait)
1220 return;
1221 /* the previous add has already woken it up */
1222 if (nr_tw_prev >= nr_wait)
1223 return;
1224 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1225 }
1226
io_req_normal_work_add(struct io_kiocb * req)1227 static void io_req_normal_work_add(struct io_kiocb *req)
1228 {
1229 struct io_uring_task *tctx = req->task->io_uring;
1230 struct io_ring_ctx *ctx = req->ctx;
1231
1232 /* task_work already pending, we're done */
1233 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1234 return;
1235
1236 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1237 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1238
1239 /* SQPOLL doesn't need the task_work added, it'll run it itself */
1240 if (ctx->flags & IORING_SETUP_SQPOLL) {
1241 __set_notify_signal(req->task);
1242 return;
1243 }
1244
1245 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1246 return;
1247
1248 io_fallback_tw(tctx, false);
1249 }
1250
__io_req_task_work_add(struct io_kiocb * req,unsigned flags)1251 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1252 {
1253 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1254 io_req_local_work_add(req, req->ctx, flags);
1255 else
1256 io_req_normal_work_add(req);
1257 }
1258
io_req_task_work_add_remote(struct io_kiocb * req,struct io_ring_ctx * ctx,unsigned flags)1259 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
1260 unsigned flags)
1261 {
1262 if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1263 return;
1264 io_req_local_work_add(req, ctx, flags);
1265 }
1266
io_move_task_work_from_local(struct io_ring_ctx * ctx)1267 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1268 {
1269 struct llist_node *node;
1270
1271 node = llist_del_all(&ctx->work_llist);
1272 while (node) {
1273 struct io_kiocb *req = container_of(node, struct io_kiocb,
1274 io_task_work.node);
1275
1276 node = node->next;
1277 io_req_normal_work_add(req);
1278 }
1279 }
1280
io_run_local_work_continue(struct io_ring_ctx * ctx,int events,int min_events)1281 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1282 int min_events)
1283 {
1284 if (llist_empty(&ctx->work_llist))
1285 return false;
1286 if (events < min_events)
1287 return true;
1288 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1289 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1290 return false;
1291 }
1292
__io_run_local_work(struct io_ring_ctx * ctx,struct io_tw_state * ts,int min_events)1293 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1294 int min_events)
1295 {
1296 struct llist_node *node;
1297 unsigned int loops = 0;
1298 int ret = 0;
1299
1300 if (WARN_ON_ONCE(ctx->submitter_task != current))
1301 return -EEXIST;
1302 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1303 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1304 again:
1305 /*
1306 * llists are in reverse order, flip it back the right way before
1307 * running the pending items.
1308 */
1309 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1310 while (node) {
1311 struct llist_node *next = node->next;
1312 struct io_kiocb *req = container_of(node, struct io_kiocb,
1313 io_task_work.node);
1314 INDIRECT_CALL_2(req->io_task_work.func,
1315 io_poll_task_func, io_req_rw_complete,
1316 req, ts);
1317 ret++;
1318 node = next;
1319 }
1320 loops++;
1321
1322 if (io_run_local_work_continue(ctx, ret, min_events))
1323 goto again;
1324 io_submit_flush_completions(ctx);
1325 if (io_run_local_work_continue(ctx, ret, min_events))
1326 goto again;
1327
1328 trace_io_uring_local_work_run(ctx, ret, loops);
1329 return ret;
1330 }
1331
io_run_local_work_locked(struct io_ring_ctx * ctx,int min_events)1332 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1333 int min_events)
1334 {
1335 struct io_tw_state ts = {};
1336
1337 if (llist_empty(&ctx->work_llist))
1338 return 0;
1339 return __io_run_local_work(ctx, &ts, min_events);
1340 }
1341
io_run_local_work(struct io_ring_ctx * ctx,int min_events)1342 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events)
1343 {
1344 struct io_tw_state ts = {};
1345 int ret;
1346
1347 mutex_lock(&ctx->uring_lock);
1348 ret = __io_run_local_work(ctx, &ts, min_events);
1349 mutex_unlock(&ctx->uring_lock);
1350 return ret;
1351 }
1352
io_req_task_cancel(struct io_kiocb * req,struct io_tw_state * ts)1353 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1354 {
1355 io_tw_lock(req->ctx, ts);
1356 io_req_defer_failed(req, req->cqe.res);
1357 }
1358
io_req_task_submit(struct io_kiocb * req,struct io_tw_state * ts)1359 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1360 {
1361 struct io_ring_ctx *ctx = req->ctx;
1362
1363 io_tw_lock(ctx, ts);
1364 if (unlikely(io_should_terminate_tw(ctx)))
1365 io_req_defer_failed(req, -EFAULT);
1366 else if (req->flags & REQ_F_FORCE_ASYNC)
1367 io_queue_iowq(req);
1368 else
1369 io_queue_sqe(req);
1370 }
1371
io_req_task_queue_fail(struct io_kiocb * req,int ret)1372 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1373 {
1374 io_req_set_res(req, ret, 0);
1375 req->io_task_work.func = io_req_task_cancel;
1376 io_req_task_work_add(req);
1377 }
1378
io_req_task_queue(struct io_kiocb * req)1379 void io_req_task_queue(struct io_kiocb *req)
1380 {
1381 req->io_task_work.func = io_req_task_submit;
1382 io_req_task_work_add(req);
1383 }
1384
io_queue_next(struct io_kiocb * req)1385 void io_queue_next(struct io_kiocb *req)
1386 {
1387 struct io_kiocb *nxt = io_req_find_next(req);
1388
1389 if (nxt)
1390 io_req_task_queue(nxt);
1391 }
1392
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1393 static void io_free_batch_list(struct io_ring_ctx *ctx,
1394 struct io_wq_work_node *node)
1395 __must_hold(&ctx->uring_lock)
1396 {
1397 do {
1398 struct io_kiocb *req = container_of(node, struct io_kiocb,
1399 comp_list);
1400
1401 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1402 if (req->flags & REQ_F_REFCOUNT) {
1403 node = req->comp_list.next;
1404 if (!req_ref_put_and_test(req))
1405 continue;
1406 }
1407 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1408 struct async_poll *apoll = req->apoll;
1409
1410 if (apoll->double_poll)
1411 kfree(apoll->double_poll);
1412 if (!io_alloc_cache_put(&ctx->apoll_cache, apoll))
1413 kfree(apoll);
1414 req->flags &= ~REQ_F_POLLED;
1415 }
1416 if (req->flags & IO_REQ_LINK_FLAGS)
1417 io_queue_next(req);
1418 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1419 io_clean_op(req);
1420 }
1421 io_put_file(req);
1422 io_put_rsrc_node(ctx, req->rsrc_node);
1423 io_put_task(req->task);
1424
1425 node = req->comp_list.next;
1426 io_req_add_to_cache(req, ctx);
1427 } while (node);
1428 }
1429
__io_submit_flush_completions(struct io_ring_ctx * ctx)1430 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1431 __must_hold(&ctx->uring_lock)
1432 {
1433 struct io_submit_state *state = &ctx->submit_state;
1434 struct io_wq_work_node *node;
1435
1436 __io_cq_lock(ctx);
1437 __wq_list_for_each(node, &state->compl_reqs) {
1438 struct io_kiocb *req = container_of(node, struct io_kiocb,
1439 comp_list);
1440
1441 if (!(req->flags & REQ_F_CQE_SKIP) &&
1442 unlikely(!io_fill_cqe_req(ctx, req))) {
1443 if (ctx->lockless_cq) {
1444 spin_lock(&ctx->completion_lock);
1445 io_req_cqe_overflow(req);
1446 spin_unlock(&ctx->completion_lock);
1447 } else {
1448 io_req_cqe_overflow(req);
1449 }
1450 }
1451 }
1452 __io_cq_unlock_post(ctx);
1453
1454 if (!wq_list_empty(&state->compl_reqs)) {
1455 io_free_batch_list(ctx, state->compl_reqs.first);
1456 INIT_WQ_LIST(&state->compl_reqs);
1457 }
1458 ctx->submit_state.cq_flush = false;
1459 }
1460
io_cqring_events(struct io_ring_ctx * ctx)1461 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1462 {
1463 /* See comment at the top of this file */
1464 smp_rmb();
1465 return __io_cqring_events(ctx);
1466 }
1467
1468 /*
1469 * We can't just wait for polled events to come to us, we have to actively
1470 * find and complete them.
1471 */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1472 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1473 {
1474 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1475 return;
1476
1477 mutex_lock(&ctx->uring_lock);
1478 while (!wq_list_empty(&ctx->iopoll_list)) {
1479 /* let it sleep and repeat later if can't complete a request */
1480 if (io_do_iopoll(ctx, true) == 0)
1481 break;
1482 /*
1483 * Ensure we allow local-to-the-cpu processing to take place,
1484 * in this case we need to ensure that we reap all events.
1485 * Also let task_work, etc. to progress by releasing the mutex
1486 */
1487 if (need_resched()) {
1488 mutex_unlock(&ctx->uring_lock);
1489 cond_resched();
1490 mutex_lock(&ctx->uring_lock);
1491 }
1492 }
1493 mutex_unlock(&ctx->uring_lock);
1494 }
1495
io_iopoll_check(struct io_ring_ctx * ctx,long min)1496 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1497 {
1498 unsigned int nr_events = 0;
1499 unsigned long check_cq;
1500
1501 lockdep_assert_held(&ctx->uring_lock);
1502
1503 if (!io_allowed_run_tw(ctx))
1504 return -EEXIST;
1505
1506 check_cq = READ_ONCE(ctx->check_cq);
1507 if (unlikely(check_cq)) {
1508 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1509 __io_cqring_overflow_flush(ctx, false);
1510 /*
1511 * Similarly do not spin if we have not informed the user of any
1512 * dropped CQE.
1513 */
1514 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1515 return -EBADR;
1516 }
1517 /*
1518 * Don't enter poll loop if we already have events pending.
1519 * If we do, we can potentially be spinning for commands that
1520 * already triggered a CQE (eg in error).
1521 */
1522 if (io_cqring_events(ctx))
1523 return 0;
1524
1525 do {
1526 int ret = 0;
1527
1528 /*
1529 * If a submit got punted to a workqueue, we can have the
1530 * application entering polling for a command before it gets
1531 * issued. That app will hold the uring_lock for the duration
1532 * of the poll right here, so we need to take a breather every
1533 * now and then to ensure that the issue has a chance to add
1534 * the poll to the issued list. Otherwise we can spin here
1535 * forever, while the workqueue is stuck trying to acquire the
1536 * very same mutex.
1537 */
1538 if (wq_list_empty(&ctx->iopoll_list) ||
1539 io_task_work_pending(ctx)) {
1540 u32 tail = ctx->cached_cq_tail;
1541
1542 (void) io_run_local_work_locked(ctx, min);
1543
1544 if (task_work_pending(current) ||
1545 wq_list_empty(&ctx->iopoll_list)) {
1546 mutex_unlock(&ctx->uring_lock);
1547 io_run_task_work();
1548 mutex_lock(&ctx->uring_lock);
1549 }
1550 /* some requests don't go through iopoll_list */
1551 if (tail != ctx->cached_cq_tail ||
1552 wq_list_empty(&ctx->iopoll_list))
1553 break;
1554 }
1555 ret = io_do_iopoll(ctx, !min);
1556 if (unlikely(ret < 0))
1557 return ret;
1558
1559 if (task_sigpending(current))
1560 return -EINTR;
1561 if (need_resched())
1562 break;
1563
1564 nr_events += ret;
1565 } while (nr_events < min);
1566
1567 return 0;
1568 }
1569
io_req_task_complete(struct io_kiocb * req,struct io_tw_state * ts)1570 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1571 {
1572 io_req_complete_defer(req);
1573 }
1574
1575 /*
1576 * After the iocb has been issued, it's safe to be found on the poll list.
1577 * Adding the kiocb to the list AFTER submission ensures that we don't
1578 * find it from a io_do_iopoll() thread before the issuer is done
1579 * accessing the kiocb cookie.
1580 */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1581 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1582 {
1583 struct io_ring_ctx *ctx = req->ctx;
1584 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1585
1586 /* workqueue context doesn't hold uring_lock, grab it now */
1587 if (unlikely(needs_lock))
1588 mutex_lock(&ctx->uring_lock);
1589
1590 /*
1591 * Track whether we have multiple files in our lists. This will impact
1592 * how we do polling eventually, not spinning if we're on potentially
1593 * different devices.
1594 */
1595 if (wq_list_empty(&ctx->iopoll_list)) {
1596 ctx->poll_multi_queue = false;
1597 } else if (!ctx->poll_multi_queue) {
1598 struct io_kiocb *list_req;
1599
1600 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1601 comp_list);
1602 if (list_req->file != req->file)
1603 ctx->poll_multi_queue = true;
1604 }
1605
1606 /*
1607 * For fast devices, IO may have already completed. If it has, add
1608 * it to the front so we find it first.
1609 */
1610 if (READ_ONCE(req->iopoll_completed))
1611 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1612 else
1613 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1614
1615 if (unlikely(needs_lock)) {
1616 /*
1617 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1618 * in sq thread task context or in io worker task context. If
1619 * current task context is sq thread, we don't need to check
1620 * whether should wake up sq thread.
1621 */
1622 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1623 wq_has_sleeper(&ctx->sq_data->wait))
1624 wake_up(&ctx->sq_data->wait);
1625
1626 mutex_unlock(&ctx->uring_lock);
1627 }
1628 }
1629
io_file_get_flags(struct file * file)1630 io_req_flags_t io_file_get_flags(struct file *file)
1631 {
1632 io_req_flags_t res = 0;
1633
1634 if (S_ISREG(file_inode(file)->i_mode))
1635 res |= REQ_F_ISREG;
1636 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1637 res |= REQ_F_SUPPORT_NOWAIT;
1638 return res;
1639 }
1640
io_alloc_async_data(struct io_kiocb * req)1641 bool io_alloc_async_data(struct io_kiocb *req)
1642 {
1643 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1644
1645 WARN_ON_ONCE(!def->async_size);
1646 req->async_data = kmalloc(def->async_size, GFP_KERNEL);
1647 if (req->async_data) {
1648 req->flags |= REQ_F_ASYNC_DATA;
1649 return false;
1650 }
1651 return true;
1652 }
1653
io_get_sequence(struct io_kiocb * req)1654 static u32 io_get_sequence(struct io_kiocb *req)
1655 {
1656 u32 seq = req->ctx->cached_sq_head;
1657 struct io_kiocb *cur;
1658
1659 /* need original cached_sq_head, but it was increased for each req */
1660 io_for_each_link(cur, req)
1661 seq--;
1662 return seq;
1663 }
1664
io_drain_req(struct io_kiocb * req)1665 static __cold void io_drain_req(struct io_kiocb *req)
1666 __must_hold(&ctx->uring_lock)
1667 {
1668 struct io_ring_ctx *ctx = req->ctx;
1669 struct io_defer_entry *de;
1670 int ret;
1671 u32 seq = io_get_sequence(req);
1672
1673 /* Still need defer if there is pending req in defer list. */
1674 spin_lock(&ctx->completion_lock);
1675 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1676 spin_unlock(&ctx->completion_lock);
1677 queue:
1678 ctx->drain_active = false;
1679 io_req_task_queue(req);
1680 return;
1681 }
1682 spin_unlock(&ctx->completion_lock);
1683
1684 io_prep_async_link(req);
1685 de = kmalloc(sizeof(*de), GFP_KERNEL_ACCOUNT);
1686 if (!de) {
1687 ret = -ENOMEM;
1688 io_req_defer_failed(req, ret);
1689 return;
1690 }
1691
1692 spin_lock(&ctx->completion_lock);
1693 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1694 spin_unlock(&ctx->completion_lock);
1695 kfree(de);
1696 goto queue;
1697 }
1698
1699 trace_io_uring_defer(req);
1700 de->req = req;
1701 de->seq = seq;
1702 list_add_tail(&de->list, &ctx->defer_list);
1703 spin_unlock(&ctx->completion_lock);
1704 }
1705
io_assign_file(struct io_kiocb * req,const struct io_issue_def * def,unsigned int issue_flags)1706 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1707 unsigned int issue_flags)
1708 {
1709 if (req->file || !def->needs_file)
1710 return true;
1711
1712 if (req->flags & REQ_F_FIXED_FILE)
1713 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1714 else
1715 req->file = io_file_get_normal(req, req->cqe.fd);
1716
1717 return !!req->file;
1718 }
1719
1720 #define REQ_ISSUE_SLOW_FLAGS (REQ_F_CREDS | REQ_F_ARM_LTIMEOUT)
1721
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1722 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1723 {
1724 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1725 const struct cred *creds = NULL;
1726 struct io_kiocb *link = NULL;
1727 int ret;
1728
1729 if (unlikely(!io_assign_file(req, def, issue_flags)))
1730 return -EBADF;
1731
1732 if (unlikely(req->flags & REQ_ISSUE_SLOW_FLAGS)) {
1733 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
1734 creds = override_creds(req->creds);
1735 if (req->flags & REQ_F_ARM_LTIMEOUT)
1736 link = __io_prep_linked_timeout(req);
1737 }
1738
1739 if (!def->audit_skip)
1740 audit_uring_entry(req->opcode);
1741
1742 ret = def->issue(req, issue_flags);
1743
1744 if (!def->audit_skip)
1745 audit_uring_exit(!ret, ret);
1746
1747 if (unlikely(creds || link)) {
1748 if (creds)
1749 revert_creds(creds);
1750 if (link)
1751 io_queue_linked_timeout(link);
1752 }
1753
1754 if (ret == IOU_OK) {
1755 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1756 io_req_complete_defer(req);
1757 else
1758 io_req_complete_post(req, issue_flags);
1759
1760 return 0;
1761 }
1762
1763 if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1764 ret = 0;
1765
1766 /* If the op doesn't have a file, we're not polling for it */
1767 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1768 io_iopoll_req_issued(req, issue_flags);
1769 }
1770 return ret;
1771 }
1772
io_poll_issue(struct io_kiocb * req,struct io_tw_state * ts)1773 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1774 {
1775 io_tw_lock(req->ctx, ts);
1776 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1777 IO_URING_F_COMPLETE_DEFER);
1778 }
1779
io_wq_free_work(struct io_wq_work * work)1780 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1781 {
1782 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1783 struct io_kiocb *nxt = NULL;
1784
1785 if (req_ref_put_and_test_atomic(req)) {
1786 if (req->flags & IO_REQ_LINK_FLAGS)
1787 nxt = io_req_find_next(req);
1788 io_free_req(req);
1789 }
1790 return nxt ? &nxt->work : NULL;
1791 }
1792
io_wq_submit_work(struct io_wq_work * work)1793 void io_wq_submit_work(struct io_wq_work *work)
1794 {
1795 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1796 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1797 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1798 bool needs_poll = false;
1799 int ret = 0, err = -ECANCELED;
1800
1801 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1802 if (!(req->flags & REQ_F_REFCOUNT))
1803 __io_req_set_refcount(req, 2);
1804 else
1805 req_ref_get(req);
1806
1807 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1808 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1809 fail:
1810 io_req_task_queue_fail(req, err);
1811 return;
1812 }
1813 if (!io_assign_file(req, def, issue_flags)) {
1814 err = -EBADF;
1815 atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1816 goto fail;
1817 }
1818
1819 /*
1820 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1821 * submitter task context. Final request completions are handed to the
1822 * right context, however this is not the case of auxiliary CQEs,
1823 * which is the main mean of operation for multishot requests.
1824 * Don't allow any multishot execution from io-wq. It's more restrictive
1825 * than necessary and also cleaner.
1826 */
1827 if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) {
1828 err = -EBADFD;
1829 if (!io_file_can_poll(req))
1830 goto fail;
1831 if (req->file->f_flags & O_NONBLOCK ||
1832 req->file->f_mode & FMODE_NOWAIT) {
1833 err = -ECANCELED;
1834 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1835 goto fail;
1836 return;
1837 } else {
1838 req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT);
1839 }
1840 }
1841
1842 if (req->flags & REQ_F_FORCE_ASYNC) {
1843 bool opcode_poll = def->pollin || def->pollout;
1844
1845 if (opcode_poll && io_file_can_poll(req)) {
1846 needs_poll = true;
1847 issue_flags |= IO_URING_F_NONBLOCK;
1848 }
1849 }
1850
1851 do {
1852 ret = io_issue_sqe(req, issue_flags);
1853 if (ret != -EAGAIN)
1854 break;
1855
1856 /*
1857 * If REQ_F_NOWAIT is set, then don't wait or retry with
1858 * poll. -EAGAIN is final for that case.
1859 */
1860 if (req->flags & REQ_F_NOWAIT)
1861 break;
1862
1863 /*
1864 * We can get EAGAIN for iopolled IO even though we're
1865 * forcing a sync submission from here, since we can't
1866 * wait for request slots on the block side.
1867 */
1868 if (!needs_poll) {
1869 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1870 break;
1871 if (io_wq_worker_stopped())
1872 break;
1873 cond_resched();
1874 continue;
1875 }
1876
1877 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1878 return;
1879 /* aborted or ready, in either case retry blocking */
1880 needs_poll = false;
1881 issue_flags &= ~IO_URING_F_NONBLOCK;
1882 } while (1);
1883
1884 /* avoid locking problems by failing it from a clean context */
1885 if (ret)
1886 io_req_task_queue_fail(req, ret);
1887 }
1888
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)1889 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1890 unsigned int issue_flags)
1891 {
1892 struct io_ring_ctx *ctx = req->ctx;
1893 struct io_fixed_file *slot;
1894 struct file *file = NULL;
1895
1896 io_ring_submit_lock(ctx, issue_flags);
1897
1898 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1899 goto out;
1900 fd = array_index_nospec(fd, ctx->nr_user_files);
1901 slot = io_fixed_file_slot(&ctx->file_table, fd);
1902 if (!req->rsrc_node)
1903 __io_req_set_rsrc_node(req, ctx);
1904 req->flags |= io_slot_flags(slot);
1905 file = io_slot_file(slot);
1906 out:
1907 io_ring_submit_unlock(ctx, issue_flags);
1908 return file;
1909 }
1910
io_file_get_normal(struct io_kiocb * req,int fd)1911 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1912 {
1913 struct file *file = fget(fd);
1914
1915 trace_io_uring_file_get(req, fd);
1916
1917 /* we don't allow fixed io_uring files */
1918 if (file && io_is_uring_fops(file))
1919 io_req_track_inflight(req);
1920 return file;
1921 }
1922
io_queue_async(struct io_kiocb * req,int ret)1923 static void io_queue_async(struct io_kiocb *req, int ret)
1924 __must_hold(&req->ctx->uring_lock)
1925 {
1926 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1927 io_req_defer_failed(req, ret);
1928 return;
1929 }
1930
1931 switch (io_arm_poll_handler(req, 0)) {
1932 case IO_APOLL_READY:
1933 io_kbuf_recycle(req, 0);
1934 io_req_task_queue(req);
1935 break;
1936 case IO_APOLL_ABORTED:
1937 io_kbuf_recycle(req, 0);
1938 io_queue_iowq(req);
1939 break;
1940 case IO_APOLL_OK:
1941 break;
1942 }
1943 }
1944
io_queue_sqe(struct io_kiocb * req)1945 static inline void io_queue_sqe(struct io_kiocb *req)
1946 __must_hold(&req->ctx->uring_lock)
1947 {
1948 int ret;
1949
1950 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1951
1952 /*
1953 * We async punt it if the file wasn't marked NOWAIT, or if the file
1954 * doesn't support non-blocking read/write attempts
1955 */
1956 if (unlikely(ret))
1957 io_queue_async(req, ret);
1958 }
1959
io_queue_sqe_fallback(struct io_kiocb * req)1960 static void io_queue_sqe_fallback(struct io_kiocb *req)
1961 __must_hold(&req->ctx->uring_lock)
1962 {
1963 if (unlikely(req->flags & REQ_F_FAIL)) {
1964 /*
1965 * We don't submit, fail them all, for that replace hardlinks
1966 * with normal links. Extra REQ_F_LINK is tolerated.
1967 */
1968 req->flags &= ~REQ_F_HARDLINK;
1969 req->flags |= REQ_F_LINK;
1970 io_req_defer_failed(req, req->cqe.res);
1971 } else {
1972 if (unlikely(req->ctx->drain_active))
1973 io_drain_req(req);
1974 else
1975 io_queue_iowq(req);
1976 }
1977 }
1978
1979 /*
1980 * Check SQE restrictions (opcode and flags).
1981 *
1982 * Returns 'true' if SQE is allowed, 'false' otherwise.
1983 */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)1984 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1985 struct io_kiocb *req,
1986 unsigned int sqe_flags)
1987 {
1988 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1989 return false;
1990
1991 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1992 ctx->restrictions.sqe_flags_required)
1993 return false;
1994
1995 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1996 ctx->restrictions.sqe_flags_required))
1997 return false;
1998
1999 return true;
2000 }
2001
io_init_req_drain(struct io_kiocb * req)2002 static void io_init_req_drain(struct io_kiocb *req)
2003 {
2004 struct io_ring_ctx *ctx = req->ctx;
2005 struct io_kiocb *head = ctx->submit_state.link.head;
2006
2007 ctx->drain_active = true;
2008 if (head) {
2009 /*
2010 * If we need to drain a request in the middle of a link, drain
2011 * the head request and the next request/link after the current
2012 * link. Considering sequential execution of links,
2013 * REQ_F_IO_DRAIN will be maintained for every request of our
2014 * link.
2015 */
2016 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2017 ctx->drain_next = true;
2018 }
2019 }
2020
io_init_fail_req(struct io_kiocb * req,int err)2021 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2022 {
2023 /* ensure per-opcode data is cleared if we fail before prep */
2024 memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2025 return err;
2026 }
2027
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2028 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2029 const struct io_uring_sqe *sqe)
2030 __must_hold(&ctx->uring_lock)
2031 {
2032 const struct io_issue_def *def;
2033 unsigned int sqe_flags;
2034 int personality;
2035 u8 opcode;
2036
2037 /* req is partially pre-initialised, see io_preinit_req() */
2038 req->opcode = opcode = READ_ONCE(sqe->opcode);
2039 /* same numerical values with corresponding REQ_F_*, safe to copy */
2040 sqe_flags = READ_ONCE(sqe->flags);
2041 req->flags = (__force io_req_flags_t) sqe_flags;
2042 req->cqe.user_data = READ_ONCE(sqe->user_data);
2043 req->file = NULL;
2044 req->rsrc_node = NULL;
2045 req->task = current;
2046 req->cancel_seq_set = false;
2047
2048 if (unlikely(opcode >= IORING_OP_LAST)) {
2049 req->opcode = 0;
2050 return io_init_fail_req(req, -EINVAL);
2051 }
2052 opcode = array_index_nospec(opcode, IORING_OP_LAST);
2053
2054 def = &io_issue_defs[opcode];
2055 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2056 /* enforce forwards compatibility on users */
2057 if (sqe_flags & ~SQE_VALID_FLAGS)
2058 return io_init_fail_req(req, -EINVAL);
2059 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2060 if (!def->buffer_select)
2061 return io_init_fail_req(req, -EOPNOTSUPP);
2062 req->buf_index = READ_ONCE(sqe->buf_group);
2063 }
2064 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2065 ctx->drain_disabled = true;
2066 if (sqe_flags & IOSQE_IO_DRAIN) {
2067 if (ctx->drain_disabled)
2068 return io_init_fail_req(req, -EOPNOTSUPP);
2069 io_init_req_drain(req);
2070 }
2071 }
2072 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2073 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2074 return io_init_fail_req(req, -EACCES);
2075 /* knock it to the slow queue path, will be drained there */
2076 if (ctx->drain_active)
2077 req->flags |= REQ_F_FORCE_ASYNC;
2078 /* if there is no link, we're at "next" request and need to drain */
2079 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2080 ctx->drain_next = false;
2081 ctx->drain_active = true;
2082 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2083 }
2084 }
2085
2086 if (!def->ioprio && sqe->ioprio)
2087 return io_init_fail_req(req, -EINVAL);
2088 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2089 return io_init_fail_req(req, -EINVAL);
2090
2091 if (def->needs_file) {
2092 struct io_submit_state *state = &ctx->submit_state;
2093
2094 req->cqe.fd = READ_ONCE(sqe->fd);
2095
2096 /*
2097 * Plug now if we have more than 2 IO left after this, and the
2098 * target is potentially a read/write to block based storage.
2099 */
2100 if (state->need_plug && def->plug) {
2101 state->plug_started = true;
2102 state->need_plug = false;
2103 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2104 }
2105 }
2106
2107 personality = READ_ONCE(sqe->personality);
2108 if (personality) {
2109 int ret;
2110
2111 req->creds = xa_load(&ctx->personalities, personality);
2112 if (!req->creds)
2113 return io_init_fail_req(req, -EINVAL);
2114 get_cred(req->creds);
2115 ret = security_uring_override_creds(req->creds);
2116 if (ret) {
2117 put_cred(req->creds);
2118 return io_init_fail_req(req, ret);
2119 }
2120 req->flags |= REQ_F_CREDS;
2121 }
2122
2123 return def->prep(req, sqe);
2124 }
2125
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2126 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2127 struct io_kiocb *req, int ret)
2128 {
2129 struct io_ring_ctx *ctx = req->ctx;
2130 struct io_submit_link *link = &ctx->submit_state.link;
2131 struct io_kiocb *head = link->head;
2132
2133 trace_io_uring_req_failed(sqe, req, ret);
2134
2135 /*
2136 * Avoid breaking links in the middle as it renders links with SQPOLL
2137 * unusable. Instead of failing eagerly, continue assembling the link if
2138 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2139 * should find the flag and handle the rest.
2140 */
2141 req_fail_link_node(req, ret);
2142 if (head && !(head->flags & REQ_F_FAIL))
2143 req_fail_link_node(head, -ECANCELED);
2144
2145 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2146 if (head) {
2147 link->last->link = req;
2148 link->head = NULL;
2149 req = head;
2150 }
2151 io_queue_sqe_fallback(req);
2152 return ret;
2153 }
2154
2155 if (head)
2156 link->last->link = req;
2157 else
2158 link->head = req;
2159 link->last = req;
2160 return 0;
2161 }
2162
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2163 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2164 const struct io_uring_sqe *sqe)
2165 __must_hold(&ctx->uring_lock)
2166 {
2167 struct io_submit_link *link = &ctx->submit_state.link;
2168 int ret;
2169
2170 ret = io_init_req(ctx, req, sqe);
2171 if (unlikely(ret))
2172 return io_submit_fail_init(sqe, req, ret);
2173
2174 trace_io_uring_submit_req(req);
2175
2176 /*
2177 * If we already have a head request, queue this one for async
2178 * submittal once the head completes. If we don't have a head but
2179 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2180 * submitted sync once the chain is complete. If none of those
2181 * conditions are true (normal request), then just queue it.
2182 */
2183 if (unlikely(link->head)) {
2184 trace_io_uring_link(req, link->last);
2185 link->last->link = req;
2186 link->last = req;
2187
2188 if (req->flags & IO_REQ_LINK_FLAGS)
2189 return 0;
2190 /* last request of the link, flush it */
2191 req = link->head;
2192 link->head = NULL;
2193 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2194 goto fallback;
2195
2196 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2197 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2198 if (req->flags & IO_REQ_LINK_FLAGS) {
2199 link->head = req;
2200 link->last = req;
2201 } else {
2202 fallback:
2203 io_queue_sqe_fallback(req);
2204 }
2205 return 0;
2206 }
2207
2208 io_queue_sqe(req);
2209 return 0;
2210 }
2211
2212 /*
2213 * Batched submission is done, ensure local IO is flushed out.
2214 */
io_submit_state_end(struct io_ring_ctx * ctx)2215 static void io_submit_state_end(struct io_ring_ctx *ctx)
2216 {
2217 struct io_submit_state *state = &ctx->submit_state;
2218
2219 if (unlikely(state->link.head))
2220 io_queue_sqe_fallback(state->link.head);
2221 /* flush only after queuing links as they can generate completions */
2222 io_submit_flush_completions(ctx);
2223 if (state->plug_started)
2224 blk_finish_plug(&state->plug);
2225 }
2226
2227 /*
2228 * Start submission side cache.
2229 */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2230 static void io_submit_state_start(struct io_submit_state *state,
2231 unsigned int max_ios)
2232 {
2233 state->plug_started = false;
2234 state->need_plug = max_ios > 2;
2235 state->submit_nr = max_ios;
2236 /* set only head, no need to init link_last in advance */
2237 state->link.head = NULL;
2238 }
2239
io_commit_sqring(struct io_ring_ctx * ctx)2240 static void io_commit_sqring(struct io_ring_ctx *ctx)
2241 {
2242 struct io_rings *rings = ctx->rings;
2243
2244 /*
2245 * Ensure any loads from the SQEs are done at this point,
2246 * since once we write the new head, the application could
2247 * write new data to them.
2248 */
2249 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2250 }
2251
2252 /*
2253 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2254 * that is mapped by userspace. This means that care needs to be taken to
2255 * ensure that reads are stable, as we cannot rely on userspace always
2256 * being a good citizen. If members of the sqe are validated and then later
2257 * used, it's important that those reads are done through READ_ONCE() to
2258 * prevent a re-load down the line.
2259 */
io_get_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe ** sqe)2260 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2261 {
2262 unsigned mask = ctx->sq_entries - 1;
2263 unsigned head = ctx->cached_sq_head++ & mask;
2264
2265 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2266 head = READ_ONCE(ctx->sq_array[head]);
2267 if (unlikely(head >= ctx->sq_entries)) {
2268 /* drop invalid entries */
2269 spin_lock(&ctx->completion_lock);
2270 ctx->cq_extra--;
2271 spin_unlock(&ctx->completion_lock);
2272 WRITE_ONCE(ctx->rings->sq_dropped,
2273 READ_ONCE(ctx->rings->sq_dropped) + 1);
2274 return false;
2275 }
2276 }
2277
2278 /*
2279 * The cached sq head (or cq tail) serves two purposes:
2280 *
2281 * 1) allows us to batch the cost of updating the user visible
2282 * head updates.
2283 * 2) allows the kernel side to track the head on its own, even
2284 * though the application is the one updating it.
2285 */
2286
2287 /* double index for 128-byte SQEs, twice as long */
2288 if (ctx->flags & IORING_SETUP_SQE128)
2289 head <<= 1;
2290 *sqe = &ctx->sq_sqes[head];
2291 return true;
2292 }
2293
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2294 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2295 __must_hold(&ctx->uring_lock)
2296 {
2297 unsigned int entries = io_sqring_entries(ctx);
2298 unsigned int left;
2299 int ret;
2300
2301 if (unlikely(!entries))
2302 return 0;
2303 /* make sure SQ entry isn't read before tail */
2304 ret = left = min(nr, entries);
2305 io_get_task_refs(left);
2306 io_submit_state_start(&ctx->submit_state, left);
2307
2308 do {
2309 const struct io_uring_sqe *sqe;
2310 struct io_kiocb *req;
2311
2312 if (unlikely(!io_alloc_req(ctx, &req)))
2313 break;
2314 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2315 io_req_add_to_cache(req, ctx);
2316 break;
2317 }
2318
2319 /*
2320 * Continue submitting even for sqe failure if the
2321 * ring was setup with IORING_SETUP_SUBMIT_ALL
2322 */
2323 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2324 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2325 left--;
2326 break;
2327 }
2328 } while (--left);
2329
2330 if (unlikely(left)) {
2331 ret -= left;
2332 /* try again if it submitted nothing and can't allocate a req */
2333 if (!ret && io_req_cache_empty(ctx))
2334 ret = -EAGAIN;
2335 current->io_uring->cached_refs += left;
2336 }
2337
2338 io_submit_state_end(ctx);
2339 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2340 io_commit_sqring(ctx);
2341 return ret;
2342 }
2343
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2344 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2345 int wake_flags, void *key)
2346 {
2347 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2348
2349 /*
2350 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2351 * the task, and the next invocation will do it.
2352 */
2353 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2354 return autoremove_wake_function(curr, mode, wake_flags, key);
2355 return -1;
2356 }
2357
io_run_task_work_sig(struct io_ring_ctx * ctx)2358 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2359 {
2360 if (!llist_empty(&ctx->work_llist)) {
2361 __set_current_state(TASK_RUNNING);
2362 if (io_run_local_work(ctx, INT_MAX) > 0)
2363 return 0;
2364 }
2365 if (io_run_task_work() > 0)
2366 return 0;
2367 if (task_sigpending(current))
2368 return -EINTR;
2369 return 0;
2370 }
2371
current_pending_io(void)2372 static bool current_pending_io(void)
2373 {
2374 struct io_uring_task *tctx = current->io_uring;
2375
2376 if (!tctx)
2377 return false;
2378 return percpu_counter_read_positive(&tctx->inflight);
2379 }
2380
io_cqring_timer_wakeup(struct hrtimer * timer)2381 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2382 {
2383 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2384
2385 WRITE_ONCE(iowq->hit_timeout, 1);
2386 iowq->min_timeout = 0;
2387 wake_up_process(iowq->wq.private);
2388 return HRTIMER_NORESTART;
2389 }
2390
2391 /*
2392 * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2393 * wake up. If not, and we have a normal timeout, switch to that and keep
2394 * sleeping.
2395 */
io_cqring_min_timer_wakeup(struct hrtimer * timer)2396 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2397 {
2398 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2399 struct io_ring_ctx *ctx = iowq->ctx;
2400
2401 /* no general timeout, or shorter (or equal), we are done */
2402 if (iowq->timeout == KTIME_MAX ||
2403 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2404 goto out_wake;
2405 /* work we may need to run, wake function will see if we need to wake */
2406 if (io_has_work(ctx))
2407 goto out_wake;
2408 /* got events since we started waiting, min timeout is done */
2409 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2410 goto out_wake;
2411 /* if we have any events and min timeout expired, we're done */
2412 if (io_cqring_events(ctx))
2413 goto out_wake;
2414
2415 /*
2416 * If using deferred task_work running and application is waiting on
2417 * more than one request, ensure we reset it now where we are switching
2418 * to normal sleeps. Any request completion post min_wait should wake
2419 * the task and return.
2420 */
2421 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2422 atomic_set(&ctx->cq_wait_nr, 1);
2423 smp_mb();
2424 if (!llist_empty(&ctx->work_llist))
2425 goto out_wake;
2426 }
2427
2428 iowq->t.function = io_cqring_timer_wakeup;
2429 hrtimer_set_expires(timer, iowq->timeout);
2430 return HRTIMER_RESTART;
2431 out_wake:
2432 return io_cqring_timer_wakeup(timer);
2433 }
2434
io_cqring_schedule_timeout(struct io_wait_queue * iowq,clockid_t clock_id,ktime_t start_time)2435 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2436 clockid_t clock_id, ktime_t start_time)
2437 {
2438 ktime_t timeout;
2439
2440 hrtimer_init_on_stack(&iowq->t, clock_id, HRTIMER_MODE_ABS);
2441 if (iowq->min_timeout) {
2442 timeout = ktime_add_ns(iowq->min_timeout, start_time);
2443 iowq->t.function = io_cqring_min_timer_wakeup;
2444 } else {
2445 timeout = iowq->timeout;
2446 iowq->t.function = io_cqring_timer_wakeup;
2447 }
2448
2449 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2450 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2451
2452 if (!READ_ONCE(iowq->hit_timeout))
2453 schedule();
2454
2455 hrtimer_cancel(&iowq->t);
2456 destroy_hrtimer_on_stack(&iowq->t);
2457 __set_current_state(TASK_RUNNING);
2458
2459 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2460 }
2461
__io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,ktime_t start_time)2462 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2463 struct io_wait_queue *iowq,
2464 ktime_t start_time)
2465 {
2466 int ret = 0;
2467
2468 /*
2469 * Mark us as being in io_wait if we have pending requests, so cpufreq
2470 * can take into account that the task is waiting for IO - turns out
2471 * to be important for low QD IO.
2472 */
2473 if (current_pending_io())
2474 current->in_iowait = 1;
2475 if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2476 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2477 else
2478 schedule();
2479 current->in_iowait = 0;
2480 return ret;
2481 }
2482
2483 /* If this returns > 0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,ktime_t start_time)2484 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2485 struct io_wait_queue *iowq,
2486 ktime_t start_time)
2487 {
2488 if (unlikely(READ_ONCE(ctx->check_cq)))
2489 return 1;
2490 if (unlikely(!llist_empty(&ctx->work_llist)))
2491 return 1;
2492 if (unlikely(task_work_pending(current)))
2493 return 1;
2494 if (unlikely(task_sigpending(current)))
2495 return -EINTR;
2496 if (unlikely(io_should_wake(iowq)))
2497 return 0;
2498
2499 return __io_cqring_wait_schedule(ctx, iowq, start_time);
2500 }
2501
2502 struct ext_arg {
2503 size_t argsz;
2504 struct __kernel_timespec __user *ts;
2505 const sigset_t __user *sig;
2506 ktime_t min_time;
2507 };
2508
2509 /*
2510 * Wait until events become available, if we don't already have some. The
2511 * application must reap them itself, as they reside on the shared cq ring.
2512 */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,u32 flags,struct ext_arg * ext_arg)2513 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2514 struct ext_arg *ext_arg)
2515 {
2516 struct io_wait_queue iowq;
2517 struct io_rings *rings = ctx->rings;
2518 ktime_t start_time;
2519 int ret;
2520
2521 if (!io_allowed_run_tw(ctx))
2522 return -EEXIST;
2523 if (!llist_empty(&ctx->work_llist))
2524 io_run_local_work(ctx, min_events);
2525 io_run_task_work();
2526
2527 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2528 io_cqring_do_overflow_flush(ctx);
2529 if (__io_cqring_events_user(ctx) >= min_events)
2530 return 0;
2531
2532 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2533 iowq.wq.private = current;
2534 INIT_LIST_HEAD(&iowq.wq.entry);
2535 iowq.ctx = ctx;
2536 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2537 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2538 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2539 iowq.hit_timeout = 0;
2540 iowq.min_timeout = ext_arg->min_time;
2541 iowq.timeout = KTIME_MAX;
2542 start_time = io_get_time(ctx);
2543
2544 if (ext_arg->ts) {
2545 struct timespec64 ts;
2546
2547 if (get_timespec64(&ts, ext_arg->ts))
2548 return -EFAULT;
2549
2550 iowq.timeout = timespec64_to_ktime(ts);
2551 if (!(flags & IORING_ENTER_ABS_TIMER))
2552 iowq.timeout = ktime_add(iowq.timeout, start_time);
2553 }
2554
2555 if (ext_arg->sig) {
2556 #ifdef CONFIG_COMPAT
2557 if (in_compat_syscall())
2558 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2559 ext_arg->argsz);
2560 else
2561 #endif
2562 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2563
2564 if (ret)
2565 return ret;
2566 }
2567
2568 io_napi_busy_loop(ctx, &iowq);
2569
2570 trace_io_uring_cqring_wait(ctx, min_events);
2571 do {
2572 unsigned long check_cq;
2573 int nr_wait;
2574
2575 /* if min timeout has been hit, don't reset wait count */
2576 if (!iowq.hit_timeout)
2577 nr_wait = (int) iowq.cq_tail -
2578 READ_ONCE(ctx->rings->cq.tail);
2579 else
2580 nr_wait = 1;
2581
2582 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2583 atomic_set(&ctx->cq_wait_nr, nr_wait);
2584 set_current_state(TASK_INTERRUPTIBLE);
2585 } else {
2586 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2587 TASK_INTERRUPTIBLE);
2588 }
2589
2590 ret = io_cqring_wait_schedule(ctx, &iowq, start_time);
2591 __set_current_state(TASK_RUNNING);
2592 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2593
2594 /*
2595 * Run task_work after scheduling and before io_should_wake().
2596 * If we got woken because of task_work being processed, run it
2597 * now rather than let the caller do another wait loop.
2598 */
2599 if (!llist_empty(&ctx->work_llist))
2600 io_run_local_work(ctx, nr_wait);
2601 io_run_task_work();
2602
2603 /*
2604 * Non-local task_work will be run on exit to userspace, but
2605 * if we're using DEFER_TASKRUN, then we could have waited
2606 * with a timeout for a number of requests. If the timeout
2607 * hits, we could have some requests ready to process. Ensure
2608 * this break is _after_ we have run task_work, to avoid
2609 * deferring running potentially pending requests until the
2610 * next time we wait for events.
2611 */
2612 if (ret < 0)
2613 break;
2614
2615 check_cq = READ_ONCE(ctx->check_cq);
2616 if (unlikely(check_cq)) {
2617 /* let the caller flush overflows, retry */
2618 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2619 io_cqring_do_overflow_flush(ctx);
2620 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2621 ret = -EBADR;
2622 break;
2623 }
2624 }
2625
2626 if (io_should_wake(&iowq)) {
2627 ret = 0;
2628 break;
2629 }
2630 cond_resched();
2631 } while (1);
2632
2633 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2634 finish_wait(&ctx->cq_wait, &iowq.wq);
2635 restore_saved_sigmask_unless(ret == -EINTR);
2636
2637 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2638 }
2639
io_rings_map(struct io_ring_ctx * ctx,unsigned long uaddr,size_t size)2640 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2641 size_t size)
2642 {
2643 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2644 size);
2645 }
2646
io_sqes_map(struct io_ring_ctx * ctx,unsigned long uaddr,size_t size)2647 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2648 size_t size)
2649 {
2650 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2651 size);
2652 }
2653
io_rings_free(struct io_ring_ctx * ctx)2654 static void io_rings_free(struct io_ring_ctx *ctx)
2655 {
2656 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2657 io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages,
2658 true);
2659 io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages,
2660 true);
2661 } else {
2662 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2663 ctx->n_ring_pages = 0;
2664 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2665 ctx->n_sqe_pages = 0;
2666 vunmap(ctx->rings);
2667 vunmap(ctx->sq_sqes);
2668 }
2669
2670 ctx->rings = NULL;
2671 ctx->sq_sqes = NULL;
2672 }
2673
rings_size(struct io_ring_ctx * ctx,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)2674 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2675 unsigned int cq_entries, size_t *sq_offset)
2676 {
2677 struct io_rings *rings;
2678 size_t off, sq_array_size;
2679
2680 off = struct_size(rings, cqes, cq_entries);
2681 if (off == SIZE_MAX)
2682 return SIZE_MAX;
2683 if (ctx->flags & IORING_SETUP_CQE32) {
2684 if (check_shl_overflow(off, 1, &off))
2685 return SIZE_MAX;
2686 }
2687
2688 #ifdef CONFIG_SMP
2689 off = ALIGN(off, SMP_CACHE_BYTES);
2690 if (off == 0)
2691 return SIZE_MAX;
2692 #endif
2693
2694 if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2695 *sq_offset = SIZE_MAX;
2696 return off;
2697 }
2698
2699 *sq_offset = off;
2700
2701 sq_array_size = array_size(sizeof(u32), sq_entries);
2702 if (sq_array_size == SIZE_MAX)
2703 return SIZE_MAX;
2704
2705 if (check_add_overflow(off, sq_array_size, &off))
2706 return SIZE_MAX;
2707
2708 return off;
2709 }
2710
io_req_caches_free(struct io_ring_ctx * ctx)2711 static void io_req_caches_free(struct io_ring_ctx *ctx)
2712 {
2713 struct io_kiocb *req;
2714 int nr = 0;
2715
2716 mutex_lock(&ctx->uring_lock);
2717
2718 while (!io_req_cache_empty(ctx)) {
2719 req = io_extract_req(ctx);
2720 kmem_cache_free(req_cachep, req);
2721 nr++;
2722 }
2723 if (nr)
2724 percpu_ref_put_many(&ctx->refs, nr);
2725 mutex_unlock(&ctx->uring_lock);
2726 }
2727
io_ring_ctx_free(struct io_ring_ctx * ctx)2728 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2729 {
2730 io_sq_thread_finish(ctx);
2731 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2732 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2733 return;
2734
2735 mutex_lock(&ctx->uring_lock);
2736 if (ctx->buf_data)
2737 __io_sqe_buffers_unregister(ctx);
2738 if (ctx->file_data)
2739 __io_sqe_files_unregister(ctx);
2740 io_cqring_overflow_kill(ctx);
2741 io_eventfd_unregister(ctx);
2742 io_alloc_cache_free(&ctx->apoll_cache, kfree);
2743 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2744 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
2745 io_alloc_cache_free(&ctx->uring_cache, kfree);
2746 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
2747 io_futex_cache_free(ctx);
2748 io_destroy_buffers(ctx);
2749 mutex_unlock(&ctx->uring_lock);
2750 if (ctx->sq_creds)
2751 put_cred(ctx->sq_creds);
2752 if (ctx->submitter_task)
2753 put_task_struct(ctx->submitter_task);
2754
2755 /* there are no registered resources left, nobody uses it */
2756 if (ctx->rsrc_node)
2757 io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2758
2759 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2760 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2761
2762 io_alloc_cache_free(&ctx->rsrc_node_cache, kfree);
2763 if (ctx->mm_account) {
2764 mmdrop(ctx->mm_account);
2765 ctx->mm_account = NULL;
2766 }
2767 io_rings_free(ctx);
2768
2769 percpu_ref_exit(&ctx->refs);
2770 free_uid(ctx->user);
2771 io_req_caches_free(ctx);
2772 if (ctx->hash_map)
2773 io_wq_put_hash(ctx->hash_map);
2774 io_napi_free(ctx);
2775 kfree(ctx->cancel_table.hbs);
2776 kfree(ctx->cancel_table_locked.hbs);
2777 xa_destroy(&ctx->io_bl_xa);
2778 kfree(ctx);
2779 }
2780
io_activate_pollwq_cb(struct callback_head * cb)2781 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2782 {
2783 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2784 poll_wq_task_work);
2785
2786 mutex_lock(&ctx->uring_lock);
2787 ctx->poll_activated = true;
2788 mutex_unlock(&ctx->uring_lock);
2789
2790 /*
2791 * Wake ups for some events between start of polling and activation
2792 * might've been lost due to loose synchronisation.
2793 */
2794 wake_up_all(&ctx->poll_wq);
2795 percpu_ref_put(&ctx->refs);
2796 }
2797
io_activate_pollwq(struct io_ring_ctx * ctx)2798 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2799 {
2800 spin_lock(&ctx->completion_lock);
2801 /* already activated or in progress */
2802 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2803 goto out;
2804 if (WARN_ON_ONCE(!ctx->task_complete))
2805 goto out;
2806 if (!ctx->submitter_task)
2807 goto out;
2808 /*
2809 * with ->submitter_task only the submitter task completes requests, we
2810 * only need to sync with it, which is done by injecting a tw
2811 */
2812 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2813 percpu_ref_get(&ctx->refs);
2814 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2815 percpu_ref_put(&ctx->refs);
2816 out:
2817 spin_unlock(&ctx->completion_lock);
2818 }
2819
io_uring_poll(struct file * file,poll_table * wait)2820 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2821 {
2822 struct io_ring_ctx *ctx = file->private_data;
2823 __poll_t mask = 0;
2824
2825 if (unlikely(!ctx->poll_activated))
2826 io_activate_pollwq(ctx);
2827
2828 poll_wait(file, &ctx->poll_wq, wait);
2829 /*
2830 * synchronizes with barrier from wq_has_sleeper call in
2831 * io_commit_cqring
2832 */
2833 smp_rmb();
2834 if (!io_sqring_full(ctx))
2835 mask |= EPOLLOUT | EPOLLWRNORM;
2836
2837 /*
2838 * Don't flush cqring overflow list here, just do a simple check.
2839 * Otherwise there could possible be ABBA deadlock:
2840 * CPU0 CPU1
2841 * ---- ----
2842 * lock(&ctx->uring_lock);
2843 * lock(&ep->mtx);
2844 * lock(&ctx->uring_lock);
2845 * lock(&ep->mtx);
2846 *
2847 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2848 * pushes them to do the flush.
2849 */
2850
2851 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2852 mask |= EPOLLIN | EPOLLRDNORM;
2853
2854 return mask;
2855 }
2856
2857 struct io_tctx_exit {
2858 struct callback_head task_work;
2859 struct completion completion;
2860 struct io_ring_ctx *ctx;
2861 };
2862
io_tctx_exit_cb(struct callback_head * cb)2863 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2864 {
2865 struct io_uring_task *tctx = current->io_uring;
2866 struct io_tctx_exit *work;
2867
2868 work = container_of(cb, struct io_tctx_exit, task_work);
2869 /*
2870 * When @in_cancel, we're in cancellation and it's racy to remove the
2871 * node. It'll be removed by the end of cancellation, just ignore it.
2872 * tctx can be NULL if the queueing of this task_work raced with
2873 * work cancelation off the exec path.
2874 */
2875 if (tctx && !atomic_read(&tctx->in_cancel))
2876 io_uring_del_tctx_node((unsigned long)work->ctx);
2877 complete(&work->completion);
2878 }
2879
io_cancel_ctx_cb(struct io_wq_work * work,void * data)2880 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2881 {
2882 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2883
2884 return req->ctx == data;
2885 }
2886
io_ring_exit_work(struct work_struct * work)2887 static __cold void io_ring_exit_work(struct work_struct *work)
2888 {
2889 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2890 unsigned long timeout = jiffies + HZ * 60 * 5;
2891 unsigned long interval = HZ / 20;
2892 struct io_tctx_exit exit;
2893 struct io_tctx_node *node;
2894 int ret;
2895
2896 /*
2897 * If we're doing polled IO and end up having requests being
2898 * submitted async (out-of-line), then completions can come in while
2899 * we're waiting for refs to drop. We need to reap these manually,
2900 * as nobody else will be looking for them.
2901 */
2902 do {
2903 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2904 mutex_lock(&ctx->uring_lock);
2905 io_cqring_overflow_kill(ctx);
2906 mutex_unlock(&ctx->uring_lock);
2907 }
2908
2909 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2910 io_move_task_work_from_local(ctx);
2911
2912 while (io_uring_try_cancel_requests(ctx, NULL, true))
2913 cond_resched();
2914
2915 if (ctx->sq_data) {
2916 struct io_sq_data *sqd = ctx->sq_data;
2917 struct task_struct *tsk;
2918
2919 io_sq_thread_park(sqd);
2920 tsk = sqpoll_task_locked(sqd);
2921 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2922 io_wq_cancel_cb(tsk->io_uring->io_wq,
2923 io_cancel_ctx_cb, ctx, true);
2924 io_sq_thread_unpark(sqd);
2925 }
2926
2927 io_req_caches_free(ctx);
2928
2929 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2930 /* there is little hope left, don't run it too often */
2931 interval = HZ * 60;
2932 }
2933 /*
2934 * This is really an uninterruptible wait, as it has to be
2935 * complete. But it's also run from a kworker, which doesn't
2936 * take signals, so it's fine to make it interruptible. This
2937 * avoids scenarios where we knowingly can wait much longer
2938 * on completions, for example if someone does a SIGSTOP on
2939 * a task that needs to finish task_work to make this loop
2940 * complete. That's a synthetic situation that should not
2941 * cause a stuck task backtrace, and hence a potential panic
2942 * on stuck tasks if that is enabled.
2943 */
2944 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2945
2946 init_completion(&exit.completion);
2947 init_task_work(&exit.task_work, io_tctx_exit_cb);
2948 exit.ctx = ctx;
2949
2950 mutex_lock(&ctx->uring_lock);
2951 while (!list_empty(&ctx->tctx_list)) {
2952 WARN_ON_ONCE(time_after(jiffies, timeout));
2953
2954 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2955 ctx_node);
2956 /* don't spin on a single task if cancellation failed */
2957 list_rotate_left(&ctx->tctx_list);
2958 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2959 if (WARN_ON_ONCE(ret))
2960 continue;
2961
2962 mutex_unlock(&ctx->uring_lock);
2963 /*
2964 * See comment above for
2965 * wait_for_completion_interruptible_timeout() on why this
2966 * wait is marked as interruptible.
2967 */
2968 wait_for_completion_interruptible(&exit.completion);
2969 mutex_lock(&ctx->uring_lock);
2970 }
2971 mutex_unlock(&ctx->uring_lock);
2972 spin_lock(&ctx->completion_lock);
2973 spin_unlock(&ctx->completion_lock);
2974
2975 /* pairs with RCU read section in io_req_local_work_add() */
2976 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2977 synchronize_rcu();
2978
2979 io_ring_ctx_free(ctx);
2980 }
2981
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)2982 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2983 {
2984 unsigned long index;
2985 struct creds *creds;
2986
2987 mutex_lock(&ctx->uring_lock);
2988 percpu_ref_kill(&ctx->refs);
2989 xa_for_each(&ctx->personalities, index, creds)
2990 io_unregister_personality(ctx, index);
2991 mutex_unlock(&ctx->uring_lock);
2992
2993 flush_delayed_work(&ctx->fallback_work);
2994
2995 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2996 /*
2997 * Use system_unbound_wq to avoid spawning tons of event kworkers
2998 * if we're exiting a ton of rings at the same time. It just adds
2999 * noise and overhead, there's no discernable change in runtime
3000 * over using system_wq.
3001 */
3002 queue_work(iou_wq, &ctx->exit_work);
3003 }
3004
io_uring_release(struct inode * inode,struct file * file)3005 static int io_uring_release(struct inode *inode, struct file *file)
3006 {
3007 struct io_ring_ctx *ctx = file->private_data;
3008
3009 file->private_data = NULL;
3010 io_ring_ctx_wait_and_kill(ctx);
3011 return 0;
3012 }
3013
3014 struct io_task_cancel {
3015 struct task_struct *task;
3016 bool all;
3017 };
3018
io_cancel_task_cb(struct io_wq_work * work,void * data)3019 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3020 {
3021 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3022 struct io_task_cancel *cancel = data;
3023
3024 return io_match_task_safe(req, cancel->task, cancel->all);
3025 }
3026
io_cancel_defer_files(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)3027 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3028 struct task_struct *task,
3029 bool cancel_all)
3030 {
3031 struct io_defer_entry *de;
3032 LIST_HEAD(list);
3033
3034 spin_lock(&ctx->completion_lock);
3035 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3036 if (io_match_task_safe(de->req, task, cancel_all)) {
3037 list_cut_position(&list, &ctx->defer_list, &de->list);
3038 break;
3039 }
3040 }
3041 spin_unlock(&ctx->completion_lock);
3042 if (list_empty(&list))
3043 return false;
3044
3045 while (!list_empty(&list)) {
3046 de = list_first_entry(&list, struct io_defer_entry, list);
3047 list_del_init(&de->list);
3048 io_req_task_queue_fail(de->req, -ECANCELED);
3049 kfree(de);
3050 }
3051 return true;
3052 }
3053
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)3054 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3055 {
3056 struct io_tctx_node *node;
3057 enum io_wq_cancel cret;
3058 bool ret = false;
3059
3060 mutex_lock(&ctx->uring_lock);
3061 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3062 struct io_uring_task *tctx = node->task->io_uring;
3063
3064 /*
3065 * io_wq will stay alive while we hold uring_lock, because it's
3066 * killed after ctx nodes, which requires to take the lock.
3067 */
3068 if (!tctx || !tctx->io_wq)
3069 continue;
3070 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3071 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3072 }
3073 mutex_unlock(&ctx->uring_lock);
3074
3075 return ret;
3076 }
3077
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)3078 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3079 struct task_struct *task,
3080 bool cancel_all)
3081 {
3082 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3083 struct io_uring_task *tctx = task ? task->io_uring : NULL;
3084 enum io_wq_cancel cret;
3085 bool ret = false;
3086
3087 /* set it so io_req_local_work_add() would wake us up */
3088 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3089 atomic_set(&ctx->cq_wait_nr, 1);
3090 smp_mb();
3091 }
3092
3093 /* failed during ring init, it couldn't have issued any requests */
3094 if (!ctx->rings)
3095 return false;
3096
3097 if (!task) {
3098 ret |= io_uring_try_cancel_iowq(ctx);
3099 } else if (tctx && tctx->io_wq) {
3100 /*
3101 * Cancels requests of all rings, not only @ctx, but
3102 * it's fine as the task is in exit/exec.
3103 */
3104 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3105 &cancel, true);
3106 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3107 }
3108
3109 /* SQPOLL thread does its own polling */
3110 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3111 (ctx->sq_data && ctx->sq_data->thread == current)) {
3112 while (!wq_list_empty(&ctx->iopoll_list)) {
3113 io_iopoll_try_reap_events(ctx);
3114 ret = true;
3115 cond_resched();
3116 }
3117 }
3118
3119 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3120 io_allowed_defer_tw_run(ctx))
3121 ret |= io_run_local_work(ctx, INT_MAX) > 0;
3122 ret |= io_cancel_defer_files(ctx, task, cancel_all);
3123 mutex_lock(&ctx->uring_lock);
3124 ret |= io_poll_remove_all(ctx, task, cancel_all);
3125 ret |= io_waitid_remove_all(ctx, task, cancel_all);
3126 ret |= io_futex_remove_all(ctx, task, cancel_all);
3127 ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all);
3128 mutex_unlock(&ctx->uring_lock);
3129 ret |= io_kill_timeouts(ctx, task, cancel_all);
3130 if (task)
3131 ret |= io_run_task_work() > 0;
3132 else
3133 ret |= flush_delayed_work(&ctx->fallback_work);
3134 return ret;
3135 }
3136
tctx_inflight(struct io_uring_task * tctx,bool tracked)3137 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3138 {
3139 if (tracked)
3140 return atomic_read(&tctx->inflight_tracked);
3141 return percpu_counter_sum(&tctx->inflight);
3142 }
3143
3144 /*
3145 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3146 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3147 */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)3148 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3149 {
3150 struct io_uring_task *tctx = current->io_uring;
3151 struct io_ring_ctx *ctx;
3152 struct io_tctx_node *node;
3153 unsigned long index;
3154 s64 inflight;
3155 DEFINE_WAIT(wait);
3156
3157 WARN_ON_ONCE(sqd && sqpoll_task_locked(sqd) != current);
3158
3159 if (!current->io_uring)
3160 return;
3161 if (tctx->io_wq)
3162 io_wq_exit_start(tctx->io_wq);
3163
3164 atomic_inc(&tctx->in_cancel);
3165 do {
3166 bool loop = false;
3167
3168 io_uring_drop_tctx_refs(current);
3169 if (!tctx_inflight(tctx, !cancel_all))
3170 break;
3171
3172 /* read completions before cancelations */
3173 inflight = tctx_inflight(tctx, false);
3174 if (!inflight)
3175 break;
3176
3177 if (!sqd) {
3178 xa_for_each(&tctx->xa, index, node) {
3179 /* sqpoll task will cancel all its requests */
3180 if (node->ctx->sq_data)
3181 continue;
3182 loop |= io_uring_try_cancel_requests(node->ctx,
3183 current, cancel_all);
3184 }
3185 } else {
3186 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3187 loop |= io_uring_try_cancel_requests(ctx,
3188 current,
3189 cancel_all);
3190 }
3191
3192 if (loop) {
3193 cond_resched();
3194 continue;
3195 }
3196
3197 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3198 io_run_task_work();
3199 io_uring_drop_tctx_refs(current);
3200 xa_for_each(&tctx->xa, index, node) {
3201 if (!llist_empty(&node->ctx->work_llist)) {
3202 WARN_ON_ONCE(node->ctx->submitter_task &&
3203 node->ctx->submitter_task != current);
3204 goto end_wait;
3205 }
3206 }
3207 /*
3208 * If we've seen completions, retry without waiting. This
3209 * avoids a race where a completion comes in before we did
3210 * prepare_to_wait().
3211 */
3212 if (inflight == tctx_inflight(tctx, !cancel_all))
3213 schedule();
3214 end_wait:
3215 finish_wait(&tctx->wait, &wait);
3216 } while (1);
3217
3218 io_uring_clean_tctx(tctx);
3219 if (cancel_all) {
3220 /*
3221 * We shouldn't run task_works after cancel, so just leave
3222 * ->in_cancel set for normal exit.
3223 */
3224 atomic_dec(&tctx->in_cancel);
3225 /* for exec all current's requests should be gone, kill tctx */
3226 __io_uring_free(current);
3227 }
3228 }
3229
__io_uring_cancel(bool cancel_all)3230 void __io_uring_cancel(bool cancel_all)
3231 {
3232 io_uring_unreg_ringfd();
3233 io_uring_cancel_generic(cancel_all, NULL);
3234 }
3235
io_validate_ext_arg(unsigned flags,const void __user * argp,size_t argsz)3236 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3237 {
3238 if (flags & IORING_ENTER_EXT_ARG) {
3239 struct io_uring_getevents_arg arg;
3240
3241 if (argsz != sizeof(arg))
3242 return -EINVAL;
3243 if (copy_from_user(&arg, argp, sizeof(arg)))
3244 return -EFAULT;
3245 }
3246 return 0;
3247 }
3248
io_get_ext_arg(unsigned flags,const void __user * argp,struct ext_arg * ext_arg)3249 static int io_get_ext_arg(unsigned flags, const void __user *argp,
3250 struct ext_arg *ext_arg)
3251 {
3252 struct io_uring_getevents_arg arg;
3253
3254 /*
3255 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3256 * is just a pointer to the sigset_t.
3257 */
3258 if (!(flags & IORING_ENTER_EXT_ARG)) {
3259 ext_arg->sig = (const sigset_t __user *) argp;
3260 ext_arg->ts = NULL;
3261 return 0;
3262 }
3263
3264 /*
3265 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3266 * timespec and sigset_t pointers if good.
3267 */
3268 if (ext_arg->argsz != sizeof(arg))
3269 return -EINVAL;
3270 if (copy_from_user(&arg, argp, sizeof(arg)))
3271 return -EFAULT;
3272 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3273 ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3274 ext_arg->argsz = arg.sigmask_sz;
3275 ext_arg->ts = u64_to_user_ptr(arg.ts);
3276 return 0;
3277 }
3278
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3279 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3280 u32, min_complete, u32, flags, const void __user *, argp,
3281 size_t, argsz)
3282 {
3283 struct io_ring_ctx *ctx;
3284 struct file *file;
3285 long ret;
3286
3287 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3288 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3289 IORING_ENTER_REGISTERED_RING |
3290 IORING_ENTER_ABS_TIMER)))
3291 return -EINVAL;
3292
3293 /*
3294 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3295 * need only dereference our task private array to find it.
3296 */
3297 if (flags & IORING_ENTER_REGISTERED_RING) {
3298 struct io_uring_task *tctx = current->io_uring;
3299
3300 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3301 return -EINVAL;
3302 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3303 file = tctx->registered_rings[fd];
3304 if (unlikely(!file))
3305 return -EBADF;
3306 } else {
3307 file = fget(fd);
3308 if (unlikely(!file))
3309 return -EBADF;
3310 ret = -EOPNOTSUPP;
3311 if (unlikely(!io_is_uring_fops(file)))
3312 goto out;
3313 }
3314
3315 ctx = file->private_data;
3316 ret = -EBADFD;
3317 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3318 goto out;
3319
3320 /*
3321 * For SQ polling, the thread will do all submissions and completions.
3322 * Just return the requested submit count, and wake the thread if
3323 * we were asked to.
3324 */
3325 ret = 0;
3326 if (ctx->flags & IORING_SETUP_SQPOLL) {
3327 if (unlikely(ctx->sq_data->thread == NULL)) {
3328 ret = -EOWNERDEAD;
3329 goto out;
3330 }
3331 if (flags & IORING_ENTER_SQ_WAKEUP)
3332 wake_up(&ctx->sq_data->wait);
3333 if (flags & IORING_ENTER_SQ_WAIT)
3334 io_sqpoll_wait_sq(ctx);
3335
3336 ret = to_submit;
3337 } else if (to_submit) {
3338 ret = io_uring_add_tctx_node(ctx);
3339 if (unlikely(ret))
3340 goto out;
3341
3342 mutex_lock(&ctx->uring_lock);
3343 ret = io_submit_sqes(ctx, to_submit);
3344 if (ret != to_submit) {
3345 mutex_unlock(&ctx->uring_lock);
3346 goto out;
3347 }
3348 if (flags & IORING_ENTER_GETEVENTS) {
3349 if (ctx->syscall_iopoll)
3350 goto iopoll_locked;
3351 /*
3352 * Ignore errors, we'll soon call io_cqring_wait() and
3353 * it should handle ownership problems if any.
3354 */
3355 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3356 (void)io_run_local_work_locked(ctx, min_complete);
3357 }
3358 mutex_unlock(&ctx->uring_lock);
3359 }
3360
3361 if (flags & IORING_ENTER_GETEVENTS) {
3362 int ret2;
3363
3364 if (ctx->syscall_iopoll) {
3365 /*
3366 * We disallow the app entering submit/complete with
3367 * polling, but we still need to lock the ring to
3368 * prevent racing with polled issue that got punted to
3369 * a workqueue.
3370 */
3371 mutex_lock(&ctx->uring_lock);
3372 iopoll_locked:
3373 ret2 = io_validate_ext_arg(flags, argp, argsz);
3374 if (likely(!ret2)) {
3375 min_complete = min(min_complete,
3376 ctx->cq_entries);
3377 ret2 = io_iopoll_check(ctx, min_complete);
3378 }
3379 mutex_unlock(&ctx->uring_lock);
3380 } else {
3381 struct ext_arg ext_arg = { .argsz = argsz };
3382
3383 ret2 = io_get_ext_arg(flags, argp, &ext_arg);
3384 if (likely(!ret2)) {
3385 min_complete = min(min_complete,
3386 ctx->cq_entries);
3387 ret2 = io_cqring_wait(ctx, min_complete, flags,
3388 &ext_arg);
3389 }
3390 }
3391
3392 if (!ret) {
3393 ret = ret2;
3394
3395 /*
3396 * EBADR indicates that one or more CQE were dropped.
3397 * Once the user has been informed we can clear the bit
3398 * as they are obviously ok with those drops.
3399 */
3400 if (unlikely(ret2 == -EBADR))
3401 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3402 &ctx->check_cq);
3403 }
3404 }
3405 out:
3406 if (!(flags & IORING_ENTER_REGISTERED_RING))
3407 fput(file);
3408 return ret;
3409 }
3410
3411 static const struct file_operations io_uring_fops = {
3412 .release = io_uring_release,
3413 .mmap = io_uring_mmap,
3414 .get_unmapped_area = io_uring_get_unmapped_area,
3415 #ifndef CONFIG_MMU
3416 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3417 #endif
3418 .poll = io_uring_poll,
3419 #ifdef CONFIG_PROC_FS
3420 .show_fdinfo = io_uring_show_fdinfo,
3421 #endif
3422 };
3423
io_is_uring_fops(struct file * file)3424 bool io_is_uring_fops(struct file *file)
3425 {
3426 return file->f_op == &io_uring_fops;
3427 }
3428
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3429 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3430 struct io_uring_params *p)
3431 {
3432 struct io_rings *rings;
3433 size_t size, sq_array_offset;
3434 void *ptr;
3435
3436 /* make sure these are sane, as we already accounted them */
3437 ctx->sq_entries = p->sq_entries;
3438 ctx->cq_entries = p->cq_entries;
3439
3440 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3441 if (size == SIZE_MAX)
3442 return -EOVERFLOW;
3443
3444 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3445 rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size);
3446 else
3447 rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3448
3449 if (IS_ERR(rings))
3450 return PTR_ERR(rings);
3451
3452 ctx->rings = rings;
3453 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3454 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3455 rings->sq_ring_mask = p->sq_entries - 1;
3456 rings->cq_ring_mask = p->cq_entries - 1;
3457 rings->sq_ring_entries = p->sq_entries;
3458 rings->cq_ring_entries = p->cq_entries;
3459
3460 if (p->flags & IORING_SETUP_SQE128)
3461 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3462 else
3463 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3464 if (size == SIZE_MAX) {
3465 io_rings_free(ctx);
3466 return -EOVERFLOW;
3467 }
3468
3469 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3470 ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size);
3471 else
3472 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3473
3474 if (IS_ERR(ptr)) {
3475 io_rings_free(ctx);
3476 return PTR_ERR(ptr);
3477 }
3478
3479 ctx->sq_sqes = ptr;
3480 return 0;
3481 }
3482
io_uring_install_fd(struct file * file)3483 static int io_uring_install_fd(struct file *file)
3484 {
3485 int fd;
3486
3487 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3488 if (fd < 0)
3489 return fd;
3490 fd_install(fd, file);
3491 return fd;
3492 }
3493
3494 /*
3495 * Allocate an anonymous fd, this is what constitutes the application
3496 * visible backing of an io_uring instance. The application mmaps this
3497 * fd to gain access to the SQ/CQ ring details.
3498 */
io_uring_get_file(struct io_ring_ctx * ctx)3499 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3500 {
3501 /* Create a new inode so that the LSM can block the creation. */
3502 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3503 O_RDWR | O_CLOEXEC, NULL);
3504 }
3505
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)3506 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3507 struct io_uring_params __user *params)
3508 {
3509 struct io_ring_ctx *ctx;
3510 struct io_uring_task *tctx;
3511 struct file *file;
3512 int ret;
3513
3514 if (!entries)
3515 return -EINVAL;
3516 if (entries > IORING_MAX_ENTRIES) {
3517 if (!(p->flags & IORING_SETUP_CLAMP))
3518 return -EINVAL;
3519 entries = IORING_MAX_ENTRIES;
3520 }
3521
3522 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3523 && !(p->flags & IORING_SETUP_NO_MMAP))
3524 return -EINVAL;
3525
3526 /*
3527 * Use twice as many entries for the CQ ring. It's possible for the
3528 * application to drive a higher depth than the size of the SQ ring,
3529 * since the sqes are only used at submission time. This allows for
3530 * some flexibility in overcommitting a bit. If the application has
3531 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3532 * of CQ ring entries manually.
3533 */
3534 p->sq_entries = roundup_pow_of_two(entries);
3535 if (p->flags & IORING_SETUP_CQSIZE) {
3536 /*
3537 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3538 * to a power-of-two, if it isn't already. We do NOT impose
3539 * any cq vs sq ring sizing.
3540 */
3541 if (!p->cq_entries)
3542 return -EINVAL;
3543 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3544 if (!(p->flags & IORING_SETUP_CLAMP))
3545 return -EINVAL;
3546 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3547 }
3548 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3549 if (p->cq_entries < p->sq_entries)
3550 return -EINVAL;
3551 } else {
3552 p->cq_entries = 2 * p->sq_entries;
3553 }
3554
3555 ctx = io_ring_ctx_alloc(p);
3556 if (!ctx)
3557 return -ENOMEM;
3558
3559 ctx->clockid = CLOCK_MONOTONIC;
3560 ctx->clock_offset = 0;
3561
3562 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3563 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3564 !(ctx->flags & IORING_SETUP_SQPOLL))
3565 ctx->task_complete = true;
3566
3567 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3568 ctx->lockless_cq = true;
3569
3570 /*
3571 * lazy poll_wq activation relies on ->task_complete for synchronisation
3572 * purposes, see io_activate_pollwq()
3573 */
3574 if (!ctx->task_complete)
3575 ctx->poll_activated = true;
3576
3577 /*
3578 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3579 * space applications don't need to do io completion events
3580 * polling again, they can rely on io_sq_thread to do polling
3581 * work, which can reduce cpu usage and uring_lock contention.
3582 */
3583 if (ctx->flags & IORING_SETUP_IOPOLL &&
3584 !(ctx->flags & IORING_SETUP_SQPOLL))
3585 ctx->syscall_iopoll = 1;
3586
3587 ctx->compat = in_compat_syscall();
3588 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3589 ctx->user = get_uid(current_user());
3590
3591 /*
3592 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3593 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3594 */
3595 ret = -EINVAL;
3596 if (ctx->flags & IORING_SETUP_SQPOLL) {
3597 /* IPI related flags don't make sense with SQPOLL */
3598 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3599 IORING_SETUP_TASKRUN_FLAG |
3600 IORING_SETUP_DEFER_TASKRUN))
3601 goto err;
3602 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3603 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3604 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3605 } else {
3606 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3607 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3608 goto err;
3609 ctx->notify_method = TWA_SIGNAL;
3610 }
3611
3612 /*
3613 * For DEFER_TASKRUN we require the completion task to be the same as the
3614 * submission task. This implies that there is only one submitter, so enforce
3615 * that.
3616 */
3617 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3618 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3619 goto err;
3620 }
3621
3622 /*
3623 * This is just grabbed for accounting purposes. When a process exits,
3624 * the mm is exited and dropped before the files, hence we need to hang
3625 * on to this mm purely for the purposes of being able to unaccount
3626 * memory (locked/pinned vm). It's not used for anything else.
3627 */
3628 mmgrab(current->mm);
3629 ctx->mm_account = current->mm;
3630
3631 ret = io_allocate_scq_urings(ctx, p);
3632 if (ret)
3633 goto err;
3634
3635 ret = io_sq_offload_create(ctx, p);
3636 if (ret)
3637 goto err;
3638
3639 ret = io_rsrc_init(ctx);
3640 if (ret)
3641 goto err;
3642
3643 p->sq_off.head = offsetof(struct io_rings, sq.head);
3644 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3645 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3646 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3647 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3648 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3649 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3650 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3651 p->sq_off.resv1 = 0;
3652 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3653 p->sq_off.user_addr = 0;
3654
3655 p->cq_off.head = offsetof(struct io_rings, cq.head);
3656 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3657 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3658 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3659 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3660 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3661 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3662 p->cq_off.resv1 = 0;
3663 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3664 p->cq_off.user_addr = 0;
3665
3666 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3667 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3668 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3669 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3670 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3671 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3672 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3673 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT;
3674
3675 if (copy_to_user(params, p, sizeof(*p))) {
3676 ret = -EFAULT;
3677 goto err;
3678 }
3679
3680 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3681 && !(ctx->flags & IORING_SETUP_R_DISABLED))
3682 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3683
3684 file = io_uring_get_file(ctx);
3685 if (IS_ERR(file)) {
3686 ret = PTR_ERR(file);
3687 goto err;
3688 }
3689
3690 ret = __io_uring_add_tctx_node(ctx);
3691 if (ret)
3692 goto err_fput;
3693 tctx = current->io_uring;
3694
3695 /*
3696 * Install ring fd as the very last thing, so we don't risk someone
3697 * having closed it before we finish setup
3698 */
3699 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3700 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3701 else
3702 ret = io_uring_install_fd(file);
3703 if (ret < 0)
3704 goto err_fput;
3705
3706 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3707 return ret;
3708 err:
3709 io_ring_ctx_wait_and_kill(ctx);
3710 return ret;
3711 err_fput:
3712 fput(file);
3713 return ret;
3714 }
3715
3716 /*
3717 * Sets up an aio uring context, and returns the fd. Applications asks for a
3718 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3719 * params structure passed in.
3720 */
io_uring_setup(u32 entries,struct io_uring_params __user * params)3721 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3722 {
3723 struct io_uring_params p;
3724 int i;
3725
3726 if (copy_from_user(&p, params, sizeof(p)))
3727 return -EFAULT;
3728 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3729 if (p.resv[i])
3730 return -EINVAL;
3731 }
3732
3733 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3734 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3735 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3736 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3737 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3738 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3739 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3740 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3741 IORING_SETUP_NO_SQARRAY))
3742 return -EINVAL;
3743
3744 return io_uring_create(entries, &p, params);
3745 }
3746
io_uring_allowed(void)3747 static inline bool io_uring_allowed(void)
3748 {
3749 int disabled = READ_ONCE(sysctl_io_uring_disabled);
3750 kgid_t io_uring_group;
3751
3752 if (disabled == 2)
3753 return false;
3754
3755 if (disabled == 0 || capable(CAP_SYS_ADMIN))
3756 return true;
3757
3758 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3759 if (!gid_valid(io_uring_group))
3760 return false;
3761
3762 return in_group_p(io_uring_group);
3763 }
3764
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)3765 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3766 struct io_uring_params __user *, params)
3767 {
3768 if (!io_uring_allowed())
3769 return -EPERM;
3770
3771 return io_uring_setup(entries, params);
3772 }
3773
io_uring_init(void)3774 static int __init io_uring_init(void)
3775 {
3776 struct kmem_cache_args kmem_args = {
3777 .useroffset = offsetof(struct io_kiocb, cmd.data),
3778 .usersize = sizeof_field(struct io_kiocb, cmd.data),
3779 };
3780
3781 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3782 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3783 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3784 } while (0)
3785
3786 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3787 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3788 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3789 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3790 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3791 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
3792 BUILD_BUG_SQE_ELEM(1, __u8, flags);
3793 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
3794 BUILD_BUG_SQE_ELEM(4, __s32, fd);
3795 BUILD_BUG_SQE_ELEM(8, __u64, off);
3796 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
3797 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
3798 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3799 BUILD_BUG_SQE_ELEM(16, __u64, addr);
3800 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
3801 BUILD_BUG_SQE_ELEM(24, __u32, len);
3802 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
3803 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
3804 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3805 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
3806 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
3807 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
3808 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
3809 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
3810 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
3811 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
3812 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
3813 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
3814 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
3815 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
3816 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
3817 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
3818 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
3819 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
3820 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
3821 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
3822 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
3823 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
3824 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
3825 BUILD_BUG_SQE_ELEM(42, __u16, personality);
3826 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
3827 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
3828 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
3829 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
3830 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
3831 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3832 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
3833
3834 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3835 sizeof(struct io_uring_rsrc_update));
3836 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3837 sizeof(struct io_uring_rsrc_update2));
3838
3839 /* ->buf_index is u16 */
3840 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3841 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3842 offsetof(struct io_uring_buf_ring, tail));
3843
3844 /* should fit into one byte */
3845 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3846 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3847 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3848
3849 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3850
3851 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3852
3853 /* top 8bits are for internal use */
3854 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3855
3856 io_uring_optable_init();
3857
3858 /*
3859 * Allow user copy in the per-command field, which starts after the
3860 * file in io_kiocb and until the opcode field. The openat2 handling
3861 * requires copying in user memory into the io_kiocb object in that
3862 * range, and HARDENED_USERCOPY will complain if we haven't
3863 * correctly annotated this range.
3864 */
3865 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3866 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3867 SLAB_TYPESAFE_BY_RCU);
3868 io_buf_cachep = KMEM_CACHE(io_buffer,
3869 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
3870
3871 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3872
3873 #ifdef CONFIG_SYSCTL
3874 register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3875 #endif
3876
3877 return 0;
3878 };
3879 __initcall(io_uring_init);
3880