• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/direct-io.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * O_DIRECT
8  *
9  * 04Jul2002	Andrew Morton
10  *		Initial version
11  * 11Sep2002	janetinc@us.ibm.com
12  * 		added readv/writev support.
13  * 29Oct2002	Andrew Morton
14  *		rewrote bio_add_page() support.
15  * 30Oct2002	pbadari@us.ibm.com
16  *		added support for non-aligned IO.
17  * 06Nov2002	pbadari@us.ibm.com
18  *		added asynchronous IO support.
19  * 21Jul2003	nathans@sgi.com
20  *		added IO completion notifier.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/bio.h>
33 #include <linux/wait.h>
34 #include <linux/err.h>
35 #include <linux/blkdev.h>
36 #include <linux/buffer_head.h>
37 #include <linux/rwsem.h>
38 #include <linux/uio.h>
39 #include <linux/atomic.h>
40 #include <linux/prefetch.h>
41 #include <trace/hooks/mm.h>
42 
43 #include "internal.h"
44 
45 /*
46  * How many user pages to map in one call to iov_iter_extract_pages().  This
47  * determines the size of a structure in the slab cache
48  */
49 #define DIO_PAGES	64
50 
51 /*
52  * Flags for dio_complete()
53  */
54 #define DIO_COMPLETE_ASYNC		0x01	/* This is async IO */
55 #define DIO_COMPLETE_INVALIDATE		0x02	/* Can invalidate pages */
56 
57 /*
58  * This code generally works in units of "dio_blocks".  A dio_block is
59  * somewhere between the hard sector size and the filesystem block size.  it
60  * is determined on a per-invocation basis.   When talking to the filesystem
61  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
62  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
63  * to bio_block quantities by shifting left by blkfactor.
64  *
65  * If blkfactor is zero then the user's request was aligned to the filesystem's
66  * blocksize.
67  */
68 
69 /* dio_state only used in the submission path */
70 
71 struct dio_submit {
72 	struct bio *bio;		/* bio under assembly */
73 	unsigned blkbits;		/* doesn't change */
74 	unsigned blkfactor;		/* When we're using an alignment which
75 					   is finer than the filesystem's soft
76 					   blocksize, this specifies how much
77 					   finer.  blkfactor=2 means 1/4-block
78 					   alignment.  Does not change */
79 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
80 					   been performed at the start of a
81 					   write */
82 	int pages_in_io;		/* approximate total IO pages */
83 	sector_t block_in_file;		/* Current offset into the underlying
84 					   file in dio_block units. */
85 	unsigned blocks_available;	/* At block_in_file.  changes */
86 	int reap_counter;		/* rate limit reaping */
87 	sector_t final_block_in_request;/* doesn't change */
88 	int boundary;			/* prev block is at a boundary */
89 	get_block_t *get_block;		/* block mapping function */
90 
91 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
92 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
93 	sector_t next_block_for_io;	/* next block to be put under IO,
94 					   in dio_blocks units */
95 
96 	/*
97 	 * Deferred addition of a page to the dio.  These variables are
98 	 * private to dio_send_cur_page(), submit_page_section() and
99 	 * dio_bio_add_page().
100 	 */
101 	struct page *cur_page;		/* The page */
102 	unsigned cur_page_offset;	/* Offset into it, in bytes */
103 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
104 	sector_t cur_page_block;	/* Where it starts */
105 	loff_t cur_page_fs_offset;	/* Offset in file */
106 
107 	struct iov_iter *iter;
108 	/*
109 	 * Page queue.  These variables belong to dio_refill_pages() and
110 	 * dio_get_page().
111 	 */
112 	unsigned head;			/* next page to process */
113 	unsigned tail;			/* last valid page + 1 */
114 	size_t from, to;
115 };
116 
117 /* dio_state communicated between submission path and end_io */
118 struct dio {
119 	int flags;			/* doesn't change */
120 	blk_opf_t opf;			/* request operation type and flags */
121 	struct gendisk *bio_disk;
122 	struct inode *inode;
123 	loff_t i_size;			/* i_size when submitted */
124 	dio_iodone_t *end_io;		/* IO completion function */
125 	bool is_pinned;			/* T if we have pins on the pages */
126 
127 	void *private;			/* copy from map_bh.b_private */
128 
129 	/* BIO completion state */
130 	spinlock_t bio_lock;		/* protects BIO fields below */
131 	int page_errors;		/* err from iov_iter_extract_pages() */
132 	int is_async;			/* is IO async ? */
133 	bool defer_completion;		/* defer AIO completion to workqueue? */
134 	bool should_dirty;		/* if pages should be dirtied */
135 	int io_error;			/* IO error in completion path */
136 	unsigned long refcount;		/* direct_io_worker() and bios */
137 	struct bio *bio_list;		/* singly linked via bi_private */
138 	struct task_struct *waiter;	/* waiting task (NULL if none) */
139 
140 	/* AIO related stuff */
141 	struct kiocb *iocb;		/* kiocb */
142 	ssize_t result;                 /* IO result */
143 
144 	/*
145 	 * pages[] (and any fields placed after it) are not zeroed out at
146 	 * allocation time.  Don't add new fields after pages[] unless you
147 	 * wish that they not be zeroed.
148 	 */
149 	union {
150 		struct page *pages[DIO_PAGES];	/* page buffer */
151 		struct work_struct complete_work;/* deferred AIO completion */
152 	};
153 } ____cacheline_aligned_in_smp;
154 
155 static struct kmem_cache *dio_cache __ro_after_init;
156 
157 /*
158  * How many pages are in the queue?
159  */
dio_pages_present(struct dio_submit * sdio)160 static inline unsigned dio_pages_present(struct dio_submit *sdio)
161 {
162 	return sdio->tail - sdio->head;
163 }
164 
165 /*
166  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
167  */
dio_refill_pages(struct dio * dio,struct dio_submit * sdio)168 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
169 {
170 	struct page **pages = dio->pages;
171 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
172 	ssize_t ret;
173 
174 	ret = iov_iter_extract_pages(sdio->iter, &pages, LONG_MAX,
175 				     DIO_PAGES, 0, &sdio->from);
176 
177 	if (ret < 0 && sdio->blocks_available && dio_op == REQ_OP_WRITE) {
178 		/*
179 		 * A memory fault, but the filesystem has some outstanding
180 		 * mapped blocks.  We need to use those blocks up to avoid
181 		 * leaking stale data in the file.
182 		 */
183 		if (dio->page_errors == 0)
184 			dio->page_errors = ret;
185 		dio->pages[0] = ZERO_PAGE(0);
186 		sdio->head = 0;
187 		sdio->tail = 1;
188 		sdio->from = 0;
189 		sdio->to = PAGE_SIZE;
190 		return 0;
191 	}
192 
193 	if (ret >= 0) {
194 		ret += sdio->from;
195 		sdio->head = 0;
196 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
197 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
198 		return 0;
199 	}
200 	return ret;
201 }
202 
203 /*
204  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
205  * buffered inside the dio so that we can call iov_iter_extract_pages()
206  * against a decent number of pages, less frequently.  To provide nicer use of
207  * the L1 cache.
208  */
dio_get_page(struct dio * dio,struct dio_submit * sdio)209 static inline struct page *dio_get_page(struct dio *dio,
210 					struct dio_submit *sdio)
211 {
212 	if (dio_pages_present(sdio) == 0) {
213 		int ret;
214 
215 		ret = dio_refill_pages(dio, sdio);
216 		if (ret)
217 			return ERR_PTR(ret);
218 		BUG_ON(dio_pages_present(sdio) == 0);
219 	}
220 	return dio->pages[sdio->head];
221 }
222 
dio_pin_page(struct dio * dio,struct page * page)223 static void dio_pin_page(struct dio *dio, struct page *page)
224 {
225 	if (dio->is_pinned)
226 		folio_add_pin(page_folio(page));
227 }
228 
dio_unpin_page(struct dio * dio,struct page * page)229 static void dio_unpin_page(struct dio *dio, struct page *page)
230 {
231 	if (dio->is_pinned)
232 		unpin_user_page(page);
233 }
234 
235 /*
236  * dio_complete() - called when all DIO BIO I/O has been completed
237  *
238  * This drops i_dio_count, lets interested parties know that a DIO operation
239  * has completed, and calculates the resulting return code for the operation.
240  *
241  * It lets the filesystem know if it registered an interest earlier via
242  * get_block.  Pass the private field of the map buffer_head so that
243  * filesystems can use it to hold additional state between get_block calls and
244  * dio_complete.
245  */
dio_complete(struct dio * dio,ssize_t ret,unsigned int flags)246 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
247 {
248 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
249 	loff_t offset = dio->iocb->ki_pos;
250 	ssize_t transferred = 0;
251 	int err;
252 
253 	/*
254 	 * AIO submission can race with bio completion to get here while
255 	 * expecting to have the last io completed by bio completion.
256 	 * In that case -EIOCBQUEUED is in fact not an error we want
257 	 * to preserve through this call.
258 	 */
259 	if (ret == -EIOCBQUEUED)
260 		ret = 0;
261 
262 	if (dio->result) {
263 		transferred = dio->result;
264 
265 		/* Check for short read case */
266 		if (dio_op == REQ_OP_READ &&
267 		    ((offset + transferred) > dio->i_size))
268 			transferred = dio->i_size - offset;
269 		/* ignore EFAULT if some IO has been done */
270 		if (unlikely(ret == -EFAULT) && transferred)
271 			ret = 0;
272 	}
273 
274 	if (ret == 0)
275 		ret = dio->page_errors;
276 	if (ret == 0)
277 		ret = dio->io_error;
278 	if (ret == 0)
279 		ret = transferred;
280 
281 	if (dio->end_io) {
282 		// XXX: ki_pos??
283 		err = dio->end_io(dio->iocb, offset, ret, dio->private);
284 		if (err)
285 			ret = err;
286 	}
287 
288 	/*
289 	 * Try again to invalidate clean pages which might have been cached by
290 	 * non-direct readahead, or faulted in by get_user_pages() if the source
291 	 * of the write was an mmap'ed region of the file we're writing.  Either
292 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
293 	 * this invalidation fails, tough, the write still worked...
294 	 *
295 	 * And this page cache invalidation has to be after dio->end_io(), as
296 	 * some filesystems convert unwritten extents to real allocations in
297 	 * end_io() when necessary, otherwise a racing buffer read would cache
298 	 * zeros from unwritten extents.
299 	 */
300 	if (flags & DIO_COMPLETE_INVALIDATE &&
301 	    ret > 0 && dio_op == REQ_OP_WRITE)
302 		kiocb_invalidate_post_direct_write(dio->iocb, ret);
303 
304 	inode_dio_end(dio->inode);
305 
306 	if (flags & DIO_COMPLETE_ASYNC) {
307 		/*
308 		 * generic_write_sync expects ki_pos to have been updated
309 		 * already, but the submission path only does this for
310 		 * synchronous I/O.
311 		 */
312 		dio->iocb->ki_pos += transferred;
313 
314 		if (ret > 0 && dio_op == REQ_OP_WRITE)
315 			ret = generic_write_sync(dio->iocb, ret);
316 		dio->iocb->ki_complete(dio->iocb, ret);
317 	}
318 
319 	kmem_cache_free(dio_cache, dio);
320 	return ret;
321 }
322 
dio_aio_complete_work(struct work_struct * work)323 static void dio_aio_complete_work(struct work_struct *work)
324 {
325 	struct dio *dio = container_of(work, struct dio, complete_work);
326 
327 	dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
328 }
329 
330 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
331 
332 /*
333  * Asynchronous IO callback.
334  */
dio_bio_end_aio(struct bio * bio)335 static void dio_bio_end_aio(struct bio *bio)
336 {
337 	struct dio *dio = bio->bi_private;
338 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
339 	unsigned long remaining;
340 	unsigned long flags;
341 	bool defer_completion = false;
342 
343 	/* cleanup the bio */
344 	dio_bio_complete(dio, bio);
345 
346 	spin_lock_irqsave(&dio->bio_lock, flags);
347 	remaining = --dio->refcount;
348 	if (remaining == 1 && dio->waiter)
349 		wake_up_process(dio->waiter);
350 	spin_unlock_irqrestore(&dio->bio_lock, flags);
351 
352 	if (remaining == 0) {
353 		/*
354 		 * Defer completion when defer_completion is set or
355 		 * when the inode has pages mapped and this is AIO write.
356 		 * We need to invalidate those pages because there is a
357 		 * chance they contain stale data in the case buffered IO
358 		 * went in between AIO submission and completion into the
359 		 * same region.
360 		 */
361 		if (dio->result)
362 			defer_completion = dio->defer_completion ||
363 					   (dio_op == REQ_OP_WRITE &&
364 					    dio->inode->i_mapping->nrpages);
365 		if (defer_completion) {
366 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
367 			queue_work(dio->inode->i_sb->s_dio_done_wq,
368 				   &dio->complete_work);
369 		} else {
370 			dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
371 		}
372 	}
373 }
374 
375 /*
376  * The BIO completion handler simply queues the BIO up for the process-context
377  * handler.
378  *
379  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
380  * implement a singly-linked list of completed BIOs, at dio->bio_list.
381  */
dio_bio_end_io(struct bio * bio)382 static void dio_bio_end_io(struct bio *bio)
383 {
384 	struct dio *dio = bio->bi_private;
385 	unsigned long flags;
386 
387 	spin_lock_irqsave(&dio->bio_lock, flags);
388 	bio->bi_private = dio->bio_list;
389 	dio->bio_list = bio;
390 	if (--dio->refcount == 1 && dio->waiter)
391 		wake_up_process(dio->waiter);
392 	spin_unlock_irqrestore(&dio->bio_lock, flags);
393 }
394 
395 static inline void
dio_bio_alloc(struct dio * dio,struct dio_submit * sdio,struct block_device * bdev,sector_t first_sector,int nr_vecs)396 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
397 	      struct block_device *bdev,
398 	      sector_t first_sector, int nr_vecs)
399 {
400 	struct bio *bio;
401 
402 	/*
403 	 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
404 	 * we request a valid number of vectors.
405 	 */
406 	bio = bio_alloc(bdev, nr_vecs, dio->opf, GFP_KERNEL);
407 	bio->bi_iter.bi_sector = first_sector;
408 	if (dio->is_async)
409 		bio->bi_end_io = dio_bio_end_aio;
410 	else
411 		bio->bi_end_io = dio_bio_end_io;
412 	if (dio->is_pinned)
413 		bio_set_flag(bio, BIO_PAGE_PINNED);
414 	bio->bi_write_hint = file_inode(dio->iocb->ki_filp)->i_write_hint;
415 
416 	sdio->bio = bio;
417 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
418 }
419 
420 /*
421  * In the AIO read case we speculatively dirty the pages before starting IO.
422  * During IO completion, any of these pages which happen to have been written
423  * back will be redirtied by bio_check_pages_dirty().
424  *
425  * bios hold a dio reference between submit_bio and ->end_io.
426  */
dio_bio_submit(struct dio * dio,struct dio_submit * sdio)427 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
428 {
429 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
430 	struct bio *bio = sdio->bio;
431 	unsigned long flags;
432 
433 	bio->bi_private = dio;
434 
435 	spin_lock_irqsave(&dio->bio_lock, flags);
436 	dio->refcount++;
437 	spin_unlock_irqrestore(&dio->bio_lock, flags);
438 
439 	if (dio->is_async && dio_op == REQ_OP_READ && dio->should_dirty)
440 		bio_set_pages_dirty(bio);
441 
442 	dio->bio_disk = bio->bi_bdev->bd_disk;
443 
444 	submit_bio(bio);
445 
446 	sdio->bio = NULL;
447 	sdio->boundary = 0;
448 	sdio->logical_offset_in_bio = 0;
449 }
450 
451 /*
452  * Release any resources in case of a failure
453  */
dio_cleanup(struct dio * dio,struct dio_submit * sdio)454 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
455 {
456 	if (dio->is_pinned)
457 		unpin_user_pages(dio->pages + sdio->head,
458 				 sdio->tail - sdio->head);
459 	sdio->head = sdio->tail;
460 }
461 
462 /*
463  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
464  * returned once all BIOs have been completed.  This must only be called once
465  * all bios have been issued so that dio->refcount can only decrease.  This
466  * requires that the caller hold a reference on the dio.
467  */
dio_await_one(struct dio * dio)468 static struct bio *dio_await_one(struct dio *dio)
469 {
470 	unsigned long flags;
471 	struct bio *bio = NULL;
472 
473 	spin_lock_irqsave(&dio->bio_lock, flags);
474 
475 	/*
476 	 * Wait as long as the list is empty and there are bios in flight.  bio
477 	 * completion drops the count, maybe adds to the list, and wakes while
478 	 * holding the bio_lock so we don't need set_current_state()'s barrier
479 	 * and can call it after testing our condition.
480 	 */
481 	while (dio->refcount > 1 && dio->bio_list == NULL) {
482 		__set_current_state(TASK_UNINTERRUPTIBLE);
483 		dio->waiter = current;
484 		spin_unlock_irqrestore(&dio->bio_lock, flags);
485 		blk_io_schedule();
486 		/* wake up sets us TASK_RUNNING */
487 		spin_lock_irqsave(&dio->bio_lock, flags);
488 		dio->waiter = NULL;
489 	}
490 	if (dio->bio_list) {
491 		bio = dio->bio_list;
492 		dio->bio_list = bio->bi_private;
493 	}
494 	spin_unlock_irqrestore(&dio->bio_lock, flags);
495 	return bio;
496 }
497 
498 /*
499  * Process one completed BIO.  No locks are held.
500  */
dio_bio_complete(struct dio * dio,struct bio * bio)501 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
502 {
503 	blk_status_t err = bio->bi_status;
504 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
505 	bool should_dirty = dio_op == REQ_OP_READ && dio->should_dirty;
506 
507 	if (err) {
508 		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
509 			dio->io_error = -EAGAIN;
510 		else
511 			dio->io_error = -EIO;
512 	}
513 
514 	if (dio->is_async && should_dirty) {
515 		bio_check_pages_dirty(bio);	/* transfers ownership */
516 	} else {
517 		bio_release_pages(bio, should_dirty);
518 		bio_put(bio);
519 	}
520 	return err;
521 }
522 
523 /*
524  * Wait on and process all in-flight BIOs.  This must only be called once
525  * all bios have been issued so that the refcount can only decrease.
526  * This just waits for all bios to make it through dio_bio_complete.  IO
527  * errors are propagated through dio->io_error and should be propagated via
528  * dio_complete().
529  */
dio_await_completion(struct dio * dio)530 static void dio_await_completion(struct dio *dio)
531 {
532 	struct bio *bio;
533 	do {
534 		bio = dio_await_one(dio);
535 		if (bio)
536 			dio_bio_complete(dio, bio);
537 	} while (bio);
538 }
539 
540 /*
541  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
542  * to keep the memory consumption sane we periodically reap any completed BIOs
543  * during the BIO generation phase.
544  *
545  * This also helps to limit the peak amount of pinned userspace memory.
546  */
dio_bio_reap(struct dio * dio,struct dio_submit * sdio)547 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
548 {
549 	int ret = 0;
550 
551 	if (sdio->reap_counter++ >= 64) {
552 		while (dio->bio_list) {
553 			unsigned long flags;
554 			struct bio *bio;
555 			int ret2;
556 
557 			spin_lock_irqsave(&dio->bio_lock, flags);
558 			bio = dio->bio_list;
559 			dio->bio_list = bio->bi_private;
560 			spin_unlock_irqrestore(&dio->bio_lock, flags);
561 			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
562 			if (ret == 0)
563 				ret = ret2;
564 		}
565 		sdio->reap_counter = 0;
566 	}
567 	return ret;
568 }
569 
dio_set_defer_completion(struct dio * dio)570 static int dio_set_defer_completion(struct dio *dio)
571 {
572 	struct super_block *sb = dio->inode->i_sb;
573 
574 	if (dio->defer_completion)
575 		return 0;
576 	dio->defer_completion = true;
577 	if (!sb->s_dio_done_wq)
578 		return sb_init_dio_done_wq(sb);
579 	return 0;
580 }
581 
582 /*
583  * Call into the fs to map some more disk blocks.  We record the current number
584  * of available blocks at sdio->blocks_available.  These are in units of the
585  * fs blocksize, i_blocksize(inode).
586  *
587  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
588  * it uses the passed inode-relative block number as the file offset, as usual.
589  *
590  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
591  * has remaining to do.  The fs should not map more than this number of blocks.
592  *
593  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
594  * indicate how much contiguous disk space has been made available at
595  * bh->b_blocknr.
596  *
597  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
598  * This isn't very efficient...
599  *
600  * In the case of filesystem holes: the fs may return an arbitrarily-large
601  * hole by returning an appropriate value in b_size and by clearing
602  * buffer_mapped().  However the direct-io code will only process holes one
603  * block at a time - it will repeatedly call get_block() as it walks the hole.
604  */
get_more_blocks(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)605 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
606 			   struct buffer_head *map_bh)
607 {
608 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
609 	int ret;
610 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
611 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
612 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
613 	int create;
614 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
615 	loff_t i_size;
616 
617 	/*
618 	 * If there was a memory error and we've overwritten all the
619 	 * mapped blocks then we can now return that memory error
620 	 */
621 	ret = dio->page_errors;
622 	if (ret == 0) {
623 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
624 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
625 		fs_endblk = (sdio->final_block_in_request - 1) >>
626 					sdio->blkfactor;
627 		fs_count = fs_endblk - fs_startblk + 1;
628 
629 		map_bh->b_state = 0;
630 		map_bh->b_size = fs_count << i_blkbits;
631 
632 		/*
633 		 * For writes that could fill holes inside i_size on a
634 		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
635 		 * overwrites are permitted. We will return early to the caller
636 		 * once we see an unmapped buffer head returned, and the caller
637 		 * will fall back to buffered I/O.
638 		 *
639 		 * Otherwise the decision is left to the get_blocks method,
640 		 * which may decide to handle it or also return an unmapped
641 		 * buffer head.
642 		 */
643 		create = dio_op == REQ_OP_WRITE;
644 		if (dio->flags & DIO_SKIP_HOLES) {
645 			i_size = i_size_read(dio->inode);
646 			if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
647 				create = 0;
648 		}
649 
650 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
651 						map_bh, create);
652 
653 		/* Store for completion */
654 		dio->private = map_bh->b_private;
655 
656 		if (ret == 0 && buffer_defer_completion(map_bh))
657 			ret = dio_set_defer_completion(dio);
658 	}
659 	return ret;
660 }
661 
662 /*
663  * There is no bio.  Make one now.
664  */
dio_new_bio(struct dio * dio,struct dio_submit * sdio,sector_t start_sector,struct buffer_head * map_bh)665 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
666 		sector_t start_sector, struct buffer_head *map_bh)
667 {
668 	sector_t sector;
669 	int ret, nr_pages;
670 
671 	ret = dio_bio_reap(dio, sdio);
672 	if (ret)
673 		goto out;
674 	sector = start_sector << (sdio->blkbits - 9);
675 	nr_pages = bio_max_segs(sdio->pages_in_io);
676 	BUG_ON(nr_pages <= 0);
677 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
678 	sdio->boundary = 0;
679 out:
680 	return ret;
681 }
682 
683 /*
684  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
685  * that was successful then update final_block_in_bio and take a ref against
686  * the just-added page.
687  *
688  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
689  */
dio_bio_add_page(struct dio * dio,struct dio_submit * sdio)690 static inline int dio_bio_add_page(struct dio *dio, struct dio_submit *sdio)
691 {
692 	int ret;
693 
694 	ret = bio_add_page(sdio->bio, sdio->cur_page,
695 			sdio->cur_page_len, sdio->cur_page_offset);
696 	if (ret == sdio->cur_page_len) {
697 		/*
698 		 * Decrement count only, if we are done with this page
699 		 */
700 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
701 			sdio->pages_in_io--;
702 		dio_pin_page(dio, sdio->cur_page);
703 		sdio->final_block_in_bio = sdio->cur_page_block +
704 			(sdio->cur_page_len >> sdio->blkbits);
705 		ret = 0;
706 	} else {
707 		ret = 1;
708 	}
709 	return ret;
710 }
711 
712 /*
713  * Put cur_page under IO.  The section of cur_page which is described by
714  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
715  * starts on-disk at cur_page_block.
716  *
717  * We take a ref against the page here (on behalf of its presence in the bio).
718  *
719  * The caller of this function is responsible for removing cur_page from the
720  * dio, and for dropping the refcount which came from that presence.
721  */
dio_send_cur_page(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)722 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
723 		struct buffer_head *map_bh)
724 {
725 	int ret = 0;
726 
727 	if (sdio->bio) {
728 		loff_t cur_offset = sdio->cur_page_fs_offset;
729 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
730 			sdio->bio->bi_iter.bi_size;
731 
732 		/*
733 		 * See whether this new request is contiguous with the old.
734 		 *
735 		 * Btrfs cannot handle having logically non-contiguous requests
736 		 * submitted.  For example if you have
737 		 *
738 		 * Logical:  [0-4095][HOLE][8192-12287]
739 		 * Physical: [0-4095]      [4096-8191]
740 		 *
741 		 * We cannot submit those pages together as one BIO.  So if our
742 		 * current logical offset in the file does not equal what would
743 		 * be the next logical offset in the bio, submit the bio we
744 		 * have.
745 		 */
746 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
747 		    cur_offset != bio_next_offset)
748 			dio_bio_submit(dio, sdio);
749 	}
750 
751 	if (sdio->bio == NULL) {
752 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
753 		if (ret)
754 			goto out;
755 	}
756 
757 	if (dio_bio_add_page(dio, sdio) != 0) {
758 		dio_bio_submit(dio, sdio);
759 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
760 		if (ret == 0) {
761 			ret = dio_bio_add_page(dio, sdio);
762 			BUG_ON(ret != 0);
763 		}
764 	}
765 out:
766 	return ret;
767 }
768 
769 /*
770  * An autonomous function to put a chunk of a page under deferred IO.
771  *
772  * The caller doesn't actually know (or care) whether this piece of page is in
773  * a BIO, or is under IO or whatever.  We just take care of all possible
774  * situations here.  The separation between the logic of do_direct_IO() and
775  * that of submit_page_section() is important for clarity.  Please don't break.
776  *
777  * The chunk of page starts on-disk at blocknr.
778  *
779  * We perform deferred IO, by recording the last-submitted page inside our
780  * private part of the dio structure.  If possible, we just expand the IO
781  * across that page here.
782  *
783  * If that doesn't work out then we put the old page into the bio and add this
784  * page to the dio instead.
785  */
786 static inline int
submit_page_section(struct dio * dio,struct dio_submit * sdio,struct page * page,unsigned offset,unsigned len,sector_t blocknr,struct buffer_head * map_bh)787 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
788 		    unsigned offset, unsigned len, sector_t blocknr,
789 		    struct buffer_head *map_bh)
790 {
791 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
792 	int ret = 0;
793 	int boundary = sdio->boundary;	/* dio_send_cur_page may clear it */
794 
795 	if (dio_op == REQ_OP_WRITE) {
796 		/*
797 		 * Read accounting is performed in submit_bio()
798 		 */
799 		task_io_account_write(len);
800 	}
801 
802 	/*
803 	 * Can we just grow the current page's presence in the dio?
804 	 */
805 	if (sdio->cur_page == page &&
806 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
807 	    sdio->cur_page_block +
808 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
809 		sdio->cur_page_len += len;
810 		goto out;
811 	}
812 
813 	/*
814 	 * If there's a deferred page already there then send it.
815 	 */
816 	if (sdio->cur_page) {
817 		ret = dio_send_cur_page(dio, sdio, map_bh);
818 		dio_unpin_page(dio, sdio->cur_page);
819 		sdio->cur_page = NULL;
820 		if (ret)
821 			return ret;
822 	}
823 
824 	dio_pin_page(dio, page);		/* It is in dio */
825 	sdio->cur_page = page;
826 	sdio->cur_page_offset = offset;
827 	sdio->cur_page_len = len;
828 	sdio->cur_page_block = blocknr;
829 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
830 out:
831 	/*
832 	 * If boundary then we want to schedule the IO now to
833 	 * avoid metadata seeks.
834 	 */
835 	if (boundary) {
836 		ret = dio_send_cur_page(dio, sdio, map_bh);
837 		if (sdio->bio)
838 			dio_bio_submit(dio, sdio);
839 		dio_unpin_page(dio, sdio->cur_page);
840 		sdio->cur_page = NULL;
841 	}
842 	return ret;
843 }
844 
845 /*
846  * If we are not writing the entire block and get_block() allocated
847  * the block for us, we need to fill-in the unused portion of the
848  * block with zeros. This happens only if user-buffer, fileoffset or
849  * io length is not filesystem block-size multiple.
850  *
851  * `end' is zero if we're doing the start of the IO, 1 at the end of the
852  * IO.
853  */
dio_zero_block(struct dio * dio,struct dio_submit * sdio,int end,struct buffer_head * map_bh)854 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
855 		int end, struct buffer_head *map_bh)
856 {
857 	unsigned dio_blocks_per_fs_block;
858 	unsigned this_chunk_blocks;	/* In dio_blocks */
859 	unsigned this_chunk_bytes;
860 	struct page *page;
861 
862 	sdio->start_zero_done = 1;
863 	if (!sdio->blkfactor || !buffer_new(map_bh))
864 		return;
865 
866 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
867 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
868 
869 	if (!this_chunk_blocks)
870 		return;
871 
872 	/*
873 	 * We need to zero out part of an fs block.  It is either at the
874 	 * beginning or the end of the fs block.
875 	 */
876 	if (end)
877 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
878 
879 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
880 
881 	page = ZERO_PAGE(0);
882 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
883 				sdio->next_block_for_io, map_bh))
884 		return;
885 
886 	sdio->next_block_for_io += this_chunk_blocks;
887 }
888 
889 /*
890  * Walk the user pages, and the file, mapping blocks to disk and generating
891  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
892  * into submit_page_section(), which takes care of the next stage of submission
893  *
894  * Direct IO against a blockdev is different from a file.  Because we can
895  * happily perform page-sized but 512-byte aligned IOs.  It is important that
896  * blockdev IO be able to have fine alignment and large sizes.
897  *
898  * So what we do is to permit the ->get_block function to populate bh.b_size
899  * with the size of IO which is permitted at this offset and this i_blkbits.
900  *
901  * For best results, the blockdev should be set up with 512-byte i_blkbits and
902  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
903  * fine alignment but still allows this function to work in PAGE_SIZE units.
904  */
do_direct_IO(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)905 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
906 			struct buffer_head *map_bh)
907 {
908 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
909 	const unsigned blkbits = sdio->blkbits;
910 	const unsigned i_blkbits = blkbits + sdio->blkfactor;
911 	int ret = 0;
912 
913 	while (sdio->block_in_file < sdio->final_block_in_request) {
914 		struct page *page;
915 		size_t from, to;
916 
917 		page = dio_get_page(dio, sdio);
918 		if (IS_ERR(page)) {
919 			ret = PTR_ERR(page);
920 			goto out;
921 		}
922 		from = sdio->head ? 0 : sdio->from;
923 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
924 		sdio->head++;
925 
926 		while (from < to) {
927 			unsigned this_chunk_bytes;	/* # of bytes mapped */
928 			unsigned this_chunk_blocks;	/* # of blocks */
929 			unsigned u;
930 
931 			if (sdio->blocks_available == 0) {
932 				/*
933 				 * Need to go and map some more disk
934 				 */
935 				unsigned long blkmask;
936 				unsigned long dio_remainder;
937 
938 				ret = get_more_blocks(dio, sdio, map_bh);
939 				if (ret) {
940 					dio_unpin_page(dio, page);
941 					goto out;
942 				}
943 				if (!buffer_mapped(map_bh))
944 					goto do_holes;
945 
946 				sdio->blocks_available =
947 						map_bh->b_size >> blkbits;
948 				sdio->next_block_for_io =
949 					map_bh->b_blocknr << sdio->blkfactor;
950 				if (buffer_new(map_bh)) {
951 					clean_bdev_aliases(
952 						map_bh->b_bdev,
953 						map_bh->b_blocknr,
954 						map_bh->b_size >> i_blkbits);
955 				}
956 
957 				if (!sdio->blkfactor)
958 					goto do_holes;
959 
960 				blkmask = (1 << sdio->blkfactor) - 1;
961 				dio_remainder = (sdio->block_in_file & blkmask);
962 
963 				/*
964 				 * If we are at the start of IO and that IO
965 				 * starts partway into a fs-block,
966 				 * dio_remainder will be non-zero.  If the IO
967 				 * is a read then we can simply advance the IO
968 				 * cursor to the first block which is to be
969 				 * read.  But if the IO is a write and the
970 				 * block was newly allocated we cannot do that;
971 				 * the start of the fs block must be zeroed out
972 				 * on-disk
973 				 */
974 				if (!buffer_new(map_bh))
975 					sdio->next_block_for_io += dio_remainder;
976 				sdio->blocks_available -= dio_remainder;
977 			}
978 do_holes:
979 			/* Handle holes */
980 			if (!buffer_mapped(map_bh)) {
981 				loff_t i_size_aligned;
982 
983 				/* AKPM: eargh, -ENOTBLK is a hack */
984 				if (dio_op == REQ_OP_WRITE) {
985 					dio_unpin_page(dio, page);
986 					return -ENOTBLK;
987 				}
988 
989 				/*
990 				 * Be sure to account for a partial block as the
991 				 * last block in the file
992 				 */
993 				i_size_aligned = ALIGN(i_size_read(dio->inode),
994 							1 << blkbits);
995 				if (sdio->block_in_file >=
996 						i_size_aligned >> blkbits) {
997 					/* We hit eof */
998 					dio_unpin_page(dio, page);
999 					goto out;
1000 				}
1001 				zero_user(page, from, 1 << blkbits);
1002 				sdio->block_in_file++;
1003 				from += 1 << blkbits;
1004 				dio->result += 1 << blkbits;
1005 				goto next_block;
1006 			}
1007 
1008 			/*
1009 			 * If we're performing IO which has an alignment which
1010 			 * is finer than the underlying fs, go check to see if
1011 			 * we must zero out the start of this block.
1012 			 */
1013 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1014 				dio_zero_block(dio, sdio, 0, map_bh);
1015 
1016 			/*
1017 			 * Work out, in this_chunk_blocks, how much disk we
1018 			 * can add to this page
1019 			 */
1020 			this_chunk_blocks = sdio->blocks_available;
1021 			u = (to - from) >> blkbits;
1022 			if (this_chunk_blocks > u)
1023 				this_chunk_blocks = u;
1024 			u = sdio->final_block_in_request - sdio->block_in_file;
1025 			if (this_chunk_blocks > u)
1026 				this_chunk_blocks = u;
1027 			this_chunk_bytes = this_chunk_blocks << blkbits;
1028 			BUG_ON(this_chunk_bytes == 0);
1029 
1030 			if (this_chunk_blocks == sdio->blocks_available)
1031 				sdio->boundary = buffer_boundary(map_bh);
1032 			ret = submit_page_section(dio, sdio, page,
1033 						  from,
1034 						  this_chunk_bytes,
1035 						  sdio->next_block_for_io,
1036 						  map_bh);
1037 			if (ret) {
1038 				dio_unpin_page(dio, page);
1039 				goto out;
1040 			}
1041 
1042 			trace_android_vh_io_statistics(dio->inode->i_mapping,
1043 					sdio->block_in_file >> sdio->blkfactor,
1044 					this_chunk_blocks >> sdio->blkfactor,
1045 					iov_iter_rw(sdio->iter) == READ, true);
1046 
1047 			sdio->next_block_for_io += this_chunk_blocks;
1048 
1049 			sdio->block_in_file += this_chunk_blocks;
1050 			from += this_chunk_bytes;
1051 			dio->result += this_chunk_bytes;
1052 			sdio->blocks_available -= this_chunk_blocks;
1053 next_block:
1054 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1055 			if (sdio->block_in_file == sdio->final_block_in_request)
1056 				break;
1057 		}
1058 
1059 		/* Drop the pin which was taken in get_user_pages() */
1060 		dio_unpin_page(dio, page);
1061 	}
1062 out:
1063 	return ret;
1064 }
1065 
drop_refcount(struct dio * dio)1066 static inline int drop_refcount(struct dio *dio)
1067 {
1068 	int ret2;
1069 	unsigned long flags;
1070 
1071 	/*
1072 	 * Sync will always be dropping the final ref and completing the
1073 	 * operation.  AIO can if it was a broken operation described above or
1074 	 * in fact if all the bios race to complete before we get here.  In
1075 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1076 	 * return code that the caller will hand to ->complete().
1077 	 *
1078 	 * This is managed by the bio_lock instead of being an atomic_t so that
1079 	 * completion paths can drop their ref and use the remaining count to
1080 	 * decide to wake the submission path atomically.
1081 	 */
1082 	spin_lock_irqsave(&dio->bio_lock, flags);
1083 	ret2 = --dio->refcount;
1084 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1085 	return ret2;
1086 }
1087 
1088 /*
1089  * This is a library function for use by filesystem drivers.
1090  *
1091  * The locking rules are governed by the flags parameter:
1092  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1093  *    scheme for dumb filesystems.
1094  *    For writes this function is called under i_mutex and returns with
1095  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1096  *    taken and dropped again before returning.
1097  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1098  *    internal locking but rather rely on the filesystem to synchronize
1099  *    direct I/O reads/writes versus each other and truncate.
1100  *
1101  * To help with locking against truncate we incremented the i_dio_count
1102  * counter before starting direct I/O, and decrement it once we are done.
1103  * Truncate can wait for it to reach zero to provide exclusion.  It is
1104  * expected that filesystem provide exclusion between new direct I/O
1105  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1106  * but other filesystems need to take care of this on their own.
1107  *
1108  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1109  * is always inlined. Otherwise gcc is unable to split the structure into
1110  * individual fields and will generate much worse code. This is important
1111  * for the whole file.
1112  */
__blockdev_direct_IO(struct kiocb * iocb,struct inode * inode,struct block_device * bdev,struct iov_iter * iter,get_block_t get_block,dio_iodone_t end_io,int flags)1113 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1114 		struct block_device *bdev, struct iov_iter *iter,
1115 		get_block_t get_block, dio_iodone_t end_io,
1116 		int flags)
1117 {
1118 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1119 	unsigned blkbits = i_blkbits;
1120 	unsigned blocksize_mask = (1 << blkbits) - 1;
1121 	ssize_t retval = -EINVAL;
1122 	const size_t count = iov_iter_count(iter);
1123 	loff_t offset = iocb->ki_pos;
1124 	const loff_t end = offset + count;
1125 	struct dio *dio;
1126 	struct dio_submit sdio = { NULL, };
1127 	struct buffer_head map_bh = { 0, };
1128 	struct blk_plug plug;
1129 	unsigned long align = offset | iov_iter_alignment(iter);
1130 
1131 	/* watch out for a 0 len io from a tricksy fs */
1132 	if (iov_iter_rw(iter) == READ && !count)
1133 		return 0;
1134 
1135 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1136 	if (!dio)
1137 		return -ENOMEM;
1138 	/*
1139 	 * Believe it or not, zeroing out the page array caused a .5%
1140 	 * performance regression in a database benchmark.  So, we take
1141 	 * care to only zero out what's needed.
1142 	 */
1143 	memset(dio, 0, offsetof(struct dio, pages));
1144 
1145 	dio->flags = flags;
1146 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1147 		/* will be released by direct_io_worker */
1148 		inode_lock(inode);
1149 	}
1150 	dio->is_pinned = iov_iter_extract_will_pin(iter);
1151 
1152 	/* Once we sampled i_size check for reads beyond EOF */
1153 	dio->i_size = i_size_read(inode);
1154 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1155 		retval = 0;
1156 		goto fail_dio;
1157 	}
1158 
1159 	if (align & blocksize_mask) {
1160 		if (bdev)
1161 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1162 		blocksize_mask = (1 << blkbits) - 1;
1163 		if (align & blocksize_mask)
1164 			goto fail_dio;
1165 	}
1166 
1167 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1168 		struct address_space *mapping = iocb->ki_filp->f_mapping;
1169 
1170 		retval = filemap_write_and_wait_range(mapping, offset, end - 1);
1171 		if (retval)
1172 			goto fail_dio;
1173 	}
1174 
1175 	/*
1176 	 * For file extending writes updating i_size before data writeouts
1177 	 * complete can expose uninitialized blocks in dumb filesystems.
1178 	 * In that case we need to wait for I/O completion even if asked
1179 	 * for an asynchronous write.
1180 	 */
1181 	if (is_sync_kiocb(iocb))
1182 		dio->is_async = false;
1183 	else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1184 		dio->is_async = false;
1185 	else
1186 		dio->is_async = true;
1187 
1188 	dio->inode = inode;
1189 	if (iov_iter_rw(iter) == WRITE) {
1190 		dio->opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1191 		if (iocb->ki_flags & IOCB_NOWAIT)
1192 			dio->opf |= REQ_NOWAIT;
1193 	} else {
1194 		dio->opf = REQ_OP_READ;
1195 	}
1196 
1197 	/*
1198 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1199 	 * so that we can call ->fsync.
1200 	 */
1201 	if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1202 		retval = 0;
1203 		if (iocb_is_dsync(iocb))
1204 			retval = dio_set_defer_completion(dio);
1205 		else if (!dio->inode->i_sb->s_dio_done_wq) {
1206 			/*
1207 			 * In case of AIO write racing with buffered read we
1208 			 * need to defer completion. We can't decide this now,
1209 			 * however the workqueue needs to be initialized here.
1210 			 */
1211 			retval = sb_init_dio_done_wq(dio->inode->i_sb);
1212 		}
1213 		if (retval)
1214 			goto fail_dio;
1215 	}
1216 
1217 	/*
1218 	 * Will be decremented at I/O completion time.
1219 	 */
1220 	inode_dio_begin(inode);
1221 
1222 	sdio.blkbits = blkbits;
1223 	sdio.blkfactor = i_blkbits - blkbits;
1224 	sdio.block_in_file = offset >> blkbits;
1225 
1226 	sdio.get_block = get_block;
1227 	dio->end_io = end_io;
1228 	sdio.final_block_in_bio = -1;
1229 	sdio.next_block_for_io = -1;
1230 
1231 	dio->iocb = iocb;
1232 
1233 	spin_lock_init(&dio->bio_lock);
1234 	dio->refcount = 1;
1235 
1236 	dio->should_dirty = user_backed_iter(iter) && iov_iter_rw(iter) == READ;
1237 	sdio.iter = iter;
1238 	sdio.final_block_in_request = end >> blkbits;
1239 
1240 	/*
1241 	 * In case of non-aligned buffers, we may need 2 more
1242 	 * pages since we need to zero out first and last block.
1243 	 */
1244 	if (unlikely(sdio.blkfactor))
1245 		sdio.pages_in_io = 2;
1246 
1247 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1248 
1249 	blk_start_plug(&plug);
1250 
1251 	retval = do_direct_IO(dio, &sdio, &map_bh);
1252 	if (retval)
1253 		dio_cleanup(dio, &sdio);
1254 
1255 	if (retval == -ENOTBLK) {
1256 		/*
1257 		 * The remaining part of the request will be
1258 		 * handled by buffered I/O when we return
1259 		 */
1260 		retval = 0;
1261 	}
1262 	/*
1263 	 * There may be some unwritten disk at the end of a part-written
1264 	 * fs-block-sized block.  Go zero that now.
1265 	 */
1266 	dio_zero_block(dio, &sdio, 1, &map_bh);
1267 
1268 	if (sdio.cur_page) {
1269 		ssize_t ret2;
1270 
1271 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1272 		if (retval == 0)
1273 			retval = ret2;
1274 		dio_unpin_page(dio, sdio.cur_page);
1275 		sdio.cur_page = NULL;
1276 	}
1277 	if (sdio.bio)
1278 		dio_bio_submit(dio, &sdio);
1279 
1280 	blk_finish_plug(&plug);
1281 
1282 	/*
1283 	 * It is possible that, we return short IO due to end of file.
1284 	 * In that case, we need to release all the pages we got hold on.
1285 	 */
1286 	dio_cleanup(dio, &sdio);
1287 
1288 	/*
1289 	 * All block lookups have been performed. For READ requests
1290 	 * we can let i_mutex go now that its achieved its purpose
1291 	 * of protecting us from looking up uninitialized blocks.
1292 	 */
1293 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1294 		inode_unlock(dio->inode);
1295 
1296 	/*
1297 	 * The only time we want to leave bios in flight is when a successful
1298 	 * partial aio read or full aio write have been setup.  In that case
1299 	 * bio completion will call aio_complete.  The only time it's safe to
1300 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1301 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1302 	 */
1303 	BUG_ON(retval == -EIOCBQUEUED);
1304 	if (dio->is_async && retval == 0 && dio->result &&
1305 	    (iov_iter_rw(iter) == READ || dio->result == count))
1306 		retval = -EIOCBQUEUED;
1307 	else
1308 		dio_await_completion(dio);
1309 
1310 	if (drop_refcount(dio) == 0) {
1311 		retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1312 	} else
1313 		BUG_ON(retval != -EIOCBQUEUED);
1314 
1315 	return retval;
1316 
1317 fail_dio:
1318 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
1319 		inode_unlock(inode);
1320 
1321 	kmem_cache_free(dio_cache, dio);
1322 	return retval;
1323 }
1324 EXPORT_SYMBOL(__blockdev_direct_IO);
1325 
dio_init(void)1326 static __init int dio_init(void)
1327 {
1328 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1329 	return 0;
1330 }
1331 module_init(dio_init)
1332