1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
5 *
6 * This file contains driver APIs to the irq subsystem.
7 */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include <trace/hooks/dtask.h>
26
27 #include "internals.h"
28
29 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
30 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
31
setup_forced_irqthreads(char * arg)32 static int __init setup_forced_irqthreads(char *arg)
33 {
34 static_branch_enable(&force_irqthreads_key);
35 return 0;
36 }
37 early_param("threadirqs", setup_forced_irqthreads);
38 #endif
39
__synchronize_hardirq(struct irq_desc * desc,bool sync_chip)40 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
41 {
42 struct irq_data *irqd = irq_desc_get_irq_data(desc);
43 bool inprogress;
44
45 do {
46 unsigned long flags;
47
48 /*
49 * Wait until we're out of the critical section. This might
50 * give the wrong answer due to the lack of memory barriers.
51 */
52 while (irqd_irq_inprogress(&desc->irq_data))
53 cpu_relax();
54
55 /* Ok, that indicated we're done: double-check carefully. */
56 raw_spin_lock_irqsave(&desc->lock, flags);
57 inprogress = irqd_irq_inprogress(&desc->irq_data);
58
59 /*
60 * If requested and supported, check at the chip whether it
61 * is in flight at the hardware level, i.e. already pending
62 * in a CPU and waiting for service and acknowledge.
63 */
64 if (!inprogress && sync_chip) {
65 /*
66 * Ignore the return code. inprogress is only updated
67 * when the chip supports it.
68 */
69 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
70 &inprogress);
71 }
72 raw_spin_unlock_irqrestore(&desc->lock, flags);
73
74 /* Oops, that failed? */
75 } while (inprogress);
76 }
77
78 /**
79 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
80 * @irq: interrupt number to wait for
81 *
82 * This function waits for any pending hard IRQ handlers for this
83 * interrupt to complete before returning. If you use this
84 * function while holding a resource the IRQ handler may need you
85 * will deadlock. It does not take associated threaded handlers
86 * into account.
87 *
88 * Do not use this for shutdown scenarios where you must be sure
89 * that all parts (hardirq and threaded handler) have completed.
90 *
91 * Returns: false if a threaded handler is active.
92 *
93 * This function may be called - with care - from IRQ context.
94 *
95 * It does not check whether there is an interrupt in flight at the
96 * hardware level, but not serviced yet, as this might deadlock when
97 * called with interrupts disabled and the target CPU of the interrupt
98 * is the current CPU.
99 */
synchronize_hardirq(unsigned int irq)100 bool synchronize_hardirq(unsigned int irq)
101 {
102 struct irq_desc *desc = irq_to_desc(irq);
103
104 if (desc) {
105 __synchronize_hardirq(desc, false);
106 return !atomic_read(&desc->threads_active);
107 }
108
109 return true;
110 }
111 EXPORT_SYMBOL(synchronize_hardirq);
112
__synchronize_irq(struct irq_desc * desc)113 static void __synchronize_irq(struct irq_desc *desc)
114 {
115 __synchronize_hardirq(desc, true);
116 /*
117 * We made sure that no hardirq handler is running. Now verify that no
118 * threaded handlers are active.
119 */
120 trace_android_vh_sync_irq_wait_start(desc);
121 wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
122 trace_android_vh_sync_irq_wait_finish(desc);
123 }
124
125 /**
126 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
127 * @irq: interrupt number to wait for
128 *
129 * This function waits for any pending IRQ handlers for this interrupt
130 * to complete before returning. If you use this function while
131 * holding a resource the IRQ handler may need you will deadlock.
132 *
133 * Can only be called from preemptible code as it might sleep when
134 * an interrupt thread is associated to @irq.
135 *
136 * It optionally makes sure (when the irq chip supports that method)
137 * that the interrupt is not pending in any CPU and waiting for
138 * service.
139 */
synchronize_irq(unsigned int irq)140 void synchronize_irq(unsigned int irq)
141 {
142 struct irq_desc *desc = irq_to_desc(irq);
143
144 if (desc)
145 __synchronize_irq(desc);
146 }
147 EXPORT_SYMBOL(synchronize_irq);
148
149 #ifdef CONFIG_SMP
150 cpumask_var_t irq_default_affinity;
151
__irq_can_set_affinity(struct irq_desc * desc)152 static bool __irq_can_set_affinity(struct irq_desc *desc)
153 {
154 if (!desc || !irqd_can_balance(&desc->irq_data) ||
155 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
156 return false;
157 return true;
158 }
159
160 /**
161 * irq_can_set_affinity - Check if the affinity of a given irq can be set
162 * @irq: Interrupt to check
163 *
164 */
irq_can_set_affinity(unsigned int irq)165 int irq_can_set_affinity(unsigned int irq)
166 {
167 return __irq_can_set_affinity(irq_to_desc(irq));
168 }
169
170 /**
171 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
172 * @irq: Interrupt to check
173 *
174 * Like irq_can_set_affinity() above, but additionally checks for the
175 * AFFINITY_MANAGED flag.
176 */
irq_can_set_affinity_usr(unsigned int irq)177 bool irq_can_set_affinity_usr(unsigned int irq)
178 {
179 struct irq_desc *desc = irq_to_desc(irq);
180
181 return __irq_can_set_affinity(desc) &&
182 !irqd_affinity_is_managed(&desc->irq_data);
183 }
184
185 /**
186 * irq_set_thread_affinity - Notify irq threads to adjust affinity
187 * @desc: irq descriptor which has affinity changed
188 *
189 * We just set IRQTF_AFFINITY and delegate the affinity setting
190 * to the interrupt thread itself. We can not call
191 * set_cpus_allowed_ptr() here as we hold desc->lock and this
192 * code can be called from hard interrupt context.
193 */
irq_set_thread_affinity(struct irq_desc * desc)194 void irq_set_thread_affinity(struct irq_desc *desc)
195 {
196 struct irqaction *action;
197
198 for_each_action_of_desc(desc, action) {
199 if (action->thread) {
200 set_bit(IRQTF_AFFINITY, &action->thread_flags);
201 wake_up_process(action->thread);
202 }
203 if (action->secondary && action->secondary->thread) {
204 set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
205 wake_up_process(action->secondary->thread);
206 }
207 }
208 }
209
210 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
irq_validate_effective_affinity(struct irq_data * data)211 static void irq_validate_effective_affinity(struct irq_data *data)
212 {
213 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
214 struct irq_chip *chip = irq_data_get_irq_chip(data);
215
216 if (!cpumask_empty(m))
217 return;
218 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
219 chip->name, data->irq);
220 }
221 #else
irq_validate_effective_affinity(struct irq_data * data)222 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
223 #endif
224
225 static DEFINE_PER_CPU(struct cpumask, __tmp_mask);
226
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)227 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
228 bool force)
229 {
230 struct cpumask *tmp_mask = this_cpu_ptr(&__tmp_mask);
231 struct irq_desc *desc = irq_data_to_desc(data);
232 struct irq_chip *chip = irq_data_get_irq_chip(data);
233 const struct cpumask *prog_mask;
234 int ret;
235
236 if (!chip || !chip->irq_set_affinity)
237 return -EINVAL;
238
239 /*
240 * If this is a managed interrupt and housekeeping is enabled on
241 * it check whether the requested affinity mask intersects with
242 * a housekeeping CPU. If so, then remove the isolated CPUs from
243 * the mask and just keep the housekeeping CPU(s). This prevents
244 * the affinity setter from routing the interrupt to an isolated
245 * CPU to avoid that I/O submitted from a housekeeping CPU causes
246 * interrupts on an isolated one.
247 *
248 * If the masks do not intersect or include online CPU(s) then
249 * keep the requested mask. The isolated target CPUs are only
250 * receiving interrupts when the I/O operation was submitted
251 * directly from them.
252 *
253 * If all housekeeping CPUs in the affinity mask are offline, the
254 * interrupt will be migrated by the CPU hotplug code once a
255 * housekeeping CPU which belongs to the affinity mask comes
256 * online.
257 */
258 if (irqd_affinity_is_managed(data) &&
259 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
260 const struct cpumask *hk_mask;
261
262 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
263
264 cpumask_and(tmp_mask, mask, hk_mask);
265 if (!cpumask_intersects(tmp_mask, cpu_online_mask))
266 prog_mask = mask;
267 else
268 prog_mask = tmp_mask;
269 } else {
270 prog_mask = mask;
271 }
272
273 /*
274 * Make sure we only provide online CPUs to the irqchip,
275 * unless we are being asked to force the affinity (in which
276 * case we do as we are told).
277 */
278 cpumask_and(tmp_mask, prog_mask, cpu_online_mask);
279 if (!force && !cpumask_empty(tmp_mask))
280 ret = chip->irq_set_affinity(data, tmp_mask, force);
281 else if (force)
282 ret = chip->irq_set_affinity(data, mask, force);
283 else
284 ret = -EINVAL;
285
286 switch (ret) {
287 case IRQ_SET_MASK_OK:
288 case IRQ_SET_MASK_OK_DONE:
289 cpumask_copy(desc->irq_common_data.affinity, mask);
290 fallthrough;
291 case IRQ_SET_MASK_OK_NOCOPY:
292 irq_validate_effective_affinity(data);
293 irq_set_thread_affinity(desc);
294 ret = 0;
295 }
296
297 return ret;
298 }
299 EXPORT_SYMBOL_GPL(irq_do_set_affinity);
300
301 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)302 static inline int irq_set_affinity_pending(struct irq_data *data,
303 const struct cpumask *dest)
304 {
305 struct irq_desc *desc = irq_data_to_desc(data);
306
307 irqd_set_move_pending(data);
308 irq_copy_pending(desc, dest);
309 return 0;
310 }
311 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)312 static inline int irq_set_affinity_pending(struct irq_data *data,
313 const struct cpumask *dest)
314 {
315 return -EBUSY;
316 }
317 #endif
318
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)319 static int irq_try_set_affinity(struct irq_data *data,
320 const struct cpumask *dest, bool force)
321 {
322 int ret = irq_do_set_affinity(data, dest, force);
323
324 /*
325 * In case that the underlying vector management is busy and the
326 * architecture supports the generic pending mechanism then utilize
327 * this to avoid returning an error to user space.
328 */
329 if (ret == -EBUSY && !force)
330 ret = irq_set_affinity_pending(data, dest);
331 return ret;
332 }
333
irq_set_affinity_deactivated(struct irq_data * data,const struct cpumask * mask)334 static bool irq_set_affinity_deactivated(struct irq_data *data,
335 const struct cpumask *mask)
336 {
337 struct irq_desc *desc = irq_data_to_desc(data);
338
339 /*
340 * Handle irq chips which can handle affinity only in activated
341 * state correctly
342 *
343 * If the interrupt is not yet activated, just store the affinity
344 * mask and do not call the chip driver at all. On activation the
345 * driver has to make sure anyway that the interrupt is in a
346 * usable state so startup works.
347 */
348 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
349 irqd_is_activated(data) || !irqd_affinity_on_activate(data))
350 return false;
351
352 cpumask_copy(desc->irq_common_data.affinity, mask);
353 irq_data_update_effective_affinity(data, mask);
354 irqd_set(data, IRQD_AFFINITY_SET);
355 return true;
356 }
357
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)358 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
359 bool force)
360 {
361 struct irq_chip *chip = irq_data_get_irq_chip(data);
362 struct irq_desc *desc = irq_data_to_desc(data);
363 int ret = 0;
364
365 if (!chip || !chip->irq_set_affinity)
366 return -EINVAL;
367
368 if (irq_set_affinity_deactivated(data, mask))
369 return 0;
370
371 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
372 ret = irq_try_set_affinity(data, mask, force);
373 } else {
374 irqd_set_move_pending(data);
375 irq_copy_pending(desc, mask);
376 }
377
378 if (desc->affinity_notify) {
379 kref_get(&desc->affinity_notify->kref);
380 if (!schedule_work(&desc->affinity_notify->work)) {
381 /* Work was already scheduled, drop our extra ref */
382 kref_put(&desc->affinity_notify->kref,
383 desc->affinity_notify->release);
384 }
385 }
386 irqd_set(data, IRQD_AFFINITY_SET);
387
388 return ret;
389 }
390
391 /**
392 * irq_update_affinity_desc - Update affinity management for an interrupt
393 * @irq: The interrupt number to update
394 * @affinity: Pointer to the affinity descriptor
395 *
396 * This interface can be used to configure the affinity management of
397 * interrupts which have been allocated already.
398 *
399 * There are certain limitations on when it may be used - attempts to use it
400 * for when the kernel is configured for generic IRQ reservation mode (in
401 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
402 * managed/non-managed interrupt accounting. In addition, attempts to use it on
403 * an interrupt which is already started or which has already been configured
404 * as managed will also fail, as these mean invalid init state or double init.
405 */
irq_update_affinity_desc(unsigned int irq,struct irq_affinity_desc * affinity)406 int irq_update_affinity_desc(unsigned int irq,
407 struct irq_affinity_desc *affinity)
408 {
409 struct irq_desc *desc;
410 unsigned long flags;
411 bool activated;
412 int ret = 0;
413
414 /*
415 * Supporting this with the reservation scheme used by x86 needs
416 * some more thought. Fail it for now.
417 */
418 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
419 return -EOPNOTSUPP;
420
421 desc = irq_get_desc_buslock(irq, &flags, 0);
422 if (!desc)
423 return -EINVAL;
424
425 /* Requires the interrupt to be shut down */
426 if (irqd_is_started(&desc->irq_data)) {
427 ret = -EBUSY;
428 goto out_unlock;
429 }
430
431 /* Interrupts which are already managed cannot be modified */
432 if (irqd_affinity_is_managed(&desc->irq_data)) {
433 ret = -EBUSY;
434 goto out_unlock;
435 }
436
437 /*
438 * Deactivate the interrupt. That's required to undo
439 * anything an earlier activation has established.
440 */
441 activated = irqd_is_activated(&desc->irq_data);
442 if (activated)
443 irq_domain_deactivate_irq(&desc->irq_data);
444
445 if (affinity->is_managed) {
446 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
447 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
448 }
449
450 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
451
452 /* Restore the activation state */
453 if (activated)
454 irq_domain_activate_irq(&desc->irq_data, false);
455
456 out_unlock:
457 irq_put_desc_busunlock(desc, flags);
458 return ret;
459 }
460
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)461 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
462 bool force)
463 {
464 struct irq_desc *desc = irq_to_desc(irq);
465 unsigned long flags;
466 int ret;
467
468 if (!desc)
469 return -EINVAL;
470
471 raw_spin_lock_irqsave(&desc->lock, flags);
472 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
473 raw_spin_unlock_irqrestore(&desc->lock, flags);
474 return ret;
475 }
476
477 /**
478 * irq_set_affinity - Set the irq affinity of a given irq
479 * @irq: Interrupt to set affinity
480 * @cpumask: cpumask
481 *
482 * Fails if cpumask does not contain an online CPU
483 */
irq_set_affinity(unsigned int irq,const struct cpumask * cpumask)484 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
485 {
486 return __irq_set_affinity(irq, cpumask, false);
487 }
488 EXPORT_SYMBOL_GPL(irq_set_affinity);
489
490 /**
491 * irq_force_affinity - Force the irq affinity of a given irq
492 * @irq: Interrupt to set affinity
493 * @cpumask: cpumask
494 *
495 * Same as irq_set_affinity, but without checking the mask against
496 * online cpus.
497 *
498 * Solely for low level cpu hotplug code, where we need to make per
499 * cpu interrupts affine before the cpu becomes online.
500 */
irq_force_affinity(unsigned int irq,const struct cpumask * cpumask)501 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
502 {
503 return __irq_set_affinity(irq, cpumask, true);
504 }
505 EXPORT_SYMBOL_GPL(irq_force_affinity);
506
__irq_apply_affinity_hint(unsigned int irq,const struct cpumask * m,bool setaffinity)507 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
508 bool setaffinity)
509 {
510 unsigned long flags;
511 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
512
513 if (!desc)
514 return -EINVAL;
515 desc->affinity_hint = m;
516 irq_put_desc_unlock(desc, flags);
517 if (m && setaffinity)
518 __irq_set_affinity(irq, m, false);
519 return 0;
520 }
521 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
522
irq_affinity_notify(struct work_struct * work)523 static void irq_affinity_notify(struct work_struct *work)
524 {
525 struct irq_affinity_notify *notify =
526 container_of(work, struct irq_affinity_notify, work);
527 struct irq_desc *desc = irq_to_desc(notify->irq);
528 cpumask_var_t cpumask;
529 unsigned long flags;
530
531 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
532 goto out;
533
534 raw_spin_lock_irqsave(&desc->lock, flags);
535 if (irq_move_pending(&desc->irq_data))
536 irq_get_pending(cpumask, desc);
537 else
538 cpumask_copy(cpumask, desc->irq_common_data.affinity);
539 raw_spin_unlock_irqrestore(&desc->lock, flags);
540
541 notify->notify(notify, cpumask);
542
543 free_cpumask_var(cpumask);
544 out:
545 kref_put(¬ify->kref, notify->release);
546 }
547
548 /**
549 * irq_set_affinity_notifier - control notification of IRQ affinity changes
550 * @irq: Interrupt for which to enable/disable notification
551 * @notify: Context for notification, or %NULL to disable
552 * notification. Function pointers must be initialised;
553 * the other fields will be initialised by this function.
554 *
555 * Must be called in process context. Notification may only be enabled
556 * after the IRQ is allocated and must be disabled before the IRQ is
557 * freed using free_irq().
558 */
559 int
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)560 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
561 {
562 struct irq_desc *desc = irq_to_desc(irq);
563 struct irq_affinity_notify *old_notify;
564 unsigned long flags;
565
566 /* The release function is promised process context */
567 might_sleep();
568
569 if (!desc || irq_is_nmi(desc))
570 return -EINVAL;
571
572 /* Complete initialisation of *notify */
573 if (notify) {
574 notify->irq = irq;
575 kref_init(¬ify->kref);
576 INIT_WORK(¬ify->work, irq_affinity_notify);
577 }
578
579 raw_spin_lock_irqsave(&desc->lock, flags);
580 old_notify = desc->affinity_notify;
581 desc->affinity_notify = notify;
582 raw_spin_unlock_irqrestore(&desc->lock, flags);
583
584 if (old_notify) {
585 if (cancel_work_sync(&old_notify->work)) {
586 /* Pending work had a ref, put that one too */
587 kref_put(&old_notify->kref, old_notify->release);
588 }
589 kref_put(&old_notify->kref, old_notify->release);
590 }
591
592 return 0;
593 }
594 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
595
596 #ifndef CONFIG_AUTO_IRQ_AFFINITY
597 /*
598 * Generic version of the affinity autoselector.
599 */
irq_setup_affinity(struct irq_desc * desc)600 int irq_setup_affinity(struct irq_desc *desc)
601 {
602 struct cpumask *set = irq_default_affinity;
603 int ret, node = irq_desc_get_node(desc);
604 static DEFINE_RAW_SPINLOCK(mask_lock);
605 static struct cpumask mask;
606
607 /* Excludes PER_CPU and NO_BALANCE interrupts */
608 if (!__irq_can_set_affinity(desc))
609 return 0;
610
611 raw_spin_lock(&mask_lock);
612 /*
613 * Preserve the managed affinity setting and a userspace affinity
614 * setup, but make sure that one of the targets is online.
615 */
616 if (irqd_affinity_is_managed(&desc->irq_data) ||
617 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
618 if (cpumask_intersects(desc->irq_common_data.affinity,
619 cpu_online_mask))
620 set = desc->irq_common_data.affinity;
621 else
622 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
623 }
624
625 cpumask_and(&mask, cpu_online_mask, set);
626 if (cpumask_empty(&mask))
627 cpumask_copy(&mask, cpu_online_mask);
628
629 if (node != NUMA_NO_NODE) {
630 const struct cpumask *nodemask = cpumask_of_node(node);
631
632 /* make sure at least one of the cpus in nodemask is online */
633 if (cpumask_intersects(&mask, nodemask))
634 cpumask_and(&mask, &mask, nodemask);
635 }
636 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
637 raw_spin_unlock(&mask_lock);
638 return ret;
639 }
640 #else
641 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)642 int irq_setup_affinity(struct irq_desc *desc)
643 {
644 return irq_select_affinity(irq_desc_get_irq(desc));
645 }
646 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
647 #endif /* CONFIG_SMP */
648
649
650 /**
651 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
652 * @irq: interrupt number to set affinity
653 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
654 * specific data for percpu_devid interrupts
655 *
656 * This function uses the vCPU specific data to set the vCPU
657 * affinity for an irq. The vCPU specific data is passed from
658 * outside, such as KVM. One example code path is as below:
659 * KVM -> IOMMU -> irq_set_vcpu_affinity().
660 */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)661 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
662 {
663 unsigned long flags;
664 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
665 struct irq_data *data;
666 struct irq_chip *chip;
667 int ret = -ENOSYS;
668
669 if (!desc)
670 return -EINVAL;
671
672 data = irq_desc_get_irq_data(desc);
673 do {
674 chip = irq_data_get_irq_chip(data);
675 if (chip && chip->irq_set_vcpu_affinity)
676 break;
677 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
678 data = data->parent_data;
679 #else
680 data = NULL;
681 #endif
682 } while (data);
683
684 if (data)
685 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
686 irq_put_desc_unlock(desc, flags);
687
688 return ret;
689 }
690 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
691
__disable_irq(struct irq_desc * desc)692 void __disable_irq(struct irq_desc *desc)
693 {
694 if (!desc->depth++)
695 irq_disable(desc);
696 }
697
__disable_irq_nosync(unsigned int irq)698 static int __disable_irq_nosync(unsigned int irq)
699 {
700 unsigned long flags;
701 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
702
703 if (!desc)
704 return -EINVAL;
705 __disable_irq(desc);
706 irq_put_desc_busunlock(desc, flags);
707 return 0;
708 }
709
710 /**
711 * disable_irq_nosync - disable an irq without waiting
712 * @irq: Interrupt to disable
713 *
714 * Disable the selected interrupt line. Disables and Enables are
715 * nested.
716 * Unlike disable_irq(), this function does not ensure existing
717 * instances of the IRQ handler have completed before returning.
718 *
719 * This function may be called from IRQ context.
720 */
disable_irq_nosync(unsigned int irq)721 void disable_irq_nosync(unsigned int irq)
722 {
723 __disable_irq_nosync(irq);
724 }
725 EXPORT_SYMBOL(disable_irq_nosync);
726
727 /**
728 * disable_irq - disable an irq and wait for completion
729 * @irq: Interrupt to disable
730 *
731 * Disable the selected interrupt line. Enables and Disables are
732 * nested.
733 * This function waits for any pending IRQ handlers for this interrupt
734 * to complete before returning. If you use this function while
735 * holding a resource the IRQ handler may need you will deadlock.
736 *
737 * Can only be called from preemptible code as it might sleep when
738 * an interrupt thread is associated to @irq.
739 *
740 */
disable_irq(unsigned int irq)741 void disable_irq(unsigned int irq)
742 {
743 might_sleep();
744 if (!__disable_irq_nosync(irq))
745 synchronize_irq(irq);
746 }
747 EXPORT_SYMBOL(disable_irq);
748
749 /**
750 * disable_hardirq - disables an irq and waits for hardirq completion
751 * @irq: Interrupt to disable
752 *
753 * Disable the selected interrupt line. Enables and Disables are
754 * nested.
755 * This function waits for any pending hard IRQ handlers for this
756 * interrupt to complete before returning. If you use this function while
757 * holding a resource the hard IRQ handler may need you will deadlock.
758 *
759 * When used to optimistically disable an interrupt from atomic context
760 * the return value must be checked.
761 *
762 * Returns: false if a threaded handler is active.
763 *
764 * This function may be called - with care - from IRQ context.
765 */
disable_hardirq(unsigned int irq)766 bool disable_hardirq(unsigned int irq)
767 {
768 if (!__disable_irq_nosync(irq))
769 return synchronize_hardirq(irq);
770
771 return false;
772 }
773 EXPORT_SYMBOL_GPL(disable_hardirq);
774
775 /**
776 * disable_nmi_nosync - disable an nmi without waiting
777 * @irq: Interrupt to disable
778 *
779 * Disable the selected interrupt line. Disables and enables are
780 * nested.
781 * The interrupt to disable must have been requested through request_nmi.
782 * Unlike disable_nmi(), this function does not ensure existing
783 * instances of the IRQ handler have completed before returning.
784 */
disable_nmi_nosync(unsigned int irq)785 void disable_nmi_nosync(unsigned int irq)
786 {
787 disable_irq_nosync(irq);
788 }
789
__enable_irq(struct irq_desc * desc)790 void __enable_irq(struct irq_desc *desc)
791 {
792 switch (desc->depth) {
793 case 0:
794 err_out:
795 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
796 irq_desc_get_irq(desc));
797 break;
798 case 1: {
799 if (desc->istate & IRQS_SUSPENDED)
800 goto err_out;
801 /* Prevent probing on this irq: */
802 irq_settings_set_noprobe(desc);
803 /*
804 * Call irq_startup() not irq_enable() here because the
805 * interrupt might be marked NOAUTOEN so irq_startup()
806 * needs to be invoked when it gets enabled the first time.
807 * This is also required when __enable_irq() is invoked for
808 * a managed and shutdown interrupt from the S3 resume
809 * path.
810 *
811 * If it was already started up, then irq_startup() will
812 * invoke irq_enable() under the hood.
813 */
814 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
815 break;
816 }
817 default:
818 desc->depth--;
819 }
820 }
821
822 /**
823 * enable_irq - enable handling of an irq
824 * @irq: Interrupt to enable
825 *
826 * Undoes the effect of one call to disable_irq(). If this
827 * matches the last disable, processing of interrupts on this
828 * IRQ line is re-enabled.
829 *
830 * This function may be called from IRQ context only when
831 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
832 */
enable_irq(unsigned int irq)833 void enable_irq(unsigned int irq)
834 {
835 unsigned long flags;
836 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
837
838 if (!desc)
839 return;
840 if (WARN(!desc->irq_data.chip,
841 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
842 goto out;
843
844 __enable_irq(desc);
845 out:
846 irq_put_desc_busunlock(desc, flags);
847 }
848 EXPORT_SYMBOL(enable_irq);
849
850 /**
851 * enable_nmi - enable handling of an nmi
852 * @irq: Interrupt to enable
853 *
854 * The interrupt to enable must have been requested through request_nmi.
855 * Undoes the effect of one call to disable_nmi(). If this
856 * matches the last disable, processing of interrupts on this
857 * IRQ line is re-enabled.
858 */
enable_nmi(unsigned int irq)859 void enable_nmi(unsigned int irq)
860 {
861 enable_irq(irq);
862 }
863
set_irq_wake_real(unsigned int irq,unsigned int on)864 static int set_irq_wake_real(unsigned int irq, unsigned int on)
865 {
866 struct irq_desc *desc = irq_to_desc(irq);
867 int ret = -ENXIO;
868
869 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
870 return 0;
871
872 if (desc->irq_data.chip->irq_set_wake)
873 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
874
875 return ret;
876 }
877
878 /**
879 * irq_set_irq_wake - control irq power management wakeup
880 * @irq: interrupt to control
881 * @on: enable/disable power management wakeup
882 *
883 * Enable/disable power management wakeup mode, which is
884 * disabled by default. Enables and disables must match,
885 * just as they match for non-wakeup mode support.
886 *
887 * Wakeup mode lets this IRQ wake the system from sleep
888 * states like "suspend to RAM".
889 *
890 * Note: irq enable/disable state is completely orthogonal
891 * to the enable/disable state of irq wake. An irq can be
892 * disabled with disable_irq() and still wake the system as
893 * long as the irq has wake enabled. If this does not hold,
894 * then the underlying irq chip and the related driver need
895 * to be investigated.
896 */
irq_set_irq_wake(unsigned int irq,unsigned int on)897 int irq_set_irq_wake(unsigned int irq, unsigned int on)
898 {
899 unsigned long flags;
900 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
901 int ret = 0;
902
903 if (!desc)
904 return -EINVAL;
905
906 /* Don't use NMIs as wake up interrupts please */
907 if (irq_is_nmi(desc)) {
908 ret = -EINVAL;
909 goto out_unlock;
910 }
911
912 /* wakeup-capable irqs can be shared between drivers that
913 * don't need to have the same sleep mode behaviors.
914 */
915 if (on) {
916 if (desc->wake_depth++ == 0) {
917 ret = set_irq_wake_real(irq, on);
918 if (ret)
919 desc->wake_depth = 0;
920 else
921 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
922 }
923 } else {
924 if (desc->wake_depth == 0) {
925 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
926 } else if (--desc->wake_depth == 0) {
927 ret = set_irq_wake_real(irq, on);
928 if (ret)
929 desc->wake_depth = 1;
930 else
931 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
932 }
933 }
934
935 out_unlock:
936 irq_put_desc_busunlock(desc, flags);
937 return ret;
938 }
939 EXPORT_SYMBOL(irq_set_irq_wake);
940
941 /*
942 * Internal function that tells the architecture code whether a
943 * particular irq has been exclusively allocated or is available
944 * for driver use.
945 */
can_request_irq(unsigned int irq,unsigned long irqflags)946 int can_request_irq(unsigned int irq, unsigned long irqflags)
947 {
948 unsigned long flags;
949 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
950 int canrequest = 0;
951
952 if (!desc)
953 return 0;
954
955 if (irq_settings_can_request(desc)) {
956 if (!desc->action ||
957 irqflags & desc->action->flags & IRQF_SHARED)
958 canrequest = 1;
959 }
960 irq_put_desc_unlock(desc, flags);
961 return canrequest;
962 }
963
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)964 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
965 {
966 struct irq_chip *chip = desc->irq_data.chip;
967 int ret, unmask = 0;
968
969 if (!chip || !chip->irq_set_type) {
970 /*
971 * IRQF_TRIGGER_* but the PIC does not support multiple
972 * flow-types?
973 */
974 pr_debug("No set_type function for IRQ %d (%s)\n",
975 irq_desc_get_irq(desc),
976 chip ? (chip->name ? : "unknown") : "unknown");
977 return 0;
978 }
979
980 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
981 if (!irqd_irq_masked(&desc->irq_data))
982 mask_irq(desc);
983 if (!irqd_irq_disabled(&desc->irq_data))
984 unmask = 1;
985 }
986
987 /* Mask all flags except trigger mode */
988 flags &= IRQ_TYPE_SENSE_MASK;
989 ret = chip->irq_set_type(&desc->irq_data, flags);
990
991 switch (ret) {
992 case IRQ_SET_MASK_OK:
993 case IRQ_SET_MASK_OK_DONE:
994 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
995 irqd_set(&desc->irq_data, flags);
996 fallthrough;
997
998 case IRQ_SET_MASK_OK_NOCOPY:
999 flags = irqd_get_trigger_type(&desc->irq_data);
1000 irq_settings_set_trigger_mask(desc, flags);
1001 irqd_clear(&desc->irq_data, IRQD_LEVEL);
1002 irq_settings_clr_level(desc);
1003 if (flags & IRQ_TYPE_LEVEL_MASK) {
1004 irq_settings_set_level(desc);
1005 irqd_set(&desc->irq_data, IRQD_LEVEL);
1006 }
1007
1008 ret = 0;
1009 break;
1010 default:
1011 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
1012 flags, irq_desc_get_irq(desc), chip->irq_set_type);
1013 }
1014 if (unmask)
1015 unmask_irq(desc);
1016 return ret;
1017 }
1018
1019 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)1020 int irq_set_parent(int irq, int parent_irq)
1021 {
1022 unsigned long flags;
1023 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1024
1025 if (!desc)
1026 return -EINVAL;
1027
1028 desc->parent_irq = parent_irq;
1029
1030 irq_put_desc_unlock(desc, flags);
1031 return 0;
1032 }
1033 EXPORT_SYMBOL_GPL(irq_set_parent);
1034 #endif
1035
1036 /*
1037 * Default primary interrupt handler for threaded interrupts. Is
1038 * assigned as primary handler when request_threaded_irq is called
1039 * with handler == NULL. Useful for oneshot interrupts.
1040 */
irq_default_primary_handler(int irq,void * dev_id)1041 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1042 {
1043 return IRQ_WAKE_THREAD;
1044 }
1045
1046 /*
1047 * Primary handler for nested threaded interrupts. Should never be
1048 * called.
1049 */
irq_nested_primary_handler(int irq,void * dev_id)1050 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1051 {
1052 WARN(1, "Primary handler called for nested irq %d\n", irq);
1053 return IRQ_NONE;
1054 }
1055
irq_forced_secondary_handler(int irq,void * dev_id)1056 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1057 {
1058 WARN(1, "Secondary action handler called for irq %d\n", irq);
1059 return IRQ_NONE;
1060 }
1061
1062 #ifdef CONFIG_SMP
1063 /*
1064 * Check whether we need to change the affinity of the interrupt thread.
1065 */
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1066 static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1067 {
1068 cpumask_var_t mask;
1069 bool valid = false;
1070
1071 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1072 return;
1073
1074 __set_current_state(TASK_RUNNING);
1075
1076 /*
1077 * In case we are out of memory we set IRQTF_AFFINITY again and
1078 * try again next time
1079 */
1080 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1081 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1082 return;
1083 }
1084
1085 raw_spin_lock_irq(&desc->lock);
1086 /*
1087 * This code is triggered unconditionally. Check the affinity
1088 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1089 */
1090 if (cpumask_available(desc->irq_common_data.affinity)) {
1091 const struct cpumask *m;
1092
1093 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1094 cpumask_copy(mask, m);
1095 valid = true;
1096 }
1097 raw_spin_unlock_irq(&desc->lock);
1098
1099 if (valid)
1100 set_cpus_allowed_ptr(current, mask);
1101 free_cpumask_var(mask);
1102 }
1103 #else
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1104 static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1105 #endif
1106
irq_wait_for_interrupt(struct irq_desc * desc,struct irqaction * action)1107 static int irq_wait_for_interrupt(struct irq_desc *desc,
1108 struct irqaction *action)
1109 {
1110 for (;;) {
1111 set_current_state(TASK_INTERRUPTIBLE);
1112 irq_thread_check_affinity(desc, action);
1113
1114 if (kthread_should_stop()) {
1115 /* may need to run one last time */
1116 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1117 &action->thread_flags)) {
1118 __set_current_state(TASK_RUNNING);
1119 return 0;
1120 }
1121 __set_current_state(TASK_RUNNING);
1122 return -1;
1123 }
1124
1125 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1126 &action->thread_flags)) {
1127 __set_current_state(TASK_RUNNING);
1128 return 0;
1129 }
1130 schedule();
1131 }
1132 }
1133
1134 /*
1135 * Oneshot interrupts keep the irq line masked until the threaded
1136 * handler finished. unmask if the interrupt has not been disabled and
1137 * is marked MASKED.
1138 */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)1139 static void irq_finalize_oneshot(struct irq_desc *desc,
1140 struct irqaction *action)
1141 {
1142 if (!(desc->istate & IRQS_ONESHOT) ||
1143 action->handler == irq_forced_secondary_handler)
1144 return;
1145 again:
1146 chip_bus_lock(desc);
1147 raw_spin_lock_irq(&desc->lock);
1148
1149 /*
1150 * Implausible though it may be we need to protect us against
1151 * the following scenario:
1152 *
1153 * The thread is faster done than the hard interrupt handler
1154 * on the other CPU. If we unmask the irq line then the
1155 * interrupt can come in again and masks the line, leaves due
1156 * to IRQS_INPROGRESS and the irq line is masked forever.
1157 *
1158 * This also serializes the state of shared oneshot handlers
1159 * versus "desc->threads_oneshot |= action->thread_mask;" in
1160 * irq_wake_thread(). See the comment there which explains the
1161 * serialization.
1162 */
1163 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1164 raw_spin_unlock_irq(&desc->lock);
1165 chip_bus_sync_unlock(desc);
1166 cpu_relax();
1167 goto again;
1168 }
1169
1170 /*
1171 * Now check again, whether the thread should run. Otherwise
1172 * we would clear the threads_oneshot bit of this thread which
1173 * was just set.
1174 */
1175 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1176 goto out_unlock;
1177
1178 desc->threads_oneshot &= ~action->thread_mask;
1179
1180 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1181 irqd_irq_masked(&desc->irq_data))
1182 unmask_threaded_irq(desc);
1183
1184 out_unlock:
1185 raw_spin_unlock_irq(&desc->lock);
1186 chip_bus_sync_unlock(desc);
1187 }
1188
1189 /*
1190 * Interrupts which are not explicitly requested as threaded
1191 * interrupts rely on the implicit bh/preempt disable of the hard irq
1192 * context. So we need to disable bh here to avoid deadlocks and other
1193 * side effects.
1194 */
1195 static irqreturn_t
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)1196 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1197 {
1198 irqreturn_t ret;
1199
1200 local_bh_disable();
1201 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1202 local_irq_disable();
1203 ret = action->thread_fn(action->irq, action->dev_id);
1204 if (ret == IRQ_HANDLED)
1205 atomic_inc(&desc->threads_handled);
1206
1207 irq_finalize_oneshot(desc, action);
1208 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1209 local_irq_enable();
1210 local_bh_enable();
1211 return ret;
1212 }
1213
1214 /*
1215 * Interrupts explicitly requested as threaded interrupts want to be
1216 * preemptible - many of them need to sleep and wait for slow busses to
1217 * complete.
1218 */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)1219 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1220 struct irqaction *action)
1221 {
1222 irqreturn_t ret;
1223
1224 ret = action->thread_fn(action->irq, action->dev_id);
1225 if (ret == IRQ_HANDLED)
1226 atomic_inc(&desc->threads_handled);
1227
1228 irq_finalize_oneshot(desc, action);
1229 return ret;
1230 }
1231
wake_threads_waitq(struct irq_desc * desc)1232 void wake_threads_waitq(struct irq_desc *desc)
1233 {
1234 if (atomic_dec_and_test(&desc->threads_active))
1235 wake_up(&desc->wait_for_threads);
1236 }
1237
irq_thread_dtor(struct callback_head * unused)1238 static void irq_thread_dtor(struct callback_head *unused)
1239 {
1240 struct task_struct *tsk = current;
1241 struct irq_desc *desc;
1242 struct irqaction *action;
1243
1244 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1245 return;
1246
1247 action = kthread_data(tsk);
1248
1249 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1250 tsk->comm, tsk->pid, action->irq);
1251
1252
1253 desc = irq_to_desc(action->irq);
1254 /*
1255 * If IRQTF_RUNTHREAD is set, we need to decrement
1256 * desc->threads_active and wake possible waiters.
1257 */
1258 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1259 wake_threads_waitq(desc);
1260
1261 /* Prevent a stale desc->threads_oneshot */
1262 irq_finalize_oneshot(desc, action);
1263 }
1264
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)1265 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1266 {
1267 struct irqaction *secondary = action->secondary;
1268
1269 if (WARN_ON_ONCE(!secondary))
1270 return;
1271
1272 raw_spin_lock_irq(&desc->lock);
1273 __irq_wake_thread(desc, secondary);
1274 raw_spin_unlock_irq(&desc->lock);
1275 }
1276
1277 /*
1278 * Internal function to notify that a interrupt thread is ready.
1279 */
irq_thread_set_ready(struct irq_desc * desc,struct irqaction * action)1280 static void irq_thread_set_ready(struct irq_desc *desc,
1281 struct irqaction *action)
1282 {
1283 set_bit(IRQTF_READY, &action->thread_flags);
1284 wake_up(&desc->wait_for_threads);
1285 }
1286
1287 /*
1288 * Internal function to wake up a interrupt thread and wait until it is
1289 * ready.
1290 */
wake_up_and_wait_for_irq_thread_ready(struct irq_desc * desc,struct irqaction * action)1291 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1292 struct irqaction *action)
1293 {
1294 if (!action || !action->thread)
1295 return;
1296
1297 wake_up_process(action->thread);
1298 wait_event(desc->wait_for_threads,
1299 test_bit(IRQTF_READY, &action->thread_flags));
1300 }
1301
1302 /*
1303 * Interrupt handler thread
1304 */
irq_thread(void * data)1305 static int irq_thread(void *data)
1306 {
1307 struct callback_head on_exit_work;
1308 struct irqaction *action = data;
1309 struct irq_desc *desc = irq_to_desc(action->irq);
1310 irqreturn_t (*handler_fn)(struct irq_desc *desc,
1311 struct irqaction *action);
1312
1313 irq_thread_set_ready(desc, action);
1314
1315 sched_set_fifo(current);
1316
1317 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1318 &action->thread_flags))
1319 handler_fn = irq_forced_thread_fn;
1320 else
1321 handler_fn = irq_thread_fn;
1322
1323 init_task_work(&on_exit_work, irq_thread_dtor);
1324 task_work_add(current, &on_exit_work, TWA_NONE);
1325
1326 while (!irq_wait_for_interrupt(desc, action)) {
1327 irqreturn_t action_ret;
1328
1329 action_ret = handler_fn(desc, action);
1330 if (action_ret == IRQ_WAKE_THREAD)
1331 irq_wake_secondary(desc, action);
1332
1333 wake_threads_waitq(desc);
1334 }
1335
1336 /*
1337 * This is the regular exit path. __free_irq() is stopping the
1338 * thread via kthread_stop() after calling
1339 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1340 * oneshot mask bit can be set.
1341 */
1342 task_work_cancel_func(current, irq_thread_dtor);
1343 return 0;
1344 }
1345
1346 /**
1347 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1348 * @irq: Interrupt line
1349 * @dev_id: Device identity for which the thread should be woken
1350 *
1351 */
irq_wake_thread(unsigned int irq,void * dev_id)1352 void irq_wake_thread(unsigned int irq, void *dev_id)
1353 {
1354 struct irq_desc *desc = irq_to_desc(irq);
1355 struct irqaction *action;
1356 unsigned long flags;
1357
1358 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1359 return;
1360
1361 raw_spin_lock_irqsave(&desc->lock, flags);
1362 for_each_action_of_desc(desc, action) {
1363 if (action->dev_id == dev_id) {
1364 if (action->thread)
1365 __irq_wake_thread(desc, action);
1366 break;
1367 }
1368 }
1369 raw_spin_unlock_irqrestore(&desc->lock, flags);
1370 }
1371 EXPORT_SYMBOL_GPL(irq_wake_thread);
1372
irq_setup_forced_threading(struct irqaction * new)1373 static int irq_setup_forced_threading(struct irqaction *new)
1374 {
1375 if (!force_irqthreads())
1376 return 0;
1377 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1378 return 0;
1379
1380 /*
1381 * No further action required for interrupts which are requested as
1382 * threaded interrupts already
1383 */
1384 if (new->handler == irq_default_primary_handler)
1385 return 0;
1386
1387 new->flags |= IRQF_ONESHOT;
1388
1389 /*
1390 * Handle the case where we have a real primary handler and a
1391 * thread handler. We force thread them as well by creating a
1392 * secondary action.
1393 */
1394 if (new->handler && new->thread_fn) {
1395 /* Allocate the secondary action */
1396 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1397 if (!new->secondary)
1398 return -ENOMEM;
1399 new->secondary->handler = irq_forced_secondary_handler;
1400 new->secondary->thread_fn = new->thread_fn;
1401 new->secondary->dev_id = new->dev_id;
1402 new->secondary->irq = new->irq;
1403 new->secondary->name = new->name;
1404 }
1405 /* Deal with the primary handler */
1406 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1407 new->thread_fn = new->handler;
1408 new->handler = irq_default_primary_handler;
1409 return 0;
1410 }
1411
irq_request_resources(struct irq_desc * desc)1412 static int irq_request_resources(struct irq_desc *desc)
1413 {
1414 struct irq_data *d = &desc->irq_data;
1415 struct irq_chip *c = d->chip;
1416
1417 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1418 }
1419
irq_release_resources(struct irq_desc * desc)1420 static void irq_release_resources(struct irq_desc *desc)
1421 {
1422 struct irq_data *d = &desc->irq_data;
1423 struct irq_chip *c = d->chip;
1424
1425 if (c->irq_release_resources)
1426 c->irq_release_resources(d);
1427 }
1428
irq_supports_nmi(struct irq_desc * desc)1429 static bool irq_supports_nmi(struct irq_desc *desc)
1430 {
1431 struct irq_data *d = irq_desc_get_irq_data(desc);
1432
1433 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1434 /* Only IRQs directly managed by the root irqchip can be set as NMI */
1435 if (d->parent_data)
1436 return false;
1437 #endif
1438 /* Don't support NMIs for chips behind a slow bus */
1439 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1440 return false;
1441
1442 return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1443 }
1444
irq_nmi_setup(struct irq_desc * desc)1445 static int irq_nmi_setup(struct irq_desc *desc)
1446 {
1447 struct irq_data *d = irq_desc_get_irq_data(desc);
1448 struct irq_chip *c = d->chip;
1449
1450 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1451 }
1452
irq_nmi_teardown(struct irq_desc * desc)1453 static void irq_nmi_teardown(struct irq_desc *desc)
1454 {
1455 struct irq_data *d = irq_desc_get_irq_data(desc);
1456 struct irq_chip *c = d->chip;
1457
1458 if (c->irq_nmi_teardown)
1459 c->irq_nmi_teardown(d);
1460 }
1461
1462 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1463 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1464 {
1465 struct task_struct *t;
1466
1467 if (!secondary) {
1468 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1469 new->name);
1470 } else {
1471 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1472 new->name);
1473 }
1474
1475 if (IS_ERR(t))
1476 return PTR_ERR(t);
1477
1478 /*
1479 * We keep the reference to the task struct even if
1480 * the thread dies to avoid that the interrupt code
1481 * references an already freed task_struct.
1482 */
1483 new->thread = get_task_struct(t);
1484 /*
1485 * Tell the thread to set its affinity. This is
1486 * important for shared interrupt handlers as we do
1487 * not invoke setup_affinity() for the secondary
1488 * handlers as everything is already set up. Even for
1489 * interrupts marked with IRQF_NO_BALANCE this is
1490 * correct as we want the thread to move to the cpu(s)
1491 * on which the requesting code placed the interrupt.
1492 */
1493 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1494 return 0;
1495 }
1496
1497 /*
1498 * Internal function to register an irqaction - typically used to
1499 * allocate special interrupts that are part of the architecture.
1500 *
1501 * Locking rules:
1502 *
1503 * desc->request_mutex Provides serialization against a concurrent free_irq()
1504 * chip_bus_lock Provides serialization for slow bus operations
1505 * desc->lock Provides serialization against hard interrupts
1506 *
1507 * chip_bus_lock and desc->lock are sufficient for all other management and
1508 * interrupt related functions. desc->request_mutex solely serializes
1509 * request/free_irq().
1510 */
1511 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1512 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1513 {
1514 struct irqaction *old, **old_ptr;
1515 unsigned long flags, thread_mask = 0;
1516 int ret, nested, shared = 0;
1517
1518 if (!desc)
1519 return -EINVAL;
1520
1521 if (desc->irq_data.chip == &no_irq_chip)
1522 return -ENOSYS;
1523 if (!try_module_get(desc->owner))
1524 return -ENODEV;
1525
1526 new->irq = irq;
1527
1528 /*
1529 * If the trigger type is not specified by the caller,
1530 * then use the default for this interrupt.
1531 */
1532 if (!(new->flags & IRQF_TRIGGER_MASK))
1533 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1534
1535 /*
1536 * Check whether the interrupt nests into another interrupt
1537 * thread.
1538 */
1539 nested = irq_settings_is_nested_thread(desc);
1540 if (nested) {
1541 if (!new->thread_fn) {
1542 ret = -EINVAL;
1543 goto out_mput;
1544 }
1545 /*
1546 * Replace the primary handler which was provided from
1547 * the driver for non nested interrupt handling by the
1548 * dummy function which warns when called.
1549 */
1550 new->handler = irq_nested_primary_handler;
1551 } else {
1552 if (irq_settings_can_thread(desc)) {
1553 ret = irq_setup_forced_threading(new);
1554 if (ret)
1555 goto out_mput;
1556 }
1557 }
1558
1559 /*
1560 * Create a handler thread when a thread function is supplied
1561 * and the interrupt does not nest into another interrupt
1562 * thread.
1563 */
1564 if (new->thread_fn && !nested) {
1565 ret = setup_irq_thread(new, irq, false);
1566 if (ret)
1567 goto out_mput;
1568 if (new->secondary) {
1569 ret = setup_irq_thread(new->secondary, irq, true);
1570 if (ret)
1571 goto out_thread;
1572 }
1573 }
1574
1575 /*
1576 * Drivers are often written to work w/o knowledge about the
1577 * underlying irq chip implementation, so a request for a
1578 * threaded irq without a primary hard irq context handler
1579 * requires the ONESHOT flag to be set. Some irq chips like
1580 * MSI based interrupts are per se one shot safe. Check the
1581 * chip flags, so we can avoid the unmask dance at the end of
1582 * the threaded handler for those.
1583 */
1584 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1585 new->flags &= ~IRQF_ONESHOT;
1586
1587 /*
1588 * Protects against a concurrent __free_irq() call which might wait
1589 * for synchronize_hardirq() to complete without holding the optional
1590 * chip bus lock and desc->lock. Also protects against handing out
1591 * a recycled oneshot thread_mask bit while it's still in use by
1592 * its previous owner.
1593 */
1594 mutex_lock(&desc->request_mutex);
1595
1596 /*
1597 * Acquire bus lock as the irq_request_resources() callback below
1598 * might rely on the serialization or the magic power management
1599 * functions which are abusing the irq_bus_lock() callback,
1600 */
1601 chip_bus_lock(desc);
1602
1603 /* First installed action requests resources. */
1604 if (!desc->action) {
1605 ret = irq_request_resources(desc);
1606 if (ret) {
1607 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1608 new->name, irq, desc->irq_data.chip->name);
1609 goto out_bus_unlock;
1610 }
1611 }
1612
1613 /*
1614 * The following block of code has to be executed atomically
1615 * protected against a concurrent interrupt and any of the other
1616 * management calls which are not serialized via
1617 * desc->request_mutex or the optional bus lock.
1618 */
1619 raw_spin_lock_irqsave(&desc->lock, flags);
1620 old_ptr = &desc->action;
1621 old = *old_ptr;
1622 if (old) {
1623 /*
1624 * Can't share interrupts unless both agree to and are
1625 * the same type (level, edge, polarity). So both flag
1626 * fields must have IRQF_SHARED set and the bits which
1627 * set the trigger type must match. Also all must
1628 * agree on ONESHOT.
1629 * Interrupt lines used for NMIs cannot be shared.
1630 */
1631 unsigned int oldtype;
1632
1633 if (irq_is_nmi(desc)) {
1634 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1635 new->name, irq, desc->irq_data.chip->name);
1636 ret = -EINVAL;
1637 goto out_unlock;
1638 }
1639
1640 /*
1641 * If nobody did set the configuration before, inherit
1642 * the one provided by the requester.
1643 */
1644 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1645 oldtype = irqd_get_trigger_type(&desc->irq_data);
1646 } else {
1647 oldtype = new->flags & IRQF_TRIGGER_MASK;
1648 irqd_set_trigger_type(&desc->irq_data, oldtype);
1649 }
1650
1651 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1652 (oldtype != (new->flags & IRQF_TRIGGER_MASK)))
1653 goto mismatch;
1654
1655 if ((old->flags & IRQF_ONESHOT) &&
1656 (new->flags & IRQF_COND_ONESHOT))
1657 new->flags |= IRQF_ONESHOT;
1658 else if ((old->flags ^ new->flags) & IRQF_ONESHOT)
1659 goto mismatch;
1660
1661 /* All handlers must agree on per-cpuness */
1662 if ((old->flags & IRQF_PERCPU) !=
1663 (new->flags & IRQF_PERCPU))
1664 goto mismatch;
1665
1666 /* add new interrupt at end of irq queue */
1667 do {
1668 /*
1669 * Or all existing action->thread_mask bits,
1670 * so we can find the next zero bit for this
1671 * new action.
1672 */
1673 thread_mask |= old->thread_mask;
1674 old_ptr = &old->next;
1675 old = *old_ptr;
1676 } while (old);
1677 shared = 1;
1678 }
1679
1680 /*
1681 * Setup the thread mask for this irqaction for ONESHOT. For
1682 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1683 * conditional in irq_wake_thread().
1684 */
1685 if (new->flags & IRQF_ONESHOT) {
1686 /*
1687 * Unlikely to have 32 resp 64 irqs sharing one line,
1688 * but who knows.
1689 */
1690 if (thread_mask == ~0UL) {
1691 ret = -EBUSY;
1692 goto out_unlock;
1693 }
1694 /*
1695 * The thread_mask for the action is or'ed to
1696 * desc->thread_active to indicate that the
1697 * IRQF_ONESHOT thread handler has been woken, but not
1698 * yet finished. The bit is cleared when a thread
1699 * completes. When all threads of a shared interrupt
1700 * line have completed desc->threads_active becomes
1701 * zero and the interrupt line is unmasked. See
1702 * handle.c:irq_wake_thread() for further information.
1703 *
1704 * If no thread is woken by primary (hard irq context)
1705 * interrupt handlers, then desc->threads_active is
1706 * also checked for zero to unmask the irq line in the
1707 * affected hard irq flow handlers
1708 * (handle_[fasteoi|level]_irq).
1709 *
1710 * The new action gets the first zero bit of
1711 * thread_mask assigned. See the loop above which or's
1712 * all existing action->thread_mask bits.
1713 */
1714 new->thread_mask = 1UL << ffz(thread_mask);
1715
1716 } else if (new->handler == irq_default_primary_handler &&
1717 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1718 /*
1719 * The interrupt was requested with handler = NULL, so
1720 * we use the default primary handler for it. But it
1721 * does not have the oneshot flag set. In combination
1722 * with level interrupts this is deadly, because the
1723 * default primary handler just wakes the thread, then
1724 * the irq lines is reenabled, but the device still
1725 * has the level irq asserted. Rinse and repeat....
1726 *
1727 * While this works for edge type interrupts, we play
1728 * it safe and reject unconditionally because we can't
1729 * say for sure which type this interrupt really
1730 * has. The type flags are unreliable as the
1731 * underlying chip implementation can override them.
1732 */
1733 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1734 new->name, irq);
1735 ret = -EINVAL;
1736 goto out_unlock;
1737 }
1738
1739 if (!shared) {
1740 /* Setup the type (level, edge polarity) if configured: */
1741 if (new->flags & IRQF_TRIGGER_MASK) {
1742 ret = __irq_set_trigger(desc,
1743 new->flags & IRQF_TRIGGER_MASK);
1744
1745 if (ret)
1746 goto out_unlock;
1747 }
1748
1749 /*
1750 * Activate the interrupt. That activation must happen
1751 * independently of IRQ_NOAUTOEN. request_irq() can fail
1752 * and the callers are supposed to handle
1753 * that. enable_irq() of an interrupt requested with
1754 * IRQ_NOAUTOEN is not supposed to fail. The activation
1755 * keeps it in shutdown mode, it merily associates
1756 * resources if necessary and if that's not possible it
1757 * fails. Interrupts which are in managed shutdown mode
1758 * will simply ignore that activation request.
1759 */
1760 ret = irq_activate(desc);
1761 if (ret)
1762 goto out_unlock;
1763
1764 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1765 IRQS_ONESHOT | IRQS_WAITING);
1766 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1767
1768 if (new->flags & IRQF_PERCPU) {
1769 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1770 irq_settings_set_per_cpu(desc);
1771 if (new->flags & IRQF_NO_DEBUG)
1772 irq_settings_set_no_debug(desc);
1773 }
1774
1775 if (noirqdebug)
1776 irq_settings_set_no_debug(desc);
1777
1778 if (new->flags & IRQF_ONESHOT)
1779 desc->istate |= IRQS_ONESHOT;
1780
1781 /* Exclude IRQ from balancing if requested */
1782 if (new->flags & IRQF_NOBALANCING) {
1783 irq_settings_set_no_balancing(desc);
1784 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1785 }
1786
1787 if (!(new->flags & IRQF_NO_AUTOEN) &&
1788 irq_settings_can_autoenable(desc)) {
1789 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1790 } else {
1791 /*
1792 * Shared interrupts do not go well with disabling
1793 * auto enable. The sharing interrupt might request
1794 * it while it's still disabled and then wait for
1795 * interrupts forever.
1796 */
1797 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1798 /* Undo nested disables: */
1799 desc->depth = 1;
1800 }
1801
1802 } else if (new->flags & IRQF_TRIGGER_MASK) {
1803 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1804 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1805
1806 if (nmsk != omsk)
1807 /* hope the handler works with current trigger mode */
1808 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1809 irq, omsk, nmsk);
1810 }
1811
1812 *old_ptr = new;
1813
1814 irq_pm_install_action(desc, new);
1815
1816 /* Reset broken irq detection when installing new handler */
1817 desc->irq_count = 0;
1818 desc->irqs_unhandled = 0;
1819
1820 /*
1821 * Check whether we disabled the irq via the spurious handler
1822 * before. Reenable it and give it another chance.
1823 */
1824 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1825 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1826 __enable_irq(desc);
1827 }
1828
1829 raw_spin_unlock_irqrestore(&desc->lock, flags);
1830 chip_bus_sync_unlock(desc);
1831 mutex_unlock(&desc->request_mutex);
1832
1833 irq_setup_timings(desc, new);
1834
1835 wake_up_and_wait_for_irq_thread_ready(desc, new);
1836 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1837
1838 register_irq_proc(irq, desc);
1839 new->dir = NULL;
1840 register_handler_proc(irq, new);
1841 return 0;
1842
1843 mismatch:
1844 if (!(new->flags & IRQF_PROBE_SHARED)) {
1845 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1846 irq, new->flags, new->name, old->flags, old->name);
1847 #ifdef CONFIG_DEBUG_SHIRQ
1848 dump_stack();
1849 #endif
1850 }
1851 ret = -EBUSY;
1852
1853 out_unlock:
1854 raw_spin_unlock_irqrestore(&desc->lock, flags);
1855
1856 if (!desc->action)
1857 irq_release_resources(desc);
1858 out_bus_unlock:
1859 chip_bus_sync_unlock(desc);
1860 mutex_unlock(&desc->request_mutex);
1861
1862 out_thread:
1863 if (new->thread) {
1864 struct task_struct *t = new->thread;
1865
1866 new->thread = NULL;
1867 kthread_stop_put(t);
1868 }
1869 if (new->secondary && new->secondary->thread) {
1870 struct task_struct *t = new->secondary->thread;
1871
1872 new->secondary->thread = NULL;
1873 kthread_stop_put(t);
1874 }
1875 out_mput:
1876 module_put(desc->owner);
1877 return ret;
1878 }
1879
1880 /*
1881 * Internal function to unregister an irqaction - used to free
1882 * regular and special interrupts that are part of the architecture.
1883 */
__free_irq(struct irq_desc * desc,void * dev_id)1884 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1885 {
1886 unsigned irq = desc->irq_data.irq;
1887 struct irqaction *action, **action_ptr;
1888 unsigned long flags;
1889
1890 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1891
1892 mutex_lock(&desc->request_mutex);
1893 chip_bus_lock(desc);
1894 raw_spin_lock_irqsave(&desc->lock, flags);
1895
1896 /*
1897 * There can be multiple actions per IRQ descriptor, find the right
1898 * one based on the dev_id:
1899 */
1900 action_ptr = &desc->action;
1901 for (;;) {
1902 action = *action_ptr;
1903
1904 if (!action) {
1905 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1906 raw_spin_unlock_irqrestore(&desc->lock, flags);
1907 chip_bus_sync_unlock(desc);
1908 mutex_unlock(&desc->request_mutex);
1909 return NULL;
1910 }
1911
1912 if (action->dev_id == dev_id)
1913 break;
1914 action_ptr = &action->next;
1915 }
1916
1917 /* Found it - now remove it from the list of entries: */
1918 *action_ptr = action->next;
1919
1920 irq_pm_remove_action(desc, action);
1921
1922 /* If this was the last handler, shut down the IRQ line: */
1923 if (!desc->action) {
1924 irq_settings_clr_disable_unlazy(desc);
1925 /* Only shutdown. Deactivate after synchronize_hardirq() */
1926 irq_shutdown(desc);
1927 }
1928
1929 #ifdef CONFIG_SMP
1930 /* make sure affinity_hint is cleaned up */
1931 if (WARN_ON_ONCE(desc->affinity_hint))
1932 desc->affinity_hint = NULL;
1933 #endif
1934
1935 raw_spin_unlock_irqrestore(&desc->lock, flags);
1936 /*
1937 * Drop bus_lock here so the changes which were done in the chip
1938 * callbacks above are synced out to the irq chips which hang
1939 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1940 *
1941 * Aside of that the bus_lock can also be taken from the threaded
1942 * handler in irq_finalize_oneshot() which results in a deadlock
1943 * because kthread_stop() would wait forever for the thread to
1944 * complete, which is blocked on the bus lock.
1945 *
1946 * The still held desc->request_mutex() protects against a
1947 * concurrent request_irq() of this irq so the release of resources
1948 * and timing data is properly serialized.
1949 */
1950 chip_bus_sync_unlock(desc);
1951
1952 unregister_handler_proc(irq, action);
1953
1954 /*
1955 * Make sure it's not being used on another CPU and if the chip
1956 * supports it also make sure that there is no (not yet serviced)
1957 * interrupt in flight at the hardware level.
1958 */
1959 __synchronize_irq(desc);
1960
1961 #ifdef CONFIG_DEBUG_SHIRQ
1962 /*
1963 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1964 * event to happen even now it's being freed, so let's make sure that
1965 * is so by doing an extra call to the handler ....
1966 *
1967 * ( We do this after actually deregistering it, to make sure that a
1968 * 'real' IRQ doesn't run in parallel with our fake. )
1969 */
1970 if (action->flags & IRQF_SHARED) {
1971 local_irq_save(flags);
1972 action->handler(irq, dev_id);
1973 local_irq_restore(flags);
1974 }
1975 #endif
1976
1977 /*
1978 * The action has already been removed above, but the thread writes
1979 * its oneshot mask bit when it completes. Though request_mutex is
1980 * held across this which prevents __setup_irq() from handing out
1981 * the same bit to a newly requested action.
1982 */
1983 if (action->thread) {
1984 kthread_stop_put(action->thread);
1985 if (action->secondary && action->secondary->thread)
1986 kthread_stop_put(action->secondary->thread);
1987 }
1988
1989 /* Last action releases resources */
1990 if (!desc->action) {
1991 /*
1992 * Reacquire bus lock as irq_release_resources() might
1993 * require it to deallocate resources over the slow bus.
1994 */
1995 chip_bus_lock(desc);
1996 /*
1997 * There is no interrupt on the fly anymore. Deactivate it
1998 * completely.
1999 */
2000 raw_spin_lock_irqsave(&desc->lock, flags);
2001 irq_domain_deactivate_irq(&desc->irq_data);
2002 raw_spin_unlock_irqrestore(&desc->lock, flags);
2003
2004 irq_release_resources(desc);
2005 chip_bus_sync_unlock(desc);
2006 irq_remove_timings(desc);
2007 }
2008
2009 mutex_unlock(&desc->request_mutex);
2010
2011 irq_chip_pm_put(&desc->irq_data);
2012 module_put(desc->owner);
2013 kfree(action->secondary);
2014 return action;
2015 }
2016
2017 /**
2018 * free_irq - free an interrupt allocated with request_irq
2019 * @irq: Interrupt line to free
2020 * @dev_id: Device identity to free
2021 *
2022 * Remove an interrupt handler. The handler is removed and if the
2023 * interrupt line is no longer in use by any driver it is disabled.
2024 * On a shared IRQ the caller must ensure the interrupt is disabled
2025 * on the card it drives before calling this function. The function
2026 * does not return until any executing interrupts for this IRQ
2027 * have completed.
2028 *
2029 * This function must not be called from interrupt context.
2030 *
2031 * Returns the devname argument passed to request_irq.
2032 */
free_irq(unsigned int irq,void * dev_id)2033 const void *free_irq(unsigned int irq, void *dev_id)
2034 {
2035 struct irq_desc *desc = irq_to_desc(irq);
2036 struct irqaction *action;
2037 const char *devname;
2038
2039 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2040 return NULL;
2041
2042 #ifdef CONFIG_SMP
2043 if (WARN_ON(desc->affinity_notify))
2044 desc->affinity_notify = NULL;
2045 #endif
2046
2047 action = __free_irq(desc, dev_id);
2048
2049 if (!action)
2050 return NULL;
2051
2052 devname = action->name;
2053 kfree(action);
2054 return devname;
2055 }
2056 EXPORT_SYMBOL(free_irq);
2057
2058 /* This function must be called with desc->lock held */
__cleanup_nmi(unsigned int irq,struct irq_desc * desc)2059 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2060 {
2061 const char *devname = NULL;
2062
2063 desc->istate &= ~IRQS_NMI;
2064
2065 if (!WARN_ON(desc->action == NULL)) {
2066 irq_pm_remove_action(desc, desc->action);
2067 devname = desc->action->name;
2068 unregister_handler_proc(irq, desc->action);
2069
2070 kfree(desc->action);
2071 desc->action = NULL;
2072 }
2073
2074 irq_settings_clr_disable_unlazy(desc);
2075 irq_shutdown_and_deactivate(desc);
2076
2077 irq_release_resources(desc);
2078
2079 irq_chip_pm_put(&desc->irq_data);
2080 module_put(desc->owner);
2081
2082 return devname;
2083 }
2084
free_nmi(unsigned int irq,void * dev_id)2085 const void *free_nmi(unsigned int irq, void *dev_id)
2086 {
2087 struct irq_desc *desc = irq_to_desc(irq);
2088 unsigned long flags;
2089 const void *devname;
2090
2091 if (!desc || WARN_ON(!irq_is_nmi(desc)))
2092 return NULL;
2093
2094 if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2095 return NULL;
2096
2097 /* NMI still enabled */
2098 if (WARN_ON(desc->depth == 0))
2099 disable_nmi_nosync(irq);
2100
2101 raw_spin_lock_irqsave(&desc->lock, flags);
2102
2103 irq_nmi_teardown(desc);
2104 devname = __cleanup_nmi(irq, desc);
2105
2106 raw_spin_unlock_irqrestore(&desc->lock, flags);
2107
2108 return devname;
2109 }
2110
2111 /**
2112 * request_threaded_irq - allocate an interrupt line
2113 * @irq: Interrupt line to allocate
2114 * @handler: Function to be called when the IRQ occurs.
2115 * Primary handler for threaded interrupts.
2116 * If handler is NULL and thread_fn != NULL
2117 * the default primary handler is installed.
2118 * @thread_fn: Function called from the irq handler thread
2119 * If NULL, no irq thread is created
2120 * @irqflags: Interrupt type flags
2121 * @devname: An ascii name for the claiming device
2122 * @dev_id: A cookie passed back to the handler function
2123 *
2124 * This call allocates interrupt resources and enables the
2125 * interrupt line and IRQ handling. From the point this
2126 * call is made your handler function may be invoked. Since
2127 * your handler function must clear any interrupt the board
2128 * raises, you must take care both to initialise your hardware
2129 * and to set up the interrupt handler in the right order.
2130 *
2131 * If you want to set up a threaded irq handler for your device
2132 * then you need to supply @handler and @thread_fn. @handler is
2133 * still called in hard interrupt context and has to check
2134 * whether the interrupt originates from the device. If yes it
2135 * needs to disable the interrupt on the device and return
2136 * IRQ_WAKE_THREAD which will wake up the handler thread and run
2137 * @thread_fn. This split handler design is necessary to support
2138 * shared interrupts.
2139 *
2140 * Dev_id must be globally unique. Normally the address of the
2141 * device data structure is used as the cookie. Since the handler
2142 * receives this value it makes sense to use it.
2143 *
2144 * If your interrupt is shared you must pass a non NULL dev_id
2145 * as this is required when freeing the interrupt.
2146 *
2147 * Flags:
2148 *
2149 * IRQF_SHARED Interrupt is shared
2150 * IRQF_TRIGGER_* Specify active edge(s) or level
2151 * IRQF_ONESHOT Run thread_fn with interrupt line masked
2152 */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)2153 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2154 irq_handler_t thread_fn, unsigned long irqflags,
2155 const char *devname, void *dev_id)
2156 {
2157 struct irqaction *action;
2158 struct irq_desc *desc;
2159 int retval;
2160
2161 if (irq == IRQ_NOTCONNECTED)
2162 return -ENOTCONN;
2163
2164 /*
2165 * Sanity-check: shared interrupts must pass in a real dev-ID,
2166 * otherwise we'll have trouble later trying to figure out
2167 * which interrupt is which (messes up the interrupt freeing
2168 * logic etc).
2169 *
2170 * Also shared interrupts do not go well with disabling auto enable.
2171 * The sharing interrupt might request it while it's still disabled
2172 * and then wait for interrupts forever.
2173 *
2174 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2175 * it cannot be set along with IRQF_NO_SUSPEND.
2176 */
2177 if (((irqflags & IRQF_SHARED) && !dev_id) ||
2178 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2179 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2180 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2181 return -EINVAL;
2182
2183 desc = irq_to_desc(irq);
2184 if (!desc)
2185 return -EINVAL;
2186
2187 if (!irq_settings_can_request(desc) ||
2188 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2189 return -EINVAL;
2190
2191 if (!handler) {
2192 if (!thread_fn)
2193 return -EINVAL;
2194 handler = irq_default_primary_handler;
2195 }
2196
2197 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2198 if (!action)
2199 return -ENOMEM;
2200
2201 action->handler = handler;
2202 action->thread_fn = thread_fn;
2203 action->flags = irqflags;
2204 action->name = devname;
2205 action->dev_id = dev_id;
2206
2207 retval = irq_chip_pm_get(&desc->irq_data);
2208 if (retval < 0) {
2209 kfree(action);
2210 return retval;
2211 }
2212
2213 retval = __setup_irq(irq, desc, action);
2214
2215 if (retval) {
2216 irq_chip_pm_put(&desc->irq_data);
2217 kfree(action->secondary);
2218 kfree(action);
2219 }
2220
2221 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2222 if (!retval && (irqflags & IRQF_SHARED)) {
2223 /*
2224 * It's a shared IRQ -- the driver ought to be prepared for it
2225 * to happen immediately, so let's make sure....
2226 * We disable the irq to make sure that a 'real' IRQ doesn't
2227 * run in parallel with our fake.
2228 */
2229 unsigned long flags;
2230
2231 disable_irq(irq);
2232 local_irq_save(flags);
2233
2234 handler(irq, dev_id);
2235
2236 local_irq_restore(flags);
2237 enable_irq(irq);
2238 }
2239 #endif
2240 return retval;
2241 }
2242 EXPORT_SYMBOL(request_threaded_irq);
2243
2244 /**
2245 * request_any_context_irq - allocate an interrupt line
2246 * @irq: Interrupt line to allocate
2247 * @handler: Function to be called when the IRQ occurs.
2248 * Threaded handler for threaded interrupts.
2249 * @flags: Interrupt type flags
2250 * @name: An ascii name for the claiming device
2251 * @dev_id: A cookie passed back to the handler function
2252 *
2253 * This call allocates interrupt resources and enables the
2254 * interrupt line and IRQ handling. It selects either a
2255 * hardirq or threaded handling method depending on the
2256 * context.
2257 *
2258 * On failure, it returns a negative value. On success,
2259 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2260 */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)2261 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2262 unsigned long flags, const char *name, void *dev_id)
2263 {
2264 struct irq_desc *desc;
2265 int ret;
2266
2267 if (irq == IRQ_NOTCONNECTED)
2268 return -ENOTCONN;
2269
2270 desc = irq_to_desc(irq);
2271 if (!desc)
2272 return -EINVAL;
2273
2274 if (irq_settings_is_nested_thread(desc)) {
2275 ret = request_threaded_irq(irq, NULL, handler,
2276 flags, name, dev_id);
2277 return !ret ? IRQC_IS_NESTED : ret;
2278 }
2279
2280 ret = request_irq(irq, handler, flags, name, dev_id);
2281 return !ret ? IRQC_IS_HARDIRQ : ret;
2282 }
2283 EXPORT_SYMBOL_GPL(request_any_context_irq);
2284
2285 /**
2286 * request_nmi - allocate an interrupt line for NMI delivery
2287 * @irq: Interrupt line to allocate
2288 * @handler: Function to be called when the IRQ occurs.
2289 * Threaded handler for threaded interrupts.
2290 * @irqflags: Interrupt type flags
2291 * @name: An ascii name for the claiming device
2292 * @dev_id: A cookie passed back to the handler function
2293 *
2294 * This call allocates interrupt resources and enables the
2295 * interrupt line and IRQ handling. It sets up the IRQ line
2296 * to be handled as an NMI.
2297 *
2298 * An interrupt line delivering NMIs cannot be shared and IRQ handling
2299 * cannot be threaded.
2300 *
2301 * Interrupt lines requested for NMI delivering must produce per cpu
2302 * interrupts and have auto enabling setting disabled.
2303 *
2304 * Dev_id must be globally unique. Normally the address of the
2305 * device data structure is used as the cookie. Since the handler
2306 * receives this value it makes sense to use it.
2307 *
2308 * If the interrupt line cannot be used to deliver NMIs, function
2309 * will fail and return a negative value.
2310 */
request_nmi(unsigned int irq,irq_handler_t handler,unsigned long irqflags,const char * name,void * dev_id)2311 int request_nmi(unsigned int irq, irq_handler_t handler,
2312 unsigned long irqflags, const char *name, void *dev_id)
2313 {
2314 struct irqaction *action;
2315 struct irq_desc *desc;
2316 unsigned long flags;
2317 int retval;
2318
2319 if (irq == IRQ_NOTCONNECTED)
2320 return -ENOTCONN;
2321
2322 /* NMI cannot be shared, used for Polling */
2323 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2324 return -EINVAL;
2325
2326 if (!(irqflags & IRQF_PERCPU))
2327 return -EINVAL;
2328
2329 if (!handler)
2330 return -EINVAL;
2331
2332 desc = irq_to_desc(irq);
2333
2334 if (!desc || (irq_settings_can_autoenable(desc) &&
2335 !(irqflags & IRQF_NO_AUTOEN)) ||
2336 !irq_settings_can_request(desc) ||
2337 WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2338 !irq_supports_nmi(desc))
2339 return -EINVAL;
2340
2341 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2342 if (!action)
2343 return -ENOMEM;
2344
2345 action->handler = handler;
2346 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2347 action->name = name;
2348 action->dev_id = dev_id;
2349
2350 retval = irq_chip_pm_get(&desc->irq_data);
2351 if (retval < 0)
2352 goto err_out;
2353
2354 retval = __setup_irq(irq, desc, action);
2355 if (retval)
2356 goto err_irq_setup;
2357
2358 raw_spin_lock_irqsave(&desc->lock, flags);
2359
2360 /* Setup NMI state */
2361 desc->istate |= IRQS_NMI;
2362 retval = irq_nmi_setup(desc);
2363 if (retval) {
2364 __cleanup_nmi(irq, desc);
2365 raw_spin_unlock_irqrestore(&desc->lock, flags);
2366 return -EINVAL;
2367 }
2368
2369 raw_spin_unlock_irqrestore(&desc->lock, flags);
2370
2371 return 0;
2372
2373 err_irq_setup:
2374 irq_chip_pm_put(&desc->irq_data);
2375 err_out:
2376 kfree(action);
2377
2378 return retval;
2379 }
2380
enable_percpu_irq(unsigned int irq,unsigned int type)2381 void enable_percpu_irq(unsigned int irq, unsigned int type)
2382 {
2383 unsigned int cpu = smp_processor_id();
2384 unsigned long flags;
2385 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2386
2387 if (!desc)
2388 return;
2389
2390 /*
2391 * If the trigger type is not specified by the caller, then
2392 * use the default for this interrupt.
2393 */
2394 type &= IRQ_TYPE_SENSE_MASK;
2395 if (type == IRQ_TYPE_NONE)
2396 type = irqd_get_trigger_type(&desc->irq_data);
2397
2398 if (type != IRQ_TYPE_NONE) {
2399 int ret;
2400
2401 ret = __irq_set_trigger(desc, type);
2402
2403 if (ret) {
2404 WARN(1, "failed to set type for IRQ%d\n", irq);
2405 goto out;
2406 }
2407 }
2408
2409 irq_percpu_enable(desc, cpu);
2410 out:
2411 irq_put_desc_unlock(desc, flags);
2412 }
2413 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2414
enable_percpu_nmi(unsigned int irq,unsigned int type)2415 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2416 {
2417 enable_percpu_irq(irq, type);
2418 }
2419
2420 /**
2421 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2422 * @irq: Linux irq number to check for
2423 *
2424 * Must be called from a non migratable context. Returns the enable
2425 * state of a per cpu interrupt on the current cpu.
2426 */
irq_percpu_is_enabled(unsigned int irq)2427 bool irq_percpu_is_enabled(unsigned int irq)
2428 {
2429 unsigned int cpu = smp_processor_id();
2430 struct irq_desc *desc;
2431 unsigned long flags;
2432 bool is_enabled;
2433
2434 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2435 if (!desc)
2436 return false;
2437
2438 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2439 irq_put_desc_unlock(desc, flags);
2440
2441 return is_enabled;
2442 }
2443 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2444
disable_percpu_irq(unsigned int irq)2445 void disable_percpu_irq(unsigned int irq)
2446 {
2447 unsigned int cpu = smp_processor_id();
2448 unsigned long flags;
2449 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2450
2451 if (!desc)
2452 return;
2453
2454 irq_percpu_disable(desc, cpu);
2455 irq_put_desc_unlock(desc, flags);
2456 }
2457 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2458
disable_percpu_nmi(unsigned int irq)2459 void disable_percpu_nmi(unsigned int irq)
2460 {
2461 disable_percpu_irq(irq);
2462 }
2463
2464 /*
2465 * Internal function to unregister a percpu irqaction.
2466 */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)2467 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2468 {
2469 struct irq_desc *desc = irq_to_desc(irq);
2470 struct irqaction *action;
2471 unsigned long flags;
2472
2473 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2474
2475 if (!desc)
2476 return NULL;
2477
2478 raw_spin_lock_irqsave(&desc->lock, flags);
2479
2480 action = desc->action;
2481 if (!action || action->percpu_dev_id != dev_id) {
2482 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2483 goto bad;
2484 }
2485
2486 if (!cpumask_empty(desc->percpu_enabled)) {
2487 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2488 irq, cpumask_first(desc->percpu_enabled));
2489 goto bad;
2490 }
2491
2492 /* Found it - now remove it from the list of entries: */
2493 desc->action = NULL;
2494
2495 desc->istate &= ~IRQS_NMI;
2496
2497 raw_spin_unlock_irqrestore(&desc->lock, flags);
2498
2499 unregister_handler_proc(irq, action);
2500
2501 irq_chip_pm_put(&desc->irq_data);
2502 module_put(desc->owner);
2503 return action;
2504
2505 bad:
2506 raw_spin_unlock_irqrestore(&desc->lock, flags);
2507 return NULL;
2508 }
2509
2510 /**
2511 * remove_percpu_irq - free a per-cpu interrupt
2512 * @irq: Interrupt line to free
2513 * @act: irqaction for the interrupt
2514 *
2515 * Used to remove interrupts statically setup by the early boot process.
2516 */
remove_percpu_irq(unsigned int irq,struct irqaction * act)2517 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2518 {
2519 struct irq_desc *desc = irq_to_desc(irq);
2520
2521 if (desc && irq_settings_is_per_cpu_devid(desc))
2522 __free_percpu_irq(irq, act->percpu_dev_id);
2523 }
2524
2525 /**
2526 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2527 * @irq: Interrupt line to free
2528 * @dev_id: Device identity to free
2529 *
2530 * Remove a percpu interrupt handler. The handler is removed, but
2531 * the interrupt line is not disabled. This must be done on each
2532 * CPU before calling this function. The function does not return
2533 * until any executing interrupts for this IRQ have completed.
2534 *
2535 * This function must not be called from interrupt context.
2536 */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2537 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2538 {
2539 struct irq_desc *desc = irq_to_desc(irq);
2540
2541 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2542 return;
2543
2544 chip_bus_lock(desc);
2545 kfree(__free_percpu_irq(irq, dev_id));
2546 chip_bus_sync_unlock(desc);
2547 }
2548 EXPORT_SYMBOL_GPL(free_percpu_irq);
2549
free_percpu_nmi(unsigned int irq,void __percpu * dev_id)2550 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2551 {
2552 struct irq_desc *desc = irq_to_desc(irq);
2553
2554 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2555 return;
2556
2557 if (WARN_ON(!irq_is_nmi(desc)))
2558 return;
2559
2560 kfree(__free_percpu_irq(irq, dev_id));
2561 }
2562
2563 /**
2564 * setup_percpu_irq - setup a per-cpu interrupt
2565 * @irq: Interrupt line to setup
2566 * @act: irqaction for the interrupt
2567 *
2568 * Used to statically setup per-cpu interrupts in the early boot process.
2569 */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2570 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2571 {
2572 struct irq_desc *desc = irq_to_desc(irq);
2573 int retval;
2574
2575 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2576 return -EINVAL;
2577
2578 retval = irq_chip_pm_get(&desc->irq_data);
2579 if (retval < 0)
2580 return retval;
2581
2582 retval = __setup_irq(irq, desc, act);
2583
2584 if (retval)
2585 irq_chip_pm_put(&desc->irq_data);
2586
2587 return retval;
2588 }
2589
2590 /**
2591 * __request_percpu_irq - allocate a percpu interrupt line
2592 * @irq: Interrupt line to allocate
2593 * @handler: Function to be called when the IRQ occurs.
2594 * @flags: Interrupt type flags (IRQF_TIMER only)
2595 * @devname: An ascii name for the claiming device
2596 * @dev_id: A percpu cookie passed back to the handler function
2597 *
2598 * This call allocates interrupt resources and enables the
2599 * interrupt on the local CPU. If the interrupt is supposed to be
2600 * enabled on other CPUs, it has to be done on each CPU using
2601 * enable_percpu_irq().
2602 *
2603 * Dev_id must be globally unique. It is a per-cpu variable, and
2604 * the handler gets called with the interrupted CPU's instance of
2605 * that variable.
2606 */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2607 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2608 unsigned long flags, const char *devname,
2609 void __percpu *dev_id)
2610 {
2611 struct irqaction *action;
2612 struct irq_desc *desc;
2613 int retval;
2614
2615 if (!dev_id)
2616 return -EINVAL;
2617
2618 desc = irq_to_desc(irq);
2619 if (!desc || !irq_settings_can_request(desc) ||
2620 !irq_settings_is_per_cpu_devid(desc))
2621 return -EINVAL;
2622
2623 if (flags && flags != IRQF_TIMER)
2624 return -EINVAL;
2625
2626 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2627 if (!action)
2628 return -ENOMEM;
2629
2630 action->handler = handler;
2631 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2632 action->name = devname;
2633 action->percpu_dev_id = dev_id;
2634
2635 retval = irq_chip_pm_get(&desc->irq_data);
2636 if (retval < 0) {
2637 kfree(action);
2638 return retval;
2639 }
2640
2641 retval = __setup_irq(irq, desc, action);
2642
2643 if (retval) {
2644 irq_chip_pm_put(&desc->irq_data);
2645 kfree(action);
2646 }
2647
2648 return retval;
2649 }
2650 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2651
2652 /**
2653 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2654 * @irq: Interrupt line to allocate
2655 * @handler: Function to be called when the IRQ occurs.
2656 * @name: An ascii name for the claiming device
2657 * @dev_id: A percpu cookie passed back to the handler function
2658 *
2659 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2660 * have to be setup on each CPU by calling prepare_percpu_nmi() before
2661 * being enabled on the same CPU by using enable_percpu_nmi().
2662 *
2663 * Dev_id must be globally unique. It is a per-cpu variable, and
2664 * the handler gets called with the interrupted CPU's instance of
2665 * that variable.
2666 *
2667 * Interrupt lines requested for NMI delivering should have auto enabling
2668 * setting disabled.
2669 *
2670 * If the interrupt line cannot be used to deliver NMIs, function
2671 * will fail returning a negative value.
2672 */
request_percpu_nmi(unsigned int irq,irq_handler_t handler,const char * name,void __percpu * dev_id)2673 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2674 const char *name, void __percpu *dev_id)
2675 {
2676 struct irqaction *action;
2677 struct irq_desc *desc;
2678 unsigned long flags;
2679 int retval;
2680
2681 if (!handler)
2682 return -EINVAL;
2683
2684 desc = irq_to_desc(irq);
2685
2686 if (!desc || !irq_settings_can_request(desc) ||
2687 !irq_settings_is_per_cpu_devid(desc) ||
2688 irq_settings_can_autoenable(desc) ||
2689 !irq_supports_nmi(desc))
2690 return -EINVAL;
2691
2692 /* The line cannot already be NMI */
2693 if (irq_is_nmi(desc))
2694 return -EINVAL;
2695
2696 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2697 if (!action)
2698 return -ENOMEM;
2699
2700 action->handler = handler;
2701 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2702 | IRQF_NOBALANCING;
2703 action->name = name;
2704 action->percpu_dev_id = dev_id;
2705
2706 retval = irq_chip_pm_get(&desc->irq_data);
2707 if (retval < 0)
2708 goto err_out;
2709
2710 retval = __setup_irq(irq, desc, action);
2711 if (retval)
2712 goto err_irq_setup;
2713
2714 raw_spin_lock_irqsave(&desc->lock, flags);
2715 desc->istate |= IRQS_NMI;
2716 raw_spin_unlock_irqrestore(&desc->lock, flags);
2717
2718 return 0;
2719
2720 err_irq_setup:
2721 irq_chip_pm_put(&desc->irq_data);
2722 err_out:
2723 kfree(action);
2724
2725 return retval;
2726 }
2727
2728 /**
2729 * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2730 * @irq: Interrupt line to prepare for NMI delivery
2731 *
2732 * This call prepares an interrupt line to deliver NMI on the current CPU,
2733 * before that interrupt line gets enabled with enable_percpu_nmi().
2734 *
2735 * As a CPU local operation, this should be called from non-preemptible
2736 * context.
2737 *
2738 * If the interrupt line cannot be used to deliver NMIs, function
2739 * will fail returning a negative value.
2740 */
prepare_percpu_nmi(unsigned int irq)2741 int prepare_percpu_nmi(unsigned int irq)
2742 {
2743 unsigned long flags;
2744 struct irq_desc *desc;
2745 int ret = 0;
2746
2747 WARN_ON(preemptible());
2748
2749 desc = irq_get_desc_lock(irq, &flags,
2750 IRQ_GET_DESC_CHECK_PERCPU);
2751 if (!desc)
2752 return -EINVAL;
2753
2754 if (WARN(!irq_is_nmi(desc),
2755 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2756 irq)) {
2757 ret = -EINVAL;
2758 goto out;
2759 }
2760
2761 ret = irq_nmi_setup(desc);
2762 if (ret) {
2763 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2764 goto out;
2765 }
2766
2767 out:
2768 irq_put_desc_unlock(desc, flags);
2769 return ret;
2770 }
2771
2772 /**
2773 * teardown_percpu_nmi - undoes NMI setup of IRQ line
2774 * @irq: Interrupt line from which CPU local NMI configuration should be
2775 * removed
2776 *
2777 * This call undoes the setup done by prepare_percpu_nmi().
2778 *
2779 * IRQ line should not be enabled for the current CPU.
2780 *
2781 * As a CPU local operation, this should be called from non-preemptible
2782 * context.
2783 */
teardown_percpu_nmi(unsigned int irq)2784 void teardown_percpu_nmi(unsigned int irq)
2785 {
2786 unsigned long flags;
2787 struct irq_desc *desc;
2788
2789 WARN_ON(preemptible());
2790
2791 desc = irq_get_desc_lock(irq, &flags,
2792 IRQ_GET_DESC_CHECK_PERCPU);
2793 if (!desc)
2794 return;
2795
2796 if (WARN_ON(!irq_is_nmi(desc)))
2797 goto out;
2798
2799 irq_nmi_teardown(desc);
2800 out:
2801 irq_put_desc_unlock(desc, flags);
2802 }
2803
__irq_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)2804 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2805 bool *state)
2806 {
2807 struct irq_chip *chip;
2808 int err = -EINVAL;
2809
2810 do {
2811 chip = irq_data_get_irq_chip(data);
2812 if (WARN_ON_ONCE(!chip))
2813 return -ENODEV;
2814 if (chip->irq_get_irqchip_state)
2815 break;
2816 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2817 data = data->parent_data;
2818 #else
2819 data = NULL;
2820 #endif
2821 } while (data);
2822
2823 if (data)
2824 err = chip->irq_get_irqchip_state(data, which, state);
2825 return err;
2826 }
2827
2828 /**
2829 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2830 * @irq: Interrupt line that is forwarded to a VM
2831 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2832 * @state: a pointer to a boolean where the state is to be stored
2833 *
2834 * This call snapshots the internal irqchip state of an
2835 * interrupt, returning into @state the bit corresponding to
2836 * stage @which
2837 *
2838 * This function should be called with preemption disabled if the
2839 * interrupt controller has per-cpu registers.
2840 */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2841 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2842 bool *state)
2843 {
2844 struct irq_desc *desc;
2845 struct irq_data *data;
2846 unsigned long flags;
2847 int err = -EINVAL;
2848
2849 desc = irq_get_desc_buslock(irq, &flags, 0);
2850 if (!desc)
2851 return err;
2852
2853 data = irq_desc_get_irq_data(desc);
2854
2855 err = __irq_get_irqchip_state(data, which, state);
2856
2857 irq_put_desc_busunlock(desc, flags);
2858 return err;
2859 }
2860 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2861
2862 /**
2863 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2864 * @irq: Interrupt line that is forwarded to a VM
2865 * @which: State to be restored (one of IRQCHIP_STATE_*)
2866 * @val: Value corresponding to @which
2867 *
2868 * This call sets the internal irqchip state of an interrupt,
2869 * depending on the value of @which.
2870 *
2871 * This function should be called with migration disabled if the
2872 * interrupt controller has per-cpu registers.
2873 */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2874 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2875 bool val)
2876 {
2877 struct irq_desc *desc;
2878 struct irq_data *data;
2879 struct irq_chip *chip;
2880 unsigned long flags;
2881 int err = -EINVAL;
2882
2883 desc = irq_get_desc_buslock(irq, &flags, 0);
2884 if (!desc)
2885 return err;
2886
2887 data = irq_desc_get_irq_data(desc);
2888
2889 do {
2890 chip = irq_data_get_irq_chip(data);
2891 if (WARN_ON_ONCE(!chip)) {
2892 err = -ENODEV;
2893 goto out_unlock;
2894 }
2895 if (chip->irq_set_irqchip_state)
2896 break;
2897 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2898 data = data->parent_data;
2899 #else
2900 data = NULL;
2901 #endif
2902 } while (data);
2903
2904 if (data)
2905 err = chip->irq_set_irqchip_state(data, which, val);
2906
2907 out_unlock:
2908 irq_put_desc_busunlock(desc, flags);
2909 return err;
2910 }
2911 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2912
2913 /**
2914 * irq_has_action - Check whether an interrupt is requested
2915 * @irq: The linux irq number
2916 *
2917 * Returns: A snapshot of the current state
2918 */
irq_has_action(unsigned int irq)2919 bool irq_has_action(unsigned int irq)
2920 {
2921 bool res;
2922
2923 rcu_read_lock();
2924 res = irq_desc_has_action(irq_to_desc(irq));
2925 rcu_read_unlock();
2926 return res;
2927 }
2928 EXPORT_SYMBOL_GPL(irq_has_action);
2929
2930 /**
2931 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2932 * @irq: The linux irq number
2933 * @bitmask: The bitmask to evaluate
2934 *
2935 * Returns: True if one of the bits in @bitmask is set
2936 */
irq_check_status_bit(unsigned int irq,unsigned int bitmask)2937 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2938 {
2939 struct irq_desc *desc;
2940 bool res = false;
2941
2942 rcu_read_lock();
2943 desc = irq_to_desc(irq);
2944 if (desc)
2945 res = !!(desc->status_use_accessors & bitmask);
2946 rcu_read_unlock();
2947 return res;
2948 }
2949 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2950