• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 #include <linux/padata.h>
39 
40 #include <asm/page.h>
41 #include <asm/pgalloc.h>
42 #include <asm/tlb.h>
43 
44 #include <linux/io.h>
45 #include <linux/hugetlb.h>
46 #include <linux/hugetlb_cgroup.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
49 #include "internal.h"
50 #include "hugetlb_vmemmap.h"
51 
52 int hugetlb_max_hstate __read_mostly;
53 unsigned int default_hstate_idx;
54 struct hstate hstates[HUGE_MAX_HSTATE];
55 
56 #ifdef CONFIG_CMA
57 static struct cma *hugetlb_cma[MAX_NUMNODES];
58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
59 #endif
60 static unsigned long hugetlb_cma_size __initdata;
61 
62 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
63 
64 /* for command line parsing */
65 static struct hstate * __initdata parsed_hstate;
66 static unsigned long __initdata default_hstate_max_huge_pages;
67 static bool __initdata parsed_valid_hugepagesz = true;
68 static bool __initdata parsed_default_hugepagesz;
69 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
70 
71 /*
72  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
73  * free_huge_pages, and surplus_huge_pages.
74  */
75 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
76 
77 /*
78  * Serializes faults on the same logical page.  This is used to
79  * prevent spurious OOMs when the hugepage pool is fully utilized.
80  */
81 static int num_fault_mutexes __ro_after_init;
82 struct mutex *hugetlb_fault_mutex_table __ro_after_init;
83 
84 /* Forward declaration */
85 static int hugetlb_acct_memory(struct hstate *h, long delta);
86 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
87 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
88 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
89 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
90 		unsigned long start, unsigned long end, bool take_locks);
91 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
92 
hugetlb_free_folio(struct folio * folio)93 static void hugetlb_free_folio(struct folio *folio)
94 {
95 #ifdef CONFIG_CMA
96 	int nid = folio_nid(folio);
97 
98 	if (cma_free_folio(hugetlb_cma[nid], folio))
99 		return;
100 #endif
101 	folio_put(folio);
102 }
103 
subpool_is_free(struct hugepage_subpool * spool)104 static inline bool subpool_is_free(struct hugepage_subpool *spool)
105 {
106 	if (spool->count)
107 		return false;
108 	if (spool->max_hpages != -1)
109 		return spool->used_hpages == 0;
110 	if (spool->min_hpages != -1)
111 		return spool->rsv_hpages == spool->min_hpages;
112 
113 	return true;
114 }
115 
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)116 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
117 						unsigned long irq_flags)
118 {
119 	spin_unlock_irqrestore(&spool->lock, irq_flags);
120 
121 	/* If no pages are used, and no other handles to the subpool
122 	 * remain, give up any reservations based on minimum size and
123 	 * free the subpool */
124 	if (subpool_is_free(spool)) {
125 		if (spool->min_hpages != -1)
126 			hugetlb_acct_memory(spool->hstate,
127 						-spool->min_hpages);
128 		kfree(spool);
129 	}
130 }
131 
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)132 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
133 						long min_hpages)
134 {
135 	struct hugepage_subpool *spool;
136 
137 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
138 	if (!spool)
139 		return NULL;
140 
141 	spin_lock_init(&spool->lock);
142 	spool->count = 1;
143 	spool->max_hpages = max_hpages;
144 	spool->hstate = h;
145 	spool->min_hpages = min_hpages;
146 
147 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
148 		kfree(spool);
149 		return NULL;
150 	}
151 	spool->rsv_hpages = min_hpages;
152 
153 	return spool;
154 }
155 
hugepage_put_subpool(struct hugepage_subpool * spool)156 void hugepage_put_subpool(struct hugepage_subpool *spool)
157 {
158 	unsigned long flags;
159 
160 	spin_lock_irqsave(&spool->lock, flags);
161 	BUG_ON(!spool->count);
162 	spool->count--;
163 	unlock_or_release_subpool(spool, flags);
164 }
165 
166 /*
167  * Subpool accounting for allocating and reserving pages.
168  * Return -ENOMEM if there are not enough resources to satisfy the
169  * request.  Otherwise, return the number of pages by which the
170  * global pools must be adjusted (upward).  The returned value may
171  * only be different than the passed value (delta) in the case where
172  * a subpool minimum size must be maintained.
173  */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)174 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
175 				      long delta)
176 {
177 	long ret = delta;
178 
179 	if (!spool)
180 		return ret;
181 
182 	spin_lock_irq(&spool->lock);
183 
184 	if (spool->max_hpages != -1) {		/* maximum size accounting */
185 		if ((spool->used_hpages + delta) <= spool->max_hpages)
186 			spool->used_hpages += delta;
187 		else {
188 			ret = -ENOMEM;
189 			goto unlock_ret;
190 		}
191 	}
192 
193 	/* minimum size accounting */
194 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
195 		if (delta > spool->rsv_hpages) {
196 			/*
197 			 * Asking for more reserves than those already taken on
198 			 * behalf of subpool.  Return difference.
199 			 */
200 			ret = delta - spool->rsv_hpages;
201 			spool->rsv_hpages = 0;
202 		} else {
203 			ret = 0;	/* reserves already accounted for */
204 			spool->rsv_hpages -= delta;
205 		}
206 	}
207 
208 unlock_ret:
209 	spin_unlock_irq(&spool->lock);
210 	return ret;
211 }
212 
213 /*
214  * Subpool accounting for freeing and unreserving pages.
215  * Return the number of global page reservations that must be dropped.
216  * The return value may only be different than the passed value (delta)
217  * in the case where a subpool minimum size must be maintained.
218  */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)219 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
220 				       long delta)
221 {
222 	long ret = delta;
223 	unsigned long flags;
224 
225 	if (!spool)
226 		return delta;
227 
228 	spin_lock_irqsave(&spool->lock, flags);
229 
230 	if (spool->max_hpages != -1)		/* maximum size accounting */
231 		spool->used_hpages -= delta;
232 
233 	 /* minimum size accounting */
234 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
235 		if (spool->rsv_hpages + delta <= spool->min_hpages)
236 			ret = 0;
237 		else
238 			ret = spool->rsv_hpages + delta - spool->min_hpages;
239 
240 		spool->rsv_hpages += delta;
241 		if (spool->rsv_hpages > spool->min_hpages)
242 			spool->rsv_hpages = spool->min_hpages;
243 	}
244 
245 	/*
246 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
247 	 * quota reference, free it now.
248 	 */
249 	unlock_or_release_subpool(spool, flags);
250 
251 	return ret;
252 }
253 
subpool_inode(struct inode * inode)254 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
255 {
256 	return HUGETLBFS_SB(inode->i_sb)->spool;
257 }
258 
subpool_vma(struct vm_area_struct * vma)259 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
260 {
261 	return subpool_inode(file_inode(vma->vm_file));
262 }
263 
264 /*
265  * hugetlb vma_lock helper routines
266  */
hugetlb_vma_lock_read(struct vm_area_struct * vma)267 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
268 {
269 	if (__vma_shareable_lock(vma)) {
270 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
271 
272 		down_read(&vma_lock->rw_sema);
273 	} else if (__vma_private_lock(vma)) {
274 		struct resv_map *resv_map = vma_resv_map(vma);
275 
276 		down_read(&resv_map->rw_sema);
277 	}
278 }
279 
hugetlb_vma_unlock_read(struct vm_area_struct * vma)280 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
281 {
282 	if (__vma_shareable_lock(vma)) {
283 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
284 
285 		up_read(&vma_lock->rw_sema);
286 	} else if (__vma_private_lock(vma)) {
287 		struct resv_map *resv_map = vma_resv_map(vma);
288 
289 		up_read(&resv_map->rw_sema);
290 	}
291 }
292 
hugetlb_vma_lock_write(struct vm_area_struct * vma)293 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
294 {
295 	if (__vma_shareable_lock(vma)) {
296 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
297 
298 		down_write(&vma_lock->rw_sema);
299 	} else if (__vma_private_lock(vma)) {
300 		struct resv_map *resv_map = vma_resv_map(vma);
301 
302 		down_write(&resv_map->rw_sema);
303 	}
304 }
305 
hugetlb_vma_unlock_write(struct vm_area_struct * vma)306 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
307 {
308 	if (__vma_shareable_lock(vma)) {
309 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
310 
311 		up_write(&vma_lock->rw_sema);
312 	} else if (__vma_private_lock(vma)) {
313 		struct resv_map *resv_map = vma_resv_map(vma);
314 
315 		up_write(&resv_map->rw_sema);
316 	}
317 }
318 
hugetlb_vma_trylock_write(struct vm_area_struct * vma)319 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
320 {
321 
322 	if (__vma_shareable_lock(vma)) {
323 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
324 
325 		return down_write_trylock(&vma_lock->rw_sema);
326 	} else if (__vma_private_lock(vma)) {
327 		struct resv_map *resv_map = vma_resv_map(vma);
328 
329 		return down_write_trylock(&resv_map->rw_sema);
330 	}
331 
332 	return 1;
333 }
334 
hugetlb_vma_assert_locked(struct vm_area_struct * vma)335 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
336 {
337 	if (__vma_shareable_lock(vma)) {
338 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
339 
340 		lockdep_assert_held(&vma_lock->rw_sema);
341 	} else if (__vma_private_lock(vma)) {
342 		struct resv_map *resv_map = vma_resv_map(vma);
343 
344 		lockdep_assert_held(&resv_map->rw_sema);
345 	}
346 }
347 
hugetlb_vma_lock_release(struct kref * kref)348 void hugetlb_vma_lock_release(struct kref *kref)
349 {
350 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
351 			struct hugetlb_vma_lock, refs);
352 
353 	kfree(vma_lock);
354 }
355 
__hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock * vma_lock)356 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
357 {
358 	struct vm_area_struct *vma = vma_lock->vma;
359 
360 	/*
361 	 * vma_lock structure may or not be released as a result of put,
362 	 * it certainly will no longer be attached to vma so clear pointer.
363 	 * Semaphore synchronizes access to vma_lock->vma field.
364 	 */
365 	vma_lock->vma = NULL;
366 	vma->vm_private_data = NULL;
367 	up_write(&vma_lock->rw_sema);
368 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
369 }
370 
__hugetlb_vma_unlock_write_free(struct vm_area_struct * vma)371 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
372 {
373 	if (__vma_shareable_lock(vma)) {
374 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
375 
376 		__hugetlb_vma_unlock_write_put(vma_lock);
377 	} else if (__vma_private_lock(vma)) {
378 		struct resv_map *resv_map = vma_resv_map(vma);
379 
380 		/* no free for anon vmas, but still need to unlock */
381 		up_write(&resv_map->rw_sema);
382 	}
383 }
384 
hugetlb_vma_lock_free(struct vm_area_struct * vma)385 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
386 {
387 	/*
388 	 * Only present in sharable vmas.
389 	 */
390 	if (!vma || !__vma_shareable_lock(vma))
391 		return;
392 
393 	if (vma->vm_private_data) {
394 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
395 
396 		down_write(&vma_lock->rw_sema);
397 		__hugetlb_vma_unlock_write_put(vma_lock);
398 	}
399 }
400 
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)401 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
402 {
403 	struct hugetlb_vma_lock *vma_lock;
404 
405 	/* Only establish in (flags) sharable vmas */
406 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
407 		return;
408 
409 	/* Should never get here with non-NULL vm_private_data */
410 	if (vma->vm_private_data)
411 		return;
412 
413 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
414 	if (!vma_lock) {
415 		/*
416 		 * If we can not allocate structure, then vma can not
417 		 * participate in pmd sharing.  This is only a possible
418 		 * performance enhancement and memory saving issue.
419 		 * However, the lock is also used to synchronize page
420 		 * faults with truncation.  If the lock is not present,
421 		 * unlikely races could leave pages in a file past i_size
422 		 * until the file is removed.  Warn in the unlikely case of
423 		 * allocation failure.
424 		 */
425 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
426 		return;
427 	}
428 
429 	kref_init(&vma_lock->refs);
430 	init_rwsem(&vma_lock->rw_sema);
431 	vma_lock->vma = vma;
432 	vma->vm_private_data = vma_lock;
433 }
434 
435 /* Helper that removes a struct file_region from the resv_map cache and returns
436  * it for use.
437  */
438 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)439 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
440 {
441 	struct file_region *nrg;
442 
443 	VM_BUG_ON(resv->region_cache_count <= 0);
444 
445 	resv->region_cache_count--;
446 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
447 	list_del(&nrg->link);
448 
449 	nrg->from = from;
450 	nrg->to = to;
451 
452 	return nrg;
453 }
454 
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)455 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
456 					      struct file_region *rg)
457 {
458 #ifdef CONFIG_CGROUP_HUGETLB
459 	nrg->reservation_counter = rg->reservation_counter;
460 	nrg->css = rg->css;
461 	if (rg->css)
462 		css_get(rg->css);
463 #endif
464 }
465 
466 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)467 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
468 						struct hstate *h,
469 						struct resv_map *resv,
470 						struct file_region *nrg)
471 {
472 #ifdef CONFIG_CGROUP_HUGETLB
473 	if (h_cg) {
474 		nrg->reservation_counter =
475 			&h_cg->rsvd_hugepage[hstate_index(h)];
476 		nrg->css = &h_cg->css;
477 		/*
478 		 * The caller will hold exactly one h_cg->css reference for the
479 		 * whole contiguous reservation region. But this area might be
480 		 * scattered when there are already some file_regions reside in
481 		 * it. As a result, many file_regions may share only one css
482 		 * reference. In order to ensure that one file_region must hold
483 		 * exactly one h_cg->css reference, we should do css_get for
484 		 * each file_region and leave the reference held by caller
485 		 * untouched.
486 		 */
487 		css_get(&h_cg->css);
488 		if (!resv->pages_per_hpage)
489 			resv->pages_per_hpage = pages_per_huge_page(h);
490 		/* pages_per_hpage should be the same for all entries in
491 		 * a resv_map.
492 		 */
493 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
494 	} else {
495 		nrg->reservation_counter = NULL;
496 		nrg->css = NULL;
497 	}
498 #endif
499 }
500 
put_uncharge_info(struct file_region * rg)501 static void put_uncharge_info(struct file_region *rg)
502 {
503 #ifdef CONFIG_CGROUP_HUGETLB
504 	if (rg->css)
505 		css_put(rg->css);
506 #endif
507 }
508 
has_same_uncharge_info(struct file_region * rg,struct file_region * org)509 static bool has_same_uncharge_info(struct file_region *rg,
510 				   struct file_region *org)
511 {
512 #ifdef CONFIG_CGROUP_HUGETLB
513 	return rg->reservation_counter == org->reservation_counter &&
514 	       rg->css == org->css;
515 
516 #else
517 	return true;
518 #endif
519 }
520 
coalesce_file_region(struct resv_map * resv,struct file_region * rg)521 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
522 {
523 	struct file_region *nrg, *prg;
524 
525 	prg = list_prev_entry(rg, link);
526 	if (&prg->link != &resv->regions && prg->to == rg->from &&
527 	    has_same_uncharge_info(prg, rg)) {
528 		prg->to = rg->to;
529 
530 		list_del(&rg->link);
531 		put_uncharge_info(rg);
532 		kfree(rg);
533 
534 		rg = prg;
535 	}
536 
537 	nrg = list_next_entry(rg, link);
538 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
539 	    has_same_uncharge_info(nrg, rg)) {
540 		nrg->from = rg->from;
541 
542 		list_del(&rg->link);
543 		put_uncharge_info(rg);
544 		kfree(rg);
545 	}
546 }
547 
548 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)549 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
550 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
551 		     long *regions_needed)
552 {
553 	struct file_region *nrg;
554 
555 	if (!regions_needed) {
556 		nrg = get_file_region_entry_from_cache(map, from, to);
557 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
558 		list_add(&nrg->link, rg);
559 		coalesce_file_region(map, nrg);
560 	} else
561 		*regions_needed += 1;
562 
563 	return to - from;
564 }
565 
566 /*
567  * Must be called with resv->lock held.
568  *
569  * Calling this with regions_needed != NULL will count the number of pages
570  * to be added but will not modify the linked list. And regions_needed will
571  * indicate the number of file_regions needed in the cache to carry out to add
572  * the regions for this range.
573  */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)574 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
575 				     struct hugetlb_cgroup *h_cg,
576 				     struct hstate *h, long *regions_needed)
577 {
578 	long add = 0;
579 	struct list_head *head = &resv->regions;
580 	long last_accounted_offset = f;
581 	struct file_region *iter, *trg = NULL;
582 	struct list_head *rg = NULL;
583 
584 	if (regions_needed)
585 		*regions_needed = 0;
586 
587 	/* In this loop, we essentially handle an entry for the range
588 	 * [last_accounted_offset, iter->from), at every iteration, with some
589 	 * bounds checking.
590 	 */
591 	list_for_each_entry_safe(iter, trg, head, link) {
592 		/* Skip irrelevant regions that start before our range. */
593 		if (iter->from < f) {
594 			/* If this region ends after the last accounted offset,
595 			 * then we need to update last_accounted_offset.
596 			 */
597 			if (iter->to > last_accounted_offset)
598 				last_accounted_offset = iter->to;
599 			continue;
600 		}
601 
602 		/* When we find a region that starts beyond our range, we've
603 		 * finished.
604 		 */
605 		if (iter->from >= t) {
606 			rg = iter->link.prev;
607 			break;
608 		}
609 
610 		/* Add an entry for last_accounted_offset -> iter->from, and
611 		 * update last_accounted_offset.
612 		 */
613 		if (iter->from > last_accounted_offset)
614 			add += hugetlb_resv_map_add(resv, iter->link.prev,
615 						    last_accounted_offset,
616 						    iter->from, h, h_cg,
617 						    regions_needed);
618 
619 		last_accounted_offset = iter->to;
620 	}
621 
622 	/* Handle the case where our range extends beyond
623 	 * last_accounted_offset.
624 	 */
625 	if (!rg)
626 		rg = head->prev;
627 	if (last_accounted_offset < t)
628 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
629 					    t, h, h_cg, regions_needed);
630 
631 	return add;
632 }
633 
634 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
635  */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)636 static int allocate_file_region_entries(struct resv_map *resv,
637 					int regions_needed)
638 	__must_hold(&resv->lock)
639 {
640 	LIST_HEAD(allocated_regions);
641 	int to_allocate = 0, i = 0;
642 	struct file_region *trg = NULL, *rg = NULL;
643 
644 	VM_BUG_ON(regions_needed < 0);
645 
646 	/*
647 	 * Check for sufficient descriptors in the cache to accommodate
648 	 * the number of in progress add operations plus regions_needed.
649 	 *
650 	 * This is a while loop because when we drop the lock, some other call
651 	 * to region_add or region_del may have consumed some region_entries,
652 	 * so we keep looping here until we finally have enough entries for
653 	 * (adds_in_progress + regions_needed).
654 	 */
655 	while (resv->region_cache_count <
656 	       (resv->adds_in_progress + regions_needed)) {
657 		to_allocate = resv->adds_in_progress + regions_needed -
658 			      resv->region_cache_count;
659 
660 		/* At this point, we should have enough entries in the cache
661 		 * for all the existing adds_in_progress. We should only be
662 		 * needing to allocate for regions_needed.
663 		 */
664 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
665 
666 		spin_unlock(&resv->lock);
667 		for (i = 0; i < to_allocate; i++) {
668 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
669 			if (!trg)
670 				goto out_of_memory;
671 			list_add(&trg->link, &allocated_regions);
672 		}
673 
674 		spin_lock(&resv->lock);
675 
676 		list_splice(&allocated_regions, &resv->region_cache);
677 		resv->region_cache_count += to_allocate;
678 	}
679 
680 	return 0;
681 
682 out_of_memory:
683 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
684 		list_del(&rg->link);
685 		kfree(rg);
686 	}
687 	return -ENOMEM;
688 }
689 
690 /*
691  * Add the huge page range represented by [f, t) to the reserve
692  * map.  Regions will be taken from the cache to fill in this range.
693  * Sufficient regions should exist in the cache due to the previous
694  * call to region_chg with the same range, but in some cases the cache will not
695  * have sufficient entries due to races with other code doing region_add or
696  * region_del.  The extra needed entries will be allocated.
697  *
698  * regions_needed is the out value provided by a previous call to region_chg.
699  *
700  * Return the number of new huge pages added to the map.  This number is greater
701  * than or equal to zero.  If file_region entries needed to be allocated for
702  * this operation and we were not able to allocate, it returns -ENOMEM.
703  * region_add of regions of length 1 never allocate file_regions and cannot
704  * fail; region_chg will always allocate at least 1 entry and a region_add for
705  * 1 page will only require at most 1 entry.
706  */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)707 static long region_add(struct resv_map *resv, long f, long t,
708 		       long in_regions_needed, struct hstate *h,
709 		       struct hugetlb_cgroup *h_cg)
710 {
711 	long add = 0, actual_regions_needed = 0;
712 
713 	spin_lock(&resv->lock);
714 retry:
715 
716 	/* Count how many regions are actually needed to execute this add. */
717 	add_reservation_in_range(resv, f, t, NULL, NULL,
718 				 &actual_regions_needed);
719 
720 	/*
721 	 * Check for sufficient descriptors in the cache to accommodate
722 	 * this add operation. Note that actual_regions_needed may be greater
723 	 * than in_regions_needed, as the resv_map may have been modified since
724 	 * the region_chg call. In this case, we need to make sure that we
725 	 * allocate extra entries, such that we have enough for all the
726 	 * existing adds_in_progress, plus the excess needed for this
727 	 * operation.
728 	 */
729 	if (actual_regions_needed > in_regions_needed &&
730 	    resv->region_cache_count <
731 		    resv->adds_in_progress +
732 			    (actual_regions_needed - in_regions_needed)) {
733 		/* region_add operation of range 1 should never need to
734 		 * allocate file_region entries.
735 		 */
736 		VM_BUG_ON(t - f <= 1);
737 
738 		if (allocate_file_region_entries(
739 			    resv, actual_regions_needed - in_regions_needed)) {
740 			return -ENOMEM;
741 		}
742 
743 		goto retry;
744 	}
745 
746 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
747 
748 	resv->adds_in_progress -= in_regions_needed;
749 
750 	spin_unlock(&resv->lock);
751 	return add;
752 }
753 
754 /*
755  * Examine the existing reserve map and determine how many
756  * huge pages in the specified range [f, t) are NOT currently
757  * represented.  This routine is called before a subsequent
758  * call to region_add that will actually modify the reserve
759  * map to add the specified range [f, t).  region_chg does
760  * not change the number of huge pages represented by the
761  * map.  A number of new file_region structures is added to the cache as a
762  * placeholder, for the subsequent region_add call to use. At least 1
763  * file_region structure is added.
764  *
765  * out_regions_needed is the number of regions added to the
766  * resv->adds_in_progress.  This value needs to be provided to a follow up call
767  * to region_add or region_abort for proper accounting.
768  *
769  * Returns the number of huge pages that need to be added to the existing
770  * reservation map for the range [f, t).  This number is greater or equal to
771  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
772  * is needed and can not be allocated.
773  */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)774 static long region_chg(struct resv_map *resv, long f, long t,
775 		       long *out_regions_needed)
776 {
777 	long chg = 0;
778 
779 	spin_lock(&resv->lock);
780 
781 	/* Count how many hugepages in this range are NOT represented. */
782 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
783 				       out_regions_needed);
784 
785 	if (*out_regions_needed == 0)
786 		*out_regions_needed = 1;
787 
788 	if (allocate_file_region_entries(resv, *out_regions_needed))
789 		return -ENOMEM;
790 
791 	resv->adds_in_progress += *out_regions_needed;
792 
793 	spin_unlock(&resv->lock);
794 	return chg;
795 }
796 
797 /*
798  * Abort the in progress add operation.  The adds_in_progress field
799  * of the resv_map keeps track of the operations in progress between
800  * calls to region_chg and region_add.  Operations are sometimes
801  * aborted after the call to region_chg.  In such cases, region_abort
802  * is called to decrement the adds_in_progress counter. regions_needed
803  * is the value returned by the region_chg call, it is used to decrement
804  * the adds_in_progress counter.
805  *
806  * NOTE: The range arguments [f, t) are not needed or used in this
807  * routine.  They are kept to make reading the calling code easier as
808  * arguments will match the associated region_chg call.
809  */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)810 static void region_abort(struct resv_map *resv, long f, long t,
811 			 long regions_needed)
812 {
813 	spin_lock(&resv->lock);
814 	VM_BUG_ON(!resv->region_cache_count);
815 	resv->adds_in_progress -= regions_needed;
816 	spin_unlock(&resv->lock);
817 }
818 
819 /*
820  * Delete the specified range [f, t) from the reserve map.  If the
821  * t parameter is LONG_MAX, this indicates that ALL regions after f
822  * should be deleted.  Locate the regions which intersect [f, t)
823  * and either trim, delete or split the existing regions.
824  *
825  * Returns the number of huge pages deleted from the reserve map.
826  * In the normal case, the return value is zero or more.  In the
827  * case where a region must be split, a new region descriptor must
828  * be allocated.  If the allocation fails, -ENOMEM will be returned.
829  * NOTE: If the parameter t == LONG_MAX, then we will never split
830  * a region and possibly return -ENOMEM.  Callers specifying
831  * t == LONG_MAX do not need to check for -ENOMEM error.
832  */
region_del(struct resv_map * resv,long f,long t)833 static long region_del(struct resv_map *resv, long f, long t)
834 {
835 	struct list_head *head = &resv->regions;
836 	struct file_region *rg, *trg;
837 	struct file_region *nrg = NULL;
838 	long del = 0;
839 
840 retry:
841 	spin_lock(&resv->lock);
842 	list_for_each_entry_safe(rg, trg, head, link) {
843 		/*
844 		 * Skip regions before the range to be deleted.  file_region
845 		 * ranges are normally of the form [from, to).  However, there
846 		 * may be a "placeholder" entry in the map which is of the form
847 		 * (from, to) with from == to.  Check for placeholder entries
848 		 * at the beginning of the range to be deleted.
849 		 */
850 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
851 			continue;
852 
853 		if (rg->from >= t)
854 			break;
855 
856 		if (f > rg->from && t < rg->to) { /* Must split region */
857 			/*
858 			 * Check for an entry in the cache before dropping
859 			 * lock and attempting allocation.
860 			 */
861 			if (!nrg &&
862 			    resv->region_cache_count > resv->adds_in_progress) {
863 				nrg = list_first_entry(&resv->region_cache,
864 							struct file_region,
865 							link);
866 				list_del(&nrg->link);
867 				resv->region_cache_count--;
868 			}
869 
870 			if (!nrg) {
871 				spin_unlock(&resv->lock);
872 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
873 				if (!nrg)
874 					return -ENOMEM;
875 				goto retry;
876 			}
877 
878 			del += t - f;
879 			hugetlb_cgroup_uncharge_file_region(
880 				resv, rg, t - f, false);
881 
882 			/* New entry for end of split region */
883 			nrg->from = t;
884 			nrg->to = rg->to;
885 
886 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
887 
888 			INIT_LIST_HEAD(&nrg->link);
889 
890 			/* Original entry is trimmed */
891 			rg->to = f;
892 
893 			list_add(&nrg->link, &rg->link);
894 			nrg = NULL;
895 			break;
896 		}
897 
898 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
899 			del += rg->to - rg->from;
900 			hugetlb_cgroup_uncharge_file_region(resv, rg,
901 							    rg->to - rg->from, true);
902 			list_del(&rg->link);
903 			kfree(rg);
904 			continue;
905 		}
906 
907 		if (f <= rg->from) {	/* Trim beginning of region */
908 			hugetlb_cgroup_uncharge_file_region(resv, rg,
909 							    t - rg->from, false);
910 
911 			del += t - rg->from;
912 			rg->from = t;
913 		} else {		/* Trim end of region */
914 			hugetlb_cgroup_uncharge_file_region(resv, rg,
915 							    rg->to - f, false);
916 
917 			del += rg->to - f;
918 			rg->to = f;
919 		}
920 	}
921 
922 	spin_unlock(&resv->lock);
923 	kfree(nrg);
924 	return del;
925 }
926 
927 /*
928  * A rare out of memory error was encountered which prevented removal of
929  * the reserve map region for a page.  The huge page itself was free'ed
930  * and removed from the page cache.  This routine will adjust the subpool
931  * usage count, and the global reserve count if needed.  By incrementing
932  * these counts, the reserve map entry which could not be deleted will
933  * appear as a "reserved" entry instead of simply dangling with incorrect
934  * counts.
935  */
hugetlb_fix_reserve_counts(struct inode * inode)936 void hugetlb_fix_reserve_counts(struct inode *inode)
937 {
938 	struct hugepage_subpool *spool = subpool_inode(inode);
939 	long rsv_adjust;
940 	bool reserved = false;
941 
942 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
943 	if (rsv_adjust > 0) {
944 		struct hstate *h = hstate_inode(inode);
945 
946 		if (!hugetlb_acct_memory(h, 1))
947 			reserved = true;
948 	} else if (!rsv_adjust) {
949 		reserved = true;
950 	}
951 
952 	if (!reserved)
953 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
954 }
955 
956 /*
957  * Count and return the number of huge pages in the reserve map
958  * that intersect with the range [f, t).
959  */
region_count(struct resv_map * resv,long f,long t)960 static long region_count(struct resv_map *resv, long f, long t)
961 {
962 	struct list_head *head = &resv->regions;
963 	struct file_region *rg;
964 	long chg = 0;
965 
966 	spin_lock(&resv->lock);
967 	/* Locate each segment we overlap with, and count that overlap. */
968 	list_for_each_entry(rg, head, link) {
969 		long seg_from;
970 		long seg_to;
971 
972 		if (rg->to <= f)
973 			continue;
974 		if (rg->from >= t)
975 			break;
976 
977 		seg_from = max(rg->from, f);
978 		seg_to = min(rg->to, t);
979 
980 		chg += seg_to - seg_from;
981 	}
982 	spin_unlock(&resv->lock);
983 
984 	return chg;
985 }
986 
987 /*
988  * Convert the address within this vma to the page offset within
989  * the mapping, huge page units here.
990  */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)991 static pgoff_t vma_hugecache_offset(struct hstate *h,
992 			struct vm_area_struct *vma, unsigned long address)
993 {
994 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
995 			(vma->vm_pgoff >> huge_page_order(h));
996 }
997 
998 /**
999  * vma_kernel_pagesize - Page size granularity for this VMA.
1000  * @vma: The user mapping.
1001  *
1002  * Folios in this VMA will be aligned to, and at least the size of the
1003  * number of bytes returned by this function.
1004  *
1005  * Return: The default size of the folios allocated when backing a VMA.
1006  */
vma_kernel_pagesize(struct vm_area_struct * vma)1007 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1008 {
1009 	if (vma->vm_ops && vma->vm_ops->pagesize)
1010 		return vma->vm_ops->pagesize(vma);
1011 	return PAGE_SIZE;
1012 }
1013 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1014 
1015 /*
1016  * Return the page size being used by the MMU to back a VMA. In the majority
1017  * of cases, the page size used by the kernel matches the MMU size. On
1018  * architectures where it differs, an architecture-specific 'strong'
1019  * version of this symbol is required.
1020  */
vma_mmu_pagesize(struct vm_area_struct * vma)1021 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1022 {
1023 	return vma_kernel_pagesize(vma);
1024 }
1025 
1026 /*
1027  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1028  * bits of the reservation map pointer, which are always clear due to
1029  * alignment.
1030  */
1031 #define HPAGE_RESV_OWNER    (1UL << 0)
1032 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1033 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1034 
1035 /*
1036  * These helpers are used to track how many pages are reserved for
1037  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1038  * is guaranteed to have their future faults succeed.
1039  *
1040  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1041  * the reserve counters are updated with the hugetlb_lock held. It is safe
1042  * to reset the VMA at fork() time as it is not in use yet and there is no
1043  * chance of the global counters getting corrupted as a result of the values.
1044  *
1045  * The private mapping reservation is represented in a subtly different
1046  * manner to a shared mapping.  A shared mapping has a region map associated
1047  * with the underlying file, this region map represents the backing file
1048  * pages which have ever had a reservation assigned which this persists even
1049  * after the page is instantiated.  A private mapping has a region map
1050  * associated with the original mmap which is attached to all VMAs which
1051  * reference it, this region map represents those offsets which have consumed
1052  * reservation ie. where pages have been instantiated.
1053  */
get_vma_private_data(struct vm_area_struct * vma)1054 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1055 {
1056 	return (unsigned long)vma->vm_private_data;
1057 }
1058 
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)1059 static void set_vma_private_data(struct vm_area_struct *vma,
1060 							unsigned long value)
1061 {
1062 	vma->vm_private_data = (void *)value;
1063 }
1064 
1065 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)1066 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1067 					  struct hugetlb_cgroup *h_cg,
1068 					  struct hstate *h)
1069 {
1070 #ifdef CONFIG_CGROUP_HUGETLB
1071 	if (!h_cg || !h) {
1072 		resv_map->reservation_counter = NULL;
1073 		resv_map->pages_per_hpage = 0;
1074 		resv_map->css = NULL;
1075 	} else {
1076 		resv_map->reservation_counter =
1077 			&h_cg->rsvd_hugepage[hstate_index(h)];
1078 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1079 		resv_map->css = &h_cg->css;
1080 	}
1081 #endif
1082 }
1083 
resv_map_alloc(void)1084 struct resv_map *resv_map_alloc(void)
1085 {
1086 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1087 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1088 
1089 	if (!resv_map || !rg) {
1090 		kfree(resv_map);
1091 		kfree(rg);
1092 		return NULL;
1093 	}
1094 
1095 	kref_init(&resv_map->refs);
1096 	spin_lock_init(&resv_map->lock);
1097 	INIT_LIST_HEAD(&resv_map->regions);
1098 	init_rwsem(&resv_map->rw_sema);
1099 
1100 	resv_map->adds_in_progress = 0;
1101 	/*
1102 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1103 	 * fields don't do cgroup accounting. On private mappings, these will be
1104 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1105 	 * reservations are to be un-charged from here.
1106 	 */
1107 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1108 
1109 	INIT_LIST_HEAD(&resv_map->region_cache);
1110 	list_add(&rg->link, &resv_map->region_cache);
1111 	resv_map->region_cache_count = 1;
1112 
1113 	return resv_map;
1114 }
1115 
resv_map_release(struct kref * ref)1116 void resv_map_release(struct kref *ref)
1117 {
1118 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1119 	struct list_head *head = &resv_map->region_cache;
1120 	struct file_region *rg, *trg;
1121 
1122 	/* Clear out any active regions before we release the map. */
1123 	region_del(resv_map, 0, LONG_MAX);
1124 
1125 	/* ... and any entries left in the cache */
1126 	list_for_each_entry_safe(rg, trg, head, link) {
1127 		list_del(&rg->link);
1128 		kfree(rg);
1129 	}
1130 
1131 	VM_BUG_ON(resv_map->adds_in_progress);
1132 
1133 	kfree(resv_map);
1134 }
1135 
inode_resv_map(struct inode * inode)1136 static inline struct resv_map *inode_resv_map(struct inode *inode)
1137 {
1138 	/*
1139 	 * At inode evict time, i_mapping may not point to the original
1140 	 * address space within the inode.  This original address space
1141 	 * contains the pointer to the resv_map.  So, always use the
1142 	 * address space embedded within the inode.
1143 	 * The VERY common case is inode->mapping == &inode->i_data but,
1144 	 * this may not be true for device special inodes.
1145 	 */
1146 	return (struct resv_map *)(&inode->i_data)->i_private_data;
1147 }
1148 
vma_resv_map(struct vm_area_struct * vma)1149 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1150 {
1151 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1152 	if (vma->vm_flags & VM_MAYSHARE) {
1153 		struct address_space *mapping = vma->vm_file->f_mapping;
1154 		struct inode *inode = mapping->host;
1155 
1156 		return inode_resv_map(inode);
1157 
1158 	} else {
1159 		return (struct resv_map *)(get_vma_private_data(vma) &
1160 							~HPAGE_RESV_MASK);
1161 	}
1162 }
1163 
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)1164 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1165 {
1166 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1167 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1168 
1169 	set_vma_private_data(vma, (unsigned long)map);
1170 }
1171 
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1172 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1173 {
1174 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1175 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1176 
1177 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1178 }
1179 
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1180 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1181 {
1182 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1183 
1184 	return (get_vma_private_data(vma) & flag) != 0;
1185 }
1186 
__vma_private_lock(struct vm_area_struct * vma)1187 bool __vma_private_lock(struct vm_area_struct *vma)
1188 {
1189 	return !(vma->vm_flags & VM_MAYSHARE) &&
1190 		get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1191 		is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1192 }
1193 
hugetlb_dup_vma_private(struct vm_area_struct * vma)1194 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1195 {
1196 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1197 	/*
1198 	 * Clear vm_private_data
1199 	 * - For shared mappings this is a per-vma semaphore that may be
1200 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1201 	 *   Before clearing, make sure pointer is not associated with vma
1202 	 *   as this will leak the structure.  This is the case when called
1203 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1204 	 *   been called to allocate a new structure.
1205 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1206 	 *   not apply to children.  Faults generated by the children are
1207 	 *   not guaranteed to succeed, even if read-only.
1208 	 */
1209 	if (vma->vm_flags & VM_MAYSHARE) {
1210 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1211 
1212 		if (vma_lock && vma_lock->vma != vma)
1213 			vma->vm_private_data = NULL;
1214 	} else
1215 		vma->vm_private_data = NULL;
1216 }
1217 
1218 /*
1219  * Reset and decrement one ref on hugepage private reservation.
1220  * Called with mm->mmap_lock writer semaphore held.
1221  * This function should be only used by move_vma() and operate on
1222  * same sized vma. It should never come here with last ref on the
1223  * reservation.
1224  */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1225 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1226 {
1227 	/*
1228 	 * Clear the old hugetlb private page reservation.
1229 	 * It has already been transferred to new_vma.
1230 	 *
1231 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1232 	 * which copies vma into new_vma and unmaps vma. After the copy
1233 	 * operation both new_vma and vma share a reference to the resv_map
1234 	 * struct, and at that point vma is about to be unmapped. We don't
1235 	 * want to return the reservation to the pool at unmap of vma because
1236 	 * the reservation still lives on in new_vma, so simply decrement the
1237 	 * ref here and remove the resv_map reference from this vma.
1238 	 */
1239 	struct resv_map *reservations = vma_resv_map(vma);
1240 
1241 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1242 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1243 		kref_put(&reservations->refs, resv_map_release);
1244 	}
1245 
1246 	hugetlb_dup_vma_private(vma);
1247 }
1248 
1249 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)1250 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1251 {
1252 	if (vma->vm_flags & VM_NORESERVE) {
1253 		/*
1254 		 * This address is already reserved by other process(chg == 0),
1255 		 * so, we should decrement reserved count. Without decrementing,
1256 		 * reserve count remains after releasing inode, because this
1257 		 * allocated page will go into page cache and is regarded as
1258 		 * coming from reserved pool in releasing step.  Currently, we
1259 		 * don't have any other solution to deal with this situation
1260 		 * properly, so add work-around here.
1261 		 */
1262 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1263 			return true;
1264 		else
1265 			return false;
1266 	}
1267 
1268 	/* Shared mappings always use reserves */
1269 	if (vma->vm_flags & VM_MAYSHARE) {
1270 		/*
1271 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1272 		 * be a region map for all pages.  The only situation where
1273 		 * there is no region map is if a hole was punched via
1274 		 * fallocate.  In this case, there really are no reserves to
1275 		 * use.  This situation is indicated if chg != 0.
1276 		 */
1277 		if (chg)
1278 			return false;
1279 		else
1280 			return true;
1281 	}
1282 
1283 	/*
1284 	 * Only the process that called mmap() has reserves for
1285 	 * private mappings.
1286 	 */
1287 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1288 		/*
1289 		 * Like the shared case above, a hole punch or truncate
1290 		 * could have been performed on the private mapping.
1291 		 * Examine the value of chg to determine if reserves
1292 		 * actually exist or were previously consumed.
1293 		 * Very Subtle - The value of chg comes from a previous
1294 		 * call to vma_needs_reserves().  The reserve map for
1295 		 * private mappings has different (opposite) semantics
1296 		 * than that of shared mappings.  vma_needs_reserves()
1297 		 * has already taken this difference in semantics into
1298 		 * account.  Therefore, the meaning of chg is the same
1299 		 * as in the shared case above.  Code could easily be
1300 		 * combined, but keeping it separate draws attention to
1301 		 * subtle differences.
1302 		 */
1303 		if (chg)
1304 			return false;
1305 		else
1306 			return true;
1307 	}
1308 
1309 	return false;
1310 }
1311 
enqueue_hugetlb_folio(struct hstate * h,struct folio * folio)1312 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1313 {
1314 	int nid = folio_nid(folio);
1315 
1316 	lockdep_assert_held(&hugetlb_lock);
1317 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1318 
1319 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1320 	h->free_huge_pages++;
1321 	h->free_huge_pages_node[nid]++;
1322 	folio_set_hugetlb_freed(folio);
1323 }
1324 
dequeue_hugetlb_folio_node_exact(struct hstate * h,int nid)1325 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1326 								int nid)
1327 {
1328 	struct folio *folio;
1329 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1330 
1331 	lockdep_assert_held(&hugetlb_lock);
1332 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1333 		if (pin && !folio_is_longterm_pinnable(folio))
1334 			continue;
1335 
1336 		if (folio_test_hwpoison(folio))
1337 			continue;
1338 
1339 		list_move(&folio->lru, &h->hugepage_activelist);
1340 		folio_ref_unfreeze(folio, 1);
1341 		folio_clear_hugetlb_freed(folio);
1342 		h->free_huge_pages--;
1343 		h->free_huge_pages_node[nid]--;
1344 		return folio;
1345 	}
1346 
1347 	return NULL;
1348 }
1349 
dequeue_hugetlb_folio_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1350 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1351 							int nid, nodemask_t *nmask)
1352 {
1353 	unsigned int cpuset_mems_cookie;
1354 	struct zonelist *zonelist;
1355 	struct zone *zone;
1356 	struct zoneref *z;
1357 	int node = NUMA_NO_NODE;
1358 
1359 	/* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1360 	if (nid == NUMA_NO_NODE)
1361 		nid = numa_node_id();
1362 
1363 	zonelist = node_zonelist(nid, gfp_mask);
1364 
1365 retry_cpuset:
1366 	cpuset_mems_cookie = read_mems_allowed_begin();
1367 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1368 		struct folio *folio;
1369 
1370 		if (!cpuset_zone_allowed(zone, gfp_mask))
1371 			continue;
1372 		/*
1373 		 * no need to ask again on the same node. Pool is node rather than
1374 		 * zone aware
1375 		 */
1376 		if (zone_to_nid(zone) == node)
1377 			continue;
1378 		node = zone_to_nid(zone);
1379 
1380 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1381 		if (folio)
1382 			return folio;
1383 	}
1384 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1385 		goto retry_cpuset;
1386 
1387 	return NULL;
1388 }
1389 
available_huge_pages(struct hstate * h)1390 static unsigned long available_huge_pages(struct hstate *h)
1391 {
1392 	return h->free_huge_pages - h->resv_huge_pages;
1393 }
1394 
dequeue_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,long chg)1395 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1396 				struct vm_area_struct *vma,
1397 				unsigned long address, long chg)
1398 {
1399 	struct folio *folio = NULL;
1400 	struct mempolicy *mpol;
1401 	gfp_t gfp_mask;
1402 	nodemask_t *nodemask;
1403 	int nid;
1404 
1405 	/*
1406 	 * A child process with MAP_PRIVATE mappings created by their parent
1407 	 * have no page reserves. This check ensures that reservations are
1408 	 * not "stolen". The child may still get SIGKILLed
1409 	 */
1410 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1411 		goto err;
1412 
1413 	gfp_mask = htlb_alloc_mask(h);
1414 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1415 
1416 	if (mpol_is_preferred_many(mpol)) {
1417 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1418 							nid, nodemask);
1419 
1420 		/* Fallback to all nodes if page==NULL */
1421 		nodemask = NULL;
1422 	}
1423 
1424 	if (!folio)
1425 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1426 							nid, nodemask);
1427 
1428 	if (folio && vma_has_reserves(vma, chg)) {
1429 		folio_set_hugetlb_restore_reserve(folio);
1430 		h->resv_huge_pages--;
1431 	}
1432 
1433 	mpol_cond_put(mpol);
1434 	return folio;
1435 
1436 err:
1437 	return NULL;
1438 }
1439 
1440 /*
1441  * common helper functions for hstate_next_node_to_{alloc|free}.
1442  * We may have allocated or freed a huge page based on a different
1443  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1444  * be outside of *nodes_allowed.  Ensure that we use an allowed
1445  * node for alloc or free.
1446  */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1447 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1448 {
1449 	nid = next_node_in(nid, *nodes_allowed);
1450 	VM_BUG_ON(nid >= MAX_NUMNODES);
1451 
1452 	return nid;
1453 }
1454 
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1455 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1456 {
1457 	if (!node_isset(nid, *nodes_allowed))
1458 		nid = next_node_allowed(nid, nodes_allowed);
1459 	return nid;
1460 }
1461 
1462 /*
1463  * returns the previously saved node ["this node"] from which to
1464  * allocate a persistent huge page for the pool and advance the
1465  * next node from which to allocate, handling wrap at end of node
1466  * mask.
1467  */
hstate_next_node_to_alloc(int * next_node,nodemask_t * nodes_allowed)1468 static int hstate_next_node_to_alloc(int *next_node,
1469 					nodemask_t *nodes_allowed)
1470 {
1471 	int nid;
1472 
1473 	VM_BUG_ON(!nodes_allowed);
1474 
1475 	nid = get_valid_node_allowed(*next_node, nodes_allowed);
1476 	*next_node = next_node_allowed(nid, nodes_allowed);
1477 
1478 	return nid;
1479 }
1480 
1481 /*
1482  * helper for remove_pool_hugetlb_folio() - return the previously saved
1483  * node ["this node"] from which to free a huge page.  Advance the
1484  * next node id whether or not we find a free huge page to free so
1485  * that the next attempt to free addresses the next node.
1486  */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1487 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1488 {
1489 	int nid;
1490 
1491 	VM_BUG_ON(!nodes_allowed);
1492 
1493 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1494 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1495 
1496 	return nid;
1497 }
1498 
1499 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)		\
1500 	for (nr_nodes = nodes_weight(*mask);				\
1501 		nr_nodes > 0 &&						\
1502 		((node = hstate_next_node_to_alloc(next_node, mask)) || 1);	\
1503 		nr_nodes--)
1504 
1505 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1506 	for (nr_nodes = nodes_weight(*mask);				\
1507 		nr_nodes > 0 &&						\
1508 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1509 		nr_nodes--)
1510 
1511 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1512 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1513 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1514 		int nid, nodemask_t *nodemask)
1515 {
1516 	struct folio *folio;
1517 	int order = huge_page_order(h);
1518 	bool retried = false;
1519 
1520 	if (nid == NUMA_NO_NODE)
1521 		nid = numa_mem_id();
1522 retry:
1523 	folio = NULL;
1524 #ifdef CONFIG_CMA
1525 	{
1526 		int node;
1527 
1528 		if (hugetlb_cma[nid])
1529 			folio = cma_alloc_folio(hugetlb_cma[nid], order, gfp_mask);
1530 
1531 		if (!folio && !(gfp_mask & __GFP_THISNODE)) {
1532 			for_each_node_mask(node, *nodemask) {
1533 				if (node == nid || !hugetlb_cma[node])
1534 					continue;
1535 
1536 				folio = cma_alloc_folio(hugetlb_cma[node], order, gfp_mask);
1537 				if (folio)
1538 					break;
1539 			}
1540 		}
1541 	}
1542 #endif
1543 	if (!folio) {
1544 		folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1545 		if (!folio)
1546 			return NULL;
1547 	}
1548 
1549 	if (folio_ref_freeze(folio, 1))
1550 		return folio;
1551 
1552 	pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1553 	hugetlb_free_folio(folio);
1554 	if (!retried) {
1555 		retried = true;
1556 		goto retry;
1557 	}
1558 	return NULL;
1559 }
1560 
1561 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1562 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1563 					int nid, nodemask_t *nodemask)
1564 {
1565 	return NULL;
1566 }
1567 #endif /* CONFIG_CONTIG_ALLOC */
1568 
1569 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1570 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1571 					int nid, nodemask_t *nodemask)
1572 {
1573 	return NULL;
1574 }
1575 #endif
1576 
1577 /*
1578  * Remove hugetlb folio from lists.
1579  * If vmemmap exists for the folio, clear the hugetlb flag so that the
1580  * folio appears as just a compound page.  Otherwise, wait until after
1581  * allocating vmemmap to clear the flag.
1582  *
1583  * Must be called with hugetlb lock held.
1584  */
remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1585 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1586 							bool adjust_surplus)
1587 {
1588 	int nid = folio_nid(folio);
1589 
1590 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1591 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1592 
1593 	lockdep_assert_held(&hugetlb_lock);
1594 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1595 		return;
1596 
1597 	list_del(&folio->lru);
1598 
1599 	if (folio_test_hugetlb_freed(folio)) {
1600 		folio_clear_hugetlb_freed(folio);
1601 		h->free_huge_pages--;
1602 		h->free_huge_pages_node[nid]--;
1603 	}
1604 	if (adjust_surplus) {
1605 		h->surplus_huge_pages--;
1606 		h->surplus_huge_pages_node[nid]--;
1607 	}
1608 
1609 	/*
1610 	 * We can only clear the hugetlb flag after allocating vmemmap
1611 	 * pages.  Otherwise, someone (memory error handling) may try to write
1612 	 * to tail struct pages.
1613 	 */
1614 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1615 		__folio_clear_hugetlb(folio);
1616 
1617 	h->nr_huge_pages--;
1618 	h->nr_huge_pages_node[nid]--;
1619 }
1620 
add_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1621 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1622 			     bool adjust_surplus)
1623 {
1624 	int nid = folio_nid(folio);
1625 
1626 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1627 
1628 	lockdep_assert_held(&hugetlb_lock);
1629 
1630 	INIT_LIST_HEAD(&folio->lru);
1631 	h->nr_huge_pages++;
1632 	h->nr_huge_pages_node[nid]++;
1633 
1634 	if (adjust_surplus) {
1635 		h->surplus_huge_pages++;
1636 		h->surplus_huge_pages_node[nid]++;
1637 	}
1638 
1639 	__folio_set_hugetlb(folio);
1640 	folio_change_private(folio, NULL);
1641 	/*
1642 	 * We have to set hugetlb_vmemmap_optimized again as above
1643 	 * folio_change_private(folio, NULL) cleared it.
1644 	 */
1645 	folio_set_hugetlb_vmemmap_optimized(folio);
1646 
1647 	arch_clear_hugetlb_flags(folio);
1648 	enqueue_hugetlb_folio(h, folio);
1649 }
1650 
__update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio)1651 static void __update_and_free_hugetlb_folio(struct hstate *h,
1652 						struct folio *folio)
1653 {
1654 	bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1655 
1656 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1657 		return;
1658 
1659 	/*
1660 	 * If we don't know which subpages are hwpoisoned, we can't free
1661 	 * the hugepage, so it's leaked intentionally.
1662 	 */
1663 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1664 		return;
1665 
1666 	/*
1667 	 * If folio is not vmemmap optimized (!clear_flag), then the folio
1668 	 * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1669 	 * can only be passed hugetlb pages and will BUG otherwise.
1670 	 */
1671 	if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1672 		spin_lock_irq(&hugetlb_lock);
1673 		/*
1674 		 * If we cannot allocate vmemmap pages, just refuse to free the
1675 		 * page and put the page back on the hugetlb free list and treat
1676 		 * as a surplus page.
1677 		 */
1678 		add_hugetlb_folio(h, folio, true);
1679 		spin_unlock_irq(&hugetlb_lock);
1680 		return;
1681 	}
1682 
1683 	/*
1684 	 * If vmemmap pages were allocated above, then we need to clear the
1685 	 * hugetlb flag under the hugetlb lock.
1686 	 */
1687 	if (folio_test_hugetlb(folio)) {
1688 		spin_lock_irq(&hugetlb_lock);
1689 		__folio_clear_hugetlb(folio);
1690 		spin_unlock_irq(&hugetlb_lock);
1691 	}
1692 
1693 	/*
1694 	 * Move PageHWPoison flag from head page to the raw error pages,
1695 	 * which makes any healthy subpages reusable.
1696 	 */
1697 	if (unlikely(folio_test_hwpoison(folio)))
1698 		folio_clear_hugetlb_hwpoison(folio);
1699 
1700 	folio_ref_unfreeze(folio, 1);
1701 
1702 	INIT_LIST_HEAD(&folio->_deferred_list);
1703 	hugetlb_free_folio(folio);
1704 }
1705 
1706 /*
1707  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1708  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1709  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1710  * the vmemmap pages.
1711  *
1712  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1713  * freed and frees them one-by-one. As the page->mapping pointer is going
1714  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1715  * structure of a lockless linked list of huge pages to be freed.
1716  */
1717 static LLIST_HEAD(hpage_freelist);
1718 
free_hpage_workfn(struct work_struct * work)1719 static void free_hpage_workfn(struct work_struct *work)
1720 {
1721 	struct llist_node *node;
1722 
1723 	node = llist_del_all(&hpage_freelist);
1724 
1725 	while (node) {
1726 		struct folio *folio;
1727 		struct hstate *h;
1728 
1729 		folio = container_of((struct address_space **)node,
1730 				     struct folio, mapping);
1731 		node = node->next;
1732 		folio->mapping = NULL;
1733 		/*
1734 		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1735 		 * folio_hstate() is going to trigger because a previous call to
1736 		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1737 		 * not use folio_hstate() directly.
1738 		 */
1739 		h = size_to_hstate(folio_size(folio));
1740 
1741 		__update_and_free_hugetlb_folio(h, folio);
1742 
1743 		cond_resched();
1744 	}
1745 }
1746 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1747 
flush_free_hpage_work(struct hstate * h)1748 static inline void flush_free_hpage_work(struct hstate *h)
1749 {
1750 	if (hugetlb_vmemmap_optimizable(h))
1751 		flush_work(&free_hpage_work);
1752 }
1753 
update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio,bool atomic)1754 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1755 				 bool atomic)
1756 {
1757 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1758 		__update_and_free_hugetlb_folio(h, folio);
1759 		return;
1760 	}
1761 
1762 	/*
1763 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1764 	 *
1765 	 * Only call schedule_work() if hpage_freelist is previously
1766 	 * empty. Otherwise, schedule_work() had been called but the workfn
1767 	 * hasn't retrieved the list yet.
1768 	 */
1769 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1770 		schedule_work(&free_hpage_work);
1771 }
1772 
bulk_vmemmap_restore_error(struct hstate * h,struct list_head * folio_list,struct list_head * non_hvo_folios)1773 static void bulk_vmemmap_restore_error(struct hstate *h,
1774 					struct list_head *folio_list,
1775 					struct list_head *non_hvo_folios)
1776 {
1777 	struct folio *folio, *t_folio;
1778 
1779 	if (!list_empty(non_hvo_folios)) {
1780 		/*
1781 		 * Free any restored hugetlb pages so that restore of the
1782 		 * entire list can be retried.
1783 		 * The idea is that in the common case of ENOMEM errors freeing
1784 		 * hugetlb pages with vmemmap we will free up memory so that we
1785 		 * can allocate vmemmap for more hugetlb pages.
1786 		 */
1787 		list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1788 			list_del(&folio->lru);
1789 			spin_lock_irq(&hugetlb_lock);
1790 			__folio_clear_hugetlb(folio);
1791 			spin_unlock_irq(&hugetlb_lock);
1792 			update_and_free_hugetlb_folio(h, folio, false);
1793 			cond_resched();
1794 		}
1795 	} else {
1796 		/*
1797 		 * In the case where there are no folios which can be
1798 		 * immediately freed, we loop through the list trying to restore
1799 		 * vmemmap individually in the hope that someone elsewhere may
1800 		 * have done something to cause success (such as freeing some
1801 		 * memory).  If unable to restore a hugetlb page, the hugetlb
1802 		 * page is made a surplus page and removed from the list.
1803 		 * If are able to restore vmemmap and free one hugetlb page, we
1804 		 * quit processing the list to retry the bulk operation.
1805 		 */
1806 		list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1807 			if (hugetlb_vmemmap_restore_folio(h, folio)) {
1808 				list_del(&folio->lru);
1809 				spin_lock_irq(&hugetlb_lock);
1810 				add_hugetlb_folio(h, folio, true);
1811 				spin_unlock_irq(&hugetlb_lock);
1812 			} else {
1813 				list_del(&folio->lru);
1814 				spin_lock_irq(&hugetlb_lock);
1815 				__folio_clear_hugetlb(folio);
1816 				spin_unlock_irq(&hugetlb_lock);
1817 				update_and_free_hugetlb_folio(h, folio, false);
1818 				cond_resched();
1819 				break;
1820 			}
1821 	}
1822 }
1823 
update_and_free_pages_bulk(struct hstate * h,struct list_head * folio_list)1824 static void update_and_free_pages_bulk(struct hstate *h,
1825 						struct list_head *folio_list)
1826 {
1827 	long ret;
1828 	struct folio *folio, *t_folio;
1829 	LIST_HEAD(non_hvo_folios);
1830 
1831 	/*
1832 	 * First allocate required vmemmmap (if necessary) for all folios.
1833 	 * Carefully handle errors and free up any available hugetlb pages
1834 	 * in an effort to make forward progress.
1835 	 */
1836 retry:
1837 	ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1838 	if (ret < 0) {
1839 		bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1840 		goto retry;
1841 	}
1842 
1843 	/*
1844 	 * At this point, list should be empty, ret should be >= 0 and there
1845 	 * should only be pages on the non_hvo_folios list.
1846 	 * Do note that the non_hvo_folios list could be empty.
1847 	 * Without HVO enabled, ret will be 0 and there is no need to call
1848 	 * __folio_clear_hugetlb as this was done previously.
1849 	 */
1850 	VM_WARN_ON(!list_empty(folio_list));
1851 	VM_WARN_ON(ret < 0);
1852 	if (!list_empty(&non_hvo_folios) && ret) {
1853 		spin_lock_irq(&hugetlb_lock);
1854 		list_for_each_entry(folio, &non_hvo_folios, lru)
1855 			__folio_clear_hugetlb(folio);
1856 		spin_unlock_irq(&hugetlb_lock);
1857 	}
1858 
1859 	list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1860 		update_and_free_hugetlb_folio(h, folio, false);
1861 		cond_resched();
1862 	}
1863 }
1864 
size_to_hstate(unsigned long size)1865 struct hstate *size_to_hstate(unsigned long size)
1866 {
1867 	struct hstate *h;
1868 
1869 	for_each_hstate(h) {
1870 		if (huge_page_size(h) == size)
1871 			return h;
1872 	}
1873 	return NULL;
1874 }
1875 
free_huge_folio(struct folio * folio)1876 void free_huge_folio(struct folio *folio)
1877 {
1878 	/*
1879 	 * Can't pass hstate in here because it is called from the
1880 	 * generic mm code.
1881 	 */
1882 	struct hstate *h = folio_hstate(folio);
1883 	int nid = folio_nid(folio);
1884 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1885 	bool restore_reserve;
1886 	unsigned long flags;
1887 
1888 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1889 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1890 
1891 	hugetlb_set_folio_subpool(folio, NULL);
1892 	if (folio_test_anon(folio))
1893 		__ClearPageAnonExclusive(&folio->page);
1894 	folio->mapping = NULL;
1895 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1896 	folio_clear_hugetlb_restore_reserve(folio);
1897 
1898 	/*
1899 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1900 	 * reservation.  If the page was associated with a subpool, there
1901 	 * would have been a page reserved in the subpool before allocation
1902 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1903 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1904 	 * remove the reserved page from the subpool.
1905 	 */
1906 	if (!restore_reserve) {
1907 		/*
1908 		 * A return code of zero implies that the subpool will be
1909 		 * under its minimum size if the reservation is not restored
1910 		 * after page is free.  Therefore, force restore_reserve
1911 		 * operation.
1912 		 */
1913 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1914 			restore_reserve = true;
1915 	}
1916 
1917 	spin_lock_irqsave(&hugetlb_lock, flags);
1918 	folio_clear_hugetlb_migratable(folio);
1919 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1920 				     pages_per_huge_page(h), folio);
1921 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1922 					  pages_per_huge_page(h), folio);
1923 	mem_cgroup_uncharge(folio);
1924 	if (restore_reserve)
1925 		h->resv_huge_pages++;
1926 
1927 	if (folio_test_hugetlb_temporary(folio)) {
1928 		remove_hugetlb_folio(h, folio, false);
1929 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1930 		update_and_free_hugetlb_folio(h, folio, true);
1931 	} else if (h->surplus_huge_pages_node[nid]) {
1932 		/* remove the page from active list */
1933 		remove_hugetlb_folio(h, folio, true);
1934 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1935 		update_and_free_hugetlb_folio(h, folio, true);
1936 	} else {
1937 		arch_clear_hugetlb_flags(folio);
1938 		enqueue_hugetlb_folio(h, folio);
1939 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1940 	}
1941 }
1942 
1943 /*
1944  * Must be called with the hugetlb lock held
1945  */
__prep_account_new_huge_page(struct hstate * h,int nid)1946 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1947 {
1948 	lockdep_assert_held(&hugetlb_lock);
1949 	h->nr_huge_pages++;
1950 	h->nr_huge_pages_node[nid]++;
1951 }
1952 
init_new_hugetlb_folio(struct hstate * h,struct folio * folio)1953 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1954 {
1955 	__folio_set_hugetlb(folio);
1956 	INIT_LIST_HEAD(&folio->lru);
1957 	hugetlb_set_folio_subpool(folio, NULL);
1958 	set_hugetlb_cgroup(folio, NULL);
1959 	set_hugetlb_cgroup_rsvd(folio, NULL);
1960 }
1961 
__prep_new_hugetlb_folio(struct hstate * h,struct folio * folio)1962 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1963 {
1964 	init_new_hugetlb_folio(h, folio);
1965 	hugetlb_vmemmap_optimize_folio(h, folio);
1966 }
1967 
prep_new_hugetlb_folio(struct hstate * h,struct folio * folio,int nid)1968 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1969 {
1970 	__prep_new_hugetlb_folio(h, folio);
1971 	spin_lock_irq(&hugetlb_lock);
1972 	__prep_account_new_huge_page(h, nid);
1973 	spin_unlock_irq(&hugetlb_lock);
1974 }
1975 
1976 /*
1977  * Find and lock address space (mapping) in write mode.
1978  *
1979  * Upon entry, the folio is locked which means that folio_mapping() is
1980  * stable.  Due to locking order, we can only trylock_write.  If we can
1981  * not get the lock, simply return NULL to caller.
1982  */
hugetlb_folio_mapping_lock_write(struct folio * folio)1983 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1984 {
1985 	struct address_space *mapping = folio_mapping(folio);
1986 
1987 	if (!mapping)
1988 		return mapping;
1989 
1990 	if (i_mmap_trylock_write(mapping))
1991 		return mapping;
1992 
1993 	return NULL;
1994 }
1995 
alloc_buddy_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1996 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
1997 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1998 		nodemask_t *node_alloc_noretry)
1999 {
2000 	int order = huge_page_order(h);
2001 	struct folio *folio;
2002 	bool alloc_try_hard = true;
2003 	bool retry = true;
2004 
2005 	/*
2006 	 * By default we always try hard to allocate the folio with
2007 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating folios in
2008 	 * a loop (to adjust global huge page counts) and previous allocation
2009 	 * failed, do not continue to try hard on the same node.  Use the
2010 	 * node_alloc_noretry bitmap to manage this state information.
2011 	 */
2012 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2013 		alloc_try_hard = false;
2014 	if (alloc_try_hard)
2015 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2016 	if (nid == NUMA_NO_NODE)
2017 		nid = numa_mem_id();
2018 retry:
2019 	folio = __folio_alloc(gfp_mask, order, nid, nmask);
2020 	/* Ensure hugetlb folio won't have large_rmappable flag set. */
2021 	if (folio)
2022 		folio_clear_large_rmappable(folio);
2023 
2024 	if (folio && !folio_ref_freeze(folio, 1)) {
2025 		folio_put(folio);
2026 		if (retry) {	/* retry once */
2027 			retry = false;
2028 			goto retry;
2029 		}
2030 		/* WOW!  twice in a row. */
2031 		pr_warn("HugeTLB unexpected inflated folio ref count\n");
2032 		folio = NULL;
2033 	}
2034 
2035 	/*
2036 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
2037 	 * folio this indicates an overall state change.  Clear bit so
2038 	 * that we resume normal 'try hard' allocations.
2039 	 */
2040 	if (node_alloc_noretry && folio && !alloc_try_hard)
2041 		node_clear(nid, *node_alloc_noretry);
2042 
2043 	/*
2044 	 * If we tried hard to get a folio but failed, set bit so that
2045 	 * subsequent attempts will not try as hard until there is an
2046 	 * overall state change.
2047 	 */
2048 	if (node_alloc_noretry && !folio && alloc_try_hard)
2049 		node_set(nid, *node_alloc_noretry);
2050 
2051 	if (!folio) {
2052 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2053 		return NULL;
2054 	}
2055 
2056 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2057 	return folio;
2058 }
2059 
only_alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)2060 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2061 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2062 		nodemask_t *node_alloc_noretry)
2063 {
2064 	struct folio *folio;
2065 
2066 	if (hstate_is_gigantic(h))
2067 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2068 	else
2069 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry);
2070 	if (folio)
2071 		init_new_hugetlb_folio(h, folio);
2072 	return folio;
2073 }
2074 
2075 /*
2076  * Common helper to allocate a fresh hugetlb page. All specific allocators
2077  * should use this function to get new hugetlb pages
2078  *
2079  * Note that returned page is 'frozen':  ref count of head page and all tail
2080  * pages is zero.
2081  */
alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2082 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2083 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
2084 {
2085 	struct folio *folio;
2086 
2087 	if (hstate_is_gigantic(h))
2088 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2089 	else
2090 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2091 	if (!folio)
2092 		return NULL;
2093 
2094 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2095 	return folio;
2096 }
2097 
prep_and_add_allocated_folios(struct hstate * h,struct list_head * folio_list)2098 static void prep_and_add_allocated_folios(struct hstate *h,
2099 					struct list_head *folio_list)
2100 {
2101 	unsigned long flags;
2102 	struct folio *folio, *tmp_f;
2103 
2104 	/* Send list for bulk vmemmap optimization processing */
2105 	hugetlb_vmemmap_optimize_folios(h, folio_list);
2106 
2107 	/* Add all new pool pages to free lists in one lock cycle */
2108 	spin_lock_irqsave(&hugetlb_lock, flags);
2109 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2110 		__prep_account_new_huge_page(h, folio_nid(folio));
2111 		enqueue_hugetlb_folio(h, folio);
2112 	}
2113 	spin_unlock_irqrestore(&hugetlb_lock, flags);
2114 }
2115 
2116 /*
2117  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2118  * will later be added to the appropriate hugetlb pool.
2119  */
alloc_pool_huge_folio(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry,int * next_node)2120 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2121 					nodemask_t *nodes_allowed,
2122 					nodemask_t *node_alloc_noretry,
2123 					int *next_node)
2124 {
2125 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2126 	int nr_nodes, node;
2127 
2128 	for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2129 		struct folio *folio;
2130 
2131 		folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2132 					nodes_allowed, node_alloc_noretry);
2133 		if (folio)
2134 			return folio;
2135 	}
2136 
2137 	return NULL;
2138 }
2139 
2140 /*
2141  * Remove huge page from pool from next node to free.  Attempt to keep
2142  * persistent huge pages more or less balanced over allowed nodes.
2143  * This routine only 'removes' the hugetlb page.  The caller must make
2144  * an additional call to free the page to low level allocators.
2145  * Called with hugetlb_lock locked.
2146  */
remove_pool_hugetlb_folio(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)2147 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2148 		nodemask_t *nodes_allowed, bool acct_surplus)
2149 {
2150 	int nr_nodes, node;
2151 	struct folio *folio = NULL;
2152 
2153 	lockdep_assert_held(&hugetlb_lock);
2154 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2155 		/*
2156 		 * If we're returning unused surplus pages, only examine
2157 		 * nodes with surplus pages.
2158 		 */
2159 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2160 		    !list_empty(&h->hugepage_freelists[node])) {
2161 			folio = list_entry(h->hugepage_freelists[node].next,
2162 					  struct folio, lru);
2163 			remove_hugetlb_folio(h, folio, acct_surplus);
2164 			break;
2165 		}
2166 	}
2167 
2168 	return folio;
2169 }
2170 
2171 /*
2172  * Dissolve a given free hugetlb folio into free buddy pages. This function
2173  * does nothing for in-use hugetlb folios and non-hugetlb folios.
2174  * This function returns values like below:
2175  *
2176  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2177  *           when the system is under memory pressure and the feature of
2178  *           freeing unused vmemmap pages associated with each hugetlb page
2179  *           is enabled.
2180  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2181  *           (allocated or reserved.)
2182  *       0:  successfully dissolved free hugepages or the page is not a
2183  *           hugepage (considered as already dissolved)
2184  */
dissolve_free_hugetlb_folio(struct folio * folio)2185 int dissolve_free_hugetlb_folio(struct folio *folio)
2186 {
2187 	int rc = -EBUSY;
2188 
2189 retry:
2190 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2191 	if (!folio_test_hugetlb(folio))
2192 		return 0;
2193 
2194 	spin_lock_irq(&hugetlb_lock);
2195 	if (!folio_test_hugetlb(folio)) {
2196 		rc = 0;
2197 		goto out;
2198 	}
2199 
2200 	if (!folio_ref_count(folio)) {
2201 		struct hstate *h = folio_hstate(folio);
2202 		if (!available_huge_pages(h))
2203 			goto out;
2204 
2205 		/*
2206 		 * We should make sure that the page is already on the free list
2207 		 * when it is dissolved.
2208 		 */
2209 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2210 			spin_unlock_irq(&hugetlb_lock);
2211 			cond_resched();
2212 
2213 			/*
2214 			 * Theoretically, we should return -EBUSY when we
2215 			 * encounter this race. In fact, we have a chance
2216 			 * to successfully dissolve the page if we do a
2217 			 * retry. Because the race window is quite small.
2218 			 * If we seize this opportunity, it is an optimization
2219 			 * for increasing the success rate of dissolving page.
2220 			 */
2221 			goto retry;
2222 		}
2223 
2224 		remove_hugetlb_folio(h, folio, false);
2225 		h->max_huge_pages--;
2226 		spin_unlock_irq(&hugetlb_lock);
2227 
2228 		/*
2229 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2230 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2231 		 * free the page if it can not allocate required vmemmap.  We
2232 		 * need to adjust max_huge_pages if the page is not freed.
2233 		 * Attempt to allocate vmemmmap here so that we can take
2234 		 * appropriate action on failure.
2235 		 *
2236 		 * The folio_test_hugetlb check here is because
2237 		 * remove_hugetlb_folio will clear hugetlb folio flag for
2238 		 * non-vmemmap optimized hugetlb folios.
2239 		 */
2240 		if (folio_test_hugetlb(folio)) {
2241 			rc = hugetlb_vmemmap_restore_folio(h, folio);
2242 			if (rc) {
2243 				spin_lock_irq(&hugetlb_lock);
2244 				add_hugetlb_folio(h, folio, false);
2245 				h->max_huge_pages++;
2246 				goto out;
2247 			}
2248 		} else
2249 			rc = 0;
2250 
2251 		update_and_free_hugetlb_folio(h, folio, false);
2252 		return rc;
2253 	}
2254 out:
2255 	spin_unlock_irq(&hugetlb_lock);
2256 	return rc;
2257 }
2258 
2259 /*
2260  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2261  * make specified memory blocks removable from the system.
2262  * Note that this will dissolve a free gigantic hugepage completely, if any
2263  * part of it lies within the given range.
2264  * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2265  * free hugetlb folios that were dissolved before that error are lost.
2266  */
dissolve_free_hugetlb_folios(unsigned long start_pfn,unsigned long end_pfn)2267 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2268 {
2269 	unsigned long pfn;
2270 	struct folio *folio;
2271 	int rc = 0;
2272 	unsigned int order;
2273 	struct hstate *h;
2274 
2275 	if (!hugepages_supported())
2276 		return rc;
2277 
2278 	order = huge_page_order(&default_hstate);
2279 	for_each_hstate(h)
2280 		order = min(order, huge_page_order(h));
2281 
2282 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2283 		folio = pfn_folio(pfn);
2284 		rc = dissolve_free_hugetlb_folio(folio);
2285 		if (rc)
2286 			break;
2287 	}
2288 
2289 	return rc;
2290 }
2291 
2292 /*
2293  * Allocates a fresh surplus page from the page allocator.
2294  */
alloc_surplus_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2295 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2296 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2297 {
2298 	struct folio *folio = NULL;
2299 
2300 	if (hstate_is_gigantic(h))
2301 		return NULL;
2302 
2303 	spin_lock_irq(&hugetlb_lock);
2304 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2305 		goto out_unlock;
2306 	spin_unlock_irq(&hugetlb_lock);
2307 
2308 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2309 	if (!folio)
2310 		return NULL;
2311 
2312 	spin_lock_irq(&hugetlb_lock);
2313 	/*
2314 	 * We could have raced with the pool size change.
2315 	 * Double check that and simply deallocate the new page
2316 	 * if we would end up overcommiting the surpluses. Abuse
2317 	 * temporary page to workaround the nasty free_huge_folio
2318 	 * codeflow
2319 	 */
2320 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2321 		folio_set_hugetlb_temporary(folio);
2322 		spin_unlock_irq(&hugetlb_lock);
2323 		free_huge_folio(folio);
2324 		return NULL;
2325 	}
2326 
2327 	h->surplus_huge_pages++;
2328 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2329 
2330 out_unlock:
2331 	spin_unlock_irq(&hugetlb_lock);
2332 
2333 	return folio;
2334 }
2335 
alloc_migrate_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2336 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2337 				     int nid, nodemask_t *nmask)
2338 {
2339 	struct folio *folio;
2340 
2341 	if (hstate_is_gigantic(h))
2342 		return NULL;
2343 
2344 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2345 	if (!folio)
2346 		return NULL;
2347 
2348 	/* fresh huge pages are frozen */
2349 	folio_ref_unfreeze(folio, 1);
2350 	/*
2351 	 * We do not account these pages as surplus because they are only
2352 	 * temporary and will be released properly on the last reference
2353 	 */
2354 	folio_set_hugetlb_temporary(folio);
2355 
2356 	return folio;
2357 }
2358 
2359 /*
2360  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2361  */
2362 static
alloc_buddy_hugetlb_folio_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2363 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2364 		struct vm_area_struct *vma, unsigned long addr)
2365 {
2366 	struct folio *folio = NULL;
2367 	struct mempolicy *mpol;
2368 	gfp_t gfp_mask = htlb_alloc_mask(h);
2369 	int nid;
2370 	nodemask_t *nodemask;
2371 
2372 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2373 	if (mpol_is_preferred_many(mpol)) {
2374 		gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2375 
2376 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2377 
2378 		/* Fallback to all nodes if page==NULL */
2379 		nodemask = NULL;
2380 	}
2381 
2382 	if (!folio)
2383 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2384 	mpol_cond_put(mpol);
2385 	return folio;
2386 }
2387 
alloc_hugetlb_folio_reserve(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2388 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2389 		nodemask_t *nmask, gfp_t gfp_mask)
2390 {
2391 	struct folio *folio;
2392 
2393 	spin_lock_irq(&hugetlb_lock);
2394 	folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2395 					       nmask);
2396 	if (folio) {
2397 		VM_BUG_ON(!h->resv_huge_pages);
2398 		h->resv_huge_pages--;
2399 	}
2400 
2401 	spin_unlock_irq(&hugetlb_lock);
2402 	return folio;
2403 }
2404 
2405 /* folio migration callback function */
alloc_hugetlb_folio_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask,bool allow_alloc_fallback)2406 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2407 		nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2408 {
2409 	spin_lock_irq(&hugetlb_lock);
2410 	if (available_huge_pages(h)) {
2411 		struct folio *folio;
2412 
2413 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2414 						preferred_nid, nmask);
2415 		if (folio) {
2416 			spin_unlock_irq(&hugetlb_lock);
2417 			return folio;
2418 		}
2419 	}
2420 	spin_unlock_irq(&hugetlb_lock);
2421 
2422 	/* We cannot fallback to other nodes, as we could break the per-node pool. */
2423 	if (!allow_alloc_fallback)
2424 		gfp_mask |= __GFP_THISNODE;
2425 
2426 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2427 }
2428 
policy_mbind_nodemask(gfp_t gfp)2429 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2430 {
2431 #ifdef CONFIG_NUMA
2432 	struct mempolicy *mpol = get_task_policy(current);
2433 
2434 	/*
2435 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2436 	 * (from policy_nodemask) specifically for hugetlb case
2437 	 */
2438 	if (mpol->mode == MPOL_BIND &&
2439 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
2440 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2441 		return &mpol->nodes;
2442 #endif
2443 	return NULL;
2444 }
2445 
2446 /*
2447  * Increase the hugetlb pool such that it can accommodate a reservation
2448  * of size 'delta'.
2449  */
gather_surplus_pages(struct hstate * h,long delta)2450 static int gather_surplus_pages(struct hstate *h, long delta)
2451 	__must_hold(&hugetlb_lock)
2452 {
2453 	LIST_HEAD(surplus_list);
2454 	struct folio *folio, *tmp;
2455 	int ret;
2456 	long i;
2457 	long needed, allocated;
2458 	bool alloc_ok = true;
2459 	int node;
2460 	nodemask_t *mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2461 
2462 	lockdep_assert_held(&hugetlb_lock);
2463 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2464 	if (needed <= 0) {
2465 		h->resv_huge_pages += delta;
2466 		return 0;
2467 	}
2468 
2469 	allocated = 0;
2470 
2471 	ret = -ENOMEM;
2472 retry:
2473 	spin_unlock_irq(&hugetlb_lock);
2474 	for (i = 0; i < needed; i++) {
2475 		folio = NULL;
2476 		for_each_node_mask(node, cpuset_current_mems_allowed) {
2477 			if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) {
2478 				folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2479 						node, NULL);
2480 				if (folio)
2481 					break;
2482 			}
2483 		}
2484 		if (!folio) {
2485 			alloc_ok = false;
2486 			break;
2487 		}
2488 		list_add(&folio->lru, &surplus_list);
2489 		cond_resched();
2490 	}
2491 	allocated += i;
2492 
2493 	/*
2494 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2495 	 * because either resv_huge_pages or free_huge_pages may have changed.
2496 	 */
2497 	spin_lock_irq(&hugetlb_lock);
2498 	needed = (h->resv_huge_pages + delta) -
2499 			(h->free_huge_pages + allocated);
2500 	if (needed > 0) {
2501 		if (alloc_ok)
2502 			goto retry;
2503 		/*
2504 		 * We were not able to allocate enough pages to
2505 		 * satisfy the entire reservation so we free what
2506 		 * we've allocated so far.
2507 		 */
2508 		goto free;
2509 	}
2510 	/*
2511 	 * The surplus_list now contains _at_least_ the number of extra pages
2512 	 * needed to accommodate the reservation.  Add the appropriate number
2513 	 * of pages to the hugetlb pool and free the extras back to the buddy
2514 	 * allocator.  Commit the entire reservation here to prevent another
2515 	 * process from stealing the pages as they are added to the pool but
2516 	 * before they are reserved.
2517 	 */
2518 	needed += allocated;
2519 	h->resv_huge_pages += delta;
2520 	ret = 0;
2521 
2522 	/* Free the needed pages to the hugetlb pool */
2523 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2524 		if ((--needed) < 0)
2525 			break;
2526 		/* Add the page to the hugetlb allocator */
2527 		enqueue_hugetlb_folio(h, folio);
2528 	}
2529 free:
2530 	spin_unlock_irq(&hugetlb_lock);
2531 
2532 	/*
2533 	 * Free unnecessary surplus pages to the buddy allocator.
2534 	 * Pages have no ref count, call free_huge_folio directly.
2535 	 */
2536 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2537 		free_huge_folio(folio);
2538 	spin_lock_irq(&hugetlb_lock);
2539 
2540 	return ret;
2541 }
2542 
2543 /*
2544  * This routine has two main purposes:
2545  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2546  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2547  *    to the associated reservation map.
2548  * 2) Free any unused surplus pages that may have been allocated to satisfy
2549  *    the reservation.  As many as unused_resv_pages may be freed.
2550  */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2551 static void return_unused_surplus_pages(struct hstate *h,
2552 					unsigned long unused_resv_pages)
2553 {
2554 	unsigned long nr_pages;
2555 	LIST_HEAD(page_list);
2556 
2557 	lockdep_assert_held(&hugetlb_lock);
2558 	/* Uncommit the reservation */
2559 	h->resv_huge_pages -= unused_resv_pages;
2560 
2561 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2562 		goto out;
2563 
2564 	/*
2565 	 * Part (or even all) of the reservation could have been backed
2566 	 * by pre-allocated pages. Only free surplus pages.
2567 	 */
2568 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2569 
2570 	/*
2571 	 * We want to release as many surplus pages as possible, spread
2572 	 * evenly across all nodes with memory. Iterate across these nodes
2573 	 * until we can no longer free unreserved surplus pages. This occurs
2574 	 * when the nodes with surplus pages have no free pages.
2575 	 * remove_pool_hugetlb_folio() will balance the freed pages across the
2576 	 * on-line nodes with memory and will handle the hstate accounting.
2577 	 */
2578 	while (nr_pages--) {
2579 		struct folio *folio;
2580 
2581 		folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2582 		if (!folio)
2583 			goto out;
2584 
2585 		list_add(&folio->lru, &page_list);
2586 	}
2587 
2588 out:
2589 	spin_unlock_irq(&hugetlb_lock);
2590 	update_and_free_pages_bulk(h, &page_list);
2591 	spin_lock_irq(&hugetlb_lock);
2592 }
2593 
2594 
2595 /*
2596  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2597  * are used by the huge page allocation routines to manage reservations.
2598  *
2599  * vma_needs_reservation is called to determine if the huge page at addr
2600  * within the vma has an associated reservation.  If a reservation is
2601  * needed, the value 1 is returned.  The caller is then responsible for
2602  * managing the global reservation and subpool usage counts.  After
2603  * the huge page has been allocated, vma_commit_reservation is called
2604  * to add the page to the reservation map.  If the page allocation fails,
2605  * the reservation must be ended instead of committed.  vma_end_reservation
2606  * is called in such cases.
2607  *
2608  * In the normal case, vma_commit_reservation returns the same value
2609  * as the preceding vma_needs_reservation call.  The only time this
2610  * is not the case is if a reserve map was changed between calls.  It
2611  * is the responsibility of the caller to notice the difference and
2612  * take appropriate action.
2613  *
2614  * vma_add_reservation is used in error paths where a reservation must
2615  * be restored when a newly allocated huge page must be freed.  It is
2616  * to be called after calling vma_needs_reservation to determine if a
2617  * reservation exists.
2618  *
2619  * vma_del_reservation is used in error paths where an entry in the reserve
2620  * map was created during huge page allocation and must be removed.  It is to
2621  * be called after calling vma_needs_reservation to determine if a reservation
2622  * exists.
2623  */
2624 enum vma_resv_mode {
2625 	VMA_NEEDS_RESV,
2626 	VMA_COMMIT_RESV,
2627 	VMA_END_RESV,
2628 	VMA_ADD_RESV,
2629 	VMA_DEL_RESV,
2630 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2631 static long __vma_reservation_common(struct hstate *h,
2632 				struct vm_area_struct *vma, unsigned long addr,
2633 				enum vma_resv_mode mode)
2634 {
2635 	struct resv_map *resv;
2636 	pgoff_t idx;
2637 	long ret;
2638 	long dummy_out_regions_needed;
2639 
2640 	resv = vma_resv_map(vma);
2641 	if (!resv)
2642 		return 1;
2643 
2644 	idx = vma_hugecache_offset(h, vma, addr);
2645 	switch (mode) {
2646 	case VMA_NEEDS_RESV:
2647 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2648 		/* We assume that vma_reservation_* routines always operate on
2649 		 * 1 page, and that adding to resv map a 1 page entry can only
2650 		 * ever require 1 region.
2651 		 */
2652 		VM_BUG_ON(dummy_out_regions_needed != 1);
2653 		break;
2654 	case VMA_COMMIT_RESV:
2655 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2656 		/* region_add calls of range 1 should never fail. */
2657 		VM_BUG_ON(ret < 0);
2658 		break;
2659 	case VMA_END_RESV:
2660 		region_abort(resv, idx, idx + 1, 1);
2661 		ret = 0;
2662 		break;
2663 	case VMA_ADD_RESV:
2664 		if (vma->vm_flags & VM_MAYSHARE) {
2665 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2666 			/* region_add calls of range 1 should never fail. */
2667 			VM_BUG_ON(ret < 0);
2668 		} else {
2669 			region_abort(resv, idx, idx + 1, 1);
2670 			ret = region_del(resv, idx, idx + 1);
2671 		}
2672 		break;
2673 	case VMA_DEL_RESV:
2674 		if (vma->vm_flags & VM_MAYSHARE) {
2675 			region_abort(resv, idx, idx + 1, 1);
2676 			ret = region_del(resv, idx, idx + 1);
2677 		} else {
2678 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2679 			/* region_add calls of range 1 should never fail. */
2680 			VM_BUG_ON(ret < 0);
2681 		}
2682 		break;
2683 	default:
2684 		BUG();
2685 	}
2686 
2687 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2688 		return ret;
2689 	/*
2690 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2691 	 *
2692 	 * In most cases, reserves always exist for private mappings.
2693 	 * However, a file associated with mapping could have been
2694 	 * hole punched or truncated after reserves were consumed.
2695 	 * As subsequent fault on such a range will not use reserves.
2696 	 * Subtle - The reserve map for private mappings has the
2697 	 * opposite meaning than that of shared mappings.  If NO
2698 	 * entry is in the reserve map, it means a reservation exists.
2699 	 * If an entry exists in the reserve map, it means the
2700 	 * reservation has already been consumed.  As a result, the
2701 	 * return value of this routine is the opposite of the
2702 	 * value returned from reserve map manipulation routines above.
2703 	 */
2704 	if (ret > 0)
2705 		return 0;
2706 	if (ret == 0)
2707 		return 1;
2708 	return ret;
2709 }
2710 
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2711 static long vma_needs_reservation(struct hstate *h,
2712 			struct vm_area_struct *vma, unsigned long addr)
2713 {
2714 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2715 }
2716 
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2717 static long vma_commit_reservation(struct hstate *h,
2718 			struct vm_area_struct *vma, unsigned long addr)
2719 {
2720 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2721 }
2722 
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2723 static void vma_end_reservation(struct hstate *h,
2724 			struct vm_area_struct *vma, unsigned long addr)
2725 {
2726 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2727 }
2728 
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2729 static long vma_add_reservation(struct hstate *h,
2730 			struct vm_area_struct *vma, unsigned long addr)
2731 {
2732 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2733 }
2734 
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2735 static long vma_del_reservation(struct hstate *h,
2736 			struct vm_area_struct *vma, unsigned long addr)
2737 {
2738 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2739 }
2740 
2741 /*
2742  * This routine is called to restore reservation information on error paths.
2743  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2744  * and the hugetlb mutex should remain held when calling this routine.
2745  *
2746  * It handles two specific cases:
2747  * 1) A reservation was in place and the folio consumed the reservation.
2748  *    hugetlb_restore_reserve is set in the folio.
2749  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2750  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2751  *
2752  * In case 1, free_huge_folio later in the error path will increment the
2753  * global reserve count.  But, free_huge_folio does not have enough context
2754  * to adjust the reservation map.  This case deals primarily with private
2755  * mappings.  Adjust the reserve map here to be consistent with global
2756  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2757  * reserve map indicates there is a reservation present.
2758  *
2759  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2760  */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct folio * folio)2761 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2762 			unsigned long address, struct folio *folio)
2763 {
2764 	long rc = vma_needs_reservation(h, vma, address);
2765 
2766 	if (folio_test_hugetlb_restore_reserve(folio)) {
2767 		if (unlikely(rc < 0))
2768 			/*
2769 			 * Rare out of memory condition in reserve map
2770 			 * manipulation.  Clear hugetlb_restore_reserve so
2771 			 * that global reserve count will not be incremented
2772 			 * by free_huge_folio.  This will make it appear
2773 			 * as though the reservation for this folio was
2774 			 * consumed.  This may prevent the task from
2775 			 * faulting in the folio at a later time.  This
2776 			 * is better than inconsistent global huge page
2777 			 * accounting of reserve counts.
2778 			 */
2779 			folio_clear_hugetlb_restore_reserve(folio);
2780 		else if (rc)
2781 			(void)vma_add_reservation(h, vma, address);
2782 		else
2783 			vma_end_reservation(h, vma, address);
2784 	} else {
2785 		if (!rc) {
2786 			/*
2787 			 * This indicates there is an entry in the reserve map
2788 			 * not added by alloc_hugetlb_folio.  We know it was added
2789 			 * before the alloc_hugetlb_folio call, otherwise
2790 			 * hugetlb_restore_reserve would be set on the folio.
2791 			 * Remove the entry so that a subsequent allocation
2792 			 * does not consume a reservation.
2793 			 */
2794 			rc = vma_del_reservation(h, vma, address);
2795 			if (rc < 0)
2796 				/*
2797 				 * VERY rare out of memory condition.  Since
2798 				 * we can not delete the entry, set
2799 				 * hugetlb_restore_reserve so that the reserve
2800 				 * count will be incremented when the folio
2801 				 * is freed.  This reserve will be consumed
2802 				 * on a subsequent allocation.
2803 				 */
2804 				folio_set_hugetlb_restore_reserve(folio);
2805 		} else if (rc < 0) {
2806 			/*
2807 			 * Rare out of memory condition from
2808 			 * vma_needs_reservation call.  Memory allocation is
2809 			 * only attempted if a new entry is needed.  Therefore,
2810 			 * this implies there is not an entry in the
2811 			 * reserve map.
2812 			 *
2813 			 * For shared mappings, no entry in the map indicates
2814 			 * no reservation.  We are done.
2815 			 */
2816 			if (!(vma->vm_flags & VM_MAYSHARE))
2817 				/*
2818 				 * For private mappings, no entry indicates
2819 				 * a reservation is present.  Since we can
2820 				 * not add an entry, set hugetlb_restore_reserve
2821 				 * on the folio so reserve count will be
2822 				 * incremented when freed.  This reserve will
2823 				 * be consumed on a subsequent allocation.
2824 				 */
2825 				folio_set_hugetlb_restore_reserve(folio);
2826 		} else
2827 			/*
2828 			 * No reservation present, do nothing
2829 			 */
2830 			 vma_end_reservation(h, vma, address);
2831 	}
2832 }
2833 
2834 /*
2835  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2836  * the old one
2837  * @h: struct hstate old page belongs to
2838  * @old_folio: Old folio to dissolve
2839  * @list: List to isolate the page in case we need to
2840  * Returns 0 on success, otherwise negated error.
2841  */
alloc_and_dissolve_hugetlb_folio(struct hstate * h,struct folio * old_folio,struct list_head * list)2842 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2843 			struct folio *old_folio, struct list_head *list)
2844 {
2845 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2846 	int nid = folio_nid(old_folio);
2847 	struct folio *new_folio = NULL;
2848 	int ret = 0;
2849 
2850 retry:
2851 	spin_lock_irq(&hugetlb_lock);
2852 	if (!folio_test_hugetlb(old_folio)) {
2853 		/*
2854 		 * Freed from under us. Drop new_folio too.
2855 		 */
2856 		goto free_new;
2857 	} else if (folio_ref_count(old_folio)) {
2858 		bool isolated;
2859 
2860 		/*
2861 		 * Someone has grabbed the folio, try to isolate it here.
2862 		 * Fail with -EBUSY if not possible.
2863 		 */
2864 		spin_unlock_irq(&hugetlb_lock);
2865 		isolated = isolate_hugetlb(old_folio, list);
2866 		ret = isolated ? 0 : -EBUSY;
2867 		spin_lock_irq(&hugetlb_lock);
2868 		goto free_new;
2869 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2870 		/*
2871 		 * Folio's refcount is 0 but it has not been enqueued in the
2872 		 * freelist yet. Race window is small, so we can succeed here if
2873 		 * we retry.
2874 		 */
2875 		spin_unlock_irq(&hugetlb_lock);
2876 		cond_resched();
2877 		goto retry;
2878 	} else {
2879 		if (!new_folio) {
2880 			spin_unlock_irq(&hugetlb_lock);
2881 			new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
2882 							      NULL, NULL);
2883 			if (!new_folio)
2884 				return -ENOMEM;
2885 			__prep_new_hugetlb_folio(h, new_folio);
2886 			goto retry;
2887 		}
2888 
2889 		/*
2890 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2891 		 * the freelist and decrease the counters. These will be
2892 		 * incremented again when calling __prep_account_new_huge_page()
2893 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2894 		 * remain stable since this happens under the lock.
2895 		 */
2896 		remove_hugetlb_folio(h, old_folio, false);
2897 
2898 		/*
2899 		 * Ref count on new_folio is already zero as it was dropped
2900 		 * earlier.  It can be directly added to the pool free list.
2901 		 */
2902 		__prep_account_new_huge_page(h, nid);
2903 		enqueue_hugetlb_folio(h, new_folio);
2904 
2905 		/*
2906 		 * Folio has been replaced, we can safely free the old one.
2907 		 */
2908 		spin_unlock_irq(&hugetlb_lock);
2909 		update_and_free_hugetlb_folio(h, old_folio, false);
2910 	}
2911 
2912 	return ret;
2913 
2914 free_new:
2915 	spin_unlock_irq(&hugetlb_lock);
2916 	if (new_folio)
2917 		update_and_free_hugetlb_folio(h, new_folio, false);
2918 
2919 	return ret;
2920 }
2921 
isolate_or_dissolve_huge_page(struct page * page,struct list_head * list)2922 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2923 {
2924 	struct hstate *h;
2925 	struct folio *folio = page_folio(page);
2926 	int ret = -EBUSY;
2927 
2928 	/*
2929 	 * The page might have been dissolved from under our feet, so make sure
2930 	 * to carefully check the state under the lock.
2931 	 * Return success when racing as if we dissolved the page ourselves.
2932 	 */
2933 	spin_lock_irq(&hugetlb_lock);
2934 	if (folio_test_hugetlb(folio)) {
2935 		h = folio_hstate(folio);
2936 	} else {
2937 		spin_unlock_irq(&hugetlb_lock);
2938 		return 0;
2939 	}
2940 	spin_unlock_irq(&hugetlb_lock);
2941 
2942 	/*
2943 	 * Fence off gigantic pages as there is a cyclic dependency between
2944 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2945 	 * of bailing out right away without further retrying.
2946 	 */
2947 	if (hstate_is_gigantic(h))
2948 		return -ENOMEM;
2949 
2950 	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
2951 		ret = 0;
2952 	else if (!folio_ref_count(folio))
2953 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
2954 
2955 	return ret;
2956 }
2957 
wait_for_freed_hugetlb_folios(void)2958 void wait_for_freed_hugetlb_folios(void)
2959 {
2960 	if (llist_empty(&hpage_freelist))
2961 		return;
2962 
2963 	flush_work(&free_hpage_work);
2964 }
2965 
alloc_hugetlb_folio(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)2966 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
2967 				    unsigned long addr, int avoid_reserve)
2968 {
2969 	struct hugepage_subpool *spool = subpool_vma(vma);
2970 	struct hstate *h = hstate_vma(vma);
2971 	struct folio *folio;
2972 	long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
2973 	long gbl_chg;
2974 	int memcg_charge_ret, ret, idx;
2975 	struct hugetlb_cgroup *h_cg = NULL;
2976 	struct mem_cgroup *memcg;
2977 	bool deferred_reserve;
2978 	gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
2979 
2980 	memcg = get_mem_cgroup_from_current();
2981 	memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
2982 	if (memcg_charge_ret == -ENOMEM) {
2983 		mem_cgroup_put(memcg);
2984 		return ERR_PTR(-ENOMEM);
2985 	}
2986 
2987 	idx = hstate_index(h);
2988 	/*
2989 	 * Examine the region/reserve map to determine if the process
2990 	 * has a reservation for the page to be allocated.  A return
2991 	 * code of zero indicates a reservation exists (no change).
2992 	 */
2993 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2994 	if (map_chg < 0) {
2995 		if (!memcg_charge_ret)
2996 			mem_cgroup_cancel_charge(memcg, nr_pages);
2997 		mem_cgroup_put(memcg);
2998 		return ERR_PTR(-ENOMEM);
2999 	}
3000 
3001 	/*
3002 	 * Processes that did not create the mapping will have no
3003 	 * reserves as indicated by the region/reserve map. Check
3004 	 * that the allocation will not exceed the subpool limit.
3005 	 * Allocations for MAP_NORESERVE mappings also need to be
3006 	 * checked against any subpool limit.
3007 	 */
3008 	if (map_chg || avoid_reserve) {
3009 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3010 		if (gbl_chg < 0)
3011 			goto out_end_reservation;
3012 	}
3013 
3014 	/* If this allocation is not consuming a reservation, charge it now.
3015 	 */
3016 	deferred_reserve = map_chg || avoid_reserve;
3017 	if (deferred_reserve) {
3018 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3019 			idx, pages_per_huge_page(h), &h_cg);
3020 		if (ret)
3021 			goto out_subpool_put;
3022 	}
3023 
3024 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3025 	if (ret)
3026 		goto out_uncharge_cgroup_reservation;
3027 
3028 	spin_lock_irq(&hugetlb_lock);
3029 	/*
3030 	 * glb_chg is passed to indicate whether or not a page must be taken
3031 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3032 	 * a reservation exists for the allocation.
3033 	 */
3034 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
3035 	if (!folio) {
3036 		spin_unlock_irq(&hugetlb_lock);
3037 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3038 		if (!folio)
3039 			goto out_uncharge_cgroup;
3040 		spin_lock_irq(&hugetlb_lock);
3041 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3042 			folio_set_hugetlb_restore_reserve(folio);
3043 			h->resv_huge_pages--;
3044 		}
3045 		list_add(&folio->lru, &h->hugepage_activelist);
3046 		folio_ref_unfreeze(folio, 1);
3047 		/* Fall through */
3048 	}
3049 
3050 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3051 	/* If allocation is not consuming a reservation, also store the
3052 	 * hugetlb_cgroup pointer on the page.
3053 	 */
3054 	if (deferred_reserve) {
3055 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3056 						  h_cg, folio);
3057 	}
3058 
3059 	spin_unlock_irq(&hugetlb_lock);
3060 
3061 	hugetlb_set_folio_subpool(folio, spool);
3062 
3063 	map_commit = vma_commit_reservation(h, vma, addr);
3064 	if (unlikely(map_chg > map_commit)) {
3065 		/*
3066 		 * The page was added to the reservation map between
3067 		 * vma_needs_reservation and vma_commit_reservation.
3068 		 * This indicates a race with hugetlb_reserve_pages.
3069 		 * Adjust for the subpool count incremented above AND
3070 		 * in hugetlb_reserve_pages for the same page.  Also,
3071 		 * the reservation count added in hugetlb_reserve_pages
3072 		 * no longer applies.
3073 		 */
3074 		long rsv_adjust;
3075 
3076 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3077 		hugetlb_acct_memory(h, -rsv_adjust);
3078 		if (deferred_reserve) {
3079 			spin_lock_irq(&hugetlb_lock);
3080 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3081 					pages_per_huge_page(h), folio);
3082 			spin_unlock_irq(&hugetlb_lock);
3083 		}
3084 	}
3085 
3086 	if (!memcg_charge_ret)
3087 		mem_cgroup_commit_charge(folio, memcg);
3088 	mem_cgroup_put(memcg);
3089 
3090 	return folio;
3091 
3092 out_uncharge_cgroup:
3093 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3094 out_uncharge_cgroup_reservation:
3095 	if (deferred_reserve)
3096 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3097 						    h_cg);
3098 out_subpool_put:
3099 	if (map_chg || avoid_reserve)
3100 		hugepage_subpool_put_pages(spool, 1);
3101 out_end_reservation:
3102 	vma_end_reservation(h, vma, addr);
3103 	if (!memcg_charge_ret)
3104 		mem_cgroup_cancel_charge(memcg, nr_pages);
3105 	mem_cgroup_put(memcg);
3106 	return ERR_PTR(-ENOSPC);
3107 }
3108 
3109 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3110 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)3111 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3112 {
3113 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3114 	int nr_nodes, node = nid;
3115 
3116 	/* do node specific alloc */
3117 	if (nid != NUMA_NO_NODE) {
3118 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3119 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3120 		if (!m)
3121 			return 0;
3122 		goto found;
3123 	}
3124 	/* allocate from next node when distributing huge pages */
3125 	for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3126 		m = memblock_alloc_try_nid_raw(
3127 				huge_page_size(h), huge_page_size(h),
3128 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3129 		/*
3130 		 * Use the beginning of the huge page to store the
3131 		 * huge_bootmem_page struct (until gather_bootmem
3132 		 * puts them into the mem_map).
3133 		 */
3134 		if (!m)
3135 			return 0;
3136 		goto found;
3137 	}
3138 
3139 found:
3140 
3141 	/*
3142 	 * Only initialize the head struct page in memmap_init_reserved_pages,
3143 	 * rest of the struct pages will be initialized by the HugeTLB
3144 	 * subsystem itself.
3145 	 * The head struct page is used to get folio information by the HugeTLB
3146 	 * subsystem like zone id and node id.
3147 	 */
3148 	memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3149 		huge_page_size(h) - PAGE_SIZE);
3150 	/* Put them into a private list first because mem_map is not up yet */
3151 	INIT_LIST_HEAD(&m->list);
3152 	list_add(&m->list, &huge_boot_pages[node]);
3153 	m->hstate = h;
3154 	return 1;
3155 }
3156 
3157 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
hugetlb_folio_init_tail_vmemmap(struct folio * folio,unsigned long start_page_number,unsigned long end_page_number)3158 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3159 					unsigned long start_page_number,
3160 					unsigned long end_page_number)
3161 {
3162 	enum zone_type zone = zone_idx(folio_zone(folio));
3163 	int nid = folio_nid(folio);
3164 	unsigned long head_pfn = folio_pfn(folio);
3165 	unsigned long pfn, end_pfn = head_pfn + end_page_number;
3166 	int ret;
3167 
3168 	for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3169 		struct page *page = pfn_to_page(pfn);
3170 
3171 		__ClearPageReserved(folio_page(folio, pfn - head_pfn));
3172 		__init_single_page(page, pfn, zone, nid);
3173 		prep_compound_tail((struct page *)folio, pfn - head_pfn);
3174 		ret = page_ref_freeze(page, 1);
3175 		VM_BUG_ON(!ret);
3176 	}
3177 }
3178 
hugetlb_folio_init_vmemmap(struct folio * folio,struct hstate * h,unsigned long nr_pages)3179 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3180 					      struct hstate *h,
3181 					      unsigned long nr_pages)
3182 {
3183 	int ret;
3184 
3185 	/* Prepare folio head */
3186 	__folio_clear_reserved(folio);
3187 	__folio_set_head(folio);
3188 	ret = folio_ref_freeze(folio, 1);
3189 	VM_BUG_ON(!ret);
3190 	/* Initialize the necessary tail struct pages */
3191 	hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3192 	prep_compound_head((struct page *)folio, huge_page_order(h));
3193 }
3194 
prep_and_add_bootmem_folios(struct hstate * h,struct list_head * folio_list)3195 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3196 					struct list_head *folio_list)
3197 {
3198 	unsigned long flags;
3199 	struct folio *folio, *tmp_f;
3200 
3201 	/* Send list for bulk vmemmap optimization processing */
3202 	hugetlb_vmemmap_optimize_folios(h, folio_list);
3203 
3204 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3205 		if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3206 			/*
3207 			 * If HVO fails, initialize all tail struct pages
3208 			 * We do not worry about potential long lock hold
3209 			 * time as this is early in boot and there should
3210 			 * be no contention.
3211 			 */
3212 			hugetlb_folio_init_tail_vmemmap(folio,
3213 					HUGETLB_VMEMMAP_RESERVE_PAGES,
3214 					pages_per_huge_page(h));
3215 		}
3216 		/* Subdivide locks to achieve better parallel performance */
3217 		spin_lock_irqsave(&hugetlb_lock, flags);
3218 		__prep_account_new_huge_page(h, folio_nid(folio));
3219 		enqueue_hugetlb_folio(h, folio);
3220 		spin_unlock_irqrestore(&hugetlb_lock, flags);
3221 	}
3222 }
3223 
3224 /*
3225  * Put bootmem huge pages into the standard lists after mem_map is up.
3226  * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3227  */
gather_bootmem_prealloc_node(unsigned long nid)3228 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3229 {
3230 	LIST_HEAD(folio_list);
3231 	struct huge_bootmem_page *m;
3232 	struct hstate *h = NULL, *prev_h = NULL;
3233 
3234 	list_for_each_entry(m, &huge_boot_pages[nid], list) {
3235 		struct page *page = virt_to_page(m);
3236 		struct folio *folio = (void *)page;
3237 
3238 		h = m->hstate;
3239 		/*
3240 		 * It is possible to have multiple huge page sizes (hstates)
3241 		 * in this list.  If so, process each size separately.
3242 		 */
3243 		if (h != prev_h && prev_h != NULL)
3244 			prep_and_add_bootmem_folios(prev_h, &folio_list);
3245 		prev_h = h;
3246 
3247 		VM_BUG_ON(!hstate_is_gigantic(h));
3248 		WARN_ON(folio_ref_count(folio) != 1);
3249 
3250 		hugetlb_folio_init_vmemmap(folio, h,
3251 					   HUGETLB_VMEMMAP_RESERVE_PAGES);
3252 		init_new_hugetlb_folio(h, folio);
3253 		list_add(&folio->lru, &folio_list);
3254 
3255 		/*
3256 		 * We need to restore the 'stolen' pages to totalram_pages
3257 		 * in order to fix confusing memory reports from free(1) and
3258 		 * other side-effects, like CommitLimit going negative.
3259 		 */
3260 		adjust_managed_page_count(page, pages_per_huge_page(h));
3261 		cond_resched();
3262 	}
3263 
3264 	prep_and_add_bootmem_folios(h, &folio_list);
3265 }
3266 
gather_bootmem_prealloc_parallel(unsigned long start,unsigned long end,void * arg)3267 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3268 						    unsigned long end, void *arg)
3269 {
3270 	int nid;
3271 
3272 	for (nid = start; nid < end; nid++)
3273 		gather_bootmem_prealloc_node(nid);
3274 }
3275 
gather_bootmem_prealloc(void)3276 static void __init gather_bootmem_prealloc(void)
3277 {
3278 	struct padata_mt_job job = {
3279 		.thread_fn	= gather_bootmem_prealloc_parallel,
3280 		.fn_arg		= NULL,
3281 		.start		= 0,
3282 		.size		= nr_node_ids,
3283 		.align		= 1,
3284 		.min_chunk	= 1,
3285 		.max_threads	= num_node_state(N_MEMORY),
3286 		.numa_aware	= true,
3287 	};
3288 
3289 	padata_do_multithreaded(&job);
3290 }
3291 
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3292 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3293 {
3294 	unsigned long i;
3295 	char buf[32];
3296 
3297 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3298 		if (hstate_is_gigantic(h)) {
3299 			if (!alloc_bootmem_huge_page(h, nid))
3300 				break;
3301 		} else {
3302 			struct folio *folio;
3303 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3304 
3305 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3306 					&node_states[N_MEMORY]);
3307 			if (!folio)
3308 				break;
3309 			free_huge_folio(folio); /* free it into the hugepage allocator */
3310 		}
3311 		cond_resched();
3312 	}
3313 	if (i == h->max_huge_pages_node[nid])
3314 		return;
3315 
3316 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3317 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3318 		h->max_huge_pages_node[nid], buf, nid, i);
3319 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3320 	h->max_huge_pages_node[nid] = i;
3321 }
3322 
hugetlb_hstate_alloc_pages_specific_nodes(struct hstate * h)3323 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3324 {
3325 	int i;
3326 	bool node_specific_alloc = false;
3327 
3328 	for_each_online_node(i) {
3329 		if (h->max_huge_pages_node[i] > 0) {
3330 			hugetlb_hstate_alloc_pages_onenode(h, i);
3331 			node_specific_alloc = true;
3332 		}
3333 	}
3334 
3335 	return node_specific_alloc;
3336 }
3337 
hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated,struct hstate * h)3338 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3339 {
3340 	if (allocated < h->max_huge_pages) {
3341 		char buf[32];
3342 
3343 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3344 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3345 			h->max_huge_pages, buf, allocated);
3346 		h->max_huge_pages = allocated;
3347 	}
3348 }
3349 
hugetlb_pages_alloc_boot_node(unsigned long start,unsigned long end,void * arg)3350 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3351 {
3352 	struct hstate *h = (struct hstate *)arg;
3353 	int i, num = end - start;
3354 	nodemask_t node_alloc_noretry;
3355 	LIST_HEAD(folio_list);
3356 	int next_node = first_online_node;
3357 
3358 	/* Bit mask controlling how hard we retry per-node allocations.*/
3359 	nodes_clear(node_alloc_noretry);
3360 
3361 	for (i = 0; i < num; ++i) {
3362 		struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3363 						&node_alloc_noretry, &next_node);
3364 		if (!folio)
3365 			break;
3366 
3367 		list_move(&folio->lru, &folio_list);
3368 		cond_resched();
3369 	}
3370 
3371 	prep_and_add_allocated_folios(h, &folio_list);
3372 }
3373 
hugetlb_gigantic_pages_alloc_boot(struct hstate * h)3374 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3375 {
3376 	unsigned long i;
3377 
3378 	for (i = 0; i < h->max_huge_pages; ++i) {
3379 		if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3380 			break;
3381 		cond_resched();
3382 	}
3383 
3384 	return i;
3385 }
3386 
hugetlb_pages_alloc_boot(struct hstate * h)3387 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3388 {
3389 	struct padata_mt_job job = {
3390 		.fn_arg		= h,
3391 		.align		= 1,
3392 		.numa_aware	= true
3393 	};
3394 
3395 	job.thread_fn	= hugetlb_pages_alloc_boot_node;
3396 	job.start	= 0;
3397 	job.size	= h->max_huge_pages;
3398 
3399 	/*
3400 	 * job.max_threads is twice the num_node_state(N_MEMORY),
3401 	 *
3402 	 * Tests below indicate that a multiplier of 2 significantly improves
3403 	 * performance, and although larger values also provide improvements,
3404 	 * the gains are marginal.
3405 	 *
3406 	 * Therefore, choosing 2 as the multiplier strikes a good balance between
3407 	 * enhancing parallel processing capabilities and maintaining efficient
3408 	 * resource management.
3409 	 *
3410 	 * +------------+-------+-------+-------+-------+-------+
3411 	 * | multiplier |   1   |   2   |   3   |   4   |   5   |
3412 	 * +------------+-------+-------+-------+-------+-------+
3413 	 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3414 	 * | 2T   4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3415 	 * | 50G  2node | 71ms  | 44ms  | 37ms  | 30ms  | 31ms  |
3416 	 * +------------+-------+-------+-------+-------+-------+
3417 	 */
3418 	job.max_threads	= num_node_state(N_MEMORY) * 2;
3419 	job.min_chunk	= h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3420 	padata_do_multithreaded(&job);
3421 
3422 	return h->nr_huge_pages;
3423 }
3424 
3425 /*
3426  * NOTE: this routine is called in different contexts for gigantic and
3427  * non-gigantic pages.
3428  * - For gigantic pages, this is called early in the boot process and
3429  *   pages are allocated from memblock allocated or something similar.
3430  *   Gigantic pages are actually added to pools later with the routine
3431  *   gather_bootmem_prealloc.
3432  * - For non-gigantic pages, this is called later in the boot process after
3433  *   all of mm is up and functional.  Pages are allocated from buddy and
3434  *   then added to hugetlb pools.
3435  */
hugetlb_hstate_alloc_pages(struct hstate * h)3436 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3437 {
3438 	unsigned long allocated;
3439 	static bool initialized __initdata;
3440 
3441 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3442 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3443 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3444 		return;
3445 	}
3446 
3447 	/* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3448 	if (!initialized) {
3449 		int i = 0;
3450 
3451 		for (i = 0; i < MAX_NUMNODES; i++)
3452 			INIT_LIST_HEAD(&huge_boot_pages[i]);
3453 		initialized = true;
3454 	}
3455 
3456 	/* do node specific alloc */
3457 	if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3458 		return;
3459 
3460 	/* below will do all node balanced alloc */
3461 	if (hstate_is_gigantic(h))
3462 		allocated = hugetlb_gigantic_pages_alloc_boot(h);
3463 	else
3464 		allocated = hugetlb_pages_alloc_boot(h);
3465 
3466 	hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3467 }
3468 
hugetlb_init_hstates(void)3469 static void __init hugetlb_init_hstates(void)
3470 {
3471 	struct hstate *h, *h2;
3472 
3473 	for_each_hstate(h) {
3474 		/* oversize hugepages were init'ed in early boot */
3475 		if (!hstate_is_gigantic(h))
3476 			hugetlb_hstate_alloc_pages(h);
3477 
3478 		/*
3479 		 * Set demote order for each hstate.  Note that
3480 		 * h->demote_order is initially 0.
3481 		 * - We can not demote gigantic pages if runtime freeing
3482 		 *   is not supported, so skip this.
3483 		 * - If CMA allocation is possible, we can not demote
3484 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3485 		 */
3486 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3487 			continue;
3488 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3489 			continue;
3490 		for_each_hstate(h2) {
3491 			if (h2 == h)
3492 				continue;
3493 			if (h2->order < h->order &&
3494 			    h2->order > h->demote_order)
3495 				h->demote_order = h2->order;
3496 		}
3497 	}
3498 }
3499 
report_hugepages(void)3500 static void __init report_hugepages(void)
3501 {
3502 	struct hstate *h;
3503 
3504 	for_each_hstate(h) {
3505 		char buf[32];
3506 
3507 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3508 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3509 			buf, h->free_huge_pages);
3510 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3511 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3512 	}
3513 }
3514 
3515 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3516 static void try_to_free_low(struct hstate *h, unsigned long count,
3517 						nodemask_t *nodes_allowed)
3518 {
3519 	int i;
3520 	LIST_HEAD(page_list);
3521 
3522 	lockdep_assert_held(&hugetlb_lock);
3523 	if (hstate_is_gigantic(h))
3524 		return;
3525 
3526 	/*
3527 	 * Collect pages to be freed on a list, and free after dropping lock
3528 	 */
3529 	for_each_node_mask(i, *nodes_allowed) {
3530 		struct folio *folio, *next;
3531 		struct list_head *freel = &h->hugepage_freelists[i];
3532 		list_for_each_entry_safe(folio, next, freel, lru) {
3533 			if (count >= h->nr_huge_pages)
3534 				goto out;
3535 			if (folio_test_highmem(folio))
3536 				continue;
3537 			remove_hugetlb_folio(h, folio, false);
3538 			list_add(&folio->lru, &page_list);
3539 		}
3540 	}
3541 
3542 out:
3543 	spin_unlock_irq(&hugetlb_lock);
3544 	update_and_free_pages_bulk(h, &page_list);
3545 	spin_lock_irq(&hugetlb_lock);
3546 }
3547 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3548 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3549 						nodemask_t *nodes_allowed)
3550 {
3551 }
3552 #endif
3553 
3554 /*
3555  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3556  * balanced by operating on them in a round-robin fashion.
3557  * Returns 1 if an adjustment was made.
3558  */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3559 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3560 				int delta)
3561 {
3562 	int nr_nodes, node;
3563 
3564 	lockdep_assert_held(&hugetlb_lock);
3565 	VM_BUG_ON(delta != -1 && delta != 1);
3566 
3567 	if (delta < 0) {
3568 		for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3569 			if (h->surplus_huge_pages_node[node])
3570 				goto found;
3571 		}
3572 	} else {
3573 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3574 			if (h->surplus_huge_pages_node[node] <
3575 					h->nr_huge_pages_node[node])
3576 				goto found;
3577 		}
3578 	}
3579 	return 0;
3580 
3581 found:
3582 	h->surplus_huge_pages += delta;
3583 	h->surplus_huge_pages_node[node] += delta;
3584 	return 1;
3585 }
3586 
3587 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3588 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3589 			      nodemask_t *nodes_allowed)
3590 {
3591 	unsigned long min_count;
3592 	unsigned long allocated;
3593 	struct folio *folio;
3594 	LIST_HEAD(page_list);
3595 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3596 
3597 	/*
3598 	 * Bit mask controlling how hard we retry per-node allocations.
3599 	 * If we can not allocate the bit mask, do not attempt to allocate
3600 	 * the requested huge pages.
3601 	 */
3602 	if (node_alloc_noretry)
3603 		nodes_clear(*node_alloc_noretry);
3604 	else
3605 		return -ENOMEM;
3606 
3607 	/*
3608 	 * resize_lock mutex prevents concurrent adjustments to number of
3609 	 * pages in hstate via the proc/sysfs interfaces.
3610 	 */
3611 	mutex_lock(&h->resize_lock);
3612 	flush_free_hpage_work(h);
3613 	spin_lock_irq(&hugetlb_lock);
3614 
3615 	/*
3616 	 * Check for a node specific request.
3617 	 * Changing node specific huge page count may require a corresponding
3618 	 * change to the global count.  In any case, the passed node mask
3619 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3620 	 */
3621 	if (nid != NUMA_NO_NODE) {
3622 		unsigned long old_count = count;
3623 
3624 		count += persistent_huge_pages(h) -
3625 			 (h->nr_huge_pages_node[nid] -
3626 			  h->surplus_huge_pages_node[nid]);
3627 		/*
3628 		 * User may have specified a large count value which caused the
3629 		 * above calculation to overflow.  In this case, they wanted
3630 		 * to allocate as many huge pages as possible.  Set count to
3631 		 * largest possible value to align with their intention.
3632 		 */
3633 		if (count < old_count)
3634 			count = ULONG_MAX;
3635 	}
3636 
3637 	/*
3638 	 * Gigantic pages runtime allocation depend on the capability for large
3639 	 * page range allocation.
3640 	 * If the system does not provide this feature, return an error when
3641 	 * the user tries to allocate gigantic pages but let the user free the
3642 	 * boottime allocated gigantic pages.
3643 	 */
3644 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3645 		if (count > persistent_huge_pages(h)) {
3646 			spin_unlock_irq(&hugetlb_lock);
3647 			mutex_unlock(&h->resize_lock);
3648 			NODEMASK_FREE(node_alloc_noretry);
3649 			return -EINVAL;
3650 		}
3651 		/* Fall through to decrease pool */
3652 	}
3653 
3654 	/*
3655 	 * Increase the pool size
3656 	 * First take pages out of surplus state.  Then make up the
3657 	 * remaining difference by allocating fresh huge pages.
3658 	 *
3659 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3660 	 * to convert a surplus huge page to a normal huge page. That is
3661 	 * not critical, though, it just means the overall size of the
3662 	 * pool might be one hugepage larger than it needs to be, but
3663 	 * within all the constraints specified by the sysctls.
3664 	 */
3665 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3666 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3667 			break;
3668 	}
3669 
3670 	allocated = 0;
3671 	while (count > (persistent_huge_pages(h) + allocated)) {
3672 		/*
3673 		 * If this allocation races such that we no longer need the
3674 		 * page, free_huge_folio will handle it by freeing the page
3675 		 * and reducing the surplus.
3676 		 */
3677 		spin_unlock_irq(&hugetlb_lock);
3678 
3679 		/* yield cpu to avoid soft lockup */
3680 		cond_resched();
3681 
3682 		folio = alloc_pool_huge_folio(h, nodes_allowed,
3683 						node_alloc_noretry,
3684 						&h->next_nid_to_alloc);
3685 		if (!folio) {
3686 			prep_and_add_allocated_folios(h, &page_list);
3687 			spin_lock_irq(&hugetlb_lock);
3688 			goto out;
3689 		}
3690 
3691 		list_add(&folio->lru, &page_list);
3692 		allocated++;
3693 
3694 		/* Bail for signals. Probably ctrl-c from user */
3695 		if (signal_pending(current)) {
3696 			prep_and_add_allocated_folios(h, &page_list);
3697 			spin_lock_irq(&hugetlb_lock);
3698 			goto out;
3699 		}
3700 
3701 		spin_lock_irq(&hugetlb_lock);
3702 	}
3703 
3704 	/* Add allocated pages to the pool */
3705 	if (!list_empty(&page_list)) {
3706 		spin_unlock_irq(&hugetlb_lock);
3707 		prep_and_add_allocated_folios(h, &page_list);
3708 		spin_lock_irq(&hugetlb_lock);
3709 	}
3710 
3711 	/*
3712 	 * Decrease the pool size
3713 	 * First return free pages to the buddy allocator (being careful
3714 	 * to keep enough around to satisfy reservations).  Then place
3715 	 * pages into surplus state as needed so the pool will shrink
3716 	 * to the desired size as pages become free.
3717 	 *
3718 	 * By placing pages into the surplus state independent of the
3719 	 * overcommit value, we are allowing the surplus pool size to
3720 	 * exceed overcommit. There are few sane options here. Since
3721 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3722 	 * though, we'll note that we're not allowed to exceed surplus
3723 	 * and won't grow the pool anywhere else. Not until one of the
3724 	 * sysctls are changed, or the surplus pages go out of use.
3725 	 */
3726 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3727 	min_count = max(count, min_count);
3728 	try_to_free_low(h, min_count, nodes_allowed);
3729 
3730 	/*
3731 	 * Collect pages to be removed on list without dropping lock
3732 	 */
3733 	while (min_count < persistent_huge_pages(h)) {
3734 		folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3735 		if (!folio)
3736 			break;
3737 
3738 		list_add(&folio->lru, &page_list);
3739 	}
3740 	/* free the pages after dropping lock */
3741 	spin_unlock_irq(&hugetlb_lock);
3742 	update_and_free_pages_bulk(h, &page_list);
3743 	flush_free_hpage_work(h);
3744 	spin_lock_irq(&hugetlb_lock);
3745 
3746 	while (count < persistent_huge_pages(h)) {
3747 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3748 			break;
3749 	}
3750 out:
3751 	h->max_huge_pages = persistent_huge_pages(h);
3752 	spin_unlock_irq(&hugetlb_lock);
3753 	mutex_unlock(&h->resize_lock);
3754 
3755 	NODEMASK_FREE(node_alloc_noretry);
3756 
3757 	return 0;
3758 }
3759 
demote_free_hugetlb_folios(struct hstate * src,struct hstate * dst,struct list_head * src_list)3760 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
3761 				       struct list_head *src_list)
3762 {
3763 	long rc;
3764 	struct folio *folio, *next;
3765 	LIST_HEAD(dst_list);
3766 	LIST_HEAD(ret_list);
3767 
3768 	rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
3769 	list_splice_init(&ret_list, src_list);
3770 
3771 	/*
3772 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3773 	 * Without the mutex, pages added to target hstate could be marked
3774 	 * as surplus.
3775 	 *
3776 	 * Note that we already hold src->resize_lock.  To prevent deadlock,
3777 	 * use the convention of always taking larger size hstate mutex first.
3778 	 */
3779 	mutex_lock(&dst->resize_lock);
3780 
3781 	list_for_each_entry_safe(folio, next, src_list, lru) {
3782 		int i;
3783 
3784 		if (folio_test_hugetlb_vmemmap_optimized(folio))
3785 			continue;
3786 
3787 		list_del(&folio->lru);
3788 
3789 		split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
3790 		pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
3791 
3792 		for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
3793 			struct page *page = folio_page(folio, i);
3794 
3795 			page->mapping = NULL;
3796 			clear_compound_head(page);
3797 			prep_compound_page(page, dst->order);
3798 
3799 			init_new_hugetlb_folio(dst, page_folio(page));
3800 			list_add(&page->lru, &dst_list);
3801 		}
3802 	}
3803 
3804 	prep_and_add_allocated_folios(dst, &dst_list);
3805 
3806 	mutex_unlock(&dst->resize_lock);
3807 
3808 	return rc;
3809 }
3810 
demote_pool_huge_page(struct hstate * src,nodemask_t * nodes_allowed,unsigned long nr_to_demote)3811 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
3812 				  unsigned long nr_to_demote)
3813 	__must_hold(&hugetlb_lock)
3814 {
3815 	int nr_nodes, node;
3816 	struct hstate *dst;
3817 	long rc = 0;
3818 	long nr_demoted = 0;
3819 
3820 	lockdep_assert_held(&hugetlb_lock);
3821 
3822 	/* We should never get here if no demote order */
3823 	if (!src->demote_order) {
3824 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3825 		return -EINVAL;		/* internal error */
3826 	}
3827 	dst = size_to_hstate(PAGE_SIZE << src->demote_order);
3828 
3829 	for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
3830 		LIST_HEAD(list);
3831 		struct folio *folio, *next;
3832 
3833 		list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
3834 			if (folio_test_hwpoison(folio))
3835 				continue;
3836 
3837 			remove_hugetlb_folio(src, folio, false);
3838 			list_add(&folio->lru, &list);
3839 
3840 			if (++nr_demoted == nr_to_demote)
3841 				break;
3842 		}
3843 
3844 		spin_unlock_irq(&hugetlb_lock);
3845 
3846 		rc = demote_free_hugetlb_folios(src, dst, &list);
3847 
3848 		spin_lock_irq(&hugetlb_lock);
3849 
3850 		list_for_each_entry_safe(folio, next, &list, lru) {
3851 			list_del(&folio->lru);
3852 			add_hugetlb_folio(src, folio, false);
3853 
3854 			nr_demoted--;
3855 		}
3856 
3857 		if (rc < 0 || nr_demoted == nr_to_demote)
3858 			break;
3859 	}
3860 
3861 	/*
3862 	 * Not absolutely necessary, but for consistency update max_huge_pages
3863 	 * based on pool changes for the demoted page.
3864 	 */
3865 	src->max_huge_pages -= nr_demoted;
3866 	dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
3867 
3868 	if (rc < 0)
3869 		return rc;
3870 
3871 	if (nr_demoted)
3872 		return nr_demoted;
3873 	/*
3874 	 * Only way to get here is if all pages on free lists are poisoned.
3875 	 * Return -EBUSY so that caller will not retry.
3876 	 */
3877 	return -EBUSY;
3878 }
3879 
3880 #define HSTATE_ATTR_RO(_name) \
3881 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3882 
3883 #define HSTATE_ATTR_WO(_name) \
3884 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3885 
3886 #define HSTATE_ATTR(_name) \
3887 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3888 
3889 static struct kobject *hugepages_kobj;
3890 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3891 
3892 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3893 
kobj_to_hstate(struct kobject * kobj,int * nidp)3894 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3895 {
3896 	int i;
3897 
3898 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3899 		if (hstate_kobjs[i] == kobj) {
3900 			if (nidp)
3901 				*nidp = NUMA_NO_NODE;
3902 			return &hstates[i];
3903 		}
3904 
3905 	return kobj_to_node_hstate(kobj, nidp);
3906 }
3907 
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3908 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3909 					struct kobj_attribute *attr, char *buf)
3910 {
3911 	struct hstate *h;
3912 	unsigned long nr_huge_pages;
3913 	int nid;
3914 
3915 	h = kobj_to_hstate(kobj, &nid);
3916 	if (nid == NUMA_NO_NODE)
3917 		nr_huge_pages = h->nr_huge_pages;
3918 	else
3919 		nr_huge_pages = h->nr_huge_pages_node[nid];
3920 
3921 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3922 }
3923 
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)3924 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3925 					   struct hstate *h, int nid,
3926 					   unsigned long count, size_t len)
3927 {
3928 	int err;
3929 	nodemask_t nodes_allowed, *n_mask;
3930 
3931 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3932 		return -EINVAL;
3933 
3934 	if (nid == NUMA_NO_NODE) {
3935 		/*
3936 		 * global hstate attribute
3937 		 */
3938 		if (!(obey_mempolicy &&
3939 				init_nodemask_of_mempolicy(&nodes_allowed)))
3940 			n_mask = &node_states[N_MEMORY];
3941 		else
3942 			n_mask = &nodes_allowed;
3943 	} else {
3944 		/*
3945 		 * Node specific request.  count adjustment happens in
3946 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3947 		 */
3948 		init_nodemask_of_node(&nodes_allowed, nid);
3949 		n_mask = &nodes_allowed;
3950 	}
3951 
3952 	err = set_max_huge_pages(h, count, nid, n_mask);
3953 
3954 	return err ? err : len;
3955 }
3956 
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)3957 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3958 					 struct kobject *kobj, const char *buf,
3959 					 size_t len)
3960 {
3961 	struct hstate *h;
3962 	unsigned long count;
3963 	int nid;
3964 	int err;
3965 
3966 	err = kstrtoul(buf, 10, &count);
3967 	if (err)
3968 		return err;
3969 
3970 	h = kobj_to_hstate(kobj, &nid);
3971 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3972 }
3973 
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3974 static ssize_t nr_hugepages_show(struct kobject *kobj,
3975 				       struct kobj_attribute *attr, char *buf)
3976 {
3977 	return nr_hugepages_show_common(kobj, attr, buf);
3978 }
3979 
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3980 static ssize_t nr_hugepages_store(struct kobject *kobj,
3981 	       struct kobj_attribute *attr, const char *buf, size_t len)
3982 {
3983 	return nr_hugepages_store_common(false, kobj, buf, len);
3984 }
3985 HSTATE_ATTR(nr_hugepages);
3986 
3987 #ifdef CONFIG_NUMA
3988 
3989 /*
3990  * hstate attribute for optionally mempolicy-based constraint on persistent
3991  * huge page alloc/free.
3992  */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3993 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3994 					   struct kobj_attribute *attr,
3995 					   char *buf)
3996 {
3997 	return nr_hugepages_show_common(kobj, attr, buf);
3998 }
3999 
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4000 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4001 	       struct kobj_attribute *attr, const char *buf, size_t len)
4002 {
4003 	return nr_hugepages_store_common(true, kobj, buf, len);
4004 }
4005 HSTATE_ATTR(nr_hugepages_mempolicy);
4006 #endif
4007 
4008 
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4009 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4010 					struct kobj_attribute *attr, char *buf)
4011 {
4012 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4013 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4014 }
4015 
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4016 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4017 		struct kobj_attribute *attr, const char *buf, size_t count)
4018 {
4019 	int err;
4020 	unsigned long input;
4021 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4022 
4023 	if (hstate_is_gigantic(h))
4024 		return -EINVAL;
4025 
4026 	err = kstrtoul(buf, 10, &input);
4027 	if (err)
4028 		return err;
4029 
4030 	spin_lock_irq(&hugetlb_lock);
4031 	h->nr_overcommit_huge_pages = input;
4032 	spin_unlock_irq(&hugetlb_lock);
4033 
4034 	return count;
4035 }
4036 HSTATE_ATTR(nr_overcommit_hugepages);
4037 
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4038 static ssize_t free_hugepages_show(struct kobject *kobj,
4039 					struct kobj_attribute *attr, char *buf)
4040 {
4041 	struct hstate *h;
4042 	unsigned long free_huge_pages;
4043 	int nid;
4044 
4045 	h = kobj_to_hstate(kobj, &nid);
4046 	if (nid == NUMA_NO_NODE)
4047 		free_huge_pages = h->free_huge_pages;
4048 	else
4049 		free_huge_pages = h->free_huge_pages_node[nid];
4050 
4051 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
4052 }
4053 HSTATE_ATTR_RO(free_hugepages);
4054 
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4055 static ssize_t resv_hugepages_show(struct kobject *kobj,
4056 					struct kobj_attribute *attr, char *buf)
4057 {
4058 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4059 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4060 }
4061 HSTATE_ATTR_RO(resv_hugepages);
4062 
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4063 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4064 					struct kobj_attribute *attr, char *buf)
4065 {
4066 	struct hstate *h;
4067 	unsigned long surplus_huge_pages;
4068 	int nid;
4069 
4070 	h = kobj_to_hstate(kobj, &nid);
4071 	if (nid == NUMA_NO_NODE)
4072 		surplus_huge_pages = h->surplus_huge_pages;
4073 	else
4074 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
4075 
4076 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4077 }
4078 HSTATE_ATTR_RO(surplus_hugepages);
4079 
demote_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4080 static ssize_t demote_store(struct kobject *kobj,
4081 	       struct kobj_attribute *attr, const char *buf, size_t len)
4082 {
4083 	unsigned long nr_demote;
4084 	unsigned long nr_available;
4085 	nodemask_t nodes_allowed, *n_mask;
4086 	struct hstate *h;
4087 	int err;
4088 	int nid;
4089 
4090 	err = kstrtoul(buf, 10, &nr_demote);
4091 	if (err)
4092 		return err;
4093 	h = kobj_to_hstate(kobj, &nid);
4094 
4095 	if (nid != NUMA_NO_NODE) {
4096 		init_nodemask_of_node(&nodes_allowed, nid);
4097 		n_mask = &nodes_allowed;
4098 	} else {
4099 		n_mask = &node_states[N_MEMORY];
4100 	}
4101 
4102 	/* Synchronize with other sysfs operations modifying huge pages */
4103 	mutex_lock(&h->resize_lock);
4104 	spin_lock_irq(&hugetlb_lock);
4105 
4106 	while (nr_demote) {
4107 		long rc;
4108 
4109 		/*
4110 		 * Check for available pages to demote each time thorough the
4111 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
4112 		 */
4113 		if (nid != NUMA_NO_NODE)
4114 			nr_available = h->free_huge_pages_node[nid];
4115 		else
4116 			nr_available = h->free_huge_pages;
4117 		nr_available -= h->resv_huge_pages;
4118 		if (!nr_available)
4119 			break;
4120 
4121 		rc = demote_pool_huge_page(h, n_mask, nr_demote);
4122 		if (rc < 0) {
4123 			err = rc;
4124 			break;
4125 		}
4126 
4127 		nr_demote -= rc;
4128 	}
4129 
4130 	spin_unlock_irq(&hugetlb_lock);
4131 	mutex_unlock(&h->resize_lock);
4132 
4133 	if (err)
4134 		return err;
4135 	return len;
4136 }
4137 HSTATE_ATTR_WO(demote);
4138 
demote_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4139 static ssize_t demote_size_show(struct kobject *kobj,
4140 					struct kobj_attribute *attr, char *buf)
4141 {
4142 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4143 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4144 
4145 	return sysfs_emit(buf, "%lukB\n", demote_size);
4146 }
4147 
demote_size_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4148 static ssize_t demote_size_store(struct kobject *kobj,
4149 					struct kobj_attribute *attr,
4150 					const char *buf, size_t count)
4151 {
4152 	struct hstate *h, *demote_hstate;
4153 	unsigned long demote_size;
4154 	unsigned int demote_order;
4155 
4156 	demote_size = (unsigned long)memparse(buf, NULL);
4157 
4158 	demote_hstate = size_to_hstate(demote_size);
4159 	if (!demote_hstate)
4160 		return -EINVAL;
4161 	demote_order = demote_hstate->order;
4162 	if (demote_order < HUGETLB_PAGE_ORDER)
4163 		return -EINVAL;
4164 
4165 	/* demote order must be smaller than hstate order */
4166 	h = kobj_to_hstate(kobj, NULL);
4167 	if (demote_order >= h->order)
4168 		return -EINVAL;
4169 
4170 	/* resize_lock synchronizes access to demote size and writes */
4171 	mutex_lock(&h->resize_lock);
4172 	h->demote_order = demote_order;
4173 	mutex_unlock(&h->resize_lock);
4174 
4175 	return count;
4176 }
4177 HSTATE_ATTR(demote_size);
4178 
4179 static struct attribute *hstate_attrs[] = {
4180 	&nr_hugepages_attr.attr,
4181 	&nr_overcommit_hugepages_attr.attr,
4182 	&free_hugepages_attr.attr,
4183 	&resv_hugepages_attr.attr,
4184 	&surplus_hugepages_attr.attr,
4185 #ifdef CONFIG_NUMA
4186 	&nr_hugepages_mempolicy_attr.attr,
4187 #endif
4188 	NULL,
4189 };
4190 
4191 static const struct attribute_group hstate_attr_group = {
4192 	.attrs = hstate_attrs,
4193 };
4194 
4195 static struct attribute *hstate_demote_attrs[] = {
4196 	&demote_size_attr.attr,
4197 	&demote_attr.attr,
4198 	NULL,
4199 };
4200 
4201 static const struct attribute_group hstate_demote_attr_group = {
4202 	.attrs = hstate_demote_attrs,
4203 };
4204 
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)4205 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4206 				    struct kobject **hstate_kobjs,
4207 				    const struct attribute_group *hstate_attr_group)
4208 {
4209 	int retval;
4210 	int hi = hstate_index(h);
4211 
4212 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4213 	if (!hstate_kobjs[hi])
4214 		return -ENOMEM;
4215 
4216 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4217 	if (retval) {
4218 		kobject_put(hstate_kobjs[hi]);
4219 		hstate_kobjs[hi] = NULL;
4220 		return retval;
4221 	}
4222 
4223 	if (h->demote_order) {
4224 		retval = sysfs_create_group(hstate_kobjs[hi],
4225 					    &hstate_demote_attr_group);
4226 		if (retval) {
4227 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4228 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4229 			kobject_put(hstate_kobjs[hi]);
4230 			hstate_kobjs[hi] = NULL;
4231 			return retval;
4232 		}
4233 	}
4234 
4235 	return 0;
4236 }
4237 
4238 #ifdef CONFIG_NUMA
4239 static bool hugetlb_sysfs_initialized __ro_after_init;
4240 
4241 /*
4242  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4243  * with node devices in node_devices[] using a parallel array.  The array
4244  * index of a node device or _hstate == node id.
4245  * This is here to avoid any static dependency of the node device driver, in
4246  * the base kernel, on the hugetlb module.
4247  */
4248 struct node_hstate {
4249 	struct kobject		*hugepages_kobj;
4250 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4251 };
4252 static struct node_hstate node_hstates[MAX_NUMNODES];
4253 
4254 /*
4255  * A subset of global hstate attributes for node devices
4256  */
4257 static struct attribute *per_node_hstate_attrs[] = {
4258 	&nr_hugepages_attr.attr,
4259 	&free_hugepages_attr.attr,
4260 	&surplus_hugepages_attr.attr,
4261 	NULL,
4262 };
4263 
4264 static const struct attribute_group per_node_hstate_attr_group = {
4265 	.attrs = per_node_hstate_attrs,
4266 };
4267 
4268 /*
4269  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4270  * Returns node id via non-NULL nidp.
4271  */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4272 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4273 {
4274 	int nid;
4275 
4276 	for (nid = 0; nid < nr_node_ids; nid++) {
4277 		struct node_hstate *nhs = &node_hstates[nid];
4278 		int i;
4279 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4280 			if (nhs->hstate_kobjs[i] == kobj) {
4281 				if (nidp)
4282 					*nidp = nid;
4283 				return &hstates[i];
4284 			}
4285 	}
4286 
4287 	BUG();
4288 	return NULL;
4289 }
4290 
4291 /*
4292  * Unregister hstate attributes from a single node device.
4293  * No-op if no hstate attributes attached.
4294  */
hugetlb_unregister_node(struct node * node)4295 void hugetlb_unregister_node(struct node *node)
4296 {
4297 	struct hstate *h;
4298 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4299 
4300 	if (!nhs->hugepages_kobj)
4301 		return;		/* no hstate attributes */
4302 
4303 	for_each_hstate(h) {
4304 		int idx = hstate_index(h);
4305 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4306 
4307 		if (!hstate_kobj)
4308 			continue;
4309 		if (h->demote_order)
4310 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4311 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4312 		kobject_put(hstate_kobj);
4313 		nhs->hstate_kobjs[idx] = NULL;
4314 	}
4315 
4316 	kobject_put(nhs->hugepages_kobj);
4317 	nhs->hugepages_kobj = NULL;
4318 }
4319 
4320 
4321 /*
4322  * Register hstate attributes for a single node device.
4323  * No-op if attributes already registered.
4324  */
hugetlb_register_node(struct node * node)4325 void hugetlb_register_node(struct node *node)
4326 {
4327 	struct hstate *h;
4328 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4329 	int err;
4330 
4331 	if (!hugetlb_sysfs_initialized)
4332 		return;
4333 
4334 	if (nhs->hugepages_kobj)
4335 		return;		/* already allocated */
4336 
4337 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4338 							&node->dev.kobj);
4339 	if (!nhs->hugepages_kobj)
4340 		return;
4341 
4342 	for_each_hstate(h) {
4343 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4344 						nhs->hstate_kobjs,
4345 						&per_node_hstate_attr_group);
4346 		if (err) {
4347 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4348 				h->name, node->dev.id);
4349 			hugetlb_unregister_node(node);
4350 			break;
4351 		}
4352 	}
4353 }
4354 
4355 /*
4356  * hugetlb init time:  register hstate attributes for all registered node
4357  * devices of nodes that have memory.  All on-line nodes should have
4358  * registered their associated device by this time.
4359  */
hugetlb_register_all_nodes(void)4360 static void __init hugetlb_register_all_nodes(void)
4361 {
4362 	int nid;
4363 
4364 	for_each_online_node(nid)
4365 		hugetlb_register_node(node_devices[nid]);
4366 }
4367 #else	/* !CONFIG_NUMA */
4368 
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4369 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4370 {
4371 	BUG();
4372 	if (nidp)
4373 		*nidp = -1;
4374 	return NULL;
4375 }
4376 
hugetlb_register_all_nodes(void)4377 static void hugetlb_register_all_nodes(void) { }
4378 
4379 #endif
4380 
4381 #ifdef CONFIG_CMA
4382 static void __init hugetlb_cma_check(void);
4383 #else
hugetlb_cma_check(void)4384 static inline __init void hugetlb_cma_check(void)
4385 {
4386 }
4387 #endif
4388 
hugetlb_sysfs_init(void)4389 static void __init hugetlb_sysfs_init(void)
4390 {
4391 	struct hstate *h;
4392 	int err;
4393 
4394 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4395 	if (!hugepages_kobj)
4396 		return;
4397 
4398 	for_each_hstate(h) {
4399 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4400 					 hstate_kobjs, &hstate_attr_group);
4401 		if (err)
4402 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4403 	}
4404 
4405 #ifdef CONFIG_NUMA
4406 	hugetlb_sysfs_initialized = true;
4407 #endif
4408 	hugetlb_register_all_nodes();
4409 }
4410 
4411 #ifdef CONFIG_SYSCTL
4412 static void hugetlb_sysctl_init(void);
4413 #else
hugetlb_sysctl_init(void)4414 static inline void hugetlb_sysctl_init(void) { }
4415 #endif
4416 
hugetlb_init(void)4417 static int __init hugetlb_init(void)
4418 {
4419 	int i;
4420 
4421 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4422 			__NR_HPAGEFLAGS);
4423 
4424 	if (!hugepages_supported()) {
4425 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4426 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4427 		return 0;
4428 	}
4429 
4430 	/*
4431 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4432 	 * architectures depend on setup being done here.
4433 	 */
4434 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4435 	if (!parsed_default_hugepagesz) {
4436 		/*
4437 		 * If we did not parse a default huge page size, set
4438 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4439 		 * number of huge pages for this default size was implicitly
4440 		 * specified, set that here as well.
4441 		 * Note that the implicit setting will overwrite an explicit
4442 		 * setting.  A warning will be printed in this case.
4443 		 */
4444 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4445 		if (default_hstate_max_huge_pages) {
4446 			if (default_hstate.max_huge_pages) {
4447 				char buf[32];
4448 
4449 				string_get_size(huge_page_size(&default_hstate),
4450 					1, STRING_UNITS_2, buf, 32);
4451 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4452 					default_hstate.max_huge_pages, buf);
4453 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4454 					default_hstate_max_huge_pages);
4455 			}
4456 			default_hstate.max_huge_pages =
4457 				default_hstate_max_huge_pages;
4458 
4459 			for_each_online_node(i)
4460 				default_hstate.max_huge_pages_node[i] =
4461 					default_hugepages_in_node[i];
4462 		}
4463 	}
4464 
4465 	hugetlb_cma_check();
4466 	hugetlb_init_hstates();
4467 	gather_bootmem_prealloc();
4468 	report_hugepages();
4469 
4470 	hugetlb_sysfs_init();
4471 	hugetlb_cgroup_file_init();
4472 	hugetlb_sysctl_init();
4473 
4474 #ifdef CONFIG_SMP
4475 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4476 #else
4477 	num_fault_mutexes = 1;
4478 #endif
4479 	hugetlb_fault_mutex_table =
4480 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4481 			      GFP_KERNEL);
4482 	BUG_ON(!hugetlb_fault_mutex_table);
4483 
4484 	for (i = 0; i < num_fault_mutexes; i++)
4485 		mutex_init(&hugetlb_fault_mutex_table[i]);
4486 	return 0;
4487 }
4488 subsys_initcall(hugetlb_init);
4489 
4490 /* Overwritten by architectures with more huge page sizes */
__init(weak)4491 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4492 {
4493 	return size == HPAGE_SIZE;
4494 }
4495 
hugetlb_add_hstate(unsigned int order)4496 void __init hugetlb_add_hstate(unsigned int order)
4497 {
4498 	struct hstate *h;
4499 	unsigned long i;
4500 
4501 	if (size_to_hstate(PAGE_SIZE << order)) {
4502 		return;
4503 	}
4504 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4505 	BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4506 	h = &hstates[hugetlb_max_hstate++];
4507 	__mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4508 	h->order = order;
4509 	h->mask = ~(huge_page_size(h) - 1);
4510 	for (i = 0; i < MAX_NUMNODES; ++i)
4511 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4512 	INIT_LIST_HEAD(&h->hugepage_activelist);
4513 	h->next_nid_to_alloc = first_memory_node;
4514 	h->next_nid_to_free = first_memory_node;
4515 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4516 					huge_page_size(h)/SZ_1K);
4517 
4518 	parsed_hstate = h;
4519 }
4520 
hugetlb_node_alloc_supported(void)4521 bool __init __weak hugetlb_node_alloc_supported(void)
4522 {
4523 	return true;
4524 }
4525 
hugepages_clear_pages_in_node(void)4526 static void __init hugepages_clear_pages_in_node(void)
4527 {
4528 	if (!hugetlb_max_hstate) {
4529 		default_hstate_max_huge_pages = 0;
4530 		memset(default_hugepages_in_node, 0,
4531 			sizeof(default_hugepages_in_node));
4532 	} else {
4533 		parsed_hstate->max_huge_pages = 0;
4534 		memset(parsed_hstate->max_huge_pages_node, 0,
4535 			sizeof(parsed_hstate->max_huge_pages_node));
4536 	}
4537 }
4538 
4539 /*
4540  * hugepages command line processing
4541  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4542  * specification.  If not, ignore the hugepages value.  hugepages can also
4543  * be the first huge page command line  option in which case it implicitly
4544  * specifies the number of huge pages for the default size.
4545  */
hugepages_setup(char * s)4546 static int __init hugepages_setup(char *s)
4547 {
4548 	unsigned long *mhp;
4549 	static unsigned long *last_mhp;
4550 	int node = NUMA_NO_NODE;
4551 	int count;
4552 	unsigned long tmp;
4553 	char *p = s;
4554 
4555 	if (!parsed_valid_hugepagesz) {
4556 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4557 		parsed_valid_hugepagesz = true;
4558 		return 1;
4559 	}
4560 
4561 	/*
4562 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4563 	 * yet, so this hugepages= parameter goes to the "default hstate".
4564 	 * Otherwise, it goes with the previously parsed hugepagesz or
4565 	 * default_hugepagesz.
4566 	 */
4567 	else if (!hugetlb_max_hstate)
4568 		mhp = &default_hstate_max_huge_pages;
4569 	else
4570 		mhp = &parsed_hstate->max_huge_pages;
4571 
4572 	if (mhp == last_mhp) {
4573 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4574 		return 1;
4575 	}
4576 
4577 	while (*p) {
4578 		count = 0;
4579 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4580 			goto invalid;
4581 		/* Parameter is node format */
4582 		if (p[count] == ':') {
4583 			if (!hugetlb_node_alloc_supported()) {
4584 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4585 				return 1;
4586 			}
4587 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4588 				goto invalid;
4589 			node = array_index_nospec(tmp, MAX_NUMNODES);
4590 			p += count + 1;
4591 			/* Parse hugepages */
4592 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4593 				goto invalid;
4594 			if (!hugetlb_max_hstate)
4595 				default_hugepages_in_node[node] = tmp;
4596 			else
4597 				parsed_hstate->max_huge_pages_node[node] = tmp;
4598 			*mhp += tmp;
4599 			/* Go to parse next node*/
4600 			if (p[count] == ',')
4601 				p += count + 1;
4602 			else
4603 				break;
4604 		} else {
4605 			if (p != s)
4606 				goto invalid;
4607 			*mhp = tmp;
4608 			break;
4609 		}
4610 	}
4611 
4612 	/*
4613 	 * Global state is always initialized later in hugetlb_init.
4614 	 * But we need to allocate gigantic hstates here early to still
4615 	 * use the bootmem allocator.
4616 	 */
4617 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4618 		hugetlb_hstate_alloc_pages(parsed_hstate);
4619 
4620 	last_mhp = mhp;
4621 
4622 	return 1;
4623 
4624 invalid:
4625 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4626 	hugepages_clear_pages_in_node();
4627 	return 1;
4628 }
4629 __setup("hugepages=", hugepages_setup);
4630 
4631 /*
4632  * hugepagesz command line processing
4633  * A specific huge page size can only be specified once with hugepagesz.
4634  * hugepagesz is followed by hugepages on the command line.  The global
4635  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4636  * hugepagesz argument was valid.
4637  */
hugepagesz_setup(char * s)4638 static int __init hugepagesz_setup(char *s)
4639 {
4640 	unsigned long size;
4641 	struct hstate *h;
4642 
4643 	parsed_valid_hugepagesz = false;
4644 	size = (unsigned long)memparse(s, NULL);
4645 
4646 	if (!arch_hugetlb_valid_size(size)) {
4647 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4648 		return 1;
4649 	}
4650 
4651 	h = size_to_hstate(size);
4652 	if (h) {
4653 		/*
4654 		 * hstate for this size already exists.  This is normally
4655 		 * an error, but is allowed if the existing hstate is the
4656 		 * default hstate.  More specifically, it is only allowed if
4657 		 * the number of huge pages for the default hstate was not
4658 		 * previously specified.
4659 		 */
4660 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4661 		    default_hstate.max_huge_pages) {
4662 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4663 			return 1;
4664 		}
4665 
4666 		/*
4667 		 * No need to call hugetlb_add_hstate() as hstate already
4668 		 * exists.  But, do set parsed_hstate so that a following
4669 		 * hugepages= parameter will be applied to this hstate.
4670 		 */
4671 		parsed_hstate = h;
4672 		parsed_valid_hugepagesz = true;
4673 		return 1;
4674 	}
4675 
4676 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4677 	parsed_valid_hugepagesz = true;
4678 	return 1;
4679 }
4680 __setup("hugepagesz=", hugepagesz_setup);
4681 
4682 /*
4683  * default_hugepagesz command line input
4684  * Only one instance of default_hugepagesz allowed on command line.
4685  */
default_hugepagesz_setup(char * s)4686 static int __init default_hugepagesz_setup(char *s)
4687 {
4688 	unsigned long size;
4689 	int i;
4690 
4691 	parsed_valid_hugepagesz = false;
4692 	if (parsed_default_hugepagesz) {
4693 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4694 		return 1;
4695 	}
4696 
4697 	size = (unsigned long)memparse(s, NULL);
4698 
4699 	if (!arch_hugetlb_valid_size(size)) {
4700 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4701 		return 1;
4702 	}
4703 
4704 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4705 	parsed_valid_hugepagesz = true;
4706 	parsed_default_hugepagesz = true;
4707 	default_hstate_idx = hstate_index(size_to_hstate(size));
4708 
4709 	/*
4710 	 * The number of default huge pages (for this size) could have been
4711 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4712 	 * then default_hstate_max_huge_pages is set.  If the default huge
4713 	 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4714 	 * allocated here from bootmem allocator.
4715 	 */
4716 	if (default_hstate_max_huge_pages) {
4717 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4718 		for_each_online_node(i)
4719 			default_hstate.max_huge_pages_node[i] =
4720 				default_hugepages_in_node[i];
4721 		if (hstate_is_gigantic(&default_hstate))
4722 			hugetlb_hstate_alloc_pages(&default_hstate);
4723 		default_hstate_max_huge_pages = 0;
4724 	}
4725 
4726 	return 1;
4727 }
4728 __setup("default_hugepagesz=", default_hugepagesz_setup);
4729 
allowed_mems_nr(struct hstate * h)4730 static unsigned int allowed_mems_nr(struct hstate *h)
4731 {
4732 	int node;
4733 	unsigned int nr = 0;
4734 	nodemask_t *mbind_nodemask;
4735 	unsigned int *array = h->free_huge_pages_node;
4736 	gfp_t gfp_mask = htlb_alloc_mask(h);
4737 
4738 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4739 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4740 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4741 			nr += array[node];
4742 	}
4743 
4744 	return nr;
4745 }
4746 
4747 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)4748 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
4749 					  void *buffer, size_t *length,
4750 					  loff_t *ppos, unsigned long *out)
4751 {
4752 	struct ctl_table dup_table;
4753 
4754 	/*
4755 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4756 	 * can duplicate the @table and alter the duplicate of it.
4757 	 */
4758 	dup_table = *table;
4759 	dup_table.data = out;
4760 
4761 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4762 }
4763 
hugetlb_sysctl_handler_common(bool obey_mempolicy,const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4764 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4765 			 const struct ctl_table *table, int write,
4766 			 void *buffer, size_t *length, loff_t *ppos)
4767 {
4768 	struct hstate *h = &default_hstate;
4769 	unsigned long tmp = h->max_huge_pages;
4770 	int ret;
4771 
4772 	if (!hugepages_supported())
4773 		return -EOPNOTSUPP;
4774 
4775 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4776 					     &tmp);
4777 	if (ret)
4778 		goto out;
4779 
4780 	if (write)
4781 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4782 						  NUMA_NO_NODE, tmp, *length);
4783 out:
4784 	return ret;
4785 }
4786 
hugetlb_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4787 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
4788 			  void *buffer, size_t *length, loff_t *ppos)
4789 {
4790 
4791 	return hugetlb_sysctl_handler_common(false, table, write,
4792 							buffer, length, ppos);
4793 }
4794 
4795 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4796 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
4797 			  void *buffer, size_t *length, loff_t *ppos)
4798 {
4799 	return hugetlb_sysctl_handler_common(true, table, write,
4800 							buffer, length, ppos);
4801 }
4802 #endif /* CONFIG_NUMA */
4803 
hugetlb_overcommit_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4804 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
4805 		void *buffer, size_t *length, loff_t *ppos)
4806 {
4807 	struct hstate *h = &default_hstate;
4808 	unsigned long tmp;
4809 	int ret;
4810 
4811 	if (!hugepages_supported())
4812 		return -EOPNOTSUPP;
4813 
4814 	tmp = h->nr_overcommit_huge_pages;
4815 
4816 	if (write && hstate_is_gigantic(h))
4817 		return -EINVAL;
4818 
4819 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4820 					     &tmp);
4821 	if (ret)
4822 		goto out;
4823 
4824 	if (write) {
4825 		spin_lock_irq(&hugetlb_lock);
4826 		h->nr_overcommit_huge_pages = tmp;
4827 		spin_unlock_irq(&hugetlb_lock);
4828 	}
4829 out:
4830 	return ret;
4831 }
4832 
4833 static struct ctl_table hugetlb_table[] = {
4834 	{
4835 		.procname	= "nr_hugepages",
4836 		.data		= NULL,
4837 		.maxlen		= sizeof(unsigned long),
4838 		.mode		= 0644,
4839 		.proc_handler	= hugetlb_sysctl_handler,
4840 	},
4841 #ifdef CONFIG_NUMA
4842 	{
4843 		.procname       = "nr_hugepages_mempolicy",
4844 		.data           = NULL,
4845 		.maxlen         = sizeof(unsigned long),
4846 		.mode           = 0644,
4847 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4848 	},
4849 #endif
4850 	{
4851 		.procname	= "hugetlb_shm_group",
4852 		.data		= &sysctl_hugetlb_shm_group,
4853 		.maxlen		= sizeof(gid_t),
4854 		.mode		= 0644,
4855 		.proc_handler	= proc_dointvec,
4856 	},
4857 	{
4858 		.procname	= "nr_overcommit_hugepages",
4859 		.data		= NULL,
4860 		.maxlen		= sizeof(unsigned long),
4861 		.mode		= 0644,
4862 		.proc_handler	= hugetlb_overcommit_handler,
4863 	},
4864 };
4865 
hugetlb_sysctl_init(void)4866 static void __init hugetlb_sysctl_init(void)
4867 {
4868 	register_sysctl_init("vm", hugetlb_table);
4869 }
4870 #endif /* CONFIG_SYSCTL */
4871 
hugetlb_report_meminfo(struct seq_file * m)4872 void hugetlb_report_meminfo(struct seq_file *m)
4873 {
4874 	struct hstate *h;
4875 	unsigned long total = 0;
4876 
4877 	if (!hugepages_supported())
4878 		return;
4879 
4880 	for_each_hstate(h) {
4881 		unsigned long count = h->nr_huge_pages;
4882 
4883 		total += huge_page_size(h) * count;
4884 
4885 		if (h == &default_hstate)
4886 			seq_printf(m,
4887 				   "HugePages_Total:   %5lu\n"
4888 				   "HugePages_Free:    %5lu\n"
4889 				   "HugePages_Rsvd:    %5lu\n"
4890 				   "HugePages_Surp:    %5lu\n"
4891 				   "Hugepagesize:   %8lu kB\n",
4892 				   count,
4893 				   h->free_huge_pages,
4894 				   h->resv_huge_pages,
4895 				   h->surplus_huge_pages,
4896 				   huge_page_size(h) / SZ_1K);
4897 	}
4898 
4899 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4900 }
4901 
hugetlb_report_node_meminfo(char * buf,int len,int nid)4902 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4903 {
4904 	struct hstate *h = &default_hstate;
4905 
4906 	if (!hugepages_supported())
4907 		return 0;
4908 
4909 	return sysfs_emit_at(buf, len,
4910 			     "Node %d HugePages_Total: %5u\n"
4911 			     "Node %d HugePages_Free:  %5u\n"
4912 			     "Node %d HugePages_Surp:  %5u\n",
4913 			     nid, h->nr_huge_pages_node[nid],
4914 			     nid, h->free_huge_pages_node[nid],
4915 			     nid, h->surplus_huge_pages_node[nid]);
4916 }
4917 
hugetlb_show_meminfo_node(int nid)4918 void hugetlb_show_meminfo_node(int nid)
4919 {
4920 	struct hstate *h;
4921 
4922 	if (!hugepages_supported())
4923 		return;
4924 
4925 	for_each_hstate(h)
4926 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4927 			nid,
4928 			h->nr_huge_pages_node[nid],
4929 			h->free_huge_pages_node[nid],
4930 			h->surplus_huge_pages_node[nid],
4931 			huge_page_size(h) / SZ_1K);
4932 }
4933 
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)4934 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4935 {
4936 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4937 		   K(atomic_long_read(&mm->hugetlb_usage)));
4938 }
4939 
4940 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)4941 unsigned long hugetlb_total_pages(void)
4942 {
4943 	struct hstate *h;
4944 	unsigned long nr_total_pages = 0;
4945 
4946 	for_each_hstate(h)
4947 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4948 	return nr_total_pages;
4949 }
4950 
hugetlb_acct_memory(struct hstate * h,long delta)4951 static int hugetlb_acct_memory(struct hstate *h, long delta)
4952 {
4953 	int ret = -ENOMEM;
4954 
4955 	if (!delta)
4956 		return 0;
4957 
4958 	spin_lock_irq(&hugetlb_lock);
4959 	/*
4960 	 * When cpuset is configured, it breaks the strict hugetlb page
4961 	 * reservation as the accounting is done on a global variable. Such
4962 	 * reservation is completely rubbish in the presence of cpuset because
4963 	 * the reservation is not checked against page availability for the
4964 	 * current cpuset. Application can still potentially OOM'ed by kernel
4965 	 * with lack of free htlb page in cpuset that the task is in.
4966 	 * Attempt to enforce strict accounting with cpuset is almost
4967 	 * impossible (or too ugly) because cpuset is too fluid that
4968 	 * task or memory node can be dynamically moved between cpusets.
4969 	 *
4970 	 * The change of semantics for shared hugetlb mapping with cpuset is
4971 	 * undesirable. However, in order to preserve some of the semantics,
4972 	 * we fall back to check against current free page availability as
4973 	 * a best attempt and hopefully to minimize the impact of changing
4974 	 * semantics that cpuset has.
4975 	 *
4976 	 * Apart from cpuset, we also have memory policy mechanism that
4977 	 * also determines from which node the kernel will allocate memory
4978 	 * in a NUMA system. So similar to cpuset, we also should consider
4979 	 * the memory policy of the current task. Similar to the description
4980 	 * above.
4981 	 */
4982 	if (delta > 0) {
4983 		if (gather_surplus_pages(h, delta) < 0)
4984 			goto out;
4985 
4986 		if (delta > allowed_mems_nr(h)) {
4987 			return_unused_surplus_pages(h, delta);
4988 			goto out;
4989 		}
4990 	}
4991 
4992 	ret = 0;
4993 	if (delta < 0)
4994 		return_unused_surplus_pages(h, (unsigned long) -delta);
4995 
4996 out:
4997 	spin_unlock_irq(&hugetlb_lock);
4998 	return ret;
4999 }
5000 
hugetlb_vm_op_open(struct vm_area_struct * vma)5001 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5002 {
5003 	struct resv_map *resv = vma_resv_map(vma);
5004 
5005 	/*
5006 	 * HPAGE_RESV_OWNER indicates a private mapping.
5007 	 * This new VMA should share its siblings reservation map if present.
5008 	 * The VMA will only ever have a valid reservation map pointer where
5009 	 * it is being copied for another still existing VMA.  As that VMA
5010 	 * has a reference to the reservation map it cannot disappear until
5011 	 * after this open call completes.  It is therefore safe to take a
5012 	 * new reference here without additional locking.
5013 	 */
5014 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5015 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5016 		kref_get(&resv->refs);
5017 	}
5018 
5019 	/*
5020 	 * vma_lock structure for sharable mappings is vma specific.
5021 	 * Clear old pointer (if copied via vm_area_dup) and allocate
5022 	 * new structure.  Before clearing, make sure vma_lock is not
5023 	 * for this vma.
5024 	 */
5025 	if (vma->vm_flags & VM_MAYSHARE) {
5026 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5027 
5028 		if (vma_lock) {
5029 			if (vma_lock->vma != vma) {
5030 				vma->vm_private_data = NULL;
5031 				hugetlb_vma_lock_alloc(vma);
5032 			} else
5033 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5034 		} else
5035 			hugetlb_vma_lock_alloc(vma);
5036 	}
5037 }
5038 
hugetlb_vm_op_close(struct vm_area_struct * vma)5039 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5040 {
5041 	struct hstate *h = hstate_vma(vma);
5042 	struct resv_map *resv;
5043 	struct hugepage_subpool *spool = subpool_vma(vma);
5044 	unsigned long reserve, start, end;
5045 	long gbl_reserve;
5046 
5047 	hugetlb_vma_lock_free(vma);
5048 
5049 	resv = vma_resv_map(vma);
5050 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5051 		return;
5052 
5053 	start = vma_hugecache_offset(h, vma, vma->vm_start);
5054 	end = vma_hugecache_offset(h, vma, vma->vm_end);
5055 
5056 	reserve = (end - start) - region_count(resv, start, end);
5057 	hugetlb_cgroup_uncharge_counter(resv, start, end);
5058 	if (reserve) {
5059 		/*
5060 		 * Decrement reserve counts.  The global reserve count may be
5061 		 * adjusted if the subpool has a minimum size.
5062 		 */
5063 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5064 		hugetlb_acct_memory(h, -gbl_reserve);
5065 	}
5066 
5067 	kref_put(&resv->refs, resv_map_release);
5068 }
5069 
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)5070 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5071 {
5072 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
5073 		return -EINVAL;
5074 	return 0;
5075 }
5076 
hugetlb_split(struct vm_area_struct * vma,unsigned long addr)5077 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr)
5078 {
5079 	/*
5080 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5081 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5082 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5083 	 * This function is called in the middle of a VMA split operation, with
5084 	 * MM, VMA and rmap all write-locked to prevent concurrent page table
5085 	 * walks (except hardware and gup_fast()).
5086 	 */
5087 	vma_assert_write_locked(vma);
5088 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5089 
5090 	if (addr & ~PUD_MASK) {
5091 		unsigned long floor = addr & PUD_MASK;
5092 		unsigned long ceil = floor + PUD_SIZE;
5093 
5094 		if (floor >= vma->vm_start && ceil <= vma->vm_end) {
5095 			/*
5096 			 * Locking:
5097 			 * Use take_locks=false here.
5098 			 * The file rmap lock is already held.
5099 			 * The hugetlb VMA lock can't be taken when we already
5100 			 * hold the file rmap lock, and we don't need it because
5101 			 * its purpose is to synchronize against concurrent page
5102 			 * table walks, which are not possible thanks to the
5103 			 * locks held by our caller.
5104 			 */
5105 			hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false);
5106 		}
5107 	}
5108 }
5109 
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)5110 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5111 {
5112 	return huge_page_size(hstate_vma(vma));
5113 }
5114 
5115 /*
5116  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5117  * handle_mm_fault() to try to instantiate regular-sized pages in the
5118  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5119  * this far.
5120  */
hugetlb_vm_op_fault(struct vm_fault * vmf)5121 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5122 {
5123 	BUG();
5124 	return 0;
5125 }
5126 
5127 /*
5128  * When a new function is introduced to vm_operations_struct and added
5129  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5130  * This is because under System V memory model, mappings created via
5131  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5132  * their original vm_ops are overwritten with shm_vm_ops.
5133  */
5134 const struct vm_operations_struct hugetlb_vm_ops = {
5135 	.fault = hugetlb_vm_op_fault,
5136 	.open = hugetlb_vm_op_open,
5137 	.close = hugetlb_vm_op_close,
5138 	.may_split = hugetlb_vm_op_split,
5139 	.pagesize = hugetlb_vm_op_pagesize,
5140 };
5141 
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)5142 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5143 				int writable)
5144 {
5145 	pte_t entry;
5146 	unsigned int shift = huge_page_shift(hstate_vma(vma));
5147 
5148 	if (writable) {
5149 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5150 					 vma->vm_page_prot)));
5151 	} else {
5152 		entry = huge_pte_wrprotect(mk_huge_pte(page,
5153 					   vma->vm_page_prot));
5154 	}
5155 	entry = pte_mkyoung(entry);
5156 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5157 
5158 	return entry;
5159 }
5160 
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5161 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5162 				   unsigned long address, pte_t *ptep)
5163 {
5164 	pte_t entry;
5165 
5166 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5167 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5168 		update_mmu_cache(vma, address, ptep);
5169 }
5170 
is_hugetlb_entry_migration(pte_t pte)5171 bool is_hugetlb_entry_migration(pte_t pte)
5172 {
5173 	swp_entry_t swp;
5174 
5175 	if (huge_pte_none(pte) || pte_present(pte))
5176 		return false;
5177 	swp = pte_to_swp_entry(pte);
5178 	if (is_migration_entry(swp))
5179 		return true;
5180 	else
5181 		return false;
5182 }
5183 
is_hugetlb_entry_hwpoisoned(pte_t pte)5184 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5185 {
5186 	swp_entry_t swp;
5187 
5188 	if (huge_pte_none(pte) || pte_present(pte))
5189 		return false;
5190 	swp = pte_to_swp_entry(pte);
5191 	if (is_hwpoison_entry(swp))
5192 		return true;
5193 	else
5194 		return false;
5195 }
5196 
5197 static void
hugetlb_install_folio(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct folio * new_folio,pte_t old,unsigned long sz)5198 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5199 		      struct folio *new_folio, pte_t old, unsigned long sz)
5200 {
5201 	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5202 
5203 	__folio_mark_uptodate(new_folio);
5204 	hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5205 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5206 		newpte = huge_pte_mkuffd_wp(newpte);
5207 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5208 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5209 	folio_set_hugetlb_migratable(new_folio);
5210 }
5211 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)5212 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5213 			    struct vm_area_struct *dst_vma,
5214 			    struct vm_area_struct *src_vma)
5215 {
5216 	pte_t *src_pte, *dst_pte, entry;
5217 	struct folio *pte_folio;
5218 	unsigned long addr;
5219 	bool cow = is_cow_mapping(src_vma->vm_flags);
5220 	struct hstate *h = hstate_vma(src_vma);
5221 	unsigned long sz = huge_page_size(h);
5222 	unsigned long npages = pages_per_huge_page(h);
5223 	struct mmu_notifier_range range;
5224 	unsigned long last_addr_mask;
5225 	int ret = 0;
5226 
5227 	if (cow) {
5228 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5229 					src_vma->vm_start,
5230 					src_vma->vm_end);
5231 		mmu_notifier_invalidate_range_start(&range);
5232 		vma_assert_write_locked(src_vma);
5233 		raw_write_seqcount_begin(&src->write_protect_seq);
5234 	} else {
5235 		/*
5236 		 * For shared mappings the vma lock must be held before
5237 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5238 		 * returned ptep could go away if part of a shared pmd and
5239 		 * another thread calls huge_pmd_unshare.
5240 		 */
5241 		hugetlb_vma_lock_read(src_vma);
5242 	}
5243 
5244 	last_addr_mask = hugetlb_mask_last_page(h);
5245 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5246 		spinlock_t *src_ptl, *dst_ptl;
5247 		src_pte = hugetlb_walk(src_vma, addr, sz);
5248 		if (!src_pte) {
5249 			addr |= last_addr_mask;
5250 			continue;
5251 		}
5252 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5253 		if (!dst_pte) {
5254 			ret = -ENOMEM;
5255 			break;
5256 		}
5257 
5258 		/*
5259 		 * If the pagetables are shared don't copy or take references.
5260 		 *
5261 		 * dst_pte == src_pte is the common case of src/dest sharing.
5262 		 * However, src could have 'unshared' and dst shares with
5263 		 * another vma. So page_count of ptep page is checked instead
5264 		 * to reliably determine whether pte is shared.
5265 		 */
5266 		if (page_count(virt_to_page(dst_pte)) > 1) {
5267 			addr |= last_addr_mask;
5268 			continue;
5269 		}
5270 
5271 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5272 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5273 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5274 		entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5275 again:
5276 		if (huge_pte_none(entry)) {
5277 			/*
5278 			 * Skip if src entry none.
5279 			 */
5280 			;
5281 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5282 			if (!userfaultfd_wp(dst_vma))
5283 				entry = huge_pte_clear_uffd_wp(entry);
5284 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5285 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5286 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5287 			bool uffd_wp = pte_swp_uffd_wp(entry);
5288 
5289 			if (!is_readable_migration_entry(swp_entry) && cow) {
5290 				/*
5291 				 * COW mappings require pages in both
5292 				 * parent and child to be set to read.
5293 				 */
5294 				swp_entry = make_readable_migration_entry(
5295 							swp_offset(swp_entry));
5296 				entry = swp_entry_to_pte(swp_entry);
5297 				if (userfaultfd_wp(src_vma) && uffd_wp)
5298 					entry = pte_swp_mkuffd_wp(entry);
5299 				set_huge_pte_at(src, addr, src_pte, entry, sz);
5300 			}
5301 			if (!userfaultfd_wp(dst_vma))
5302 				entry = huge_pte_clear_uffd_wp(entry);
5303 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5304 		} else if (unlikely(is_pte_marker(entry))) {
5305 			pte_marker marker = copy_pte_marker(
5306 				pte_to_swp_entry(entry), dst_vma);
5307 
5308 			if (marker)
5309 				set_huge_pte_at(dst, addr, dst_pte,
5310 						make_pte_marker(marker), sz);
5311 		} else {
5312 			entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5313 			pte_folio = page_folio(pte_page(entry));
5314 			folio_get(pte_folio);
5315 
5316 			/*
5317 			 * Failing to duplicate the anon rmap is a rare case
5318 			 * where we see pinned hugetlb pages while they're
5319 			 * prone to COW. We need to do the COW earlier during
5320 			 * fork.
5321 			 *
5322 			 * When pre-allocating the page or copying data, we
5323 			 * need to be without the pgtable locks since we could
5324 			 * sleep during the process.
5325 			 */
5326 			if (!folio_test_anon(pte_folio)) {
5327 				hugetlb_add_file_rmap(pte_folio);
5328 			} else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5329 				pte_t src_pte_old = entry;
5330 				struct folio *new_folio;
5331 
5332 				spin_unlock(src_ptl);
5333 				spin_unlock(dst_ptl);
5334 				/* Do not use reserve as it's private owned */
5335 				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5336 				if (IS_ERR(new_folio)) {
5337 					folio_put(pte_folio);
5338 					ret = PTR_ERR(new_folio);
5339 					break;
5340 				}
5341 				ret = copy_user_large_folio(new_folio, pte_folio,
5342 							    addr, dst_vma);
5343 				folio_put(pte_folio);
5344 				if (ret) {
5345 					folio_put(new_folio);
5346 					break;
5347 				}
5348 
5349 				/* Install the new hugetlb folio if src pte stable */
5350 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5351 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5352 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5353 				entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5354 				if (!pte_same(src_pte_old, entry)) {
5355 					restore_reserve_on_error(h, dst_vma, addr,
5356 								new_folio);
5357 					folio_put(new_folio);
5358 					/* huge_ptep of dst_pte won't change as in child */
5359 					goto again;
5360 				}
5361 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5362 						      new_folio, src_pte_old, sz);
5363 				spin_unlock(src_ptl);
5364 				spin_unlock(dst_ptl);
5365 				continue;
5366 			}
5367 
5368 			if (cow) {
5369 				/*
5370 				 * No need to notify as we are downgrading page
5371 				 * table protection not changing it to point
5372 				 * to a new page.
5373 				 *
5374 				 * See Documentation/mm/mmu_notifier.rst
5375 				 */
5376 				huge_ptep_set_wrprotect(src, addr, src_pte);
5377 				entry = huge_pte_wrprotect(entry);
5378 			}
5379 
5380 			if (!userfaultfd_wp(dst_vma))
5381 				entry = huge_pte_clear_uffd_wp(entry);
5382 
5383 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5384 			hugetlb_count_add(npages, dst);
5385 		}
5386 		spin_unlock(src_ptl);
5387 		spin_unlock(dst_ptl);
5388 	}
5389 
5390 	if (cow) {
5391 		raw_write_seqcount_end(&src->write_protect_seq);
5392 		mmu_notifier_invalidate_range_end(&range);
5393 	} else {
5394 		hugetlb_vma_unlock_read(src_vma);
5395 	}
5396 
5397 	return ret;
5398 }
5399 
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte,unsigned long sz)5400 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5401 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5402 			  unsigned long sz)
5403 {
5404 	bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
5405 	struct hstate *h = hstate_vma(vma);
5406 	struct mm_struct *mm = vma->vm_mm;
5407 	spinlock_t *src_ptl, *dst_ptl;
5408 	pte_t pte;
5409 
5410 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5411 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5412 
5413 	/*
5414 	 * We don't have to worry about the ordering of src and dst ptlocks
5415 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5416 	 */
5417 	if (src_ptl != dst_ptl)
5418 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5419 
5420 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
5421 
5422 	if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
5423 		huge_pte_clear(mm, new_addr, dst_pte, sz);
5424 	else {
5425 		if (need_clear_uffd_wp) {
5426 			if (pte_present(pte))
5427 				pte = huge_pte_clear_uffd_wp(pte);
5428 			else if (is_swap_pte(pte))
5429 				pte = pte_swp_clear_uffd_wp(pte);
5430 		}
5431 		set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5432 	}
5433 
5434 	if (src_ptl != dst_ptl)
5435 		spin_unlock(src_ptl);
5436 	spin_unlock(dst_ptl);
5437 }
5438 
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)5439 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5440 			     struct vm_area_struct *new_vma,
5441 			     unsigned long old_addr, unsigned long new_addr,
5442 			     unsigned long len)
5443 {
5444 	struct hstate *h = hstate_vma(vma);
5445 	struct address_space *mapping = vma->vm_file->f_mapping;
5446 	unsigned long sz = huge_page_size(h);
5447 	struct mm_struct *mm = vma->vm_mm;
5448 	unsigned long old_end = old_addr + len;
5449 	unsigned long last_addr_mask;
5450 	pte_t *src_pte, *dst_pte;
5451 	struct mmu_notifier_range range;
5452 	bool shared_pmd = false;
5453 
5454 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5455 				old_end);
5456 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5457 	/*
5458 	 * In case of shared PMDs, we should cover the maximum possible
5459 	 * range.
5460 	 */
5461 	flush_cache_range(vma, range.start, range.end);
5462 
5463 	mmu_notifier_invalidate_range_start(&range);
5464 	last_addr_mask = hugetlb_mask_last_page(h);
5465 	/* Prevent race with file truncation */
5466 	hugetlb_vma_lock_write(vma);
5467 	i_mmap_lock_write(mapping);
5468 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5469 		src_pte = hugetlb_walk(vma, old_addr, sz);
5470 		if (!src_pte) {
5471 			old_addr |= last_addr_mask;
5472 			new_addr |= last_addr_mask;
5473 			continue;
5474 		}
5475 		if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5476 			continue;
5477 
5478 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5479 			shared_pmd = true;
5480 			old_addr |= last_addr_mask;
5481 			new_addr |= last_addr_mask;
5482 			continue;
5483 		}
5484 
5485 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5486 		if (!dst_pte)
5487 			break;
5488 
5489 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5490 	}
5491 
5492 	if (shared_pmd)
5493 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5494 	else
5495 		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5496 	mmu_notifier_invalidate_range_end(&range);
5497 	i_mmap_unlock_write(mapping);
5498 	hugetlb_vma_unlock_write(vma);
5499 
5500 	return len + old_addr - old_end;
5501 }
5502 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5503 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5504 			    unsigned long start, unsigned long end,
5505 			    struct page *ref_page, zap_flags_t zap_flags)
5506 {
5507 	struct mm_struct *mm = vma->vm_mm;
5508 	unsigned long address;
5509 	pte_t *ptep;
5510 	pte_t pte;
5511 	spinlock_t *ptl;
5512 	struct page *page;
5513 	struct hstate *h = hstate_vma(vma);
5514 	unsigned long sz = huge_page_size(h);
5515 	bool adjust_reservation;
5516 	unsigned long last_addr_mask;
5517 	bool force_flush = false;
5518 
5519 	WARN_ON(!is_vm_hugetlb_page(vma));
5520 	BUG_ON(start & ~huge_page_mask(h));
5521 	BUG_ON(end & ~huge_page_mask(h));
5522 
5523 	/*
5524 	 * This is a hugetlb vma, all the pte entries should point
5525 	 * to huge page.
5526 	 */
5527 	tlb_change_page_size(tlb, sz);
5528 	tlb_start_vma(tlb, vma);
5529 
5530 	last_addr_mask = hugetlb_mask_last_page(h);
5531 	address = start;
5532 	for (; address < end; address += sz) {
5533 		ptep = hugetlb_walk(vma, address, sz);
5534 		if (!ptep) {
5535 			address |= last_addr_mask;
5536 			continue;
5537 		}
5538 
5539 		ptl = huge_pte_lock(h, mm, ptep);
5540 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5541 			spin_unlock(ptl);
5542 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5543 			force_flush = true;
5544 			address |= last_addr_mask;
5545 			continue;
5546 		}
5547 
5548 		pte = huge_ptep_get(mm, address, ptep);
5549 		if (huge_pte_none(pte)) {
5550 			spin_unlock(ptl);
5551 			continue;
5552 		}
5553 
5554 		/*
5555 		 * Migrating hugepage or HWPoisoned hugepage is already
5556 		 * unmapped and its refcount is dropped, so just clear pte here.
5557 		 */
5558 		if (unlikely(!pte_present(pte))) {
5559 			/*
5560 			 * If the pte was wr-protected by uffd-wp in any of the
5561 			 * swap forms, meanwhile the caller does not want to
5562 			 * drop the uffd-wp bit in this zap, then replace the
5563 			 * pte with a marker.
5564 			 */
5565 			if (pte_swp_uffd_wp_any(pte) &&
5566 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5567 				set_huge_pte_at(mm, address, ptep,
5568 						make_pte_marker(PTE_MARKER_UFFD_WP),
5569 						sz);
5570 			else
5571 				huge_pte_clear(mm, address, ptep, sz);
5572 			spin_unlock(ptl);
5573 			continue;
5574 		}
5575 
5576 		page = pte_page(pte);
5577 		/*
5578 		 * If a reference page is supplied, it is because a specific
5579 		 * page is being unmapped, not a range. Ensure the page we
5580 		 * are about to unmap is the actual page of interest.
5581 		 */
5582 		if (ref_page) {
5583 			if (page != ref_page) {
5584 				spin_unlock(ptl);
5585 				continue;
5586 			}
5587 			/*
5588 			 * Mark the VMA as having unmapped its page so that
5589 			 * future faults in this VMA will fail rather than
5590 			 * looking like data was lost
5591 			 */
5592 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5593 		}
5594 
5595 		pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
5596 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5597 		if (huge_pte_dirty(pte))
5598 			set_page_dirty(page);
5599 		/* Leave a uffd-wp pte marker if needed */
5600 		if (huge_pte_uffd_wp(pte) &&
5601 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5602 			set_huge_pte_at(mm, address, ptep,
5603 					make_pte_marker(PTE_MARKER_UFFD_WP),
5604 					sz);
5605 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5606 		hugetlb_remove_rmap(page_folio(page));
5607 		spin_unlock(ptl);
5608 
5609 		/*
5610 		 * Restore the reservation for anonymous page, otherwise the
5611 		 * backing page could be stolen by someone.
5612 		 * If there we are freeing a surplus, do not set the restore
5613 		 * reservation bit.
5614 		 */
5615 		adjust_reservation = false;
5616 
5617 		spin_lock_irq(&hugetlb_lock);
5618 		if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5619 		    folio_test_anon(page_folio(page))) {
5620 			folio_set_hugetlb_restore_reserve(page_folio(page));
5621 			/* Reservation to be adjusted after the spin lock */
5622 			adjust_reservation = true;
5623 		}
5624 		spin_unlock_irq(&hugetlb_lock);
5625 
5626 		/*
5627 		 * Adjust the reservation for the region that will have the
5628 		 * reserve restored. Keep in mind that vma_needs_reservation() changes
5629 		 * resv->adds_in_progress if it succeeds. If this is not done,
5630 		 * do_exit() will not see it, and will keep the reservation
5631 		 * forever.
5632 		 */
5633 		if (adjust_reservation) {
5634 			int rc = vma_needs_reservation(h, vma, address);
5635 
5636 			if (rc < 0)
5637 				/* Pressumably allocate_file_region_entries failed
5638 				 * to allocate a file_region struct. Clear
5639 				 * hugetlb_restore_reserve so that global reserve
5640 				 * count will not be incremented by free_huge_folio.
5641 				 * Act as if we consumed the reservation.
5642 				 */
5643 				folio_clear_hugetlb_restore_reserve(page_folio(page));
5644 			else if (rc)
5645 				vma_add_reservation(h, vma, address);
5646 		}
5647 
5648 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5649 		/*
5650 		 * Bail out after unmapping reference page if supplied
5651 		 */
5652 		if (ref_page)
5653 			break;
5654 	}
5655 	tlb_end_vma(tlb, vma);
5656 
5657 	/*
5658 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5659 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5660 	 * guaranteed that the last refernece would not be dropped. But we must
5661 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5662 	 * dropped and the last reference to the shared PMDs page might be
5663 	 * dropped as well.
5664 	 *
5665 	 * In theory we could defer the freeing of the PMD pages as well, but
5666 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5667 	 * detect sharing, so we cannot defer the release of the page either.
5668 	 * Instead, do flush now.
5669 	 */
5670 	if (force_flush)
5671 		tlb_flush_mmu_tlbonly(tlb);
5672 }
5673 
__hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5674 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5675 			 unsigned long *start, unsigned long *end)
5676 {
5677 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5678 		return;
5679 
5680 	adjust_range_if_pmd_sharing_possible(vma, start, end);
5681 	hugetlb_vma_lock_write(vma);
5682 	if (vma->vm_file)
5683 		i_mmap_lock_write(vma->vm_file->f_mapping);
5684 }
5685 
__hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)5686 void __hugetlb_zap_end(struct vm_area_struct *vma,
5687 		       struct zap_details *details)
5688 {
5689 	zap_flags_t zap_flags = details ? details->zap_flags : 0;
5690 
5691 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5692 		return;
5693 
5694 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5695 		/*
5696 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5697 		 * When the vma_lock is freed, this makes the vma ineligible
5698 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5699 		 * pmd sharing.  This is important as page tables for this
5700 		 * unmapped range will be asynchrously deleted.  If the page
5701 		 * tables are shared, there will be issues when accessed by
5702 		 * someone else.
5703 		 */
5704 		__hugetlb_vma_unlock_write_free(vma);
5705 	} else {
5706 		hugetlb_vma_unlock_write(vma);
5707 	}
5708 
5709 	if (vma->vm_file)
5710 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5711 }
5712 
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5713 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5714 			  unsigned long end, struct page *ref_page,
5715 			  zap_flags_t zap_flags)
5716 {
5717 	struct mmu_notifier_range range;
5718 	struct mmu_gather tlb;
5719 
5720 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5721 				start, end);
5722 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5723 	mmu_notifier_invalidate_range_start(&range);
5724 	tlb_gather_mmu(&tlb, vma->vm_mm);
5725 
5726 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5727 
5728 	mmu_notifier_invalidate_range_end(&range);
5729 	tlb_finish_mmu(&tlb);
5730 }
5731 
5732 /*
5733  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5734  * mapping it owns the reserve page for. The intention is to unmap the page
5735  * from other VMAs and let the children be SIGKILLed if they are faulting the
5736  * same region.
5737  */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)5738 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5739 			      struct page *page, unsigned long address)
5740 {
5741 	struct hstate *h = hstate_vma(vma);
5742 	struct vm_area_struct *iter_vma;
5743 	struct address_space *mapping;
5744 	pgoff_t pgoff;
5745 
5746 	/*
5747 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5748 	 * from page cache lookup which is in HPAGE_SIZE units.
5749 	 */
5750 	address = address & huge_page_mask(h);
5751 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5752 			vma->vm_pgoff;
5753 	mapping = vma->vm_file->f_mapping;
5754 
5755 	/*
5756 	 * Take the mapping lock for the duration of the table walk. As
5757 	 * this mapping should be shared between all the VMAs,
5758 	 * __unmap_hugepage_range() is called as the lock is already held
5759 	 */
5760 	i_mmap_lock_write(mapping);
5761 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5762 		/* Do not unmap the current VMA */
5763 		if (iter_vma == vma)
5764 			continue;
5765 
5766 		/*
5767 		 * Shared VMAs have their own reserves and do not affect
5768 		 * MAP_PRIVATE accounting but it is possible that a shared
5769 		 * VMA is using the same page so check and skip such VMAs.
5770 		 */
5771 		if (iter_vma->vm_flags & VM_MAYSHARE)
5772 			continue;
5773 
5774 		/*
5775 		 * Unmap the page from other VMAs without their own reserves.
5776 		 * They get marked to be SIGKILLed if they fault in these
5777 		 * areas. This is because a future no-page fault on this VMA
5778 		 * could insert a zeroed page instead of the data existing
5779 		 * from the time of fork. This would look like data corruption
5780 		 */
5781 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5782 			unmap_hugepage_range(iter_vma, address,
5783 					     address + huge_page_size(h), page, 0);
5784 	}
5785 	i_mmap_unlock_write(mapping);
5786 }
5787 
5788 /*
5789  * hugetlb_wp() should be called with page lock of the original hugepage held.
5790  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5791  * cannot race with other handlers or page migration.
5792  * Keep the pte_same checks anyway to make transition from the mutex easier.
5793  */
hugetlb_wp(struct folio * pagecache_folio,struct vm_fault * vmf)5794 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
5795 		       struct vm_fault *vmf)
5796 {
5797 	struct vm_area_struct *vma = vmf->vma;
5798 	struct mm_struct *mm = vma->vm_mm;
5799 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5800 	pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
5801 	struct hstate *h = hstate_vma(vma);
5802 	struct folio *old_folio;
5803 	struct folio *new_folio;
5804 	int outside_reserve = 0;
5805 	vm_fault_t ret = 0;
5806 	struct mmu_notifier_range range;
5807 
5808 	/*
5809 	 * Never handle CoW for uffd-wp protected pages.  It should be only
5810 	 * handled when the uffd-wp protection is removed.
5811 	 *
5812 	 * Note that only the CoW optimization path (in hugetlb_no_page())
5813 	 * can trigger this, because hugetlb_fault() will always resolve
5814 	 * uffd-wp bit first.
5815 	 */
5816 	if (!unshare && huge_pte_uffd_wp(pte))
5817 		return 0;
5818 
5819 	/*
5820 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5821 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5822 	 */
5823 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5824 		return VM_FAULT_SIGSEGV;
5825 
5826 	/* Let's take out MAP_SHARED mappings first. */
5827 	if (vma->vm_flags & VM_MAYSHARE) {
5828 		set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5829 		return 0;
5830 	}
5831 
5832 	old_folio = page_folio(pte_page(pte));
5833 
5834 	delayacct_wpcopy_start();
5835 
5836 retry_avoidcopy:
5837 	/*
5838 	 * If no-one else is actually using this page, we're the exclusive
5839 	 * owner and can reuse this page.
5840 	 *
5841 	 * Note that we don't rely on the (safer) folio refcount here, because
5842 	 * copying the hugetlb folio when there are unexpected (temporary)
5843 	 * folio references could harm simple fork()+exit() users when
5844 	 * we run out of free hugetlb folios: we would have to kill processes
5845 	 * in scenarios that used to work. As a side effect, there can still
5846 	 * be leaks between processes, for example, with FOLL_GET users.
5847 	 */
5848 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5849 		if (!PageAnonExclusive(&old_folio->page)) {
5850 			folio_move_anon_rmap(old_folio, vma);
5851 			SetPageAnonExclusive(&old_folio->page);
5852 		}
5853 		if (likely(!unshare))
5854 			set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5855 
5856 		delayacct_wpcopy_end();
5857 		return 0;
5858 	}
5859 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5860 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5861 
5862 	/*
5863 	 * If the process that created a MAP_PRIVATE mapping is about to
5864 	 * perform a COW due to a shared page count, attempt to satisfy
5865 	 * the allocation without using the existing reserves. The pagecache
5866 	 * page is used to determine if the reserve at this address was
5867 	 * consumed or not. If reserves were used, a partial faulted mapping
5868 	 * at the time of fork() could consume its reserves on COW instead
5869 	 * of the full address range.
5870 	 */
5871 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5872 			old_folio != pagecache_folio)
5873 		outside_reserve = 1;
5874 
5875 	folio_get(old_folio);
5876 
5877 	/*
5878 	 * Drop page table lock as buddy allocator may be called. It will
5879 	 * be acquired again before returning to the caller, as expected.
5880 	 */
5881 	spin_unlock(vmf->ptl);
5882 	new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve);
5883 
5884 	if (IS_ERR(new_folio)) {
5885 		/*
5886 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5887 		 * it is due to references held by a child and an insufficient
5888 		 * huge page pool. To guarantee the original mappers
5889 		 * reliability, unmap the page from child processes. The child
5890 		 * may get SIGKILLed if it later faults.
5891 		 */
5892 		if (outside_reserve) {
5893 			struct address_space *mapping = vma->vm_file->f_mapping;
5894 			pgoff_t idx;
5895 			u32 hash;
5896 
5897 			folio_put(old_folio);
5898 			/*
5899 			 * Drop hugetlb_fault_mutex and vma_lock before
5900 			 * unmapping.  unmapping needs to hold vma_lock
5901 			 * in write mode.  Dropping vma_lock in read mode
5902 			 * here is OK as COW mappings do not interact with
5903 			 * PMD sharing.
5904 			 *
5905 			 * Reacquire both after unmap operation.
5906 			 */
5907 			idx = vma_hugecache_offset(h, vma, vmf->address);
5908 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5909 			hugetlb_vma_unlock_read(vma);
5910 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5911 
5912 			unmap_ref_private(mm, vma, &old_folio->page,
5913 					vmf->address);
5914 
5915 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5916 			hugetlb_vma_lock_read(vma);
5917 			spin_lock(vmf->ptl);
5918 			vmf->pte = hugetlb_walk(vma, vmf->address,
5919 					huge_page_size(h));
5920 			if (likely(vmf->pte &&
5921 				   pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
5922 				goto retry_avoidcopy;
5923 			/*
5924 			 * race occurs while re-acquiring page table
5925 			 * lock, and our job is done.
5926 			 */
5927 			delayacct_wpcopy_end();
5928 			return 0;
5929 		}
5930 
5931 		ret = vmf_error(PTR_ERR(new_folio));
5932 		goto out_release_old;
5933 	}
5934 
5935 	/*
5936 	 * When the original hugepage is shared one, it does not have
5937 	 * anon_vma prepared.
5938 	 */
5939 	ret = __vmf_anon_prepare(vmf);
5940 	if (unlikely(ret))
5941 		goto out_release_all;
5942 
5943 	if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
5944 		ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
5945 		goto out_release_all;
5946 	}
5947 	__folio_mark_uptodate(new_folio);
5948 
5949 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
5950 				vmf->address + huge_page_size(h));
5951 	mmu_notifier_invalidate_range_start(&range);
5952 
5953 	/*
5954 	 * Retake the page table lock to check for racing updates
5955 	 * before the page tables are altered
5956 	 */
5957 	spin_lock(vmf->ptl);
5958 	vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
5959 	if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
5960 		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5961 
5962 		/* Break COW or unshare */
5963 		huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
5964 		hugetlb_remove_rmap(old_folio);
5965 		hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
5966 		if (huge_pte_uffd_wp(pte))
5967 			newpte = huge_pte_mkuffd_wp(newpte);
5968 		set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
5969 				huge_page_size(h));
5970 		folio_set_hugetlb_migratable(new_folio);
5971 		/* Make the old page be freed below */
5972 		new_folio = old_folio;
5973 	}
5974 	spin_unlock(vmf->ptl);
5975 	mmu_notifier_invalidate_range_end(&range);
5976 out_release_all:
5977 	/*
5978 	 * No restore in case of successful pagetable update (Break COW or
5979 	 * unshare)
5980 	 */
5981 	if (new_folio != old_folio)
5982 		restore_reserve_on_error(h, vma, vmf->address, new_folio);
5983 	folio_put(new_folio);
5984 out_release_old:
5985 	folio_put(old_folio);
5986 
5987 	spin_lock(vmf->ptl); /* Caller expects lock to be held */
5988 
5989 	delayacct_wpcopy_end();
5990 	return ret;
5991 }
5992 
5993 /*
5994  * Return whether there is a pagecache page to back given address within VMA.
5995  */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)5996 bool hugetlbfs_pagecache_present(struct hstate *h,
5997 				 struct vm_area_struct *vma, unsigned long address)
5998 {
5999 	struct address_space *mapping = vma->vm_file->f_mapping;
6000 	pgoff_t idx = linear_page_index(vma, address);
6001 	struct folio *folio;
6002 
6003 	folio = filemap_get_folio(mapping, idx);
6004 	if (IS_ERR(folio))
6005 		return false;
6006 	folio_put(folio);
6007 	return true;
6008 }
6009 
hugetlb_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t idx)6010 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6011 			   pgoff_t idx)
6012 {
6013 	struct inode *inode = mapping->host;
6014 	struct hstate *h = hstate_inode(inode);
6015 	int err;
6016 
6017 	idx <<= huge_page_order(h);
6018 	__folio_set_locked(folio);
6019 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6020 
6021 	if (unlikely(err)) {
6022 		__folio_clear_locked(folio);
6023 		return err;
6024 	}
6025 	folio_clear_hugetlb_restore_reserve(folio);
6026 
6027 	/*
6028 	 * mark folio dirty so that it will not be removed from cache/file
6029 	 * by non-hugetlbfs specific code paths.
6030 	 */
6031 	folio_mark_dirty(folio);
6032 
6033 	spin_lock(&inode->i_lock);
6034 	inode->i_blocks += blocks_per_huge_page(h);
6035 	spin_unlock(&inode->i_lock);
6036 	return 0;
6037 }
6038 
hugetlb_handle_userfault(struct vm_fault * vmf,struct address_space * mapping,unsigned long reason)6039 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6040 						  struct address_space *mapping,
6041 						  unsigned long reason)
6042 {
6043 	u32 hash;
6044 
6045 	/*
6046 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6047 	 * userfault. Also mmap_lock could be dropped due to handling
6048 	 * userfault, any vma operation should be careful from here.
6049 	 */
6050 	hugetlb_vma_unlock_read(vmf->vma);
6051 	hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6052 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6053 	return handle_userfault(vmf, reason);
6054 }
6055 
6056 /*
6057  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6058  * false if pte changed or is changing.
6059  */
hugetlb_pte_stable(struct hstate * h,struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t old_pte)6060 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6061 			       pte_t *ptep, pte_t old_pte)
6062 {
6063 	spinlock_t *ptl;
6064 	bool same;
6065 
6066 	ptl = huge_pte_lock(h, mm, ptep);
6067 	same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6068 	spin_unlock(ptl);
6069 
6070 	return same;
6071 }
6072 
hugetlb_no_page(struct address_space * mapping,struct vm_fault * vmf)6073 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6074 			struct vm_fault *vmf)
6075 {
6076 	struct vm_area_struct *vma = vmf->vma;
6077 	struct mm_struct *mm = vma->vm_mm;
6078 	struct hstate *h = hstate_vma(vma);
6079 	vm_fault_t ret = VM_FAULT_SIGBUS;
6080 	int anon_rmap = 0;
6081 	unsigned long size;
6082 	struct folio *folio;
6083 	pte_t new_pte;
6084 	bool new_folio, new_pagecache_folio = false;
6085 	u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6086 
6087 	/*
6088 	 * Currently, we are forced to kill the process in the event the
6089 	 * original mapper has unmapped pages from the child due to a failed
6090 	 * COW/unsharing. Warn that such a situation has occurred as it may not
6091 	 * be obvious.
6092 	 */
6093 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6094 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6095 			   current->pid);
6096 		goto out;
6097 	}
6098 
6099 	/*
6100 	 * Use page lock to guard against racing truncation
6101 	 * before we get page_table_lock.
6102 	 */
6103 	new_folio = false;
6104 	folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6105 	if (IS_ERR(folio)) {
6106 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6107 		if (vmf->pgoff >= size)
6108 			goto out;
6109 		/* Check for page in userfault range */
6110 		if (userfaultfd_missing(vma)) {
6111 			/*
6112 			 * Since hugetlb_no_page() was examining pte
6113 			 * without pgtable lock, we need to re-test under
6114 			 * lock because the pte may not be stable and could
6115 			 * have changed from under us.  Try to detect
6116 			 * either changed or during-changing ptes and retry
6117 			 * properly when needed.
6118 			 *
6119 			 * Note that userfaultfd is actually fine with
6120 			 * false positives (e.g. caused by pte changed),
6121 			 * but not wrong logical events (e.g. caused by
6122 			 * reading a pte during changing).  The latter can
6123 			 * confuse the userspace, so the strictness is very
6124 			 * much preferred.  E.g., MISSING event should
6125 			 * never happen on the page after UFFDIO_COPY has
6126 			 * correctly installed the page and returned.
6127 			 */
6128 			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6129 				ret = 0;
6130 				goto out;
6131 			}
6132 
6133 			return hugetlb_handle_userfault(vmf, mapping,
6134 							VM_UFFD_MISSING);
6135 		}
6136 
6137 		if (!(vma->vm_flags & VM_MAYSHARE)) {
6138 			ret = __vmf_anon_prepare(vmf);
6139 			if (unlikely(ret))
6140 				goto out;
6141 		}
6142 
6143 		folio = alloc_hugetlb_folio(vma, vmf->address, 0);
6144 		if (IS_ERR(folio)) {
6145 			/*
6146 			 * Returning error will result in faulting task being
6147 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
6148 			 * tasks from racing to fault in the same page which
6149 			 * could result in false unable to allocate errors.
6150 			 * Page migration does not take the fault mutex, but
6151 			 * does a clear then write of pte's under page table
6152 			 * lock.  Page fault code could race with migration,
6153 			 * notice the clear pte and try to allocate a page
6154 			 * here.  Before returning error, get ptl and make
6155 			 * sure there really is no pte entry.
6156 			 */
6157 			if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6158 				ret = vmf_error(PTR_ERR(folio));
6159 			else
6160 				ret = 0;
6161 			goto out;
6162 		}
6163 		folio_zero_user(folio, vmf->real_address);
6164 		__folio_mark_uptodate(folio);
6165 		new_folio = true;
6166 
6167 		if (vma->vm_flags & VM_MAYSHARE) {
6168 			int err = hugetlb_add_to_page_cache(folio, mapping,
6169 							vmf->pgoff);
6170 			if (err) {
6171 				/*
6172 				 * err can't be -EEXIST which implies someone
6173 				 * else consumed the reservation since hugetlb
6174 				 * fault mutex is held when add a hugetlb page
6175 				 * to the page cache. So it's safe to call
6176 				 * restore_reserve_on_error() here.
6177 				 */
6178 				restore_reserve_on_error(h, vma, vmf->address,
6179 							folio);
6180 				folio_put(folio);
6181 				ret = VM_FAULT_SIGBUS;
6182 				goto out;
6183 			}
6184 			new_pagecache_folio = true;
6185 		} else {
6186 			folio_lock(folio);
6187 			anon_rmap = 1;
6188 		}
6189 	} else {
6190 		/*
6191 		 * If memory error occurs between mmap() and fault, some process
6192 		 * don't have hwpoisoned swap entry for errored virtual address.
6193 		 * So we need to block hugepage fault by PG_hwpoison bit check.
6194 		 */
6195 		if (unlikely(folio_test_hwpoison(folio))) {
6196 			ret = VM_FAULT_HWPOISON_LARGE |
6197 				VM_FAULT_SET_HINDEX(hstate_index(h));
6198 			goto backout_unlocked;
6199 		}
6200 
6201 		/* Check for page in userfault range. */
6202 		if (userfaultfd_minor(vma)) {
6203 			folio_unlock(folio);
6204 			folio_put(folio);
6205 			/* See comment in userfaultfd_missing() block above */
6206 			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6207 				ret = 0;
6208 				goto out;
6209 			}
6210 			return hugetlb_handle_userfault(vmf, mapping,
6211 							VM_UFFD_MINOR);
6212 		}
6213 	}
6214 
6215 	/*
6216 	 * If we are going to COW a private mapping later, we examine the
6217 	 * pending reservations for this page now. This will ensure that
6218 	 * any allocations necessary to record that reservation occur outside
6219 	 * the spinlock.
6220 	 */
6221 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6222 		if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6223 			ret = VM_FAULT_OOM;
6224 			goto backout_unlocked;
6225 		}
6226 		/* Just decrements count, does not deallocate */
6227 		vma_end_reservation(h, vma, vmf->address);
6228 	}
6229 
6230 	vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6231 	ret = 0;
6232 	/* If pte changed from under us, retry */
6233 	if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6234 		goto backout;
6235 
6236 	if (anon_rmap)
6237 		hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6238 	else
6239 		hugetlb_add_file_rmap(folio);
6240 	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6241 				&& (vma->vm_flags & VM_SHARED)));
6242 	/*
6243 	 * If this pte was previously wr-protected, keep it wr-protected even
6244 	 * if populated.
6245 	 */
6246 	if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6247 		new_pte = huge_pte_mkuffd_wp(new_pte);
6248 	set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6249 
6250 	hugetlb_count_add(pages_per_huge_page(h), mm);
6251 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6252 		/* Optimization, do the COW without a second fault */
6253 		ret = hugetlb_wp(folio, vmf);
6254 	}
6255 
6256 	spin_unlock(vmf->ptl);
6257 
6258 	/*
6259 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6260 	 * found in the pagecache may not have hugetlb_migratable if they have
6261 	 * been isolated for migration.
6262 	 */
6263 	if (new_folio)
6264 		folio_set_hugetlb_migratable(folio);
6265 
6266 	folio_unlock(folio);
6267 out:
6268 	hugetlb_vma_unlock_read(vma);
6269 
6270 	/*
6271 	 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6272 	 * the only way ret can be set to VM_FAULT_RETRY.
6273 	 */
6274 	if (unlikely(ret & VM_FAULT_RETRY))
6275 		vma_end_read(vma);
6276 
6277 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6278 	return ret;
6279 
6280 backout:
6281 	spin_unlock(vmf->ptl);
6282 backout_unlocked:
6283 	if (new_folio && !new_pagecache_folio)
6284 		restore_reserve_on_error(h, vma, vmf->address, folio);
6285 
6286 	folio_unlock(folio);
6287 	folio_put(folio);
6288 	goto out;
6289 }
6290 
6291 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6292 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6293 {
6294 	unsigned long key[2];
6295 	u32 hash;
6296 
6297 	key[0] = (unsigned long) mapping;
6298 	key[1] = idx;
6299 
6300 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6301 
6302 	return hash & (num_fault_mutexes - 1);
6303 }
6304 #else
6305 /*
6306  * For uniprocessor systems we always use a single mutex, so just
6307  * return 0 and avoid the hashing overhead.
6308  */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6309 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6310 {
6311 	return 0;
6312 }
6313 #endif
6314 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)6315 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6316 			unsigned long address, unsigned int flags)
6317 {
6318 	vm_fault_t ret;
6319 	u32 hash;
6320 	struct folio *folio = NULL;
6321 	struct folio *pagecache_folio = NULL;
6322 	struct hstate *h = hstate_vma(vma);
6323 	struct address_space *mapping;
6324 	int need_wait_lock = 0;
6325 	struct vm_fault vmf = {
6326 		.vma = vma,
6327 		.address = address & huge_page_mask(h),
6328 		.real_address = address,
6329 		.flags = flags,
6330 		.pgoff = vma_hugecache_offset(h, vma,
6331 				address & huge_page_mask(h)),
6332 		/* TODO: Track hugetlb faults using vm_fault */
6333 
6334 		/*
6335 		 * Some fields may not be initialized, be careful as it may
6336 		 * be hard to debug if called functions make assumptions
6337 		 */
6338 	};
6339 
6340 	/*
6341 	 * Serialize hugepage allocation and instantiation, so that we don't
6342 	 * get spurious allocation failures if two CPUs race to instantiate
6343 	 * the same page in the page cache.
6344 	 */
6345 	mapping = vma->vm_file->f_mapping;
6346 	hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6347 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6348 
6349 	/*
6350 	 * Acquire vma lock before calling huge_pte_alloc and hold
6351 	 * until finished with vmf.pte.  This prevents huge_pmd_unshare from
6352 	 * being called elsewhere and making the vmf.pte no longer valid.
6353 	 */
6354 	hugetlb_vma_lock_read(vma);
6355 	vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6356 	if (!vmf.pte) {
6357 		hugetlb_vma_unlock_read(vma);
6358 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6359 		return VM_FAULT_OOM;
6360 	}
6361 
6362 	vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6363 	if (huge_pte_none_mostly(vmf.orig_pte)) {
6364 		if (is_pte_marker(vmf.orig_pte)) {
6365 			pte_marker marker =
6366 				pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6367 
6368 			if (marker & PTE_MARKER_POISONED) {
6369 				ret = VM_FAULT_HWPOISON_LARGE |
6370 				      VM_FAULT_SET_HINDEX(hstate_index(h));
6371 				goto out_mutex;
6372 			} else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
6373 				/* This isn't supported in hugetlb. */
6374 				ret = VM_FAULT_SIGSEGV;
6375 				goto out_mutex;
6376 			}
6377 		}
6378 
6379 		/*
6380 		 * Other PTE markers should be handled the same way as none PTE.
6381 		 *
6382 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6383 		 * mutex internally, which make us return immediately.
6384 		 */
6385 		return hugetlb_no_page(mapping, &vmf);
6386 	}
6387 
6388 	ret = 0;
6389 
6390 	/*
6391 	 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6392 	 * point, so this check prevents the kernel from going below assuming
6393 	 * that we have an active hugepage in pagecache. This goto expects
6394 	 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6395 	 * check will properly handle it.
6396 	 */
6397 	if (!pte_present(vmf.orig_pte)) {
6398 		if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6399 			/*
6400 			 * Release the hugetlb fault lock now, but retain
6401 			 * the vma lock, because it is needed to guard the
6402 			 * huge_pte_lockptr() later in
6403 			 * migration_entry_wait_huge(). The vma lock will
6404 			 * be released there.
6405 			 */
6406 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6407 			migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6408 			return 0;
6409 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6410 			ret = VM_FAULT_HWPOISON_LARGE |
6411 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6412 		goto out_mutex;
6413 	}
6414 
6415 	/*
6416 	 * If we are going to COW/unshare the mapping later, we examine the
6417 	 * pending reservations for this page now. This will ensure that any
6418 	 * allocations necessary to record that reservation occur outside the
6419 	 * spinlock. Also lookup the pagecache page now as it is used to
6420 	 * determine if a reservation has been consumed.
6421 	 */
6422 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6423 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6424 		if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6425 			ret = VM_FAULT_OOM;
6426 			goto out_mutex;
6427 		}
6428 		/* Just decrements count, does not deallocate */
6429 		vma_end_reservation(h, vma, vmf.address);
6430 
6431 		pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6432 							     vmf.pgoff);
6433 		if (IS_ERR(pagecache_folio))
6434 			pagecache_folio = NULL;
6435 	}
6436 
6437 	vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6438 
6439 	/* Check for a racing update before calling hugetlb_wp() */
6440 	if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6441 		goto out_ptl;
6442 
6443 	/* Handle userfault-wp first, before trying to lock more pages */
6444 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6445 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6446 		if (!userfaultfd_wp_async(vma)) {
6447 			spin_unlock(vmf.ptl);
6448 			if (pagecache_folio) {
6449 				folio_unlock(pagecache_folio);
6450 				folio_put(pagecache_folio);
6451 			}
6452 			hugetlb_vma_unlock_read(vma);
6453 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6454 			return handle_userfault(&vmf, VM_UFFD_WP);
6455 		}
6456 
6457 		vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6458 		set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6459 				huge_page_size(hstate_vma(vma)));
6460 		/* Fallthrough to CoW */
6461 	}
6462 
6463 	/*
6464 	 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6465 	 * pagecache_folio, so here we need take the former one
6466 	 * when folio != pagecache_folio or !pagecache_folio.
6467 	 */
6468 	folio = page_folio(pte_page(vmf.orig_pte));
6469 	if (folio != pagecache_folio)
6470 		if (!folio_trylock(folio)) {
6471 			need_wait_lock = 1;
6472 			goto out_ptl;
6473 		}
6474 
6475 	folio_get(folio);
6476 
6477 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6478 		if (!huge_pte_write(vmf.orig_pte)) {
6479 			ret = hugetlb_wp(pagecache_folio, &vmf);
6480 			goto out_put_page;
6481 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6482 			vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6483 		}
6484 	}
6485 	vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6486 	if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6487 						flags & FAULT_FLAG_WRITE))
6488 		update_mmu_cache(vma, vmf.address, vmf.pte);
6489 out_put_page:
6490 	if (folio != pagecache_folio)
6491 		folio_unlock(folio);
6492 	folio_put(folio);
6493 out_ptl:
6494 	spin_unlock(vmf.ptl);
6495 
6496 	if (pagecache_folio) {
6497 		folio_unlock(pagecache_folio);
6498 		folio_put(pagecache_folio);
6499 	}
6500 out_mutex:
6501 	hugetlb_vma_unlock_read(vma);
6502 
6503 	/*
6504 	 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6505 	 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6506 	 */
6507 	if (unlikely(ret & VM_FAULT_RETRY))
6508 		vma_end_read(vma);
6509 
6510 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6511 	/*
6512 	 * Generally it's safe to hold refcount during waiting page lock. But
6513 	 * here we just wait to defer the next page fault to avoid busy loop and
6514 	 * the page is not used after unlocked before returning from the current
6515 	 * page fault. So we are safe from accessing freed page, even if we wait
6516 	 * here without taking refcount.
6517 	 */
6518 	if (need_wait_lock)
6519 		folio_wait_locked(folio);
6520 	return ret;
6521 }
6522 
6523 #ifdef CONFIG_USERFAULTFD
6524 /*
6525  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6526  */
alloc_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6527 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6528 		struct vm_area_struct *vma, unsigned long address)
6529 {
6530 	struct mempolicy *mpol;
6531 	nodemask_t *nodemask;
6532 	struct folio *folio;
6533 	gfp_t gfp_mask;
6534 	int node;
6535 
6536 	gfp_mask = htlb_alloc_mask(h);
6537 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6538 	/*
6539 	 * This is used to allocate a temporary hugetlb to hold the copied
6540 	 * content, which will then be copied again to the final hugetlb
6541 	 * consuming a reservation. Set the alloc_fallback to false to indicate
6542 	 * that breaking the per-node hugetlb pool is not allowed in this case.
6543 	 */
6544 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6545 	mpol_cond_put(mpol);
6546 
6547 	return folio;
6548 }
6549 
6550 /*
6551  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6552  * with modifications for hugetlb pages.
6553  */
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)6554 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6555 			     struct vm_area_struct *dst_vma,
6556 			     unsigned long dst_addr,
6557 			     unsigned long src_addr,
6558 			     uffd_flags_t flags,
6559 			     struct folio **foliop)
6560 {
6561 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6562 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6563 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6564 	struct hstate *h = hstate_vma(dst_vma);
6565 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6566 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6567 	unsigned long size = huge_page_size(h);
6568 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6569 	pte_t _dst_pte;
6570 	spinlock_t *ptl;
6571 	int ret = -ENOMEM;
6572 	struct folio *folio;
6573 	int writable;
6574 	bool folio_in_pagecache = false;
6575 
6576 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6577 		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6578 
6579 		/* Don't overwrite any existing PTEs (even markers) */
6580 		if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6581 			spin_unlock(ptl);
6582 			return -EEXIST;
6583 		}
6584 
6585 		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6586 		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6587 
6588 		/* No need to invalidate - it was non-present before */
6589 		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6590 
6591 		spin_unlock(ptl);
6592 		return 0;
6593 	}
6594 
6595 	if (is_continue) {
6596 		ret = -EFAULT;
6597 		folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6598 		if (IS_ERR(folio))
6599 			goto out;
6600 		folio_in_pagecache = true;
6601 	} else if (!*foliop) {
6602 		/* If a folio already exists, then it's UFFDIO_COPY for
6603 		 * a non-missing case. Return -EEXIST.
6604 		 */
6605 		if (vm_shared &&
6606 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6607 			ret = -EEXIST;
6608 			goto out;
6609 		}
6610 
6611 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6612 		if (IS_ERR(folio)) {
6613 			ret = -ENOMEM;
6614 			goto out;
6615 		}
6616 
6617 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6618 					   false);
6619 
6620 		/* fallback to copy_from_user outside mmap_lock */
6621 		if (unlikely(ret)) {
6622 			ret = -ENOENT;
6623 			/* Free the allocated folio which may have
6624 			 * consumed a reservation.
6625 			 */
6626 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6627 			folio_put(folio);
6628 
6629 			/* Allocate a temporary folio to hold the copied
6630 			 * contents.
6631 			 */
6632 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6633 			if (!folio) {
6634 				ret = -ENOMEM;
6635 				goto out;
6636 			}
6637 			*foliop = folio;
6638 			/* Set the outparam foliop and return to the caller to
6639 			 * copy the contents outside the lock. Don't free the
6640 			 * folio.
6641 			 */
6642 			goto out;
6643 		}
6644 	} else {
6645 		if (vm_shared &&
6646 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6647 			folio_put(*foliop);
6648 			ret = -EEXIST;
6649 			*foliop = NULL;
6650 			goto out;
6651 		}
6652 
6653 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6654 		if (IS_ERR(folio)) {
6655 			folio_put(*foliop);
6656 			ret = -ENOMEM;
6657 			*foliop = NULL;
6658 			goto out;
6659 		}
6660 		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6661 		folio_put(*foliop);
6662 		*foliop = NULL;
6663 		if (ret) {
6664 			folio_put(folio);
6665 			goto out;
6666 		}
6667 	}
6668 
6669 	/*
6670 	 * If we just allocated a new page, we need a memory barrier to ensure
6671 	 * that preceding stores to the page become visible before the
6672 	 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6673 	 * is what we need.
6674 	 *
6675 	 * In the case where we have not allocated a new page (is_continue),
6676 	 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6677 	 * an earlier smp_wmb() to ensure that prior stores will be visible
6678 	 * before the set_pte_at() write.
6679 	 */
6680 	if (!is_continue)
6681 		__folio_mark_uptodate(folio);
6682 	else
6683 		WARN_ON_ONCE(!folio_test_uptodate(folio));
6684 
6685 	/* Add shared, newly allocated pages to the page cache. */
6686 	if (vm_shared && !is_continue) {
6687 		ret = -EFAULT;
6688 		if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
6689 			goto out_release_nounlock;
6690 
6691 		/*
6692 		 * Serialization between remove_inode_hugepages() and
6693 		 * hugetlb_add_to_page_cache() below happens through the
6694 		 * hugetlb_fault_mutex_table that here must be hold by
6695 		 * the caller.
6696 		 */
6697 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6698 		if (ret)
6699 			goto out_release_nounlock;
6700 		folio_in_pagecache = true;
6701 	}
6702 
6703 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6704 
6705 	ret = -EIO;
6706 	if (folio_test_hwpoison(folio))
6707 		goto out_release_unlock;
6708 
6709 	/*
6710 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6711 	 * registered, we firstly wr-protect a none pte which has no page cache
6712 	 * page backing it, then access the page.
6713 	 */
6714 	ret = -EEXIST;
6715 	if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
6716 		goto out_release_unlock;
6717 
6718 	if (folio_in_pagecache)
6719 		hugetlb_add_file_rmap(folio);
6720 	else
6721 		hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6722 
6723 	/*
6724 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6725 	 * with wp flag set, don't set pte write bit.
6726 	 */
6727 	if (wp_enabled || (is_continue && !vm_shared))
6728 		writable = 0;
6729 	else
6730 		writable = dst_vma->vm_flags & VM_WRITE;
6731 
6732 	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6733 	/*
6734 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6735 	 * extremely important for hugetlbfs for now since swapping is not
6736 	 * supported, but we should still be clear in that this page cannot be
6737 	 * thrown away at will, even if write bit not set.
6738 	 */
6739 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6740 	_dst_pte = pte_mkyoung(_dst_pte);
6741 
6742 	if (wp_enabled)
6743 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6744 
6745 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6746 
6747 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6748 
6749 	/* No need to invalidate - it was non-present before */
6750 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6751 
6752 	spin_unlock(ptl);
6753 	if (!is_continue)
6754 		folio_set_hugetlb_migratable(folio);
6755 	if (vm_shared || is_continue)
6756 		folio_unlock(folio);
6757 	ret = 0;
6758 out:
6759 	return ret;
6760 out_release_unlock:
6761 	spin_unlock(ptl);
6762 	if (vm_shared || is_continue)
6763 		folio_unlock(folio);
6764 out_release_nounlock:
6765 	if (!folio_in_pagecache)
6766 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6767 	folio_put(folio);
6768 	goto out;
6769 }
6770 #endif /* CONFIG_USERFAULTFD */
6771 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)6772 long hugetlb_change_protection(struct vm_area_struct *vma,
6773 		unsigned long address, unsigned long end,
6774 		pgprot_t newprot, unsigned long cp_flags)
6775 {
6776 	struct mm_struct *mm = vma->vm_mm;
6777 	unsigned long start = address;
6778 	pte_t *ptep;
6779 	pte_t pte;
6780 	struct hstate *h = hstate_vma(vma);
6781 	long pages = 0, psize = huge_page_size(h);
6782 	bool shared_pmd = false;
6783 	struct mmu_notifier_range range;
6784 	unsigned long last_addr_mask;
6785 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6786 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6787 
6788 	/*
6789 	 * In the case of shared PMDs, the area to flush could be beyond
6790 	 * start/end.  Set range.start/range.end to cover the maximum possible
6791 	 * range if PMD sharing is possible.
6792 	 */
6793 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6794 				0, mm, start, end);
6795 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6796 
6797 	BUG_ON(address >= end);
6798 	flush_cache_range(vma, range.start, range.end);
6799 
6800 	mmu_notifier_invalidate_range_start(&range);
6801 	hugetlb_vma_lock_write(vma);
6802 	i_mmap_lock_write(vma->vm_file->f_mapping);
6803 	last_addr_mask = hugetlb_mask_last_page(h);
6804 	for (; address < end; address += psize) {
6805 		spinlock_t *ptl;
6806 		ptep = hugetlb_walk(vma, address, psize);
6807 		if (!ptep) {
6808 			if (!uffd_wp) {
6809 				address |= last_addr_mask;
6810 				continue;
6811 			}
6812 			/*
6813 			 * Userfaultfd wr-protect requires pgtable
6814 			 * pre-allocations to install pte markers.
6815 			 */
6816 			ptep = huge_pte_alloc(mm, vma, address, psize);
6817 			if (!ptep) {
6818 				pages = -ENOMEM;
6819 				break;
6820 			}
6821 		}
6822 		ptl = huge_pte_lock(h, mm, ptep);
6823 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6824 			/*
6825 			 * When uffd-wp is enabled on the vma, unshare
6826 			 * shouldn't happen at all.  Warn about it if it
6827 			 * happened due to some reason.
6828 			 */
6829 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6830 			pages++;
6831 			spin_unlock(ptl);
6832 			shared_pmd = true;
6833 			address |= last_addr_mask;
6834 			continue;
6835 		}
6836 		pte = huge_ptep_get(mm, address, ptep);
6837 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6838 			/* Nothing to do. */
6839 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6840 			swp_entry_t entry = pte_to_swp_entry(pte);
6841 			struct page *page = pfn_swap_entry_to_page(entry);
6842 			pte_t newpte = pte;
6843 
6844 			if (is_writable_migration_entry(entry)) {
6845 				if (PageAnon(page))
6846 					entry = make_readable_exclusive_migration_entry(
6847 								swp_offset(entry));
6848 				else
6849 					entry = make_readable_migration_entry(
6850 								swp_offset(entry));
6851 				newpte = swp_entry_to_pte(entry);
6852 				pages++;
6853 			}
6854 
6855 			if (uffd_wp)
6856 				newpte = pte_swp_mkuffd_wp(newpte);
6857 			else if (uffd_wp_resolve)
6858 				newpte = pte_swp_clear_uffd_wp(newpte);
6859 			if (!pte_same(pte, newpte))
6860 				set_huge_pte_at(mm, address, ptep, newpte, psize);
6861 		} else if (unlikely(is_pte_marker(pte))) {
6862 			/*
6863 			 * Do nothing on a poison marker; page is
6864 			 * corrupted, permissons do not apply.  Here
6865 			 * pte_marker_uffd_wp()==true implies !poison
6866 			 * because they're mutual exclusive.
6867 			 */
6868 			if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6869 				/* Safe to modify directly (non-present->none). */
6870 				huge_pte_clear(mm, address, ptep, psize);
6871 		} else if (!huge_pte_none(pte)) {
6872 			pte_t old_pte;
6873 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6874 
6875 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6876 			pte = huge_pte_modify(old_pte, newprot);
6877 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6878 			if (uffd_wp)
6879 				pte = huge_pte_mkuffd_wp(pte);
6880 			else if (uffd_wp_resolve)
6881 				pte = huge_pte_clear_uffd_wp(pte);
6882 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6883 			pages++;
6884 		} else {
6885 			/* None pte */
6886 			if (unlikely(uffd_wp))
6887 				/* Safe to modify directly (none->non-present). */
6888 				set_huge_pte_at(mm, address, ptep,
6889 						make_pte_marker(PTE_MARKER_UFFD_WP),
6890 						psize);
6891 		}
6892 		spin_unlock(ptl);
6893 	}
6894 	/*
6895 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6896 	 * may have cleared our pud entry and done put_page on the page table:
6897 	 * once we release i_mmap_rwsem, another task can do the final put_page
6898 	 * and that page table be reused and filled with junk.  If we actually
6899 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6900 	 */
6901 	if (shared_pmd)
6902 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6903 	else
6904 		flush_hugetlb_tlb_range(vma, start, end);
6905 	/*
6906 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6907 	 * downgrading page table protection not changing it to point to a new
6908 	 * page.
6909 	 *
6910 	 * See Documentation/mm/mmu_notifier.rst
6911 	 */
6912 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6913 	hugetlb_vma_unlock_write(vma);
6914 	mmu_notifier_invalidate_range_end(&range);
6915 
6916 	return pages > 0 ? (pages << h->order) : pages;
6917 }
6918 
6919 /* Return true if reservation was successful, false otherwise.  */
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)6920 bool hugetlb_reserve_pages(struct inode *inode,
6921 					long from, long to,
6922 					struct vm_area_struct *vma,
6923 					vm_flags_t vm_flags)
6924 {
6925 	long chg = -1, add = -1;
6926 	struct hstate *h = hstate_inode(inode);
6927 	struct hugepage_subpool *spool = subpool_inode(inode);
6928 	struct resv_map *resv_map;
6929 	struct hugetlb_cgroup *h_cg = NULL;
6930 	long gbl_reserve, regions_needed = 0;
6931 
6932 	/* This should never happen */
6933 	if (from > to) {
6934 		VM_WARN(1, "%s called with a negative range\n", __func__);
6935 		return false;
6936 	}
6937 
6938 	/*
6939 	 * vma specific semaphore used for pmd sharing and fault/truncation
6940 	 * synchronization
6941 	 */
6942 	hugetlb_vma_lock_alloc(vma);
6943 
6944 	/*
6945 	 * Only apply hugepage reservation if asked. At fault time, an
6946 	 * attempt will be made for VM_NORESERVE to allocate a page
6947 	 * without using reserves
6948 	 */
6949 	if (vm_flags & VM_NORESERVE)
6950 		return true;
6951 
6952 	/*
6953 	 * Shared mappings base their reservation on the number of pages that
6954 	 * are already allocated on behalf of the file. Private mappings need
6955 	 * to reserve the full area even if read-only as mprotect() may be
6956 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6957 	 */
6958 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6959 		/*
6960 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6961 		 * called for inodes for which resv_maps were created (see
6962 		 * hugetlbfs_get_inode).
6963 		 */
6964 		resv_map = inode_resv_map(inode);
6965 
6966 		chg = region_chg(resv_map, from, to, &regions_needed);
6967 	} else {
6968 		/* Private mapping. */
6969 		resv_map = resv_map_alloc();
6970 		if (!resv_map)
6971 			goto out_err;
6972 
6973 		chg = to - from;
6974 
6975 		set_vma_resv_map(vma, resv_map);
6976 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6977 	}
6978 
6979 	if (chg < 0)
6980 		goto out_err;
6981 
6982 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6983 				chg * pages_per_huge_page(h), &h_cg) < 0)
6984 		goto out_err;
6985 
6986 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6987 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6988 		 * of the resv_map.
6989 		 */
6990 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6991 	}
6992 
6993 	/*
6994 	 * There must be enough pages in the subpool for the mapping. If
6995 	 * the subpool has a minimum size, there may be some global
6996 	 * reservations already in place (gbl_reserve).
6997 	 */
6998 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6999 	if (gbl_reserve < 0)
7000 		goto out_uncharge_cgroup;
7001 
7002 	/*
7003 	 * Check enough hugepages are available for the reservation.
7004 	 * Hand the pages back to the subpool if there are not
7005 	 */
7006 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7007 		goto out_put_pages;
7008 
7009 	/*
7010 	 * Account for the reservations made. Shared mappings record regions
7011 	 * that have reservations as they are shared by multiple VMAs.
7012 	 * When the last VMA disappears, the region map says how much
7013 	 * the reservation was and the page cache tells how much of
7014 	 * the reservation was consumed. Private mappings are per-VMA and
7015 	 * only the consumed reservations are tracked. When the VMA
7016 	 * disappears, the original reservation is the VMA size and the
7017 	 * consumed reservations are stored in the map. Hence, nothing
7018 	 * else has to be done for private mappings here
7019 	 */
7020 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7021 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7022 
7023 		if (unlikely(add < 0)) {
7024 			hugetlb_acct_memory(h, -gbl_reserve);
7025 			goto out_put_pages;
7026 		} else if (unlikely(chg > add)) {
7027 			/*
7028 			 * pages in this range were added to the reserve
7029 			 * map between region_chg and region_add.  This
7030 			 * indicates a race with alloc_hugetlb_folio.  Adjust
7031 			 * the subpool and reserve counts modified above
7032 			 * based on the difference.
7033 			 */
7034 			long rsv_adjust;
7035 
7036 			/*
7037 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7038 			 * reference to h_cg->css. See comment below for detail.
7039 			 */
7040 			hugetlb_cgroup_uncharge_cgroup_rsvd(
7041 				hstate_index(h),
7042 				(chg - add) * pages_per_huge_page(h), h_cg);
7043 
7044 			rsv_adjust = hugepage_subpool_put_pages(spool,
7045 								chg - add);
7046 			hugetlb_acct_memory(h, -rsv_adjust);
7047 		} else if (h_cg) {
7048 			/*
7049 			 * The file_regions will hold their own reference to
7050 			 * h_cg->css. So we should release the reference held
7051 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7052 			 * done.
7053 			 */
7054 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7055 		}
7056 	}
7057 	return true;
7058 
7059 out_put_pages:
7060 	/* put back original number of pages, chg */
7061 	(void)hugepage_subpool_put_pages(spool, chg);
7062 out_uncharge_cgroup:
7063 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7064 					    chg * pages_per_huge_page(h), h_cg);
7065 out_err:
7066 	hugetlb_vma_lock_free(vma);
7067 	if (!vma || vma->vm_flags & VM_MAYSHARE)
7068 		/* Only call region_abort if the region_chg succeeded but the
7069 		 * region_add failed or didn't run.
7070 		 */
7071 		if (chg >= 0 && add < 0)
7072 			region_abort(resv_map, from, to, regions_needed);
7073 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7074 		kref_put(&resv_map->refs, resv_map_release);
7075 		set_vma_resv_map(vma, NULL);
7076 	}
7077 	return false;
7078 }
7079 
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)7080 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7081 								long freed)
7082 {
7083 	struct hstate *h = hstate_inode(inode);
7084 	struct resv_map *resv_map = inode_resv_map(inode);
7085 	long chg = 0;
7086 	struct hugepage_subpool *spool = subpool_inode(inode);
7087 	long gbl_reserve;
7088 
7089 	/*
7090 	 * Since this routine can be called in the evict inode path for all
7091 	 * hugetlbfs inodes, resv_map could be NULL.
7092 	 */
7093 	if (resv_map) {
7094 		chg = region_del(resv_map, start, end);
7095 		/*
7096 		 * region_del() can fail in the rare case where a region
7097 		 * must be split and another region descriptor can not be
7098 		 * allocated.  If end == LONG_MAX, it will not fail.
7099 		 */
7100 		if (chg < 0)
7101 			return chg;
7102 	}
7103 
7104 	spin_lock(&inode->i_lock);
7105 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7106 	spin_unlock(&inode->i_lock);
7107 
7108 	/*
7109 	 * If the subpool has a minimum size, the number of global
7110 	 * reservations to be released may be adjusted.
7111 	 *
7112 	 * Note that !resv_map implies freed == 0. So (chg - freed)
7113 	 * won't go negative.
7114 	 */
7115 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7116 	hugetlb_acct_memory(h, -gbl_reserve);
7117 
7118 	return 0;
7119 }
7120 
7121 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)7122 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7123 				struct vm_area_struct *vma,
7124 				unsigned long addr, pgoff_t idx)
7125 {
7126 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7127 				svma->vm_start;
7128 	unsigned long sbase = saddr & PUD_MASK;
7129 	unsigned long s_end = sbase + PUD_SIZE;
7130 
7131 	/* Allow segments to share if only one is marked locked */
7132 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7133 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7134 
7135 	/*
7136 	 * match the virtual addresses, permission and the alignment of the
7137 	 * page table page.
7138 	 *
7139 	 * Also, vma_lock (vm_private_data) is required for sharing.
7140 	 */
7141 	if (pmd_index(addr) != pmd_index(saddr) ||
7142 	    vm_flags != svm_flags ||
7143 	    !range_in_vma(svma, sbase, s_end) ||
7144 	    !svma->vm_private_data)
7145 		return 0;
7146 
7147 	return saddr;
7148 }
7149 
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7150 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7151 {
7152 	unsigned long start = addr & PUD_MASK;
7153 	unsigned long end = start + PUD_SIZE;
7154 
7155 #ifdef CONFIG_USERFAULTFD
7156 	if (uffd_disable_huge_pmd_share(vma))
7157 		return false;
7158 #endif
7159 	/*
7160 	 * check on proper vm_flags and page table alignment
7161 	 */
7162 	if (!(vma->vm_flags & VM_MAYSHARE))
7163 		return false;
7164 	if (!vma->vm_private_data)	/* vma lock required for sharing */
7165 		return false;
7166 	if (!range_in_vma(vma, start, end))
7167 		return false;
7168 	return true;
7169 }
7170 
7171 /*
7172  * Determine if start,end range within vma could be mapped by shared pmd.
7173  * If yes, adjust start and end to cover range associated with possible
7174  * shared pmd mappings.
7175  */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7176 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7177 				unsigned long *start, unsigned long *end)
7178 {
7179 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7180 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7181 
7182 	/*
7183 	 * vma needs to span at least one aligned PUD size, and the range
7184 	 * must be at least partially within in.
7185 	 */
7186 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7187 		(*end <= v_start) || (*start >= v_end))
7188 		return;
7189 
7190 	/* Extend the range to be PUD aligned for a worst case scenario */
7191 	if (*start > v_start)
7192 		*start = ALIGN_DOWN(*start, PUD_SIZE);
7193 
7194 	if (*end < v_end)
7195 		*end = ALIGN(*end, PUD_SIZE);
7196 }
7197 
7198 /*
7199  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7200  * and returns the corresponding pte. While this is not necessary for the
7201  * !shared pmd case because we can allocate the pmd later as well, it makes the
7202  * code much cleaner. pmd allocation is essential for the shared case because
7203  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7204  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7205  * bad pmd for sharing.
7206  */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7207 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7208 		      unsigned long addr, pud_t *pud)
7209 {
7210 	struct address_space *mapping = vma->vm_file->f_mapping;
7211 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7212 			vma->vm_pgoff;
7213 	struct vm_area_struct *svma;
7214 	unsigned long saddr;
7215 	pte_t *spte = NULL;
7216 	pte_t *pte;
7217 
7218 	i_mmap_lock_read(mapping);
7219 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7220 		if (svma == vma)
7221 			continue;
7222 
7223 		saddr = page_table_shareable(svma, vma, addr, idx);
7224 		if (saddr) {
7225 			spte = hugetlb_walk(svma, saddr,
7226 					    vma_mmu_pagesize(svma));
7227 			if (spte) {
7228 				ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
7229 				break;
7230 			}
7231 		}
7232 	}
7233 
7234 	if (!spte)
7235 		goto out;
7236 
7237 	spin_lock(&mm->page_table_lock);
7238 	if (pud_none(*pud)) {
7239 		pud_populate(mm, pud,
7240 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7241 		mm_inc_nr_pmds(mm);
7242 	} else {
7243 		ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
7244 	}
7245 	spin_unlock(&mm->page_table_lock);
7246 out:
7247 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7248 	i_mmap_unlock_read(mapping);
7249 	return pte;
7250 }
7251 
7252 /*
7253  * unmap huge page backed by shared pte.
7254  *
7255  * Called with page table lock held.
7256  *
7257  * returns: 1 successfully unmapped a shared pte page
7258  *	    0 the underlying pte page is not shared, or it is the last user
7259  */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7260 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7261 					unsigned long addr, pte_t *ptep)
7262 {
7263 	unsigned long sz = huge_page_size(hstate_vma(vma));
7264 	pgd_t *pgd = pgd_offset(mm, addr);
7265 	p4d_t *p4d = p4d_offset(pgd, addr);
7266 	pud_t *pud = pud_offset(p4d, addr);
7267 
7268 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7269 	hugetlb_vma_assert_locked(vma);
7270 	if (sz != PMD_SIZE)
7271 		return 0;
7272 	if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep)))
7273 		return 0;
7274 
7275 	pud_clear(pud);
7276 	/*
7277 	 * Once our caller drops the rmap lock, some other process might be
7278 	 * using this page table as a normal, non-hugetlb page table.
7279 	 * Wait for pending gup_fast() in other threads to finish before letting
7280 	 * that happen.
7281 	 */
7282 	tlb_remove_table_sync_one();
7283 	ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
7284 	mm_dec_nr_pmds(mm);
7285 	return 1;
7286 }
7287 
7288 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7289 
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7290 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7291 		      unsigned long addr, pud_t *pud)
7292 {
7293 	return NULL;
7294 }
7295 
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7296 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7297 				unsigned long addr, pte_t *ptep)
7298 {
7299 	return 0;
7300 }
7301 
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7302 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7303 				unsigned long *start, unsigned long *end)
7304 {
7305 }
7306 
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7307 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7308 {
7309 	return false;
7310 }
7311 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7312 
7313 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)7314 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7315 			unsigned long addr, unsigned long sz)
7316 {
7317 	pgd_t *pgd;
7318 	p4d_t *p4d;
7319 	pud_t *pud;
7320 	pte_t *pte = NULL;
7321 
7322 	pgd = pgd_offset(mm, addr);
7323 	p4d = p4d_alloc(mm, pgd, addr);
7324 	if (!p4d)
7325 		return NULL;
7326 	pud = pud_alloc(mm, p4d, addr);
7327 	if (pud) {
7328 		if (sz == PUD_SIZE) {
7329 			pte = (pte_t *)pud;
7330 		} else {
7331 			BUG_ON(sz != PMD_SIZE);
7332 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7333 				pte = huge_pmd_share(mm, vma, addr, pud);
7334 			else
7335 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7336 		}
7337 	}
7338 
7339 	if (pte) {
7340 		pte_t pteval = ptep_get_lockless(pte);
7341 
7342 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7343 	}
7344 
7345 	return pte;
7346 }
7347 
7348 /*
7349  * huge_pte_offset() - Walk the page table to resolve the hugepage
7350  * entry at address @addr
7351  *
7352  * Return: Pointer to page table entry (PUD or PMD) for
7353  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7354  * size @sz doesn't match the hugepage size at this level of the page
7355  * table.
7356  */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)7357 pte_t *huge_pte_offset(struct mm_struct *mm,
7358 		       unsigned long addr, unsigned long sz)
7359 {
7360 	pgd_t *pgd;
7361 	p4d_t *p4d;
7362 	pud_t *pud;
7363 	pmd_t *pmd;
7364 
7365 	pgd = pgd_offset(mm, addr);
7366 	if (!pgd_present(*pgd))
7367 		return NULL;
7368 	p4d = p4d_offset(pgd, addr);
7369 	if (!p4d_present(*p4d))
7370 		return NULL;
7371 
7372 	pud = pud_offset(p4d, addr);
7373 	if (sz == PUD_SIZE)
7374 		/* must be pud huge, non-present or none */
7375 		return (pte_t *)pud;
7376 	if (!pud_present(*pud))
7377 		return NULL;
7378 	/* must have a valid entry and size to go further */
7379 
7380 	pmd = pmd_offset(pud, addr);
7381 	/* must be pmd huge, non-present or none */
7382 	return (pte_t *)pmd;
7383 }
7384 
7385 /*
7386  * Return a mask that can be used to update an address to the last huge
7387  * page in a page table page mapping size.  Used to skip non-present
7388  * page table entries when linearly scanning address ranges.  Architectures
7389  * with unique huge page to page table relationships can define their own
7390  * version of this routine.
7391  */
hugetlb_mask_last_page(struct hstate * h)7392 unsigned long hugetlb_mask_last_page(struct hstate *h)
7393 {
7394 	unsigned long hp_size = huge_page_size(h);
7395 
7396 	if (hp_size == PUD_SIZE)
7397 		return P4D_SIZE - PUD_SIZE;
7398 	else if (hp_size == PMD_SIZE)
7399 		return PUD_SIZE - PMD_SIZE;
7400 	else
7401 		return 0UL;
7402 }
7403 
7404 #else
7405 
7406 /* See description above.  Architectures can provide their own version. */
hugetlb_mask_last_page(struct hstate * h)7407 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7408 {
7409 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7410 	if (huge_page_size(h) == PMD_SIZE)
7411 		return PUD_SIZE - PMD_SIZE;
7412 #endif
7413 	return 0UL;
7414 }
7415 
7416 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7417 
isolate_hugetlb(struct folio * folio,struct list_head * list)7418 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7419 {
7420 	bool ret = true;
7421 
7422 	spin_lock_irq(&hugetlb_lock);
7423 	if (!folio_test_hugetlb(folio) ||
7424 	    !folio_test_hugetlb_migratable(folio) ||
7425 	    !folio_try_get(folio)) {
7426 		ret = false;
7427 		goto unlock;
7428 	}
7429 	folio_clear_hugetlb_migratable(folio);
7430 	list_move_tail(&folio->lru, list);
7431 unlock:
7432 	spin_unlock_irq(&hugetlb_lock);
7433 	return ret;
7434 }
7435 
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)7436 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7437 {
7438 	int ret = 0;
7439 
7440 	*hugetlb = false;
7441 	spin_lock_irq(&hugetlb_lock);
7442 	if (folio_test_hugetlb(folio)) {
7443 		*hugetlb = true;
7444 		if (folio_test_hugetlb_freed(folio))
7445 			ret = 0;
7446 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7447 			ret = folio_try_get(folio);
7448 		else
7449 			ret = -EBUSY;
7450 	}
7451 	spin_unlock_irq(&hugetlb_lock);
7452 	return ret;
7453 }
7454 
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)7455 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7456 				bool *migratable_cleared)
7457 {
7458 	int ret;
7459 
7460 	spin_lock_irq(&hugetlb_lock);
7461 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7462 	spin_unlock_irq(&hugetlb_lock);
7463 	return ret;
7464 }
7465 
folio_putback_active_hugetlb(struct folio * folio)7466 void folio_putback_active_hugetlb(struct folio *folio)
7467 {
7468 	spin_lock_irq(&hugetlb_lock);
7469 	folio_set_hugetlb_migratable(folio);
7470 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7471 	spin_unlock_irq(&hugetlb_lock);
7472 	folio_put(folio);
7473 }
7474 
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)7475 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7476 {
7477 	struct hstate *h = folio_hstate(old_folio);
7478 
7479 	hugetlb_cgroup_migrate(old_folio, new_folio);
7480 	set_page_owner_migrate_reason(&new_folio->page, reason);
7481 
7482 	/*
7483 	 * transfer temporary state of the new hugetlb folio. This is
7484 	 * reverse to other transitions because the newpage is going to
7485 	 * be final while the old one will be freed so it takes over
7486 	 * the temporary status.
7487 	 *
7488 	 * Also note that we have to transfer the per-node surplus state
7489 	 * here as well otherwise the global surplus count will not match
7490 	 * the per-node's.
7491 	 */
7492 	if (folio_test_hugetlb_temporary(new_folio)) {
7493 		int old_nid = folio_nid(old_folio);
7494 		int new_nid = folio_nid(new_folio);
7495 
7496 		folio_set_hugetlb_temporary(old_folio);
7497 		folio_clear_hugetlb_temporary(new_folio);
7498 
7499 
7500 		/*
7501 		 * There is no need to transfer the per-node surplus state
7502 		 * when we do not cross the node.
7503 		 */
7504 		if (new_nid == old_nid)
7505 			return;
7506 		spin_lock_irq(&hugetlb_lock);
7507 		if (h->surplus_huge_pages_node[old_nid]) {
7508 			h->surplus_huge_pages_node[old_nid]--;
7509 			h->surplus_huge_pages_node[new_nid]++;
7510 		}
7511 		spin_unlock_irq(&hugetlb_lock);
7512 	}
7513 }
7514 
7515 /*
7516  * If @take_locks is false, the caller must ensure that no concurrent page table
7517  * access can happen (except for gup_fast() and hardware page walks).
7518  * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like
7519  * concurrent page fault handling) and the file rmap lock.
7520  */
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool take_locks)7521 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7522 				   unsigned long start,
7523 				   unsigned long end,
7524 				   bool take_locks)
7525 {
7526 	struct hstate *h = hstate_vma(vma);
7527 	unsigned long sz = huge_page_size(h);
7528 	struct mm_struct *mm = vma->vm_mm;
7529 	struct mmu_notifier_range range;
7530 	unsigned long address;
7531 	spinlock_t *ptl;
7532 	pte_t *ptep;
7533 
7534 	if (!(vma->vm_flags & VM_MAYSHARE))
7535 		return;
7536 
7537 	if (start >= end)
7538 		return;
7539 
7540 	flush_cache_range(vma, start, end);
7541 	/*
7542 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7543 	 * we have already done the PUD_SIZE alignment.
7544 	 */
7545 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7546 				start, end);
7547 	mmu_notifier_invalidate_range_start(&range);
7548 	if (take_locks) {
7549 		hugetlb_vma_lock_write(vma);
7550 		i_mmap_lock_write(vma->vm_file->f_mapping);
7551 	} else {
7552 		i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7553 	}
7554 	for (address = start; address < end; address += PUD_SIZE) {
7555 		ptep = hugetlb_walk(vma, address, sz);
7556 		if (!ptep)
7557 			continue;
7558 		ptl = huge_pte_lock(h, mm, ptep);
7559 		huge_pmd_unshare(mm, vma, address, ptep);
7560 		spin_unlock(ptl);
7561 	}
7562 	flush_hugetlb_tlb_range(vma, start, end);
7563 	if (take_locks) {
7564 		i_mmap_unlock_write(vma->vm_file->f_mapping);
7565 		hugetlb_vma_unlock_write(vma);
7566 	}
7567 	/*
7568 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7569 	 * Documentation/mm/mmu_notifier.rst.
7570 	 */
7571 	mmu_notifier_invalidate_range_end(&range);
7572 }
7573 
7574 /*
7575  * This function will unconditionally remove all the shared pmd pgtable entries
7576  * within the specific vma for a hugetlbfs memory range.
7577  */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7578 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7579 {
7580 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7581 			ALIGN_DOWN(vma->vm_end, PUD_SIZE),
7582 			/* take_locks = */ true);
7583 }
7584 
7585 #ifdef CONFIG_CMA
7586 static bool cma_reserve_called __initdata;
7587 
cmdline_parse_hugetlb_cma(char * p)7588 static int __init cmdline_parse_hugetlb_cma(char *p)
7589 {
7590 	int nid, count = 0;
7591 	unsigned long tmp;
7592 	char *s = p;
7593 
7594 	while (*s) {
7595 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7596 			break;
7597 
7598 		if (s[count] == ':') {
7599 			if (tmp >= MAX_NUMNODES)
7600 				break;
7601 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7602 
7603 			s += count + 1;
7604 			tmp = memparse(s, &s);
7605 			hugetlb_cma_size_in_node[nid] = tmp;
7606 			hugetlb_cma_size += tmp;
7607 
7608 			/*
7609 			 * Skip the separator if have one, otherwise
7610 			 * break the parsing.
7611 			 */
7612 			if (*s == ',')
7613 				s++;
7614 			else
7615 				break;
7616 		} else {
7617 			hugetlb_cma_size = memparse(p, &p);
7618 			break;
7619 		}
7620 	}
7621 
7622 	return 0;
7623 }
7624 
7625 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7626 
hugetlb_cma_reserve(int order)7627 void __init hugetlb_cma_reserve(int order)
7628 {
7629 	unsigned long size, reserved, per_node;
7630 	bool node_specific_cma_alloc = false;
7631 	int nid;
7632 
7633 	/*
7634 	 * HugeTLB CMA reservation is required for gigantic
7635 	 * huge pages which could not be allocated via the
7636 	 * page allocator. Just warn if there is any change
7637 	 * breaking this assumption.
7638 	 */
7639 	VM_WARN_ON(order <= MAX_PAGE_ORDER);
7640 	cma_reserve_called = true;
7641 
7642 	if (!hugetlb_cma_size)
7643 		return;
7644 
7645 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7646 		if (hugetlb_cma_size_in_node[nid] == 0)
7647 			continue;
7648 
7649 		if (!node_online(nid)) {
7650 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7651 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7652 			hugetlb_cma_size_in_node[nid] = 0;
7653 			continue;
7654 		}
7655 
7656 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7657 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7658 				nid, (PAGE_SIZE << order) / SZ_1M);
7659 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7660 			hugetlb_cma_size_in_node[nid] = 0;
7661 		} else {
7662 			node_specific_cma_alloc = true;
7663 		}
7664 	}
7665 
7666 	/* Validate the CMA size again in case some invalid nodes specified. */
7667 	if (!hugetlb_cma_size)
7668 		return;
7669 
7670 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7671 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7672 			(PAGE_SIZE << order) / SZ_1M);
7673 		hugetlb_cma_size = 0;
7674 		return;
7675 	}
7676 
7677 	if (!node_specific_cma_alloc) {
7678 		/*
7679 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7680 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7681 		 */
7682 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7683 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7684 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7685 	}
7686 
7687 	reserved = 0;
7688 	for_each_online_node(nid) {
7689 		int res;
7690 		char name[CMA_MAX_NAME];
7691 
7692 		if (node_specific_cma_alloc) {
7693 			if (hugetlb_cma_size_in_node[nid] == 0)
7694 				continue;
7695 
7696 			size = hugetlb_cma_size_in_node[nid];
7697 		} else {
7698 			size = min(per_node, hugetlb_cma_size - reserved);
7699 		}
7700 
7701 		size = round_up(size, PAGE_SIZE << order);
7702 
7703 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7704 		/*
7705 		 * Note that 'order per bit' is based on smallest size that
7706 		 * may be returned to CMA allocator in the case of
7707 		 * huge page demotion.
7708 		 */
7709 		res = cma_declare_contiguous_nid(0, size, 0,
7710 					PAGE_SIZE << order,
7711 					HUGETLB_PAGE_ORDER, false, name,
7712 					&hugetlb_cma[nid], nid);
7713 		if (res) {
7714 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7715 				res, nid);
7716 			continue;
7717 		}
7718 
7719 		reserved += size;
7720 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7721 			size / SZ_1M, nid);
7722 
7723 		if (reserved >= hugetlb_cma_size)
7724 			break;
7725 	}
7726 
7727 	if (!reserved)
7728 		/*
7729 		 * hugetlb_cma_size is used to determine if allocations from
7730 		 * cma are possible.  Set to zero if no cma regions are set up.
7731 		 */
7732 		hugetlb_cma_size = 0;
7733 }
7734 
hugetlb_cma_check(void)7735 static void __init hugetlb_cma_check(void)
7736 {
7737 	if (!hugetlb_cma_size || cma_reserve_called)
7738 		return;
7739 
7740 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7741 }
7742 
7743 #endif /* CONFIG_CMA */
7744