• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38 #include "amdgpu_reset.h"
39 
40 struct mm_struct;
41 
42 #include "kfd_priv.h"
43 #include "kfd_device_queue_manager.h"
44 #include "kfd_svm.h"
45 #include "kfd_smi_events.h"
46 #include "kfd_debug.h"
47 
48 /*
49  * List of struct kfd_process (field kfd_process).
50  * Unique/indexed by mm_struct*
51  */
52 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
53 DEFINE_MUTEX(kfd_processes_mutex);
54 
55 DEFINE_SRCU(kfd_processes_srcu);
56 
57 /* For process termination handling */
58 static struct workqueue_struct *kfd_process_wq;
59 
60 /* Ordered, single-threaded workqueue for restoring evicted
61  * processes. Restoring multiple processes concurrently under memory
62  * pressure can lead to processes blocking each other from validating
63  * their BOs and result in a live-lock situation where processes
64  * remain evicted indefinitely.
65  */
66 static struct workqueue_struct *kfd_restore_wq;
67 
68 static struct kfd_process *find_process(const struct task_struct *thread,
69 					bool ref);
70 static void kfd_process_ref_release(struct kref *ref);
71 static struct kfd_process *create_process(const struct task_struct *thread);
72 
73 static void evict_process_worker(struct work_struct *work);
74 static void restore_process_worker(struct work_struct *work);
75 
76 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
77 
78 struct kfd_procfs_tree {
79 	struct kobject *kobj;
80 };
81 
82 static struct kfd_procfs_tree procfs;
83 
84 /*
85  * Structure for SDMA activity tracking
86  */
87 struct kfd_sdma_activity_handler_workarea {
88 	struct work_struct sdma_activity_work;
89 	struct kfd_process_device *pdd;
90 	uint64_t sdma_activity_counter;
91 };
92 
93 struct temp_sdma_queue_list {
94 	uint64_t __user *rptr;
95 	uint64_t sdma_val;
96 	unsigned int queue_id;
97 	struct list_head list;
98 };
99 
kfd_sdma_activity_worker(struct work_struct * work)100 static void kfd_sdma_activity_worker(struct work_struct *work)
101 {
102 	struct kfd_sdma_activity_handler_workarea *workarea;
103 	struct kfd_process_device *pdd;
104 	uint64_t val;
105 	struct mm_struct *mm;
106 	struct queue *q;
107 	struct qcm_process_device *qpd;
108 	struct device_queue_manager *dqm;
109 	int ret = 0;
110 	struct temp_sdma_queue_list sdma_q_list;
111 	struct temp_sdma_queue_list *sdma_q, *next;
112 
113 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
114 				sdma_activity_work);
115 
116 	pdd = workarea->pdd;
117 	if (!pdd)
118 		return;
119 	dqm = pdd->dev->dqm;
120 	qpd = &pdd->qpd;
121 	if (!dqm || !qpd)
122 		return;
123 	/*
124 	 * Total SDMA activity is current SDMA activity + past SDMA activity
125 	 * Past SDMA count is stored in pdd.
126 	 * To get the current activity counters for all active SDMA queues,
127 	 * we loop over all SDMA queues and get their counts from user-space.
128 	 *
129 	 * We cannot call get_user() with dqm_lock held as it can cause
130 	 * a circular lock dependency situation. To read the SDMA stats,
131 	 * we need to do the following:
132 	 *
133 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
134 	 *    with dqm_lock/dqm_unlock().
135 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
136 	 *    Save the SDMA count for each node and also add the count to the total
137 	 *    SDMA count counter.
138 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
139 	 *    from the qpd->queues_list.
140 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
141 	 *    If any node got deleted, its SDMA count would be captured in the sdma
142 	 *    past activity counter. So subtract the SDMA counter stored in step 2
143 	 *    for this node from the total SDMA count.
144 	 */
145 	INIT_LIST_HEAD(&sdma_q_list.list);
146 
147 	/*
148 	 * Create the temp list of all SDMA queues
149 	 */
150 	dqm_lock(dqm);
151 
152 	list_for_each_entry(q, &qpd->queues_list, list) {
153 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
154 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
155 			continue;
156 
157 		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
158 		if (!sdma_q) {
159 			dqm_unlock(dqm);
160 			goto cleanup;
161 		}
162 
163 		INIT_LIST_HEAD(&sdma_q->list);
164 		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
165 		sdma_q->queue_id = q->properties.queue_id;
166 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
167 	}
168 
169 	/*
170 	 * If the temp list is empty, then no SDMA queues nodes were found in
171 	 * qpd->queues_list. Return the past activity count as the total sdma
172 	 * count
173 	 */
174 	if (list_empty(&sdma_q_list.list)) {
175 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
176 		dqm_unlock(dqm);
177 		return;
178 	}
179 
180 	dqm_unlock(dqm);
181 
182 	/*
183 	 * Get the usage count for each SDMA queue in temp_list.
184 	 */
185 	mm = get_task_mm(pdd->process->lead_thread);
186 	if (!mm)
187 		goto cleanup;
188 
189 	kthread_use_mm(mm);
190 
191 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
192 		val = 0;
193 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
194 		if (ret) {
195 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
196 				 sdma_q->queue_id);
197 		} else {
198 			sdma_q->sdma_val = val;
199 			workarea->sdma_activity_counter += val;
200 		}
201 	}
202 
203 	kthread_unuse_mm(mm);
204 	mmput(mm);
205 
206 	/*
207 	 * Do a second iteration over qpd_queues_list to check if any SDMA
208 	 * nodes got deleted while fetching SDMA counter.
209 	 */
210 	dqm_lock(dqm);
211 
212 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
213 
214 	list_for_each_entry(q, &qpd->queues_list, list) {
215 		if (list_empty(&sdma_q_list.list))
216 			break;
217 
218 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
219 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
220 			continue;
221 
222 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
223 			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
224 			     (sdma_q->queue_id == q->properties.queue_id)) {
225 				list_del(&sdma_q->list);
226 				kfree(sdma_q);
227 				break;
228 			}
229 		}
230 	}
231 
232 	dqm_unlock(dqm);
233 
234 	/*
235 	 * If temp list is not empty, it implies some queues got deleted
236 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
237 	 * count for each node from the total SDMA count.
238 	 */
239 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
240 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
241 		list_del(&sdma_q->list);
242 		kfree(sdma_q);
243 	}
244 
245 	return;
246 
247 cleanup:
248 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
249 		list_del(&sdma_q->list);
250 		kfree(sdma_q);
251 	}
252 }
253 
254 /**
255  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
256  * by current process. Translates acquired wave count into number of compute units
257  * that are occupied.
258  *
259  * @attr: Handle of attribute that allows reporting of wave count. The attribute
260  * handle encapsulates GPU device it is associated with, thereby allowing collection
261  * of waves in flight, etc
262  * @buffer: Handle of user provided buffer updated with wave count
263  *
264  * Return: Number of bytes written to user buffer or an error value
265  */
kfd_get_cu_occupancy(struct attribute * attr,char * buffer)266 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
267 {
268 	int cu_cnt;
269 	int wave_cnt;
270 	int max_waves_per_cu;
271 	struct kfd_node *dev = NULL;
272 	struct kfd_process *proc = NULL;
273 	struct kfd_process_device *pdd = NULL;
274 	int i;
275 	struct kfd_cu_occupancy *cu_occupancy;
276 	u32 queue_format;
277 
278 	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
279 	dev = pdd->dev;
280 	if (dev->kfd2kgd->get_cu_occupancy == NULL)
281 		return -EINVAL;
282 
283 	cu_cnt = 0;
284 	proc = pdd->process;
285 	if (pdd->qpd.queue_count == 0) {
286 		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
287 			 dev->id, proc->pasid);
288 		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
289 	}
290 
291 	/* Collect wave count from device if it supports */
292 	wave_cnt = 0;
293 	max_waves_per_cu = 0;
294 
295 	cu_occupancy = kcalloc(AMDGPU_MAX_QUEUES, sizeof(*cu_occupancy), GFP_KERNEL);
296 	if (!cu_occupancy)
297 		return -ENOMEM;
298 
299 	/*
300 	 * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition.
301 	 * For AQL queues, because of cooperative dispatch we multiply the wave count
302 	 * by number of XCCs in the partition to get the total wave counts across all
303 	 * XCCs in the partition.
304 	 * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is.
305 	 */
306 	dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy,
307 			&max_waves_per_cu, ffs(dev->xcc_mask) - 1);
308 
309 	for (i = 0; i < AMDGPU_MAX_QUEUES; i++) {
310 		if (cu_occupancy[i].wave_cnt != 0 &&
311 		    kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd,
312 						cu_occupancy[i].doorbell_off,
313 						&queue_format)) {
314 			if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4))
315 				wave_cnt += cu_occupancy[i].wave_cnt;
316 			else
317 				wave_cnt += (NUM_XCC(dev->xcc_mask) *
318 						cu_occupancy[i].wave_cnt);
319 		}
320 	}
321 
322 	/* Translate wave count to number of compute units */
323 	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
324 	kfree(cu_occupancy);
325 	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
326 }
327 
kfd_procfs_show(struct kobject * kobj,struct attribute * attr,char * buffer)328 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
329 			       char *buffer)
330 {
331 	if (strcmp(attr->name, "pasid") == 0) {
332 		struct kfd_process *p = container_of(attr, struct kfd_process,
333 						     attr_pasid);
334 
335 		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
336 	} else if (strncmp(attr->name, "vram_", 5) == 0) {
337 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
338 							      attr_vram);
339 		return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage));
340 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
341 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
342 							      attr_sdma);
343 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
344 
345 		INIT_WORK_ONSTACK(&sdma_activity_work_handler.sdma_activity_work,
346 				  kfd_sdma_activity_worker);
347 
348 		sdma_activity_work_handler.pdd = pdd;
349 		sdma_activity_work_handler.sdma_activity_counter = 0;
350 
351 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
352 
353 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
354 		destroy_work_on_stack(&sdma_activity_work_handler.sdma_activity_work);
355 
356 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
357 				(sdma_activity_work_handler.sdma_activity_counter)/
358 				 SDMA_ACTIVITY_DIVISOR);
359 	} else {
360 		pr_err("Invalid attribute");
361 		return -EINVAL;
362 	}
363 
364 	return 0;
365 }
366 
kfd_procfs_kobj_release(struct kobject * kobj)367 static void kfd_procfs_kobj_release(struct kobject *kobj)
368 {
369 	kfree(kobj);
370 }
371 
372 static const struct sysfs_ops kfd_procfs_ops = {
373 	.show = kfd_procfs_show,
374 };
375 
376 static const struct kobj_type procfs_type = {
377 	.release = kfd_procfs_kobj_release,
378 	.sysfs_ops = &kfd_procfs_ops,
379 };
380 
kfd_procfs_init(void)381 void kfd_procfs_init(void)
382 {
383 	int ret = 0;
384 
385 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
386 	if (!procfs.kobj)
387 		return;
388 
389 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
390 				   &kfd_device->kobj, "proc");
391 	if (ret) {
392 		pr_warn("Could not create procfs proc folder");
393 		/* If we fail to create the procfs, clean up */
394 		kfd_procfs_shutdown();
395 	}
396 }
397 
kfd_procfs_shutdown(void)398 void kfd_procfs_shutdown(void)
399 {
400 	if (procfs.kobj) {
401 		kobject_del(procfs.kobj);
402 		kobject_put(procfs.kobj);
403 		procfs.kobj = NULL;
404 	}
405 }
406 
kfd_procfs_queue_show(struct kobject * kobj,struct attribute * attr,char * buffer)407 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
408 				     struct attribute *attr, char *buffer)
409 {
410 	struct queue *q = container_of(kobj, struct queue, kobj);
411 
412 	if (!strcmp(attr->name, "size"))
413 		return snprintf(buffer, PAGE_SIZE, "%llu",
414 				q->properties.queue_size);
415 	else if (!strcmp(attr->name, "type"))
416 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
417 	else if (!strcmp(attr->name, "gpuid"))
418 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
419 	else
420 		pr_err("Invalid attribute");
421 
422 	return 0;
423 }
424 
kfd_procfs_stats_show(struct kobject * kobj,struct attribute * attr,char * buffer)425 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
426 				     struct attribute *attr, char *buffer)
427 {
428 	if (strcmp(attr->name, "evicted_ms") == 0) {
429 		struct kfd_process_device *pdd = container_of(attr,
430 				struct kfd_process_device,
431 				attr_evict);
432 		uint64_t evict_jiffies;
433 
434 		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
435 
436 		return snprintf(buffer,
437 				PAGE_SIZE,
438 				"%llu\n",
439 				jiffies64_to_msecs(evict_jiffies));
440 
441 	/* Sysfs handle that gets CU occupancy is per device */
442 	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
443 		return kfd_get_cu_occupancy(attr, buffer);
444 	} else {
445 		pr_err("Invalid attribute");
446 	}
447 
448 	return 0;
449 }
450 
kfd_sysfs_counters_show(struct kobject * kobj,struct attribute * attr,char * buf)451 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
452 				       struct attribute *attr, char *buf)
453 {
454 	struct kfd_process_device *pdd;
455 
456 	if (!strcmp(attr->name, "faults")) {
457 		pdd = container_of(attr, struct kfd_process_device,
458 				   attr_faults);
459 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
460 	}
461 	if (!strcmp(attr->name, "page_in")) {
462 		pdd = container_of(attr, struct kfd_process_device,
463 				   attr_page_in);
464 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
465 	}
466 	if (!strcmp(attr->name, "page_out")) {
467 		pdd = container_of(attr, struct kfd_process_device,
468 				   attr_page_out);
469 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
470 	}
471 	return 0;
472 }
473 
474 static struct attribute attr_queue_size = {
475 	.name = "size",
476 	.mode = KFD_SYSFS_FILE_MODE
477 };
478 
479 static struct attribute attr_queue_type = {
480 	.name = "type",
481 	.mode = KFD_SYSFS_FILE_MODE
482 };
483 
484 static struct attribute attr_queue_gpuid = {
485 	.name = "gpuid",
486 	.mode = KFD_SYSFS_FILE_MODE
487 };
488 
489 static struct attribute *procfs_queue_attrs[] = {
490 	&attr_queue_size,
491 	&attr_queue_type,
492 	&attr_queue_gpuid,
493 	NULL
494 };
495 ATTRIBUTE_GROUPS(procfs_queue);
496 
497 static const struct sysfs_ops procfs_queue_ops = {
498 	.show = kfd_procfs_queue_show,
499 };
500 
501 static const struct kobj_type procfs_queue_type = {
502 	.sysfs_ops = &procfs_queue_ops,
503 	.default_groups = procfs_queue_groups,
504 };
505 
506 static const struct sysfs_ops procfs_stats_ops = {
507 	.show = kfd_procfs_stats_show,
508 };
509 
510 static const struct kobj_type procfs_stats_type = {
511 	.sysfs_ops = &procfs_stats_ops,
512 	.release = kfd_procfs_kobj_release,
513 };
514 
515 static const struct sysfs_ops sysfs_counters_ops = {
516 	.show = kfd_sysfs_counters_show,
517 };
518 
519 static const struct kobj_type sysfs_counters_type = {
520 	.sysfs_ops = &sysfs_counters_ops,
521 	.release = kfd_procfs_kobj_release,
522 };
523 
kfd_procfs_add_queue(struct queue * q)524 int kfd_procfs_add_queue(struct queue *q)
525 {
526 	struct kfd_process *proc;
527 	int ret;
528 
529 	if (!q || !q->process)
530 		return -EINVAL;
531 	proc = q->process;
532 
533 	/* Create proc/<pid>/queues/<queue id> folder */
534 	if (!proc->kobj_queues)
535 		return -EFAULT;
536 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
537 			proc->kobj_queues, "%u", q->properties.queue_id);
538 	if (ret < 0) {
539 		pr_warn("Creating proc/<pid>/queues/%u failed",
540 			q->properties.queue_id);
541 		kobject_put(&q->kobj);
542 		return ret;
543 	}
544 
545 	return 0;
546 }
547 
kfd_sysfs_create_file(struct kobject * kobj,struct attribute * attr,char * name)548 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
549 				 char *name)
550 {
551 	int ret;
552 
553 	if (!kobj || !attr || !name)
554 		return;
555 
556 	attr->name = name;
557 	attr->mode = KFD_SYSFS_FILE_MODE;
558 	sysfs_attr_init(attr);
559 
560 	ret = sysfs_create_file(kobj, attr);
561 	if (ret)
562 		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
563 }
564 
kfd_procfs_add_sysfs_stats(struct kfd_process * p)565 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
566 {
567 	int ret;
568 	int i;
569 	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
570 
571 	if (!p || !p->kobj)
572 		return;
573 
574 	/*
575 	 * Create sysfs files for each GPU:
576 	 * - proc/<pid>/stats_<gpuid>/
577 	 * - proc/<pid>/stats_<gpuid>/evicted_ms
578 	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
579 	 */
580 	for (i = 0; i < p->n_pdds; i++) {
581 		struct kfd_process_device *pdd = p->pdds[i];
582 
583 		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
584 				"stats_%u", pdd->dev->id);
585 		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
586 		if (!pdd->kobj_stats)
587 			return;
588 
589 		ret = kobject_init_and_add(pdd->kobj_stats,
590 					   &procfs_stats_type,
591 					   p->kobj,
592 					   stats_dir_filename);
593 
594 		if (ret) {
595 			pr_warn("Creating KFD proc/stats_%s folder failed",
596 				stats_dir_filename);
597 			kobject_put(pdd->kobj_stats);
598 			pdd->kobj_stats = NULL;
599 			return;
600 		}
601 
602 		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
603 				      "evicted_ms");
604 		/* Add sysfs file to report compute unit occupancy */
605 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
606 			kfd_sysfs_create_file(pdd->kobj_stats,
607 					      &pdd->attr_cu_occupancy,
608 					      "cu_occupancy");
609 	}
610 }
611 
kfd_procfs_add_sysfs_counters(struct kfd_process * p)612 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
613 {
614 	int ret = 0;
615 	int i;
616 	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
617 
618 	if (!p || !p->kobj)
619 		return;
620 
621 	/*
622 	 * Create sysfs files for each GPU which supports SVM
623 	 * - proc/<pid>/counters_<gpuid>/
624 	 * - proc/<pid>/counters_<gpuid>/faults
625 	 * - proc/<pid>/counters_<gpuid>/page_in
626 	 * - proc/<pid>/counters_<gpuid>/page_out
627 	 */
628 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
629 		struct kfd_process_device *pdd = p->pdds[i];
630 		struct kobject *kobj_counters;
631 
632 		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
633 			"counters_%u", pdd->dev->id);
634 		kobj_counters = kfd_alloc_struct(kobj_counters);
635 		if (!kobj_counters)
636 			return;
637 
638 		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
639 					   p->kobj, counters_dir_filename);
640 		if (ret) {
641 			pr_warn("Creating KFD proc/%s folder failed",
642 				counters_dir_filename);
643 			kobject_put(kobj_counters);
644 			return;
645 		}
646 
647 		pdd->kobj_counters = kobj_counters;
648 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
649 				      "faults");
650 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
651 				      "page_in");
652 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
653 				      "page_out");
654 	}
655 }
656 
kfd_procfs_add_sysfs_files(struct kfd_process * p)657 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
658 {
659 	int i;
660 
661 	if (!p || !p->kobj)
662 		return;
663 
664 	/*
665 	 * Create sysfs files for each GPU:
666 	 * - proc/<pid>/vram_<gpuid>
667 	 * - proc/<pid>/sdma_<gpuid>
668 	 */
669 	for (i = 0; i < p->n_pdds; i++) {
670 		struct kfd_process_device *pdd = p->pdds[i];
671 
672 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
673 			 pdd->dev->id);
674 		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
675 				      pdd->vram_filename);
676 
677 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
678 			 pdd->dev->id);
679 		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
680 					    pdd->sdma_filename);
681 	}
682 }
683 
kfd_procfs_del_queue(struct queue * q)684 void kfd_procfs_del_queue(struct queue *q)
685 {
686 	if (!q)
687 		return;
688 
689 	kobject_del(&q->kobj);
690 	kobject_put(&q->kobj);
691 }
692 
kfd_process_create_wq(void)693 int kfd_process_create_wq(void)
694 {
695 	if (!kfd_process_wq)
696 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
697 	if (!kfd_restore_wq)
698 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
699 							 WQ_FREEZABLE);
700 
701 	if (!kfd_process_wq || !kfd_restore_wq) {
702 		kfd_process_destroy_wq();
703 		return -ENOMEM;
704 	}
705 
706 	return 0;
707 }
708 
kfd_process_destroy_wq(void)709 void kfd_process_destroy_wq(void)
710 {
711 	if (kfd_process_wq) {
712 		destroy_workqueue(kfd_process_wq);
713 		kfd_process_wq = NULL;
714 	}
715 	if (kfd_restore_wq) {
716 		destroy_workqueue(kfd_restore_wq);
717 		kfd_restore_wq = NULL;
718 	}
719 }
720 
kfd_process_free_gpuvm(struct kgd_mem * mem,struct kfd_process_device * pdd,void ** kptr)721 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
722 			struct kfd_process_device *pdd, void **kptr)
723 {
724 	struct kfd_node *dev = pdd->dev;
725 
726 	if (kptr && *kptr) {
727 		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
728 		*kptr = NULL;
729 	}
730 
731 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
732 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
733 					       NULL);
734 }
735 
736 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
737  *	This function should be only called right after the process
738  *	is created and when kfd_processes_mutex is still being held
739  *	to avoid concurrency. Because of that exclusiveness, we do
740  *	not need to take p->mutex.
741  */
kfd_process_alloc_gpuvm(struct kfd_process_device * pdd,uint64_t gpu_va,uint32_t size,uint32_t flags,struct kgd_mem ** mem,void ** kptr)742 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
743 				   uint64_t gpu_va, uint32_t size,
744 				   uint32_t flags, struct kgd_mem **mem, void **kptr)
745 {
746 	struct kfd_node *kdev = pdd->dev;
747 	int err;
748 
749 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
750 						 pdd->drm_priv, mem, NULL,
751 						 flags, false);
752 	if (err)
753 		goto err_alloc_mem;
754 
755 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
756 			pdd->drm_priv);
757 	if (err)
758 		goto err_map_mem;
759 
760 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
761 	if (err) {
762 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
763 		goto sync_memory_failed;
764 	}
765 
766 	if (kptr) {
767 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
768 				(struct kgd_mem *)*mem, kptr, NULL);
769 		if (err) {
770 			pr_debug("Map GTT BO to kernel failed\n");
771 			goto sync_memory_failed;
772 		}
773 	}
774 
775 	return err;
776 
777 sync_memory_failed:
778 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
779 
780 err_map_mem:
781 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
782 					       NULL);
783 err_alloc_mem:
784 	*mem = NULL;
785 	*kptr = NULL;
786 	return err;
787 }
788 
789 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
790  *	process for IB usage The memory reserved is for KFD to submit
791  *	IB to AMDGPU from kernel.  If the memory is reserved
792  *	successfully, ib_kaddr will have the CPU/kernel
793  *	address. Check ib_kaddr before accessing the memory.
794  */
kfd_process_device_reserve_ib_mem(struct kfd_process_device * pdd)795 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
796 {
797 	struct qcm_process_device *qpd = &pdd->qpd;
798 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
799 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
800 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
801 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
802 	struct kgd_mem *mem;
803 	void *kaddr;
804 	int ret;
805 
806 	if (qpd->ib_kaddr || !qpd->ib_base)
807 		return 0;
808 
809 	/* ib_base is only set for dGPU */
810 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
811 				      &mem, &kaddr);
812 	if (ret)
813 		return ret;
814 
815 	qpd->ib_mem = mem;
816 	qpd->ib_kaddr = kaddr;
817 
818 	return 0;
819 }
820 
kfd_process_device_destroy_ib_mem(struct kfd_process_device * pdd)821 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
822 {
823 	struct qcm_process_device *qpd = &pdd->qpd;
824 
825 	if (!qpd->ib_kaddr || !qpd->ib_base)
826 		return;
827 
828 	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
829 }
830 
kfd_create_process(struct task_struct * thread)831 struct kfd_process *kfd_create_process(struct task_struct *thread)
832 {
833 	struct kfd_process *process;
834 	int ret;
835 
836 	if (!(thread->mm && mmget_not_zero(thread->mm)))
837 		return ERR_PTR(-EINVAL);
838 
839 	/* Only the pthreads threading model is supported. */
840 	if (thread->group_leader->mm != thread->mm) {
841 		mmput(thread->mm);
842 		return ERR_PTR(-EINVAL);
843 	}
844 
845 	/* If the process just called exec(3), it is possible that the
846 	 * cleanup of the kfd_process (following the release of the mm
847 	 * of the old process image) is still in the cleanup work queue.
848 	 * Make sure to drain any job before trying to recreate any
849 	 * resource for this process.
850 	 */
851 	flush_workqueue(kfd_process_wq);
852 
853 	/*
854 	 * take kfd processes mutex before starting of process creation
855 	 * so there won't be a case where two threads of the same process
856 	 * create two kfd_process structures
857 	 */
858 	mutex_lock(&kfd_processes_mutex);
859 
860 	if (kfd_is_locked()) {
861 		pr_debug("KFD is locked! Cannot create process");
862 		process = ERR_PTR(-EINVAL);
863 		goto out;
864 	}
865 
866 	/* A prior open of /dev/kfd could have already created the process. */
867 	process = find_process(thread, false);
868 	if (process) {
869 		pr_debug("Process already found\n");
870 	} else {
871 		process = create_process(thread);
872 		if (IS_ERR(process))
873 			goto out;
874 
875 		if (!procfs.kobj)
876 			goto out;
877 
878 		process->kobj = kfd_alloc_struct(process->kobj);
879 		if (!process->kobj) {
880 			pr_warn("Creating procfs kobject failed");
881 			goto out;
882 		}
883 		ret = kobject_init_and_add(process->kobj, &procfs_type,
884 					   procfs.kobj, "%d",
885 					   (int)process->lead_thread->pid);
886 		if (ret) {
887 			pr_warn("Creating procfs pid directory failed");
888 			kobject_put(process->kobj);
889 			goto out;
890 		}
891 
892 		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
893 				      "pasid");
894 
895 		process->kobj_queues = kobject_create_and_add("queues",
896 							process->kobj);
897 		if (!process->kobj_queues)
898 			pr_warn("Creating KFD proc/queues folder failed");
899 
900 		kfd_procfs_add_sysfs_stats(process);
901 		kfd_procfs_add_sysfs_files(process);
902 		kfd_procfs_add_sysfs_counters(process);
903 
904 		init_waitqueue_head(&process->wait_irq_drain);
905 	}
906 out:
907 	if (!IS_ERR(process))
908 		kref_get(&process->ref);
909 	mutex_unlock(&kfd_processes_mutex);
910 	mmput(thread->mm);
911 
912 	return process;
913 }
914 
kfd_get_process(const struct task_struct * thread)915 struct kfd_process *kfd_get_process(const struct task_struct *thread)
916 {
917 	struct kfd_process *process;
918 
919 	if (!thread->mm)
920 		return ERR_PTR(-EINVAL);
921 
922 	/* Only the pthreads threading model is supported. */
923 	if (thread->group_leader->mm != thread->mm)
924 		return ERR_PTR(-EINVAL);
925 
926 	process = find_process(thread, false);
927 	if (!process)
928 		return ERR_PTR(-EINVAL);
929 
930 	return process;
931 }
932 
find_process_by_mm(const struct mm_struct * mm)933 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
934 {
935 	struct kfd_process *process;
936 
937 	hash_for_each_possible_rcu(kfd_processes_table, process,
938 					kfd_processes, (uintptr_t)mm)
939 		if (process->mm == mm)
940 			return process;
941 
942 	return NULL;
943 }
944 
find_process(const struct task_struct * thread,bool ref)945 static struct kfd_process *find_process(const struct task_struct *thread,
946 					bool ref)
947 {
948 	struct kfd_process *p;
949 	int idx;
950 
951 	idx = srcu_read_lock(&kfd_processes_srcu);
952 	p = find_process_by_mm(thread->mm);
953 	if (p && ref)
954 		kref_get(&p->ref);
955 	srcu_read_unlock(&kfd_processes_srcu, idx);
956 
957 	return p;
958 }
959 
kfd_unref_process(struct kfd_process * p)960 void kfd_unref_process(struct kfd_process *p)
961 {
962 	kref_put(&p->ref, kfd_process_ref_release);
963 }
964 
965 /* This increments the process->ref counter. */
kfd_lookup_process_by_pid(struct pid * pid)966 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
967 {
968 	struct task_struct *task = NULL;
969 	struct kfd_process *p    = NULL;
970 
971 	if (!pid) {
972 		task = current;
973 		get_task_struct(task);
974 	} else {
975 		task = get_pid_task(pid, PIDTYPE_PID);
976 	}
977 
978 	if (task) {
979 		p = find_process(task, true);
980 		put_task_struct(task);
981 	}
982 
983 	return p;
984 }
985 
kfd_process_device_free_bos(struct kfd_process_device * pdd)986 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
987 {
988 	struct kfd_process *p = pdd->process;
989 	void *mem;
990 	int id;
991 	int i;
992 
993 	/*
994 	 * Remove all handles from idr and release appropriate
995 	 * local memory object
996 	 */
997 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
998 
999 		for (i = 0; i < p->n_pdds; i++) {
1000 			struct kfd_process_device *peer_pdd = p->pdds[i];
1001 
1002 			if (!peer_pdd->drm_priv)
1003 				continue;
1004 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1005 				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
1006 		}
1007 
1008 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
1009 						       pdd->drm_priv, NULL);
1010 		kfd_process_device_remove_obj_handle(pdd, id);
1011 	}
1012 }
1013 
1014 /*
1015  * Just kunmap and unpin signal BO here. It will be freed in
1016  * kfd_process_free_outstanding_kfd_bos()
1017  */
kfd_process_kunmap_signal_bo(struct kfd_process * p)1018 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
1019 {
1020 	struct kfd_process_device *pdd;
1021 	struct kfd_node *kdev;
1022 	void *mem;
1023 
1024 	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
1025 	if (!kdev)
1026 		return;
1027 
1028 	mutex_lock(&p->mutex);
1029 
1030 	pdd = kfd_get_process_device_data(kdev, p);
1031 	if (!pdd)
1032 		goto out;
1033 
1034 	mem = kfd_process_device_translate_handle(
1035 		pdd, GET_IDR_HANDLE(p->signal_handle));
1036 	if (!mem)
1037 		goto out;
1038 
1039 	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1040 
1041 out:
1042 	mutex_unlock(&p->mutex);
1043 }
1044 
kfd_process_free_outstanding_kfd_bos(struct kfd_process * p)1045 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1046 {
1047 	int i;
1048 
1049 	for (i = 0; i < p->n_pdds; i++)
1050 		kfd_process_device_free_bos(p->pdds[i]);
1051 }
1052 
kfd_process_destroy_pdds(struct kfd_process * p)1053 static void kfd_process_destroy_pdds(struct kfd_process *p)
1054 {
1055 	int i;
1056 
1057 	for (i = 0; i < p->n_pdds; i++) {
1058 		struct kfd_process_device *pdd = p->pdds[i];
1059 
1060 		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1061 				pdd->dev->id, p->pasid);
1062 
1063 		kfd_process_device_destroy_cwsr_dgpu(pdd);
1064 		kfd_process_device_destroy_ib_mem(pdd);
1065 
1066 		if (pdd->drm_file) {
1067 			amdgpu_amdkfd_gpuvm_release_process_vm(
1068 					pdd->dev->adev, pdd->drm_priv);
1069 			fput(pdd->drm_file);
1070 		}
1071 
1072 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1073 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1074 				get_order(KFD_CWSR_TBA_TMA_SIZE));
1075 
1076 		idr_destroy(&pdd->alloc_idr);
1077 
1078 		kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1079 
1080 		if (pdd->dev->kfd->shared_resources.enable_mes &&
1081 			pdd->proc_ctx_cpu_ptr)
1082 			amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1083 						   &pdd->proc_ctx_bo);
1084 		/*
1085 		 * before destroying pdd, make sure to report availability
1086 		 * for auto suspend
1087 		 */
1088 		if (pdd->runtime_inuse) {
1089 			pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1090 			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1091 			pdd->runtime_inuse = false;
1092 		}
1093 
1094 		kfree(pdd);
1095 		p->pdds[i] = NULL;
1096 	}
1097 	p->n_pdds = 0;
1098 }
1099 
kfd_process_remove_sysfs(struct kfd_process * p)1100 static void kfd_process_remove_sysfs(struct kfd_process *p)
1101 {
1102 	struct kfd_process_device *pdd;
1103 	int i;
1104 
1105 	if (!p->kobj)
1106 		return;
1107 
1108 	sysfs_remove_file(p->kobj, &p->attr_pasid);
1109 	kobject_del(p->kobj_queues);
1110 	kobject_put(p->kobj_queues);
1111 	p->kobj_queues = NULL;
1112 
1113 	for (i = 0; i < p->n_pdds; i++) {
1114 		pdd = p->pdds[i];
1115 
1116 		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1117 		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1118 
1119 		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1120 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1121 			sysfs_remove_file(pdd->kobj_stats,
1122 					  &pdd->attr_cu_occupancy);
1123 		kobject_del(pdd->kobj_stats);
1124 		kobject_put(pdd->kobj_stats);
1125 		pdd->kobj_stats = NULL;
1126 	}
1127 
1128 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1129 		pdd = p->pdds[i];
1130 
1131 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1132 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1133 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1134 		kobject_del(pdd->kobj_counters);
1135 		kobject_put(pdd->kobj_counters);
1136 		pdd->kobj_counters = NULL;
1137 	}
1138 
1139 	kobject_del(p->kobj);
1140 	kobject_put(p->kobj);
1141 	p->kobj = NULL;
1142 }
1143 
1144 /*
1145  * If any GPU is ongoing reset, wait for reset complete.
1146  */
kfd_process_wait_gpu_reset_complete(struct kfd_process * p)1147 static void kfd_process_wait_gpu_reset_complete(struct kfd_process *p)
1148 {
1149 	int i;
1150 
1151 	for (i = 0; i < p->n_pdds; i++)
1152 		flush_workqueue(p->pdds[i]->dev->adev->reset_domain->wq);
1153 }
1154 
1155 /* No process locking is needed in this function, because the process
1156  * is not findable any more. We must assume that no other thread is
1157  * using it any more, otherwise we couldn't safely free the process
1158  * structure in the end.
1159  */
kfd_process_wq_release(struct work_struct * work)1160 static void kfd_process_wq_release(struct work_struct *work)
1161 {
1162 	struct kfd_process *p = container_of(work, struct kfd_process,
1163 					     release_work);
1164 	struct dma_fence *ef;
1165 
1166 	kfd_process_dequeue_from_all_devices(p);
1167 	pqm_uninit(&p->pqm);
1168 
1169 	/*
1170 	 * If GPU in reset, user queues may still running, wait for reset complete.
1171 	 */
1172 	kfd_process_wait_gpu_reset_complete(p);
1173 
1174 	/* Signal the eviction fence after user mode queues are
1175 	 * destroyed. This allows any BOs to be freed without
1176 	 * triggering pointless evictions or waiting for fences.
1177 	 */
1178 	synchronize_rcu();
1179 	ef = rcu_access_pointer(p->ef);
1180 	if (ef)
1181 		dma_fence_signal(ef);
1182 
1183 	kfd_process_remove_sysfs(p);
1184 
1185 	kfd_process_kunmap_signal_bo(p);
1186 	kfd_process_free_outstanding_kfd_bos(p);
1187 	svm_range_list_fini(p);
1188 
1189 	kfd_process_destroy_pdds(p);
1190 	dma_fence_put(ef);
1191 
1192 	kfd_event_free_process(p);
1193 
1194 	kfd_pasid_free(p->pasid);
1195 	mutex_destroy(&p->mutex);
1196 
1197 	put_task_struct(p->lead_thread);
1198 
1199 	kfree(p);
1200 }
1201 
kfd_process_ref_release(struct kref * ref)1202 static void kfd_process_ref_release(struct kref *ref)
1203 {
1204 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1205 
1206 	INIT_WORK(&p->release_work, kfd_process_wq_release);
1207 	queue_work(kfd_process_wq, &p->release_work);
1208 }
1209 
kfd_process_alloc_notifier(struct mm_struct * mm)1210 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1211 {
1212 	int idx = srcu_read_lock(&kfd_processes_srcu);
1213 	struct kfd_process *p = find_process_by_mm(mm);
1214 
1215 	srcu_read_unlock(&kfd_processes_srcu, idx);
1216 
1217 	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1218 }
1219 
kfd_process_free_notifier(struct mmu_notifier * mn)1220 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1221 {
1222 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1223 }
1224 
kfd_process_notifier_release_internal(struct kfd_process * p)1225 static void kfd_process_notifier_release_internal(struct kfd_process *p)
1226 {
1227 	int i;
1228 
1229 	cancel_delayed_work_sync(&p->eviction_work);
1230 	cancel_delayed_work_sync(&p->restore_work);
1231 
1232 	for (i = 0; i < p->n_pdds; i++) {
1233 		struct kfd_process_device *pdd = p->pdds[i];
1234 
1235 		/* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1236 		if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1237 			amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1238 	}
1239 
1240 	/* Indicate to other users that MM is no longer valid */
1241 	p->mm = NULL;
1242 	kfd_dbg_trap_disable(p);
1243 
1244 	if (atomic_read(&p->debugged_process_count) > 0) {
1245 		struct kfd_process *target;
1246 		unsigned int temp;
1247 		int idx = srcu_read_lock(&kfd_processes_srcu);
1248 
1249 		hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1250 			if (target->debugger_process && target->debugger_process == p) {
1251 				mutex_lock_nested(&target->mutex, 1);
1252 				kfd_dbg_trap_disable(target);
1253 				mutex_unlock(&target->mutex);
1254 				if (atomic_read(&p->debugged_process_count) == 0)
1255 					break;
1256 			}
1257 		}
1258 
1259 		srcu_read_unlock(&kfd_processes_srcu, idx);
1260 	}
1261 
1262 	mmu_notifier_put(&p->mmu_notifier);
1263 }
1264 
kfd_process_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)1265 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1266 					struct mm_struct *mm)
1267 {
1268 	struct kfd_process *p;
1269 
1270 	/*
1271 	 * The kfd_process structure can not be free because the
1272 	 * mmu_notifier srcu is read locked
1273 	 */
1274 	p = container_of(mn, struct kfd_process, mmu_notifier);
1275 	if (WARN_ON(p->mm != mm))
1276 		return;
1277 
1278 	mutex_lock(&kfd_processes_mutex);
1279 	/*
1280 	 * Do early return if table is empty.
1281 	 *
1282 	 * This could potentially happen if this function is called concurrently
1283 	 * by mmu_notifier and by kfd_cleanup_pocesses.
1284 	 *
1285 	 */
1286 	if (hash_empty(kfd_processes_table)) {
1287 		mutex_unlock(&kfd_processes_mutex);
1288 		return;
1289 	}
1290 	hash_del_rcu(&p->kfd_processes);
1291 	mutex_unlock(&kfd_processes_mutex);
1292 	synchronize_srcu(&kfd_processes_srcu);
1293 
1294 	kfd_process_notifier_release_internal(p);
1295 }
1296 
1297 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1298 	.release = kfd_process_notifier_release,
1299 	.alloc_notifier = kfd_process_alloc_notifier,
1300 	.free_notifier = kfd_process_free_notifier,
1301 };
1302 
1303 /*
1304  * This code handles the case when driver is being unloaded before all
1305  * mm_struct are released.  We need to safely free the kfd_process and
1306  * avoid race conditions with mmu_notifier that might try to free them.
1307  *
1308  */
kfd_cleanup_processes(void)1309 void kfd_cleanup_processes(void)
1310 {
1311 	struct kfd_process *p;
1312 	struct hlist_node *p_temp;
1313 	unsigned int temp;
1314 	HLIST_HEAD(cleanup_list);
1315 
1316 	/*
1317 	 * Move all remaining kfd_process from the process table to a
1318 	 * temp list for processing.   Once done, callback from mmu_notifier
1319 	 * release will not see the kfd_process in the table and do early return,
1320 	 * avoiding double free issues.
1321 	 */
1322 	mutex_lock(&kfd_processes_mutex);
1323 	hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1324 		hash_del_rcu(&p->kfd_processes);
1325 		synchronize_srcu(&kfd_processes_srcu);
1326 		hlist_add_head(&p->kfd_processes, &cleanup_list);
1327 	}
1328 	mutex_unlock(&kfd_processes_mutex);
1329 
1330 	hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1331 		kfd_process_notifier_release_internal(p);
1332 
1333 	/*
1334 	 * Ensures that all outstanding free_notifier get called, triggering
1335 	 * the release of the kfd_process struct.
1336 	 */
1337 	mmu_notifier_synchronize();
1338 }
1339 
kfd_process_init_cwsr_apu(struct kfd_process * p,struct file * filep)1340 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1341 {
1342 	unsigned long  offset;
1343 	int i;
1344 
1345 	if (p->has_cwsr)
1346 		return 0;
1347 
1348 	for (i = 0; i < p->n_pdds; i++) {
1349 		struct kfd_node *dev = p->pdds[i]->dev;
1350 		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1351 
1352 		if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1353 			continue;
1354 
1355 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1356 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1357 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1358 			MAP_SHARED, offset);
1359 
1360 		if (IS_ERR_VALUE(qpd->tba_addr)) {
1361 			int err = qpd->tba_addr;
1362 
1363 			dev_err(dev->adev->dev,
1364 				"Failure to set tba address. error %d.\n", err);
1365 			qpd->tba_addr = 0;
1366 			qpd->cwsr_kaddr = NULL;
1367 			return err;
1368 		}
1369 
1370 		memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1371 
1372 		kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1373 
1374 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1375 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1376 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1377 	}
1378 
1379 	p->has_cwsr = true;
1380 
1381 	return 0;
1382 }
1383 
kfd_process_device_init_cwsr_dgpu(struct kfd_process_device * pdd)1384 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1385 {
1386 	struct kfd_node *dev = pdd->dev;
1387 	struct qcm_process_device *qpd = &pdd->qpd;
1388 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1389 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1390 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1391 	struct kgd_mem *mem;
1392 	void *kaddr;
1393 	int ret;
1394 
1395 	if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1396 		return 0;
1397 
1398 	/* cwsr_base is only set for dGPU */
1399 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1400 				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1401 	if (ret)
1402 		return ret;
1403 
1404 	qpd->cwsr_mem = mem;
1405 	qpd->cwsr_kaddr = kaddr;
1406 	qpd->tba_addr = qpd->cwsr_base;
1407 
1408 	memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1409 
1410 	kfd_process_set_trap_debug_flag(&pdd->qpd,
1411 					pdd->process->debug_trap_enabled);
1412 
1413 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1414 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1415 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1416 
1417 	return 0;
1418 }
1419 
kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device * pdd)1420 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1421 {
1422 	struct kfd_node *dev = pdd->dev;
1423 	struct qcm_process_device *qpd = &pdd->qpd;
1424 
1425 	if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1426 		return;
1427 
1428 	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1429 }
1430 
kfd_process_set_trap_handler(struct qcm_process_device * qpd,uint64_t tba_addr,uint64_t tma_addr)1431 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1432 				  uint64_t tba_addr,
1433 				  uint64_t tma_addr)
1434 {
1435 	if (qpd->cwsr_kaddr) {
1436 		/* KFD trap handler is bound, record as second-level TBA/TMA
1437 		 * in first-level TMA. First-level trap will jump to second.
1438 		 */
1439 		uint64_t *tma =
1440 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1441 		tma[0] = tba_addr;
1442 		tma[1] = tma_addr;
1443 	} else {
1444 		/* No trap handler bound, bind as first-level TBA/TMA. */
1445 		qpd->tba_addr = tba_addr;
1446 		qpd->tma_addr = tma_addr;
1447 	}
1448 }
1449 
kfd_process_xnack_mode(struct kfd_process * p,bool supported)1450 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1451 {
1452 	int i;
1453 
1454 	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1455 	 * boot time retry setting. Mixing processes with different
1456 	 * XNACK/retry settings can hang the GPU.
1457 	 *
1458 	 * Different GPUs can have different noretry settings depending
1459 	 * on HW bugs or limitations. We need to find at least one
1460 	 * XNACK mode for this process that's compatible with all GPUs.
1461 	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1462 	 * built for XNACK-off. On GFXv9 it may perform slower.
1463 	 *
1464 	 * Therefore applications built for XNACK-off can always be
1465 	 * supported and will be our fallback if any GPU does not
1466 	 * support retry.
1467 	 */
1468 	for (i = 0; i < p->n_pdds; i++) {
1469 		struct kfd_node *dev = p->pdds[i]->dev;
1470 
1471 		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1472 		 * support the SVM APIs and don't need to be considered
1473 		 * for the XNACK mode selection.
1474 		 */
1475 		if (!KFD_IS_SOC15(dev))
1476 			continue;
1477 		/* Aldebaran can always support XNACK because it can support
1478 		 * per-process XNACK mode selection. But let the dev->noretry
1479 		 * setting still influence the default XNACK mode.
1480 		 */
1481 		if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1482 			if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1483 				pr_debug("SRIOV platform xnack not supported\n");
1484 				return false;
1485 			}
1486 			continue;
1487 		}
1488 
1489 		/* GFXv10 and later GPUs do not support shader preemption
1490 		 * during page faults. This can lead to poor QoS for queue
1491 		 * management and memory-manager-related preemptions or
1492 		 * even deadlocks.
1493 		 */
1494 		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1495 			return false;
1496 
1497 		if (dev->kfd->noretry)
1498 			return false;
1499 	}
1500 
1501 	return true;
1502 }
1503 
kfd_process_set_trap_debug_flag(struct qcm_process_device * qpd,bool enabled)1504 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1505 				     bool enabled)
1506 {
1507 	if (qpd->cwsr_kaddr) {
1508 		uint64_t *tma =
1509 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1510 		tma[2] = enabled;
1511 	}
1512 }
1513 
1514 /*
1515  * On return the kfd_process is fully operational and will be freed when the
1516  * mm is released
1517  */
create_process(const struct task_struct * thread)1518 static struct kfd_process *create_process(const struct task_struct *thread)
1519 {
1520 	struct kfd_process *process;
1521 	struct mmu_notifier *mn;
1522 	int err = -ENOMEM;
1523 
1524 	process = kzalloc(sizeof(*process), GFP_KERNEL);
1525 	if (!process)
1526 		goto err_alloc_process;
1527 
1528 	kref_init(&process->ref);
1529 	mutex_init(&process->mutex);
1530 	process->mm = thread->mm;
1531 	process->lead_thread = thread->group_leader;
1532 	process->n_pdds = 0;
1533 	process->queues_paused = false;
1534 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1535 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1536 	process->last_restore_timestamp = get_jiffies_64();
1537 	err = kfd_event_init_process(process);
1538 	if (err)
1539 		goto err_event_init;
1540 	process->is_32bit_user_mode = in_compat_syscall();
1541 	process->debug_trap_enabled = false;
1542 	process->debugger_process = NULL;
1543 	process->exception_enable_mask = 0;
1544 	atomic_set(&process->debugged_process_count, 0);
1545 	sema_init(&process->runtime_enable_sema, 0);
1546 
1547 	process->pasid = kfd_pasid_alloc();
1548 	if (process->pasid == 0) {
1549 		err = -ENOSPC;
1550 		goto err_alloc_pasid;
1551 	}
1552 
1553 	err = pqm_init(&process->pqm, process);
1554 	if (err != 0)
1555 		goto err_process_pqm_init;
1556 
1557 	/* init process apertures*/
1558 	err = kfd_init_apertures(process);
1559 	if (err != 0)
1560 		goto err_init_apertures;
1561 
1562 	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1563 	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1564 
1565 	err = svm_range_list_init(process);
1566 	if (err)
1567 		goto err_init_svm_range_list;
1568 
1569 	/* alloc_notifier needs to find the process in the hash table */
1570 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1571 			(uintptr_t)process->mm);
1572 
1573 	/* Avoid free_notifier to start kfd_process_wq_release if
1574 	 * mmu_notifier_get failed because of pending signal.
1575 	 */
1576 	kref_get(&process->ref);
1577 
1578 	/* MMU notifier registration must be the last call that can fail
1579 	 * because after this point we cannot unwind the process creation.
1580 	 * After this point, mmu_notifier_put will trigger the cleanup by
1581 	 * dropping the last process reference in the free_notifier.
1582 	 */
1583 	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1584 	if (IS_ERR(mn)) {
1585 		err = PTR_ERR(mn);
1586 		goto err_register_notifier;
1587 	}
1588 	BUG_ON(mn != &process->mmu_notifier);
1589 
1590 	kfd_unref_process(process);
1591 	get_task_struct(process->lead_thread);
1592 
1593 	INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1594 
1595 	return process;
1596 
1597 err_register_notifier:
1598 	hash_del_rcu(&process->kfd_processes);
1599 	svm_range_list_fini(process);
1600 err_init_svm_range_list:
1601 	kfd_process_free_outstanding_kfd_bos(process);
1602 	kfd_process_destroy_pdds(process);
1603 err_init_apertures:
1604 	pqm_uninit(&process->pqm);
1605 err_process_pqm_init:
1606 	kfd_pasid_free(process->pasid);
1607 err_alloc_pasid:
1608 	kfd_event_free_process(process);
1609 err_event_init:
1610 	mutex_destroy(&process->mutex);
1611 	kfree(process);
1612 err_alloc_process:
1613 	return ERR_PTR(err);
1614 }
1615 
kfd_get_process_device_data(struct kfd_node * dev,struct kfd_process * p)1616 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1617 							struct kfd_process *p)
1618 {
1619 	int i;
1620 
1621 	for (i = 0; i < p->n_pdds; i++)
1622 		if (p->pdds[i]->dev == dev)
1623 			return p->pdds[i];
1624 
1625 	return NULL;
1626 }
1627 
kfd_create_process_device_data(struct kfd_node * dev,struct kfd_process * p)1628 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1629 							struct kfd_process *p)
1630 {
1631 	struct kfd_process_device *pdd = NULL;
1632 
1633 	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1634 		return NULL;
1635 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1636 	if (!pdd)
1637 		return NULL;
1638 
1639 	pdd->dev = dev;
1640 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1641 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1642 	pdd->qpd.dqm = dev->dqm;
1643 	pdd->qpd.pqm = &p->pqm;
1644 	pdd->qpd.evicted = 0;
1645 	pdd->qpd.mapped_gws_queue = false;
1646 	pdd->process = p;
1647 	pdd->bound = PDD_UNBOUND;
1648 	pdd->already_dequeued = false;
1649 	pdd->runtime_inuse = false;
1650 	atomic64_set(&pdd->vram_usage, 0);
1651 	pdd->sdma_past_activity_counter = 0;
1652 	pdd->user_gpu_id = dev->id;
1653 	atomic64_set(&pdd->evict_duration_counter, 0);
1654 
1655 	p->pdds[p->n_pdds++] = pdd;
1656 	if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1657 		pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1658 							pdd->dev->adev,
1659 							false,
1660 							0);
1661 
1662 	/* Init idr used for memory handle translation */
1663 	idr_init(&pdd->alloc_idr);
1664 
1665 	return pdd;
1666 }
1667 
1668 /**
1669  * kfd_process_device_init_vm - Initialize a VM for a process-device
1670  *
1671  * @pdd: The process-device
1672  * @drm_file: Optional pointer to a DRM file descriptor
1673  *
1674  * If @drm_file is specified, it will be used to acquire the VM from
1675  * that file descriptor. If successful, the @pdd takes ownership of
1676  * the file descriptor.
1677  *
1678  * If @drm_file is NULL, a new VM is created.
1679  *
1680  * Returns 0 on success, -errno on failure.
1681  */
kfd_process_device_init_vm(struct kfd_process_device * pdd,struct file * drm_file)1682 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1683 			       struct file *drm_file)
1684 {
1685 	struct amdgpu_fpriv *drv_priv;
1686 	struct amdgpu_vm *avm;
1687 	struct kfd_process *p;
1688 	struct dma_fence *ef;
1689 	struct kfd_node *dev;
1690 	int ret;
1691 
1692 	if (!drm_file)
1693 		return -EINVAL;
1694 
1695 	if (pdd->drm_priv)
1696 		return -EBUSY;
1697 
1698 	ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1699 	if (ret)
1700 		return ret;
1701 	avm = &drv_priv->vm;
1702 
1703 	p = pdd->process;
1704 	dev = pdd->dev;
1705 
1706 	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1707 						     &p->kgd_process_info,
1708 						     p->ef ? NULL : &ef);
1709 	if (ret) {
1710 		dev_err(dev->adev->dev, "Failed to create process VM object\n");
1711 		return ret;
1712 	}
1713 
1714 	if (!p->ef)
1715 		RCU_INIT_POINTER(p->ef, ef);
1716 
1717 	pdd->drm_priv = drm_file->private_data;
1718 
1719 	ret = kfd_process_device_reserve_ib_mem(pdd);
1720 	if (ret)
1721 		goto err_reserve_ib_mem;
1722 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1723 	if (ret)
1724 		goto err_init_cwsr;
1725 
1726 	ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1727 	if (ret)
1728 		goto err_set_pasid;
1729 
1730 	pdd->drm_file = drm_file;
1731 
1732 	return 0;
1733 
1734 err_set_pasid:
1735 	kfd_process_device_destroy_cwsr_dgpu(pdd);
1736 err_init_cwsr:
1737 	kfd_process_device_destroy_ib_mem(pdd);
1738 err_reserve_ib_mem:
1739 	pdd->drm_priv = NULL;
1740 	amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1741 
1742 	return ret;
1743 }
1744 
1745 /*
1746  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1747  * to the device.
1748  * Unbinding occurs when the process dies or the device is removed.
1749  *
1750  * Assumes that the process lock is held.
1751  */
kfd_bind_process_to_device(struct kfd_node * dev,struct kfd_process * p)1752 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1753 							struct kfd_process *p)
1754 {
1755 	struct kfd_process_device *pdd;
1756 	int err;
1757 
1758 	pdd = kfd_get_process_device_data(dev, p);
1759 	if (!pdd) {
1760 		dev_err(dev->adev->dev, "Process device data doesn't exist\n");
1761 		return ERR_PTR(-ENOMEM);
1762 	}
1763 
1764 	if (!pdd->drm_priv)
1765 		return ERR_PTR(-ENODEV);
1766 
1767 	/*
1768 	 * signal runtime-pm system to auto resume and prevent
1769 	 * further runtime suspend once device pdd is created until
1770 	 * pdd is destroyed.
1771 	 */
1772 	if (!pdd->runtime_inuse) {
1773 		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1774 		if (err < 0) {
1775 			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1776 			return ERR_PTR(err);
1777 		}
1778 	}
1779 
1780 	/*
1781 	 * make sure that runtime_usage counter is incremented just once
1782 	 * per pdd
1783 	 */
1784 	pdd->runtime_inuse = true;
1785 
1786 	return pdd;
1787 }
1788 
1789 /* Create specific handle mapped to mem from process local memory idr
1790  * Assumes that the process lock is held.
1791  */
kfd_process_device_create_obj_handle(struct kfd_process_device * pdd,void * mem)1792 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1793 					void *mem)
1794 {
1795 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1796 }
1797 
1798 /* Translate specific handle from process local memory idr
1799  * Assumes that the process lock is held.
1800  */
kfd_process_device_translate_handle(struct kfd_process_device * pdd,int handle)1801 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1802 					int handle)
1803 {
1804 	if (handle < 0)
1805 		return NULL;
1806 
1807 	return idr_find(&pdd->alloc_idr, handle);
1808 }
1809 
1810 /* Remove specific handle from process local memory idr
1811  * Assumes that the process lock is held.
1812  */
kfd_process_device_remove_obj_handle(struct kfd_process_device * pdd,int handle)1813 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1814 					int handle)
1815 {
1816 	if (handle >= 0)
1817 		idr_remove(&pdd->alloc_idr, handle);
1818 }
1819 
1820 /* This increments the process->ref counter. */
kfd_lookup_process_by_pasid(u32 pasid)1821 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1822 {
1823 	struct kfd_process *p, *ret_p = NULL;
1824 	unsigned int temp;
1825 
1826 	int idx = srcu_read_lock(&kfd_processes_srcu);
1827 
1828 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1829 		if (p->pasid == pasid) {
1830 			kref_get(&p->ref);
1831 			ret_p = p;
1832 			break;
1833 		}
1834 	}
1835 
1836 	srcu_read_unlock(&kfd_processes_srcu, idx);
1837 
1838 	return ret_p;
1839 }
1840 
1841 /* This increments the process->ref counter. */
kfd_lookup_process_by_mm(const struct mm_struct * mm)1842 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1843 {
1844 	struct kfd_process *p;
1845 
1846 	int idx = srcu_read_lock(&kfd_processes_srcu);
1847 
1848 	p = find_process_by_mm(mm);
1849 	if (p)
1850 		kref_get(&p->ref);
1851 
1852 	srcu_read_unlock(&kfd_processes_srcu, idx);
1853 
1854 	return p;
1855 }
1856 
1857 /* kfd_process_evict_queues - Evict all user queues of a process
1858  *
1859  * Eviction is reference-counted per process-device. This means multiple
1860  * evictions from different sources can be nested safely.
1861  */
kfd_process_evict_queues(struct kfd_process * p,uint32_t trigger)1862 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1863 {
1864 	int r = 0;
1865 	int i;
1866 	unsigned int n_evicted = 0;
1867 
1868 	for (i = 0; i < p->n_pdds; i++) {
1869 		struct kfd_process_device *pdd = p->pdds[i];
1870 		struct device *dev = pdd->dev->adev->dev;
1871 
1872 		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1873 					     trigger);
1874 
1875 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1876 							    &pdd->qpd);
1877 		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1878 		 * we would like to set all the queues to be in evicted state to prevent
1879 		 * them been add back since they actually not be saved right now.
1880 		 */
1881 		if (r && r != -EIO) {
1882 			dev_err(dev, "Failed to evict process queues\n");
1883 			goto fail;
1884 		}
1885 		n_evicted++;
1886 
1887 		pdd->dev->dqm->is_hws_hang = false;
1888 	}
1889 
1890 	return r;
1891 
1892 fail:
1893 	/* To keep state consistent, roll back partial eviction by
1894 	 * restoring queues
1895 	 */
1896 	for (i = 0; i < p->n_pdds; i++) {
1897 		struct kfd_process_device *pdd = p->pdds[i];
1898 
1899 		if (n_evicted == 0)
1900 			break;
1901 
1902 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1903 
1904 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1905 							      &pdd->qpd))
1906 			dev_err(pdd->dev->adev->dev,
1907 				"Failed to restore queues\n");
1908 
1909 		n_evicted--;
1910 	}
1911 
1912 	return r;
1913 }
1914 
1915 /* kfd_process_restore_queues - Restore all user queues of a process */
kfd_process_restore_queues(struct kfd_process * p)1916 int kfd_process_restore_queues(struct kfd_process *p)
1917 {
1918 	int r, ret = 0;
1919 	int i;
1920 
1921 	for (i = 0; i < p->n_pdds; i++) {
1922 		struct kfd_process_device *pdd = p->pdds[i];
1923 		struct device *dev = pdd->dev->adev->dev;
1924 
1925 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1926 
1927 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1928 							      &pdd->qpd);
1929 		if (r) {
1930 			dev_err(dev, "Failed to restore process queues\n");
1931 			if (!ret)
1932 				ret = r;
1933 		}
1934 	}
1935 
1936 	return ret;
1937 }
1938 
kfd_process_gpuidx_from_gpuid(struct kfd_process * p,uint32_t gpu_id)1939 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1940 {
1941 	int i;
1942 
1943 	for (i = 0; i < p->n_pdds; i++)
1944 		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1945 			return i;
1946 	return -EINVAL;
1947 }
1948 
1949 int
kfd_process_gpuid_from_node(struct kfd_process * p,struct kfd_node * node,uint32_t * gpuid,uint32_t * gpuidx)1950 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1951 			    uint32_t *gpuid, uint32_t *gpuidx)
1952 {
1953 	int i;
1954 
1955 	for (i = 0; i < p->n_pdds; i++)
1956 		if (p->pdds[i] && p->pdds[i]->dev == node) {
1957 			*gpuid = p->pdds[i]->user_gpu_id;
1958 			*gpuidx = i;
1959 			return 0;
1960 		}
1961 	return -EINVAL;
1962 }
1963 
signal_eviction_fence(struct kfd_process * p)1964 static int signal_eviction_fence(struct kfd_process *p)
1965 {
1966 	struct dma_fence *ef;
1967 	int ret;
1968 
1969 	rcu_read_lock();
1970 	ef = dma_fence_get_rcu_safe(&p->ef);
1971 	rcu_read_unlock();
1972 	if (!ef)
1973 		return -EINVAL;
1974 
1975 	ret = dma_fence_signal(ef);
1976 	dma_fence_put(ef);
1977 
1978 	return ret;
1979 }
1980 
evict_process_worker(struct work_struct * work)1981 static void evict_process_worker(struct work_struct *work)
1982 {
1983 	int ret;
1984 	struct kfd_process *p;
1985 	struct delayed_work *dwork;
1986 
1987 	dwork = to_delayed_work(work);
1988 
1989 	/* Process termination destroys this worker thread. So during the
1990 	 * lifetime of this thread, kfd_process p will be valid
1991 	 */
1992 	p = container_of(dwork, struct kfd_process, eviction_work);
1993 
1994 	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1995 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1996 	if (!ret) {
1997 		/* If another thread already signaled the eviction fence,
1998 		 * they are responsible stopping the queues and scheduling
1999 		 * the restore work.
2000 		 */
2001 		if (signal_eviction_fence(p) ||
2002 		    mod_delayed_work(kfd_restore_wq, &p->restore_work,
2003 				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2004 			kfd_process_restore_queues(p);
2005 
2006 		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
2007 	} else
2008 		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
2009 }
2010 
restore_process_helper(struct kfd_process * p)2011 static int restore_process_helper(struct kfd_process *p)
2012 {
2013 	int ret = 0;
2014 
2015 	/* VMs may not have been acquired yet during debugging. */
2016 	if (p->kgd_process_info) {
2017 		ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
2018 			p->kgd_process_info, &p->ef);
2019 		if (ret)
2020 			return ret;
2021 	}
2022 
2023 	ret = kfd_process_restore_queues(p);
2024 	if (!ret)
2025 		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
2026 	else
2027 		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
2028 
2029 	return ret;
2030 }
2031 
restore_process_worker(struct work_struct * work)2032 static void restore_process_worker(struct work_struct *work)
2033 {
2034 	struct delayed_work *dwork;
2035 	struct kfd_process *p;
2036 	int ret = 0;
2037 
2038 	dwork = to_delayed_work(work);
2039 
2040 	/* Process termination destroys this worker thread. So during the
2041 	 * lifetime of this thread, kfd_process p will be valid
2042 	 */
2043 	p = container_of(dwork, struct kfd_process, restore_work);
2044 	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
2045 
2046 	/* Setting last_restore_timestamp before successful restoration.
2047 	 * Otherwise this would have to be set by KGD (restore_process_bos)
2048 	 * before KFD BOs are unreserved. If not, the process can be evicted
2049 	 * again before the timestamp is set.
2050 	 * If restore fails, the timestamp will be set again in the next
2051 	 * attempt. This would mean that the minimum GPU quanta would be
2052 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2053 	 * functions)
2054 	 */
2055 
2056 	p->last_restore_timestamp = get_jiffies_64();
2057 
2058 	ret = restore_process_helper(p);
2059 	if (ret) {
2060 		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
2061 			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
2062 		if (mod_delayed_work(kfd_restore_wq, &p->restore_work,
2063 				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2064 			kfd_process_restore_queues(p);
2065 	}
2066 }
2067 
kfd_suspend_all_processes(void)2068 void kfd_suspend_all_processes(void)
2069 {
2070 	struct kfd_process *p;
2071 	unsigned int temp;
2072 	int idx = srcu_read_lock(&kfd_processes_srcu);
2073 
2074 	WARN(debug_evictions, "Evicting all processes");
2075 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2076 		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2077 			pr_err("Failed to suspend process 0x%x\n", p->pasid);
2078 		signal_eviction_fence(p);
2079 	}
2080 	srcu_read_unlock(&kfd_processes_srcu, idx);
2081 }
2082 
kfd_resume_all_processes(void)2083 int kfd_resume_all_processes(void)
2084 {
2085 	struct kfd_process *p;
2086 	unsigned int temp;
2087 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2088 
2089 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2090 		if (restore_process_helper(p)) {
2091 			pr_err("Restore process %d failed during resume\n",
2092 			       p->pasid);
2093 			ret = -EFAULT;
2094 		}
2095 	}
2096 	srcu_read_unlock(&kfd_processes_srcu, idx);
2097 	return ret;
2098 }
2099 
kfd_reserved_mem_mmap(struct kfd_node * dev,struct kfd_process * process,struct vm_area_struct * vma)2100 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2101 			  struct vm_area_struct *vma)
2102 {
2103 	struct kfd_process_device *pdd;
2104 	struct qcm_process_device *qpd;
2105 
2106 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2107 		dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n");
2108 		return -EINVAL;
2109 	}
2110 
2111 	pdd = kfd_get_process_device_data(dev, process);
2112 	if (!pdd)
2113 		return -EINVAL;
2114 	qpd = &pdd->qpd;
2115 
2116 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2117 					get_order(KFD_CWSR_TBA_TMA_SIZE));
2118 	if (!qpd->cwsr_kaddr) {
2119 		dev_err(dev->adev->dev,
2120 			"Error allocating per process CWSR buffer.\n");
2121 		return -ENOMEM;
2122 	}
2123 
2124 	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2125 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2126 	/* Mapping pages to user process */
2127 	return remap_pfn_range(vma, vma->vm_start,
2128 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2129 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2130 }
2131 
2132 /* assumes caller holds process lock. */
kfd_process_drain_interrupts(struct kfd_process_device * pdd)2133 int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2134 {
2135 	uint32_t irq_drain_fence[8];
2136 	uint8_t node_id = 0;
2137 	int r = 0;
2138 
2139 	if (!KFD_IS_SOC15(pdd->dev))
2140 		return 0;
2141 
2142 	pdd->process->irq_drain_is_open = true;
2143 
2144 	memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2145 	irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2146 							KFD_IRQ_FENCE_CLIENTID;
2147 	irq_drain_fence[3] = pdd->process->pasid;
2148 
2149 	/*
2150 	 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2151 	 */
2152 	if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) ||
2153 	    KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4)) {
2154 		node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2155 		irq_drain_fence[3] |= node_id << 16;
2156 	}
2157 
2158 	/* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2159 	if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2160 						     irq_drain_fence)) {
2161 		pdd->process->irq_drain_is_open = false;
2162 		return 0;
2163 	}
2164 
2165 	r = wait_event_interruptible(pdd->process->wait_irq_drain,
2166 				     !READ_ONCE(pdd->process->irq_drain_is_open));
2167 	if (r)
2168 		pdd->process->irq_drain_is_open = false;
2169 
2170 	return r;
2171 }
2172 
kfd_process_close_interrupt_drain(unsigned int pasid)2173 void kfd_process_close_interrupt_drain(unsigned int pasid)
2174 {
2175 	struct kfd_process *p;
2176 
2177 	p = kfd_lookup_process_by_pasid(pasid);
2178 
2179 	if (!p)
2180 		return;
2181 
2182 	WRITE_ONCE(p->irq_drain_is_open, false);
2183 	wake_up_all(&p->wait_irq_drain);
2184 	kfd_unref_process(p);
2185 }
2186 
2187 struct send_exception_work_handler_workarea {
2188 	struct work_struct work;
2189 	struct kfd_process *p;
2190 	unsigned int queue_id;
2191 	uint64_t error_reason;
2192 };
2193 
send_exception_work_handler(struct work_struct * work)2194 static void send_exception_work_handler(struct work_struct *work)
2195 {
2196 	struct send_exception_work_handler_workarea *workarea;
2197 	struct kfd_process *p;
2198 	struct queue *q;
2199 	struct mm_struct *mm;
2200 	struct kfd_context_save_area_header __user *csa_header;
2201 	uint64_t __user *err_payload_ptr;
2202 	uint64_t cur_err;
2203 	uint32_t ev_id;
2204 
2205 	workarea = container_of(work,
2206 				struct send_exception_work_handler_workarea,
2207 				work);
2208 	p = workarea->p;
2209 
2210 	mm = get_task_mm(p->lead_thread);
2211 
2212 	if (!mm)
2213 		return;
2214 
2215 	kthread_use_mm(mm);
2216 
2217 	q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2218 
2219 	if (!q)
2220 		goto out;
2221 
2222 	csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2223 
2224 	get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2225 	get_user(cur_err, err_payload_ptr);
2226 	cur_err |= workarea->error_reason;
2227 	put_user(cur_err, err_payload_ptr);
2228 	get_user(ev_id, &csa_header->err_event_id);
2229 
2230 	kfd_set_event(p, ev_id);
2231 
2232 out:
2233 	kthread_unuse_mm(mm);
2234 	mmput(mm);
2235 }
2236 
kfd_send_exception_to_runtime(struct kfd_process * p,unsigned int queue_id,uint64_t error_reason)2237 int kfd_send_exception_to_runtime(struct kfd_process *p,
2238 			unsigned int queue_id,
2239 			uint64_t error_reason)
2240 {
2241 	struct send_exception_work_handler_workarea worker;
2242 
2243 	INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2244 
2245 	worker.p = p;
2246 	worker.queue_id = queue_id;
2247 	worker.error_reason = error_reason;
2248 
2249 	schedule_work(&worker.work);
2250 	flush_work(&worker.work);
2251 	destroy_work_on_stack(&worker.work);
2252 
2253 	return 0;
2254 }
2255 
kfd_process_device_data_by_id(struct kfd_process * p,uint32_t gpu_id)2256 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2257 {
2258 	int i;
2259 
2260 	if (gpu_id) {
2261 		for (i = 0; i < p->n_pdds; i++) {
2262 			struct kfd_process_device *pdd = p->pdds[i];
2263 
2264 			if (pdd->user_gpu_id == gpu_id)
2265 				return pdd;
2266 		}
2267 	}
2268 	return NULL;
2269 }
2270 
kfd_process_get_user_gpu_id(struct kfd_process * p,uint32_t actual_gpu_id)2271 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2272 {
2273 	int i;
2274 
2275 	if (!actual_gpu_id)
2276 		return 0;
2277 
2278 	for (i = 0; i < p->n_pdds; i++) {
2279 		struct kfd_process_device *pdd = p->pdds[i];
2280 
2281 		if (pdd->dev->id == actual_gpu_id)
2282 			return pdd->user_gpu_id;
2283 	}
2284 	return -EINVAL;
2285 }
2286 
2287 #if defined(CONFIG_DEBUG_FS)
2288 
kfd_debugfs_mqds_by_process(struct seq_file * m,void * data)2289 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2290 {
2291 	struct kfd_process *p;
2292 	unsigned int temp;
2293 	int r = 0;
2294 
2295 	int idx = srcu_read_lock(&kfd_processes_srcu);
2296 
2297 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2298 		seq_printf(m, "Process %d PASID 0x%x:\n",
2299 			   p->lead_thread->tgid, p->pasid);
2300 
2301 		mutex_lock(&p->mutex);
2302 		r = pqm_debugfs_mqds(m, &p->pqm);
2303 		mutex_unlock(&p->mutex);
2304 
2305 		if (r)
2306 			break;
2307 	}
2308 
2309 	srcu_read_unlock(&kfd_processes_srcu, idx);
2310 
2311 	return r;
2312 }
2313 
2314 #endif
2315