1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Kernel thread helper functions.
3 * Copyright (C) 2004 IBM Corporation, Rusty Russell.
4 * Copyright (C) 2009 Red Hat, Inc.
5 *
6 * Creation is done via kthreadd, so that we get a clean environment
7 * even if we're invoked from userspace (think modprobe, hotplug cpu,
8 * etc.).
9 */
10 #include <uapi/linux/sched/types.h>
11 #include <linux/mm.h>
12 #include <linux/mmu_context.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/kthread.h>
17 #include <linux/completion.h>
18 #include <linux/err.h>
19 #include <linux/cgroup.h>
20 #include <linux/cpuset.h>
21 #include <linux/unistd.h>
22 #include <linux/file.h>
23 #include <linux/export.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/freezer.h>
27 #include <linux/ptrace.h>
28 #include <linux/uaccess.h>
29 #include <linux/numa.h>
30 #include <linux/sched/isolation.h>
31 #include <trace/events/sched.h>
32
33
34 static DEFINE_SPINLOCK(kthread_create_lock);
35 static LIST_HEAD(kthread_create_list);
36 struct task_struct *kthreadd_task;
37
38 struct kthread_create_info
39 {
40 /* Information passed to kthread() from kthreadd. */
41 char *full_name;
42 int (*threadfn)(void *data);
43 void *data;
44 int node;
45
46 /* Result passed back to kthread_create() from kthreadd. */
47 struct task_struct *result;
48 struct completion *done;
49
50 struct list_head list;
51 };
52
53 struct kthread {
54 unsigned long flags;
55 unsigned int cpu;
56 int result;
57 int (*threadfn)(void *);
58 void *data;
59 struct completion parked;
60 struct completion exited;
61 #ifdef CONFIG_BLK_CGROUP
62 struct cgroup_subsys_state *blkcg_css;
63 #endif
64 /* To store the full name if task comm is truncated. */
65 char *full_name;
66 };
67
68 enum KTHREAD_BITS {
69 KTHREAD_IS_PER_CPU = 0,
70 KTHREAD_SHOULD_STOP,
71 KTHREAD_SHOULD_PARK,
72 };
73
to_kthread(struct task_struct * k)74 static inline struct kthread *to_kthread(struct task_struct *k)
75 {
76 WARN_ON(!(k->flags & PF_KTHREAD));
77 return k->worker_private;
78 }
79
80 /*
81 * Variant of to_kthread() that doesn't assume @p is a kthread.
82 *
83 * Per construction; when:
84 *
85 * (p->flags & PF_KTHREAD) && p->worker_private
86 *
87 * the task is both a kthread and struct kthread is persistent. However
88 * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
89 * begin_new_exec()).
90 */
__to_kthread(struct task_struct * p)91 static inline struct kthread *__to_kthread(struct task_struct *p)
92 {
93 void *kthread = p->worker_private;
94 if (kthread && !(p->flags & PF_KTHREAD))
95 kthread = NULL;
96 return kthread;
97 }
98
get_kthread_comm(char * buf,size_t buf_size,struct task_struct * tsk)99 void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk)
100 {
101 struct kthread *kthread = to_kthread(tsk);
102
103 if (!kthread || !kthread->full_name) {
104 __get_task_comm(buf, buf_size, tsk);
105 return;
106 }
107
108 strscpy_pad(buf, kthread->full_name, buf_size);
109 }
110
set_kthread_struct(struct task_struct * p)111 bool set_kthread_struct(struct task_struct *p)
112 {
113 struct kthread *kthread;
114
115 if (WARN_ON_ONCE(to_kthread(p)))
116 return false;
117
118 kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
119 if (!kthread)
120 return false;
121
122 init_completion(&kthread->exited);
123 init_completion(&kthread->parked);
124 p->vfork_done = &kthread->exited;
125
126 p->worker_private = kthread;
127 return true;
128 }
129
free_kthread_struct(struct task_struct * k)130 void free_kthread_struct(struct task_struct *k)
131 {
132 struct kthread *kthread;
133
134 /*
135 * Can be NULL if kmalloc() in set_kthread_struct() failed.
136 */
137 kthread = to_kthread(k);
138 if (!kthread)
139 return;
140
141 #ifdef CONFIG_BLK_CGROUP
142 WARN_ON_ONCE(kthread->blkcg_css);
143 #endif
144 k->worker_private = NULL;
145 kfree(kthread->full_name);
146 kfree(kthread);
147 }
148
149 /**
150 * kthread_should_stop - should this kthread return now?
151 *
152 * When someone calls kthread_stop() on your kthread, it will be woken
153 * and this will return true. You should then return, and your return
154 * value will be passed through to kthread_stop().
155 */
kthread_should_stop(void)156 bool kthread_should_stop(void)
157 {
158 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
159 }
160 EXPORT_SYMBOL(kthread_should_stop);
161
__kthread_should_park(struct task_struct * k)162 static bool __kthread_should_park(struct task_struct *k)
163 {
164 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
165 }
166
167 /**
168 * kthread_should_park - should this kthread park now?
169 *
170 * When someone calls kthread_park() on your kthread, it will be woken
171 * and this will return true. You should then do the necessary
172 * cleanup and call kthread_parkme()
173 *
174 * Similar to kthread_should_stop(), but this keeps the thread alive
175 * and in a park position. kthread_unpark() "restarts" the thread and
176 * calls the thread function again.
177 */
kthread_should_park(void)178 bool kthread_should_park(void)
179 {
180 return __kthread_should_park(current);
181 }
182 EXPORT_SYMBOL_GPL(kthread_should_park);
183
kthread_should_stop_or_park(void)184 bool kthread_should_stop_or_park(void)
185 {
186 struct kthread *kthread = __to_kthread(current);
187
188 if (!kthread)
189 return false;
190
191 return kthread->flags & (BIT(KTHREAD_SHOULD_STOP) | BIT(KTHREAD_SHOULD_PARK));
192 }
193
194 /**
195 * kthread_freezable_should_stop - should this freezable kthread return now?
196 * @was_frozen: optional out parameter, indicates whether %current was frozen
197 *
198 * kthread_should_stop() for freezable kthreads, which will enter
199 * refrigerator if necessary. This function is safe from kthread_stop() /
200 * freezer deadlock and freezable kthreads should use this function instead
201 * of calling try_to_freeze() directly.
202 */
kthread_freezable_should_stop(bool * was_frozen)203 bool kthread_freezable_should_stop(bool *was_frozen)
204 {
205 bool frozen = false;
206
207 might_sleep();
208
209 if (unlikely(freezing(current)))
210 frozen = __refrigerator(true);
211
212 if (was_frozen)
213 *was_frozen = frozen;
214
215 return kthread_should_stop();
216 }
217 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
218
219 /**
220 * kthread_func - return the function specified on kthread creation
221 * @task: kthread task in question
222 *
223 * Returns NULL if the task is not a kthread.
224 */
kthread_func(struct task_struct * task)225 void *kthread_func(struct task_struct *task)
226 {
227 struct kthread *kthread = __to_kthread(task);
228 if (kthread)
229 return kthread->threadfn;
230 return NULL;
231 }
232 EXPORT_SYMBOL_GPL(kthread_func);
233
234 /**
235 * kthread_data - return data value specified on kthread creation
236 * @task: kthread task in question
237 *
238 * Return the data value specified when kthread @task was created.
239 * The caller is responsible for ensuring the validity of @task when
240 * calling this function.
241 */
kthread_data(struct task_struct * task)242 void *kthread_data(struct task_struct *task)
243 {
244 return to_kthread(task)->data;
245 }
246 EXPORT_SYMBOL_GPL(kthread_data);
247
248 /**
249 * kthread_probe_data - speculative version of kthread_data()
250 * @task: possible kthread task in question
251 *
252 * @task could be a kthread task. Return the data value specified when it
253 * was created if accessible. If @task isn't a kthread task or its data is
254 * inaccessible for any reason, %NULL is returned. This function requires
255 * that @task itself is safe to dereference.
256 */
kthread_probe_data(struct task_struct * task)257 void *kthread_probe_data(struct task_struct *task)
258 {
259 struct kthread *kthread = __to_kthread(task);
260 void *data = NULL;
261
262 if (kthread)
263 copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
264 return data;
265 }
266
__kthread_parkme(struct kthread * self)267 static void __kthread_parkme(struct kthread *self)
268 {
269 for (;;) {
270 /*
271 * TASK_PARKED is a special state; we must serialize against
272 * possible pending wakeups to avoid store-store collisions on
273 * task->state.
274 *
275 * Such a collision might possibly result in the task state
276 * changin from TASK_PARKED and us failing the
277 * wait_task_inactive() in kthread_park().
278 */
279 set_special_state(TASK_PARKED);
280 if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
281 break;
282
283 /*
284 * Thread is going to call schedule(), do not preempt it,
285 * or the caller of kthread_park() may spend more time in
286 * wait_task_inactive().
287 */
288 preempt_disable();
289 complete(&self->parked);
290 schedule_preempt_disabled();
291 preempt_enable();
292 }
293 __set_current_state(TASK_RUNNING);
294 }
295
kthread_parkme(void)296 void kthread_parkme(void)
297 {
298 __kthread_parkme(to_kthread(current));
299 }
300 EXPORT_SYMBOL_GPL(kthread_parkme);
301
302 /**
303 * kthread_exit - Cause the current kthread return @result to kthread_stop().
304 * @result: The integer value to return to kthread_stop().
305 *
306 * While kthread_exit can be called directly, it exists so that
307 * functions which do some additional work in non-modular code such as
308 * module_put_and_kthread_exit can be implemented.
309 *
310 * Does not return.
311 */
kthread_exit(long result)312 void __noreturn kthread_exit(long result)
313 {
314 struct kthread *kthread = to_kthread(current);
315 kthread->result = result;
316 do_exit(0);
317 }
318 EXPORT_SYMBOL(kthread_exit);
319
320 /**
321 * kthread_complete_and_exit - Exit the current kthread.
322 * @comp: Completion to complete
323 * @code: The integer value to return to kthread_stop().
324 *
325 * If present, complete @comp and then return code to kthread_stop().
326 *
327 * A kernel thread whose module may be removed after the completion of
328 * @comp can use this function to exit safely.
329 *
330 * Does not return.
331 */
kthread_complete_and_exit(struct completion * comp,long code)332 void __noreturn kthread_complete_and_exit(struct completion *comp, long code)
333 {
334 if (comp)
335 complete(comp);
336
337 kthread_exit(code);
338 }
339 EXPORT_SYMBOL(kthread_complete_and_exit);
340
kthread(void * _create)341 static int kthread(void *_create)
342 {
343 static const struct sched_param param = { .sched_priority = 0 };
344 /* Copy data: it's on kthread's stack */
345 struct kthread_create_info *create = _create;
346 int (*threadfn)(void *data) = create->threadfn;
347 void *data = create->data;
348 struct completion *done;
349 struct kthread *self;
350 int ret;
351
352 self = to_kthread(current);
353
354 /* Release the structure when caller killed by a fatal signal. */
355 done = xchg(&create->done, NULL);
356 if (!done) {
357 kfree(create->full_name);
358 kfree(create);
359 kthread_exit(-EINTR);
360 }
361
362 self->full_name = create->full_name;
363 self->threadfn = threadfn;
364 self->data = data;
365
366 /*
367 * The new thread inherited kthreadd's priority and CPU mask. Reset
368 * back to default in case they have been changed.
369 */
370 sched_setscheduler_nocheck(current, SCHED_NORMAL, ¶m);
371 set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_KTHREAD));
372
373 /* OK, tell user we're spawned, wait for stop or wakeup */
374 __set_current_state(TASK_UNINTERRUPTIBLE);
375 create->result = current;
376 /*
377 * Thread is going to call schedule(), do not preempt it,
378 * or the creator may spend more time in wait_task_inactive().
379 */
380 preempt_disable();
381 complete(done);
382 schedule_preempt_disabled();
383 preempt_enable();
384
385 ret = -EINTR;
386 if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
387 cgroup_kthread_ready();
388 __kthread_parkme(self);
389 ret = threadfn(data);
390 }
391 kthread_exit(ret);
392 }
393
394 /* called from kernel_clone() to get node information for about to be created task */
tsk_fork_get_node(struct task_struct * tsk)395 int tsk_fork_get_node(struct task_struct *tsk)
396 {
397 #ifdef CONFIG_NUMA
398 if (tsk == kthreadd_task)
399 return tsk->pref_node_fork;
400 #endif
401 return NUMA_NO_NODE;
402 }
403
create_kthread(struct kthread_create_info * create)404 static void create_kthread(struct kthread_create_info *create)
405 {
406 int pid;
407
408 #ifdef CONFIG_NUMA
409 current->pref_node_fork = create->node;
410 #endif
411 /* We want our own signal handler (we take no signals by default). */
412 pid = kernel_thread(kthread, create, create->full_name,
413 CLONE_FS | CLONE_FILES | SIGCHLD);
414 if (pid < 0) {
415 /* Release the structure when caller killed by a fatal signal. */
416 struct completion *done = xchg(&create->done, NULL);
417
418 kfree(create->full_name);
419 if (!done) {
420 kfree(create);
421 return;
422 }
423 create->result = ERR_PTR(pid);
424 complete(done);
425 }
426 }
427
428 static __printf(4, 0)
__kthread_create_on_node(int (* threadfn)(void * data),void * data,int node,const char namefmt[],va_list args)429 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
430 void *data, int node,
431 const char namefmt[],
432 va_list args)
433 {
434 DECLARE_COMPLETION_ONSTACK(done);
435 struct task_struct *task;
436 struct kthread_create_info *create = kmalloc(sizeof(*create),
437 GFP_KERNEL);
438
439 if (!create)
440 return ERR_PTR(-ENOMEM);
441 create->threadfn = threadfn;
442 create->data = data;
443 create->node = node;
444 create->done = &done;
445 create->full_name = kvasprintf(GFP_KERNEL, namefmt, args);
446 if (!create->full_name) {
447 task = ERR_PTR(-ENOMEM);
448 goto free_create;
449 }
450
451 spin_lock(&kthread_create_lock);
452 list_add_tail(&create->list, &kthread_create_list);
453 spin_unlock(&kthread_create_lock);
454
455 wake_up_process(kthreadd_task);
456 /*
457 * Wait for completion in killable state, for I might be chosen by
458 * the OOM killer while kthreadd is trying to allocate memory for
459 * new kernel thread.
460 */
461 if (unlikely(wait_for_completion_killable(&done))) {
462 /*
463 * If I was killed by a fatal signal before kthreadd (or new
464 * kernel thread) calls complete(), leave the cleanup of this
465 * structure to that thread.
466 */
467 if (xchg(&create->done, NULL))
468 return ERR_PTR(-EINTR);
469 /*
470 * kthreadd (or new kernel thread) will call complete()
471 * shortly.
472 */
473 wait_for_completion(&done);
474 }
475 task = create->result;
476 free_create:
477 kfree(create);
478 return task;
479 }
480
481 /**
482 * kthread_create_on_node - create a kthread.
483 * @threadfn: the function to run until signal_pending(current).
484 * @data: data ptr for @threadfn.
485 * @node: task and thread structures for the thread are allocated on this node
486 * @namefmt: printf-style name for the thread.
487 *
488 * Description: This helper function creates and names a kernel
489 * thread. The thread will be stopped: use wake_up_process() to start
490 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and
491 * is affine to all CPUs.
492 *
493 * If thread is going to be bound on a particular cpu, give its node
494 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
495 * When woken, the thread will run @threadfn() with @data as its
496 * argument. @threadfn() can either return directly if it is a
497 * standalone thread for which no one will call kthread_stop(), or
498 * return when 'kthread_should_stop()' is true (which means
499 * kthread_stop() has been called). The return value should be zero
500 * or a negative error number; it will be passed to kthread_stop().
501 *
502 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
503 */
kthread_create_on_node(int (* threadfn)(void * data),void * data,int node,const char namefmt[],...)504 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
505 void *data, int node,
506 const char namefmt[],
507 ...)
508 {
509 struct task_struct *task;
510 va_list args;
511
512 va_start(args, namefmt);
513 task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
514 va_end(args);
515
516 return task;
517 }
518 EXPORT_SYMBOL(kthread_create_on_node);
519
__kthread_bind_mask(struct task_struct * p,const struct cpumask * mask,unsigned int state)520 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
521 {
522 unsigned long flags;
523
524 if (!wait_task_inactive(p, state)) {
525 WARN_ON(1);
526 return;
527 }
528
529 /* It's safe because the task is inactive. */
530 raw_spin_lock_irqsave(&p->pi_lock, flags);
531 do_set_cpus_allowed(p, mask);
532 p->flags |= PF_NO_SETAFFINITY;
533 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
534 }
535
__kthread_bind(struct task_struct * p,unsigned int cpu,unsigned int state)536 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
537 {
538 __kthread_bind_mask(p, cpumask_of(cpu), state);
539 }
540
kthread_bind_mask(struct task_struct * p,const struct cpumask * mask)541 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
542 {
543 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
544 }
545 EXPORT_SYMBOL_GPL(kthread_bind_mask);
546
547 /**
548 * kthread_bind - bind a just-created kthread to a cpu.
549 * @p: thread created by kthread_create().
550 * @cpu: cpu (might not be online, must be possible) for @k to run on.
551 *
552 * Description: This function is equivalent to set_cpus_allowed(),
553 * except that @cpu doesn't need to be online, and the thread must be
554 * stopped (i.e., just returned from kthread_create()).
555 */
kthread_bind(struct task_struct * p,unsigned int cpu)556 void kthread_bind(struct task_struct *p, unsigned int cpu)
557 {
558 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
559 }
560 EXPORT_SYMBOL(kthread_bind);
561
562 /**
563 * kthread_create_on_cpu - Create a cpu bound kthread
564 * @threadfn: the function to run until signal_pending(current).
565 * @data: data ptr for @threadfn.
566 * @cpu: The cpu on which the thread should be bound,
567 * @namefmt: printf-style name for the thread. Format is restricted
568 * to "name.*%u". Code fills in cpu number.
569 *
570 * Description: This helper function creates and names a kernel thread
571 */
kthread_create_on_cpu(int (* threadfn)(void * data),void * data,unsigned int cpu,const char * namefmt)572 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
573 void *data, unsigned int cpu,
574 const char *namefmt)
575 {
576 struct task_struct *p;
577
578 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
579 cpu);
580 if (IS_ERR(p))
581 return p;
582 kthread_bind(p, cpu);
583 /* CPU hotplug need to bind once again when unparking the thread. */
584 to_kthread(p)->cpu = cpu;
585 return p;
586 }
587 EXPORT_SYMBOL(kthread_create_on_cpu);
588
kthread_set_per_cpu(struct task_struct * k,int cpu)589 void kthread_set_per_cpu(struct task_struct *k, int cpu)
590 {
591 struct kthread *kthread = to_kthread(k);
592 if (!kthread)
593 return;
594
595 WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
596
597 if (cpu < 0) {
598 clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
599 return;
600 }
601
602 kthread->cpu = cpu;
603 set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
604 }
605 EXPORT_SYMBOL_GPL(kthread_set_per_cpu);
606
kthread_is_per_cpu(struct task_struct * p)607 bool kthread_is_per_cpu(struct task_struct *p)
608 {
609 struct kthread *kthread = __to_kthread(p);
610 if (!kthread)
611 return false;
612
613 return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
614 }
615
616 /**
617 * kthread_unpark - unpark a thread created by kthread_create().
618 * @k: thread created by kthread_create().
619 *
620 * Sets kthread_should_park() for @k to return false, wakes it, and
621 * waits for it to return. If the thread is marked percpu then its
622 * bound to the cpu again.
623 */
kthread_unpark(struct task_struct * k)624 void kthread_unpark(struct task_struct *k)
625 {
626 struct kthread *kthread = to_kthread(k);
627
628 if (!test_bit(KTHREAD_SHOULD_PARK, &kthread->flags))
629 return;
630 /*
631 * Newly created kthread was parked when the CPU was offline.
632 * The binding was lost and we need to set it again.
633 */
634 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
635 __kthread_bind(k, kthread->cpu, TASK_PARKED);
636
637 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
638 /*
639 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
640 */
641 wake_up_state(k, TASK_PARKED);
642 }
643 EXPORT_SYMBOL_GPL(kthread_unpark);
644
645 /**
646 * kthread_park - park a thread created by kthread_create().
647 * @k: thread created by kthread_create().
648 *
649 * Sets kthread_should_park() for @k to return true, wakes it, and
650 * waits for it to return. This can also be called after kthread_create()
651 * instead of calling wake_up_process(): the thread will park without
652 * calling threadfn().
653 *
654 * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
655 * If called by the kthread itself just the park bit is set.
656 */
kthread_park(struct task_struct * k)657 int kthread_park(struct task_struct *k)
658 {
659 struct kthread *kthread = to_kthread(k);
660
661 if (WARN_ON(k->flags & PF_EXITING))
662 return -ENOSYS;
663
664 if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
665 return -EBUSY;
666
667 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
668 if (k != current) {
669 wake_up_process(k);
670 /*
671 * Wait for __kthread_parkme() to complete(), this means we
672 * _will_ have TASK_PARKED and are about to call schedule().
673 */
674 wait_for_completion(&kthread->parked);
675 /*
676 * Now wait for that schedule() to complete and the task to
677 * get scheduled out.
678 */
679 WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
680 }
681
682 return 0;
683 }
684 EXPORT_SYMBOL_GPL(kthread_park);
685
686 /**
687 * kthread_stop - stop a thread created by kthread_create().
688 * @k: thread created by kthread_create().
689 *
690 * Sets kthread_should_stop() for @k to return true, wakes it, and
691 * waits for it to exit. This can also be called after kthread_create()
692 * instead of calling wake_up_process(): the thread will exit without
693 * calling threadfn().
694 *
695 * If threadfn() may call kthread_exit() itself, the caller must ensure
696 * task_struct can't go away.
697 *
698 * Returns the result of threadfn(), or %-EINTR if wake_up_process()
699 * was never called.
700 */
kthread_stop(struct task_struct * k)701 int kthread_stop(struct task_struct *k)
702 {
703 struct kthread *kthread;
704 int ret;
705
706 trace_sched_kthread_stop(k);
707
708 get_task_struct(k);
709 kthread = to_kthread(k);
710 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
711 kthread_unpark(k);
712 set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL);
713 wake_up_process(k);
714 wait_for_completion(&kthread->exited);
715 ret = kthread->result;
716 put_task_struct(k);
717
718 trace_sched_kthread_stop_ret(ret);
719 return ret;
720 }
721 EXPORT_SYMBOL(kthread_stop);
722
723 /**
724 * kthread_stop_put - stop a thread and put its task struct
725 * @k: thread created by kthread_create().
726 *
727 * Stops a thread created by kthread_create() and put its task_struct.
728 * Only use when holding an extra task struct reference obtained by
729 * calling get_task_struct().
730 */
kthread_stop_put(struct task_struct * k)731 int kthread_stop_put(struct task_struct *k)
732 {
733 int ret;
734
735 ret = kthread_stop(k);
736 put_task_struct(k);
737 return ret;
738 }
739 EXPORT_SYMBOL(kthread_stop_put);
740
kthreadd(void * unused)741 int kthreadd(void *unused)
742 {
743 struct task_struct *tsk = current;
744
745 /* Setup a clean context for our children to inherit. */
746 set_task_comm(tsk, "kthreadd");
747 ignore_signals(tsk);
748 set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD));
749 set_mems_allowed(node_states[N_MEMORY]);
750
751 current->flags |= PF_NOFREEZE;
752 cgroup_init_kthreadd();
753
754 for (;;) {
755 set_current_state(TASK_INTERRUPTIBLE);
756 if (list_empty(&kthread_create_list))
757 schedule();
758 __set_current_state(TASK_RUNNING);
759
760 spin_lock(&kthread_create_lock);
761 while (!list_empty(&kthread_create_list)) {
762 struct kthread_create_info *create;
763
764 create = list_entry(kthread_create_list.next,
765 struct kthread_create_info, list);
766 list_del_init(&create->list);
767 spin_unlock(&kthread_create_lock);
768
769 create_kthread(create);
770
771 spin_lock(&kthread_create_lock);
772 }
773 spin_unlock(&kthread_create_lock);
774 }
775
776 return 0;
777 }
778
__kthread_init_worker(struct kthread_worker * worker,const char * name,struct lock_class_key * key)779 void __kthread_init_worker(struct kthread_worker *worker,
780 const char *name,
781 struct lock_class_key *key)
782 {
783 memset(worker, 0, sizeof(struct kthread_worker));
784 raw_spin_lock_init(&worker->lock);
785 lockdep_set_class_and_name(&worker->lock, key, name);
786 INIT_LIST_HEAD(&worker->work_list);
787 INIT_LIST_HEAD(&worker->delayed_work_list);
788 }
789 EXPORT_SYMBOL_GPL(__kthread_init_worker);
790
791 /**
792 * kthread_worker_fn - kthread function to process kthread_worker
793 * @worker_ptr: pointer to initialized kthread_worker
794 *
795 * This function implements the main cycle of kthread worker. It processes
796 * work_list until it is stopped with kthread_stop(). It sleeps when the queue
797 * is empty.
798 *
799 * The works are not allowed to keep any locks, disable preemption or interrupts
800 * when they finish. There is defined a safe point for freezing when one work
801 * finishes and before a new one is started.
802 *
803 * Also the works must not be handled by more than one worker at the same time,
804 * see also kthread_queue_work().
805 */
kthread_worker_fn(void * worker_ptr)806 int kthread_worker_fn(void *worker_ptr)
807 {
808 struct kthread_worker *worker = worker_ptr;
809 struct kthread_work *work;
810
811 /*
812 * FIXME: Update the check and remove the assignment when all kthread
813 * worker users are created using kthread_create_worker*() functions.
814 */
815 WARN_ON(worker->task && worker->task != current);
816 worker->task = current;
817
818 if (worker->flags & KTW_FREEZABLE)
819 set_freezable();
820
821 repeat:
822 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */
823
824 if (kthread_should_stop()) {
825 __set_current_state(TASK_RUNNING);
826 raw_spin_lock_irq(&worker->lock);
827 worker->task = NULL;
828 raw_spin_unlock_irq(&worker->lock);
829 return 0;
830 }
831
832 work = NULL;
833 raw_spin_lock_irq(&worker->lock);
834 if (!list_empty(&worker->work_list)) {
835 work = list_first_entry(&worker->work_list,
836 struct kthread_work, node);
837 list_del_init(&work->node);
838 }
839 worker->current_work = work;
840 raw_spin_unlock_irq(&worker->lock);
841
842 if (work) {
843 kthread_work_func_t func = work->func;
844 __set_current_state(TASK_RUNNING);
845 trace_sched_kthread_work_execute_start(work);
846 work->func(work);
847 /*
848 * Avoid dereferencing work after this point. The trace
849 * event only cares about the address.
850 */
851 trace_sched_kthread_work_execute_end(work, func);
852 } else if (!freezing(current)) {
853 schedule();
854 } else {
855 /*
856 * Handle the case where the current remains
857 * TASK_INTERRUPTIBLE. try_to_freeze() expects
858 * the current to be TASK_RUNNING.
859 */
860 __set_current_state(TASK_RUNNING);
861 }
862
863 try_to_freeze();
864 cond_resched();
865 goto repeat;
866 }
867 EXPORT_SYMBOL_GPL(kthread_worker_fn);
868
869 static __printf(3, 0) struct kthread_worker *
__kthread_create_worker(int cpu,unsigned int flags,const char namefmt[],va_list args)870 __kthread_create_worker(int cpu, unsigned int flags,
871 const char namefmt[], va_list args)
872 {
873 struct kthread_worker *worker;
874 struct task_struct *task;
875 int node = NUMA_NO_NODE;
876
877 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
878 if (!worker)
879 return ERR_PTR(-ENOMEM);
880
881 kthread_init_worker(worker);
882
883 if (cpu >= 0)
884 node = cpu_to_node(cpu);
885
886 task = __kthread_create_on_node(kthread_worker_fn, worker,
887 node, namefmt, args);
888 if (IS_ERR(task))
889 goto fail_task;
890
891 if (cpu >= 0)
892 kthread_bind(task, cpu);
893
894 worker->flags = flags;
895 worker->task = task;
896 wake_up_process(task);
897 return worker;
898
899 fail_task:
900 kfree(worker);
901 return ERR_CAST(task);
902 }
903
904 /**
905 * kthread_create_worker - create a kthread worker
906 * @flags: flags modifying the default behavior of the worker
907 * @namefmt: printf-style name for the kthread worker (task).
908 *
909 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
910 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
911 * when the caller was killed by a fatal signal.
912 */
913 struct kthread_worker *
kthread_create_worker(unsigned int flags,const char namefmt[],...)914 kthread_create_worker(unsigned int flags, const char namefmt[], ...)
915 {
916 struct kthread_worker *worker;
917 va_list args;
918
919 va_start(args, namefmt);
920 worker = __kthread_create_worker(-1, flags, namefmt, args);
921 va_end(args);
922
923 return worker;
924 }
925 EXPORT_SYMBOL(kthread_create_worker);
926
927 /**
928 * kthread_create_worker_on_cpu - create a kthread worker and bind it
929 * to a given CPU and the associated NUMA node.
930 * @cpu: CPU number
931 * @flags: flags modifying the default behavior of the worker
932 * @namefmt: printf-style name for the kthread worker (task).
933 *
934 * Use a valid CPU number if you want to bind the kthread worker
935 * to the given CPU and the associated NUMA node.
936 *
937 * A good practice is to add the cpu number also into the worker name.
938 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
939 *
940 * CPU hotplug:
941 * The kthread worker API is simple and generic. It just provides a way
942 * to create, use, and destroy workers.
943 *
944 * It is up to the API user how to handle CPU hotplug. They have to decide
945 * how to handle pending work items, prevent queuing new ones, and
946 * restore the functionality when the CPU goes off and on. There are a
947 * few catches:
948 *
949 * - CPU affinity gets lost when it is scheduled on an offline CPU.
950 *
951 * - The worker might not exist when the CPU was off when the user
952 * created the workers.
953 *
954 * Good practice is to implement two CPU hotplug callbacks and to
955 * destroy/create the worker when the CPU goes down/up.
956 *
957 * Return:
958 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
959 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
960 * when the caller was killed by a fatal signal.
961 */
962 struct kthread_worker *
kthread_create_worker_on_cpu(int cpu,unsigned int flags,const char namefmt[],...)963 kthread_create_worker_on_cpu(int cpu, unsigned int flags,
964 const char namefmt[], ...)
965 {
966 struct kthread_worker *worker;
967 va_list args;
968
969 va_start(args, namefmt);
970 worker = __kthread_create_worker(cpu, flags, namefmt, args);
971 va_end(args);
972
973 return worker;
974 }
975 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
976
977 /*
978 * Returns true when the work could not be queued at the moment.
979 * It happens when it is already pending in a worker list
980 * or when it is being cancelled.
981 */
queuing_blocked(struct kthread_worker * worker,struct kthread_work * work)982 static inline bool queuing_blocked(struct kthread_worker *worker,
983 struct kthread_work *work)
984 {
985 lockdep_assert_held(&worker->lock);
986
987 return !list_empty(&work->node) || work->canceling;
988 }
989
kthread_insert_work_sanity_check(struct kthread_worker * worker,struct kthread_work * work)990 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
991 struct kthread_work *work)
992 {
993 lockdep_assert_held(&worker->lock);
994 WARN_ON_ONCE(!list_empty(&work->node));
995 /* Do not use a work with >1 worker, see kthread_queue_work() */
996 WARN_ON_ONCE(work->worker && work->worker != worker);
997 }
998
999 /* insert @work before @pos in @worker */
kthread_insert_work(struct kthread_worker * worker,struct kthread_work * work,struct list_head * pos)1000 static void kthread_insert_work(struct kthread_worker *worker,
1001 struct kthread_work *work,
1002 struct list_head *pos)
1003 {
1004 kthread_insert_work_sanity_check(worker, work);
1005
1006 trace_sched_kthread_work_queue_work(worker, work);
1007
1008 list_add_tail(&work->node, pos);
1009 work->worker = worker;
1010 if (!worker->current_work && likely(worker->task))
1011 wake_up_process(worker->task);
1012 }
1013
1014 /**
1015 * kthread_queue_work - queue a kthread_work
1016 * @worker: target kthread_worker
1017 * @work: kthread_work to queue
1018 *
1019 * Queue @work to work processor @task for async execution. @task
1020 * must have been created with kthread_worker_create(). Returns %true
1021 * if @work was successfully queued, %false if it was already pending.
1022 *
1023 * Reinitialize the work if it needs to be used by another worker.
1024 * For example, when the worker was stopped and started again.
1025 */
kthread_queue_work(struct kthread_worker * worker,struct kthread_work * work)1026 bool kthread_queue_work(struct kthread_worker *worker,
1027 struct kthread_work *work)
1028 {
1029 bool ret = false;
1030 unsigned long flags;
1031
1032 raw_spin_lock_irqsave(&worker->lock, flags);
1033 if (!queuing_blocked(worker, work)) {
1034 kthread_insert_work(worker, work, &worker->work_list);
1035 ret = true;
1036 }
1037 raw_spin_unlock_irqrestore(&worker->lock, flags);
1038 return ret;
1039 }
1040 EXPORT_SYMBOL_GPL(kthread_queue_work);
1041
1042 /**
1043 * kthread_delayed_work_timer_fn - callback that queues the associated kthread
1044 * delayed work when the timer expires.
1045 * @t: pointer to the expired timer
1046 *
1047 * The format of the function is defined by struct timer_list.
1048 * It should have been called from irqsafe timer with irq already off.
1049 */
kthread_delayed_work_timer_fn(struct timer_list * t)1050 void kthread_delayed_work_timer_fn(struct timer_list *t)
1051 {
1052 struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
1053 struct kthread_work *work = &dwork->work;
1054 struct kthread_worker *worker = work->worker;
1055 unsigned long flags;
1056
1057 /*
1058 * This might happen when a pending work is reinitialized.
1059 * It means that it is used a wrong way.
1060 */
1061 if (WARN_ON_ONCE(!worker))
1062 return;
1063
1064 raw_spin_lock_irqsave(&worker->lock, flags);
1065 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1066 WARN_ON_ONCE(work->worker != worker);
1067
1068 /* Move the work from worker->delayed_work_list. */
1069 WARN_ON_ONCE(list_empty(&work->node));
1070 list_del_init(&work->node);
1071 if (!work->canceling)
1072 kthread_insert_work(worker, work, &worker->work_list);
1073
1074 raw_spin_unlock_irqrestore(&worker->lock, flags);
1075 }
1076 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
1077
__kthread_queue_delayed_work(struct kthread_worker * worker,struct kthread_delayed_work * dwork,unsigned long delay)1078 static void __kthread_queue_delayed_work(struct kthread_worker *worker,
1079 struct kthread_delayed_work *dwork,
1080 unsigned long delay)
1081 {
1082 struct timer_list *timer = &dwork->timer;
1083 struct kthread_work *work = &dwork->work;
1084
1085 WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
1086
1087 /*
1088 * If @delay is 0, queue @dwork->work immediately. This is for
1089 * both optimization and correctness. The earliest @timer can
1090 * expire is on the closest next tick and delayed_work users depend
1091 * on that there's no such delay when @delay is 0.
1092 */
1093 if (!delay) {
1094 kthread_insert_work(worker, work, &worker->work_list);
1095 return;
1096 }
1097
1098 /* Be paranoid and try to detect possible races already now. */
1099 kthread_insert_work_sanity_check(worker, work);
1100
1101 list_add(&work->node, &worker->delayed_work_list);
1102 work->worker = worker;
1103 timer->expires = jiffies + delay;
1104 add_timer(timer);
1105 }
1106
1107 /**
1108 * kthread_queue_delayed_work - queue the associated kthread work
1109 * after a delay.
1110 * @worker: target kthread_worker
1111 * @dwork: kthread_delayed_work to queue
1112 * @delay: number of jiffies to wait before queuing
1113 *
1114 * If the work has not been pending it starts a timer that will queue
1115 * the work after the given @delay. If @delay is zero, it queues the
1116 * work immediately.
1117 *
1118 * Return: %false if the @work has already been pending. It means that
1119 * either the timer was running or the work was queued. It returns %true
1120 * otherwise.
1121 */
kthread_queue_delayed_work(struct kthread_worker * worker,struct kthread_delayed_work * dwork,unsigned long delay)1122 bool kthread_queue_delayed_work(struct kthread_worker *worker,
1123 struct kthread_delayed_work *dwork,
1124 unsigned long delay)
1125 {
1126 struct kthread_work *work = &dwork->work;
1127 unsigned long flags;
1128 bool ret = false;
1129
1130 raw_spin_lock_irqsave(&worker->lock, flags);
1131
1132 if (!queuing_blocked(worker, work)) {
1133 __kthread_queue_delayed_work(worker, dwork, delay);
1134 ret = true;
1135 }
1136
1137 raw_spin_unlock_irqrestore(&worker->lock, flags);
1138 return ret;
1139 }
1140 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1141
1142 struct kthread_flush_work {
1143 struct kthread_work work;
1144 struct completion done;
1145 };
1146
kthread_flush_work_fn(struct kthread_work * work)1147 static void kthread_flush_work_fn(struct kthread_work *work)
1148 {
1149 struct kthread_flush_work *fwork =
1150 container_of(work, struct kthread_flush_work, work);
1151 complete(&fwork->done);
1152 }
1153
1154 /**
1155 * kthread_flush_work - flush a kthread_work
1156 * @work: work to flush
1157 *
1158 * If @work is queued or executing, wait for it to finish execution.
1159 */
kthread_flush_work(struct kthread_work * work)1160 void kthread_flush_work(struct kthread_work *work)
1161 {
1162 struct kthread_flush_work fwork = {
1163 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1164 COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1165 };
1166 struct kthread_worker *worker;
1167 bool noop = false;
1168
1169 worker = work->worker;
1170 if (!worker)
1171 return;
1172
1173 raw_spin_lock_irq(&worker->lock);
1174 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1175 WARN_ON_ONCE(work->worker != worker);
1176
1177 if (!list_empty(&work->node))
1178 kthread_insert_work(worker, &fwork.work, work->node.next);
1179 else if (worker->current_work == work)
1180 kthread_insert_work(worker, &fwork.work,
1181 worker->work_list.next);
1182 else
1183 noop = true;
1184
1185 raw_spin_unlock_irq(&worker->lock);
1186
1187 if (!noop)
1188 wait_for_completion(&fwork.done);
1189 }
1190 EXPORT_SYMBOL_GPL(kthread_flush_work);
1191
1192 /*
1193 * Make sure that the timer is neither set nor running and could
1194 * not manipulate the work list_head any longer.
1195 *
1196 * The function is called under worker->lock. The lock is temporary
1197 * released but the timer can't be set again in the meantime.
1198 */
kthread_cancel_delayed_work_timer(struct kthread_work * work,unsigned long * flags)1199 static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1200 unsigned long *flags)
1201 {
1202 struct kthread_delayed_work *dwork =
1203 container_of(work, struct kthread_delayed_work, work);
1204 struct kthread_worker *worker = work->worker;
1205
1206 /*
1207 * del_timer_sync() must be called to make sure that the timer
1208 * callback is not running. The lock must be temporary released
1209 * to avoid a deadlock with the callback. In the meantime,
1210 * any queuing is blocked by setting the canceling counter.
1211 */
1212 work->canceling++;
1213 raw_spin_unlock_irqrestore(&worker->lock, *flags);
1214 del_timer_sync(&dwork->timer);
1215 raw_spin_lock_irqsave(&worker->lock, *flags);
1216 work->canceling--;
1217 }
1218
1219 /*
1220 * This function removes the work from the worker queue.
1221 *
1222 * It is called under worker->lock. The caller must make sure that
1223 * the timer used by delayed work is not running, e.g. by calling
1224 * kthread_cancel_delayed_work_timer().
1225 *
1226 * The work might still be in use when this function finishes. See the
1227 * current_work proceed by the worker.
1228 *
1229 * Return: %true if @work was pending and successfully canceled,
1230 * %false if @work was not pending
1231 */
__kthread_cancel_work(struct kthread_work * work)1232 static bool __kthread_cancel_work(struct kthread_work *work)
1233 {
1234 /*
1235 * Try to remove the work from a worker list. It might either
1236 * be from worker->work_list or from worker->delayed_work_list.
1237 */
1238 if (!list_empty(&work->node)) {
1239 list_del_init(&work->node);
1240 return true;
1241 }
1242
1243 return false;
1244 }
1245
1246 /**
1247 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1248 * @worker: kthread worker to use
1249 * @dwork: kthread delayed work to queue
1250 * @delay: number of jiffies to wait before queuing
1251 *
1252 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1253 * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1254 * @work is guaranteed to be queued immediately.
1255 *
1256 * Return: %false if @dwork was idle and queued, %true otherwise.
1257 *
1258 * A special case is when the work is being canceled in parallel.
1259 * It might be caused either by the real kthread_cancel_delayed_work_sync()
1260 * or yet another kthread_mod_delayed_work() call. We let the other command
1261 * win and return %true here. The return value can be used for reference
1262 * counting and the number of queued works stays the same. Anyway, the caller
1263 * is supposed to synchronize these operations a reasonable way.
1264 *
1265 * This function is safe to call from any context including IRQ handler.
1266 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1267 * for details.
1268 */
kthread_mod_delayed_work(struct kthread_worker * worker,struct kthread_delayed_work * dwork,unsigned long delay)1269 bool kthread_mod_delayed_work(struct kthread_worker *worker,
1270 struct kthread_delayed_work *dwork,
1271 unsigned long delay)
1272 {
1273 struct kthread_work *work = &dwork->work;
1274 unsigned long flags;
1275 int ret;
1276
1277 raw_spin_lock_irqsave(&worker->lock, flags);
1278
1279 /* Do not bother with canceling when never queued. */
1280 if (!work->worker) {
1281 ret = false;
1282 goto fast_queue;
1283 }
1284
1285 /* Work must not be used with >1 worker, see kthread_queue_work() */
1286 WARN_ON_ONCE(work->worker != worker);
1287
1288 /*
1289 * Temporary cancel the work but do not fight with another command
1290 * that is canceling the work as well.
1291 *
1292 * It is a bit tricky because of possible races with another
1293 * mod_delayed_work() and cancel_delayed_work() callers.
1294 *
1295 * The timer must be canceled first because worker->lock is released
1296 * when doing so. But the work can be removed from the queue (list)
1297 * only when it can be queued again so that the return value can
1298 * be used for reference counting.
1299 */
1300 kthread_cancel_delayed_work_timer(work, &flags);
1301 if (work->canceling) {
1302 /* The number of works in the queue does not change. */
1303 ret = true;
1304 goto out;
1305 }
1306 ret = __kthread_cancel_work(work);
1307
1308 fast_queue:
1309 __kthread_queue_delayed_work(worker, dwork, delay);
1310 out:
1311 raw_spin_unlock_irqrestore(&worker->lock, flags);
1312 return ret;
1313 }
1314 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1315
__kthread_cancel_work_sync(struct kthread_work * work,bool is_dwork)1316 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1317 {
1318 struct kthread_worker *worker = work->worker;
1319 unsigned long flags;
1320 int ret = false;
1321
1322 if (!worker)
1323 goto out;
1324
1325 raw_spin_lock_irqsave(&worker->lock, flags);
1326 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1327 WARN_ON_ONCE(work->worker != worker);
1328
1329 if (is_dwork)
1330 kthread_cancel_delayed_work_timer(work, &flags);
1331
1332 ret = __kthread_cancel_work(work);
1333
1334 if (worker->current_work != work)
1335 goto out_fast;
1336
1337 /*
1338 * The work is in progress and we need to wait with the lock released.
1339 * In the meantime, block any queuing by setting the canceling counter.
1340 */
1341 work->canceling++;
1342 raw_spin_unlock_irqrestore(&worker->lock, flags);
1343 kthread_flush_work(work);
1344 raw_spin_lock_irqsave(&worker->lock, flags);
1345 work->canceling--;
1346
1347 out_fast:
1348 raw_spin_unlock_irqrestore(&worker->lock, flags);
1349 out:
1350 return ret;
1351 }
1352
1353 /**
1354 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1355 * @work: the kthread work to cancel
1356 *
1357 * Cancel @work and wait for its execution to finish. This function
1358 * can be used even if the work re-queues itself. On return from this
1359 * function, @work is guaranteed to be not pending or executing on any CPU.
1360 *
1361 * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1362 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1363 *
1364 * The caller must ensure that the worker on which @work was last
1365 * queued can't be destroyed before this function returns.
1366 *
1367 * Return: %true if @work was pending, %false otherwise.
1368 */
kthread_cancel_work_sync(struct kthread_work * work)1369 bool kthread_cancel_work_sync(struct kthread_work *work)
1370 {
1371 return __kthread_cancel_work_sync(work, false);
1372 }
1373 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1374
1375 /**
1376 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1377 * wait for it to finish.
1378 * @dwork: the kthread delayed work to cancel
1379 *
1380 * This is kthread_cancel_work_sync() for delayed works.
1381 *
1382 * Return: %true if @dwork was pending, %false otherwise.
1383 */
kthread_cancel_delayed_work_sync(struct kthread_delayed_work * dwork)1384 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1385 {
1386 return __kthread_cancel_work_sync(&dwork->work, true);
1387 }
1388 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1389
1390 /**
1391 * kthread_flush_worker - flush all current works on a kthread_worker
1392 * @worker: worker to flush
1393 *
1394 * Wait until all currently executing or pending works on @worker are
1395 * finished.
1396 */
kthread_flush_worker(struct kthread_worker * worker)1397 void kthread_flush_worker(struct kthread_worker *worker)
1398 {
1399 struct kthread_flush_work fwork = {
1400 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1401 COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1402 };
1403
1404 kthread_queue_work(worker, &fwork.work);
1405 wait_for_completion(&fwork.done);
1406 }
1407 EXPORT_SYMBOL_GPL(kthread_flush_worker);
1408
1409 /**
1410 * kthread_destroy_worker - destroy a kthread worker
1411 * @worker: worker to be destroyed
1412 *
1413 * Flush and destroy @worker. The simple flush is enough because the kthread
1414 * worker API is used only in trivial scenarios. There are no multi-step state
1415 * machines needed.
1416 *
1417 * Note that this function is not responsible for handling delayed work, so
1418 * caller should be responsible for queuing or canceling all delayed work items
1419 * before invoke this function.
1420 */
kthread_destroy_worker(struct kthread_worker * worker)1421 void kthread_destroy_worker(struct kthread_worker *worker)
1422 {
1423 struct task_struct *task;
1424
1425 task = worker->task;
1426 if (WARN_ON(!task))
1427 return;
1428
1429 kthread_flush_worker(worker);
1430 kthread_stop(task);
1431 WARN_ON(!list_empty(&worker->delayed_work_list));
1432 WARN_ON(!list_empty(&worker->work_list));
1433 kfree(worker);
1434 }
1435 EXPORT_SYMBOL(kthread_destroy_worker);
1436
1437 /**
1438 * kthread_use_mm - make the calling kthread operate on an address space
1439 * @mm: address space to operate on
1440 */
kthread_use_mm(struct mm_struct * mm)1441 void kthread_use_mm(struct mm_struct *mm)
1442 {
1443 struct mm_struct *active_mm;
1444 struct task_struct *tsk = current;
1445
1446 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1447 WARN_ON_ONCE(tsk->mm);
1448
1449 /*
1450 * It is possible for mm to be the same as tsk->active_mm, but
1451 * we must still mmgrab(mm) and mmdrop_lazy_tlb(active_mm),
1452 * because these references are not equivalent.
1453 */
1454 mmgrab(mm);
1455
1456 task_lock(tsk);
1457 /* Hold off tlb flush IPIs while switching mm's */
1458 local_irq_disable();
1459 active_mm = tsk->active_mm;
1460 tsk->active_mm = mm;
1461 tsk->mm = mm;
1462 membarrier_update_current_mm(mm);
1463 switch_mm_irqs_off(active_mm, mm, tsk);
1464 local_irq_enable();
1465 task_unlock(tsk);
1466 #ifdef finish_arch_post_lock_switch
1467 finish_arch_post_lock_switch();
1468 #endif
1469
1470 /*
1471 * When a kthread starts operating on an address space, the loop
1472 * in membarrier_{private,global}_expedited() may not observe
1473 * that tsk->mm, and not issue an IPI. Membarrier requires a
1474 * memory barrier after storing to tsk->mm, before accessing
1475 * user-space memory. A full memory barrier for membarrier
1476 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1477 * mmdrop_lazy_tlb().
1478 */
1479 mmdrop_lazy_tlb(active_mm);
1480 }
1481 EXPORT_SYMBOL_GPL(kthread_use_mm);
1482
1483 /**
1484 * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1485 * @mm: address space to operate on
1486 */
kthread_unuse_mm(struct mm_struct * mm)1487 void kthread_unuse_mm(struct mm_struct *mm)
1488 {
1489 struct task_struct *tsk = current;
1490
1491 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1492 WARN_ON_ONCE(!tsk->mm);
1493
1494 task_lock(tsk);
1495 /*
1496 * When a kthread stops operating on an address space, the loop
1497 * in membarrier_{private,global}_expedited() may not observe
1498 * that tsk->mm, and not issue an IPI. Membarrier requires a
1499 * memory barrier after accessing user-space memory, before
1500 * clearing tsk->mm.
1501 */
1502 smp_mb__after_spinlock();
1503 local_irq_disable();
1504 tsk->mm = NULL;
1505 membarrier_update_current_mm(NULL);
1506 mmgrab_lazy_tlb(mm);
1507 /* active_mm is still 'mm' */
1508 enter_lazy_tlb(mm, tsk);
1509 local_irq_enable();
1510 task_unlock(tsk);
1511
1512 mmdrop(mm);
1513 }
1514 EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1515
1516 #ifdef CONFIG_BLK_CGROUP
1517 /**
1518 * kthread_associate_blkcg - associate blkcg to current kthread
1519 * @css: the cgroup info
1520 *
1521 * Current thread must be a kthread. The thread is running jobs on behalf of
1522 * other threads. In some cases, we expect the jobs attach cgroup info of
1523 * original threads instead of that of current thread. This function stores
1524 * original thread's cgroup info in current kthread context for later
1525 * retrieval.
1526 */
kthread_associate_blkcg(struct cgroup_subsys_state * css)1527 void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1528 {
1529 struct kthread *kthread;
1530
1531 if (!(current->flags & PF_KTHREAD))
1532 return;
1533 kthread = to_kthread(current);
1534 if (!kthread)
1535 return;
1536
1537 if (kthread->blkcg_css) {
1538 css_put(kthread->blkcg_css);
1539 kthread->blkcg_css = NULL;
1540 }
1541 if (css) {
1542 css_get(css);
1543 kthread->blkcg_css = css;
1544 }
1545 }
1546 EXPORT_SYMBOL(kthread_associate_blkcg);
1547
1548 /**
1549 * kthread_blkcg - get associated blkcg css of current kthread
1550 *
1551 * Current thread must be a kthread.
1552 */
kthread_blkcg(void)1553 struct cgroup_subsys_state *kthread_blkcg(void)
1554 {
1555 struct kthread *kthread;
1556
1557 if (current->flags & PF_KTHREAD) {
1558 kthread = to_kthread(current);
1559 if (kthread)
1560 return kthread->blkcg_css;
1561 }
1562 return NULL;
1563 }
1564 #endif
1565