1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 ARM Ltd.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/irqdomain.h>
13 #include <linux/uaccess.h>
14
15 #include <clocksource/arm_arch_timer.h>
16 #include <asm/arch_timer.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_hyp.h>
19 #include <asm/kvm_nested.h>
20
21 #include <kvm/arm_vgic.h>
22 #include <kvm/arm_arch_timer.h>
23
24 #include "trace.h"
25
26 static struct timecounter *timecounter;
27 static unsigned int host_vtimer_irq;
28 static unsigned int host_ptimer_irq;
29 static u32 host_vtimer_irq_flags;
30 static u32 host_ptimer_irq_flags;
31
32 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
33
34 static const u8 default_ppi[] = {
35 [TIMER_PTIMER] = 30,
36 [TIMER_VTIMER] = 27,
37 [TIMER_HPTIMER] = 26,
38 [TIMER_HVTIMER] = 28,
39 };
40
41 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
42 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
43 struct arch_timer_context *timer_ctx);
44 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
45 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
46 struct arch_timer_context *timer,
47 enum kvm_arch_timer_regs treg,
48 u64 val);
49 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
50 struct arch_timer_context *timer,
51 enum kvm_arch_timer_regs treg);
52 static bool kvm_arch_timer_get_input_level(int vintid);
53
54 static struct irq_ops arch_timer_irq_ops = {
55 .get_input_level = kvm_arch_timer_get_input_level,
56 };
57
nr_timers(struct kvm_vcpu * vcpu)58 static int nr_timers(struct kvm_vcpu *vcpu)
59 {
60 if (!vcpu_has_nv(vcpu))
61 return NR_KVM_EL0_TIMERS;
62
63 return NR_KVM_TIMERS;
64 }
65
timer_get_ctl(struct arch_timer_context * ctxt)66 u32 timer_get_ctl(struct arch_timer_context *ctxt)
67 {
68 struct kvm_vcpu *vcpu = ctxt->vcpu;
69
70 switch(arch_timer_ctx_index(ctxt)) {
71 case TIMER_VTIMER:
72 return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
73 case TIMER_PTIMER:
74 return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
75 case TIMER_HVTIMER:
76 return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2);
77 case TIMER_HPTIMER:
78 return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2);
79 default:
80 WARN_ON(1);
81 return 0;
82 }
83 }
84
timer_get_cval(struct arch_timer_context * ctxt)85 u64 timer_get_cval(struct arch_timer_context *ctxt)
86 {
87 struct kvm_vcpu *vcpu = ctxt->vcpu;
88
89 switch(arch_timer_ctx_index(ctxt)) {
90 case TIMER_VTIMER:
91 return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
92 case TIMER_PTIMER:
93 return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
94 case TIMER_HVTIMER:
95 return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2);
96 case TIMER_HPTIMER:
97 return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
98 default:
99 WARN_ON(1);
100 return 0;
101 }
102 }
103
timer_get_offset(struct arch_timer_context * ctxt)104 static u64 timer_get_offset(struct arch_timer_context *ctxt)
105 {
106 u64 offset = 0;
107
108 if (!ctxt)
109 return 0;
110
111 if (ctxt->offset.vm_offset)
112 offset += *ctxt->offset.vm_offset;
113 if (ctxt->offset.vcpu_offset)
114 offset += *ctxt->offset.vcpu_offset;
115
116 return offset;
117 }
118
timer_set_ctl(struct arch_timer_context * ctxt,u32 ctl)119 static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
120 {
121 struct kvm_vcpu *vcpu = ctxt->vcpu;
122
123 switch(arch_timer_ctx_index(ctxt)) {
124 case TIMER_VTIMER:
125 __vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
126 break;
127 case TIMER_PTIMER:
128 __vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
129 break;
130 case TIMER_HVTIMER:
131 __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl;
132 break;
133 case TIMER_HPTIMER:
134 __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl;
135 break;
136 default:
137 WARN_ON(1);
138 }
139 }
140
timer_set_cval(struct arch_timer_context * ctxt,u64 cval)141 static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
142 {
143 struct kvm_vcpu *vcpu = ctxt->vcpu;
144
145 switch(arch_timer_ctx_index(ctxt)) {
146 case TIMER_VTIMER:
147 __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
148 break;
149 case TIMER_PTIMER:
150 __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
151 break;
152 case TIMER_HVTIMER:
153 __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval;
154 break;
155 case TIMER_HPTIMER:
156 __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval;
157 break;
158 default:
159 WARN_ON(1);
160 }
161 }
162
timer_set_offset(struct arch_timer_context * ctxt,u64 offset)163 static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
164 {
165 if (unlikely(!ctxt->offset.vm_offset)) {
166 WARN(offset && !kvm_vm_is_protected(ctxt->vcpu->kvm),
167 "timer %ld\n", arch_timer_ctx_index(ctxt));
168 return;
169 }
170
171 WRITE_ONCE(*ctxt->offset.vm_offset, offset);
172 }
173
kvm_phys_timer_read(void)174 u64 kvm_phys_timer_read(void)
175 {
176 return timecounter->cc->read(timecounter->cc);
177 }
178
get_timer_map(struct kvm_vcpu * vcpu,struct timer_map * map)179 void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
180 {
181 if (vcpu_has_nv(vcpu)) {
182 if (is_hyp_ctxt(vcpu)) {
183 map->direct_vtimer = vcpu_hvtimer(vcpu);
184 map->direct_ptimer = vcpu_hptimer(vcpu);
185 map->emul_vtimer = vcpu_vtimer(vcpu);
186 map->emul_ptimer = vcpu_ptimer(vcpu);
187 } else {
188 map->direct_vtimer = vcpu_vtimer(vcpu);
189 map->direct_ptimer = vcpu_ptimer(vcpu);
190 map->emul_vtimer = vcpu_hvtimer(vcpu);
191 map->emul_ptimer = vcpu_hptimer(vcpu);
192 }
193 } else if (has_vhe()) {
194 map->direct_vtimer = vcpu_vtimer(vcpu);
195 map->direct_ptimer = vcpu_ptimer(vcpu);
196 map->emul_vtimer = NULL;
197 map->emul_ptimer = NULL;
198 } else {
199 map->direct_vtimer = vcpu_vtimer(vcpu);
200 map->direct_ptimer = NULL;
201 map->emul_vtimer = NULL;
202 map->emul_ptimer = vcpu_ptimer(vcpu);
203 }
204
205 trace_kvm_get_timer_map(vcpu->vcpu_id, map);
206 }
207
userspace_irqchip(struct kvm * kvm)208 static inline bool userspace_irqchip(struct kvm *kvm)
209 {
210 return unlikely(!irqchip_in_kernel(kvm));
211 }
212
soft_timer_start(struct hrtimer * hrt,u64 ns)213 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
214 {
215 hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
216 HRTIMER_MODE_ABS_HARD);
217 }
218
soft_timer_cancel(struct hrtimer * hrt)219 static void soft_timer_cancel(struct hrtimer *hrt)
220 {
221 hrtimer_cancel(hrt);
222 }
223
kvm_arch_timer_handler(int irq,void * dev_id)224 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
225 {
226 struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
227 struct arch_timer_context *ctx;
228 struct timer_map map;
229
230 /*
231 * We may see a timer interrupt after vcpu_put() has been called which
232 * sets the CPU's vcpu pointer to NULL, because even though the timer
233 * has been disabled in timer_save_state(), the hardware interrupt
234 * signal may not have been retired from the interrupt controller yet.
235 */
236 if (!vcpu)
237 return IRQ_HANDLED;
238
239 get_timer_map(vcpu, &map);
240
241 if (irq == host_vtimer_irq)
242 ctx = map.direct_vtimer;
243 else
244 ctx = map.direct_ptimer;
245
246 if (kvm_timer_should_fire(ctx))
247 kvm_timer_update_irq(vcpu, true, ctx);
248
249 if (userspace_irqchip(vcpu->kvm) &&
250 !static_branch_unlikely(&has_gic_active_state))
251 disable_percpu_irq(host_vtimer_irq);
252
253 return IRQ_HANDLED;
254 }
255
kvm_counter_compute_delta(struct arch_timer_context * timer_ctx,u64 val)256 static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
257 u64 val)
258 {
259 u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
260
261 if (now < val) {
262 u64 ns;
263
264 ns = cyclecounter_cyc2ns(timecounter->cc,
265 val - now,
266 timecounter->mask,
267 &timer_ctx->ns_frac);
268 return ns;
269 }
270
271 return 0;
272 }
273
kvm_timer_compute_delta(struct arch_timer_context * timer_ctx)274 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
275 {
276 return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
277 }
278
kvm_timer_irq_can_fire(struct arch_timer_context * timer_ctx)279 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
280 {
281 WARN_ON(timer_ctx && timer_ctx->loaded);
282 return timer_ctx &&
283 ((timer_get_ctl(timer_ctx) &
284 (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
285 }
286
vcpu_has_wfit_active(struct kvm_vcpu * vcpu)287 static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
288 {
289 return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
290 vcpu_get_flag(vcpu, IN_WFIT));
291 }
292
wfit_delay_ns(struct kvm_vcpu * vcpu)293 static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
294 {
295 u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
296 struct arch_timer_context *ctx;
297
298 ctx = is_hyp_ctxt(vcpu) ? vcpu_hvtimer(vcpu) : vcpu_vtimer(vcpu);
299
300 return kvm_counter_compute_delta(ctx, val);
301 }
302
303 /*
304 * Returns the earliest expiration time in ns among guest timers.
305 * Note that it will return 0 if none of timers can fire.
306 */
kvm_timer_earliest_exp(struct kvm_vcpu * vcpu)307 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
308 {
309 u64 min_delta = ULLONG_MAX;
310 int i;
311
312 for (i = 0; i < nr_timers(vcpu); i++) {
313 struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
314
315 WARN(ctx->loaded, "timer %d loaded\n", i);
316 if (kvm_timer_irq_can_fire(ctx))
317 min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
318 }
319
320 if (vcpu_has_wfit_active(vcpu))
321 min_delta = min(min_delta, wfit_delay_ns(vcpu));
322
323 /* If none of timers can fire, then return 0 */
324 if (min_delta == ULLONG_MAX)
325 return 0;
326
327 return min_delta;
328 }
329
kvm_bg_timer_expire(struct hrtimer * hrt)330 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
331 {
332 struct arch_timer_cpu *timer;
333 struct kvm_vcpu *vcpu;
334 u64 ns;
335
336 timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
337 vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
338
339 /*
340 * Check that the timer has really expired from the guest's
341 * PoV (NTP on the host may have forced it to expire
342 * early). If we should have slept longer, restart it.
343 */
344 ns = kvm_timer_earliest_exp(vcpu);
345 if (unlikely(ns)) {
346 hrtimer_forward_now(hrt, ns_to_ktime(ns));
347 return HRTIMER_RESTART;
348 }
349
350 kvm_vcpu_wake_up(vcpu);
351 return HRTIMER_NORESTART;
352 }
353
kvm_hrtimer_expire(struct hrtimer * hrt)354 static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
355 {
356 struct arch_timer_context *ctx;
357 struct kvm_vcpu *vcpu;
358 u64 ns;
359
360 ctx = container_of(hrt, struct arch_timer_context, hrtimer);
361 vcpu = ctx->vcpu;
362
363 trace_kvm_timer_hrtimer_expire(ctx);
364
365 /*
366 * Check that the timer has really expired from the guest's
367 * PoV (NTP on the host may have forced it to expire
368 * early). If not ready, schedule for a later time.
369 */
370 ns = kvm_timer_compute_delta(ctx);
371 if (unlikely(ns)) {
372 hrtimer_forward_now(hrt, ns_to_ktime(ns));
373 return HRTIMER_RESTART;
374 }
375
376 kvm_timer_update_irq(vcpu, true, ctx);
377 return HRTIMER_NORESTART;
378 }
379
kvm_timer_should_fire(struct arch_timer_context * timer_ctx)380 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
381 {
382 enum kvm_arch_timers index;
383 u64 cval, now;
384
385 if (!timer_ctx)
386 return false;
387
388 index = arch_timer_ctx_index(timer_ctx);
389
390 if (timer_ctx->loaded) {
391 u32 cnt_ctl = 0;
392
393 switch (index) {
394 case TIMER_VTIMER:
395 case TIMER_HVTIMER:
396 cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
397 break;
398 case TIMER_PTIMER:
399 case TIMER_HPTIMER:
400 cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
401 break;
402 case NR_KVM_TIMERS:
403 /* GCC is braindead */
404 cnt_ctl = 0;
405 break;
406 }
407
408 return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
409 (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
410 !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
411 }
412
413 if (!kvm_timer_irq_can_fire(timer_ctx))
414 return false;
415
416 cval = timer_get_cval(timer_ctx);
417 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
418
419 return cval <= now;
420 }
421
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)422 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
423 {
424 return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
425 }
426
427 /*
428 * Reflect the timer output level into the kvm_run structure
429 */
kvm_timer_update_run(struct kvm_vcpu * vcpu)430 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
431 {
432 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
433 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
434 struct kvm_sync_regs *regs = &vcpu->run->s.regs;
435
436 /* Populate the device bitmap with the timer states */
437 regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
438 KVM_ARM_DEV_EL1_PTIMER);
439 if (kvm_timer_should_fire(vtimer))
440 regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
441 if (kvm_timer_should_fire(ptimer))
442 regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
443 }
444
kvm_timer_update_irq(struct kvm_vcpu * vcpu,bool new_level,struct arch_timer_context * timer_ctx)445 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
446 struct arch_timer_context *timer_ctx)
447 {
448 int ret;
449
450 timer_ctx->irq.level = new_level;
451 trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx),
452 timer_ctx->irq.level);
453
454 if (!userspace_irqchip(vcpu->kvm)) {
455 ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu,
456 timer_irq(timer_ctx),
457 timer_ctx->irq.level,
458 timer_ctx);
459 WARN_ON(ret);
460 }
461 }
462
463 /* Only called for a fully emulated timer */
timer_emulate(struct arch_timer_context * ctx)464 static void timer_emulate(struct arch_timer_context *ctx)
465 {
466 bool should_fire = kvm_timer_should_fire(ctx);
467
468 trace_kvm_timer_emulate(ctx, should_fire);
469
470 if (should_fire != ctx->irq.level)
471 kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
472
473 /*
474 * If the timer can fire now, we don't need to have a soft timer
475 * scheduled for the future. If the timer cannot fire at all,
476 * then we also don't need a soft timer.
477 */
478 if (should_fire || !kvm_timer_irq_can_fire(ctx))
479 return;
480
481 soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
482 }
483
set_cntvoff(u64 cntvoff)484 static void set_cntvoff(u64 cntvoff)
485 {
486 kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
487 }
488
set_cntpoff(u64 cntpoff)489 static void set_cntpoff(u64 cntpoff)
490 {
491 if (has_cntpoff())
492 write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2);
493 }
494
timer_save_state(struct arch_timer_context * ctx)495 static void timer_save_state(struct arch_timer_context *ctx)
496 {
497 struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
498 enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
499 unsigned long flags;
500
501 if (!timer->enabled)
502 return;
503
504 local_irq_save(flags);
505
506 if (!ctx->loaded)
507 goto out;
508
509 switch (index) {
510 u64 cval;
511
512 case TIMER_VTIMER:
513 case TIMER_HVTIMER:
514 timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
515 timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
516
517 /* Disable the timer */
518 write_sysreg_el0(0, SYS_CNTV_CTL);
519 isb();
520
521 /*
522 * The kernel may decide to run userspace after
523 * calling vcpu_put, so we reset cntvoff to 0 to
524 * ensure a consistent read between user accesses to
525 * the virtual counter and kernel access to the
526 * physical counter of non-VHE case.
527 *
528 * For VHE, the virtual counter uses a fixed virtual
529 * offset of zero, so no need to zero CNTVOFF_EL2
530 * register, but this is actually useful when switching
531 * between EL1/vEL2 with NV.
532 *
533 * Do it unconditionally, as this is either unavoidable
534 * or dirt cheap.
535 */
536 set_cntvoff(0);
537 break;
538 case TIMER_PTIMER:
539 case TIMER_HPTIMER:
540 timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
541 cval = read_sysreg_el0(SYS_CNTP_CVAL);
542
543 cval -= timer_get_offset(ctx);
544
545 timer_set_cval(ctx, cval);
546
547 /* Disable the timer */
548 write_sysreg_el0(0, SYS_CNTP_CTL);
549 isb();
550
551 set_cntpoff(0);
552 break;
553 case NR_KVM_TIMERS:
554 BUG();
555 }
556
557 trace_kvm_timer_save_state(ctx);
558
559 ctx->loaded = false;
560 out:
561 local_irq_restore(flags);
562 }
563
564 /*
565 * Schedule the background timer before calling kvm_vcpu_halt, so that this
566 * thread is removed from its waitqueue and made runnable when there's a timer
567 * interrupt to handle.
568 */
kvm_timer_blocking(struct kvm_vcpu * vcpu)569 static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
570 {
571 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
572 struct timer_map map;
573
574 get_timer_map(vcpu, &map);
575
576 /*
577 * If no timers are capable of raising interrupts (disabled or
578 * masked), then there's no more work for us to do.
579 */
580 if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
581 !kvm_timer_irq_can_fire(map.direct_ptimer) &&
582 !kvm_timer_irq_can_fire(map.emul_vtimer) &&
583 !kvm_timer_irq_can_fire(map.emul_ptimer) &&
584 !vcpu_has_wfit_active(vcpu))
585 return;
586
587 /*
588 * At least one guest time will expire. Schedule a background timer.
589 * Set the earliest expiration time among the guest timers.
590 */
591 soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
592 }
593
kvm_timer_unblocking(struct kvm_vcpu * vcpu)594 static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
595 {
596 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
597
598 soft_timer_cancel(&timer->bg_timer);
599 }
600
timer_restore_state(struct arch_timer_context * ctx)601 static void timer_restore_state(struct arch_timer_context *ctx)
602 {
603 struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
604 enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
605 unsigned long flags;
606
607 if (!timer->enabled)
608 return;
609
610 local_irq_save(flags);
611
612 if (ctx->loaded)
613 goto out;
614
615 switch (index) {
616 u64 cval, offset;
617
618 case TIMER_VTIMER:
619 case TIMER_HVTIMER:
620 set_cntvoff(timer_get_offset(ctx));
621 write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
622 isb();
623 write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
624 break;
625 case TIMER_PTIMER:
626 case TIMER_HPTIMER:
627 cval = timer_get_cval(ctx);
628 offset = timer_get_offset(ctx);
629 set_cntpoff(offset);
630 cval += offset;
631 write_sysreg_el0(cval, SYS_CNTP_CVAL);
632 isb();
633 write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
634 break;
635 case NR_KVM_TIMERS:
636 BUG();
637 }
638
639 trace_kvm_timer_restore_state(ctx);
640
641 ctx->loaded = true;
642 out:
643 local_irq_restore(flags);
644 }
645
set_timer_irq_phys_active(struct arch_timer_context * ctx,bool active)646 static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
647 {
648 int r;
649 r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
650 WARN_ON(r);
651 }
652
kvm_timer_vcpu_load_gic(struct arch_timer_context * ctx)653 static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
654 {
655 struct kvm_vcpu *vcpu = ctx->vcpu;
656 bool phys_active = false;
657
658 /*
659 * Update the timer output so that it is likely to match the
660 * state we're about to restore. If the timer expires between
661 * this point and the register restoration, we'll take the
662 * interrupt anyway.
663 */
664 kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
665
666 if (irqchip_in_kernel(vcpu->kvm))
667 phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx));
668
669 phys_active |= ctx->irq.level;
670
671 set_timer_irq_phys_active(ctx, phys_active);
672 }
673
kvm_timer_vcpu_load_nogic(struct kvm_vcpu * vcpu)674 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
675 {
676 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
677
678 /*
679 * Update the timer output so that it is likely to match the
680 * state we're about to restore. If the timer expires between
681 * this point and the register restoration, we'll take the
682 * interrupt anyway.
683 */
684 kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
685
686 /*
687 * When using a userspace irqchip with the architected timers and a
688 * host interrupt controller that doesn't support an active state, we
689 * must still prevent continuously exiting from the guest, and
690 * therefore mask the physical interrupt by disabling it on the host
691 * interrupt controller when the virtual level is high, such that the
692 * guest can make forward progress. Once we detect the output level
693 * being de-asserted, we unmask the interrupt again so that we exit
694 * from the guest when the timer fires.
695 */
696 if (vtimer->irq.level)
697 disable_percpu_irq(host_vtimer_irq);
698 else
699 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
700 }
701
702 /* If _pred is true, set bit in _set, otherwise set it in _clr */
703 #define assign_clear_set_bit(_pred, _bit, _clr, _set) \
704 do { \
705 if (_pred) \
706 (_set) |= (_bit); \
707 else \
708 (_clr) |= (_bit); \
709 } while (0)
710
kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu * vcpu,struct timer_map * map)711 static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu,
712 struct timer_map *map)
713 {
714 int hw, ret;
715
716 if (!irqchip_in_kernel(vcpu->kvm))
717 return;
718
719 /*
720 * We only ever unmap the vtimer irq on a VHE system that runs nested
721 * virtualization, in which case we have both a valid emul_vtimer,
722 * emul_ptimer, direct_vtimer, and direct_ptimer.
723 *
724 * Since this is called from kvm_timer_vcpu_load(), a change between
725 * vEL2 and vEL1/0 will have just happened, and the timer_map will
726 * represent this, and therefore we switch the emul/direct mappings
727 * below.
728 */
729 hw = kvm_vgic_get_map(vcpu, timer_irq(map->direct_vtimer));
730 if (hw < 0) {
731 kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_vtimer));
732 kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_ptimer));
733
734 ret = kvm_vgic_map_phys_irq(vcpu,
735 map->direct_vtimer->host_timer_irq,
736 timer_irq(map->direct_vtimer),
737 &arch_timer_irq_ops);
738 WARN_ON_ONCE(ret);
739 ret = kvm_vgic_map_phys_irq(vcpu,
740 map->direct_ptimer->host_timer_irq,
741 timer_irq(map->direct_ptimer),
742 &arch_timer_irq_ops);
743 WARN_ON_ONCE(ret);
744
745 /*
746 * The virtual offset behaviour is "interesting", as it
747 * always applies when HCR_EL2.E2H==0, but only when
748 * accessed from EL1 when HCR_EL2.E2H==1. So make sure we
749 * track E2H when putting the HV timer in "direct" mode.
750 */
751 if (map->direct_vtimer == vcpu_hvtimer(vcpu)) {
752 struct arch_timer_offset *offs = &map->direct_vtimer->offset;
753
754 if (vcpu_el2_e2h_is_set(vcpu))
755 offs->vcpu_offset = NULL;
756 else
757 offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
758 }
759 }
760 }
761
timer_set_traps(struct kvm_vcpu * vcpu,struct timer_map * map)762 static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map)
763 {
764 bool tpt, tpc;
765 u64 clr, set;
766
767 /*
768 * No trapping gets configured here with nVHE. See
769 * __timer_enable_traps(), which is where the stuff happens.
770 */
771 if (!has_vhe())
772 return;
773
774 /*
775 * Our default policy is not to trap anything. As we progress
776 * within this function, reality kicks in and we start adding
777 * traps based on emulation requirements.
778 */
779 tpt = tpc = false;
780
781 /*
782 * We have two possibility to deal with a physical offset:
783 *
784 * - Either we have CNTPOFF (yay!) or the offset is 0:
785 * we let the guest freely access the HW
786 *
787 * - or neither of these condition apply:
788 * we trap accesses to the HW, but still use it
789 * after correcting the physical offset
790 */
791 if (!has_cntpoff() && timer_get_offset(map->direct_ptimer))
792 tpt = tpc = true;
793
794 /*
795 * Apply the enable bits that the guest hypervisor has requested for
796 * its own guest. We can only add traps that wouldn't have been set
797 * above.
798 */
799 if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
800 u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
801
802 /* Use the VHE format for mental sanity */
803 if (!vcpu_el2_e2h_is_set(vcpu))
804 val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10;
805
806 tpt |= !(val & (CNTHCTL_EL1PCEN << 10));
807 tpc |= !(val & (CNTHCTL_EL1PCTEN << 10));
808 }
809
810 /*
811 * Now that we have collected our requirements, compute the
812 * trap and enable bits.
813 */
814 set = 0;
815 clr = 0;
816
817 assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr);
818 assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr);
819
820 /* This only happens on VHE, so use the CNTHCTL_EL2 accessor. */
821 sysreg_clear_set(cnthctl_el2, clr, set);
822 }
823
kvm_timer_vcpu_load(struct kvm_vcpu * vcpu)824 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
825 {
826 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
827 struct timer_map map;
828
829 if (unlikely(!timer->enabled))
830 return;
831
832 get_timer_map(vcpu, &map);
833
834 if (static_branch_likely(&has_gic_active_state)) {
835 if (vcpu_has_nv(vcpu))
836 kvm_timer_vcpu_load_nested_switch(vcpu, &map);
837
838 kvm_timer_vcpu_load_gic(map.direct_vtimer);
839 if (map.direct_ptimer)
840 kvm_timer_vcpu_load_gic(map.direct_ptimer);
841 } else {
842 kvm_timer_vcpu_load_nogic(vcpu);
843 }
844
845 kvm_timer_unblocking(vcpu);
846
847 timer_restore_state(map.direct_vtimer);
848 if (map.direct_ptimer)
849 timer_restore_state(map.direct_ptimer);
850 if (map.emul_vtimer)
851 timer_emulate(map.emul_vtimer);
852 if (map.emul_ptimer)
853 timer_emulate(map.emul_ptimer);
854
855 timer_set_traps(vcpu, &map);
856 }
857
kvm_timer_should_notify_user(struct kvm_vcpu * vcpu)858 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
859 {
860 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
861 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
862 struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
863 bool vlevel, plevel;
864
865 if (likely(irqchip_in_kernel(vcpu->kvm)))
866 return false;
867
868 vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
869 plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
870
871 return kvm_timer_should_fire(vtimer) != vlevel ||
872 kvm_timer_should_fire(ptimer) != plevel;
873 }
874
kvm_timer_vcpu_put(struct kvm_vcpu * vcpu)875 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
876 {
877 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
878 struct timer_map map;
879
880 if (unlikely(!timer->enabled))
881 return;
882
883 get_timer_map(vcpu, &map);
884
885 timer_save_state(map.direct_vtimer);
886 if (map.direct_ptimer)
887 timer_save_state(map.direct_ptimer);
888
889 /*
890 * Cancel soft timer emulation, because the only case where we
891 * need it after a vcpu_put is in the context of a sleeping VCPU, and
892 * in that case we already factor in the deadline for the physical
893 * timer when scheduling the bg_timer.
894 *
895 * In any case, we re-schedule the hrtimer for the physical timer when
896 * coming back to the VCPU thread in kvm_timer_vcpu_load().
897 */
898 if (map.emul_vtimer)
899 soft_timer_cancel(&map.emul_vtimer->hrtimer);
900 if (map.emul_ptimer)
901 soft_timer_cancel(&map.emul_ptimer->hrtimer);
902
903 if (kvm_vcpu_is_blocking(vcpu))
904 kvm_timer_blocking(vcpu);
905 }
906
907 /*
908 * With a userspace irqchip we have to check if the guest de-asserted the
909 * timer and if so, unmask the timer irq signal on the host interrupt
910 * controller to ensure that we see future timer signals.
911 */
unmask_vtimer_irq_user(struct kvm_vcpu * vcpu)912 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
913 {
914 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
915
916 if (!kvm_timer_should_fire(vtimer)) {
917 kvm_timer_update_irq(vcpu, false, vtimer);
918 if (static_branch_likely(&has_gic_active_state))
919 set_timer_irq_phys_active(vtimer, false);
920 else
921 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
922 }
923 }
924
kvm_timer_sync_user(struct kvm_vcpu * vcpu)925 void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
926 {
927 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
928
929 if (unlikely(!timer->enabled))
930 return;
931
932 if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
933 unmask_vtimer_irq_user(vcpu);
934 }
935
kvm_timer_vcpu_reset(struct kvm_vcpu * vcpu)936 void kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
937 {
938 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
939 struct timer_map map;
940
941 get_timer_map(vcpu, &map);
942
943 /*
944 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
945 * and to 0 for ARMv7. We provide an implementation that always
946 * resets the timer to be disabled and unmasked and is compliant with
947 * the ARMv7 architecture.
948 */
949 for (int i = 0; i < nr_timers(vcpu); i++)
950 timer_set_ctl(vcpu_get_timer(vcpu, i), 0);
951
952 /*
953 * A vcpu running at EL2 is in charge of the offset applied to
954 * the virtual timer, so use the physical VM offset, and point
955 * the vcpu offset to CNTVOFF_EL2.
956 */
957 if (vcpu_has_nv(vcpu)) {
958 struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset;
959
960 offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
961 offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset;
962 }
963
964 if (timer->enabled) {
965 for (int i = 0; i < nr_timers(vcpu); i++)
966 kvm_timer_update_irq(vcpu, false,
967 vcpu_get_timer(vcpu, i));
968
969 if (irqchip_in_kernel(vcpu->kvm)) {
970 kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_vtimer));
971 if (map.direct_ptimer)
972 kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_ptimer));
973 }
974 }
975
976 if (map.emul_vtimer)
977 soft_timer_cancel(&map.emul_vtimer->hrtimer);
978 if (map.emul_ptimer)
979 soft_timer_cancel(&map.emul_ptimer->hrtimer);
980 }
981
timer_context_init(struct kvm_vcpu * vcpu,int timerid)982 static void timer_context_init(struct kvm_vcpu *vcpu, int timerid)
983 {
984 struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid);
985 struct kvm *kvm = vcpu->kvm;
986
987 ctxt->vcpu = vcpu;
988
989 if (!kvm_vm_is_protected(vcpu->kvm)) {
990 if (timerid == TIMER_VTIMER)
991 ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset;
992 else
993 ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset;
994 } else {
995 ctxt->offset.vm_offset = NULL;
996 }
997
998 hrtimer_init(&ctxt->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
999 ctxt->hrtimer.function = kvm_hrtimer_expire;
1000
1001 switch (timerid) {
1002 case TIMER_PTIMER:
1003 case TIMER_HPTIMER:
1004 ctxt->host_timer_irq = host_ptimer_irq;
1005 break;
1006 case TIMER_VTIMER:
1007 case TIMER_HVTIMER:
1008 ctxt->host_timer_irq = host_vtimer_irq;
1009 break;
1010 }
1011 }
1012
kvm_timer_vcpu_init(struct kvm_vcpu * vcpu)1013 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
1014 {
1015 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1016
1017 for (int i = 0; i < NR_KVM_TIMERS; i++)
1018 timer_context_init(vcpu, i);
1019
1020 /* Synchronize offsets across timers of a VM if not already provided */
1021 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) {
1022 timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read());
1023 timer_set_offset(vcpu_ptimer(vcpu), 0);
1024 }
1025
1026 hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1027 timer->bg_timer.function = kvm_bg_timer_expire;
1028 }
1029
kvm_timer_init_vm(struct kvm * kvm)1030 void kvm_timer_init_vm(struct kvm *kvm)
1031 {
1032 for (int i = 0; i < NR_KVM_TIMERS; i++)
1033 kvm->arch.timer_data.ppi[i] = default_ppi[i];
1034 }
1035
kvm_timer_cpu_up(void)1036 void kvm_timer_cpu_up(void)
1037 {
1038 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
1039 if (host_ptimer_irq)
1040 enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
1041 }
1042
kvm_timer_cpu_down(void)1043 void kvm_timer_cpu_down(void)
1044 {
1045 disable_percpu_irq(host_vtimer_irq);
1046 if (host_ptimer_irq)
1047 disable_percpu_irq(host_ptimer_irq);
1048 }
1049
kvm_arm_timer_set_reg(struct kvm_vcpu * vcpu,u64 regid,u64 value)1050 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
1051 {
1052 struct arch_timer_context *timer;
1053
1054 switch (regid) {
1055 case KVM_REG_ARM_TIMER_CTL:
1056 timer = vcpu_vtimer(vcpu);
1057 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1058 break;
1059 case KVM_REG_ARM_TIMER_CNT:
1060 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1061 &vcpu->kvm->arch.flags)) {
1062 timer = vcpu_vtimer(vcpu);
1063 timer_set_offset(timer, kvm_phys_timer_read() - value);
1064 }
1065 break;
1066 case KVM_REG_ARM_TIMER_CVAL:
1067 timer = vcpu_vtimer(vcpu);
1068 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1069 break;
1070 case KVM_REG_ARM_PTIMER_CTL:
1071 timer = vcpu_ptimer(vcpu);
1072 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1073 break;
1074 case KVM_REG_ARM_PTIMER_CNT:
1075 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1076 &vcpu->kvm->arch.flags)) {
1077 timer = vcpu_ptimer(vcpu);
1078 timer_set_offset(timer, kvm_phys_timer_read() - value);
1079 }
1080 break;
1081 case KVM_REG_ARM_PTIMER_CVAL:
1082 timer = vcpu_ptimer(vcpu);
1083 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1084 break;
1085
1086 default:
1087 return -1;
1088 }
1089
1090 return 0;
1091 }
1092
read_timer_ctl(struct arch_timer_context * timer)1093 static u64 read_timer_ctl(struct arch_timer_context *timer)
1094 {
1095 /*
1096 * Set ISTATUS bit if it's expired.
1097 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
1098 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
1099 * regardless of ENABLE bit for our implementation convenience.
1100 */
1101 u32 ctl = timer_get_ctl(timer);
1102
1103 if (!kvm_timer_compute_delta(timer))
1104 ctl |= ARCH_TIMER_CTRL_IT_STAT;
1105
1106 return ctl;
1107 }
1108
kvm_arm_timer_get_reg(struct kvm_vcpu * vcpu,u64 regid)1109 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
1110 {
1111 switch (regid) {
1112 case KVM_REG_ARM_TIMER_CTL:
1113 return kvm_arm_timer_read(vcpu,
1114 vcpu_vtimer(vcpu), TIMER_REG_CTL);
1115 case KVM_REG_ARM_TIMER_CNT:
1116 return kvm_arm_timer_read(vcpu,
1117 vcpu_vtimer(vcpu), TIMER_REG_CNT);
1118 case KVM_REG_ARM_TIMER_CVAL:
1119 return kvm_arm_timer_read(vcpu,
1120 vcpu_vtimer(vcpu), TIMER_REG_CVAL);
1121 case KVM_REG_ARM_PTIMER_CTL:
1122 return kvm_arm_timer_read(vcpu,
1123 vcpu_ptimer(vcpu), TIMER_REG_CTL);
1124 case KVM_REG_ARM_PTIMER_CNT:
1125 return kvm_arm_timer_read(vcpu,
1126 vcpu_ptimer(vcpu), TIMER_REG_CNT);
1127 case KVM_REG_ARM_PTIMER_CVAL:
1128 return kvm_arm_timer_read(vcpu,
1129 vcpu_ptimer(vcpu), TIMER_REG_CVAL);
1130 }
1131 return (u64)-1;
1132 }
1133
kvm_arm_timer_read(struct kvm_vcpu * vcpu,struct arch_timer_context * timer,enum kvm_arch_timer_regs treg)1134 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
1135 struct arch_timer_context *timer,
1136 enum kvm_arch_timer_regs treg)
1137 {
1138 u64 val;
1139
1140 switch (treg) {
1141 case TIMER_REG_TVAL:
1142 val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
1143 val = lower_32_bits(val);
1144 break;
1145
1146 case TIMER_REG_CTL:
1147 val = read_timer_ctl(timer);
1148 break;
1149
1150 case TIMER_REG_CVAL:
1151 val = timer_get_cval(timer);
1152 break;
1153
1154 case TIMER_REG_CNT:
1155 val = kvm_phys_timer_read() - timer_get_offset(timer);
1156 break;
1157
1158 case TIMER_REG_VOFF:
1159 val = *timer->offset.vcpu_offset;
1160 break;
1161
1162 default:
1163 BUG();
1164 }
1165
1166 return val;
1167 }
1168
kvm_arm_timer_read_sysreg(struct kvm_vcpu * vcpu,enum kvm_arch_timers tmr,enum kvm_arch_timer_regs treg)1169 u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
1170 enum kvm_arch_timers tmr,
1171 enum kvm_arch_timer_regs treg)
1172 {
1173 struct arch_timer_context *timer;
1174 struct timer_map map;
1175 u64 val;
1176
1177 get_timer_map(vcpu, &map);
1178 timer = vcpu_get_timer(vcpu, tmr);
1179
1180 if (timer == map.emul_vtimer || timer == map.emul_ptimer)
1181 return kvm_arm_timer_read(vcpu, timer, treg);
1182
1183 preempt_disable();
1184 timer_save_state(timer);
1185
1186 val = kvm_arm_timer_read(vcpu, timer, treg);
1187
1188 timer_restore_state(timer);
1189 preempt_enable();
1190
1191 return val;
1192 }
1193
kvm_arm_timer_write(struct kvm_vcpu * vcpu,struct arch_timer_context * timer,enum kvm_arch_timer_regs treg,u64 val)1194 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
1195 struct arch_timer_context *timer,
1196 enum kvm_arch_timer_regs treg,
1197 u64 val)
1198 {
1199 switch (treg) {
1200 case TIMER_REG_TVAL:
1201 timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
1202 break;
1203
1204 case TIMER_REG_CTL:
1205 timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
1206 break;
1207
1208 case TIMER_REG_CVAL:
1209 timer_set_cval(timer, val);
1210 break;
1211
1212 case TIMER_REG_VOFF:
1213 *timer->offset.vcpu_offset = val;
1214 break;
1215
1216 default:
1217 BUG();
1218 }
1219 }
1220
kvm_arm_timer_write_sysreg(struct kvm_vcpu * vcpu,enum kvm_arch_timers tmr,enum kvm_arch_timer_regs treg,u64 val)1221 void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
1222 enum kvm_arch_timers tmr,
1223 enum kvm_arch_timer_regs treg,
1224 u64 val)
1225 {
1226 struct arch_timer_context *timer;
1227 struct timer_map map;
1228
1229 get_timer_map(vcpu, &map);
1230 timer = vcpu_get_timer(vcpu, tmr);
1231 if (timer == map.emul_vtimer || timer == map.emul_ptimer) {
1232 soft_timer_cancel(&timer->hrtimer);
1233 kvm_arm_timer_write(vcpu, timer, treg, val);
1234 timer_emulate(timer);
1235 } else {
1236 preempt_disable();
1237 timer_save_state(timer);
1238 kvm_arm_timer_write(vcpu, timer, treg, val);
1239 timer_restore_state(timer);
1240 preempt_enable();
1241 }
1242 }
1243
timer_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)1244 static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
1245 {
1246 if (vcpu)
1247 irqd_set_forwarded_to_vcpu(d);
1248 else
1249 irqd_clr_forwarded_to_vcpu(d);
1250
1251 return 0;
1252 }
1253
timer_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)1254 static int timer_irq_set_irqchip_state(struct irq_data *d,
1255 enum irqchip_irq_state which, bool val)
1256 {
1257 if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
1258 return irq_chip_set_parent_state(d, which, val);
1259
1260 if (val)
1261 irq_chip_mask_parent(d);
1262 else
1263 irq_chip_unmask_parent(d);
1264
1265 return 0;
1266 }
1267
timer_irq_eoi(struct irq_data * d)1268 static void timer_irq_eoi(struct irq_data *d)
1269 {
1270 if (!irqd_is_forwarded_to_vcpu(d))
1271 irq_chip_eoi_parent(d);
1272 }
1273
timer_irq_ack(struct irq_data * d)1274 static void timer_irq_ack(struct irq_data *d)
1275 {
1276 d = d->parent_data;
1277 if (d->chip->irq_ack)
1278 d->chip->irq_ack(d);
1279 }
1280
1281 static struct irq_chip timer_chip = {
1282 .name = "KVM",
1283 .irq_ack = timer_irq_ack,
1284 .irq_mask = irq_chip_mask_parent,
1285 .irq_unmask = irq_chip_unmask_parent,
1286 .irq_eoi = timer_irq_eoi,
1287 .irq_set_type = irq_chip_set_type_parent,
1288 .irq_set_vcpu_affinity = timer_irq_set_vcpu_affinity,
1289 .irq_set_irqchip_state = timer_irq_set_irqchip_state,
1290 };
1291
timer_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1292 static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1293 unsigned int nr_irqs, void *arg)
1294 {
1295 irq_hw_number_t hwirq = (uintptr_t)arg;
1296
1297 return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
1298 &timer_chip, NULL);
1299 }
1300
timer_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1301 static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1302 unsigned int nr_irqs)
1303 {
1304 }
1305
1306 static const struct irq_domain_ops timer_domain_ops = {
1307 .alloc = timer_irq_domain_alloc,
1308 .free = timer_irq_domain_free,
1309 };
1310
kvm_irq_fixup_flags(unsigned int virq,u32 * flags)1311 static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
1312 {
1313 *flags = irq_get_trigger_type(virq);
1314 if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
1315 kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
1316 virq);
1317 *flags = IRQF_TRIGGER_LOW;
1318 }
1319 }
1320
kvm_irq_init(struct arch_timer_kvm_info * info)1321 static int kvm_irq_init(struct arch_timer_kvm_info *info)
1322 {
1323 struct irq_domain *domain = NULL;
1324
1325 if (info->virtual_irq <= 0) {
1326 kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
1327 info->virtual_irq);
1328 return -ENODEV;
1329 }
1330
1331 host_vtimer_irq = info->virtual_irq;
1332 kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
1333
1334 if (kvm_vgic_global_state.no_hw_deactivation) {
1335 struct fwnode_handle *fwnode;
1336 struct irq_data *data;
1337
1338 fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
1339 if (!fwnode)
1340 return -ENOMEM;
1341
1342 /* Assume both vtimer and ptimer in the same parent */
1343 data = irq_get_irq_data(host_vtimer_irq);
1344 domain = irq_domain_create_hierarchy(data->domain, 0,
1345 NR_KVM_TIMERS, fwnode,
1346 &timer_domain_ops, NULL);
1347 if (!domain) {
1348 irq_domain_free_fwnode(fwnode);
1349 return -ENOMEM;
1350 }
1351
1352 arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
1353 WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
1354 (void *)TIMER_VTIMER));
1355 }
1356
1357 if (info->physical_irq > 0) {
1358 host_ptimer_irq = info->physical_irq;
1359 kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
1360
1361 if (domain)
1362 WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
1363 (void *)TIMER_PTIMER));
1364 }
1365
1366 return 0;
1367 }
1368
kvm_timer_hyp_init(bool has_gic)1369 int __init kvm_timer_hyp_init(bool has_gic)
1370 {
1371 struct arch_timer_kvm_info *info;
1372 int err;
1373
1374 info = arch_timer_get_kvm_info();
1375 timecounter = &info->timecounter;
1376
1377 if (!timecounter->cc) {
1378 kvm_err("kvm_arch_timer: uninitialized timecounter\n");
1379 return -ENODEV;
1380 }
1381
1382 err = kvm_irq_init(info);
1383 if (err)
1384 return err;
1385
1386 /* First, do the virtual EL1 timer irq */
1387
1388 err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1389 "kvm guest vtimer", kvm_get_running_vcpus());
1390 if (err) {
1391 kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1392 host_vtimer_irq, err);
1393 return err;
1394 }
1395
1396 if (has_gic) {
1397 err = irq_set_vcpu_affinity(host_vtimer_irq,
1398 kvm_get_running_vcpus());
1399 if (err) {
1400 kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1401 goto out_free_vtimer_irq;
1402 }
1403
1404 static_branch_enable(&has_gic_active_state);
1405 }
1406
1407 kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1408
1409 /* Now let's do the physical EL1 timer irq */
1410
1411 if (info->physical_irq > 0) {
1412 err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1413 "kvm guest ptimer", kvm_get_running_vcpus());
1414 if (err) {
1415 kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1416 host_ptimer_irq, err);
1417 goto out_free_vtimer_irq;
1418 }
1419
1420 if (has_gic) {
1421 err = irq_set_vcpu_affinity(host_ptimer_irq,
1422 kvm_get_running_vcpus());
1423 if (err) {
1424 kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1425 goto out_free_ptimer_irq;
1426 }
1427 }
1428
1429 kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1430 } else if (has_vhe()) {
1431 kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1432 info->physical_irq);
1433 err = -ENODEV;
1434 goto out_free_vtimer_irq;
1435 }
1436
1437 return 0;
1438
1439 out_free_ptimer_irq:
1440 if (info->physical_irq > 0)
1441 free_percpu_irq(host_ptimer_irq, kvm_get_running_vcpus());
1442 out_free_vtimer_irq:
1443 free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1444 return err;
1445 }
1446
kvm_timer_vcpu_terminate(struct kvm_vcpu * vcpu)1447 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1448 {
1449 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1450
1451 soft_timer_cancel(&timer->bg_timer);
1452 }
1453
timer_irqs_are_valid(struct kvm_vcpu * vcpu)1454 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1455 {
1456 u32 ppis = 0;
1457 bool valid;
1458
1459 mutex_lock(&vcpu->kvm->arch.config_lock);
1460
1461 for (int i = 0; i < nr_timers(vcpu); i++) {
1462 struct arch_timer_context *ctx;
1463 int irq;
1464
1465 ctx = vcpu_get_timer(vcpu, i);
1466 irq = timer_irq(ctx);
1467 if (kvm_vgic_set_owner(vcpu, irq, ctx))
1468 break;
1469
1470 /*
1471 * We know by construction that we only have PPIs, so
1472 * all values are less than 32.
1473 */
1474 ppis |= BIT(irq);
1475 }
1476
1477 valid = hweight32(ppis) == nr_timers(vcpu);
1478
1479 if (valid)
1480 set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags);
1481
1482 mutex_unlock(&vcpu->kvm->arch.config_lock);
1483
1484 return valid;
1485 }
1486
kvm_arch_timer_get_input_level(int vintid)1487 static bool kvm_arch_timer_get_input_level(int vintid)
1488 {
1489 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1490
1491 if (WARN(!vcpu, "No vcpu context!\n"))
1492 return false;
1493
1494 for (int i = 0; i < nr_timers(vcpu); i++) {
1495 struct arch_timer_context *ctx;
1496
1497 ctx = vcpu_get_timer(vcpu, i);
1498 if (timer_irq(ctx) == vintid)
1499 return kvm_timer_should_fire(ctx);
1500 }
1501
1502 /* A timer IRQ has fired, but no matching timer was found? */
1503 WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid);
1504
1505 return false;
1506 }
1507
kvm_timer_enable(struct kvm_vcpu * vcpu)1508 int kvm_timer_enable(struct kvm_vcpu *vcpu)
1509 {
1510 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1511 struct timer_map map;
1512 int ret;
1513
1514 if (timer->enabled)
1515 return 0;
1516
1517 /* Without a VGIC we do not map virtual IRQs to physical IRQs */
1518 if (!irqchip_in_kernel(vcpu->kvm))
1519 goto no_vgic;
1520
1521 /*
1522 * At this stage, we have the guarantee that the vgic is both
1523 * available and initialized.
1524 */
1525 if (!timer_irqs_are_valid(vcpu)) {
1526 kvm_debug("incorrectly configured timer irqs\n");
1527 return -EINVAL;
1528 }
1529
1530 get_timer_map(vcpu, &map);
1531
1532 ret = kvm_vgic_map_phys_irq(vcpu,
1533 map.direct_vtimer->host_timer_irq,
1534 timer_irq(map.direct_vtimer),
1535 &arch_timer_irq_ops);
1536 if (ret)
1537 return ret;
1538
1539 if (map.direct_ptimer) {
1540 ret = kvm_vgic_map_phys_irq(vcpu,
1541 map.direct_ptimer->host_timer_irq,
1542 timer_irq(map.direct_ptimer),
1543 &arch_timer_irq_ops);
1544 }
1545
1546 if (ret)
1547 return ret;
1548
1549 no_vgic:
1550 timer->enabled = 1;
1551 return 0;
1552 }
1553
1554 /* If we have CNTPOFF, permanently set ECV to enable it */
kvm_timer_init_vhe(void)1555 void kvm_timer_init_vhe(void)
1556 {
1557 if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF))
1558 sysreg_clear_set(cnthctl_el2, 0, CNTHCTL_ECV);
1559 }
1560
kvm_arm_timer_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1561 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1562 {
1563 int __user *uaddr = (int __user *)(long)attr->addr;
1564 int irq, idx, ret = 0;
1565
1566 if (!irqchip_in_kernel(vcpu->kvm))
1567 return -EINVAL;
1568
1569 if (get_user(irq, uaddr))
1570 return -EFAULT;
1571
1572 if (!(irq_is_ppi(irq)))
1573 return -EINVAL;
1574
1575 mutex_lock(&vcpu->kvm->arch.config_lock);
1576
1577 if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE,
1578 &vcpu->kvm->arch.flags)) {
1579 ret = -EBUSY;
1580 goto out;
1581 }
1582
1583 switch (attr->attr) {
1584 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1585 idx = TIMER_VTIMER;
1586 break;
1587 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1588 idx = TIMER_PTIMER;
1589 break;
1590 case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1591 idx = TIMER_HVTIMER;
1592 break;
1593 case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1594 idx = TIMER_HPTIMER;
1595 break;
1596 default:
1597 ret = -ENXIO;
1598 goto out;
1599 }
1600
1601 /*
1602 * We cannot validate the IRQ unicity before we run, so take it at
1603 * face value. The verdict will be given on first vcpu run, for each
1604 * vcpu. Yes this is late. Blame it on the stupid API.
1605 */
1606 vcpu->kvm->arch.timer_data.ppi[idx] = irq;
1607
1608 out:
1609 mutex_unlock(&vcpu->kvm->arch.config_lock);
1610 return ret;
1611 }
1612
kvm_arm_timer_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1613 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1614 {
1615 int __user *uaddr = (int __user *)(long)attr->addr;
1616 struct arch_timer_context *timer;
1617 int irq;
1618
1619 switch (attr->attr) {
1620 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1621 timer = vcpu_vtimer(vcpu);
1622 break;
1623 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1624 timer = vcpu_ptimer(vcpu);
1625 break;
1626 case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1627 timer = vcpu_hvtimer(vcpu);
1628 break;
1629 case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1630 timer = vcpu_hptimer(vcpu);
1631 break;
1632 default:
1633 return -ENXIO;
1634 }
1635
1636 irq = timer_irq(timer);
1637 return put_user(irq, uaddr);
1638 }
1639
kvm_arm_timer_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1640 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1641 {
1642 switch (attr->attr) {
1643 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1644 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1645 case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1646 case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1647 return 0;
1648 }
1649
1650 return -ENXIO;
1651 }
1652
kvm_vm_ioctl_set_counter_offset(struct kvm * kvm,struct kvm_arm_counter_offset * offset)1653 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1654 struct kvm_arm_counter_offset *offset)
1655 {
1656 int ret = 0;
1657
1658 if (offset->reserved)
1659 return -EINVAL;
1660
1661 if (kvm_vm_is_protected(kvm))
1662 return -EBUSY;
1663
1664 mutex_lock(&kvm->lock);
1665
1666 if (lock_all_vcpus(kvm)) {
1667 set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags);
1668
1669 /*
1670 * If userspace decides to set the offset using this
1671 * API rather than merely restoring the counter
1672 * values, the offset applies to both the virtual and
1673 * physical views.
1674 */
1675 kvm->arch.timer_data.voffset = offset->counter_offset;
1676 kvm->arch.timer_data.poffset = offset->counter_offset;
1677
1678 unlock_all_vcpus(kvm);
1679 } else {
1680 ret = -EBUSY;
1681 }
1682
1683 mutex_unlock(&kvm->lock);
1684
1685 return ret;
1686 }
1687