1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /*
4 * Local APIC virtualization
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2007 Novell
8 * Copyright (C) 2007 Intel
9 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Dor Laor <dor.laor@qumranet.com>
13 * Gregory Haskins <ghaskins@novell.com>
14 * Yaozu (Eddie) Dong <eddie.dong@intel.com>
15 *
16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/smp.h>
25 #include <linux/hrtimer.h>
26 #include <linux/io.h>
27 #include <linux/export.h>
28 #include <linux/math64.h>
29 #include <linux/slab.h>
30 #include <asm/processor.h>
31 #include <asm/mce.h>
32 #include <asm/msr.h>
33 #include <asm/page.h>
34 #include <asm/current.h>
35 #include <asm/apicdef.h>
36 #include <asm/delay.h>
37 #include <linux/atomic.h>
38 #include <linux/jump_label.h>
39 #include "kvm_cache_regs.h"
40 #include "irq.h"
41 #include "ioapic.h"
42 #include "trace.h"
43 #include "x86.h"
44 #include "xen.h"
45 #include "cpuid.h"
46 #include "hyperv.h"
47 #include "smm.h"
48
49 #ifndef CONFIG_X86_64
50 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
51 #else
52 #define mod_64(x, y) ((x) % (y))
53 #endif
54
55 /* 14 is the version for Xeon and Pentium 8.4.8*/
56 #define APIC_VERSION 0x14UL
57 #define LAPIC_MMIO_LENGTH (1 << 12)
58 /* followed define is not in apicdef.h */
59 #define MAX_APIC_VECTOR 256
60 #define APIC_VECTORS_PER_REG 32
61
62 /*
63 * Enable local APIC timer advancement (tscdeadline mode only) with adaptive
64 * tuning. When enabled, KVM programs the host timer event to fire early, i.e.
65 * before the deadline expires, to account for the delay between taking the
66 * VM-Exit (to inject the guest event) and the subsequent VM-Enter to resume
67 * the guest, i.e. so that the interrupt arrives in the guest with minimal
68 * latency relative to the deadline programmed by the guest.
69 */
70 static bool lapic_timer_advance __read_mostly = true;
71 module_param(lapic_timer_advance, bool, 0444);
72
73 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */
74 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */
75 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000
76 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000
77 /* step-by-step approximation to mitigate fluctuation */
78 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
79 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data);
80 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data);
81
__kvm_lapic_set_reg(char * regs,int reg_off,u32 val)82 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val)
83 {
84 *((u32 *) (regs + reg_off)) = val;
85 }
86
kvm_lapic_set_reg(struct kvm_lapic * apic,int reg_off,u32 val)87 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
88 {
89 __kvm_lapic_set_reg(apic->regs, reg_off, val);
90 }
91
__kvm_lapic_get_reg64(char * regs,int reg)92 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg)
93 {
94 BUILD_BUG_ON(reg != APIC_ICR);
95 return *((u64 *) (regs + reg));
96 }
97
kvm_lapic_get_reg64(struct kvm_lapic * apic,int reg)98 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg)
99 {
100 return __kvm_lapic_get_reg64(apic->regs, reg);
101 }
102
__kvm_lapic_set_reg64(char * regs,int reg,u64 val)103 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val)
104 {
105 BUILD_BUG_ON(reg != APIC_ICR);
106 *((u64 *) (regs + reg)) = val;
107 }
108
kvm_lapic_set_reg64(struct kvm_lapic * apic,int reg,u64 val)109 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic,
110 int reg, u64 val)
111 {
112 __kvm_lapic_set_reg64(apic->regs, reg, val);
113 }
114
apic_test_vector(int vec,void * bitmap)115 static inline int apic_test_vector(int vec, void *bitmap)
116 {
117 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
118 }
119
kvm_apic_pending_eoi(struct kvm_vcpu * vcpu,int vector)120 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
121 {
122 struct kvm_lapic *apic = vcpu->arch.apic;
123
124 return apic_test_vector(vector, apic->regs + APIC_ISR) ||
125 apic_test_vector(vector, apic->regs + APIC_IRR);
126 }
127
__apic_test_and_set_vector(int vec,void * bitmap)128 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
129 {
130 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
131 }
132
__apic_test_and_clear_vector(int vec,void * bitmap)133 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
134 {
135 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
136 }
137
138 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
139 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
140
141 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ);
142 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ);
143
apic_enabled(struct kvm_lapic * apic)144 static inline int apic_enabled(struct kvm_lapic *apic)
145 {
146 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic);
147 }
148
149 #define LVT_MASK \
150 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
151
152 #define LINT_MASK \
153 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
154 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
155
kvm_x2apic_id(struct kvm_lapic * apic)156 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
157 {
158 return apic->vcpu->vcpu_id;
159 }
160
kvm_can_post_timer_interrupt(struct kvm_vcpu * vcpu)161 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
162 {
163 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) &&
164 (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm));
165 }
166
kvm_can_use_hv_timer(struct kvm_vcpu * vcpu)167 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
168 {
169 return kvm_x86_ops.set_hv_timer
170 && !(kvm_mwait_in_guest(vcpu->kvm) ||
171 kvm_can_post_timer_interrupt(vcpu));
172 }
173
kvm_use_posted_timer_interrupt(struct kvm_vcpu * vcpu)174 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
175 {
176 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
177 }
178
kvm_apic_calc_x2apic_ldr(u32 id)179 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
180 {
181 return ((id >> 4) << 16) | (1 << (id & 0xf));
182 }
183
kvm_apic_map_get_logical_dest(struct kvm_apic_map * map,u32 dest_id,struct kvm_lapic *** cluster,u16 * mask)184 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
185 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
186 switch (map->logical_mode) {
187 case KVM_APIC_MODE_SW_DISABLED:
188 /* Arbitrarily use the flat map so that @cluster isn't NULL. */
189 *cluster = map->xapic_flat_map;
190 *mask = 0;
191 return true;
192 case KVM_APIC_MODE_X2APIC: {
193 u32 offset = (dest_id >> 16) * 16;
194 u32 max_apic_id = map->max_apic_id;
195
196 if (offset <= max_apic_id) {
197 u8 cluster_size = min(max_apic_id - offset + 1, 16U);
198
199 offset = array_index_nospec(offset, map->max_apic_id + 1);
200 *cluster = &map->phys_map[offset];
201 *mask = dest_id & (0xffff >> (16 - cluster_size));
202 } else {
203 *mask = 0;
204 }
205
206 return true;
207 }
208 case KVM_APIC_MODE_XAPIC_FLAT:
209 *cluster = map->xapic_flat_map;
210 *mask = dest_id & 0xff;
211 return true;
212 case KVM_APIC_MODE_XAPIC_CLUSTER:
213 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
214 *mask = dest_id & 0xf;
215 return true;
216 case KVM_APIC_MODE_MAP_DISABLED:
217 return false;
218 default:
219 WARN_ON_ONCE(1);
220 return false;
221 }
222 }
223
kvm_apic_map_free(struct rcu_head * rcu)224 static void kvm_apic_map_free(struct rcu_head *rcu)
225 {
226 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
227
228 kvfree(map);
229 }
230
kvm_recalculate_phys_map(struct kvm_apic_map * new,struct kvm_vcpu * vcpu,bool * xapic_id_mismatch)231 static int kvm_recalculate_phys_map(struct kvm_apic_map *new,
232 struct kvm_vcpu *vcpu,
233 bool *xapic_id_mismatch)
234 {
235 struct kvm_lapic *apic = vcpu->arch.apic;
236 u32 x2apic_id = kvm_x2apic_id(apic);
237 u32 xapic_id = kvm_xapic_id(apic);
238 u32 physical_id;
239
240 /*
241 * For simplicity, KVM always allocates enough space for all possible
242 * xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on
243 * without the optimized map.
244 */
245 if (WARN_ON_ONCE(xapic_id > new->max_apic_id))
246 return -EINVAL;
247
248 /*
249 * Bail if a vCPU was added and/or enabled its APIC between allocating
250 * the map and doing the actual calculations for the map. Note, KVM
251 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if
252 * the compiler decides to reload x2apic_id after this check.
253 */
254 if (x2apic_id > new->max_apic_id)
255 return -E2BIG;
256
257 /*
258 * Deliberately truncate the vCPU ID when detecting a mismatched APIC
259 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a
260 * 32-bit value. Any unwanted aliasing due to truncation results will
261 * be detected below.
262 */
263 if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id)
264 *xapic_id_mismatch = true;
265
266 /*
267 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs.
268 * Allow sending events to vCPUs by their x2APIC ID even if the target
269 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs
270 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap
271 * and collide).
272 *
273 * Honor the architectural (and KVM's non-optimized) behavior if
274 * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed
275 * to process messages independently. If multiple vCPUs have the same
276 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest
277 * manually modified its xAPIC IDs, events targeting that ID are
278 * supposed to be recognized by all vCPUs with said ID.
279 */
280 if (vcpu->kvm->arch.x2apic_format) {
281 /* See also kvm_apic_match_physical_addr(). */
282 if (apic_x2apic_mode(apic) || x2apic_id > 0xff)
283 new->phys_map[x2apic_id] = apic;
284
285 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
286 new->phys_map[xapic_id] = apic;
287 } else {
288 /*
289 * Disable the optimized map if the physical APIC ID is already
290 * mapped, i.e. is aliased to multiple vCPUs. The optimized
291 * map requires a strict 1:1 mapping between IDs and vCPUs.
292 */
293 if (apic_x2apic_mode(apic))
294 physical_id = x2apic_id;
295 else
296 physical_id = xapic_id;
297
298 if (new->phys_map[physical_id])
299 return -EINVAL;
300
301 new->phys_map[physical_id] = apic;
302 }
303
304 return 0;
305 }
306
kvm_recalculate_logical_map(struct kvm_apic_map * new,struct kvm_vcpu * vcpu)307 static void kvm_recalculate_logical_map(struct kvm_apic_map *new,
308 struct kvm_vcpu *vcpu)
309 {
310 struct kvm_lapic *apic = vcpu->arch.apic;
311 enum kvm_apic_logical_mode logical_mode;
312 struct kvm_lapic **cluster;
313 u16 mask;
314 u32 ldr;
315
316 if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
317 return;
318
319 if (!kvm_apic_sw_enabled(apic))
320 return;
321
322 ldr = kvm_lapic_get_reg(apic, APIC_LDR);
323 if (!ldr)
324 return;
325
326 if (apic_x2apic_mode(apic)) {
327 logical_mode = KVM_APIC_MODE_X2APIC;
328 } else {
329 ldr = GET_APIC_LOGICAL_ID(ldr);
330 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
331 logical_mode = KVM_APIC_MODE_XAPIC_FLAT;
332 else
333 logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER;
334 }
335
336 /*
337 * To optimize logical mode delivery, all software-enabled APICs must
338 * be configured for the same mode.
339 */
340 if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) {
341 new->logical_mode = logical_mode;
342 } else if (new->logical_mode != logical_mode) {
343 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
344 return;
345 }
346
347 /*
348 * In x2APIC mode, the LDR is read-only and derived directly from the
349 * x2APIC ID, thus is guaranteed to be addressable. KVM reuses
350 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by
351 * reversing the LDR calculation to get cluster of APICs, i.e. no
352 * additional work is required.
353 */
354 if (apic_x2apic_mode(apic))
355 return;
356
357 if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr,
358 &cluster, &mask))) {
359 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
360 return;
361 }
362
363 if (!mask)
364 return;
365
366 ldr = ffs(mask) - 1;
367 if (!is_power_of_2(mask) || cluster[ldr])
368 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
369 else
370 cluster[ldr] = apic;
371 }
372
373 /*
374 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
375 *
376 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
377 * apic_map_lock_held.
378 */
379 enum {
380 CLEAN,
381 UPDATE_IN_PROGRESS,
382 DIRTY
383 };
384
kvm_recalculate_apic_map(struct kvm * kvm)385 void kvm_recalculate_apic_map(struct kvm *kvm)
386 {
387 struct kvm_apic_map *new, *old = NULL;
388 struct kvm_vcpu *vcpu;
389 unsigned long i;
390 u32 max_id = 255; /* enough space for any xAPIC ID */
391 bool xapic_id_mismatch;
392 int r;
393
394 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */
395 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
396 return;
397
398 WARN_ONCE(!irqchip_in_kernel(kvm),
399 "Dirty APIC map without an in-kernel local APIC");
400
401 mutex_lock(&kvm->arch.apic_map_lock);
402
403 retry:
404 /*
405 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean)
406 * or the APIC registers (if dirty). Note, on retry the map may have
407 * not yet been marked dirty by whatever task changed a vCPU's x2APIC
408 * ID, i.e. the map may still show up as in-progress. In that case
409 * this task still needs to retry and complete its calculation.
410 */
411 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
412 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
413 /* Someone else has updated the map. */
414 mutex_unlock(&kvm->arch.apic_map_lock);
415 return;
416 }
417
418 /*
419 * Reset the mismatch flag between attempts so that KVM does the right
420 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e.
421 * keep max_id strictly increasing. Disallowing max_id from shrinking
422 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU
423 * with the highest x2APIC ID is toggling its APIC on and off.
424 */
425 xapic_id_mismatch = false;
426
427 kvm_for_each_vcpu(i, vcpu, kvm)
428 if (kvm_apic_present(vcpu))
429 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
430
431 new = kvzalloc(sizeof(struct kvm_apic_map) +
432 sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
433 GFP_KERNEL_ACCOUNT);
434
435 if (!new)
436 goto out;
437
438 new->max_apic_id = max_id;
439 new->logical_mode = KVM_APIC_MODE_SW_DISABLED;
440
441 kvm_for_each_vcpu(i, vcpu, kvm) {
442 if (!kvm_apic_present(vcpu))
443 continue;
444
445 r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch);
446 if (r) {
447 kvfree(new);
448 new = NULL;
449 if (r == -E2BIG) {
450 cond_resched();
451 goto retry;
452 }
453
454 goto out;
455 }
456
457 kvm_recalculate_logical_map(new, vcpu);
458 }
459 out:
460 /*
461 * The optimized map is effectively KVM's internal version of APICv,
462 * and all unwanted aliasing that results in disabling the optimized
463 * map also applies to APICv.
464 */
465 if (!new)
466 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
467 else
468 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
469
470 if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
471 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
472 else
473 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
474
475 if (xapic_id_mismatch)
476 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
477 else
478 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
479
480 old = rcu_dereference_protected(kvm->arch.apic_map,
481 lockdep_is_held(&kvm->arch.apic_map_lock));
482 rcu_assign_pointer(kvm->arch.apic_map, new);
483 /*
484 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
485 * If another update has come in, leave it DIRTY.
486 */
487 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
488 UPDATE_IN_PROGRESS, CLEAN);
489 mutex_unlock(&kvm->arch.apic_map_lock);
490
491 if (old)
492 call_rcu(&old->rcu, kvm_apic_map_free);
493
494 kvm_make_scan_ioapic_request(kvm);
495 }
496
apic_set_spiv(struct kvm_lapic * apic,u32 val)497 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
498 {
499 bool enabled = val & APIC_SPIV_APIC_ENABLED;
500
501 kvm_lapic_set_reg(apic, APIC_SPIV, val);
502
503 if (enabled != apic->sw_enabled) {
504 apic->sw_enabled = enabled;
505 if (enabled)
506 static_branch_slow_dec_deferred(&apic_sw_disabled);
507 else
508 static_branch_inc(&apic_sw_disabled.key);
509
510 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
511 }
512
513 /* Check if there are APF page ready requests pending */
514 if (enabled) {
515 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu);
516 kvm_xen_sw_enable_lapic(apic->vcpu);
517 }
518 }
519
kvm_apic_set_xapic_id(struct kvm_lapic * apic,u8 id)520 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
521 {
522 kvm_lapic_set_reg(apic, APIC_ID, id << 24);
523 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
524 }
525
kvm_apic_set_ldr(struct kvm_lapic * apic,u32 id)526 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
527 {
528 kvm_lapic_set_reg(apic, APIC_LDR, id);
529 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
530 }
531
kvm_apic_set_dfr(struct kvm_lapic * apic,u32 val)532 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
533 {
534 kvm_lapic_set_reg(apic, APIC_DFR, val);
535 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
536 }
537
kvm_apic_set_x2apic_id(struct kvm_lapic * apic,u32 id)538 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
539 {
540 u32 ldr = kvm_apic_calc_x2apic_ldr(id);
541
542 WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
543
544 kvm_lapic_set_reg(apic, APIC_ID, id);
545 kvm_lapic_set_reg(apic, APIC_LDR, ldr);
546 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
547 }
548
apic_lvt_enabled(struct kvm_lapic * apic,int lvt_type)549 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
550 {
551 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
552 }
553
apic_lvtt_oneshot(struct kvm_lapic * apic)554 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
555 {
556 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
557 }
558
apic_lvtt_period(struct kvm_lapic * apic)559 static inline int apic_lvtt_period(struct kvm_lapic *apic)
560 {
561 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
562 }
563
apic_lvtt_tscdeadline(struct kvm_lapic * apic)564 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
565 {
566 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
567 }
568
apic_lvt_nmi_mode(u32 lvt_val)569 static inline int apic_lvt_nmi_mode(u32 lvt_val)
570 {
571 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
572 }
573
kvm_lapic_lvt_supported(struct kvm_lapic * apic,int lvt_index)574 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index)
575 {
576 return apic->nr_lvt_entries > lvt_index;
577 }
578
kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu * vcpu)579 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu)
580 {
581 return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P);
582 }
583
kvm_apic_set_version(struct kvm_vcpu * vcpu)584 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
585 {
586 struct kvm_lapic *apic = vcpu->arch.apic;
587 u32 v = 0;
588
589 if (!lapic_in_kernel(vcpu))
590 return;
591
592 v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16);
593
594 /*
595 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
596 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
597 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
598 * version first and level-triggered interrupts never get EOIed in
599 * IOAPIC.
600 */
601 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) &&
602 !ioapic_in_kernel(vcpu->kvm))
603 v |= APIC_LVR_DIRECTED_EOI;
604 kvm_lapic_set_reg(apic, APIC_LVR, v);
605 }
606
kvm_apic_after_set_mcg_cap(struct kvm_vcpu * vcpu)607 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu)
608 {
609 int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
610 struct kvm_lapic *apic = vcpu->arch.apic;
611 int i;
612
613 if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries)
614 return;
615
616 /* Initialize/mask any "new" LVT entries. */
617 for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++)
618 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
619
620 apic->nr_lvt_entries = nr_lvt_entries;
621
622 /* The number of LVT entries is reflected in the version register. */
623 kvm_apic_set_version(vcpu);
624 }
625
626 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = {
627 [LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */
628 [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK,
629 [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK,
630 [LVT_LINT0] = LINT_MASK,
631 [LVT_LINT1] = LINT_MASK,
632 [LVT_ERROR] = LVT_MASK,
633 [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK
634 };
635
find_highest_vector(void * bitmap)636 static int find_highest_vector(void *bitmap)
637 {
638 int vec;
639 u32 *reg;
640
641 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
642 vec >= 0; vec -= APIC_VECTORS_PER_REG) {
643 reg = bitmap + REG_POS(vec);
644 if (*reg)
645 return __fls(*reg) + vec;
646 }
647
648 return -1;
649 }
650
count_vectors(void * bitmap)651 static u8 count_vectors(void *bitmap)
652 {
653 int vec;
654 u32 *reg;
655 u8 count = 0;
656
657 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
658 reg = bitmap + REG_POS(vec);
659 count += hweight32(*reg);
660 }
661
662 return count;
663 }
664
__kvm_apic_update_irr(u32 * pir,void * regs,int * max_irr)665 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
666 {
667 u32 i, vec;
668 u32 pir_val, irr_val, prev_irr_val;
669 int max_updated_irr;
670
671 max_updated_irr = -1;
672 *max_irr = -1;
673
674 for (i = vec = 0; i <= 7; i++, vec += 32) {
675 u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10);
676
677 irr_val = *p_irr;
678 pir_val = READ_ONCE(pir[i]);
679
680 if (pir_val) {
681 pir_val = xchg(&pir[i], 0);
682
683 prev_irr_val = irr_val;
684 do {
685 irr_val = prev_irr_val | pir_val;
686 } while (prev_irr_val != irr_val &&
687 !try_cmpxchg(p_irr, &prev_irr_val, irr_val));
688
689 if (prev_irr_val != irr_val)
690 max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec;
691 }
692 if (irr_val)
693 *max_irr = __fls(irr_val) + vec;
694 }
695
696 return ((max_updated_irr != -1) &&
697 (max_updated_irr == *max_irr));
698 }
699 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
700
kvm_apic_update_irr(struct kvm_vcpu * vcpu,u32 * pir,int * max_irr)701 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
702 {
703 struct kvm_lapic *apic = vcpu->arch.apic;
704 bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr);
705
706 if (unlikely(!apic->apicv_active && irr_updated))
707 apic->irr_pending = true;
708 return irr_updated;
709 }
710 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
711
apic_search_irr(struct kvm_lapic * apic)712 static inline int apic_search_irr(struct kvm_lapic *apic)
713 {
714 return find_highest_vector(apic->regs + APIC_IRR);
715 }
716
apic_find_highest_irr(struct kvm_lapic * apic)717 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
718 {
719 int result;
720
721 /*
722 * Note that irr_pending is just a hint. It will be always
723 * true with virtual interrupt delivery enabled.
724 */
725 if (!apic->irr_pending)
726 return -1;
727
728 result = apic_search_irr(apic);
729 ASSERT(result == -1 || result >= 16);
730
731 return result;
732 }
733
apic_clear_irr(int vec,struct kvm_lapic * apic)734 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
735 {
736 if (unlikely(apic->apicv_active)) {
737 /* need to update RVI */
738 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
739 kvm_x86_call(hwapic_irr_update)(apic->vcpu,
740 apic_find_highest_irr(apic));
741 } else {
742 apic->irr_pending = false;
743 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
744 if (apic_search_irr(apic) != -1)
745 apic->irr_pending = true;
746 }
747 }
748
kvm_apic_clear_irr(struct kvm_vcpu * vcpu,int vec)749 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
750 {
751 apic_clear_irr(vec, vcpu->arch.apic);
752 }
753 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
754
apic_set_isr(int vec,struct kvm_lapic * apic)755 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
756 {
757 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
758 return;
759
760 /*
761 * With APIC virtualization enabled, all caching is disabled
762 * because the processor can modify ISR under the hood. Instead
763 * just set SVI.
764 */
765 if (unlikely(apic->apicv_active))
766 kvm_x86_call(hwapic_isr_update)(apic->vcpu, vec);
767 else {
768 ++apic->isr_count;
769 BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
770 /*
771 * ISR (in service register) bit is set when injecting an interrupt.
772 * The highest vector is injected. Thus the latest bit set matches
773 * the highest bit in ISR.
774 */
775 apic->highest_isr_cache = vec;
776 }
777 }
778
apic_find_highest_isr(struct kvm_lapic * apic)779 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
780 {
781 int result;
782
783 /*
784 * Note that isr_count is always 1, and highest_isr_cache
785 * is always -1, with APIC virtualization enabled.
786 */
787 if (!apic->isr_count)
788 return -1;
789 if (likely(apic->highest_isr_cache != -1))
790 return apic->highest_isr_cache;
791
792 result = find_highest_vector(apic->regs + APIC_ISR);
793 ASSERT(result == -1 || result >= 16);
794
795 return result;
796 }
797
apic_clear_isr(int vec,struct kvm_lapic * apic)798 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
799 {
800 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
801 return;
802
803 /*
804 * We do get here for APIC virtualization enabled if the guest
805 * uses the Hyper-V APIC enlightenment. In this case we may need
806 * to trigger a new interrupt delivery by writing the SVI field;
807 * on the other hand isr_count and highest_isr_cache are unused
808 * and must be left alone.
809 */
810 if (unlikely(apic->apicv_active))
811 kvm_x86_call(hwapic_isr_update)(apic->vcpu, apic_find_highest_isr(apic));
812 else {
813 --apic->isr_count;
814 BUG_ON(apic->isr_count < 0);
815 apic->highest_isr_cache = -1;
816 }
817 }
818
kvm_apic_update_hwapic_isr(struct kvm_vcpu * vcpu)819 void kvm_apic_update_hwapic_isr(struct kvm_vcpu *vcpu)
820 {
821 struct kvm_lapic *apic = vcpu->arch.apic;
822
823 if (WARN_ON_ONCE(!lapic_in_kernel(vcpu)) || !apic->apicv_active)
824 return;
825
826 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic));
827 }
828 EXPORT_SYMBOL_GPL(kvm_apic_update_hwapic_isr);
829
kvm_lapic_find_highest_irr(struct kvm_vcpu * vcpu)830 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
831 {
832 /* This may race with setting of irr in __apic_accept_irq() and
833 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
834 * will cause vmexit immediately and the value will be recalculated
835 * on the next vmentry.
836 */
837 return apic_find_highest_irr(vcpu->arch.apic);
838 }
839 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
840
841 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
842 int vector, int level, int trig_mode,
843 struct dest_map *dest_map);
844
kvm_apic_set_irq(struct kvm_vcpu * vcpu,struct kvm_lapic_irq * irq,struct dest_map * dest_map)845 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
846 struct dest_map *dest_map)
847 {
848 struct kvm_lapic *apic = vcpu->arch.apic;
849
850 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
851 irq->level, irq->trig_mode, dest_map);
852 }
853
__pv_send_ipi(unsigned long * ipi_bitmap,struct kvm_apic_map * map,struct kvm_lapic_irq * irq,u32 min)854 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
855 struct kvm_lapic_irq *irq, u32 min)
856 {
857 int i, count = 0;
858 struct kvm_vcpu *vcpu;
859
860 if (min > map->max_apic_id)
861 return 0;
862
863 min = array_index_nospec(min, map->max_apic_id + 1);
864
865 for_each_set_bit(i, ipi_bitmap,
866 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
867 if (map->phys_map[min + i]) {
868 vcpu = map->phys_map[min + i]->vcpu;
869 count += kvm_apic_set_irq(vcpu, irq, NULL);
870 }
871 }
872
873 return count;
874 }
875
kvm_pv_send_ipi(struct kvm * kvm,unsigned long ipi_bitmap_low,unsigned long ipi_bitmap_high,u32 min,unsigned long icr,int op_64_bit)876 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
877 unsigned long ipi_bitmap_high, u32 min,
878 unsigned long icr, int op_64_bit)
879 {
880 struct kvm_apic_map *map;
881 struct kvm_lapic_irq irq = {0};
882 int cluster_size = op_64_bit ? 64 : 32;
883 int count;
884
885 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
886 return -KVM_EINVAL;
887
888 irq.vector = icr & APIC_VECTOR_MASK;
889 irq.delivery_mode = icr & APIC_MODE_MASK;
890 irq.level = (icr & APIC_INT_ASSERT) != 0;
891 irq.trig_mode = icr & APIC_INT_LEVELTRIG;
892
893 rcu_read_lock();
894 map = rcu_dereference(kvm->arch.apic_map);
895
896 count = -EOPNOTSUPP;
897 if (likely(map)) {
898 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
899 min += cluster_size;
900 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
901 }
902
903 rcu_read_unlock();
904 return count;
905 }
906
pv_eoi_put_user(struct kvm_vcpu * vcpu,u8 val)907 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
908 {
909
910 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
911 sizeof(val));
912 }
913
pv_eoi_get_user(struct kvm_vcpu * vcpu,u8 * val)914 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
915 {
916
917 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
918 sizeof(*val));
919 }
920
pv_eoi_enabled(struct kvm_vcpu * vcpu)921 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
922 {
923 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
924 }
925
pv_eoi_set_pending(struct kvm_vcpu * vcpu)926 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
927 {
928 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0)
929 return;
930
931 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
932 }
933
pv_eoi_test_and_clr_pending(struct kvm_vcpu * vcpu)934 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu)
935 {
936 u8 val;
937
938 if (pv_eoi_get_user(vcpu, &val) < 0)
939 return false;
940
941 val &= KVM_PV_EOI_ENABLED;
942
943 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0)
944 return false;
945
946 /*
947 * Clear pending bit in any case: it will be set again on vmentry.
948 * While this might not be ideal from performance point of view,
949 * this makes sure pv eoi is only enabled when we know it's safe.
950 */
951 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
952
953 return val;
954 }
955
apic_has_interrupt_for_ppr(struct kvm_lapic * apic,u32 ppr)956 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
957 {
958 int highest_irr;
959 if (kvm_x86_ops.sync_pir_to_irr)
960 highest_irr = kvm_x86_call(sync_pir_to_irr)(apic->vcpu);
961 else
962 highest_irr = apic_find_highest_irr(apic);
963 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
964 return -1;
965 return highest_irr;
966 }
967
__apic_update_ppr(struct kvm_lapic * apic,u32 * new_ppr)968 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
969 {
970 u32 tpr, isrv, ppr, old_ppr;
971 int isr;
972
973 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
974 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
975 isr = apic_find_highest_isr(apic);
976 isrv = (isr != -1) ? isr : 0;
977
978 if ((tpr & 0xf0) >= (isrv & 0xf0))
979 ppr = tpr & 0xff;
980 else
981 ppr = isrv & 0xf0;
982
983 *new_ppr = ppr;
984 if (old_ppr != ppr)
985 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
986
987 return ppr < old_ppr;
988 }
989
apic_update_ppr(struct kvm_lapic * apic)990 static void apic_update_ppr(struct kvm_lapic *apic)
991 {
992 u32 ppr;
993
994 if (__apic_update_ppr(apic, &ppr) &&
995 apic_has_interrupt_for_ppr(apic, ppr) != -1)
996 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
997 }
998
kvm_apic_update_ppr(struct kvm_vcpu * vcpu)999 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
1000 {
1001 apic_update_ppr(vcpu->arch.apic);
1002 }
1003 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
1004
apic_set_tpr(struct kvm_lapic * apic,u32 tpr)1005 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
1006 {
1007 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
1008 apic_update_ppr(apic);
1009 }
1010
kvm_apic_broadcast(struct kvm_lapic * apic,u32 mda)1011 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
1012 {
1013 return mda == (apic_x2apic_mode(apic) ?
1014 X2APIC_BROADCAST : APIC_BROADCAST);
1015 }
1016
kvm_apic_match_physical_addr(struct kvm_lapic * apic,u32 mda)1017 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
1018 {
1019 if (kvm_apic_broadcast(apic, mda))
1020 return true;
1021
1022 /*
1023 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they
1024 * were in x2APIC mode if the target APIC ID can't be encoded as an
1025 * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which
1026 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC
1027 * mode. Match the x2APIC ID if and only if the target APIC ID can't
1028 * be encoded in xAPIC to avoid spurious matches against a vCPU that
1029 * changed its (addressable) xAPIC ID (which is writable).
1030 */
1031 if (apic_x2apic_mode(apic) || mda > 0xff)
1032 return mda == kvm_x2apic_id(apic);
1033
1034 return mda == kvm_xapic_id(apic);
1035 }
1036
kvm_apic_match_logical_addr(struct kvm_lapic * apic,u32 mda)1037 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
1038 {
1039 u32 logical_id;
1040
1041 if (kvm_apic_broadcast(apic, mda))
1042 return true;
1043
1044 logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
1045
1046 if (apic_x2apic_mode(apic))
1047 return ((logical_id >> 16) == (mda >> 16))
1048 && (logical_id & mda & 0xffff) != 0;
1049
1050 logical_id = GET_APIC_LOGICAL_ID(logical_id);
1051
1052 switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
1053 case APIC_DFR_FLAT:
1054 return (logical_id & mda) != 0;
1055 case APIC_DFR_CLUSTER:
1056 return ((logical_id >> 4) == (mda >> 4))
1057 && (logical_id & mda & 0xf) != 0;
1058 default:
1059 return false;
1060 }
1061 }
1062
1063 /* The KVM local APIC implementation has two quirks:
1064 *
1065 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
1066 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
1067 * KVM doesn't do that aliasing.
1068 *
1069 * - in-kernel IOAPIC messages have to be delivered directly to
1070 * x2APIC, because the kernel does not support interrupt remapping.
1071 * In order to support broadcast without interrupt remapping, x2APIC
1072 * rewrites the destination of non-IPI messages from APIC_BROADCAST
1073 * to X2APIC_BROADCAST.
1074 *
1075 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is
1076 * important when userspace wants to use x2APIC-format MSIs, because
1077 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
1078 */
kvm_apic_mda(struct kvm_vcpu * vcpu,unsigned int dest_id,struct kvm_lapic * source,struct kvm_lapic * target)1079 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
1080 struct kvm_lapic *source, struct kvm_lapic *target)
1081 {
1082 bool ipi = source != NULL;
1083
1084 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
1085 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
1086 return X2APIC_BROADCAST;
1087
1088 return dest_id;
1089 }
1090
kvm_apic_match_dest(struct kvm_vcpu * vcpu,struct kvm_lapic * source,int shorthand,unsigned int dest,int dest_mode)1091 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1092 int shorthand, unsigned int dest, int dest_mode)
1093 {
1094 struct kvm_lapic *target = vcpu->arch.apic;
1095 u32 mda = kvm_apic_mda(vcpu, dest, source, target);
1096
1097 ASSERT(target);
1098 switch (shorthand) {
1099 case APIC_DEST_NOSHORT:
1100 if (dest_mode == APIC_DEST_PHYSICAL)
1101 return kvm_apic_match_physical_addr(target, mda);
1102 else
1103 return kvm_apic_match_logical_addr(target, mda);
1104 case APIC_DEST_SELF:
1105 return target == source;
1106 case APIC_DEST_ALLINC:
1107 return true;
1108 case APIC_DEST_ALLBUT:
1109 return target != source;
1110 default:
1111 return false;
1112 }
1113 }
1114 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
1115
kvm_vector_to_index(u32 vector,u32 dest_vcpus,const unsigned long * bitmap,u32 bitmap_size)1116 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
1117 const unsigned long *bitmap, u32 bitmap_size)
1118 {
1119 u32 mod;
1120 int i, idx = -1;
1121
1122 mod = vector % dest_vcpus;
1123
1124 for (i = 0; i <= mod; i++) {
1125 idx = find_next_bit(bitmap, bitmap_size, idx + 1);
1126 BUG_ON(idx == bitmap_size);
1127 }
1128
1129 return idx;
1130 }
1131
kvm_apic_disabled_lapic_found(struct kvm * kvm)1132 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
1133 {
1134 if (!kvm->arch.disabled_lapic_found) {
1135 kvm->arch.disabled_lapic_found = true;
1136 pr_info("Disabled LAPIC found during irq injection\n");
1137 }
1138 }
1139
kvm_apic_is_broadcast_dest(struct kvm * kvm,struct kvm_lapic ** src,struct kvm_lapic_irq * irq,struct kvm_apic_map * map)1140 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
1141 struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
1142 {
1143 if (kvm->arch.x2apic_broadcast_quirk_disabled) {
1144 if ((irq->dest_id == APIC_BROADCAST &&
1145 map->logical_mode != KVM_APIC_MODE_X2APIC))
1146 return true;
1147 if (irq->dest_id == X2APIC_BROADCAST)
1148 return true;
1149 } else {
1150 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
1151 if (irq->dest_id == (x2apic_ipi ?
1152 X2APIC_BROADCAST : APIC_BROADCAST))
1153 return true;
1154 }
1155
1156 return false;
1157 }
1158
1159 /* Return true if the interrupt can be handled by using *bitmap as index mask
1160 * for valid destinations in *dst array.
1161 * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
1162 * Note: we may have zero kvm_lapic destinations when we return true, which
1163 * means that the interrupt should be dropped. In this case, *bitmap would be
1164 * zero and *dst undefined.
1165 */
kvm_apic_map_get_dest_lapic(struct kvm * kvm,struct kvm_lapic ** src,struct kvm_lapic_irq * irq,struct kvm_apic_map * map,struct kvm_lapic *** dst,unsigned long * bitmap)1166 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
1167 struct kvm_lapic **src, struct kvm_lapic_irq *irq,
1168 struct kvm_apic_map *map, struct kvm_lapic ***dst,
1169 unsigned long *bitmap)
1170 {
1171 int i, lowest;
1172
1173 if (irq->shorthand == APIC_DEST_SELF && src) {
1174 *dst = src;
1175 *bitmap = 1;
1176 return true;
1177 } else if (irq->shorthand)
1178 return false;
1179
1180 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
1181 return false;
1182
1183 if (irq->dest_mode == APIC_DEST_PHYSICAL) {
1184 if (irq->dest_id > map->max_apic_id) {
1185 *bitmap = 0;
1186 } else {
1187 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
1188 *dst = &map->phys_map[dest_id];
1189 *bitmap = 1;
1190 }
1191 return true;
1192 }
1193
1194 *bitmap = 0;
1195 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
1196 (u16 *)bitmap))
1197 return false;
1198
1199 if (!kvm_lowest_prio_delivery(irq))
1200 return true;
1201
1202 if (!kvm_vector_hashing_enabled()) {
1203 lowest = -1;
1204 for_each_set_bit(i, bitmap, 16) {
1205 if (!(*dst)[i])
1206 continue;
1207 if (lowest < 0)
1208 lowest = i;
1209 else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
1210 (*dst)[lowest]->vcpu) < 0)
1211 lowest = i;
1212 }
1213 } else {
1214 if (!*bitmap)
1215 return true;
1216
1217 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
1218 bitmap, 16);
1219
1220 if (!(*dst)[lowest]) {
1221 kvm_apic_disabled_lapic_found(kvm);
1222 *bitmap = 0;
1223 return true;
1224 }
1225 }
1226
1227 *bitmap = (lowest >= 0) ? 1 << lowest : 0;
1228
1229 return true;
1230 }
1231
kvm_irq_delivery_to_apic_fast(struct kvm * kvm,struct kvm_lapic * src,struct kvm_lapic_irq * irq,int * r,struct dest_map * dest_map)1232 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
1233 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
1234 {
1235 struct kvm_apic_map *map;
1236 unsigned long bitmap;
1237 struct kvm_lapic **dst = NULL;
1238 int i;
1239 bool ret;
1240
1241 *r = -1;
1242
1243 if (irq->shorthand == APIC_DEST_SELF) {
1244 if (KVM_BUG_ON(!src, kvm)) {
1245 *r = 0;
1246 return true;
1247 }
1248 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
1249 return true;
1250 }
1251
1252 rcu_read_lock();
1253 map = rcu_dereference(kvm->arch.apic_map);
1254
1255 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
1256 if (ret) {
1257 *r = 0;
1258 for_each_set_bit(i, &bitmap, 16) {
1259 if (!dst[i])
1260 continue;
1261 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
1262 }
1263 }
1264
1265 rcu_read_unlock();
1266 return ret;
1267 }
1268
1269 /*
1270 * This routine tries to handle interrupts in posted mode, here is how
1271 * it deals with different cases:
1272 * - For single-destination interrupts, handle it in posted mode
1273 * - Else if vector hashing is enabled and it is a lowest-priority
1274 * interrupt, handle it in posted mode and use the following mechanism
1275 * to find the destination vCPU.
1276 * 1. For lowest-priority interrupts, store all the possible
1277 * destination vCPUs in an array.
1278 * 2. Use "guest vector % max number of destination vCPUs" to find
1279 * the right destination vCPU in the array for the lowest-priority
1280 * interrupt.
1281 * - Otherwise, use remapped mode to inject the interrupt.
1282 */
kvm_intr_is_single_vcpu_fast(struct kvm * kvm,struct kvm_lapic_irq * irq,struct kvm_vcpu ** dest_vcpu)1283 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1284 struct kvm_vcpu **dest_vcpu)
1285 {
1286 struct kvm_apic_map *map;
1287 unsigned long bitmap;
1288 struct kvm_lapic **dst = NULL;
1289 bool ret = false;
1290
1291 if (irq->shorthand)
1292 return false;
1293
1294 rcu_read_lock();
1295 map = rcu_dereference(kvm->arch.apic_map);
1296
1297 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1298 hweight16(bitmap) == 1) {
1299 unsigned long i = find_first_bit(&bitmap, 16);
1300
1301 if (dst[i]) {
1302 *dest_vcpu = dst[i]->vcpu;
1303 ret = true;
1304 }
1305 }
1306
1307 rcu_read_unlock();
1308 return ret;
1309 }
1310
1311 /*
1312 * Add a pending IRQ into lapic.
1313 * Return 1 if successfully added and 0 if discarded.
1314 */
__apic_accept_irq(struct kvm_lapic * apic,int delivery_mode,int vector,int level,int trig_mode,struct dest_map * dest_map)1315 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1316 int vector, int level, int trig_mode,
1317 struct dest_map *dest_map)
1318 {
1319 int result = 0;
1320 struct kvm_vcpu *vcpu = apic->vcpu;
1321
1322 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1323 trig_mode, vector);
1324 switch (delivery_mode) {
1325 case APIC_DM_LOWEST:
1326 vcpu->arch.apic_arb_prio++;
1327 fallthrough;
1328 case APIC_DM_FIXED:
1329 if (unlikely(trig_mode && !level))
1330 break;
1331
1332 /* FIXME add logic for vcpu on reset */
1333 if (unlikely(!apic_enabled(apic)))
1334 break;
1335
1336 result = 1;
1337
1338 if (dest_map) {
1339 __set_bit(vcpu->vcpu_id, dest_map->map);
1340 dest_map->vectors[vcpu->vcpu_id] = vector;
1341 }
1342
1343 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1344 if (trig_mode)
1345 kvm_lapic_set_vector(vector,
1346 apic->regs + APIC_TMR);
1347 else
1348 kvm_lapic_clear_vector(vector,
1349 apic->regs + APIC_TMR);
1350 }
1351
1352 kvm_x86_call(deliver_interrupt)(apic, delivery_mode,
1353 trig_mode, vector);
1354 break;
1355
1356 case APIC_DM_REMRD:
1357 result = 1;
1358 vcpu->arch.pv.pv_unhalted = 1;
1359 kvm_make_request(KVM_REQ_EVENT, vcpu);
1360 kvm_vcpu_kick(vcpu);
1361 break;
1362
1363 case APIC_DM_SMI:
1364 if (!kvm_inject_smi(vcpu)) {
1365 kvm_vcpu_kick(vcpu);
1366 result = 1;
1367 }
1368 break;
1369
1370 case APIC_DM_NMI:
1371 result = 1;
1372 kvm_inject_nmi(vcpu);
1373 kvm_vcpu_kick(vcpu);
1374 break;
1375
1376 case APIC_DM_INIT:
1377 if (!trig_mode || level) {
1378 result = 1;
1379 /* assumes that there are only KVM_APIC_INIT/SIPI */
1380 apic->pending_events = (1UL << KVM_APIC_INIT);
1381 kvm_make_request(KVM_REQ_EVENT, vcpu);
1382 kvm_vcpu_kick(vcpu);
1383 }
1384 break;
1385
1386 case APIC_DM_STARTUP:
1387 result = 1;
1388 apic->sipi_vector = vector;
1389 /* make sure sipi_vector is visible for the receiver */
1390 smp_wmb();
1391 set_bit(KVM_APIC_SIPI, &apic->pending_events);
1392 kvm_make_request(KVM_REQ_EVENT, vcpu);
1393 kvm_vcpu_kick(vcpu);
1394 break;
1395
1396 case APIC_DM_EXTINT:
1397 /*
1398 * Should only be called by kvm_apic_local_deliver() with LVT0,
1399 * before NMI watchdog was enabled. Already handled by
1400 * kvm_apic_accept_pic_intr().
1401 */
1402 break;
1403
1404 default:
1405 printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1406 delivery_mode);
1407 break;
1408 }
1409 return result;
1410 }
1411
1412 /*
1413 * This routine identifies the destination vcpus mask meant to receive the
1414 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1415 * out the destination vcpus array and set the bitmap or it traverses to
1416 * each available vcpu to identify the same.
1417 */
kvm_bitmap_or_dest_vcpus(struct kvm * kvm,struct kvm_lapic_irq * irq,unsigned long * vcpu_bitmap)1418 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1419 unsigned long *vcpu_bitmap)
1420 {
1421 struct kvm_lapic **dest_vcpu = NULL;
1422 struct kvm_lapic *src = NULL;
1423 struct kvm_apic_map *map;
1424 struct kvm_vcpu *vcpu;
1425 unsigned long bitmap, i;
1426 int vcpu_idx;
1427 bool ret;
1428
1429 rcu_read_lock();
1430 map = rcu_dereference(kvm->arch.apic_map);
1431
1432 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1433 &bitmap);
1434 if (ret) {
1435 for_each_set_bit(i, &bitmap, 16) {
1436 if (!dest_vcpu[i])
1437 continue;
1438 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1439 __set_bit(vcpu_idx, vcpu_bitmap);
1440 }
1441 } else {
1442 kvm_for_each_vcpu(i, vcpu, kvm) {
1443 if (!kvm_apic_present(vcpu))
1444 continue;
1445 if (!kvm_apic_match_dest(vcpu, NULL,
1446 irq->shorthand,
1447 irq->dest_id,
1448 irq->dest_mode))
1449 continue;
1450 __set_bit(i, vcpu_bitmap);
1451 }
1452 }
1453 rcu_read_unlock();
1454 }
1455
kvm_apic_compare_prio(struct kvm_vcpu * vcpu1,struct kvm_vcpu * vcpu2)1456 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1457 {
1458 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1459 }
1460
kvm_ioapic_handles_vector(struct kvm_lapic * apic,int vector)1461 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1462 {
1463 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1464 }
1465
kvm_ioapic_send_eoi(struct kvm_lapic * apic,int vector)1466 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1467 {
1468 int trigger_mode;
1469
1470 /* Eoi the ioapic only if the ioapic doesn't own the vector. */
1471 if (!kvm_ioapic_handles_vector(apic, vector))
1472 return;
1473
1474 /* Request a KVM exit to inform the userspace IOAPIC. */
1475 if (irqchip_split(apic->vcpu->kvm)) {
1476 apic->vcpu->arch.pending_ioapic_eoi = vector;
1477 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1478 return;
1479 }
1480
1481 if (apic_test_vector(vector, apic->regs + APIC_TMR))
1482 trigger_mode = IOAPIC_LEVEL_TRIG;
1483 else
1484 trigger_mode = IOAPIC_EDGE_TRIG;
1485
1486 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1487 }
1488
apic_set_eoi(struct kvm_lapic * apic)1489 static int apic_set_eoi(struct kvm_lapic *apic)
1490 {
1491 int vector = apic_find_highest_isr(apic);
1492
1493 trace_kvm_eoi(apic, vector);
1494
1495 /*
1496 * Not every write EOI will has corresponding ISR,
1497 * one example is when Kernel check timer on setup_IO_APIC
1498 */
1499 if (vector == -1)
1500 return vector;
1501
1502 apic_clear_isr(vector, apic);
1503 apic_update_ppr(apic);
1504
1505 if (kvm_hv_synic_has_vector(apic->vcpu, vector))
1506 kvm_hv_synic_send_eoi(apic->vcpu, vector);
1507
1508 kvm_ioapic_send_eoi(apic, vector);
1509 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1510 return vector;
1511 }
1512
1513 /*
1514 * this interface assumes a trap-like exit, which has already finished
1515 * desired side effect including vISR and vPPR update.
1516 */
kvm_apic_set_eoi_accelerated(struct kvm_vcpu * vcpu,int vector)1517 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1518 {
1519 struct kvm_lapic *apic = vcpu->arch.apic;
1520
1521 trace_kvm_eoi(apic, vector);
1522
1523 kvm_ioapic_send_eoi(apic, vector);
1524 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1525 }
1526 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1527
kvm_apic_send_ipi(struct kvm_lapic * apic,u32 icr_low,u32 icr_high)1528 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1529 {
1530 struct kvm_lapic_irq irq;
1531
1532 /* KVM has no delay and should always clear the BUSY/PENDING flag. */
1533 WARN_ON_ONCE(icr_low & APIC_ICR_BUSY);
1534
1535 irq.vector = icr_low & APIC_VECTOR_MASK;
1536 irq.delivery_mode = icr_low & APIC_MODE_MASK;
1537 irq.dest_mode = icr_low & APIC_DEST_MASK;
1538 irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1539 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1540 irq.shorthand = icr_low & APIC_SHORT_MASK;
1541 irq.msi_redir_hint = false;
1542 if (apic_x2apic_mode(apic))
1543 irq.dest_id = icr_high;
1544 else
1545 irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high);
1546
1547 trace_kvm_apic_ipi(icr_low, irq.dest_id);
1548
1549 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1550 }
1551 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi);
1552
apic_get_tmcct(struct kvm_lapic * apic)1553 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1554 {
1555 ktime_t remaining, now;
1556 s64 ns;
1557
1558 ASSERT(apic != NULL);
1559
1560 /* if initial count is 0, current count should also be 0 */
1561 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1562 apic->lapic_timer.period == 0)
1563 return 0;
1564
1565 now = ktime_get();
1566 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1567 if (ktime_to_ns(remaining) < 0)
1568 remaining = 0;
1569
1570 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1571 return div64_u64(ns, (apic->vcpu->kvm->arch.apic_bus_cycle_ns *
1572 apic->divide_count));
1573 }
1574
__report_tpr_access(struct kvm_lapic * apic,bool write)1575 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1576 {
1577 struct kvm_vcpu *vcpu = apic->vcpu;
1578 struct kvm_run *run = vcpu->run;
1579
1580 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1581 run->tpr_access.rip = kvm_rip_read(vcpu);
1582 run->tpr_access.is_write = write;
1583 }
1584
report_tpr_access(struct kvm_lapic * apic,bool write)1585 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1586 {
1587 if (apic->vcpu->arch.tpr_access_reporting)
1588 __report_tpr_access(apic, write);
1589 }
1590
__apic_read(struct kvm_lapic * apic,unsigned int offset)1591 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1592 {
1593 u32 val = 0;
1594
1595 if (offset >= LAPIC_MMIO_LENGTH)
1596 return 0;
1597
1598 switch (offset) {
1599 case APIC_ARBPRI:
1600 break;
1601
1602 case APIC_TMCCT: /* Timer CCR */
1603 if (apic_lvtt_tscdeadline(apic))
1604 return 0;
1605
1606 val = apic_get_tmcct(apic);
1607 break;
1608 case APIC_PROCPRI:
1609 apic_update_ppr(apic);
1610 val = kvm_lapic_get_reg(apic, offset);
1611 break;
1612 case APIC_TASKPRI:
1613 report_tpr_access(apic, false);
1614 fallthrough;
1615 default:
1616 val = kvm_lapic_get_reg(apic, offset);
1617 break;
1618 }
1619
1620 return val;
1621 }
1622
to_lapic(struct kvm_io_device * dev)1623 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1624 {
1625 return container_of(dev, struct kvm_lapic, dev);
1626 }
1627
1628 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4))
1629 #define APIC_REGS_MASK(first, count) \
1630 (APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1631
kvm_lapic_readable_reg_mask(struct kvm_lapic * apic)1632 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic)
1633 {
1634 /* Leave bits '0' for reserved and write-only registers. */
1635 u64 valid_reg_mask =
1636 APIC_REG_MASK(APIC_ID) |
1637 APIC_REG_MASK(APIC_LVR) |
1638 APIC_REG_MASK(APIC_TASKPRI) |
1639 APIC_REG_MASK(APIC_PROCPRI) |
1640 APIC_REG_MASK(APIC_LDR) |
1641 APIC_REG_MASK(APIC_SPIV) |
1642 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1643 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1644 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1645 APIC_REG_MASK(APIC_ESR) |
1646 APIC_REG_MASK(APIC_ICR) |
1647 APIC_REG_MASK(APIC_LVTT) |
1648 APIC_REG_MASK(APIC_LVTTHMR) |
1649 APIC_REG_MASK(APIC_LVTPC) |
1650 APIC_REG_MASK(APIC_LVT0) |
1651 APIC_REG_MASK(APIC_LVT1) |
1652 APIC_REG_MASK(APIC_LVTERR) |
1653 APIC_REG_MASK(APIC_TMICT) |
1654 APIC_REG_MASK(APIC_TMCCT) |
1655 APIC_REG_MASK(APIC_TDCR);
1656
1657 if (kvm_lapic_lvt_supported(apic, LVT_CMCI))
1658 valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI);
1659
1660 /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */
1661 if (!apic_x2apic_mode(apic))
1662 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) |
1663 APIC_REG_MASK(APIC_DFR) |
1664 APIC_REG_MASK(APIC_ICR2);
1665
1666 return valid_reg_mask;
1667 }
1668 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask);
1669
kvm_lapic_reg_read(struct kvm_lapic * apic,u32 offset,int len,void * data)1670 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1671 void *data)
1672 {
1673 unsigned char alignment = offset & 0xf;
1674 u32 result;
1675
1676 /*
1677 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in
1678 * x2APIC and needs to be manually handled by the caller.
1679 */
1680 WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR);
1681
1682 if (alignment + len > 4)
1683 return 1;
1684
1685 if (offset > 0x3f0 ||
1686 !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset)))
1687 return 1;
1688
1689 result = __apic_read(apic, offset & ~0xf);
1690
1691 trace_kvm_apic_read(offset, result);
1692
1693 switch (len) {
1694 case 1:
1695 case 2:
1696 case 4:
1697 memcpy(data, (char *)&result + alignment, len);
1698 break;
1699 default:
1700 printk(KERN_ERR "Local APIC read with len = %x, "
1701 "should be 1,2, or 4 instead\n", len);
1702 break;
1703 }
1704 return 0;
1705 }
1706
apic_mmio_in_range(struct kvm_lapic * apic,gpa_t addr)1707 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1708 {
1709 return addr >= apic->base_address &&
1710 addr < apic->base_address + LAPIC_MMIO_LENGTH;
1711 }
1712
apic_mmio_read(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t address,int len,void * data)1713 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1714 gpa_t address, int len, void *data)
1715 {
1716 struct kvm_lapic *apic = to_lapic(this);
1717 u32 offset = address - apic->base_address;
1718
1719 if (!apic_mmio_in_range(apic, address))
1720 return -EOPNOTSUPP;
1721
1722 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1723 if (!kvm_check_has_quirk(vcpu->kvm,
1724 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1725 return -EOPNOTSUPP;
1726
1727 memset(data, 0xff, len);
1728 return 0;
1729 }
1730
1731 kvm_lapic_reg_read(apic, offset, len, data);
1732
1733 return 0;
1734 }
1735
update_divide_count(struct kvm_lapic * apic)1736 static void update_divide_count(struct kvm_lapic *apic)
1737 {
1738 u32 tmp1, tmp2, tdcr;
1739
1740 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1741 tmp1 = tdcr & 0xf;
1742 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1743 apic->divide_count = 0x1 << (tmp2 & 0x7);
1744 }
1745
limit_periodic_timer_frequency(struct kvm_lapic * apic)1746 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1747 {
1748 /*
1749 * Do not allow the guest to program periodic timers with small
1750 * interval, since the hrtimers are not throttled by the host
1751 * scheduler.
1752 */
1753 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1754 s64 min_period = min_timer_period_us * 1000LL;
1755
1756 if (apic->lapic_timer.period < min_period) {
1757 pr_info_once(
1758 "vcpu %i: requested %lld ns "
1759 "lapic timer period limited to %lld ns\n",
1760 apic->vcpu->vcpu_id,
1761 apic->lapic_timer.period, min_period);
1762 apic->lapic_timer.period = min_period;
1763 }
1764 }
1765 }
1766
1767 static void cancel_hv_timer(struct kvm_lapic *apic);
1768
cancel_apic_timer(struct kvm_lapic * apic)1769 static void cancel_apic_timer(struct kvm_lapic *apic)
1770 {
1771 hrtimer_cancel(&apic->lapic_timer.timer);
1772 preempt_disable();
1773 if (apic->lapic_timer.hv_timer_in_use)
1774 cancel_hv_timer(apic);
1775 preempt_enable();
1776 atomic_set(&apic->lapic_timer.pending, 0);
1777 }
1778
apic_update_lvtt(struct kvm_lapic * apic)1779 static void apic_update_lvtt(struct kvm_lapic *apic)
1780 {
1781 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1782 apic->lapic_timer.timer_mode_mask;
1783
1784 if (apic->lapic_timer.timer_mode != timer_mode) {
1785 if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1786 APIC_LVT_TIMER_TSCDEADLINE)) {
1787 cancel_apic_timer(apic);
1788 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1789 apic->lapic_timer.period = 0;
1790 apic->lapic_timer.tscdeadline = 0;
1791 }
1792 apic->lapic_timer.timer_mode = timer_mode;
1793 limit_periodic_timer_frequency(apic);
1794 }
1795 }
1796
1797 /*
1798 * On APICv, this test will cause a busy wait
1799 * during a higher-priority task.
1800 */
1801
lapic_timer_int_injected(struct kvm_vcpu * vcpu)1802 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1803 {
1804 struct kvm_lapic *apic = vcpu->arch.apic;
1805 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1806
1807 if (kvm_apic_hw_enabled(apic)) {
1808 int vec = reg & APIC_VECTOR_MASK;
1809 void *bitmap = apic->regs + APIC_ISR;
1810
1811 if (apic->apicv_active)
1812 bitmap = apic->regs + APIC_IRR;
1813
1814 if (apic_test_vector(vec, bitmap))
1815 return true;
1816 }
1817 return false;
1818 }
1819
__wait_lapic_expire(struct kvm_vcpu * vcpu,u64 guest_cycles)1820 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1821 {
1822 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1823
1824 /*
1825 * If the guest TSC is running at a different ratio than the host, then
1826 * convert the delay to nanoseconds to achieve an accurate delay. Note
1827 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1828 * always for VMX enabled hardware.
1829 */
1830 if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) {
1831 __delay(min(guest_cycles,
1832 nsec_to_cycles(vcpu, timer_advance_ns)));
1833 } else {
1834 u64 delay_ns = guest_cycles * 1000000ULL;
1835 do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1836 ndelay(min_t(u32, delay_ns, timer_advance_ns));
1837 }
1838 }
1839
adjust_lapic_timer_advance(struct kvm_vcpu * vcpu,s64 advance_expire_delta)1840 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1841 s64 advance_expire_delta)
1842 {
1843 struct kvm_lapic *apic = vcpu->arch.apic;
1844 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1845 u64 ns;
1846
1847 /* Do not adjust for tiny fluctuations or large random spikes. */
1848 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1849 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1850 return;
1851
1852 /* too early */
1853 if (advance_expire_delta < 0) {
1854 ns = -advance_expire_delta * 1000000ULL;
1855 do_div(ns, vcpu->arch.virtual_tsc_khz);
1856 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1857 } else {
1858 /* too late */
1859 ns = advance_expire_delta * 1000000ULL;
1860 do_div(ns, vcpu->arch.virtual_tsc_khz);
1861 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1862 }
1863
1864 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1865 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1866 apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1867 }
1868
__kvm_wait_lapic_expire(struct kvm_vcpu * vcpu)1869 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1870 {
1871 struct kvm_lapic *apic = vcpu->arch.apic;
1872 u64 guest_tsc, tsc_deadline;
1873
1874 tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1875 apic->lapic_timer.expired_tscdeadline = 0;
1876 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1877 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline);
1878
1879 adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline);
1880
1881 /*
1882 * If the timer fired early, reread the TSC to account for the overhead
1883 * of the above adjustment to avoid waiting longer than is necessary.
1884 */
1885 if (guest_tsc < tsc_deadline)
1886 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1887
1888 if (guest_tsc < tsc_deadline)
1889 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1890 }
1891
kvm_wait_lapic_expire(struct kvm_vcpu * vcpu)1892 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1893 {
1894 if (lapic_in_kernel(vcpu) &&
1895 vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1896 vcpu->arch.apic->lapic_timer.timer_advance_ns &&
1897 lapic_timer_int_injected(vcpu))
1898 __kvm_wait_lapic_expire(vcpu);
1899 }
1900 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1901
kvm_apic_inject_pending_timer_irqs(struct kvm_lapic * apic)1902 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1903 {
1904 struct kvm_timer *ktimer = &apic->lapic_timer;
1905
1906 kvm_apic_local_deliver(apic, APIC_LVTT);
1907 if (apic_lvtt_tscdeadline(apic)) {
1908 ktimer->tscdeadline = 0;
1909 } else if (apic_lvtt_oneshot(apic)) {
1910 ktimer->tscdeadline = 0;
1911 ktimer->target_expiration = 0;
1912 }
1913 }
1914
apic_timer_expired(struct kvm_lapic * apic,bool from_timer_fn)1915 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1916 {
1917 struct kvm_vcpu *vcpu = apic->vcpu;
1918 struct kvm_timer *ktimer = &apic->lapic_timer;
1919
1920 if (atomic_read(&apic->lapic_timer.pending))
1921 return;
1922
1923 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1924 ktimer->expired_tscdeadline = ktimer->tscdeadline;
1925
1926 if (!from_timer_fn && apic->apicv_active) {
1927 WARN_ON(kvm_get_running_vcpu() != vcpu);
1928 kvm_apic_inject_pending_timer_irqs(apic);
1929 return;
1930 }
1931
1932 if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1933 /*
1934 * Ensure the guest's timer has truly expired before posting an
1935 * interrupt. Open code the relevant checks to avoid querying
1936 * lapic_timer_int_injected(), which will be false since the
1937 * interrupt isn't yet injected. Waiting until after injecting
1938 * is not an option since that won't help a posted interrupt.
1939 */
1940 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1941 vcpu->arch.apic->lapic_timer.timer_advance_ns)
1942 __kvm_wait_lapic_expire(vcpu);
1943 kvm_apic_inject_pending_timer_irqs(apic);
1944 return;
1945 }
1946
1947 atomic_inc(&apic->lapic_timer.pending);
1948 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1949 if (from_timer_fn)
1950 kvm_vcpu_kick(vcpu);
1951 }
1952
start_sw_tscdeadline(struct kvm_lapic * apic)1953 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1954 {
1955 struct kvm_timer *ktimer = &apic->lapic_timer;
1956 u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1957 u64 ns = 0;
1958 ktime_t expire;
1959 struct kvm_vcpu *vcpu = apic->vcpu;
1960 u32 this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1961 unsigned long flags;
1962 ktime_t now;
1963
1964 if (unlikely(!tscdeadline || !this_tsc_khz))
1965 return;
1966
1967 local_irq_save(flags);
1968
1969 now = ktime_get();
1970 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1971
1972 ns = (tscdeadline - guest_tsc) * 1000000ULL;
1973 do_div(ns, this_tsc_khz);
1974
1975 if (likely(tscdeadline > guest_tsc) &&
1976 likely(ns > apic->lapic_timer.timer_advance_ns)) {
1977 expire = ktime_add_ns(now, ns);
1978 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1979 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1980 } else
1981 apic_timer_expired(apic, false);
1982
1983 local_irq_restore(flags);
1984 }
1985
tmict_to_ns(struct kvm_lapic * apic,u32 tmict)1986 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1987 {
1988 return (u64)tmict * apic->vcpu->kvm->arch.apic_bus_cycle_ns *
1989 (u64)apic->divide_count;
1990 }
1991
update_target_expiration(struct kvm_lapic * apic,uint32_t old_divisor)1992 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1993 {
1994 ktime_t now, remaining;
1995 u64 ns_remaining_old, ns_remaining_new;
1996
1997 apic->lapic_timer.period =
1998 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1999 limit_periodic_timer_frequency(apic);
2000
2001 now = ktime_get();
2002 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
2003 if (ktime_to_ns(remaining) < 0)
2004 remaining = 0;
2005
2006 ns_remaining_old = ktime_to_ns(remaining);
2007 ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
2008 apic->divide_count, old_divisor);
2009
2010 apic->lapic_timer.tscdeadline +=
2011 nsec_to_cycles(apic->vcpu, ns_remaining_new) -
2012 nsec_to_cycles(apic->vcpu, ns_remaining_old);
2013 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
2014 }
2015
set_target_expiration(struct kvm_lapic * apic,u32 count_reg)2016 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
2017 {
2018 ktime_t now;
2019 u64 tscl = rdtsc();
2020 s64 deadline;
2021
2022 now = ktime_get();
2023 apic->lapic_timer.period =
2024 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
2025
2026 if (!apic->lapic_timer.period) {
2027 apic->lapic_timer.tscdeadline = 0;
2028 return false;
2029 }
2030
2031 limit_periodic_timer_frequency(apic);
2032 deadline = apic->lapic_timer.period;
2033
2034 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
2035 if (unlikely(count_reg != APIC_TMICT)) {
2036 deadline = tmict_to_ns(apic,
2037 kvm_lapic_get_reg(apic, count_reg));
2038 if (unlikely(deadline <= 0)) {
2039 if (apic_lvtt_period(apic))
2040 deadline = apic->lapic_timer.period;
2041 else
2042 deadline = 0;
2043 }
2044 else if (unlikely(deadline > apic->lapic_timer.period)) {
2045 pr_info_ratelimited(
2046 "vcpu %i: requested lapic timer restore with "
2047 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
2048 "Using initial count to start timer.\n",
2049 apic->vcpu->vcpu_id,
2050 count_reg,
2051 kvm_lapic_get_reg(apic, count_reg),
2052 deadline, apic->lapic_timer.period);
2053 kvm_lapic_set_reg(apic, count_reg, 0);
2054 deadline = apic->lapic_timer.period;
2055 }
2056 }
2057 }
2058
2059 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2060 nsec_to_cycles(apic->vcpu, deadline);
2061 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
2062
2063 return true;
2064 }
2065
advance_periodic_target_expiration(struct kvm_lapic * apic)2066 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
2067 {
2068 ktime_t now = ktime_get();
2069 u64 tscl = rdtsc();
2070 ktime_t delta;
2071
2072 /*
2073 * Synchronize both deadlines to the same time source or
2074 * differences in the periods (caused by differences in the
2075 * underlying clocks or numerical approximation errors) will
2076 * cause the two to drift apart over time as the errors
2077 * accumulate.
2078 */
2079 apic->lapic_timer.target_expiration =
2080 ktime_add_ns(apic->lapic_timer.target_expiration,
2081 apic->lapic_timer.period);
2082 delta = ktime_sub(apic->lapic_timer.target_expiration, now);
2083 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2084 nsec_to_cycles(apic->vcpu, delta);
2085 }
2086
start_sw_period(struct kvm_lapic * apic)2087 static void start_sw_period(struct kvm_lapic *apic)
2088 {
2089 if (!apic->lapic_timer.period)
2090 return;
2091
2092 if (ktime_after(ktime_get(),
2093 apic->lapic_timer.target_expiration)) {
2094 apic_timer_expired(apic, false);
2095
2096 if (apic_lvtt_oneshot(apic))
2097 return;
2098
2099 advance_periodic_target_expiration(apic);
2100 }
2101
2102 hrtimer_start(&apic->lapic_timer.timer,
2103 apic->lapic_timer.target_expiration,
2104 HRTIMER_MODE_ABS_HARD);
2105 }
2106
kvm_lapic_hv_timer_in_use(struct kvm_vcpu * vcpu)2107 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
2108 {
2109 if (!lapic_in_kernel(vcpu))
2110 return false;
2111
2112 return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
2113 }
2114
cancel_hv_timer(struct kvm_lapic * apic)2115 static void cancel_hv_timer(struct kvm_lapic *apic)
2116 {
2117 WARN_ON(preemptible());
2118 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2119 kvm_x86_call(cancel_hv_timer)(apic->vcpu);
2120 apic->lapic_timer.hv_timer_in_use = false;
2121 }
2122
start_hv_timer(struct kvm_lapic * apic)2123 static bool start_hv_timer(struct kvm_lapic *apic)
2124 {
2125 struct kvm_timer *ktimer = &apic->lapic_timer;
2126 struct kvm_vcpu *vcpu = apic->vcpu;
2127 bool expired;
2128
2129 WARN_ON(preemptible());
2130 if (!kvm_can_use_hv_timer(vcpu))
2131 return false;
2132
2133 if (!ktimer->tscdeadline)
2134 return false;
2135
2136 if (kvm_x86_call(set_hv_timer)(vcpu, ktimer->tscdeadline, &expired))
2137 return false;
2138
2139 ktimer->hv_timer_in_use = true;
2140 hrtimer_cancel(&ktimer->timer);
2141
2142 /*
2143 * To simplify handling the periodic timer, leave the hv timer running
2144 * even if the deadline timer has expired, i.e. rely on the resulting
2145 * VM-Exit to recompute the periodic timer's target expiration.
2146 */
2147 if (!apic_lvtt_period(apic)) {
2148 /*
2149 * Cancel the hv timer if the sw timer fired while the hv timer
2150 * was being programmed, or if the hv timer itself expired.
2151 */
2152 if (atomic_read(&ktimer->pending)) {
2153 cancel_hv_timer(apic);
2154 } else if (expired) {
2155 apic_timer_expired(apic, false);
2156 cancel_hv_timer(apic);
2157 }
2158 }
2159
2160 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
2161
2162 return true;
2163 }
2164
start_sw_timer(struct kvm_lapic * apic)2165 static void start_sw_timer(struct kvm_lapic *apic)
2166 {
2167 struct kvm_timer *ktimer = &apic->lapic_timer;
2168
2169 WARN_ON(preemptible());
2170 if (apic->lapic_timer.hv_timer_in_use)
2171 cancel_hv_timer(apic);
2172 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
2173 return;
2174
2175 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2176 start_sw_period(apic);
2177 else if (apic_lvtt_tscdeadline(apic))
2178 start_sw_tscdeadline(apic);
2179 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
2180 }
2181
restart_apic_timer(struct kvm_lapic * apic)2182 static void restart_apic_timer(struct kvm_lapic *apic)
2183 {
2184 preempt_disable();
2185
2186 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
2187 goto out;
2188
2189 if (!start_hv_timer(apic))
2190 start_sw_timer(apic);
2191 out:
2192 preempt_enable();
2193 }
2194
kvm_lapic_expired_hv_timer(struct kvm_vcpu * vcpu)2195 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
2196 {
2197 struct kvm_lapic *apic = vcpu->arch.apic;
2198
2199 preempt_disable();
2200 /* If the preempt notifier has already run, it also called apic_timer_expired */
2201 if (!apic->lapic_timer.hv_timer_in_use)
2202 goto out;
2203 WARN_ON(kvm_vcpu_is_blocking(vcpu));
2204 apic_timer_expired(apic, false);
2205 cancel_hv_timer(apic);
2206
2207 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
2208 advance_periodic_target_expiration(apic);
2209 restart_apic_timer(apic);
2210 }
2211 out:
2212 preempt_enable();
2213 }
2214 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
2215
kvm_lapic_switch_to_hv_timer(struct kvm_vcpu * vcpu)2216 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
2217 {
2218 restart_apic_timer(vcpu->arch.apic);
2219 }
2220
kvm_lapic_switch_to_sw_timer(struct kvm_vcpu * vcpu)2221 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
2222 {
2223 struct kvm_lapic *apic = vcpu->arch.apic;
2224
2225 preempt_disable();
2226 /* Possibly the TSC deadline timer is not enabled yet */
2227 if (apic->lapic_timer.hv_timer_in_use)
2228 start_sw_timer(apic);
2229 preempt_enable();
2230 }
2231
kvm_lapic_restart_hv_timer(struct kvm_vcpu * vcpu)2232 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
2233 {
2234 struct kvm_lapic *apic = vcpu->arch.apic;
2235
2236 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2237 restart_apic_timer(apic);
2238 }
2239
__start_apic_timer(struct kvm_lapic * apic,u32 count_reg)2240 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
2241 {
2242 atomic_set(&apic->lapic_timer.pending, 0);
2243
2244 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2245 && !set_target_expiration(apic, count_reg))
2246 return;
2247
2248 restart_apic_timer(apic);
2249 }
2250
start_apic_timer(struct kvm_lapic * apic)2251 static void start_apic_timer(struct kvm_lapic *apic)
2252 {
2253 __start_apic_timer(apic, APIC_TMICT);
2254 }
2255
apic_manage_nmi_watchdog(struct kvm_lapic * apic,u32 lvt0_val)2256 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
2257 {
2258 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
2259
2260 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
2261 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
2262 if (lvt0_in_nmi_mode) {
2263 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2264 } else
2265 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2266 }
2267 }
2268
get_lvt_index(u32 reg)2269 static int get_lvt_index(u32 reg)
2270 {
2271 if (reg == APIC_LVTCMCI)
2272 return LVT_CMCI;
2273 if (reg < APIC_LVTT || reg > APIC_LVTERR)
2274 return -1;
2275 return array_index_nospec(
2276 (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES);
2277 }
2278
kvm_lapic_reg_write(struct kvm_lapic * apic,u32 reg,u32 val)2279 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
2280 {
2281 int ret = 0;
2282
2283 trace_kvm_apic_write(reg, val);
2284
2285 switch (reg) {
2286 case APIC_ID: /* Local APIC ID */
2287 if (!apic_x2apic_mode(apic)) {
2288 kvm_apic_set_xapic_id(apic, val >> 24);
2289 } else {
2290 ret = 1;
2291 }
2292 break;
2293
2294 case APIC_TASKPRI:
2295 report_tpr_access(apic, true);
2296 apic_set_tpr(apic, val & 0xff);
2297 break;
2298
2299 case APIC_EOI:
2300 apic_set_eoi(apic);
2301 break;
2302
2303 case APIC_LDR:
2304 if (!apic_x2apic_mode(apic))
2305 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
2306 else
2307 ret = 1;
2308 break;
2309
2310 case APIC_DFR:
2311 if (!apic_x2apic_mode(apic))
2312 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
2313 else
2314 ret = 1;
2315 break;
2316
2317 case APIC_SPIV: {
2318 u32 mask = 0x3ff;
2319 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
2320 mask |= APIC_SPIV_DIRECTED_EOI;
2321 apic_set_spiv(apic, val & mask);
2322 if (!(val & APIC_SPIV_APIC_ENABLED)) {
2323 int i;
2324
2325 for (i = 0; i < apic->nr_lvt_entries; i++) {
2326 kvm_lapic_set_reg(apic, APIC_LVTx(i),
2327 kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED);
2328 }
2329 apic_update_lvtt(apic);
2330 atomic_set(&apic->lapic_timer.pending, 0);
2331
2332 }
2333 break;
2334 }
2335 case APIC_ICR:
2336 WARN_ON_ONCE(apic_x2apic_mode(apic));
2337
2338 /* No delay here, so we always clear the pending bit */
2339 val &= ~APIC_ICR_BUSY;
2340 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2341 kvm_lapic_set_reg(apic, APIC_ICR, val);
2342 break;
2343 case APIC_ICR2:
2344 if (apic_x2apic_mode(apic))
2345 ret = 1;
2346 else
2347 kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000);
2348 break;
2349
2350 case APIC_LVT0:
2351 apic_manage_nmi_watchdog(apic, val);
2352 fallthrough;
2353 case APIC_LVTTHMR:
2354 case APIC_LVTPC:
2355 case APIC_LVT1:
2356 case APIC_LVTERR:
2357 case APIC_LVTCMCI: {
2358 u32 index = get_lvt_index(reg);
2359 if (!kvm_lapic_lvt_supported(apic, index)) {
2360 ret = 1;
2361 break;
2362 }
2363 if (!kvm_apic_sw_enabled(apic))
2364 val |= APIC_LVT_MASKED;
2365 val &= apic_lvt_mask[index];
2366 kvm_lapic_set_reg(apic, reg, val);
2367 break;
2368 }
2369
2370 case APIC_LVTT:
2371 if (!kvm_apic_sw_enabled(apic))
2372 val |= APIC_LVT_MASKED;
2373 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
2374 kvm_lapic_set_reg(apic, APIC_LVTT, val);
2375 apic_update_lvtt(apic);
2376 break;
2377
2378 case APIC_TMICT:
2379 if (apic_lvtt_tscdeadline(apic))
2380 break;
2381
2382 cancel_apic_timer(apic);
2383 kvm_lapic_set_reg(apic, APIC_TMICT, val);
2384 start_apic_timer(apic);
2385 break;
2386
2387 case APIC_TDCR: {
2388 uint32_t old_divisor = apic->divide_count;
2389
2390 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2391 update_divide_count(apic);
2392 if (apic->divide_count != old_divisor &&
2393 apic->lapic_timer.period) {
2394 hrtimer_cancel(&apic->lapic_timer.timer);
2395 update_target_expiration(apic, old_divisor);
2396 restart_apic_timer(apic);
2397 }
2398 break;
2399 }
2400 case APIC_ESR:
2401 if (apic_x2apic_mode(apic) && val != 0)
2402 ret = 1;
2403 break;
2404
2405 case APIC_SELF_IPI:
2406 /*
2407 * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold
2408 * the vector, everything else is reserved.
2409 */
2410 if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK))
2411 ret = 1;
2412 else
2413 kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0);
2414 break;
2415 default:
2416 ret = 1;
2417 break;
2418 }
2419
2420 /*
2421 * Recalculate APIC maps if necessary, e.g. if the software enable bit
2422 * was toggled, the APIC ID changed, etc... The maps are marked dirty
2423 * on relevant changes, i.e. this is a nop for most writes.
2424 */
2425 kvm_recalculate_apic_map(apic->vcpu->kvm);
2426
2427 return ret;
2428 }
2429
apic_mmio_write(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t address,int len,const void * data)2430 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2431 gpa_t address, int len, const void *data)
2432 {
2433 struct kvm_lapic *apic = to_lapic(this);
2434 unsigned int offset = address - apic->base_address;
2435 u32 val;
2436
2437 if (!apic_mmio_in_range(apic, address))
2438 return -EOPNOTSUPP;
2439
2440 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2441 if (!kvm_check_has_quirk(vcpu->kvm,
2442 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2443 return -EOPNOTSUPP;
2444
2445 return 0;
2446 }
2447
2448 /*
2449 * APIC register must be aligned on 128-bits boundary.
2450 * 32/64/128 bits registers must be accessed thru 32 bits.
2451 * Refer SDM 8.4.1
2452 */
2453 if (len != 4 || (offset & 0xf))
2454 return 0;
2455
2456 val = *(u32*)data;
2457
2458 kvm_lapic_reg_write(apic, offset & 0xff0, val);
2459
2460 return 0;
2461 }
2462
kvm_lapic_set_eoi(struct kvm_vcpu * vcpu)2463 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2464 {
2465 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2466 }
2467 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2468
2469 #define X2APIC_ICR_RESERVED_BITS (GENMASK_ULL(31, 20) | GENMASK_ULL(17, 16) | BIT(13))
2470
kvm_x2apic_icr_write(struct kvm_lapic * apic,u64 data)2471 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data)
2472 {
2473 if (data & X2APIC_ICR_RESERVED_BITS)
2474 return 1;
2475
2476 /*
2477 * The BUSY bit is reserved on both Intel and AMD in x2APIC mode, but
2478 * only AMD requires it to be zero, Intel essentially just ignores the
2479 * bit. And if IPI virtualization (Intel) or x2AVIC (AMD) is enabled,
2480 * the CPU performs the reserved bits checks, i.e. the underlying CPU
2481 * behavior will "win". Arbitrarily clear the BUSY bit, as there is no
2482 * sane way to provide consistent behavior with respect to hardware.
2483 */
2484 data &= ~APIC_ICR_BUSY;
2485
2486 kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32));
2487 if (kvm_x86_ops.x2apic_icr_is_split) {
2488 kvm_lapic_set_reg(apic, APIC_ICR, data);
2489 kvm_lapic_set_reg(apic, APIC_ICR2, data >> 32);
2490 } else {
2491 kvm_lapic_set_reg64(apic, APIC_ICR, data);
2492 }
2493 trace_kvm_apic_write(APIC_ICR, data);
2494 return 0;
2495 }
2496
kvm_x2apic_icr_read(struct kvm_lapic * apic)2497 static u64 kvm_x2apic_icr_read(struct kvm_lapic *apic)
2498 {
2499 if (kvm_x86_ops.x2apic_icr_is_split)
2500 return (u64)kvm_lapic_get_reg(apic, APIC_ICR) |
2501 (u64)kvm_lapic_get_reg(apic, APIC_ICR2) << 32;
2502
2503 return kvm_lapic_get_reg64(apic, APIC_ICR);
2504 }
2505
2506 /* emulate APIC access in a trap manner */
kvm_apic_write_nodecode(struct kvm_vcpu * vcpu,u32 offset)2507 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2508 {
2509 struct kvm_lapic *apic = vcpu->arch.apic;
2510
2511 /*
2512 * ICR is a single 64-bit register when x2APIC is enabled, all others
2513 * registers hold 32-bit values. For legacy xAPIC, ICR writes need to
2514 * go down the common path to get the upper half from ICR2.
2515 *
2516 * Note, using the write helpers may incur an unnecessary write to the
2517 * virtual APIC state, but KVM needs to conditionally modify the value
2518 * in certain cases, e.g. to clear the ICR busy bit. The cost of extra
2519 * conditional branches is likely a wash relative to the cost of the
2520 * maybe-unecessary write, and both are in the noise anyways.
2521 */
2522 if (apic_x2apic_mode(apic) && offset == APIC_ICR)
2523 WARN_ON_ONCE(kvm_x2apic_icr_write(apic, kvm_x2apic_icr_read(apic)));
2524 else
2525 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
2526 }
2527 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2528
kvm_free_lapic(struct kvm_vcpu * vcpu)2529 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2530 {
2531 struct kvm_lapic *apic = vcpu->arch.apic;
2532
2533 if (!vcpu->arch.apic) {
2534 static_branch_dec(&kvm_has_noapic_vcpu);
2535 return;
2536 }
2537
2538 hrtimer_cancel(&apic->lapic_timer.timer);
2539
2540 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2541 static_branch_slow_dec_deferred(&apic_hw_disabled);
2542
2543 if (!apic->sw_enabled)
2544 static_branch_slow_dec_deferred(&apic_sw_disabled);
2545
2546 if (apic->regs)
2547 free_page((unsigned long)apic->regs);
2548
2549 kfree(apic);
2550 }
2551
2552 /*
2553 *----------------------------------------------------------------------
2554 * LAPIC interface
2555 *----------------------------------------------------------------------
2556 */
kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu * vcpu)2557 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2558 {
2559 struct kvm_lapic *apic = vcpu->arch.apic;
2560
2561 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2562 return 0;
2563
2564 return apic->lapic_timer.tscdeadline;
2565 }
2566
kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu * vcpu,u64 data)2567 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2568 {
2569 struct kvm_lapic *apic = vcpu->arch.apic;
2570
2571 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2572 return;
2573
2574 hrtimer_cancel(&apic->lapic_timer.timer);
2575 apic->lapic_timer.tscdeadline = data;
2576 start_apic_timer(apic);
2577 }
2578
kvm_lapic_set_tpr(struct kvm_vcpu * vcpu,unsigned long cr8)2579 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2580 {
2581 apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4);
2582 }
2583
kvm_lapic_get_cr8(struct kvm_vcpu * vcpu)2584 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2585 {
2586 u64 tpr;
2587
2588 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2589
2590 return (tpr & 0xf0) >> 4;
2591 }
2592
kvm_lapic_set_base(struct kvm_vcpu * vcpu,u64 value)2593 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2594 {
2595 u64 old_value = vcpu->arch.apic_base;
2596 struct kvm_lapic *apic = vcpu->arch.apic;
2597
2598 vcpu->arch.apic_base = value;
2599
2600 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2601 kvm_update_cpuid_runtime(vcpu);
2602
2603 if (!apic)
2604 return;
2605
2606 /* update jump label if enable bit changes */
2607 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2608 if (value & MSR_IA32_APICBASE_ENABLE) {
2609 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2610 static_branch_slow_dec_deferred(&apic_hw_disabled);
2611 /* Check if there are APF page ready requests pending */
2612 kvm_make_request(KVM_REQ_APF_READY, vcpu);
2613 } else {
2614 static_branch_inc(&apic_hw_disabled.key);
2615 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2616 }
2617 }
2618
2619 if ((old_value ^ value) & X2APIC_ENABLE) {
2620 if (value & X2APIC_ENABLE)
2621 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2622 else if (value & MSR_IA32_APICBASE_ENABLE)
2623 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2624 }
2625
2626 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) {
2627 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2628 kvm_x86_call(set_virtual_apic_mode)(vcpu);
2629 }
2630
2631 apic->base_address = apic->vcpu->arch.apic_base &
2632 MSR_IA32_APICBASE_BASE;
2633
2634 if ((value & MSR_IA32_APICBASE_ENABLE) &&
2635 apic->base_address != APIC_DEFAULT_PHYS_BASE) {
2636 kvm_set_apicv_inhibit(apic->vcpu->kvm,
2637 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
2638 }
2639 }
2640
kvm_apic_update_apicv(struct kvm_vcpu * vcpu)2641 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2642 {
2643 struct kvm_lapic *apic = vcpu->arch.apic;
2644
2645 /*
2646 * When APICv is enabled, KVM must always search the IRR for a pending
2647 * IRQ, as other vCPUs and devices can set IRR bits even if the vCPU
2648 * isn't running. If APICv is disabled, KVM _should_ search the IRR
2649 * for a pending IRQ. But KVM currently doesn't ensure *all* hardware,
2650 * e.g. CPUs and IOMMUs, has seen the change in state, i.e. searching
2651 * the IRR at this time could race with IRQ delivery from hardware that
2652 * still sees APICv as being enabled.
2653 *
2654 * FIXME: Ensure other vCPUs and devices observe the change in APICv
2655 * state prior to updating KVM's metadata caches, so that KVM
2656 * can safely search the IRR and set irr_pending accordingly.
2657 */
2658 apic->irr_pending = true;
2659
2660 if (apic->apicv_active)
2661 apic->isr_count = 1;
2662 else
2663 apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2664
2665 apic->highest_isr_cache = -1;
2666 }
2667
kvm_alloc_apic_access_page(struct kvm * kvm)2668 int kvm_alloc_apic_access_page(struct kvm *kvm)
2669 {
2670 struct page *page;
2671 void __user *hva;
2672 int ret = 0;
2673
2674 mutex_lock(&kvm->slots_lock);
2675 if (kvm->arch.apic_access_memslot_enabled ||
2676 kvm->arch.apic_access_memslot_inhibited)
2677 goto out;
2678
2679 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
2680 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
2681 if (IS_ERR(hva)) {
2682 ret = PTR_ERR(hva);
2683 goto out;
2684 }
2685
2686 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
2687 if (is_error_page(page)) {
2688 ret = -EFAULT;
2689 goto out;
2690 }
2691
2692 /*
2693 * Do not pin the page in memory, so that memory hot-unplug
2694 * is able to migrate it.
2695 */
2696 put_page(page);
2697 kvm->arch.apic_access_memslot_enabled = true;
2698 out:
2699 mutex_unlock(&kvm->slots_lock);
2700 return ret;
2701 }
2702 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page);
2703
kvm_inhibit_apic_access_page(struct kvm_vcpu * vcpu)2704 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu)
2705 {
2706 struct kvm *kvm = vcpu->kvm;
2707
2708 if (!kvm->arch.apic_access_memslot_enabled)
2709 return;
2710
2711 kvm_vcpu_srcu_read_unlock(vcpu);
2712
2713 mutex_lock(&kvm->slots_lock);
2714
2715 if (kvm->arch.apic_access_memslot_enabled) {
2716 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
2717 /*
2718 * Clear "enabled" after the memslot is deleted so that a
2719 * different vCPU doesn't get a false negative when checking
2720 * the flag out of slots_lock. No additional memory barrier is
2721 * needed as modifying memslots requires waiting other vCPUs to
2722 * drop SRCU (see above), and false positives are ok as the
2723 * flag is rechecked after acquiring slots_lock.
2724 */
2725 kvm->arch.apic_access_memslot_enabled = false;
2726
2727 /*
2728 * Mark the memslot as inhibited to prevent reallocating the
2729 * memslot during vCPU creation, e.g. if a vCPU is hotplugged.
2730 */
2731 kvm->arch.apic_access_memslot_inhibited = true;
2732 }
2733
2734 mutex_unlock(&kvm->slots_lock);
2735
2736 kvm_vcpu_srcu_read_lock(vcpu);
2737 }
2738
kvm_lapic_reset(struct kvm_vcpu * vcpu,bool init_event)2739 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2740 {
2741 struct kvm_lapic *apic = vcpu->arch.apic;
2742 u64 msr_val;
2743 int i;
2744
2745 kvm_x86_call(apicv_pre_state_restore)(vcpu);
2746
2747 if (!init_event) {
2748 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
2749 if (kvm_vcpu_is_reset_bsp(vcpu))
2750 msr_val |= MSR_IA32_APICBASE_BSP;
2751 kvm_lapic_set_base(vcpu, msr_val);
2752 }
2753
2754 if (!apic)
2755 return;
2756
2757 /* Stop the timer in case it's a reset to an active apic */
2758 hrtimer_cancel(&apic->lapic_timer.timer);
2759
2760 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */
2761 if (!init_event)
2762 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2763 kvm_apic_set_version(apic->vcpu);
2764
2765 for (i = 0; i < apic->nr_lvt_entries; i++)
2766 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
2767 apic_update_lvtt(apic);
2768 if (kvm_vcpu_is_reset_bsp(vcpu) &&
2769 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2770 kvm_lapic_set_reg(apic, APIC_LVT0,
2771 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2772 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2773
2774 kvm_apic_set_dfr(apic, 0xffffffffU);
2775 apic_set_spiv(apic, 0xff);
2776 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2777 if (!apic_x2apic_mode(apic))
2778 kvm_apic_set_ldr(apic, 0);
2779 kvm_lapic_set_reg(apic, APIC_ESR, 0);
2780 if (!apic_x2apic_mode(apic)) {
2781 kvm_lapic_set_reg(apic, APIC_ICR, 0);
2782 kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2783 } else {
2784 kvm_lapic_set_reg64(apic, APIC_ICR, 0);
2785 }
2786 kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2787 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2788 for (i = 0; i < 8; i++) {
2789 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2790 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2791 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2792 }
2793 kvm_apic_update_apicv(vcpu);
2794 update_divide_count(apic);
2795 atomic_set(&apic->lapic_timer.pending, 0);
2796
2797 vcpu->arch.pv_eoi.msr_val = 0;
2798 apic_update_ppr(apic);
2799 if (apic->apicv_active) {
2800 kvm_x86_call(apicv_post_state_restore)(vcpu);
2801 kvm_x86_call(hwapic_irr_update)(vcpu, -1);
2802 kvm_x86_call(hwapic_isr_update)(vcpu, -1);
2803 }
2804
2805 vcpu->arch.apic_arb_prio = 0;
2806 vcpu->arch.apic_attention = 0;
2807
2808 kvm_recalculate_apic_map(vcpu->kvm);
2809 }
2810
2811 /*
2812 *----------------------------------------------------------------------
2813 * timer interface
2814 *----------------------------------------------------------------------
2815 */
2816
lapic_is_periodic(struct kvm_lapic * apic)2817 static bool lapic_is_periodic(struct kvm_lapic *apic)
2818 {
2819 return apic_lvtt_period(apic);
2820 }
2821
apic_has_pending_timer(struct kvm_vcpu * vcpu)2822 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2823 {
2824 struct kvm_lapic *apic = vcpu->arch.apic;
2825
2826 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2827 return atomic_read(&apic->lapic_timer.pending);
2828
2829 return 0;
2830 }
2831
kvm_apic_local_deliver(struct kvm_lapic * apic,int lvt_type)2832 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2833 {
2834 u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2835 int vector, mode, trig_mode;
2836 int r;
2837
2838 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2839 vector = reg & APIC_VECTOR_MASK;
2840 mode = reg & APIC_MODE_MASK;
2841 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2842
2843 r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL);
2844 if (r && lvt_type == APIC_LVTPC &&
2845 guest_cpuid_is_intel_compatible(apic->vcpu))
2846 kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED);
2847 return r;
2848 }
2849 return 0;
2850 }
2851
kvm_apic_nmi_wd_deliver(struct kvm_vcpu * vcpu)2852 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2853 {
2854 struct kvm_lapic *apic = vcpu->arch.apic;
2855
2856 if (apic)
2857 kvm_apic_local_deliver(apic, APIC_LVT0);
2858 }
2859
2860 static const struct kvm_io_device_ops apic_mmio_ops = {
2861 .read = apic_mmio_read,
2862 .write = apic_mmio_write,
2863 };
2864
apic_timer_fn(struct hrtimer * data)2865 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2866 {
2867 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2868 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2869
2870 apic_timer_expired(apic, true);
2871
2872 if (lapic_is_periodic(apic)) {
2873 advance_periodic_target_expiration(apic);
2874 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2875 return HRTIMER_RESTART;
2876 } else
2877 return HRTIMER_NORESTART;
2878 }
2879
kvm_create_lapic(struct kvm_vcpu * vcpu)2880 int kvm_create_lapic(struct kvm_vcpu *vcpu)
2881 {
2882 struct kvm_lapic *apic;
2883
2884 ASSERT(vcpu != NULL);
2885
2886 if (!irqchip_in_kernel(vcpu->kvm)) {
2887 static_branch_inc(&kvm_has_noapic_vcpu);
2888 return 0;
2889 }
2890
2891 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2892 if (!apic)
2893 goto nomem;
2894
2895 vcpu->arch.apic = apic;
2896
2897 if (kvm_x86_ops.alloc_apic_backing_page)
2898 apic->regs = kvm_x86_call(alloc_apic_backing_page)(vcpu);
2899 else
2900 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2901 if (!apic->regs) {
2902 printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2903 vcpu->vcpu_id);
2904 goto nomem_free_apic;
2905 }
2906 apic->vcpu = vcpu;
2907
2908 apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
2909
2910 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2911 HRTIMER_MODE_ABS_HARD);
2912 apic->lapic_timer.timer.function = apic_timer_fn;
2913 if (lapic_timer_advance)
2914 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2915
2916 /*
2917 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing
2918 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset().
2919 */
2920 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2921 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2922 kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2923
2924 /*
2925 * Defer evaluating inhibits until the vCPU is first run, as this vCPU
2926 * will not get notified of any changes until this vCPU is visible to
2927 * other vCPUs (marked online and added to the set of vCPUs).
2928 *
2929 * Opportunistically mark APICv active as VMX in particularly is highly
2930 * unlikely to have inhibits. Ignore the current per-VM APICv state so
2931 * that vCPU creation is guaranteed to run with a deterministic value,
2932 * the request will ensure the vCPU gets the correct state before VM-Entry.
2933 */
2934 if (enable_apicv) {
2935 apic->apicv_active = true;
2936 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2937 }
2938
2939 return 0;
2940 nomem_free_apic:
2941 kfree(apic);
2942 vcpu->arch.apic = NULL;
2943 nomem:
2944 return -ENOMEM;
2945 }
2946
kvm_apic_has_interrupt(struct kvm_vcpu * vcpu)2947 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2948 {
2949 struct kvm_lapic *apic = vcpu->arch.apic;
2950 u32 ppr;
2951
2952 if (!kvm_apic_present(vcpu))
2953 return -1;
2954
2955 __apic_update_ppr(apic, &ppr);
2956 return apic_has_interrupt_for_ppr(apic, ppr);
2957 }
2958 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
2959
kvm_apic_accept_pic_intr(struct kvm_vcpu * vcpu)2960 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2961 {
2962 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2963
2964 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2965 return 1;
2966 if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2967 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2968 return 1;
2969 return 0;
2970 }
2971
kvm_inject_apic_timer_irqs(struct kvm_vcpu * vcpu)2972 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2973 {
2974 struct kvm_lapic *apic = vcpu->arch.apic;
2975
2976 if (atomic_read(&apic->lapic_timer.pending) > 0) {
2977 kvm_apic_inject_pending_timer_irqs(apic);
2978 atomic_set(&apic->lapic_timer.pending, 0);
2979 }
2980 }
2981
kvm_apic_ack_interrupt(struct kvm_vcpu * vcpu,int vector)2982 void kvm_apic_ack_interrupt(struct kvm_vcpu *vcpu, int vector)
2983 {
2984 struct kvm_lapic *apic = vcpu->arch.apic;
2985 u32 ppr;
2986
2987 if (WARN_ON_ONCE(vector < 0 || !apic))
2988 return;
2989
2990 /*
2991 * We get here even with APIC virtualization enabled, if doing
2992 * nested virtualization and L1 runs with the "acknowledge interrupt
2993 * on exit" mode. Then we cannot inject the interrupt via RVI,
2994 * because the process would deliver it through the IDT.
2995 */
2996
2997 apic_clear_irr(vector, apic);
2998 if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) {
2999 /*
3000 * For auto-EOI interrupts, there might be another pending
3001 * interrupt above PPR, so check whether to raise another
3002 * KVM_REQ_EVENT.
3003 */
3004 apic_update_ppr(apic);
3005 } else {
3006 /*
3007 * For normal interrupts, PPR has been raised and there cannot
3008 * be a higher-priority pending interrupt---except if there was
3009 * a concurrent interrupt injection, but that would have
3010 * triggered KVM_REQ_EVENT already.
3011 */
3012 apic_set_isr(vector, apic);
3013 __apic_update_ppr(apic, &ppr);
3014 }
3015
3016 }
3017 EXPORT_SYMBOL_GPL(kvm_apic_ack_interrupt);
3018
kvm_apic_state_fixup(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s,bool set)3019 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
3020 struct kvm_lapic_state *s, bool set)
3021 {
3022 if (apic_x2apic_mode(vcpu->arch.apic)) {
3023 u32 x2apic_id = kvm_x2apic_id(vcpu->arch.apic);
3024 u32 *id = (u32 *)(s->regs + APIC_ID);
3025 u32 *ldr = (u32 *)(s->regs + APIC_LDR);
3026 u64 icr;
3027
3028 if (vcpu->kvm->arch.x2apic_format) {
3029 if (*id != x2apic_id)
3030 return -EINVAL;
3031 } else {
3032 /*
3033 * Ignore the userspace value when setting APIC state.
3034 * KVM's model is that the x2APIC ID is readonly, e.g.
3035 * KVM only supports delivering interrupts to KVM's
3036 * version of the x2APIC ID. However, for backwards
3037 * compatibility, don't reject attempts to set a
3038 * mismatched ID for userspace that hasn't opted into
3039 * x2apic_format.
3040 */
3041 if (set)
3042 *id = x2apic_id;
3043 else
3044 *id = x2apic_id << 24;
3045 }
3046
3047 /*
3048 * In x2APIC mode, the LDR is fixed and based on the id. And
3049 * if the ICR is _not_ split, ICR is internally a single 64-bit
3050 * register, but needs to be split to ICR+ICR2 in userspace for
3051 * backwards compatibility.
3052 */
3053 if (set)
3054 *ldr = kvm_apic_calc_x2apic_ldr(x2apic_id);
3055
3056 if (!kvm_x86_ops.x2apic_icr_is_split) {
3057 if (set) {
3058 icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) |
3059 (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32;
3060 __kvm_lapic_set_reg64(s->regs, APIC_ICR, icr);
3061 } else {
3062 icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR);
3063 __kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32);
3064 }
3065 }
3066 }
3067
3068 return 0;
3069 }
3070
kvm_apic_get_state(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3071 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
3072 {
3073 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
3074
3075 /*
3076 * Get calculated timer current count for remaining timer period (if
3077 * any) and store it in the returned register set.
3078 */
3079 __kvm_lapic_set_reg(s->regs, APIC_TMCCT,
3080 __apic_read(vcpu->arch.apic, APIC_TMCCT));
3081
3082 return kvm_apic_state_fixup(vcpu, s, false);
3083 }
3084
kvm_apic_set_state(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3085 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
3086 {
3087 struct kvm_lapic *apic = vcpu->arch.apic;
3088 int r;
3089
3090 kvm_x86_call(apicv_pre_state_restore)(vcpu);
3091
3092 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
3093 /* set SPIV separately to get count of SW disabled APICs right */
3094 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
3095
3096 r = kvm_apic_state_fixup(vcpu, s, true);
3097 if (r) {
3098 kvm_recalculate_apic_map(vcpu->kvm);
3099 return r;
3100 }
3101 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
3102
3103 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
3104 kvm_recalculate_apic_map(vcpu->kvm);
3105 kvm_apic_set_version(vcpu);
3106
3107 apic_update_ppr(apic);
3108 cancel_apic_timer(apic);
3109 apic->lapic_timer.expired_tscdeadline = 0;
3110 apic_update_lvtt(apic);
3111 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
3112 update_divide_count(apic);
3113 __start_apic_timer(apic, APIC_TMCCT);
3114 kvm_lapic_set_reg(apic, APIC_TMCCT, 0);
3115 kvm_apic_update_apicv(vcpu);
3116 if (apic->apicv_active) {
3117 kvm_x86_call(apicv_post_state_restore)(vcpu);
3118 kvm_x86_call(hwapic_irr_update)(vcpu, apic_find_highest_irr(apic));
3119 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic));
3120 }
3121 kvm_make_request(KVM_REQ_EVENT, vcpu);
3122 if (ioapic_in_kernel(vcpu->kvm))
3123 kvm_rtc_eoi_tracking_restore_one(vcpu);
3124
3125 vcpu->arch.apic_arb_prio = 0;
3126
3127 return 0;
3128 }
3129
__kvm_migrate_apic_timer(struct kvm_vcpu * vcpu)3130 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
3131 {
3132 struct hrtimer *timer;
3133
3134 if (!lapic_in_kernel(vcpu) ||
3135 kvm_can_post_timer_interrupt(vcpu))
3136 return;
3137
3138 timer = &vcpu->arch.apic->lapic_timer.timer;
3139 if (hrtimer_cancel(timer))
3140 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
3141 }
3142
3143 /*
3144 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
3145 *
3146 * Detect whether guest triggered PV EOI since the
3147 * last entry. If yes, set EOI on guests's behalf.
3148 * Clear PV EOI in guest memory in any case.
3149 */
apic_sync_pv_eoi_from_guest(struct kvm_vcpu * vcpu,struct kvm_lapic * apic)3150 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
3151 struct kvm_lapic *apic)
3152 {
3153 int vector;
3154 /*
3155 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
3156 * and KVM_PV_EOI_ENABLED in guest memory as follows:
3157 *
3158 * KVM_APIC_PV_EOI_PENDING is unset:
3159 * -> host disabled PV EOI.
3160 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
3161 * -> host enabled PV EOI, guest did not execute EOI yet.
3162 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
3163 * -> host enabled PV EOI, guest executed EOI.
3164 */
3165 BUG_ON(!pv_eoi_enabled(vcpu));
3166
3167 if (pv_eoi_test_and_clr_pending(vcpu))
3168 return;
3169 vector = apic_set_eoi(apic);
3170 trace_kvm_pv_eoi(apic, vector);
3171 }
3172
kvm_lapic_sync_from_vapic(struct kvm_vcpu * vcpu)3173 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
3174 {
3175 u32 data;
3176
3177 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
3178 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
3179
3180 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3181 return;
3182
3183 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3184 sizeof(u32)))
3185 return;
3186
3187 apic_set_tpr(vcpu->arch.apic, data & 0xff);
3188 }
3189
3190 /*
3191 * apic_sync_pv_eoi_to_guest - called before vmentry
3192 *
3193 * Detect whether it's safe to enable PV EOI and
3194 * if yes do so.
3195 */
apic_sync_pv_eoi_to_guest(struct kvm_vcpu * vcpu,struct kvm_lapic * apic)3196 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
3197 struct kvm_lapic *apic)
3198 {
3199 if (!pv_eoi_enabled(vcpu) ||
3200 /* IRR set or many bits in ISR: could be nested. */
3201 apic->irr_pending ||
3202 /* Cache not set: could be safe but we don't bother. */
3203 apic->highest_isr_cache == -1 ||
3204 /* Need EOI to update ioapic. */
3205 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
3206 /*
3207 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
3208 * so we need not do anything here.
3209 */
3210 return;
3211 }
3212
3213 pv_eoi_set_pending(apic->vcpu);
3214 }
3215
kvm_lapic_sync_to_vapic(struct kvm_vcpu * vcpu)3216 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
3217 {
3218 u32 data, tpr;
3219 int max_irr, max_isr;
3220 struct kvm_lapic *apic = vcpu->arch.apic;
3221
3222 apic_sync_pv_eoi_to_guest(vcpu, apic);
3223
3224 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3225 return;
3226
3227 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
3228 max_irr = apic_find_highest_irr(apic);
3229 if (max_irr < 0)
3230 max_irr = 0;
3231 max_isr = apic_find_highest_isr(apic);
3232 if (max_isr < 0)
3233 max_isr = 0;
3234 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
3235
3236 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3237 sizeof(u32));
3238 }
3239
kvm_lapic_set_vapic_addr(struct kvm_vcpu * vcpu,gpa_t vapic_addr)3240 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
3241 {
3242 if (vapic_addr) {
3243 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
3244 &vcpu->arch.apic->vapic_cache,
3245 vapic_addr, sizeof(u32)))
3246 return -EINVAL;
3247 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3248 } else {
3249 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3250 }
3251
3252 vcpu->arch.apic->vapic_addr = vapic_addr;
3253 return 0;
3254 }
3255
kvm_lapic_msr_read(struct kvm_lapic * apic,u32 reg,u64 * data)3256 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data)
3257 {
3258 u32 low;
3259
3260 if (reg == APIC_ICR) {
3261 *data = kvm_x2apic_icr_read(apic);
3262 return 0;
3263 }
3264
3265 if (kvm_lapic_reg_read(apic, reg, 4, &low))
3266 return 1;
3267
3268 *data = low;
3269
3270 return 0;
3271 }
3272
kvm_lapic_msr_write(struct kvm_lapic * apic,u32 reg,u64 data)3273 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data)
3274 {
3275 /*
3276 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and
3277 * can be written as such, all other registers remain accessible only
3278 * through 32-bit reads/writes.
3279 */
3280 if (reg == APIC_ICR)
3281 return kvm_x2apic_icr_write(apic, data);
3282
3283 /* Bits 63:32 are reserved in all other registers. */
3284 if (data >> 32)
3285 return 1;
3286
3287 return kvm_lapic_reg_write(apic, reg, (u32)data);
3288 }
3289
kvm_x2apic_msr_write(struct kvm_vcpu * vcpu,u32 msr,u64 data)3290 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
3291 {
3292 struct kvm_lapic *apic = vcpu->arch.apic;
3293 u32 reg = (msr - APIC_BASE_MSR) << 4;
3294
3295 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3296 return 1;
3297
3298 return kvm_lapic_msr_write(apic, reg, data);
3299 }
3300
kvm_x2apic_msr_read(struct kvm_vcpu * vcpu,u32 msr,u64 * data)3301 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
3302 {
3303 struct kvm_lapic *apic = vcpu->arch.apic;
3304 u32 reg = (msr - APIC_BASE_MSR) << 4;
3305
3306 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3307 return 1;
3308
3309 return kvm_lapic_msr_read(apic, reg, data);
3310 }
3311
kvm_hv_vapic_msr_write(struct kvm_vcpu * vcpu,u32 reg,u64 data)3312 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
3313 {
3314 if (!lapic_in_kernel(vcpu))
3315 return 1;
3316
3317 return kvm_lapic_msr_write(vcpu->arch.apic, reg, data);
3318 }
3319
kvm_hv_vapic_msr_read(struct kvm_vcpu * vcpu,u32 reg,u64 * data)3320 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
3321 {
3322 if (!lapic_in_kernel(vcpu))
3323 return 1;
3324
3325 return kvm_lapic_msr_read(vcpu->arch.apic, reg, data);
3326 }
3327
kvm_lapic_set_pv_eoi(struct kvm_vcpu * vcpu,u64 data,unsigned long len)3328 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
3329 {
3330 u64 addr = data & ~KVM_MSR_ENABLED;
3331 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
3332 unsigned long new_len;
3333 int ret;
3334
3335 if (!IS_ALIGNED(addr, 4))
3336 return 1;
3337
3338 if (data & KVM_MSR_ENABLED) {
3339 if (addr == ghc->gpa && len <= ghc->len)
3340 new_len = ghc->len;
3341 else
3342 new_len = len;
3343
3344 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
3345 if (ret)
3346 return ret;
3347 }
3348
3349 vcpu->arch.pv_eoi.msr_val = data;
3350
3351 return 0;
3352 }
3353
kvm_apic_accept_events(struct kvm_vcpu * vcpu)3354 int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
3355 {
3356 struct kvm_lapic *apic = vcpu->arch.apic;
3357 u8 sipi_vector;
3358 int r;
3359
3360 if (!kvm_apic_has_pending_init_or_sipi(vcpu))
3361 return 0;
3362
3363 if (is_guest_mode(vcpu)) {
3364 r = kvm_check_nested_events(vcpu);
3365 if (r < 0)
3366 return r == -EBUSY ? 0 : r;
3367 /*
3368 * Continue processing INIT/SIPI even if a nested VM-Exit
3369 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI
3370 * are blocked as a result of transitioning to VMX root mode.
3371 */
3372 }
3373
3374 /*
3375 * INITs are blocked while CPU is in specific states (SMM, VMX root
3376 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in
3377 * wait-for-SIPI (WFS).
3378 */
3379 if (!kvm_apic_init_sipi_allowed(vcpu)) {
3380 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
3381 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3382 return 0;
3383 }
3384
3385 if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) {
3386 kvm_vcpu_reset(vcpu, true);
3387 if (kvm_vcpu_is_bsp(apic->vcpu))
3388 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3389 else
3390 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3391 }
3392 if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3393 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
3394 /* evaluate pending_events before reading the vector */
3395 smp_rmb();
3396 sipi_vector = apic->sipi_vector;
3397 kvm_x86_call(vcpu_deliver_sipi_vector)(vcpu,
3398 sipi_vector);
3399 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3400 }
3401 }
3402 return 0;
3403 }
3404
kvm_lapic_exit(void)3405 void kvm_lapic_exit(void)
3406 {
3407 static_key_deferred_flush(&apic_hw_disabled);
3408 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key));
3409 static_key_deferred_flush(&apic_sw_disabled);
3410 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key));
3411 }
3412