1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Landlock LSM - Filesystem management and hooks
4 *
5 * Copyright © 2016-2020 Mickaël Salaün <mic@digikod.net>
6 * Copyright © 2018-2020 ANSSI
7 * Copyright © 2021-2022 Microsoft Corporation
8 * Copyright © 2022 Günther Noack <gnoack3000@gmail.com>
9 * Copyright © 2023-2024 Google LLC
10 */
11
12 #include <asm/ioctls.h>
13 #include <kunit/test.h>
14 #include <linux/atomic.h>
15 #include <linux/bitops.h>
16 #include <linux/bits.h>
17 #include <linux/compiler_types.h>
18 #include <linux/dcache.h>
19 #include <linux/err.h>
20 #include <linux/falloc.h>
21 #include <linux/fs.h>
22 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/limits.h>
25 #include <linux/list.h>
26 #include <linux/lsm_hooks.h>
27 #include <linux/mount.h>
28 #include <linux/namei.h>
29 #include <linux/path.h>
30 #include <linux/pid.h>
31 #include <linux/rcupdate.h>
32 #include <linux/sched/signal.h>
33 #include <linux/spinlock.h>
34 #include <linux/stat.h>
35 #include <linux/types.h>
36 #include <linux/wait_bit.h>
37 #include <linux/workqueue.h>
38 #include <uapi/linux/fiemap.h>
39 #include <uapi/linux/landlock.h>
40
41 #include "common.h"
42 #include "cred.h"
43 #include "fs.h"
44 #include "limits.h"
45 #include "object.h"
46 #include "ruleset.h"
47 #include "setup.h"
48
49 /* Underlying object management */
50
release_inode(struct landlock_object * const object)51 static void release_inode(struct landlock_object *const object)
52 __releases(object->lock)
53 {
54 struct inode *const inode = object->underobj;
55 struct super_block *sb;
56
57 if (!inode) {
58 spin_unlock(&object->lock);
59 return;
60 }
61
62 /*
63 * Protects against concurrent use by hook_sb_delete() of the reference
64 * to the underlying inode.
65 */
66 object->underobj = NULL;
67 /*
68 * Makes sure that if the filesystem is concurrently unmounted,
69 * hook_sb_delete() will wait for us to finish iput().
70 */
71 sb = inode->i_sb;
72 atomic_long_inc(&landlock_superblock(sb)->inode_refs);
73 spin_unlock(&object->lock);
74 /*
75 * Because object->underobj was not NULL, hook_sb_delete() and
76 * get_inode_object() guarantee that it is safe to reset
77 * landlock_inode(inode)->object while it is not NULL. It is therefore
78 * not necessary to lock inode->i_lock.
79 */
80 rcu_assign_pointer(landlock_inode(inode)->object, NULL);
81 /*
82 * Now, new rules can safely be tied to @inode with get_inode_object().
83 */
84
85 iput(inode);
86 if (atomic_long_dec_and_test(&landlock_superblock(sb)->inode_refs))
87 wake_up_var(&landlock_superblock(sb)->inode_refs);
88 }
89
90 static const struct landlock_object_underops landlock_fs_underops = {
91 .release = release_inode
92 };
93
94 /* IOCTL helpers */
95
96 /**
97 * is_masked_device_ioctl - Determine whether an IOCTL command is always
98 * permitted with Landlock for device files. These commands can not be
99 * restricted on device files by enforcing a Landlock policy.
100 *
101 * @cmd: The IOCTL command that is supposed to be run.
102 *
103 * By default, any IOCTL on a device file requires the
104 * LANDLOCK_ACCESS_FS_IOCTL_DEV right. However, we blanket-permit some
105 * commands, if:
106 *
107 * 1. The command is implemented in fs/ioctl.c's do_vfs_ioctl(),
108 * not in f_ops->unlocked_ioctl() or f_ops->compat_ioctl().
109 *
110 * 2. The command is harmless when invoked on devices.
111 *
112 * We also permit commands that do not make sense for devices, but where the
113 * do_vfs_ioctl() implementation returns a more conventional error code.
114 *
115 * Any new IOCTL commands that are implemented in fs/ioctl.c's do_vfs_ioctl()
116 * should be considered for inclusion here.
117 *
118 * Returns: true if the IOCTL @cmd can not be restricted with Landlock for
119 * device files.
120 */
is_masked_device_ioctl(const unsigned int cmd)121 static __attribute_const__ bool is_masked_device_ioctl(const unsigned int cmd)
122 {
123 switch (cmd) {
124 /*
125 * FIOCLEX, FIONCLEX, FIONBIO and FIOASYNC manipulate the FD's
126 * close-on-exec and the file's buffered-IO and async flags. These
127 * operations are also available through fcntl(2), and are
128 * unconditionally permitted in Landlock.
129 */
130 case FIOCLEX:
131 case FIONCLEX:
132 case FIONBIO:
133 case FIOASYNC:
134 /*
135 * FIOQSIZE queries the size of a regular file, directory, or link.
136 *
137 * We still permit it, because it always returns -ENOTTY for
138 * other file types.
139 */
140 case FIOQSIZE:
141 /*
142 * FIFREEZE and FITHAW freeze and thaw the file system which the
143 * given file belongs to. Requires CAP_SYS_ADMIN.
144 *
145 * These commands operate on the file system's superblock rather
146 * than on the file itself. The same operations can also be
147 * done through any other file or directory on the same file
148 * system, so it is safe to permit these.
149 */
150 case FIFREEZE:
151 case FITHAW:
152 /*
153 * FS_IOC_FIEMAP queries information about the allocation of
154 * blocks within a file.
155 *
156 * This IOCTL command only makes sense for regular files and is
157 * not implemented by devices. It is harmless to permit.
158 */
159 case FS_IOC_FIEMAP:
160 /*
161 * FIGETBSZ queries the file system's block size for a file or
162 * directory.
163 *
164 * This command operates on the file system's superblock rather
165 * than on the file itself. The same operation can also be done
166 * through any other file or directory on the same file system,
167 * so it is safe to permit it.
168 */
169 case FIGETBSZ:
170 /*
171 * FICLONE, FICLONERANGE and FIDEDUPERANGE make files share
172 * their underlying storage ("reflink") between source and
173 * destination FDs, on file systems which support that.
174 *
175 * These IOCTL commands only apply to regular files
176 * and are harmless to permit for device files.
177 */
178 case FICLONE:
179 case FICLONERANGE:
180 case FIDEDUPERANGE:
181 /*
182 * FS_IOC_GETFSUUID and FS_IOC_GETFSSYSFSPATH both operate on
183 * the file system superblock, not on the specific file, so
184 * these operations are available through any other file on the
185 * same file system as well.
186 */
187 case FS_IOC_GETFSUUID:
188 case FS_IOC_GETFSSYSFSPATH:
189 return true;
190
191 /*
192 * FIONREAD, FS_IOC_GETFLAGS, FS_IOC_SETFLAGS, FS_IOC_FSGETXATTR and
193 * FS_IOC_FSSETXATTR are forwarded to device implementations.
194 */
195
196 /*
197 * file_ioctl() commands (FIBMAP, FS_IOC_RESVSP, FS_IOC_RESVSP64,
198 * FS_IOC_UNRESVSP, FS_IOC_UNRESVSP64 and FS_IOC_ZERO_RANGE) are
199 * forwarded to device implementations, so not permitted.
200 */
201
202 /* Other commands are guarded by the access right. */
203 default:
204 return false;
205 }
206 }
207
208 /*
209 * is_masked_device_ioctl_compat - same as the helper above, but checking the
210 * "compat" IOCTL commands.
211 *
212 * The IOCTL commands with special handling in compat-mode should behave the
213 * same as their non-compat counterparts.
214 */
215 static __attribute_const__ bool
is_masked_device_ioctl_compat(const unsigned int cmd)216 is_masked_device_ioctl_compat(const unsigned int cmd)
217 {
218 switch (cmd) {
219 /* FICLONE is permitted, same as in the non-compat variant. */
220 case FICLONE:
221 return true;
222
223 #if defined(CONFIG_X86_64)
224 /*
225 * FS_IOC_RESVSP_32, FS_IOC_RESVSP64_32, FS_IOC_UNRESVSP_32,
226 * FS_IOC_UNRESVSP64_32, FS_IOC_ZERO_RANGE_32: not blanket-permitted,
227 * for consistency with their non-compat variants.
228 */
229 case FS_IOC_RESVSP_32:
230 case FS_IOC_RESVSP64_32:
231 case FS_IOC_UNRESVSP_32:
232 case FS_IOC_UNRESVSP64_32:
233 case FS_IOC_ZERO_RANGE_32:
234 #endif
235
236 /*
237 * FS_IOC32_GETFLAGS, FS_IOC32_SETFLAGS are forwarded to their device
238 * implementations.
239 */
240 case FS_IOC32_GETFLAGS:
241 case FS_IOC32_SETFLAGS:
242 return false;
243 default:
244 return is_masked_device_ioctl(cmd);
245 }
246 }
247
248 /* Ruleset management */
249
get_inode_object(struct inode * const inode)250 static struct landlock_object *get_inode_object(struct inode *const inode)
251 {
252 struct landlock_object *object, *new_object;
253 struct landlock_inode_security *inode_sec = landlock_inode(inode);
254
255 rcu_read_lock();
256 retry:
257 object = rcu_dereference(inode_sec->object);
258 if (object) {
259 if (likely(refcount_inc_not_zero(&object->usage))) {
260 rcu_read_unlock();
261 return object;
262 }
263 /*
264 * We are racing with release_inode(), the object is going
265 * away. Wait for release_inode(), then retry.
266 */
267 spin_lock(&object->lock);
268 spin_unlock(&object->lock);
269 goto retry;
270 }
271 rcu_read_unlock();
272
273 /*
274 * If there is no object tied to @inode, then create a new one (without
275 * holding any locks).
276 */
277 new_object = landlock_create_object(&landlock_fs_underops, inode);
278 if (IS_ERR(new_object))
279 return new_object;
280
281 /*
282 * Protects against concurrent calls to get_inode_object() or
283 * hook_sb_delete().
284 */
285 spin_lock(&inode->i_lock);
286 if (unlikely(rcu_access_pointer(inode_sec->object))) {
287 /* Someone else just created the object, bail out and retry. */
288 spin_unlock(&inode->i_lock);
289 kfree(new_object);
290
291 rcu_read_lock();
292 goto retry;
293 }
294
295 /*
296 * @inode will be released by hook_sb_delete() on its superblock
297 * shutdown, or by release_inode() when no more ruleset references the
298 * related object.
299 */
300 ihold(inode);
301 rcu_assign_pointer(inode_sec->object, new_object);
302 spin_unlock(&inode->i_lock);
303 return new_object;
304 }
305
306 /* All access rights that can be tied to files. */
307 /* clang-format off */
308 #define ACCESS_FILE ( \
309 LANDLOCK_ACCESS_FS_EXECUTE | \
310 LANDLOCK_ACCESS_FS_WRITE_FILE | \
311 LANDLOCK_ACCESS_FS_READ_FILE | \
312 LANDLOCK_ACCESS_FS_TRUNCATE | \
313 LANDLOCK_ACCESS_FS_IOCTL_DEV)
314 /* clang-format on */
315
316 /*
317 * @path: Should have been checked by get_path_from_fd().
318 */
landlock_append_fs_rule(struct landlock_ruleset * const ruleset,const struct path * const path,access_mask_t access_rights)319 int landlock_append_fs_rule(struct landlock_ruleset *const ruleset,
320 const struct path *const path,
321 access_mask_t access_rights)
322 {
323 int err;
324 struct landlock_id id = {
325 .type = LANDLOCK_KEY_INODE,
326 };
327
328 /* Files only get access rights that make sense. */
329 if (!d_is_dir(path->dentry) &&
330 (access_rights | ACCESS_FILE) != ACCESS_FILE)
331 return -EINVAL;
332 if (WARN_ON_ONCE(ruleset->num_layers != 1))
333 return -EINVAL;
334
335 /* Transforms relative access rights to absolute ones. */
336 access_rights |= LANDLOCK_MASK_ACCESS_FS &
337 ~landlock_get_fs_access_mask(ruleset, 0);
338 id.key.object = get_inode_object(d_backing_inode(path->dentry));
339 if (IS_ERR(id.key.object))
340 return PTR_ERR(id.key.object);
341 mutex_lock(&ruleset->lock);
342 err = landlock_insert_rule(ruleset, id, access_rights);
343 mutex_unlock(&ruleset->lock);
344 /*
345 * No need to check for an error because landlock_insert_rule()
346 * increments the refcount for the new object if needed.
347 */
348 landlock_put_object(id.key.object);
349 return err;
350 }
351
352 /* Access-control management */
353
354 /*
355 * The lifetime of the returned rule is tied to @domain.
356 *
357 * Returns NULL if no rule is found or if @dentry is negative.
358 */
359 static const struct landlock_rule *
find_rule(const struct landlock_ruleset * const domain,const struct dentry * const dentry)360 find_rule(const struct landlock_ruleset *const domain,
361 const struct dentry *const dentry)
362 {
363 const struct landlock_rule *rule;
364 const struct inode *inode;
365 struct landlock_id id = {
366 .type = LANDLOCK_KEY_INODE,
367 };
368
369 /* Ignores nonexistent leafs. */
370 if (d_is_negative(dentry))
371 return NULL;
372
373 inode = d_backing_inode(dentry);
374 rcu_read_lock();
375 id.key.object = rcu_dereference(landlock_inode(inode)->object);
376 rule = landlock_find_rule(domain, id);
377 rcu_read_unlock();
378 return rule;
379 }
380
381 /*
382 * Allows access to pseudo filesystems that will never be mountable (e.g.
383 * sockfs, pipefs), but can still be reachable through
384 * /proc/<pid>/fd/<file-descriptor>
385 */
is_nouser_or_private(const struct dentry * dentry)386 static bool is_nouser_or_private(const struct dentry *dentry)
387 {
388 return (dentry->d_sb->s_flags & SB_NOUSER) ||
389 (d_is_positive(dentry) &&
390 unlikely(IS_PRIVATE(d_backing_inode(dentry))));
391 }
392
393 static access_mask_t
get_handled_fs_accesses(const struct landlock_ruleset * const domain)394 get_handled_fs_accesses(const struct landlock_ruleset *const domain)
395 {
396 /* Handles all initially denied by default access rights. */
397 return landlock_union_access_masks(domain).fs |
398 LANDLOCK_ACCESS_FS_INITIALLY_DENIED;
399 }
400
401 static const struct access_masks any_fs = {
402 .fs = ~0,
403 };
404
get_current_fs_domain(void)405 static const struct landlock_ruleset *get_current_fs_domain(void)
406 {
407 return landlock_get_applicable_domain(landlock_get_current_domain(),
408 any_fs);
409 }
410
411 /*
412 * Check that a destination file hierarchy has more restrictions than a source
413 * file hierarchy. This is only used for link and rename actions.
414 *
415 * @layer_masks_child2: Optional child masks.
416 */
no_more_access(const layer_mask_t (* const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],const layer_mask_t (* const layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS],const bool child1_is_directory,const layer_mask_t (* const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],const layer_mask_t (* const layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS],const bool child2_is_directory)417 static bool no_more_access(
418 const layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],
419 const layer_mask_t (*const layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS],
420 const bool child1_is_directory,
421 const layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],
422 const layer_mask_t (*const layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS],
423 const bool child2_is_directory)
424 {
425 unsigned long access_bit;
426
427 for (access_bit = 0; access_bit < ARRAY_SIZE(*layer_masks_parent2);
428 access_bit++) {
429 /* Ignores accesses that only make sense for directories. */
430 const bool is_file_access =
431 !!(BIT_ULL(access_bit) & ACCESS_FILE);
432
433 if (child1_is_directory || is_file_access) {
434 /*
435 * Checks if the destination restrictions are a
436 * superset of the source ones (i.e. inherited access
437 * rights without child exceptions):
438 * restrictions(parent2) >= restrictions(child1)
439 */
440 if ((((*layer_masks_parent1)[access_bit] &
441 (*layer_masks_child1)[access_bit]) |
442 (*layer_masks_parent2)[access_bit]) !=
443 (*layer_masks_parent2)[access_bit])
444 return false;
445 }
446
447 if (!layer_masks_child2)
448 continue;
449 if (child2_is_directory || is_file_access) {
450 /*
451 * Checks inverted restrictions for RENAME_EXCHANGE:
452 * restrictions(parent1) >= restrictions(child2)
453 */
454 if ((((*layer_masks_parent2)[access_bit] &
455 (*layer_masks_child2)[access_bit]) |
456 (*layer_masks_parent1)[access_bit]) !=
457 (*layer_masks_parent1)[access_bit])
458 return false;
459 }
460 }
461 return true;
462 }
463
464 #define NMA_TRUE(...) KUNIT_EXPECT_TRUE(test, no_more_access(__VA_ARGS__))
465 #define NMA_FALSE(...) KUNIT_EXPECT_FALSE(test, no_more_access(__VA_ARGS__))
466
467 #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST
468
test_no_more_access(struct kunit * const test)469 static void test_no_more_access(struct kunit *const test)
470 {
471 const layer_mask_t rx0[LANDLOCK_NUM_ACCESS_FS] = {
472 [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
473 [BIT_INDEX(LANDLOCK_ACCESS_FS_READ_FILE)] = BIT_ULL(0),
474 };
475 const layer_mask_t mx0[LANDLOCK_NUM_ACCESS_FS] = {
476 [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
477 [BIT_INDEX(LANDLOCK_ACCESS_FS_MAKE_REG)] = BIT_ULL(0),
478 };
479 const layer_mask_t x0[LANDLOCK_NUM_ACCESS_FS] = {
480 [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
481 };
482 const layer_mask_t x1[LANDLOCK_NUM_ACCESS_FS] = {
483 [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(1),
484 };
485 const layer_mask_t x01[LANDLOCK_NUM_ACCESS_FS] = {
486 [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0) |
487 BIT_ULL(1),
488 };
489 const layer_mask_t allows_all[LANDLOCK_NUM_ACCESS_FS] = {};
490
491 /* Checks without restriction. */
492 NMA_TRUE(&x0, &allows_all, false, &allows_all, NULL, false);
493 NMA_TRUE(&allows_all, &x0, false, &allows_all, NULL, false);
494 NMA_FALSE(&x0, &x0, false, &allows_all, NULL, false);
495
496 /*
497 * Checks that we can only refer a file if no more access could be
498 * inherited.
499 */
500 NMA_TRUE(&x0, &x0, false, &rx0, NULL, false);
501 NMA_TRUE(&rx0, &rx0, false, &rx0, NULL, false);
502 NMA_FALSE(&rx0, &rx0, false, &x0, NULL, false);
503 NMA_FALSE(&rx0, &rx0, false, &x1, NULL, false);
504
505 /* Checks allowed referring with different nested domains. */
506 NMA_TRUE(&x0, &x1, false, &x0, NULL, false);
507 NMA_TRUE(&x1, &x0, false, &x0, NULL, false);
508 NMA_TRUE(&x0, &x01, false, &x0, NULL, false);
509 NMA_TRUE(&x0, &x01, false, &rx0, NULL, false);
510 NMA_TRUE(&x01, &x0, false, &x0, NULL, false);
511 NMA_TRUE(&x01, &x0, false, &rx0, NULL, false);
512 NMA_FALSE(&x01, &x01, false, &x0, NULL, false);
513
514 /* Checks that file access rights are also enforced for a directory. */
515 NMA_FALSE(&rx0, &rx0, true, &x0, NULL, false);
516
517 /* Checks that directory access rights don't impact file referring... */
518 NMA_TRUE(&mx0, &mx0, false, &x0, NULL, false);
519 /* ...but only directory referring. */
520 NMA_FALSE(&mx0, &mx0, true, &x0, NULL, false);
521
522 /* Checks directory exchange. */
523 NMA_TRUE(&mx0, &mx0, true, &mx0, &mx0, true);
524 NMA_TRUE(&mx0, &mx0, true, &mx0, &x0, true);
525 NMA_FALSE(&mx0, &mx0, true, &x0, &mx0, true);
526 NMA_FALSE(&mx0, &mx0, true, &x0, &x0, true);
527 NMA_FALSE(&mx0, &mx0, true, &x1, &x1, true);
528
529 /* Checks file exchange with directory access rights... */
530 NMA_TRUE(&mx0, &mx0, false, &mx0, &mx0, false);
531 NMA_TRUE(&mx0, &mx0, false, &mx0, &x0, false);
532 NMA_TRUE(&mx0, &mx0, false, &x0, &mx0, false);
533 NMA_TRUE(&mx0, &mx0, false, &x0, &x0, false);
534 /* ...and with file access rights. */
535 NMA_TRUE(&rx0, &rx0, false, &rx0, &rx0, false);
536 NMA_TRUE(&rx0, &rx0, false, &rx0, &x0, false);
537 NMA_FALSE(&rx0, &rx0, false, &x0, &rx0, false);
538 NMA_FALSE(&rx0, &rx0, false, &x0, &x0, false);
539 NMA_FALSE(&rx0, &rx0, false, &x1, &x1, false);
540
541 /*
542 * Allowing the following requests should not be a security risk
543 * because domain 0 denies execute access, and domain 1 is always
544 * nested with domain 0. However, adding an exception for this case
545 * would mean to check all nested domains to make sure none can get
546 * more privileges (e.g. processes only sandboxed by domain 0).
547 * Moreover, this behavior (i.e. composition of N domains) could then
548 * be inconsistent compared to domain 1's ruleset alone (e.g. it might
549 * be denied to link/rename with domain 1's ruleset, whereas it would
550 * be allowed if nested on top of domain 0). Another drawback would be
551 * to create a cover channel that could enable sandboxed processes to
552 * infer most of the filesystem restrictions from their domain. To
553 * make it simple, efficient, safe, and more consistent, this case is
554 * always denied.
555 */
556 NMA_FALSE(&x1, &x1, false, &x0, NULL, false);
557 NMA_FALSE(&x1, &x1, false, &rx0, NULL, false);
558 NMA_FALSE(&x1, &x1, true, &x0, NULL, false);
559 NMA_FALSE(&x1, &x1, true, &rx0, NULL, false);
560
561 /* Checks the same case of exclusive domains with a file... */
562 NMA_TRUE(&x1, &x1, false, &x01, NULL, false);
563 NMA_FALSE(&x1, &x1, false, &x01, &x0, false);
564 NMA_FALSE(&x1, &x1, false, &x01, &x01, false);
565 NMA_FALSE(&x1, &x1, false, &x0, &x0, false);
566 /* ...and with a directory. */
567 NMA_FALSE(&x1, &x1, false, &x0, &x0, true);
568 NMA_FALSE(&x1, &x1, true, &x0, &x0, false);
569 NMA_FALSE(&x1, &x1, true, &x0, &x0, true);
570 }
571
572 #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */
573
574 #undef NMA_TRUE
575 #undef NMA_FALSE
576
577 /*
578 * Removes @layer_masks accesses that are not requested.
579 *
580 * Returns true if the request is allowed, false otherwise.
581 */
582 static bool
scope_to_request(const access_mask_t access_request,layer_mask_t (* const layer_masks)[LANDLOCK_NUM_ACCESS_FS])583 scope_to_request(const access_mask_t access_request,
584 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS])
585 {
586 const unsigned long access_req = access_request;
587 unsigned long access_bit;
588
589 if (WARN_ON_ONCE(!layer_masks))
590 return true;
591
592 for_each_clear_bit(access_bit, &access_req, ARRAY_SIZE(*layer_masks))
593 (*layer_masks)[access_bit] = 0;
594 return !memchr_inv(layer_masks, 0, sizeof(*layer_masks));
595 }
596
597 #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST
598
test_scope_to_request_with_exec_none(struct kunit * const test)599 static void test_scope_to_request_with_exec_none(struct kunit *const test)
600 {
601 /* Allows everything. */
602 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
603
604 /* Checks and scopes with execute. */
605 KUNIT_EXPECT_TRUE(test, scope_to_request(LANDLOCK_ACCESS_FS_EXECUTE,
606 &layer_masks));
607 KUNIT_EXPECT_EQ(test, 0,
608 layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)]);
609 KUNIT_EXPECT_EQ(test, 0,
610 layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)]);
611 }
612
test_scope_to_request_with_exec_some(struct kunit * const test)613 static void test_scope_to_request_with_exec_some(struct kunit *const test)
614 {
615 /* Denies execute and write. */
616 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {
617 [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
618 [BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)] = BIT_ULL(1),
619 };
620
621 /* Checks and scopes with execute. */
622 KUNIT_EXPECT_FALSE(test, scope_to_request(LANDLOCK_ACCESS_FS_EXECUTE,
623 &layer_masks));
624 KUNIT_EXPECT_EQ(test, BIT_ULL(0),
625 layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)]);
626 KUNIT_EXPECT_EQ(test, 0,
627 layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)]);
628 }
629
test_scope_to_request_without_access(struct kunit * const test)630 static void test_scope_to_request_without_access(struct kunit *const test)
631 {
632 /* Denies execute and write. */
633 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {
634 [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
635 [BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)] = BIT_ULL(1),
636 };
637
638 /* Checks and scopes without access request. */
639 KUNIT_EXPECT_TRUE(test, scope_to_request(0, &layer_masks));
640 KUNIT_EXPECT_EQ(test, 0,
641 layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)]);
642 KUNIT_EXPECT_EQ(test, 0,
643 layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)]);
644 }
645
646 #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */
647
648 /*
649 * Returns true if there is at least one access right different than
650 * LANDLOCK_ACCESS_FS_REFER.
651 */
652 static bool
is_eacces(const layer_mask_t (* const layer_masks)[LANDLOCK_NUM_ACCESS_FS],const access_mask_t access_request)653 is_eacces(const layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS],
654 const access_mask_t access_request)
655 {
656 unsigned long access_bit;
657 /* LANDLOCK_ACCESS_FS_REFER alone must return -EXDEV. */
658 const unsigned long access_check = access_request &
659 ~LANDLOCK_ACCESS_FS_REFER;
660
661 if (!layer_masks)
662 return false;
663
664 for_each_set_bit(access_bit, &access_check, ARRAY_SIZE(*layer_masks)) {
665 if ((*layer_masks)[access_bit])
666 return true;
667 }
668 return false;
669 }
670
671 #define IE_TRUE(...) KUNIT_EXPECT_TRUE(test, is_eacces(__VA_ARGS__))
672 #define IE_FALSE(...) KUNIT_EXPECT_FALSE(test, is_eacces(__VA_ARGS__))
673
674 #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST
675
test_is_eacces_with_none(struct kunit * const test)676 static void test_is_eacces_with_none(struct kunit *const test)
677 {
678 const layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
679
680 IE_FALSE(&layer_masks, 0);
681 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_REFER);
682 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_EXECUTE);
683 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_WRITE_FILE);
684 }
685
test_is_eacces_with_refer(struct kunit * const test)686 static void test_is_eacces_with_refer(struct kunit *const test)
687 {
688 const layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {
689 [BIT_INDEX(LANDLOCK_ACCESS_FS_REFER)] = BIT_ULL(0),
690 };
691
692 IE_FALSE(&layer_masks, 0);
693 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_REFER);
694 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_EXECUTE);
695 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_WRITE_FILE);
696 }
697
test_is_eacces_with_write(struct kunit * const test)698 static void test_is_eacces_with_write(struct kunit *const test)
699 {
700 const layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {
701 [BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)] = BIT_ULL(0),
702 };
703
704 IE_FALSE(&layer_masks, 0);
705 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_REFER);
706 IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_EXECUTE);
707
708 IE_TRUE(&layer_masks, LANDLOCK_ACCESS_FS_WRITE_FILE);
709 }
710
711 #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */
712
713 #undef IE_TRUE
714 #undef IE_FALSE
715
716 /**
717 * is_access_to_paths_allowed - Check accesses for requests with a common path
718 *
719 * @domain: Domain to check against.
720 * @path: File hierarchy to walk through.
721 * @access_request_parent1: Accesses to check, once @layer_masks_parent1 is
722 * equal to @layer_masks_parent2 (if any). This is tied to the unique
723 * requested path for most actions, or the source in case of a refer action
724 * (i.e. rename or link), or the source and destination in case of
725 * RENAME_EXCHANGE.
726 * @layer_masks_parent1: Pointer to a matrix of layer masks per access
727 * masks, identifying the layers that forbid a specific access. Bits from
728 * this matrix can be unset according to the @path walk. An empty matrix
729 * means that @domain allows all possible Landlock accesses (i.e. not only
730 * those identified by @access_request_parent1). This matrix can
731 * initially refer to domain layer masks and, when the accesses for the
732 * destination and source are the same, to requested layer masks.
733 * @dentry_child1: Dentry to the initial child of the parent1 path. This
734 * pointer must be NULL for non-refer actions (i.e. not link nor rename).
735 * @access_request_parent2: Similar to @access_request_parent1 but for a
736 * request involving a source and a destination. This refers to the
737 * destination, except in case of RENAME_EXCHANGE where it also refers to
738 * the source. Must be set to 0 when using a simple path request.
739 * @layer_masks_parent2: Similar to @layer_masks_parent1 but for a refer
740 * action. This must be NULL otherwise.
741 * @dentry_child2: Dentry to the initial child of the parent2 path. This
742 * pointer is only set for RENAME_EXCHANGE actions and must be NULL
743 * otherwise.
744 *
745 * This helper first checks that the destination has a superset of restrictions
746 * compared to the source (if any) for a common path. Because of
747 * RENAME_EXCHANGE actions, source and destinations may be swapped. It then
748 * checks that the collected accesses and the remaining ones are enough to
749 * allow the request.
750 *
751 * Returns:
752 * - true if the access request is granted;
753 * - false otherwise.
754 */
is_access_to_paths_allowed(const struct landlock_ruleset * const domain,const struct path * const path,const access_mask_t access_request_parent1,layer_mask_t (* const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],const struct dentry * const dentry_child1,const access_mask_t access_request_parent2,layer_mask_t (* const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],const struct dentry * const dentry_child2)755 static bool is_access_to_paths_allowed(
756 const struct landlock_ruleset *const domain,
757 const struct path *const path,
758 const access_mask_t access_request_parent1,
759 layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],
760 const struct dentry *const dentry_child1,
761 const access_mask_t access_request_parent2,
762 layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],
763 const struct dentry *const dentry_child2)
764 {
765 bool allowed_parent1 = false, allowed_parent2 = false, is_dom_check,
766 child1_is_directory = true, child2_is_directory = true;
767 struct path walker_path;
768 access_mask_t access_masked_parent1, access_masked_parent2;
769 layer_mask_t _layer_masks_child1[LANDLOCK_NUM_ACCESS_FS],
770 _layer_masks_child2[LANDLOCK_NUM_ACCESS_FS];
771 layer_mask_t(*layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS] = NULL,
772 (*layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS] = NULL;
773
774 if (!access_request_parent1 && !access_request_parent2)
775 return true;
776 if (WARN_ON_ONCE(!domain || !path))
777 return true;
778 if (is_nouser_or_private(path->dentry))
779 return true;
780 if (WARN_ON_ONCE(domain->num_layers < 1 || !layer_masks_parent1))
781 return false;
782
783 if (unlikely(layer_masks_parent2)) {
784 if (WARN_ON_ONCE(!dentry_child1))
785 return false;
786 /*
787 * For a double request, first check for potential privilege
788 * escalation by looking at domain handled accesses (which are
789 * a superset of the meaningful requested accesses).
790 */
791 access_masked_parent1 = access_masked_parent2 =
792 get_handled_fs_accesses(domain);
793 is_dom_check = true;
794 } else {
795 if (WARN_ON_ONCE(dentry_child1 || dentry_child2))
796 return false;
797 /* For a simple request, only check for requested accesses. */
798 access_masked_parent1 = access_request_parent1;
799 access_masked_parent2 = access_request_parent2;
800 is_dom_check = false;
801 }
802
803 if (unlikely(dentry_child1)) {
804 landlock_unmask_layers(
805 find_rule(domain, dentry_child1),
806 landlock_init_layer_masks(
807 domain, LANDLOCK_MASK_ACCESS_FS,
808 &_layer_masks_child1, LANDLOCK_KEY_INODE),
809 &_layer_masks_child1, ARRAY_SIZE(_layer_masks_child1));
810 layer_masks_child1 = &_layer_masks_child1;
811 child1_is_directory = d_is_dir(dentry_child1);
812 }
813 if (unlikely(dentry_child2)) {
814 landlock_unmask_layers(
815 find_rule(domain, dentry_child2),
816 landlock_init_layer_masks(
817 domain, LANDLOCK_MASK_ACCESS_FS,
818 &_layer_masks_child2, LANDLOCK_KEY_INODE),
819 &_layer_masks_child2, ARRAY_SIZE(_layer_masks_child2));
820 layer_masks_child2 = &_layer_masks_child2;
821 child2_is_directory = d_is_dir(dentry_child2);
822 }
823
824 walker_path = *path;
825 path_get(&walker_path);
826 /*
827 * We need to walk through all the hierarchy to not miss any relevant
828 * restriction.
829 */
830 while (true) {
831 struct dentry *parent_dentry;
832 const struct landlock_rule *rule;
833
834 /*
835 * If at least all accesses allowed on the destination are
836 * already allowed on the source, respectively if there is at
837 * least as much as restrictions on the destination than on the
838 * source, then we can safely refer files from the source to
839 * the destination without risking a privilege escalation.
840 * This also applies in the case of RENAME_EXCHANGE, which
841 * implies checks on both direction. This is crucial for
842 * standalone multilayered security policies. Furthermore,
843 * this helps avoid policy writers to shoot themselves in the
844 * foot.
845 */
846 if (unlikely(is_dom_check &&
847 no_more_access(
848 layer_masks_parent1, layer_masks_child1,
849 child1_is_directory, layer_masks_parent2,
850 layer_masks_child2,
851 child2_is_directory))) {
852 allowed_parent1 = scope_to_request(
853 access_request_parent1, layer_masks_parent1);
854 allowed_parent2 = scope_to_request(
855 access_request_parent2, layer_masks_parent2);
856
857 /* Stops when all accesses are granted. */
858 if (allowed_parent1 && allowed_parent2)
859 break;
860
861 /*
862 * Now, downgrades the remaining checks from domain
863 * handled accesses to requested accesses.
864 */
865 is_dom_check = false;
866 access_masked_parent1 = access_request_parent1;
867 access_masked_parent2 = access_request_parent2;
868 }
869
870 rule = find_rule(domain, walker_path.dentry);
871 allowed_parent1 = landlock_unmask_layers(
872 rule, access_masked_parent1, layer_masks_parent1,
873 ARRAY_SIZE(*layer_masks_parent1));
874 allowed_parent2 = landlock_unmask_layers(
875 rule, access_masked_parent2, layer_masks_parent2,
876 ARRAY_SIZE(*layer_masks_parent2));
877
878 /* Stops when a rule from each layer grants access. */
879 if (allowed_parent1 && allowed_parent2)
880 break;
881 jump_up:
882 if (walker_path.dentry == walker_path.mnt->mnt_root) {
883 if (follow_up(&walker_path)) {
884 /* Ignores hidden mount points. */
885 goto jump_up;
886 } else {
887 /*
888 * Stops at the real root. Denies access
889 * because not all layers have granted access.
890 */
891 break;
892 }
893 }
894 if (unlikely(IS_ROOT(walker_path.dentry))) {
895 /*
896 * Stops at disconnected root directories. Only allows
897 * access to internal filesystems (e.g. nsfs, which is
898 * reachable through /proc/<pid>/ns/<namespace>).
899 */
900 allowed_parent1 = allowed_parent2 =
901 !!(walker_path.mnt->mnt_flags & MNT_INTERNAL);
902 break;
903 }
904 parent_dentry = dget_parent(walker_path.dentry);
905 dput(walker_path.dentry);
906 walker_path.dentry = parent_dentry;
907 }
908 path_put(&walker_path);
909
910 return allowed_parent1 && allowed_parent2;
911 }
912
check_access_path(const struct landlock_ruleset * const domain,const struct path * const path,access_mask_t access_request)913 static int check_access_path(const struct landlock_ruleset *const domain,
914 const struct path *const path,
915 access_mask_t access_request)
916 {
917 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
918
919 access_request = landlock_init_layer_masks(
920 domain, access_request, &layer_masks, LANDLOCK_KEY_INODE);
921 if (is_access_to_paths_allowed(domain, path, access_request,
922 &layer_masks, NULL, 0, NULL, NULL))
923 return 0;
924 return -EACCES;
925 }
926
current_check_access_path(const struct path * const path,const access_mask_t access_request)927 static int current_check_access_path(const struct path *const path,
928 const access_mask_t access_request)
929 {
930 const struct landlock_ruleset *const dom = get_current_fs_domain();
931
932 if (!dom)
933 return 0;
934 return check_access_path(dom, path, access_request);
935 }
936
get_mode_access(const umode_t mode)937 static access_mask_t get_mode_access(const umode_t mode)
938 {
939 switch (mode & S_IFMT) {
940 case S_IFLNK:
941 return LANDLOCK_ACCESS_FS_MAKE_SYM;
942 case S_IFDIR:
943 return LANDLOCK_ACCESS_FS_MAKE_DIR;
944 case S_IFCHR:
945 return LANDLOCK_ACCESS_FS_MAKE_CHAR;
946 case S_IFBLK:
947 return LANDLOCK_ACCESS_FS_MAKE_BLOCK;
948 case S_IFIFO:
949 return LANDLOCK_ACCESS_FS_MAKE_FIFO;
950 case S_IFSOCK:
951 return LANDLOCK_ACCESS_FS_MAKE_SOCK;
952 case S_IFREG:
953 case 0:
954 /* A zero mode translates to S_IFREG. */
955 default:
956 /* Treats weird files as regular files. */
957 return LANDLOCK_ACCESS_FS_MAKE_REG;
958 }
959 }
960
maybe_remove(const struct dentry * const dentry)961 static access_mask_t maybe_remove(const struct dentry *const dentry)
962 {
963 if (d_is_negative(dentry))
964 return 0;
965 return d_is_dir(dentry) ? LANDLOCK_ACCESS_FS_REMOVE_DIR :
966 LANDLOCK_ACCESS_FS_REMOVE_FILE;
967 }
968
969 /**
970 * collect_domain_accesses - Walk through a file path and collect accesses
971 *
972 * @domain: Domain to check against.
973 * @mnt_root: Last directory to check.
974 * @dir: Directory to start the walk from.
975 * @layer_masks_dom: Where to store the collected accesses.
976 *
977 * This helper is useful to begin a path walk from the @dir directory to a
978 * @mnt_root directory used as a mount point. This mount point is the common
979 * ancestor between the source and the destination of a renamed and linked
980 * file. While walking from @dir to @mnt_root, we record all the domain's
981 * allowed accesses in @layer_masks_dom.
982 *
983 * This is similar to is_access_to_paths_allowed() but much simpler because it
984 * only handles walking on the same mount point and only checks one set of
985 * accesses.
986 *
987 * Returns:
988 * - true if all the domain access rights are allowed for @dir;
989 * - false if the walk reached @mnt_root.
990 */
collect_domain_accesses(const struct landlock_ruleset * const domain,const struct dentry * const mnt_root,struct dentry * dir,layer_mask_t (* const layer_masks_dom)[LANDLOCK_NUM_ACCESS_FS])991 static bool collect_domain_accesses(
992 const struct landlock_ruleset *const domain,
993 const struct dentry *const mnt_root, struct dentry *dir,
994 layer_mask_t (*const layer_masks_dom)[LANDLOCK_NUM_ACCESS_FS])
995 {
996 unsigned long access_dom;
997 bool ret = false;
998
999 if (WARN_ON_ONCE(!domain || !mnt_root || !dir || !layer_masks_dom))
1000 return true;
1001 if (is_nouser_or_private(dir))
1002 return true;
1003
1004 access_dom = landlock_init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS,
1005 layer_masks_dom,
1006 LANDLOCK_KEY_INODE);
1007
1008 dget(dir);
1009 while (true) {
1010 struct dentry *parent_dentry;
1011
1012 /* Gets all layers allowing all domain accesses. */
1013 if (landlock_unmask_layers(find_rule(domain, dir), access_dom,
1014 layer_masks_dom,
1015 ARRAY_SIZE(*layer_masks_dom))) {
1016 /*
1017 * Stops when all handled accesses are allowed by at
1018 * least one rule in each layer.
1019 */
1020 ret = true;
1021 break;
1022 }
1023
1024 /* We should not reach a root other than @mnt_root. */
1025 if (dir == mnt_root || WARN_ON_ONCE(IS_ROOT(dir)))
1026 break;
1027
1028 parent_dentry = dget_parent(dir);
1029 dput(dir);
1030 dir = parent_dentry;
1031 }
1032 dput(dir);
1033 return ret;
1034 }
1035
1036 /**
1037 * current_check_refer_path - Check if a rename or link action is allowed
1038 *
1039 * @old_dentry: File or directory requested to be moved or linked.
1040 * @new_dir: Destination parent directory.
1041 * @new_dentry: Destination file or directory.
1042 * @removable: Sets to true if it is a rename operation.
1043 * @exchange: Sets to true if it is a rename operation with RENAME_EXCHANGE.
1044 *
1045 * Because of its unprivileged constraints, Landlock relies on file hierarchies
1046 * (and not only inodes) to tie access rights to files. Being able to link or
1047 * rename a file hierarchy brings some challenges. Indeed, moving or linking a
1048 * file (i.e. creating a new reference to an inode) can have an impact on the
1049 * actions allowed for a set of files if it would change its parent directory
1050 * (i.e. reparenting).
1051 *
1052 * To avoid trivial access right bypasses, Landlock first checks if the file or
1053 * directory requested to be moved would gain new access rights inherited from
1054 * its new hierarchy. Before returning any error, Landlock then checks that
1055 * the parent source hierarchy and the destination hierarchy would allow the
1056 * link or rename action. If it is not the case, an error with EACCES is
1057 * returned to inform user space that there is no way to remove or create the
1058 * requested source file type. If it should be allowed but the new inherited
1059 * access rights would be greater than the source access rights, then the
1060 * kernel returns an error with EXDEV. Prioritizing EACCES over EXDEV enables
1061 * user space to abort the whole operation if there is no way to do it, or to
1062 * manually copy the source to the destination if this remains allowed, e.g.
1063 * because file creation is allowed on the destination directory but not direct
1064 * linking.
1065 *
1066 * To achieve this goal, the kernel needs to compare two file hierarchies: the
1067 * one identifying the source file or directory (including itself), and the
1068 * destination one. This can be seen as a multilayer partial ordering problem.
1069 * The kernel walks through these paths and collects in a matrix the access
1070 * rights that are denied per layer. These matrices are then compared to see
1071 * if the destination one has more (or the same) restrictions as the source
1072 * one. If this is the case, the requested action will not return EXDEV, which
1073 * doesn't mean the action is allowed. The parent hierarchy of the source
1074 * (i.e. parent directory), and the destination hierarchy must also be checked
1075 * to verify that they explicitly allow such action (i.e. referencing,
1076 * creation and potentially removal rights). The kernel implementation is then
1077 * required to rely on potentially four matrices of access rights: one for the
1078 * source file or directory (i.e. the child), a potentially other one for the
1079 * other source/destination (in case of RENAME_EXCHANGE), one for the source
1080 * parent hierarchy and a last one for the destination hierarchy. These
1081 * ephemeral matrices take some space on the stack, which limits the number of
1082 * layers to a deemed reasonable number: 16.
1083 *
1084 * Returns:
1085 * - 0 if access is allowed;
1086 * - -EXDEV if @old_dentry would inherit new access rights from @new_dir;
1087 * - -EACCES if file removal or creation is denied.
1088 */
current_check_refer_path(struct dentry * const old_dentry,const struct path * const new_dir,struct dentry * const new_dentry,const bool removable,const bool exchange)1089 static int current_check_refer_path(struct dentry *const old_dentry,
1090 const struct path *const new_dir,
1091 struct dentry *const new_dentry,
1092 const bool removable, const bool exchange)
1093 {
1094 const struct landlock_ruleset *const dom = get_current_fs_domain();
1095 bool allow_parent1, allow_parent2;
1096 access_mask_t access_request_parent1, access_request_parent2;
1097 struct path mnt_dir;
1098 struct dentry *old_parent;
1099 layer_mask_t layer_masks_parent1[LANDLOCK_NUM_ACCESS_FS] = {},
1100 layer_masks_parent2[LANDLOCK_NUM_ACCESS_FS] = {};
1101
1102 if (!dom)
1103 return 0;
1104 if (WARN_ON_ONCE(dom->num_layers < 1))
1105 return -EACCES;
1106 if (unlikely(d_is_negative(old_dentry)))
1107 return -ENOENT;
1108 if (exchange) {
1109 if (unlikely(d_is_negative(new_dentry)))
1110 return -ENOENT;
1111 access_request_parent1 =
1112 get_mode_access(d_backing_inode(new_dentry)->i_mode);
1113 } else {
1114 access_request_parent1 = 0;
1115 }
1116 access_request_parent2 =
1117 get_mode_access(d_backing_inode(old_dentry)->i_mode);
1118 if (removable) {
1119 access_request_parent1 |= maybe_remove(old_dentry);
1120 access_request_parent2 |= maybe_remove(new_dentry);
1121 }
1122
1123 /* The mount points are the same for old and new paths, cf. EXDEV. */
1124 if (old_dentry->d_parent == new_dir->dentry) {
1125 /*
1126 * The LANDLOCK_ACCESS_FS_REFER access right is not required
1127 * for same-directory referer (i.e. no reparenting).
1128 */
1129 access_request_parent1 = landlock_init_layer_masks(
1130 dom, access_request_parent1 | access_request_parent2,
1131 &layer_masks_parent1, LANDLOCK_KEY_INODE);
1132 if (is_access_to_paths_allowed(
1133 dom, new_dir, access_request_parent1,
1134 &layer_masks_parent1, NULL, 0, NULL, NULL))
1135 return 0;
1136 return -EACCES;
1137 }
1138
1139 access_request_parent1 |= LANDLOCK_ACCESS_FS_REFER;
1140 access_request_parent2 |= LANDLOCK_ACCESS_FS_REFER;
1141
1142 /* Saves the common mount point. */
1143 mnt_dir.mnt = new_dir->mnt;
1144 mnt_dir.dentry = new_dir->mnt->mnt_root;
1145
1146 /*
1147 * old_dentry may be the root of the common mount point and
1148 * !IS_ROOT(old_dentry) at the same time (e.g. with open_tree() and
1149 * OPEN_TREE_CLONE). We do not need to call dget(old_parent) because
1150 * we keep a reference to old_dentry.
1151 */
1152 old_parent = (old_dentry == mnt_dir.dentry) ? old_dentry :
1153 old_dentry->d_parent;
1154
1155 /* new_dir->dentry is equal to new_dentry->d_parent */
1156 allow_parent1 = collect_domain_accesses(dom, mnt_dir.dentry, old_parent,
1157 &layer_masks_parent1);
1158 allow_parent2 = collect_domain_accesses(
1159 dom, mnt_dir.dentry, new_dir->dentry, &layer_masks_parent2);
1160
1161 if (allow_parent1 && allow_parent2)
1162 return 0;
1163
1164 /*
1165 * To be able to compare source and destination domain access rights,
1166 * take into account the @old_dentry access rights aggregated with its
1167 * parent access rights. This will be useful to compare with the
1168 * destination parent access rights.
1169 */
1170 if (is_access_to_paths_allowed(
1171 dom, &mnt_dir, access_request_parent1, &layer_masks_parent1,
1172 old_dentry, access_request_parent2, &layer_masks_parent2,
1173 exchange ? new_dentry : NULL))
1174 return 0;
1175
1176 /*
1177 * This prioritizes EACCES over EXDEV for all actions, including
1178 * renames with RENAME_EXCHANGE.
1179 */
1180 if (likely(is_eacces(&layer_masks_parent1, access_request_parent1) ||
1181 is_eacces(&layer_masks_parent2, access_request_parent2)))
1182 return -EACCES;
1183
1184 /*
1185 * Gracefully forbids reparenting if the destination directory
1186 * hierarchy is not a superset of restrictions of the source directory
1187 * hierarchy, or if LANDLOCK_ACCESS_FS_REFER is not allowed by the
1188 * source or the destination.
1189 */
1190 return -EXDEV;
1191 }
1192
1193 /* Inode hooks */
1194
hook_inode_free_security_rcu(void * inode_security)1195 static void hook_inode_free_security_rcu(void *inode_security)
1196 {
1197 struct landlock_inode_security *inode_sec;
1198
1199 /*
1200 * All inodes must already have been untied from their object by
1201 * release_inode() or hook_sb_delete().
1202 */
1203 inode_sec = inode_security + landlock_blob_sizes.lbs_inode;
1204 WARN_ON_ONCE(inode_sec->object);
1205 }
1206
1207 /* Super-block hooks */
1208
1209 /*
1210 * Release the inodes used in a security policy.
1211 *
1212 * Cf. fsnotify_unmount_inodes() and invalidate_inodes()
1213 */
hook_sb_delete(struct super_block * const sb)1214 static void hook_sb_delete(struct super_block *const sb)
1215 {
1216 struct inode *inode, *prev_inode = NULL;
1217
1218 if (!landlock_initialized)
1219 return;
1220
1221 spin_lock(&sb->s_inode_list_lock);
1222 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1223 struct landlock_object *object;
1224
1225 /* Only handles referenced inodes. */
1226 if (!atomic_read(&inode->i_count))
1227 continue;
1228
1229 /*
1230 * Protects against concurrent modification of inode (e.g.
1231 * from get_inode_object()).
1232 */
1233 spin_lock(&inode->i_lock);
1234 /*
1235 * Checks I_FREEING and I_WILL_FREE to protect against a race
1236 * condition when release_inode() just called iput(), which
1237 * could lead to a NULL dereference of inode->security or a
1238 * second call to iput() for the same Landlock object. Also
1239 * checks I_NEW because such inode cannot be tied to an object.
1240 */
1241 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
1242 spin_unlock(&inode->i_lock);
1243 continue;
1244 }
1245
1246 rcu_read_lock();
1247 object = rcu_dereference(landlock_inode(inode)->object);
1248 if (!object) {
1249 rcu_read_unlock();
1250 spin_unlock(&inode->i_lock);
1251 continue;
1252 }
1253 /* Keeps a reference to this inode until the next loop walk. */
1254 __iget(inode);
1255 spin_unlock(&inode->i_lock);
1256
1257 /*
1258 * If there is no concurrent release_inode() ongoing, then we
1259 * are in charge of calling iput() on this inode, otherwise we
1260 * will just wait for it to finish.
1261 */
1262 spin_lock(&object->lock);
1263 if (object->underobj == inode) {
1264 object->underobj = NULL;
1265 spin_unlock(&object->lock);
1266 rcu_read_unlock();
1267
1268 /*
1269 * Because object->underobj was not NULL,
1270 * release_inode() and get_inode_object() guarantee
1271 * that it is safe to reset
1272 * landlock_inode(inode)->object while it is not NULL.
1273 * It is therefore not necessary to lock inode->i_lock.
1274 */
1275 rcu_assign_pointer(landlock_inode(inode)->object, NULL);
1276 /*
1277 * At this point, we own the ihold() reference that was
1278 * originally set up by get_inode_object() and the
1279 * __iget() reference that we just set in this loop
1280 * walk. Therefore the following call to iput() will
1281 * not sleep nor drop the inode because there is now at
1282 * least two references to it.
1283 */
1284 iput(inode);
1285 } else {
1286 spin_unlock(&object->lock);
1287 rcu_read_unlock();
1288 }
1289
1290 if (prev_inode) {
1291 /*
1292 * At this point, we still own the __iget() reference
1293 * that we just set in this loop walk. Therefore we
1294 * can drop the list lock and know that the inode won't
1295 * disappear from under us until the next loop walk.
1296 */
1297 spin_unlock(&sb->s_inode_list_lock);
1298 /*
1299 * We can now actually put the inode reference from the
1300 * previous loop walk, which is not needed anymore.
1301 */
1302 iput(prev_inode);
1303 cond_resched();
1304 spin_lock(&sb->s_inode_list_lock);
1305 }
1306 prev_inode = inode;
1307 }
1308 spin_unlock(&sb->s_inode_list_lock);
1309
1310 /* Puts the inode reference from the last loop walk, if any. */
1311 if (prev_inode)
1312 iput(prev_inode);
1313 /* Waits for pending iput() in release_inode(). */
1314 wait_var_event(&landlock_superblock(sb)->inode_refs,
1315 !atomic_long_read(&landlock_superblock(sb)->inode_refs));
1316 }
1317
1318 /*
1319 * Because a Landlock security policy is defined according to the filesystem
1320 * topology (i.e. the mount namespace), changing it may grant access to files
1321 * not previously allowed.
1322 *
1323 * To make it simple, deny any filesystem topology modification by landlocked
1324 * processes. Non-landlocked processes may still change the namespace of a
1325 * landlocked process, but this kind of threat must be handled by a system-wide
1326 * access-control security policy.
1327 *
1328 * This could be lifted in the future if Landlock can safely handle mount
1329 * namespace updates requested by a landlocked process. Indeed, we could
1330 * update the current domain (which is currently read-only) by taking into
1331 * account the accesses of the source and the destination of a new mount point.
1332 * However, it would also require to make all the child domains dynamically
1333 * inherit these new constraints. Anyway, for backward compatibility reasons,
1334 * a dedicated user space option would be required (e.g. as a ruleset flag).
1335 */
hook_sb_mount(const char * const dev_name,const struct path * const path,const char * const type,const unsigned long flags,void * const data)1336 static int hook_sb_mount(const char *const dev_name,
1337 const struct path *const path, const char *const type,
1338 const unsigned long flags, void *const data)
1339 {
1340 if (!get_current_fs_domain())
1341 return 0;
1342 return -EPERM;
1343 }
1344
hook_move_mount(const struct path * const from_path,const struct path * const to_path)1345 static int hook_move_mount(const struct path *const from_path,
1346 const struct path *const to_path)
1347 {
1348 if (!get_current_fs_domain())
1349 return 0;
1350 return -EPERM;
1351 }
1352
1353 /*
1354 * Removing a mount point may reveal a previously hidden file hierarchy, which
1355 * may then grant access to files, which may have previously been forbidden.
1356 */
hook_sb_umount(struct vfsmount * const mnt,const int flags)1357 static int hook_sb_umount(struct vfsmount *const mnt, const int flags)
1358 {
1359 if (!get_current_fs_domain())
1360 return 0;
1361 return -EPERM;
1362 }
1363
hook_sb_remount(struct super_block * const sb,void * const mnt_opts)1364 static int hook_sb_remount(struct super_block *const sb, void *const mnt_opts)
1365 {
1366 if (!get_current_fs_domain())
1367 return 0;
1368 return -EPERM;
1369 }
1370
1371 /*
1372 * pivot_root(2), like mount(2), changes the current mount namespace. It must
1373 * then be forbidden for a landlocked process.
1374 *
1375 * However, chroot(2) may be allowed because it only changes the relative root
1376 * directory of the current process. Moreover, it can be used to restrict the
1377 * view of the filesystem.
1378 */
hook_sb_pivotroot(const struct path * const old_path,const struct path * const new_path)1379 static int hook_sb_pivotroot(const struct path *const old_path,
1380 const struct path *const new_path)
1381 {
1382 if (!get_current_fs_domain())
1383 return 0;
1384 return -EPERM;
1385 }
1386
1387 /* Path hooks */
1388
hook_path_link(struct dentry * const old_dentry,const struct path * const new_dir,struct dentry * const new_dentry)1389 static int hook_path_link(struct dentry *const old_dentry,
1390 const struct path *const new_dir,
1391 struct dentry *const new_dentry)
1392 {
1393 return current_check_refer_path(old_dentry, new_dir, new_dentry, false,
1394 false);
1395 }
1396
hook_path_rename(const struct path * const old_dir,struct dentry * const old_dentry,const struct path * const new_dir,struct dentry * const new_dentry,const unsigned int flags)1397 static int hook_path_rename(const struct path *const old_dir,
1398 struct dentry *const old_dentry,
1399 const struct path *const new_dir,
1400 struct dentry *const new_dentry,
1401 const unsigned int flags)
1402 {
1403 /* old_dir refers to old_dentry->d_parent and new_dir->mnt */
1404 return current_check_refer_path(old_dentry, new_dir, new_dentry, true,
1405 !!(flags & RENAME_EXCHANGE));
1406 }
1407
hook_path_mkdir(const struct path * const dir,struct dentry * const dentry,const umode_t mode)1408 static int hook_path_mkdir(const struct path *const dir,
1409 struct dentry *const dentry, const umode_t mode)
1410 {
1411 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_DIR);
1412 }
1413
hook_path_mknod(const struct path * const dir,struct dentry * const dentry,const umode_t mode,const unsigned int dev)1414 static int hook_path_mknod(const struct path *const dir,
1415 struct dentry *const dentry, const umode_t mode,
1416 const unsigned int dev)
1417 {
1418 const struct landlock_ruleset *const dom = get_current_fs_domain();
1419
1420 if (!dom)
1421 return 0;
1422 return check_access_path(dom, dir, get_mode_access(mode));
1423 }
1424
hook_path_symlink(const struct path * const dir,struct dentry * const dentry,const char * const old_name)1425 static int hook_path_symlink(const struct path *const dir,
1426 struct dentry *const dentry,
1427 const char *const old_name)
1428 {
1429 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_SYM);
1430 }
1431
hook_path_unlink(const struct path * const dir,struct dentry * const dentry)1432 static int hook_path_unlink(const struct path *const dir,
1433 struct dentry *const dentry)
1434 {
1435 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_FILE);
1436 }
1437
hook_path_rmdir(const struct path * const dir,struct dentry * const dentry)1438 static int hook_path_rmdir(const struct path *const dir,
1439 struct dentry *const dentry)
1440 {
1441 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_DIR);
1442 }
1443
hook_path_truncate(const struct path * const path)1444 static int hook_path_truncate(const struct path *const path)
1445 {
1446 return current_check_access_path(path, LANDLOCK_ACCESS_FS_TRUNCATE);
1447 }
1448
1449 /* File hooks */
1450
1451 /**
1452 * get_required_file_open_access - Get access needed to open a file
1453 *
1454 * @file: File being opened.
1455 *
1456 * Returns the access rights that are required for opening the given file,
1457 * depending on the file type and open mode.
1458 */
1459 static access_mask_t
get_required_file_open_access(const struct file * const file)1460 get_required_file_open_access(const struct file *const file)
1461 {
1462 access_mask_t access = 0;
1463
1464 if (file->f_mode & FMODE_READ) {
1465 /* A directory can only be opened in read mode. */
1466 if (S_ISDIR(file_inode(file)->i_mode))
1467 return LANDLOCK_ACCESS_FS_READ_DIR;
1468 access = LANDLOCK_ACCESS_FS_READ_FILE;
1469 }
1470 if (file->f_mode & FMODE_WRITE)
1471 access |= LANDLOCK_ACCESS_FS_WRITE_FILE;
1472 /* __FMODE_EXEC is indeed part of f_flags, not f_mode. */
1473 if (file->f_flags & __FMODE_EXEC)
1474 access |= LANDLOCK_ACCESS_FS_EXECUTE;
1475 return access;
1476 }
1477
hook_file_alloc_security(struct file * const file)1478 static int hook_file_alloc_security(struct file *const file)
1479 {
1480 /*
1481 * Grants all access rights, even if most of them are not checked later
1482 * on. It is more consistent.
1483 *
1484 * Notably, file descriptors for regular files can also be acquired
1485 * without going through the file_open hook, for example when using
1486 * memfd_create(2).
1487 */
1488 landlock_file(file)->allowed_access = LANDLOCK_MASK_ACCESS_FS;
1489 return 0;
1490 }
1491
is_device(const struct file * const file)1492 static bool is_device(const struct file *const file)
1493 {
1494 const struct inode *inode = file_inode(file);
1495
1496 return S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode);
1497 }
1498
hook_file_open(struct file * const file)1499 static int hook_file_open(struct file *const file)
1500 {
1501 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
1502 access_mask_t open_access_request, full_access_request, allowed_access,
1503 optional_access;
1504 const struct landlock_ruleset *const dom =
1505 landlock_get_applicable_domain(
1506 landlock_cred(file->f_cred)->domain, any_fs);
1507
1508 if (!dom)
1509 return 0;
1510
1511 /*
1512 * Because a file may be opened with O_PATH, get_required_file_open_access()
1513 * may return 0. This case will be handled with a future Landlock
1514 * evolution.
1515 */
1516 open_access_request = get_required_file_open_access(file);
1517
1518 /*
1519 * We look up more access than what we immediately need for open(), so
1520 * that we can later authorize operations on opened files.
1521 */
1522 optional_access = LANDLOCK_ACCESS_FS_TRUNCATE;
1523 if (is_device(file))
1524 optional_access |= LANDLOCK_ACCESS_FS_IOCTL_DEV;
1525
1526 full_access_request = open_access_request | optional_access;
1527
1528 if (is_access_to_paths_allowed(
1529 dom, &file->f_path,
1530 landlock_init_layer_masks(dom, full_access_request,
1531 &layer_masks, LANDLOCK_KEY_INODE),
1532 &layer_masks, NULL, 0, NULL, NULL)) {
1533 allowed_access = full_access_request;
1534 } else {
1535 unsigned long access_bit;
1536 const unsigned long access_req = full_access_request;
1537
1538 /*
1539 * Calculate the actual allowed access rights from layer_masks.
1540 * Add each access right to allowed_access which has not been
1541 * vetoed by any layer.
1542 */
1543 allowed_access = 0;
1544 for_each_set_bit(access_bit, &access_req,
1545 ARRAY_SIZE(layer_masks)) {
1546 if (!layer_masks[access_bit])
1547 allowed_access |= BIT_ULL(access_bit);
1548 }
1549 }
1550
1551 /*
1552 * For operations on already opened files (i.e. ftruncate()), it is the
1553 * access rights at the time of open() which decide whether the
1554 * operation is permitted. Therefore, we record the relevant subset of
1555 * file access rights in the opened struct file.
1556 */
1557 landlock_file(file)->allowed_access = allowed_access;
1558
1559 if ((open_access_request & allowed_access) == open_access_request)
1560 return 0;
1561
1562 return -EACCES;
1563 }
1564
hook_file_truncate(struct file * const file)1565 static int hook_file_truncate(struct file *const file)
1566 {
1567 /*
1568 * Allows truncation if the truncate right was available at the time of
1569 * opening the file, to get a consistent access check as for read, write
1570 * and execute operations.
1571 *
1572 * Note: For checks done based on the file's Landlock allowed access, we
1573 * enforce them independently of whether the current thread is in a
1574 * Landlock domain, so that open files passed between independent
1575 * processes retain their behaviour.
1576 */
1577 if (landlock_file(file)->allowed_access & LANDLOCK_ACCESS_FS_TRUNCATE)
1578 return 0;
1579 return -EACCES;
1580 }
1581
hook_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1582 static int hook_file_ioctl(struct file *file, unsigned int cmd,
1583 unsigned long arg)
1584 {
1585 access_mask_t allowed_access = landlock_file(file)->allowed_access;
1586
1587 /*
1588 * It is the access rights at the time of opening the file which
1589 * determine whether IOCTL can be used on the opened file later.
1590 *
1591 * The access right is attached to the opened file in hook_file_open().
1592 */
1593 if (allowed_access & LANDLOCK_ACCESS_FS_IOCTL_DEV)
1594 return 0;
1595
1596 if (!is_device(file))
1597 return 0;
1598
1599 if (is_masked_device_ioctl(cmd))
1600 return 0;
1601
1602 return -EACCES;
1603 }
1604
hook_file_ioctl_compat(struct file * file,unsigned int cmd,unsigned long arg)1605 static int hook_file_ioctl_compat(struct file *file, unsigned int cmd,
1606 unsigned long arg)
1607 {
1608 access_mask_t allowed_access = landlock_file(file)->allowed_access;
1609
1610 /*
1611 * It is the access rights at the time of opening the file which
1612 * determine whether IOCTL can be used on the opened file later.
1613 *
1614 * The access right is attached to the opened file in hook_file_open().
1615 */
1616 if (allowed_access & LANDLOCK_ACCESS_FS_IOCTL_DEV)
1617 return 0;
1618
1619 if (!is_device(file))
1620 return 0;
1621
1622 if (is_masked_device_ioctl_compat(cmd))
1623 return 0;
1624
1625 return -EACCES;
1626 }
1627
1628 /*
1629 * Always allow sending signals between threads of the same process. This
1630 * ensures consistency with hook_task_kill().
1631 */
control_current_fowner(struct fown_struct * const fown)1632 static bool control_current_fowner(struct fown_struct *const fown)
1633 {
1634 struct task_struct *p;
1635
1636 /*
1637 * Lock already held by __f_setown(), see commit 26f204380a3c ("fs: Fix
1638 * file_set_fowner LSM hook inconsistencies").
1639 */
1640 lockdep_assert_held(&fown->lock);
1641
1642 /*
1643 * Some callers (e.g. fcntl_dirnotify) may not be in an RCU read-side
1644 * critical section.
1645 */
1646 guard(rcu)();
1647 p = pid_task(fown->pid, fown->pid_type);
1648 if (!p)
1649 return true;
1650
1651 return !same_thread_group(p, current);
1652 }
1653
hook_file_set_fowner(struct file * file)1654 static void hook_file_set_fowner(struct file *file)
1655 {
1656 struct landlock_ruleset *prev_dom;
1657 struct landlock_ruleset *new_dom = NULL;
1658
1659 if (control_current_fowner(file_f_owner(file))) {
1660 new_dom = landlock_get_current_domain();
1661 landlock_get_ruleset(new_dom);
1662 }
1663
1664 prev_dom = landlock_file(file)->fown_domain;
1665 landlock_file(file)->fown_domain = new_dom;
1666
1667 /* May be called in an RCU read-side critical section. */
1668 landlock_put_ruleset_deferred(prev_dom);
1669 }
1670
hook_file_free_security(struct file * file)1671 static void hook_file_free_security(struct file *file)
1672 {
1673 landlock_put_ruleset_deferred(landlock_file(file)->fown_domain);
1674 }
1675
1676 static struct security_hook_list landlock_hooks[] __ro_after_init = {
1677 LSM_HOOK_INIT(inode_free_security_rcu, hook_inode_free_security_rcu),
1678
1679 LSM_HOOK_INIT(sb_delete, hook_sb_delete),
1680 LSM_HOOK_INIT(sb_mount, hook_sb_mount),
1681 LSM_HOOK_INIT(move_mount, hook_move_mount),
1682 LSM_HOOK_INIT(sb_umount, hook_sb_umount),
1683 LSM_HOOK_INIT(sb_remount, hook_sb_remount),
1684 LSM_HOOK_INIT(sb_pivotroot, hook_sb_pivotroot),
1685
1686 LSM_HOOK_INIT(path_link, hook_path_link),
1687 LSM_HOOK_INIT(path_rename, hook_path_rename),
1688 LSM_HOOK_INIT(path_mkdir, hook_path_mkdir),
1689 LSM_HOOK_INIT(path_mknod, hook_path_mknod),
1690 LSM_HOOK_INIT(path_symlink, hook_path_symlink),
1691 LSM_HOOK_INIT(path_unlink, hook_path_unlink),
1692 LSM_HOOK_INIT(path_rmdir, hook_path_rmdir),
1693 LSM_HOOK_INIT(path_truncate, hook_path_truncate),
1694
1695 LSM_HOOK_INIT(file_alloc_security, hook_file_alloc_security),
1696 LSM_HOOK_INIT(file_open, hook_file_open),
1697 LSM_HOOK_INIT(file_truncate, hook_file_truncate),
1698 LSM_HOOK_INIT(file_ioctl, hook_file_ioctl),
1699 LSM_HOOK_INIT(file_ioctl_compat, hook_file_ioctl_compat),
1700 LSM_HOOK_INIT(file_set_fowner, hook_file_set_fowner),
1701 LSM_HOOK_INIT(file_free_security, hook_file_free_security),
1702 };
1703
landlock_add_fs_hooks(void)1704 __init void landlock_add_fs_hooks(void)
1705 {
1706 security_add_hooks(landlock_hooks, ARRAY_SIZE(landlock_hooks),
1707 &landlock_lsmid);
1708 }
1709
1710 #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST
1711
1712 /* clang-format off */
1713 static struct kunit_case test_cases[] = {
1714 KUNIT_CASE(test_no_more_access),
1715 KUNIT_CASE(test_scope_to_request_with_exec_none),
1716 KUNIT_CASE(test_scope_to_request_with_exec_some),
1717 KUNIT_CASE(test_scope_to_request_without_access),
1718 KUNIT_CASE(test_is_eacces_with_none),
1719 KUNIT_CASE(test_is_eacces_with_refer),
1720 KUNIT_CASE(test_is_eacces_with_write),
1721 {}
1722 };
1723 /* clang-format on */
1724
1725 static struct kunit_suite test_suite = {
1726 .name = "landlock_fs",
1727 .test_cases = test_cases,
1728 };
1729
1730 kunit_test_suite(test_suite);
1731
1732 #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */
1733