1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/bpf_perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <sys/epoll.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <sys/vfs.h>
44 #include <sys/utsname.h>
45 #include <sys/resource.h>
46 #include <libelf.h>
47 #include <gelf.h>
48 #include <zlib.h>
49 
50 #include "libbpf.h"
51 #include "bpf.h"
52 #include "btf.h"
53 #include "str_error.h"
54 #include "libbpf_internal.h"
55 #include "hashmap.h"
56 #include "bpf_gen_internal.h"
57 #include "zip.h"
58 
59 #ifndef BPF_FS_MAGIC
60 #define BPF_FS_MAGIC		0xcafe4a11
61 #endif
62 
63 #define MAX_EVENT_NAME_LEN	64
64 
65 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf"
66 
67 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
68 
69 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
70  * compilation if user enables corresponding warning. Disable it explicitly.
71  */
72 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
73 
74 #define __printf(a, b)	__attribute__((format(printf, a, b)))
75 
76 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
77 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
78 static int map_set_def_max_entries(struct bpf_map *map);
79 
80 static const char * const attach_type_name[] = {
81 	[BPF_CGROUP_INET_INGRESS]	= "cgroup_inet_ingress",
82 	[BPF_CGROUP_INET_EGRESS]	= "cgroup_inet_egress",
83 	[BPF_CGROUP_INET_SOCK_CREATE]	= "cgroup_inet_sock_create",
84 	[BPF_CGROUP_INET_SOCK_RELEASE]	= "cgroup_inet_sock_release",
85 	[BPF_CGROUP_SOCK_OPS]		= "cgroup_sock_ops",
86 	[BPF_CGROUP_DEVICE]		= "cgroup_device",
87 	[BPF_CGROUP_INET4_BIND]		= "cgroup_inet4_bind",
88 	[BPF_CGROUP_INET6_BIND]		= "cgroup_inet6_bind",
89 	[BPF_CGROUP_INET4_CONNECT]	= "cgroup_inet4_connect",
90 	[BPF_CGROUP_INET6_CONNECT]	= "cgroup_inet6_connect",
91 	[BPF_CGROUP_UNIX_CONNECT]       = "cgroup_unix_connect",
92 	[BPF_CGROUP_INET4_POST_BIND]	= "cgroup_inet4_post_bind",
93 	[BPF_CGROUP_INET6_POST_BIND]	= "cgroup_inet6_post_bind",
94 	[BPF_CGROUP_INET4_GETPEERNAME]	= "cgroup_inet4_getpeername",
95 	[BPF_CGROUP_INET6_GETPEERNAME]	= "cgroup_inet6_getpeername",
96 	[BPF_CGROUP_UNIX_GETPEERNAME]	= "cgroup_unix_getpeername",
97 	[BPF_CGROUP_INET4_GETSOCKNAME]	= "cgroup_inet4_getsockname",
98 	[BPF_CGROUP_INET6_GETSOCKNAME]	= "cgroup_inet6_getsockname",
99 	[BPF_CGROUP_UNIX_GETSOCKNAME]	= "cgroup_unix_getsockname",
100 	[BPF_CGROUP_UDP4_SENDMSG]	= "cgroup_udp4_sendmsg",
101 	[BPF_CGROUP_UDP6_SENDMSG]	= "cgroup_udp6_sendmsg",
102 	[BPF_CGROUP_UNIX_SENDMSG]	= "cgroup_unix_sendmsg",
103 	[BPF_CGROUP_SYSCTL]		= "cgroup_sysctl",
104 	[BPF_CGROUP_UDP4_RECVMSG]	= "cgroup_udp4_recvmsg",
105 	[BPF_CGROUP_UDP6_RECVMSG]	= "cgroup_udp6_recvmsg",
106 	[BPF_CGROUP_UNIX_RECVMSG]	= "cgroup_unix_recvmsg",
107 	[BPF_CGROUP_GETSOCKOPT]		= "cgroup_getsockopt",
108 	[BPF_CGROUP_SETSOCKOPT]		= "cgroup_setsockopt",
109 	[BPF_SK_SKB_STREAM_PARSER]	= "sk_skb_stream_parser",
110 	[BPF_SK_SKB_STREAM_VERDICT]	= "sk_skb_stream_verdict",
111 	[BPF_SK_SKB_VERDICT]		= "sk_skb_verdict",
112 	[BPF_SK_MSG_VERDICT]		= "sk_msg_verdict",
113 	[BPF_LIRC_MODE2]		= "lirc_mode2",
114 	[BPF_FLOW_DISSECTOR]		= "flow_dissector",
115 	[BPF_TRACE_RAW_TP]		= "trace_raw_tp",
116 	[BPF_TRACE_FENTRY]		= "trace_fentry",
117 	[BPF_TRACE_FEXIT]		= "trace_fexit",
118 	[BPF_MODIFY_RETURN]		= "modify_return",
119 	[BPF_LSM_MAC]			= "lsm_mac",
120 	[BPF_LSM_CGROUP]		= "lsm_cgroup",
121 	[BPF_SK_LOOKUP]			= "sk_lookup",
122 	[BPF_TRACE_ITER]		= "trace_iter",
123 	[BPF_XDP_DEVMAP]		= "xdp_devmap",
124 	[BPF_XDP_CPUMAP]		= "xdp_cpumap",
125 	[BPF_XDP]			= "xdp",
126 	[BPF_SK_REUSEPORT_SELECT]	= "sk_reuseport_select",
127 	[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]	= "sk_reuseport_select_or_migrate",
128 	[BPF_PERF_EVENT]		= "perf_event",
129 	[BPF_TRACE_KPROBE_MULTI]	= "trace_kprobe_multi",
130 	[BPF_STRUCT_OPS]		= "struct_ops",
131 	[BPF_NETFILTER]			= "netfilter",
132 	[BPF_TCX_INGRESS]		= "tcx_ingress",
133 	[BPF_TCX_EGRESS]		= "tcx_egress",
134 	[BPF_TRACE_UPROBE_MULTI]	= "trace_uprobe_multi",
135 	[BPF_NETKIT_PRIMARY]		= "netkit_primary",
136 	[BPF_NETKIT_PEER]		= "netkit_peer",
137 	[BPF_TRACE_KPROBE_SESSION]	= "trace_kprobe_session",
138 };
139 
140 static const char * const link_type_name[] = {
141 	[BPF_LINK_TYPE_UNSPEC]			= "unspec",
142 	[BPF_LINK_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
143 	[BPF_LINK_TYPE_TRACING]			= "tracing",
144 	[BPF_LINK_TYPE_CGROUP]			= "cgroup",
145 	[BPF_LINK_TYPE_ITER]			= "iter",
146 	[BPF_LINK_TYPE_NETNS]			= "netns",
147 	[BPF_LINK_TYPE_XDP]			= "xdp",
148 	[BPF_LINK_TYPE_PERF_EVENT]		= "perf_event",
149 	[BPF_LINK_TYPE_KPROBE_MULTI]		= "kprobe_multi",
150 	[BPF_LINK_TYPE_STRUCT_OPS]		= "struct_ops",
151 	[BPF_LINK_TYPE_NETFILTER]		= "netfilter",
152 	[BPF_LINK_TYPE_TCX]			= "tcx",
153 	[BPF_LINK_TYPE_UPROBE_MULTI]		= "uprobe_multi",
154 	[BPF_LINK_TYPE_NETKIT]			= "netkit",
155 	[BPF_LINK_TYPE_SOCKMAP]			= "sockmap",
156 };
157 
158 static const char * const map_type_name[] = {
159 	[BPF_MAP_TYPE_UNSPEC]			= "unspec",
160 	[BPF_MAP_TYPE_HASH]			= "hash",
161 	[BPF_MAP_TYPE_ARRAY]			= "array",
162 	[BPF_MAP_TYPE_PROG_ARRAY]		= "prog_array",
163 	[BPF_MAP_TYPE_PERF_EVENT_ARRAY]		= "perf_event_array",
164 	[BPF_MAP_TYPE_PERCPU_HASH]		= "percpu_hash",
165 	[BPF_MAP_TYPE_PERCPU_ARRAY]		= "percpu_array",
166 	[BPF_MAP_TYPE_STACK_TRACE]		= "stack_trace",
167 	[BPF_MAP_TYPE_CGROUP_ARRAY]		= "cgroup_array",
168 	[BPF_MAP_TYPE_LRU_HASH]			= "lru_hash",
169 	[BPF_MAP_TYPE_LRU_PERCPU_HASH]		= "lru_percpu_hash",
170 	[BPF_MAP_TYPE_LPM_TRIE]			= "lpm_trie",
171 	[BPF_MAP_TYPE_ARRAY_OF_MAPS]		= "array_of_maps",
172 	[BPF_MAP_TYPE_HASH_OF_MAPS]		= "hash_of_maps",
173 	[BPF_MAP_TYPE_DEVMAP]			= "devmap",
174 	[BPF_MAP_TYPE_DEVMAP_HASH]		= "devmap_hash",
175 	[BPF_MAP_TYPE_SOCKMAP]			= "sockmap",
176 	[BPF_MAP_TYPE_CPUMAP]			= "cpumap",
177 	[BPF_MAP_TYPE_XSKMAP]			= "xskmap",
178 	[BPF_MAP_TYPE_SOCKHASH]			= "sockhash",
179 	[BPF_MAP_TYPE_CGROUP_STORAGE]		= "cgroup_storage",
180 	[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]	= "reuseport_sockarray",
181 	[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]	= "percpu_cgroup_storage",
182 	[BPF_MAP_TYPE_QUEUE]			= "queue",
183 	[BPF_MAP_TYPE_STACK]			= "stack",
184 	[BPF_MAP_TYPE_SK_STORAGE]		= "sk_storage",
185 	[BPF_MAP_TYPE_STRUCT_OPS]		= "struct_ops",
186 	[BPF_MAP_TYPE_RINGBUF]			= "ringbuf",
187 	[BPF_MAP_TYPE_INODE_STORAGE]		= "inode_storage",
188 	[BPF_MAP_TYPE_TASK_STORAGE]		= "task_storage",
189 	[BPF_MAP_TYPE_BLOOM_FILTER]		= "bloom_filter",
190 	[BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
191 	[BPF_MAP_TYPE_CGRP_STORAGE]		= "cgrp_storage",
192 	[BPF_MAP_TYPE_ARENA]			= "arena",
193 };
194 
195 static const char * const prog_type_name[] = {
196 	[BPF_PROG_TYPE_UNSPEC]			= "unspec",
197 	[BPF_PROG_TYPE_SOCKET_FILTER]		= "socket_filter",
198 	[BPF_PROG_TYPE_KPROBE]			= "kprobe",
199 	[BPF_PROG_TYPE_SCHED_CLS]		= "sched_cls",
200 	[BPF_PROG_TYPE_SCHED_ACT]		= "sched_act",
201 	[BPF_PROG_TYPE_TRACEPOINT]		= "tracepoint",
202 	[BPF_PROG_TYPE_XDP]			= "xdp",
203 	[BPF_PROG_TYPE_PERF_EVENT]		= "perf_event",
204 	[BPF_PROG_TYPE_CGROUP_SKB]		= "cgroup_skb",
205 	[BPF_PROG_TYPE_CGROUP_SOCK]		= "cgroup_sock",
206 	[BPF_PROG_TYPE_LWT_IN]			= "lwt_in",
207 	[BPF_PROG_TYPE_LWT_OUT]			= "lwt_out",
208 	[BPF_PROG_TYPE_LWT_XMIT]		= "lwt_xmit",
209 	[BPF_PROG_TYPE_SOCK_OPS]		= "sock_ops",
210 	[BPF_PROG_TYPE_SK_SKB]			= "sk_skb",
211 	[BPF_PROG_TYPE_CGROUP_DEVICE]		= "cgroup_device",
212 	[BPF_PROG_TYPE_SK_MSG]			= "sk_msg",
213 	[BPF_PROG_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
214 	[BPF_PROG_TYPE_CGROUP_SOCK_ADDR]	= "cgroup_sock_addr",
215 	[BPF_PROG_TYPE_LWT_SEG6LOCAL]		= "lwt_seg6local",
216 	[BPF_PROG_TYPE_LIRC_MODE2]		= "lirc_mode2",
217 	[BPF_PROG_TYPE_SK_REUSEPORT]		= "sk_reuseport",
218 	[BPF_PROG_TYPE_FLOW_DISSECTOR]		= "flow_dissector",
219 	[BPF_PROG_TYPE_CGROUP_SYSCTL]		= "cgroup_sysctl",
220 	[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE]	= "raw_tracepoint_writable",
221 	[BPF_PROG_TYPE_CGROUP_SOCKOPT]		= "cgroup_sockopt",
222 	[BPF_PROG_TYPE_TRACING]			= "tracing",
223 	[BPF_PROG_TYPE_STRUCT_OPS]		= "struct_ops",
224 	[BPF_PROG_TYPE_EXT]			= "ext",
225 	[BPF_PROG_TYPE_LSM]			= "lsm",
226 	[BPF_PROG_TYPE_SK_LOOKUP]		= "sk_lookup",
227 	[BPF_PROG_TYPE_SYSCALL]			= "syscall",
228 	[BPF_PROG_TYPE_NETFILTER]		= "netfilter",
229 };
230 
__base_pr(enum libbpf_print_level level,const char * format,va_list args)231 static int __base_pr(enum libbpf_print_level level, const char *format,
232 		     va_list args)
233 {
234 	const char *env_var = "LIBBPF_LOG_LEVEL";
235 	static enum libbpf_print_level min_level = LIBBPF_INFO;
236 	static bool initialized;
237 
238 	if (!initialized) {
239 		char *verbosity;
240 
241 		initialized = true;
242 		verbosity = getenv(env_var);
243 		if (verbosity) {
244 			if (strcasecmp(verbosity, "warn") == 0)
245 				min_level = LIBBPF_WARN;
246 			else if (strcasecmp(verbosity, "debug") == 0)
247 				min_level = LIBBPF_DEBUG;
248 			else if (strcasecmp(verbosity, "info") == 0)
249 				min_level = LIBBPF_INFO;
250 			else
251 				fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n",
252 					env_var, verbosity);
253 		}
254 	}
255 
256 	/* if too verbose, skip logging  */
257 	if (level > min_level)
258 		return 0;
259 
260 	return vfprintf(stderr, format, args);
261 }
262 
263 static libbpf_print_fn_t __libbpf_pr = __base_pr;
264 
libbpf_set_print(libbpf_print_fn_t fn)265 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
266 {
267 	libbpf_print_fn_t old_print_fn;
268 
269 	old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
270 
271 	return old_print_fn;
272 }
273 
274 __printf(2, 3)
libbpf_print(enum libbpf_print_level level,const char * format,...)275 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
276 {
277 	va_list args;
278 	int old_errno;
279 	libbpf_print_fn_t print_fn;
280 
281 	print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
282 	if (!print_fn)
283 		return;
284 
285 	old_errno = errno;
286 
287 	va_start(args, format);
288 	print_fn(level, format, args);
289 	va_end(args);
290 
291 	errno = old_errno;
292 }
293 
pr_perm_msg(int err)294 static void pr_perm_msg(int err)
295 {
296 	struct rlimit limit;
297 	char buf[100];
298 
299 	if (err != -EPERM || geteuid() != 0)
300 		return;
301 
302 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
303 	if (err)
304 		return;
305 
306 	if (limit.rlim_cur == RLIM_INFINITY)
307 		return;
308 
309 	if (limit.rlim_cur < 1024)
310 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
311 	else if (limit.rlim_cur < 1024*1024)
312 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
313 	else
314 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
315 
316 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
317 		buf);
318 }
319 
320 #define STRERR_BUFSIZE  128
321 
322 /* Copied from tools/perf/util/util.h */
323 #ifndef zfree
324 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
325 #endif
326 
327 #ifndef zclose
328 # define zclose(fd) ({			\
329 	int ___err = 0;			\
330 	if ((fd) >= 0)			\
331 		___err = close((fd));	\
332 	fd = -1;			\
333 	___err; })
334 #endif
335 
ptr_to_u64(const void * ptr)336 static inline __u64 ptr_to_u64(const void *ptr)
337 {
338 	return (__u64) (unsigned long) ptr;
339 }
340 
libbpf_set_strict_mode(enum libbpf_strict_mode mode)341 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
342 {
343 	/* as of v1.0 libbpf_set_strict_mode() is a no-op */
344 	return 0;
345 }
346 
libbpf_major_version(void)347 __u32 libbpf_major_version(void)
348 {
349 	return LIBBPF_MAJOR_VERSION;
350 }
351 
libbpf_minor_version(void)352 __u32 libbpf_minor_version(void)
353 {
354 	return LIBBPF_MINOR_VERSION;
355 }
356 
libbpf_version_string(void)357 const char *libbpf_version_string(void)
358 {
359 #define __S(X) #X
360 #define _S(X) __S(X)
361 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
362 #undef _S
363 #undef __S
364 }
365 
366 enum reloc_type {
367 	RELO_LD64,
368 	RELO_CALL,
369 	RELO_DATA,
370 	RELO_EXTERN_LD64,
371 	RELO_EXTERN_CALL,
372 	RELO_SUBPROG_ADDR,
373 	RELO_CORE,
374 };
375 
376 struct reloc_desc {
377 	enum reloc_type type;
378 	int insn_idx;
379 	union {
380 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
381 		struct {
382 			int map_idx;
383 			int sym_off;
384 			int ext_idx;
385 		};
386 	};
387 };
388 
389 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
390 enum sec_def_flags {
391 	SEC_NONE = 0,
392 	/* expected_attach_type is optional, if kernel doesn't support that */
393 	SEC_EXP_ATTACH_OPT = 1,
394 	/* legacy, only used by libbpf_get_type_names() and
395 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
396 	 * This used to be associated with cgroup (and few other) BPF programs
397 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
398 	 * meaningless nowadays, though.
399 	 */
400 	SEC_ATTACHABLE = 2,
401 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
402 	/* attachment target is specified through BTF ID in either kernel or
403 	 * other BPF program's BTF object
404 	 */
405 	SEC_ATTACH_BTF = 4,
406 	/* BPF program type allows sleeping/blocking in kernel */
407 	SEC_SLEEPABLE = 8,
408 	/* BPF program support non-linear XDP buffer */
409 	SEC_XDP_FRAGS = 16,
410 	/* Setup proper attach type for usdt probes. */
411 	SEC_USDT = 32,
412 };
413 
414 struct bpf_sec_def {
415 	char *sec;
416 	enum bpf_prog_type prog_type;
417 	enum bpf_attach_type expected_attach_type;
418 	long cookie;
419 	int handler_id;
420 
421 	libbpf_prog_setup_fn_t prog_setup_fn;
422 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
423 	libbpf_prog_attach_fn_t prog_attach_fn;
424 };
425 
426 /*
427  * bpf_prog should be a better name but it has been used in
428  * linux/filter.h.
429  */
430 struct bpf_program {
431 	char *name;
432 	char *sec_name;
433 	size_t sec_idx;
434 	const struct bpf_sec_def *sec_def;
435 	/* this program's instruction offset (in number of instructions)
436 	 * within its containing ELF section
437 	 */
438 	size_t sec_insn_off;
439 	/* number of original instructions in ELF section belonging to this
440 	 * program, not taking into account subprogram instructions possible
441 	 * appended later during relocation
442 	 */
443 	size_t sec_insn_cnt;
444 	/* Offset (in number of instructions) of the start of instruction
445 	 * belonging to this BPF program  within its containing main BPF
446 	 * program. For the entry-point (main) BPF program, this is always
447 	 * zero. For a sub-program, this gets reset before each of main BPF
448 	 * programs are processed and relocated and is used to determined
449 	 * whether sub-program was already appended to the main program, and
450 	 * if yes, at which instruction offset.
451 	 */
452 	size_t sub_insn_off;
453 
454 	/* instructions that belong to BPF program; insns[0] is located at
455 	 * sec_insn_off instruction within its ELF section in ELF file, so
456 	 * when mapping ELF file instruction index to the local instruction,
457 	 * one needs to subtract sec_insn_off; and vice versa.
458 	 */
459 	struct bpf_insn *insns;
460 	/* actual number of instruction in this BPF program's image; for
461 	 * entry-point BPF programs this includes the size of main program
462 	 * itself plus all the used sub-programs, appended at the end
463 	 */
464 	size_t insns_cnt;
465 
466 	struct reloc_desc *reloc_desc;
467 	int nr_reloc;
468 
469 	/* BPF verifier log settings */
470 	char *log_buf;
471 	size_t log_size;
472 	__u32 log_level;
473 
474 	struct bpf_object *obj;
475 
476 	int fd;
477 	bool autoload;
478 	bool autoattach;
479 	bool sym_global;
480 	bool mark_btf_static;
481 	enum bpf_prog_type type;
482 	enum bpf_attach_type expected_attach_type;
483 	int exception_cb_idx;
484 
485 	int prog_ifindex;
486 	__u32 attach_btf_obj_fd;
487 	__u32 attach_btf_id;
488 	__u32 attach_prog_fd;
489 
490 	void *func_info;
491 	__u32 func_info_rec_size;
492 	__u32 func_info_cnt;
493 
494 	void *line_info;
495 	__u32 line_info_rec_size;
496 	__u32 line_info_cnt;
497 	__u32 prog_flags;
498 };
499 
500 struct bpf_struct_ops {
501 	struct bpf_program **progs;
502 	__u32 *kern_func_off;
503 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
504 	void *data;
505 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
506 	 *      btf_vmlinux's format.
507 	 * struct bpf_struct_ops_tcp_congestion_ops {
508 	 *	[... some other kernel fields ...]
509 	 *	struct tcp_congestion_ops data;
510 	 * }
511 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
512 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
513 	 * from "data".
514 	 */
515 	void *kern_vdata;
516 	__u32 type_id;
517 };
518 
519 #define DATA_SEC ".data"
520 #define BSS_SEC ".bss"
521 #define RODATA_SEC ".rodata"
522 #define KCONFIG_SEC ".kconfig"
523 #define KSYMS_SEC ".ksyms"
524 #define STRUCT_OPS_SEC ".struct_ops"
525 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
526 #define ARENA_SEC ".addr_space.1"
527 
528 enum libbpf_map_type {
529 	LIBBPF_MAP_UNSPEC,
530 	LIBBPF_MAP_DATA,
531 	LIBBPF_MAP_BSS,
532 	LIBBPF_MAP_RODATA,
533 	LIBBPF_MAP_KCONFIG,
534 };
535 
536 struct bpf_map_def {
537 	unsigned int type;
538 	unsigned int key_size;
539 	unsigned int value_size;
540 	unsigned int max_entries;
541 	unsigned int map_flags;
542 };
543 
544 struct bpf_map {
545 	struct bpf_object *obj;
546 	char *name;
547 	/* real_name is defined for special internal maps (.rodata*,
548 	 * .data*, .bss, .kconfig) and preserves their original ELF section
549 	 * name. This is important to be able to find corresponding BTF
550 	 * DATASEC information.
551 	 */
552 	char *real_name;
553 	int fd;
554 	int sec_idx;
555 	size_t sec_offset;
556 	int map_ifindex;
557 	int inner_map_fd;
558 	struct bpf_map_def def;
559 	__u32 numa_node;
560 	__u32 btf_var_idx;
561 	int mod_btf_fd;
562 	__u32 btf_key_type_id;
563 	__u32 btf_value_type_id;
564 	__u32 btf_vmlinux_value_type_id;
565 	enum libbpf_map_type libbpf_type;
566 	void *mmaped;
567 	struct bpf_struct_ops *st_ops;
568 	struct bpf_map *inner_map;
569 	void **init_slots;
570 	int init_slots_sz;
571 	char *pin_path;
572 	bool pinned;
573 	bool reused;
574 	bool autocreate;
575 	bool autoattach;
576 	__u64 map_extra;
577 };
578 
579 enum extern_type {
580 	EXT_UNKNOWN,
581 	EXT_KCFG,
582 	EXT_KSYM,
583 };
584 
585 enum kcfg_type {
586 	KCFG_UNKNOWN,
587 	KCFG_CHAR,
588 	KCFG_BOOL,
589 	KCFG_INT,
590 	KCFG_TRISTATE,
591 	KCFG_CHAR_ARR,
592 };
593 
594 struct extern_desc {
595 	enum extern_type type;
596 	int sym_idx;
597 	int btf_id;
598 	int sec_btf_id;
599 	char *name;
600 	char *essent_name;
601 	bool is_set;
602 	bool is_weak;
603 	union {
604 		struct {
605 			enum kcfg_type type;
606 			int sz;
607 			int align;
608 			int data_off;
609 			bool is_signed;
610 		} kcfg;
611 		struct {
612 			unsigned long long addr;
613 
614 			/* target btf_id of the corresponding kernel var. */
615 			int kernel_btf_obj_fd;
616 			int kernel_btf_id;
617 
618 			/* local btf_id of the ksym extern's type. */
619 			__u32 type_id;
620 			/* BTF fd index to be patched in for insn->off, this is
621 			 * 0 for vmlinux BTF, index in obj->fd_array for module
622 			 * BTF
623 			 */
624 			__s16 btf_fd_idx;
625 		} ksym;
626 	};
627 };
628 
629 struct module_btf {
630 	struct btf *btf;
631 	char *name;
632 	__u32 id;
633 	int fd;
634 	int fd_array_idx;
635 };
636 
637 enum sec_type {
638 	SEC_UNUSED = 0,
639 	SEC_RELO,
640 	SEC_BSS,
641 	SEC_DATA,
642 	SEC_RODATA,
643 	SEC_ST_OPS,
644 };
645 
646 struct elf_sec_desc {
647 	enum sec_type sec_type;
648 	Elf64_Shdr *shdr;
649 	Elf_Data *data;
650 };
651 
652 struct elf_state {
653 	int fd;
654 	const void *obj_buf;
655 	size_t obj_buf_sz;
656 	Elf *elf;
657 	Elf64_Ehdr *ehdr;
658 	Elf_Data *symbols;
659 	Elf_Data *arena_data;
660 	size_t shstrndx; /* section index for section name strings */
661 	size_t strtabidx;
662 	struct elf_sec_desc *secs;
663 	size_t sec_cnt;
664 	int btf_maps_shndx;
665 	__u32 btf_maps_sec_btf_id;
666 	int text_shndx;
667 	int symbols_shndx;
668 	bool has_st_ops;
669 	int arena_data_shndx;
670 };
671 
672 struct usdt_manager;
673 
674 struct bpf_object {
675 	char name[BPF_OBJ_NAME_LEN];
676 	char license[64];
677 	__u32 kern_version;
678 
679 	struct bpf_program *programs;
680 	size_t nr_programs;
681 	struct bpf_map *maps;
682 	size_t nr_maps;
683 	size_t maps_cap;
684 
685 	char *kconfig;
686 	struct extern_desc *externs;
687 	int nr_extern;
688 	int kconfig_map_idx;
689 
690 	bool loaded;
691 	bool has_subcalls;
692 	bool has_rodata;
693 
694 	struct bpf_gen *gen_loader;
695 
696 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
697 	struct elf_state efile;
698 
699 	struct btf *btf;
700 	struct btf_ext *btf_ext;
701 
702 	/* Parse and load BTF vmlinux if any of the programs in the object need
703 	 * it at load time.
704 	 */
705 	struct btf *btf_vmlinux;
706 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
707 	 * override for vmlinux BTF.
708 	 */
709 	char *btf_custom_path;
710 	/* vmlinux BTF override for CO-RE relocations */
711 	struct btf *btf_vmlinux_override;
712 	/* Lazily initialized kernel module BTFs */
713 	struct module_btf *btf_modules;
714 	bool btf_modules_loaded;
715 	size_t btf_module_cnt;
716 	size_t btf_module_cap;
717 
718 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
719 	char *log_buf;
720 	size_t log_size;
721 	__u32 log_level;
722 
723 	int *fd_array;
724 	size_t fd_array_cap;
725 	size_t fd_array_cnt;
726 
727 	struct usdt_manager *usdt_man;
728 
729 	int arena_map_idx;
730 	void *arena_data;
731 	size_t arena_data_sz;
732 
733 	struct kern_feature_cache *feat_cache;
734 	char *token_path;
735 	int token_fd;
736 
737 	char path[];
738 };
739 
740 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
741 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
742 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
743 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
744 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
745 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
746 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
747 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
748 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
749 
bpf_program__unload(struct bpf_program * prog)750 void bpf_program__unload(struct bpf_program *prog)
751 {
752 	if (!prog)
753 		return;
754 
755 	zclose(prog->fd);
756 
757 	zfree(&prog->func_info);
758 	zfree(&prog->line_info);
759 }
760 
bpf_program__exit(struct bpf_program * prog)761 static void bpf_program__exit(struct bpf_program *prog)
762 {
763 	if (!prog)
764 		return;
765 
766 	bpf_program__unload(prog);
767 	zfree(&prog->name);
768 	zfree(&prog->sec_name);
769 	zfree(&prog->insns);
770 	zfree(&prog->reloc_desc);
771 
772 	prog->nr_reloc = 0;
773 	prog->insns_cnt = 0;
774 	prog->sec_idx = -1;
775 }
776 
insn_is_subprog_call(const struct bpf_insn * insn)777 static bool insn_is_subprog_call(const struct bpf_insn *insn)
778 {
779 	return BPF_CLASS(insn->code) == BPF_JMP &&
780 	       BPF_OP(insn->code) == BPF_CALL &&
781 	       BPF_SRC(insn->code) == BPF_K &&
782 	       insn->src_reg == BPF_PSEUDO_CALL &&
783 	       insn->dst_reg == 0 &&
784 	       insn->off == 0;
785 }
786 
is_call_insn(const struct bpf_insn * insn)787 static bool is_call_insn(const struct bpf_insn *insn)
788 {
789 	return insn->code == (BPF_JMP | BPF_CALL);
790 }
791 
insn_is_pseudo_func(struct bpf_insn * insn)792 static bool insn_is_pseudo_func(struct bpf_insn *insn)
793 {
794 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
795 }
796 
797 static int
bpf_object__init_prog(struct bpf_object * obj,struct bpf_program * prog,const char * name,size_t sec_idx,const char * sec_name,size_t sec_off,void * insn_data,size_t insn_data_sz)798 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
799 		      const char *name, size_t sec_idx, const char *sec_name,
800 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
801 {
802 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
803 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
804 			sec_name, name, sec_off, insn_data_sz);
805 		return -EINVAL;
806 	}
807 
808 	memset(prog, 0, sizeof(*prog));
809 	prog->obj = obj;
810 
811 	prog->sec_idx = sec_idx;
812 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
813 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
814 	/* insns_cnt can later be increased by appending used subprograms */
815 	prog->insns_cnt = prog->sec_insn_cnt;
816 
817 	prog->type = BPF_PROG_TYPE_UNSPEC;
818 	prog->fd = -1;
819 	prog->exception_cb_idx = -1;
820 
821 	/* libbpf's convention for SEC("?abc...") is that it's just like
822 	 * SEC("abc...") but the corresponding bpf_program starts out with
823 	 * autoload set to false.
824 	 */
825 	if (sec_name[0] == '?') {
826 		prog->autoload = false;
827 		/* from now on forget there was ? in section name */
828 		sec_name++;
829 	} else {
830 		prog->autoload = true;
831 	}
832 
833 	prog->autoattach = true;
834 
835 	/* inherit object's log_level */
836 	prog->log_level = obj->log_level;
837 
838 	prog->sec_name = strdup(sec_name);
839 	if (!prog->sec_name)
840 		goto errout;
841 
842 	prog->name = strdup(name);
843 	if (!prog->name)
844 		goto errout;
845 
846 	prog->insns = malloc(insn_data_sz);
847 	if (!prog->insns)
848 		goto errout;
849 	memcpy(prog->insns, insn_data, insn_data_sz);
850 
851 	return 0;
852 errout:
853 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
854 	bpf_program__exit(prog);
855 	return -ENOMEM;
856 }
857 
858 static int
bpf_object__add_programs(struct bpf_object * obj,Elf_Data * sec_data,const char * sec_name,int sec_idx)859 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
860 			 const char *sec_name, int sec_idx)
861 {
862 	Elf_Data *symbols = obj->efile.symbols;
863 	struct bpf_program *prog, *progs;
864 	void *data = sec_data->d_buf;
865 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
866 	int nr_progs, err, i;
867 	const char *name;
868 	Elf64_Sym *sym;
869 
870 	progs = obj->programs;
871 	nr_progs = obj->nr_programs;
872 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
873 
874 	for (i = 0; i < nr_syms; i++) {
875 		sym = elf_sym_by_idx(obj, i);
876 
877 		if (sym->st_shndx != sec_idx)
878 			continue;
879 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
880 			continue;
881 
882 		prog_sz = sym->st_size;
883 		sec_off = sym->st_value;
884 
885 		name = elf_sym_str(obj, sym->st_name);
886 		if (!name) {
887 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
888 				sec_name, sec_off);
889 			return -LIBBPF_ERRNO__FORMAT;
890 		}
891 
892 		if (sec_off + prog_sz > sec_sz || sec_off + prog_sz < sec_off) {
893 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
894 				sec_name, sec_off);
895 			return -LIBBPF_ERRNO__FORMAT;
896 		}
897 
898 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
899 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
900 			return -ENOTSUP;
901 		}
902 
903 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
904 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
905 
906 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
907 		if (!progs) {
908 			/*
909 			 * In this case the original obj->programs
910 			 * is still valid, so don't need special treat for
911 			 * bpf_close_object().
912 			 */
913 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
914 				sec_name, name);
915 			return -ENOMEM;
916 		}
917 		obj->programs = progs;
918 
919 		prog = &progs[nr_progs];
920 
921 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
922 					    sec_off, data + sec_off, prog_sz);
923 		if (err)
924 			return err;
925 
926 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
927 			prog->sym_global = true;
928 
929 		/* if function is a global/weak symbol, but has restricted
930 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
931 		 * as static to enable more permissive BPF verification mode
932 		 * with more outside context available to BPF verifier
933 		 */
934 		if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
935 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
936 			prog->mark_btf_static = true;
937 
938 		nr_progs++;
939 		obj->nr_programs = nr_progs;
940 	}
941 
942 	return 0;
943 }
944 
945 static const struct btf_member *
find_member_by_offset(const struct btf_type * t,__u32 bit_offset)946 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
947 {
948 	struct btf_member *m;
949 	int i;
950 
951 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
952 		if (btf_member_bit_offset(t, i) == bit_offset)
953 			return m;
954 	}
955 
956 	return NULL;
957 }
958 
959 static const struct btf_member *
find_member_by_name(const struct btf * btf,const struct btf_type * t,const char * name)960 find_member_by_name(const struct btf *btf, const struct btf_type *t,
961 		    const char *name)
962 {
963 	struct btf_member *m;
964 	int i;
965 
966 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
967 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
968 			return m;
969 	}
970 
971 	return NULL;
972 }
973 
974 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
975 			    __u16 kind, struct btf **res_btf,
976 			    struct module_btf **res_mod_btf);
977 
978 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
979 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
980 				   const char *name, __u32 kind);
981 
982 static int
find_struct_ops_kern_types(struct bpf_object * obj,const char * tname_raw,struct module_btf ** mod_btf,const struct btf_type ** type,__u32 * type_id,const struct btf_type ** vtype,__u32 * vtype_id,const struct btf_member ** data_member)983 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw,
984 			   struct module_btf **mod_btf,
985 			   const struct btf_type **type, __u32 *type_id,
986 			   const struct btf_type **vtype, __u32 *vtype_id,
987 			   const struct btf_member **data_member)
988 {
989 	const struct btf_type *kern_type, *kern_vtype;
990 	const struct btf_member *kern_data_member;
991 	struct btf *btf = NULL;
992 	__s32 kern_vtype_id, kern_type_id;
993 	char tname[256];
994 	__u32 i;
995 
996 	snprintf(tname, sizeof(tname), "%.*s",
997 		 (int)bpf_core_essential_name_len(tname_raw), tname_raw);
998 
999 	kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT,
1000 					&btf, mod_btf);
1001 	if (kern_type_id < 0) {
1002 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
1003 			tname);
1004 		return kern_type_id;
1005 	}
1006 	kern_type = btf__type_by_id(btf, kern_type_id);
1007 
1008 	/* Find the corresponding "map_value" type that will be used
1009 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
1010 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
1011 	 * btf_vmlinux.
1012 	 */
1013 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
1014 						tname, BTF_KIND_STRUCT);
1015 	if (kern_vtype_id < 0) {
1016 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
1017 			STRUCT_OPS_VALUE_PREFIX, tname);
1018 		return kern_vtype_id;
1019 	}
1020 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
1021 
1022 	/* Find "struct tcp_congestion_ops" from
1023 	 * struct bpf_struct_ops_tcp_congestion_ops {
1024 	 *	[ ... ]
1025 	 *	struct tcp_congestion_ops data;
1026 	 * }
1027 	 */
1028 	kern_data_member = btf_members(kern_vtype);
1029 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
1030 		if (kern_data_member->type == kern_type_id)
1031 			break;
1032 	}
1033 	if (i == btf_vlen(kern_vtype)) {
1034 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
1035 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
1036 		return -EINVAL;
1037 	}
1038 
1039 	*type = kern_type;
1040 	*type_id = kern_type_id;
1041 	*vtype = kern_vtype;
1042 	*vtype_id = kern_vtype_id;
1043 	*data_member = kern_data_member;
1044 
1045 	return 0;
1046 }
1047 
bpf_map__is_struct_ops(const struct bpf_map * map)1048 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1049 {
1050 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1051 }
1052 
is_valid_st_ops_program(struct bpf_object * obj,const struct bpf_program * prog)1053 static bool is_valid_st_ops_program(struct bpf_object *obj,
1054 				    const struct bpf_program *prog)
1055 {
1056 	int i;
1057 
1058 	for (i = 0; i < obj->nr_programs; i++) {
1059 		if (&obj->programs[i] == prog)
1060 			return prog->type == BPF_PROG_TYPE_STRUCT_OPS;
1061 	}
1062 
1063 	return false;
1064 }
1065 
1066 /* For each struct_ops program P, referenced from some struct_ops map M,
1067  * enable P.autoload if there are Ms for which M.autocreate is true,
1068  * disable P.autoload if for all Ms M.autocreate is false.
1069  * Don't change P.autoload for programs that are not referenced from any maps.
1070  */
bpf_object_adjust_struct_ops_autoload(struct bpf_object * obj)1071 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj)
1072 {
1073 	struct bpf_program *prog, *slot_prog;
1074 	struct bpf_map *map;
1075 	int i, j, k, vlen;
1076 
1077 	for (i = 0; i < obj->nr_programs; ++i) {
1078 		int should_load = false;
1079 		int use_cnt = 0;
1080 
1081 		prog = &obj->programs[i];
1082 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS)
1083 			continue;
1084 
1085 		for (j = 0; j < obj->nr_maps; ++j) {
1086 			const struct btf_type *type;
1087 
1088 			map = &obj->maps[j];
1089 			if (!bpf_map__is_struct_ops(map))
1090 				continue;
1091 
1092 			type = btf__type_by_id(obj->btf, map->st_ops->type_id);
1093 			vlen = btf_vlen(type);
1094 			for (k = 0; k < vlen; ++k) {
1095 				slot_prog = map->st_ops->progs[k];
1096 				if (prog != slot_prog)
1097 					continue;
1098 
1099 				use_cnt++;
1100 				if (map->autocreate)
1101 					should_load = true;
1102 			}
1103 		}
1104 		if (use_cnt)
1105 			prog->autoload = should_load;
1106 	}
1107 
1108 	return 0;
1109 }
1110 
1111 /* Init the map's fields that depend on kern_btf */
bpf_map__init_kern_struct_ops(struct bpf_map * map)1112 static int bpf_map__init_kern_struct_ops(struct bpf_map *map)
1113 {
1114 	const struct btf_member *member, *kern_member, *kern_data_member;
1115 	const struct btf_type *type, *kern_type, *kern_vtype;
1116 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1117 	struct bpf_object *obj = map->obj;
1118 	const struct btf *btf = obj->btf;
1119 	struct bpf_struct_ops *st_ops;
1120 	const struct btf *kern_btf;
1121 	struct module_btf *mod_btf = NULL;
1122 	void *data, *kern_data;
1123 	const char *tname;
1124 	int err;
1125 
1126 	st_ops = map->st_ops;
1127 	type = btf__type_by_id(btf, st_ops->type_id);
1128 	tname = btf__name_by_offset(btf, type->name_off);
1129 	err = find_struct_ops_kern_types(obj, tname, &mod_btf,
1130 					 &kern_type, &kern_type_id,
1131 					 &kern_vtype, &kern_vtype_id,
1132 					 &kern_data_member);
1133 	if (err)
1134 		return err;
1135 
1136 	kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux;
1137 
1138 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1139 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1140 
1141 	map->mod_btf_fd = mod_btf ? mod_btf->fd : -1;
1142 	map->def.value_size = kern_vtype->size;
1143 	map->btf_vmlinux_value_type_id = kern_vtype_id;
1144 
1145 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
1146 	if (!st_ops->kern_vdata)
1147 		return -ENOMEM;
1148 
1149 	data = st_ops->data;
1150 	kern_data_off = kern_data_member->offset / 8;
1151 	kern_data = st_ops->kern_vdata + kern_data_off;
1152 
1153 	member = btf_members(type);
1154 	for (i = 0; i < btf_vlen(type); i++, member++) {
1155 		const struct btf_type *mtype, *kern_mtype;
1156 		__u32 mtype_id, kern_mtype_id;
1157 		void *mdata, *kern_mdata;
1158 		struct bpf_program *prog;
1159 		__s64 msize, kern_msize;
1160 		__u32 moff, kern_moff;
1161 		__u32 kern_member_idx;
1162 		const char *mname;
1163 
1164 		mname = btf__name_by_offset(btf, member->name_off);
1165 		moff = member->offset / 8;
1166 		mdata = data + moff;
1167 		msize = btf__resolve_size(btf, member->type);
1168 		if (msize < 0) {
1169 			pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n",
1170 				map->name, mname);
1171 			return msize;
1172 		}
1173 
1174 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
1175 		if (!kern_member) {
1176 			if (!libbpf_is_mem_zeroed(mdata, msize)) {
1177 				pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1178 					map->name, mname);
1179 				return -ENOTSUP;
1180 			}
1181 
1182 			if (st_ops->progs[i]) {
1183 				/* If we had declaratively set struct_ops callback, we need to
1184 				 * force its autoload to false, because it doesn't have
1185 				 * a chance of succeeding from POV of the current struct_ops map.
1186 				 * If this program is still referenced somewhere else, though,
1187 				 * then bpf_object_adjust_struct_ops_autoload() will update its
1188 				 * autoload accordingly.
1189 				 */
1190 				st_ops->progs[i]->autoload = false;
1191 				st_ops->progs[i] = NULL;
1192 			}
1193 
1194 			/* Skip all-zero/NULL fields if they are not present in the kernel BTF */
1195 			pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n",
1196 				map->name, mname);
1197 			continue;
1198 		}
1199 
1200 		kern_member_idx = kern_member - btf_members(kern_type);
1201 		if (btf_member_bitfield_size(type, i) ||
1202 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
1203 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1204 				map->name, mname);
1205 			return -ENOTSUP;
1206 		}
1207 
1208 		kern_moff = kern_member->offset / 8;
1209 		kern_mdata = kern_data + kern_moff;
1210 
1211 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1212 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1213 						    &kern_mtype_id);
1214 		if (BTF_INFO_KIND(mtype->info) !=
1215 		    BTF_INFO_KIND(kern_mtype->info)) {
1216 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1217 				map->name, mname, BTF_INFO_KIND(mtype->info),
1218 				BTF_INFO_KIND(kern_mtype->info));
1219 			return -ENOTSUP;
1220 		}
1221 
1222 		if (btf_is_ptr(mtype)) {
1223 			prog = *(void **)mdata;
1224 			/* just like for !kern_member case above, reset declaratively
1225 			 * set (at compile time) program's autload to false,
1226 			 * if user replaced it with another program or NULL
1227 			 */
1228 			if (st_ops->progs[i] && st_ops->progs[i] != prog)
1229 				st_ops->progs[i]->autoload = false;
1230 
1231 			/* Update the value from the shadow type */
1232 			st_ops->progs[i] = prog;
1233 			if (!prog)
1234 				continue;
1235 
1236 			if (!is_valid_st_ops_program(obj, prog)) {
1237 				pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n",
1238 					map->name, mname);
1239 				return -ENOTSUP;
1240 			}
1241 
1242 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1243 							    kern_mtype->type,
1244 							    &kern_mtype_id);
1245 
1246 			/* mtype->type must be a func_proto which was
1247 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1248 			 * so only check kern_mtype for func_proto here.
1249 			 */
1250 			if (!btf_is_func_proto(kern_mtype)) {
1251 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1252 					map->name, mname);
1253 				return -ENOTSUP;
1254 			}
1255 
1256 			if (mod_btf)
1257 				prog->attach_btf_obj_fd = mod_btf->fd;
1258 
1259 			/* if we haven't yet processed this BPF program, record proper
1260 			 * attach_btf_id and member_idx
1261 			 */
1262 			if (!prog->attach_btf_id) {
1263 				prog->attach_btf_id = kern_type_id;
1264 				prog->expected_attach_type = kern_member_idx;
1265 			}
1266 
1267 			/* struct_ops BPF prog can be re-used between multiple
1268 			 * .struct_ops & .struct_ops.link as long as it's the
1269 			 * same struct_ops struct definition and the same
1270 			 * function pointer field
1271 			 */
1272 			if (prog->attach_btf_id != kern_type_id) {
1273 				pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n",
1274 					map->name, mname, prog->name, prog->sec_name, prog->type,
1275 					prog->attach_btf_id, kern_type_id);
1276 				return -EINVAL;
1277 			}
1278 			if (prog->expected_attach_type != kern_member_idx) {
1279 				pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n",
1280 					map->name, mname, prog->name, prog->sec_name, prog->type,
1281 					prog->expected_attach_type, kern_member_idx);
1282 				return -EINVAL;
1283 			}
1284 
1285 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1286 
1287 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1288 				 map->name, mname, prog->name, moff,
1289 				 kern_moff);
1290 
1291 			continue;
1292 		}
1293 
1294 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1295 		if (kern_msize < 0 || msize != kern_msize) {
1296 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1297 				map->name, mname, (ssize_t)msize,
1298 				(ssize_t)kern_msize);
1299 			return -ENOTSUP;
1300 		}
1301 
1302 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1303 			 map->name, mname, (unsigned int)msize,
1304 			 moff, kern_moff);
1305 		memcpy(kern_mdata, mdata, msize);
1306 	}
1307 
1308 	return 0;
1309 }
1310 
bpf_object__init_kern_struct_ops_maps(struct bpf_object * obj)1311 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1312 {
1313 	struct bpf_map *map;
1314 	size_t i;
1315 	int err;
1316 
1317 	for (i = 0; i < obj->nr_maps; i++) {
1318 		map = &obj->maps[i];
1319 
1320 		if (!bpf_map__is_struct_ops(map))
1321 			continue;
1322 
1323 		if (!map->autocreate)
1324 			continue;
1325 
1326 		err = bpf_map__init_kern_struct_ops(map);
1327 		if (err)
1328 			return err;
1329 	}
1330 
1331 	return 0;
1332 }
1333 
init_struct_ops_maps(struct bpf_object * obj,const char * sec_name,int shndx,Elf_Data * data)1334 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1335 				int shndx, Elf_Data *data)
1336 {
1337 	const struct btf_type *type, *datasec;
1338 	const struct btf_var_secinfo *vsi;
1339 	struct bpf_struct_ops *st_ops;
1340 	const char *tname, *var_name;
1341 	__s32 type_id, datasec_id;
1342 	const struct btf *btf;
1343 	struct bpf_map *map;
1344 	__u32 i;
1345 
1346 	if (shndx == -1)
1347 		return 0;
1348 
1349 	btf = obj->btf;
1350 	datasec_id = btf__find_by_name_kind(btf, sec_name,
1351 					    BTF_KIND_DATASEC);
1352 	if (datasec_id < 0) {
1353 		pr_warn("struct_ops init: DATASEC %s not found\n",
1354 			sec_name);
1355 		return -EINVAL;
1356 	}
1357 
1358 	datasec = btf__type_by_id(btf, datasec_id);
1359 	vsi = btf_var_secinfos(datasec);
1360 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1361 		type = btf__type_by_id(obj->btf, vsi->type);
1362 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1363 
1364 		type_id = btf__resolve_type(obj->btf, vsi->type);
1365 		if (type_id < 0) {
1366 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1367 				vsi->type, sec_name);
1368 			return -EINVAL;
1369 		}
1370 
1371 		type = btf__type_by_id(obj->btf, type_id);
1372 		tname = btf__name_by_offset(obj->btf, type->name_off);
1373 		if (!tname[0]) {
1374 			pr_warn("struct_ops init: anonymous type is not supported\n");
1375 			return -ENOTSUP;
1376 		}
1377 		if (!btf_is_struct(type)) {
1378 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1379 			return -EINVAL;
1380 		}
1381 
1382 		map = bpf_object__add_map(obj);
1383 		if (IS_ERR(map))
1384 			return PTR_ERR(map);
1385 
1386 		map->sec_idx = shndx;
1387 		map->sec_offset = vsi->offset;
1388 		map->name = strdup(var_name);
1389 		if (!map->name)
1390 			return -ENOMEM;
1391 		map->btf_value_type_id = type_id;
1392 
1393 		/* Follow same convention as for programs autoload:
1394 		 * SEC("?.struct_ops") means map is not created by default.
1395 		 */
1396 		if (sec_name[0] == '?') {
1397 			map->autocreate = false;
1398 			/* from now on forget there was ? in section name */
1399 			sec_name++;
1400 		}
1401 
1402 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1403 		map->def.key_size = sizeof(int);
1404 		map->def.value_size = type->size;
1405 		map->def.max_entries = 1;
1406 		map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0;
1407 		map->autoattach = true;
1408 
1409 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1410 		if (!map->st_ops)
1411 			return -ENOMEM;
1412 		st_ops = map->st_ops;
1413 		st_ops->data = malloc(type->size);
1414 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1415 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1416 					       sizeof(*st_ops->kern_func_off));
1417 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1418 			return -ENOMEM;
1419 
1420 		if (vsi->offset + type->size > data->d_size) {
1421 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1422 				var_name, sec_name);
1423 			return -EINVAL;
1424 		}
1425 
1426 		memcpy(st_ops->data,
1427 		       data->d_buf + vsi->offset,
1428 		       type->size);
1429 		st_ops->type_id = type_id;
1430 
1431 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1432 			 tname, type_id, var_name, vsi->offset);
1433 	}
1434 
1435 	return 0;
1436 }
1437 
bpf_object_init_struct_ops(struct bpf_object * obj)1438 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1439 {
1440 	const char *sec_name;
1441 	int sec_idx, err;
1442 
1443 	for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) {
1444 		struct elf_sec_desc *desc = &obj->efile.secs[sec_idx];
1445 
1446 		if (desc->sec_type != SEC_ST_OPS)
1447 			continue;
1448 
1449 		sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1450 		if (!sec_name)
1451 			return -LIBBPF_ERRNO__FORMAT;
1452 
1453 		err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data);
1454 		if (err)
1455 			return err;
1456 	}
1457 
1458 	return 0;
1459 }
1460 
bpf_object__new(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name)1461 static struct bpf_object *bpf_object__new(const char *path,
1462 					  const void *obj_buf,
1463 					  size_t obj_buf_sz,
1464 					  const char *obj_name)
1465 {
1466 	struct bpf_object *obj;
1467 	char *end;
1468 
1469 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1470 	if (!obj) {
1471 		pr_warn("alloc memory failed for %s\n", path);
1472 		return ERR_PTR(-ENOMEM);
1473 	}
1474 
1475 	strcpy(obj->path, path);
1476 	if (obj_name) {
1477 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1478 	} else {
1479 		/* Using basename() GNU version which doesn't modify arg. */
1480 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1481 		end = strchr(obj->name, '.');
1482 		if (end)
1483 			*end = 0;
1484 	}
1485 
1486 	obj->efile.fd = -1;
1487 	/*
1488 	 * Caller of this function should also call
1489 	 * bpf_object__elf_finish() after data collection to return
1490 	 * obj_buf to user. If not, we should duplicate the buffer to
1491 	 * avoid user freeing them before elf finish.
1492 	 */
1493 	obj->efile.obj_buf = obj_buf;
1494 	obj->efile.obj_buf_sz = obj_buf_sz;
1495 	obj->efile.btf_maps_shndx = -1;
1496 	obj->kconfig_map_idx = -1;
1497 	obj->arena_map_idx = -1;
1498 
1499 	obj->kern_version = get_kernel_version();
1500 	obj->loaded = false;
1501 
1502 	return obj;
1503 }
1504 
bpf_object__elf_finish(struct bpf_object * obj)1505 static void bpf_object__elf_finish(struct bpf_object *obj)
1506 {
1507 	if (!obj->efile.elf)
1508 		return;
1509 
1510 	elf_end(obj->efile.elf);
1511 	obj->efile.elf = NULL;
1512 	obj->efile.symbols = NULL;
1513 	obj->efile.arena_data = NULL;
1514 
1515 	zfree(&obj->efile.secs);
1516 	obj->efile.sec_cnt = 0;
1517 	zclose(obj->efile.fd);
1518 	obj->efile.obj_buf = NULL;
1519 	obj->efile.obj_buf_sz = 0;
1520 }
1521 
bpf_object__elf_init(struct bpf_object * obj)1522 static int bpf_object__elf_init(struct bpf_object *obj)
1523 {
1524 	Elf64_Ehdr *ehdr;
1525 	int err = 0;
1526 	Elf *elf;
1527 
1528 	if (obj->efile.elf) {
1529 		pr_warn("elf: init internal error\n");
1530 		return -LIBBPF_ERRNO__LIBELF;
1531 	}
1532 
1533 	if (obj->efile.obj_buf_sz > 0) {
1534 		/* obj_buf should have been validated by bpf_object__open_mem(). */
1535 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1536 	} else {
1537 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1538 		if (obj->efile.fd < 0) {
1539 			char errmsg[STRERR_BUFSIZE], *cp;
1540 
1541 			err = -errno;
1542 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1543 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1544 			return err;
1545 		}
1546 
1547 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1548 	}
1549 
1550 	if (!elf) {
1551 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1552 		err = -LIBBPF_ERRNO__LIBELF;
1553 		goto errout;
1554 	}
1555 
1556 	obj->efile.elf = elf;
1557 
1558 	if (elf_kind(elf) != ELF_K_ELF) {
1559 		err = -LIBBPF_ERRNO__FORMAT;
1560 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1561 		goto errout;
1562 	}
1563 
1564 	if (gelf_getclass(elf) != ELFCLASS64) {
1565 		err = -LIBBPF_ERRNO__FORMAT;
1566 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1567 		goto errout;
1568 	}
1569 
1570 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1571 	if (!obj->efile.ehdr) {
1572 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1573 		err = -LIBBPF_ERRNO__FORMAT;
1574 		goto errout;
1575 	}
1576 
1577 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1578 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1579 			obj->path, elf_errmsg(-1));
1580 		err = -LIBBPF_ERRNO__FORMAT;
1581 		goto errout;
1582 	}
1583 
1584 	/* ELF is corrupted/truncated, avoid calling elf_strptr. */
1585 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1586 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1587 			obj->path, elf_errmsg(-1));
1588 		err = -LIBBPF_ERRNO__FORMAT;
1589 		goto errout;
1590 	}
1591 
1592 	/* Old LLVM set e_machine to EM_NONE */
1593 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1594 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1595 		err = -LIBBPF_ERRNO__FORMAT;
1596 		goto errout;
1597 	}
1598 
1599 	return 0;
1600 errout:
1601 	bpf_object__elf_finish(obj);
1602 	return err;
1603 }
1604 
bpf_object__check_endianness(struct bpf_object * obj)1605 static int bpf_object__check_endianness(struct bpf_object *obj)
1606 {
1607 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1608 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1609 		return 0;
1610 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1611 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1612 		return 0;
1613 #else
1614 # error "Unrecognized __BYTE_ORDER__"
1615 #endif
1616 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1617 	return -LIBBPF_ERRNO__ENDIAN;
1618 }
1619 
1620 static int
bpf_object__init_license(struct bpf_object * obj,void * data,size_t size)1621 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1622 {
1623 	if (!data) {
1624 		pr_warn("invalid license section in %s\n", obj->path);
1625 		return -LIBBPF_ERRNO__FORMAT;
1626 	}
1627 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1628 	 * go over allowed ELF data section buffer
1629 	 */
1630 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1631 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1632 	return 0;
1633 }
1634 
1635 static int
bpf_object__init_kversion(struct bpf_object * obj,void * data,size_t size)1636 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1637 {
1638 	__u32 kver;
1639 
1640 	if (!data || size != sizeof(kver)) {
1641 		pr_warn("invalid kver section in %s\n", obj->path);
1642 		return -LIBBPF_ERRNO__FORMAT;
1643 	}
1644 	memcpy(&kver, data, sizeof(kver));
1645 	obj->kern_version = kver;
1646 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1647 	return 0;
1648 }
1649 
bpf_map_type__is_map_in_map(enum bpf_map_type type)1650 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1651 {
1652 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1653 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1654 		return true;
1655 	return false;
1656 }
1657 
find_elf_sec_sz(const struct bpf_object * obj,const char * name,__u32 * size)1658 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1659 {
1660 	Elf_Data *data;
1661 	Elf_Scn *scn;
1662 
1663 	if (!name)
1664 		return -EINVAL;
1665 
1666 	scn = elf_sec_by_name(obj, name);
1667 	data = elf_sec_data(obj, scn);
1668 	if (data) {
1669 		*size = data->d_size;
1670 		return 0; /* found it */
1671 	}
1672 
1673 	return -ENOENT;
1674 }
1675 
find_elf_var_sym(const struct bpf_object * obj,const char * name)1676 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1677 {
1678 	Elf_Data *symbols = obj->efile.symbols;
1679 	const char *sname;
1680 	size_t si;
1681 
1682 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1683 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1684 
1685 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1686 			continue;
1687 
1688 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1689 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1690 			continue;
1691 
1692 		sname = elf_sym_str(obj, sym->st_name);
1693 		if (!sname) {
1694 			pr_warn("failed to get sym name string for var %s\n", name);
1695 			return ERR_PTR(-EIO);
1696 		}
1697 		if (strcmp(name, sname) == 0)
1698 			return sym;
1699 	}
1700 
1701 	return ERR_PTR(-ENOENT);
1702 }
1703 
1704 /* Some versions of Android don't provide memfd_create() in their libc
1705  * implementation, so avoid complications and just go straight to Linux
1706  * syscall.
1707  */
sys_memfd_create(const char * name,unsigned flags)1708 static int sys_memfd_create(const char *name, unsigned flags)
1709 {
1710 	return syscall(__NR_memfd_create, name, flags);
1711 }
1712 
1713 #ifndef MFD_CLOEXEC
1714 #define MFD_CLOEXEC 0x0001U
1715 #endif
1716 
create_placeholder_fd(void)1717 static int create_placeholder_fd(void)
1718 {
1719 	int fd;
1720 
1721 	fd = ensure_good_fd(sys_memfd_create("libbpf-placeholder-fd", MFD_CLOEXEC));
1722 	if (fd < 0)
1723 		return -errno;
1724 	return fd;
1725 }
1726 
bpf_object__add_map(struct bpf_object * obj)1727 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1728 {
1729 	struct bpf_map *map;
1730 	int err;
1731 
1732 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1733 				sizeof(*obj->maps), obj->nr_maps + 1);
1734 	if (err)
1735 		return ERR_PTR(err);
1736 
1737 	map = &obj->maps[obj->nr_maps++];
1738 	map->obj = obj;
1739 	/* Preallocate map FD without actually creating BPF map just yet.
1740 	 * These map FD "placeholders" will be reused later without changing
1741 	 * FD value when map is actually created in the kernel.
1742 	 *
1743 	 * This is useful to be able to perform BPF program relocations
1744 	 * without having to create BPF maps before that step. This allows us
1745 	 * to finalize and load BTF very late in BPF object's loading phase,
1746 	 * right before BPF maps have to be created and BPF programs have to
1747 	 * be loaded. By having these map FD placeholders we can perform all
1748 	 * the sanitizations, relocations, and any other adjustments before we
1749 	 * start creating actual BPF kernel objects (BTF, maps, progs).
1750 	 */
1751 	map->fd = create_placeholder_fd();
1752 	if (map->fd < 0)
1753 		return ERR_PTR(map->fd);
1754 	map->inner_map_fd = -1;
1755 	map->autocreate = true;
1756 
1757 	return map;
1758 }
1759 
array_map_mmap_sz(unsigned int value_sz,unsigned int max_entries)1760 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1761 {
1762 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1763 	size_t map_sz;
1764 
1765 	map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1766 	map_sz = roundup(map_sz, page_sz);
1767 	return map_sz;
1768 }
1769 
bpf_map_mmap_sz(const struct bpf_map * map)1770 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1771 {
1772 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1773 
1774 	switch (map->def.type) {
1775 	case BPF_MAP_TYPE_ARRAY:
1776 		return array_map_mmap_sz(map->def.value_size, map->def.max_entries);
1777 	case BPF_MAP_TYPE_ARENA:
1778 		return page_sz * map->def.max_entries;
1779 	default:
1780 		return 0; /* not supported */
1781 	}
1782 }
1783 
bpf_map_mmap_resize(struct bpf_map * map,size_t old_sz,size_t new_sz)1784 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1785 {
1786 	void *mmaped;
1787 
1788 	if (!map->mmaped)
1789 		return -EINVAL;
1790 
1791 	if (old_sz == new_sz)
1792 		return 0;
1793 
1794 	mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1795 	if (mmaped == MAP_FAILED)
1796 		return -errno;
1797 
1798 	memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1799 	munmap(map->mmaped, old_sz);
1800 	map->mmaped = mmaped;
1801 	return 0;
1802 }
1803 
internal_map_name(struct bpf_object * obj,const char * real_name)1804 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1805 {
1806 	char map_name[BPF_OBJ_NAME_LEN], *p;
1807 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1808 
1809 	/* This is one of the more confusing parts of libbpf for various
1810 	 * reasons, some of which are historical. The original idea for naming
1811 	 * internal names was to include as much of BPF object name prefix as
1812 	 * possible, so that it can be distinguished from similar internal
1813 	 * maps of a different BPF object.
1814 	 * As an example, let's say we have bpf_object named 'my_object_name'
1815 	 * and internal map corresponding to '.rodata' ELF section. The final
1816 	 * map name advertised to user and to the kernel will be
1817 	 * 'my_objec.rodata', taking first 8 characters of object name and
1818 	 * entire 7 characters of '.rodata'.
1819 	 * Somewhat confusingly, if internal map ELF section name is shorter
1820 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1821 	 * for the suffix, even though we only have 4 actual characters, and
1822 	 * resulting map will be called 'my_objec.bss', not even using all 15
1823 	 * characters allowed by the kernel. Oh well, at least the truncated
1824 	 * object name is somewhat consistent in this case. But if the map
1825 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1826 	 * (8 chars) and thus will be left with only first 7 characters of the
1827 	 * object name ('my_obje'). Happy guessing, user, that the final map
1828 	 * name will be "my_obje.kconfig".
1829 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1830 	 * and .data.* data sections, it's possible that ELF section name is
1831 	 * longer than allowed 15 chars, so we now need to be careful to take
1832 	 * only up to 15 first characters of ELF name, taking no BPF object
1833 	 * name characters at all. So '.rodata.abracadabra' will result in
1834 	 * '.rodata.abracad' kernel and user-visible name.
1835 	 * We need to keep this convoluted logic intact for .data, .bss and
1836 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1837 	 * maps we use their ELF names as is, not prepending bpf_object name
1838 	 * in front. We still need to truncate them to 15 characters for the
1839 	 * kernel. Full name can be recovered for such maps by using DATASEC
1840 	 * BTF type associated with such map's value type, though.
1841 	 */
1842 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1843 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1844 
1845 	/* if there are two or more dots in map name, it's a custom dot map */
1846 	if (strchr(real_name + 1, '.') != NULL)
1847 		pfx_len = 0;
1848 	else
1849 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1850 
1851 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1852 		 sfx_len, real_name);
1853 
1854 	/* sanities map name to characters allowed by kernel */
1855 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1856 		if (!isalnum(*p) && *p != '_' && *p != '.')
1857 			*p = '_';
1858 
1859 	return strdup(map_name);
1860 }
1861 
1862 static int
1863 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1864 
1865 /* Internal BPF map is mmap()'able only if at least one of corresponding
1866  * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1867  * variable and it's not marked as __hidden (which turns it into, effectively,
1868  * a STATIC variable).
1869  */
map_is_mmapable(struct bpf_object * obj,struct bpf_map * map)1870 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1871 {
1872 	const struct btf_type *t, *vt;
1873 	struct btf_var_secinfo *vsi;
1874 	int i, n;
1875 
1876 	if (!map->btf_value_type_id)
1877 		return false;
1878 
1879 	t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1880 	if (!btf_is_datasec(t))
1881 		return false;
1882 
1883 	vsi = btf_var_secinfos(t);
1884 	for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1885 		vt = btf__type_by_id(obj->btf, vsi->type);
1886 		if (!btf_is_var(vt))
1887 			continue;
1888 
1889 		if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1890 			return true;
1891 	}
1892 
1893 	return false;
1894 }
1895 
1896 static int
bpf_object__init_internal_map(struct bpf_object * obj,enum libbpf_map_type type,const char * real_name,int sec_idx,void * data,size_t data_sz)1897 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1898 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1899 {
1900 	struct bpf_map_def *def;
1901 	struct bpf_map *map;
1902 	size_t mmap_sz;
1903 	int err;
1904 
1905 	map = bpf_object__add_map(obj);
1906 	if (IS_ERR(map))
1907 		return PTR_ERR(map);
1908 
1909 	map->libbpf_type = type;
1910 	map->sec_idx = sec_idx;
1911 	map->sec_offset = 0;
1912 	map->real_name = strdup(real_name);
1913 	map->name = internal_map_name(obj, real_name);
1914 	if (!map->real_name || !map->name) {
1915 		zfree(&map->real_name);
1916 		zfree(&map->name);
1917 		return -ENOMEM;
1918 	}
1919 
1920 	def = &map->def;
1921 	def->type = BPF_MAP_TYPE_ARRAY;
1922 	def->key_size = sizeof(int);
1923 	def->value_size = data_sz;
1924 	def->max_entries = 1;
1925 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1926 		? BPF_F_RDONLY_PROG : 0;
1927 
1928 	/* failures are fine because of maps like .rodata.str1.1 */
1929 	(void) map_fill_btf_type_info(obj, map);
1930 
1931 	if (map_is_mmapable(obj, map))
1932 		def->map_flags |= BPF_F_MMAPABLE;
1933 
1934 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1935 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1936 
1937 	mmap_sz = bpf_map_mmap_sz(map);
1938 	map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1939 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1940 	if (map->mmaped == MAP_FAILED) {
1941 		err = -errno;
1942 		map->mmaped = NULL;
1943 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1944 			map->name, err);
1945 		zfree(&map->real_name);
1946 		zfree(&map->name);
1947 		return err;
1948 	}
1949 
1950 	if (data)
1951 		memcpy(map->mmaped, data, data_sz);
1952 
1953 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1954 	return 0;
1955 }
1956 
bpf_object__init_global_data_maps(struct bpf_object * obj)1957 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1958 {
1959 	struct elf_sec_desc *sec_desc;
1960 	const char *sec_name;
1961 	int err = 0, sec_idx;
1962 
1963 	/*
1964 	 * Populate obj->maps with libbpf internal maps.
1965 	 */
1966 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1967 		sec_desc = &obj->efile.secs[sec_idx];
1968 
1969 		/* Skip recognized sections with size 0. */
1970 		if (!sec_desc->data || sec_desc->data->d_size == 0)
1971 			continue;
1972 
1973 		switch (sec_desc->sec_type) {
1974 		case SEC_DATA:
1975 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1976 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1977 							    sec_name, sec_idx,
1978 							    sec_desc->data->d_buf,
1979 							    sec_desc->data->d_size);
1980 			break;
1981 		case SEC_RODATA:
1982 			obj->has_rodata = true;
1983 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1984 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1985 							    sec_name, sec_idx,
1986 							    sec_desc->data->d_buf,
1987 							    sec_desc->data->d_size);
1988 			break;
1989 		case SEC_BSS:
1990 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1991 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1992 							    sec_name, sec_idx,
1993 							    NULL,
1994 							    sec_desc->data->d_size);
1995 			break;
1996 		default:
1997 			/* skip */
1998 			break;
1999 		}
2000 		if (err)
2001 			return err;
2002 	}
2003 	return 0;
2004 }
2005 
2006 
find_extern_by_name(const struct bpf_object * obj,const void * name)2007 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
2008 					       const void *name)
2009 {
2010 	int i;
2011 
2012 	for (i = 0; i < obj->nr_extern; i++) {
2013 		if (strcmp(obj->externs[i].name, name) == 0)
2014 			return &obj->externs[i];
2015 	}
2016 	return NULL;
2017 }
2018 
find_extern_by_name_with_len(const struct bpf_object * obj,const void * name,int len)2019 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj,
2020 							const void *name, int len)
2021 {
2022 	const char *ext_name;
2023 	int i;
2024 
2025 	for (i = 0; i < obj->nr_extern; i++) {
2026 		ext_name = obj->externs[i].name;
2027 		if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0)
2028 			return &obj->externs[i];
2029 	}
2030 	return NULL;
2031 }
2032 
set_kcfg_value_tri(struct extern_desc * ext,void * ext_val,char value)2033 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
2034 			      char value)
2035 {
2036 	switch (ext->kcfg.type) {
2037 	case KCFG_BOOL:
2038 		if (value == 'm') {
2039 			pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
2040 				ext->name, value);
2041 			return -EINVAL;
2042 		}
2043 		*(bool *)ext_val = value == 'y' ? true : false;
2044 		break;
2045 	case KCFG_TRISTATE:
2046 		if (value == 'y')
2047 			*(enum libbpf_tristate *)ext_val = TRI_YES;
2048 		else if (value == 'm')
2049 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
2050 		else /* value == 'n' */
2051 			*(enum libbpf_tristate *)ext_val = TRI_NO;
2052 		break;
2053 	case KCFG_CHAR:
2054 		*(char *)ext_val = value;
2055 		break;
2056 	case KCFG_UNKNOWN:
2057 	case KCFG_INT:
2058 	case KCFG_CHAR_ARR:
2059 	default:
2060 		pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
2061 			ext->name, value);
2062 		return -EINVAL;
2063 	}
2064 	ext->is_set = true;
2065 	return 0;
2066 }
2067 
set_kcfg_value_str(struct extern_desc * ext,char * ext_val,const char * value)2068 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
2069 			      const char *value)
2070 {
2071 	size_t len;
2072 
2073 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
2074 		pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
2075 			ext->name, value);
2076 		return -EINVAL;
2077 	}
2078 
2079 	len = strlen(value);
2080 	if (len < 2 || value[len - 1] != '"') {
2081 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
2082 			ext->name, value);
2083 		return -EINVAL;
2084 	}
2085 
2086 	/* strip quotes */
2087 	len -= 2;
2088 	if (len >= ext->kcfg.sz) {
2089 		pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
2090 			ext->name, value, len, ext->kcfg.sz - 1);
2091 		len = ext->kcfg.sz - 1;
2092 	}
2093 	memcpy(ext_val, value + 1, len);
2094 	ext_val[len] = '\0';
2095 	ext->is_set = true;
2096 	return 0;
2097 }
2098 
parse_u64(const char * value,__u64 * res)2099 static int parse_u64(const char *value, __u64 *res)
2100 {
2101 	char *value_end;
2102 	int err;
2103 
2104 	errno = 0;
2105 	*res = strtoull(value, &value_end, 0);
2106 	if (errno) {
2107 		err = -errno;
2108 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
2109 		return err;
2110 	}
2111 	if (*value_end) {
2112 		pr_warn("failed to parse '%s' as integer completely\n", value);
2113 		return -EINVAL;
2114 	}
2115 	return 0;
2116 }
2117 
is_kcfg_value_in_range(const struct extern_desc * ext,__u64 v)2118 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
2119 {
2120 	int bit_sz = ext->kcfg.sz * 8;
2121 
2122 	if (ext->kcfg.sz == 8)
2123 		return true;
2124 
2125 	/* Validate that value stored in u64 fits in integer of `ext->sz`
2126 	 * bytes size without any loss of information. If the target integer
2127 	 * is signed, we rely on the following limits of integer type of
2128 	 * Y bits and subsequent transformation:
2129 	 *
2130 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
2131 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
2132 	 *            0 <= X + 2^(Y-1) <  2^Y
2133 	 *
2134 	 *  For unsigned target integer, check that all the (64 - Y) bits are
2135 	 *  zero.
2136 	 */
2137 	if (ext->kcfg.is_signed)
2138 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
2139 	else
2140 		return (v >> bit_sz) == 0;
2141 }
2142 
set_kcfg_value_num(struct extern_desc * ext,void * ext_val,__u64 value)2143 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
2144 			      __u64 value)
2145 {
2146 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
2147 	    ext->kcfg.type != KCFG_BOOL) {
2148 		pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
2149 			ext->name, (unsigned long long)value);
2150 		return -EINVAL;
2151 	}
2152 	if (ext->kcfg.type == KCFG_BOOL && value > 1) {
2153 		pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
2154 			ext->name, (unsigned long long)value);
2155 		return -EINVAL;
2156 
2157 	}
2158 	if (!is_kcfg_value_in_range(ext, value)) {
2159 		pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
2160 			ext->name, (unsigned long long)value, ext->kcfg.sz);
2161 		return -ERANGE;
2162 	}
2163 	switch (ext->kcfg.sz) {
2164 	case 1:
2165 		*(__u8 *)ext_val = value;
2166 		break;
2167 	case 2:
2168 		*(__u16 *)ext_val = value;
2169 		break;
2170 	case 4:
2171 		*(__u32 *)ext_val = value;
2172 		break;
2173 	case 8:
2174 		*(__u64 *)ext_val = value;
2175 		break;
2176 	default:
2177 		return -EINVAL;
2178 	}
2179 	ext->is_set = true;
2180 	return 0;
2181 }
2182 
bpf_object__process_kconfig_line(struct bpf_object * obj,char * buf,void * data)2183 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
2184 					    char *buf, void *data)
2185 {
2186 	struct extern_desc *ext;
2187 	char *sep, *value;
2188 	int len, err = 0;
2189 	void *ext_val;
2190 	__u64 num;
2191 
2192 	if (!str_has_pfx(buf, "CONFIG_"))
2193 		return 0;
2194 
2195 	sep = strchr(buf, '=');
2196 	if (!sep) {
2197 		pr_warn("failed to parse '%s': no separator\n", buf);
2198 		return -EINVAL;
2199 	}
2200 
2201 	/* Trim ending '\n' */
2202 	len = strlen(buf);
2203 	if (buf[len - 1] == '\n')
2204 		buf[len - 1] = '\0';
2205 	/* Split on '=' and ensure that a value is present. */
2206 	*sep = '\0';
2207 	if (!sep[1]) {
2208 		*sep = '=';
2209 		pr_warn("failed to parse '%s': no value\n", buf);
2210 		return -EINVAL;
2211 	}
2212 
2213 	ext = find_extern_by_name(obj, buf);
2214 	if (!ext || ext->is_set)
2215 		return 0;
2216 
2217 	ext_val = data + ext->kcfg.data_off;
2218 	value = sep + 1;
2219 
2220 	switch (*value) {
2221 	case 'y': case 'n': case 'm':
2222 		err = set_kcfg_value_tri(ext, ext_val, *value);
2223 		break;
2224 	case '"':
2225 		err = set_kcfg_value_str(ext, ext_val, value);
2226 		break;
2227 	default:
2228 		/* assume integer */
2229 		err = parse_u64(value, &num);
2230 		if (err) {
2231 			pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
2232 			return err;
2233 		}
2234 		if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
2235 			pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
2236 			return -EINVAL;
2237 		}
2238 		err = set_kcfg_value_num(ext, ext_val, num);
2239 		break;
2240 	}
2241 	if (err)
2242 		return err;
2243 	pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
2244 	return 0;
2245 }
2246 
bpf_object__read_kconfig_file(struct bpf_object * obj,void * data)2247 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
2248 {
2249 	char buf[PATH_MAX];
2250 	struct utsname uts;
2251 	int len, err = 0;
2252 	gzFile file;
2253 
2254 	uname(&uts);
2255 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
2256 	if (len < 0)
2257 		return -EINVAL;
2258 	else if (len >= PATH_MAX)
2259 		return -ENAMETOOLONG;
2260 
2261 	/* gzopen also accepts uncompressed files. */
2262 	file = gzopen(buf, "re");
2263 	if (!file)
2264 		file = gzopen("/proc/config.gz", "re");
2265 
2266 	if (!file) {
2267 		pr_warn("failed to open system Kconfig\n");
2268 		return -ENOENT;
2269 	}
2270 
2271 	while (gzgets(file, buf, sizeof(buf))) {
2272 		err = bpf_object__process_kconfig_line(obj, buf, data);
2273 		if (err) {
2274 			pr_warn("error parsing system Kconfig line '%s': %d\n",
2275 				buf, err);
2276 			goto out;
2277 		}
2278 	}
2279 
2280 out:
2281 	gzclose(file);
2282 	return err;
2283 }
2284 
bpf_object__read_kconfig_mem(struct bpf_object * obj,const char * config,void * data)2285 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2286 					const char *config, void *data)
2287 {
2288 	char buf[PATH_MAX];
2289 	int err = 0;
2290 	FILE *file;
2291 
2292 	file = fmemopen((void *)config, strlen(config), "r");
2293 	if (!file) {
2294 		err = -errno;
2295 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
2296 		return err;
2297 	}
2298 
2299 	while (fgets(buf, sizeof(buf), file)) {
2300 		err = bpf_object__process_kconfig_line(obj, buf, data);
2301 		if (err) {
2302 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2303 				buf, err);
2304 			break;
2305 		}
2306 	}
2307 
2308 	fclose(file);
2309 	return err;
2310 }
2311 
bpf_object__init_kconfig_map(struct bpf_object * obj)2312 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2313 {
2314 	struct extern_desc *last_ext = NULL, *ext;
2315 	size_t map_sz;
2316 	int i, err;
2317 
2318 	for (i = 0; i < obj->nr_extern; i++) {
2319 		ext = &obj->externs[i];
2320 		if (ext->type == EXT_KCFG)
2321 			last_ext = ext;
2322 	}
2323 
2324 	if (!last_ext)
2325 		return 0;
2326 
2327 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2328 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2329 					    ".kconfig", obj->efile.symbols_shndx,
2330 					    NULL, map_sz);
2331 	if (err)
2332 		return err;
2333 
2334 	obj->kconfig_map_idx = obj->nr_maps - 1;
2335 
2336 	return 0;
2337 }
2338 
2339 const struct btf_type *
skip_mods_and_typedefs(const struct btf * btf,__u32 id,__u32 * res_id)2340 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2341 {
2342 	const struct btf_type *t = btf__type_by_id(btf, id);
2343 
2344 	if (res_id)
2345 		*res_id = id;
2346 
2347 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2348 		if (res_id)
2349 			*res_id = t->type;
2350 		t = btf__type_by_id(btf, t->type);
2351 	}
2352 
2353 	return t;
2354 }
2355 
2356 static const struct btf_type *
resolve_func_ptr(const struct btf * btf,__u32 id,__u32 * res_id)2357 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2358 {
2359 	const struct btf_type *t;
2360 
2361 	t = skip_mods_and_typedefs(btf, id, NULL);
2362 	if (!btf_is_ptr(t))
2363 		return NULL;
2364 
2365 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2366 
2367 	return btf_is_func_proto(t) ? t : NULL;
2368 }
2369 
__btf_kind_str(__u16 kind)2370 static const char *__btf_kind_str(__u16 kind)
2371 {
2372 	switch (kind) {
2373 	case BTF_KIND_UNKN: return "void";
2374 	case BTF_KIND_INT: return "int";
2375 	case BTF_KIND_PTR: return "ptr";
2376 	case BTF_KIND_ARRAY: return "array";
2377 	case BTF_KIND_STRUCT: return "struct";
2378 	case BTF_KIND_UNION: return "union";
2379 	case BTF_KIND_ENUM: return "enum";
2380 	case BTF_KIND_FWD: return "fwd";
2381 	case BTF_KIND_TYPEDEF: return "typedef";
2382 	case BTF_KIND_VOLATILE: return "volatile";
2383 	case BTF_KIND_CONST: return "const";
2384 	case BTF_KIND_RESTRICT: return "restrict";
2385 	case BTF_KIND_FUNC: return "func";
2386 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2387 	case BTF_KIND_VAR: return "var";
2388 	case BTF_KIND_DATASEC: return "datasec";
2389 	case BTF_KIND_FLOAT: return "float";
2390 	case BTF_KIND_DECL_TAG: return "decl_tag";
2391 	case BTF_KIND_TYPE_TAG: return "type_tag";
2392 	case BTF_KIND_ENUM64: return "enum64";
2393 	default: return "unknown";
2394 	}
2395 }
2396 
btf_kind_str(const struct btf_type * t)2397 const char *btf_kind_str(const struct btf_type *t)
2398 {
2399 	return __btf_kind_str(btf_kind(t));
2400 }
2401 
2402 /*
2403  * Fetch integer attribute of BTF map definition. Such attributes are
2404  * represented using a pointer to an array, in which dimensionality of array
2405  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2406  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2407  * type definition, while using only sizeof(void *) space in ELF data section.
2408  */
get_map_field_int(const char * map_name,const struct btf * btf,const struct btf_member * m,__u32 * res)2409 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2410 			      const struct btf_member *m, __u32 *res)
2411 {
2412 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2413 	const char *name = btf__name_by_offset(btf, m->name_off);
2414 	const struct btf_array *arr_info;
2415 	const struct btf_type *arr_t;
2416 
2417 	if (!btf_is_ptr(t)) {
2418 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2419 			map_name, name, btf_kind_str(t));
2420 		return false;
2421 	}
2422 
2423 	arr_t = btf__type_by_id(btf, t->type);
2424 	if (!arr_t) {
2425 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2426 			map_name, name, t->type);
2427 		return false;
2428 	}
2429 	if (!btf_is_array(arr_t)) {
2430 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2431 			map_name, name, btf_kind_str(arr_t));
2432 		return false;
2433 	}
2434 	arr_info = btf_array(arr_t);
2435 	*res = arr_info->nelems;
2436 	return true;
2437 }
2438 
get_map_field_long(const char * map_name,const struct btf * btf,const struct btf_member * m,__u64 * res)2439 static bool get_map_field_long(const char *map_name, const struct btf *btf,
2440 			       const struct btf_member *m, __u64 *res)
2441 {
2442 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2443 	const char *name = btf__name_by_offset(btf, m->name_off);
2444 
2445 	if (btf_is_ptr(t)) {
2446 		__u32 res32;
2447 		bool ret;
2448 
2449 		ret = get_map_field_int(map_name, btf, m, &res32);
2450 		if (ret)
2451 			*res = (__u64)res32;
2452 		return ret;
2453 	}
2454 
2455 	if (!btf_is_enum(t) && !btf_is_enum64(t)) {
2456 		pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n",
2457 			map_name, name, btf_kind_str(t));
2458 		return false;
2459 	}
2460 
2461 	if (btf_vlen(t) != 1) {
2462 		pr_warn("map '%s': attr '%s': invalid __ulong\n",
2463 			map_name, name);
2464 		return false;
2465 	}
2466 
2467 	if (btf_is_enum(t)) {
2468 		const struct btf_enum *e = btf_enum(t);
2469 
2470 		*res = e->val;
2471 	} else {
2472 		const struct btf_enum64 *e = btf_enum64(t);
2473 
2474 		*res = btf_enum64_value(e);
2475 	}
2476 	return true;
2477 }
2478 
pathname_concat(char * buf,size_t buf_sz,const char * path,const char * name)2479 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2480 {
2481 	int len;
2482 
2483 	len = snprintf(buf, buf_sz, "%s/%s", path, name);
2484 	if (len < 0)
2485 		return -EINVAL;
2486 	if (len >= buf_sz)
2487 		return -ENAMETOOLONG;
2488 
2489 	return 0;
2490 }
2491 
build_map_pin_path(struct bpf_map * map,const char * path)2492 static int build_map_pin_path(struct bpf_map *map, const char *path)
2493 {
2494 	char buf[PATH_MAX];
2495 	int err;
2496 
2497 	if (!path)
2498 		path = BPF_FS_DEFAULT_PATH;
2499 
2500 	err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2501 	if (err)
2502 		return err;
2503 
2504 	return bpf_map__set_pin_path(map, buf);
2505 }
2506 
2507 /* should match definition in bpf_helpers.h */
2508 enum libbpf_pin_type {
2509 	LIBBPF_PIN_NONE,
2510 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2511 	LIBBPF_PIN_BY_NAME,
2512 };
2513 
parse_btf_map_def(const char * map_name,struct btf * btf,const struct btf_type * def_t,bool strict,struct btf_map_def * map_def,struct btf_map_def * inner_def)2514 int parse_btf_map_def(const char *map_name, struct btf *btf,
2515 		      const struct btf_type *def_t, bool strict,
2516 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2517 {
2518 	const struct btf_type *t;
2519 	const struct btf_member *m;
2520 	bool is_inner = inner_def == NULL;
2521 	int vlen, i;
2522 
2523 	vlen = btf_vlen(def_t);
2524 	m = btf_members(def_t);
2525 	for (i = 0; i < vlen; i++, m++) {
2526 		const char *name = btf__name_by_offset(btf, m->name_off);
2527 
2528 		if (!name) {
2529 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2530 			return -EINVAL;
2531 		}
2532 		if (strcmp(name, "type") == 0) {
2533 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2534 				return -EINVAL;
2535 			map_def->parts |= MAP_DEF_MAP_TYPE;
2536 		} else if (strcmp(name, "max_entries") == 0) {
2537 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2538 				return -EINVAL;
2539 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2540 		} else if (strcmp(name, "map_flags") == 0) {
2541 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2542 				return -EINVAL;
2543 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2544 		} else if (strcmp(name, "numa_node") == 0) {
2545 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2546 				return -EINVAL;
2547 			map_def->parts |= MAP_DEF_NUMA_NODE;
2548 		} else if (strcmp(name, "key_size") == 0) {
2549 			__u32 sz;
2550 
2551 			if (!get_map_field_int(map_name, btf, m, &sz))
2552 				return -EINVAL;
2553 			if (map_def->key_size && map_def->key_size != sz) {
2554 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2555 					map_name, map_def->key_size, sz);
2556 				return -EINVAL;
2557 			}
2558 			map_def->key_size = sz;
2559 			map_def->parts |= MAP_DEF_KEY_SIZE;
2560 		} else if (strcmp(name, "key") == 0) {
2561 			__s64 sz;
2562 
2563 			t = btf__type_by_id(btf, m->type);
2564 			if (!t) {
2565 				pr_warn("map '%s': key type [%d] not found.\n",
2566 					map_name, m->type);
2567 				return -EINVAL;
2568 			}
2569 			if (!btf_is_ptr(t)) {
2570 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2571 					map_name, btf_kind_str(t));
2572 				return -EINVAL;
2573 			}
2574 			sz = btf__resolve_size(btf, t->type);
2575 			if (sz < 0) {
2576 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2577 					map_name, t->type, (ssize_t)sz);
2578 				return sz;
2579 			}
2580 			if (map_def->key_size && map_def->key_size != sz) {
2581 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2582 					map_name, map_def->key_size, (ssize_t)sz);
2583 				return -EINVAL;
2584 			}
2585 			map_def->key_size = sz;
2586 			map_def->key_type_id = t->type;
2587 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2588 		} else if (strcmp(name, "value_size") == 0) {
2589 			__u32 sz;
2590 
2591 			if (!get_map_field_int(map_name, btf, m, &sz))
2592 				return -EINVAL;
2593 			if (map_def->value_size && map_def->value_size != sz) {
2594 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2595 					map_name, map_def->value_size, sz);
2596 				return -EINVAL;
2597 			}
2598 			map_def->value_size = sz;
2599 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2600 		} else if (strcmp(name, "value") == 0) {
2601 			__s64 sz;
2602 
2603 			t = btf__type_by_id(btf, m->type);
2604 			if (!t) {
2605 				pr_warn("map '%s': value type [%d] not found.\n",
2606 					map_name, m->type);
2607 				return -EINVAL;
2608 			}
2609 			if (!btf_is_ptr(t)) {
2610 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2611 					map_name, btf_kind_str(t));
2612 				return -EINVAL;
2613 			}
2614 			sz = btf__resolve_size(btf, t->type);
2615 			if (sz < 0) {
2616 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2617 					map_name, t->type, (ssize_t)sz);
2618 				return sz;
2619 			}
2620 			if (map_def->value_size && map_def->value_size != sz) {
2621 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2622 					map_name, map_def->value_size, (ssize_t)sz);
2623 				return -EINVAL;
2624 			}
2625 			map_def->value_size = sz;
2626 			map_def->value_type_id = t->type;
2627 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2628 		}
2629 		else if (strcmp(name, "values") == 0) {
2630 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2631 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2632 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2633 			char inner_map_name[128];
2634 			int err;
2635 
2636 			if (is_inner) {
2637 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2638 					map_name);
2639 				return -ENOTSUP;
2640 			}
2641 			if (i != vlen - 1) {
2642 				pr_warn("map '%s': '%s' member should be last.\n",
2643 					map_name, name);
2644 				return -EINVAL;
2645 			}
2646 			if (!is_map_in_map && !is_prog_array) {
2647 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2648 					map_name);
2649 				return -ENOTSUP;
2650 			}
2651 			if (map_def->value_size && map_def->value_size != 4) {
2652 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2653 					map_name, map_def->value_size);
2654 				return -EINVAL;
2655 			}
2656 			map_def->value_size = 4;
2657 			t = btf__type_by_id(btf, m->type);
2658 			if (!t) {
2659 				pr_warn("map '%s': %s type [%d] not found.\n",
2660 					map_name, desc, m->type);
2661 				return -EINVAL;
2662 			}
2663 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2664 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2665 					map_name, desc);
2666 				return -EINVAL;
2667 			}
2668 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2669 			if (!btf_is_ptr(t)) {
2670 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2671 					map_name, desc, btf_kind_str(t));
2672 				return -EINVAL;
2673 			}
2674 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2675 			if (is_prog_array) {
2676 				if (!btf_is_func_proto(t)) {
2677 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2678 						map_name, btf_kind_str(t));
2679 					return -EINVAL;
2680 				}
2681 				continue;
2682 			}
2683 			if (!btf_is_struct(t)) {
2684 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2685 					map_name, btf_kind_str(t));
2686 				return -EINVAL;
2687 			}
2688 
2689 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2690 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2691 			if (err)
2692 				return err;
2693 
2694 			map_def->parts |= MAP_DEF_INNER_MAP;
2695 		} else if (strcmp(name, "pinning") == 0) {
2696 			__u32 val;
2697 
2698 			if (is_inner) {
2699 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2700 				return -EINVAL;
2701 			}
2702 			if (!get_map_field_int(map_name, btf, m, &val))
2703 				return -EINVAL;
2704 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2705 				pr_warn("map '%s': invalid pinning value %u.\n",
2706 					map_name, val);
2707 				return -EINVAL;
2708 			}
2709 			map_def->pinning = val;
2710 			map_def->parts |= MAP_DEF_PINNING;
2711 		} else if (strcmp(name, "map_extra") == 0) {
2712 			__u64 map_extra;
2713 
2714 			if (!get_map_field_long(map_name, btf, m, &map_extra))
2715 				return -EINVAL;
2716 			map_def->map_extra = map_extra;
2717 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2718 		} else {
2719 			if (strict) {
2720 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2721 				return -ENOTSUP;
2722 			}
2723 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2724 		}
2725 	}
2726 
2727 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2728 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2729 		return -EINVAL;
2730 	}
2731 
2732 	return 0;
2733 }
2734 
adjust_ringbuf_sz(size_t sz)2735 static size_t adjust_ringbuf_sz(size_t sz)
2736 {
2737 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
2738 	__u32 mul;
2739 
2740 	/* if user forgot to set any size, make sure they see error */
2741 	if (sz == 0)
2742 		return 0;
2743 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2744 	 * a power-of-2 multiple of kernel's page size. If user diligently
2745 	 * satisified these conditions, pass the size through.
2746 	 */
2747 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2748 		return sz;
2749 
2750 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
2751 	 * user-set size to satisfy both user size request and kernel
2752 	 * requirements and substitute correct max_entries for map creation.
2753 	 */
2754 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2755 		if (mul * page_sz > sz)
2756 			return mul * page_sz;
2757 	}
2758 
2759 	/* if it's impossible to satisfy the conditions (i.e., user size is
2760 	 * very close to UINT_MAX but is not a power-of-2 multiple of
2761 	 * page_size) then just return original size and let kernel reject it
2762 	 */
2763 	return sz;
2764 }
2765 
map_is_ringbuf(const struct bpf_map * map)2766 static bool map_is_ringbuf(const struct bpf_map *map)
2767 {
2768 	return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2769 	       map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2770 }
2771 
fill_map_from_def(struct bpf_map * map,const struct btf_map_def * def)2772 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2773 {
2774 	map->def.type = def->map_type;
2775 	map->def.key_size = def->key_size;
2776 	map->def.value_size = def->value_size;
2777 	map->def.max_entries = def->max_entries;
2778 	map->def.map_flags = def->map_flags;
2779 	map->map_extra = def->map_extra;
2780 
2781 	map->numa_node = def->numa_node;
2782 	map->btf_key_type_id = def->key_type_id;
2783 	map->btf_value_type_id = def->value_type_id;
2784 
2785 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2786 	if (map_is_ringbuf(map))
2787 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2788 
2789 	if (def->parts & MAP_DEF_MAP_TYPE)
2790 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2791 
2792 	if (def->parts & MAP_DEF_KEY_TYPE)
2793 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2794 			 map->name, def->key_type_id, def->key_size);
2795 	else if (def->parts & MAP_DEF_KEY_SIZE)
2796 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2797 
2798 	if (def->parts & MAP_DEF_VALUE_TYPE)
2799 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2800 			 map->name, def->value_type_id, def->value_size);
2801 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2802 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2803 
2804 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2805 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2806 	if (def->parts & MAP_DEF_MAP_FLAGS)
2807 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2808 	if (def->parts & MAP_DEF_MAP_EXTRA)
2809 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2810 			 (unsigned long long)def->map_extra);
2811 	if (def->parts & MAP_DEF_PINNING)
2812 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2813 	if (def->parts & MAP_DEF_NUMA_NODE)
2814 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2815 
2816 	if (def->parts & MAP_DEF_INNER_MAP)
2817 		pr_debug("map '%s': found inner map definition.\n", map->name);
2818 }
2819 
btf_var_linkage_str(__u32 linkage)2820 static const char *btf_var_linkage_str(__u32 linkage)
2821 {
2822 	switch (linkage) {
2823 	case BTF_VAR_STATIC: return "static";
2824 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2825 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2826 	default: return "unknown";
2827 	}
2828 }
2829 
bpf_object__init_user_btf_map(struct bpf_object * obj,const struct btf_type * sec,int var_idx,int sec_idx,const Elf_Data * data,bool strict,const char * pin_root_path)2830 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2831 					 const struct btf_type *sec,
2832 					 int var_idx, int sec_idx,
2833 					 const Elf_Data *data, bool strict,
2834 					 const char *pin_root_path)
2835 {
2836 	struct btf_map_def map_def = {}, inner_def = {};
2837 	const struct btf_type *var, *def;
2838 	const struct btf_var_secinfo *vi;
2839 	const struct btf_var *var_extra;
2840 	const char *map_name;
2841 	struct bpf_map *map;
2842 	int err;
2843 
2844 	vi = btf_var_secinfos(sec) + var_idx;
2845 	var = btf__type_by_id(obj->btf, vi->type);
2846 	var_extra = btf_var(var);
2847 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2848 
2849 	if (map_name == NULL || map_name[0] == '\0') {
2850 		pr_warn("map #%d: empty name.\n", var_idx);
2851 		return -EINVAL;
2852 	}
2853 	if ((__u64)vi->offset + vi->size > data->d_size) {
2854 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2855 		return -EINVAL;
2856 	}
2857 	if (!btf_is_var(var)) {
2858 		pr_warn("map '%s': unexpected var kind %s.\n",
2859 			map_name, btf_kind_str(var));
2860 		return -EINVAL;
2861 	}
2862 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2863 		pr_warn("map '%s': unsupported map linkage %s.\n",
2864 			map_name, btf_var_linkage_str(var_extra->linkage));
2865 		return -EOPNOTSUPP;
2866 	}
2867 
2868 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2869 	if (!btf_is_struct(def)) {
2870 		pr_warn("map '%s': unexpected def kind %s.\n",
2871 			map_name, btf_kind_str(var));
2872 		return -EINVAL;
2873 	}
2874 	if (def->size > vi->size) {
2875 		pr_warn("map '%s': invalid def size.\n", map_name);
2876 		return -EINVAL;
2877 	}
2878 
2879 	map = bpf_object__add_map(obj);
2880 	if (IS_ERR(map))
2881 		return PTR_ERR(map);
2882 	map->name = strdup(map_name);
2883 	if (!map->name) {
2884 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2885 		return -ENOMEM;
2886 	}
2887 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2888 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2889 	map->sec_idx = sec_idx;
2890 	map->sec_offset = vi->offset;
2891 	map->btf_var_idx = var_idx;
2892 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2893 		 map_name, map->sec_idx, map->sec_offset);
2894 
2895 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2896 	if (err)
2897 		return err;
2898 
2899 	fill_map_from_def(map, &map_def);
2900 
2901 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2902 		err = build_map_pin_path(map, pin_root_path);
2903 		if (err) {
2904 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2905 			return err;
2906 		}
2907 	}
2908 
2909 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2910 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2911 		if (!map->inner_map)
2912 			return -ENOMEM;
2913 		map->inner_map->fd = create_placeholder_fd();
2914 		if (map->inner_map->fd < 0)
2915 			return map->inner_map->fd;
2916 		map->inner_map->sec_idx = sec_idx;
2917 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2918 		if (!map->inner_map->name)
2919 			return -ENOMEM;
2920 		sprintf(map->inner_map->name, "%s.inner", map_name);
2921 
2922 		fill_map_from_def(map->inner_map, &inner_def);
2923 	}
2924 
2925 	err = map_fill_btf_type_info(obj, map);
2926 	if (err)
2927 		return err;
2928 
2929 	return 0;
2930 }
2931 
init_arena_map_data(struct bpf_object * obj,struct bpf_map * map,const char * sec_name,int sec_idx,void * data,size_t data_sz)2932 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map,
2933 			       const char *sec_name, int sec_idx,
2934 			       void *data, size_t data_sz)
2935 {
2936 	const long page_sz = sysconf(_SC_PAGE_SIZE);
2937 	size_t mmap_sz;
2938 
2939 	mmap_sz = bpf_map_mmap_sz(map);
2940 	if (roundup(data_sz, page_sz) > mmap_sz) {
2941 		pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n",
2942 			sec_name, mmap_sz, data_sz);
2943 		return -E2BIG;
2944 	}
2945 
2946 	obj->arena_data = malloc(data_sz);
2947 	if (!obj->arena_data)
2948 		return -ENOMEM;
2949 	memcpy(obj->arena_data, data, data_sz);
2950 	obj->arena_data_sz = data_sz;
2951 
2952 	/* make bpf_map__init_value() work for ARENA maps */
2953 	map->mmaped = obj->arena_data;
2954 
2955 	return 0;
2956 }
2957 
bpf_object__init_user_btf_maps(struct bpf_object * obj,bool strict,const char * pin_root_path)2958 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2959 					  const char *pin_root_path)
2960 {
2961 	const struct btf_type *sec = NULL;
2962 	int nr_types, i, vlen, err;
2963 	const struct btf_type *t;
2964 	const char *name;
2965 	Elf_Data *data;
2966 	Elf_Scn *scn;
2967 
2968 	if (obj->efile.btf_maps_shndx < 0)
2969 		return 0;
2970 
2971 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2972 	data = elf_sec_data(obj, scn);
2973 	if (!scn || !data) {
2974 		pr_warn("elf: failed to get %s map definitions for %s\n",
2975 			MAPS_ELF_SEC, obj->path);
2976 		return -EINVAL;
2977 	}
2978 
2979 	nr_types = btf__type_cnt(obj->btf);
2980 	for (i = 1; i < nr_types; i++) {
2981 		t = btf__type_by_id(obj->btf, i);
2982 		if (!btf_is_datasec(t))
2983 			continue;
2984 		name = btf__name_by_offset(obj->btf, t->name_off);
2985 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2986 			sec = t;
2987 			obj->efile.btf_maps_sec_btf_id = i;
2988 			break;
2989 		}
2990 	}
2991 
2992 	if (!sec) {
2993 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2994 		return -ENOENT;
2995 	}
2996 
2997 	vlen = btf_vlen(sec);
2998 	for (i = 0; i < vlen; i++) {
2999 		err = bpf_object__init_user_btf_map(obj, sec, i,
3000 						    obj->efile.btf_maps_shndx,
3001 						    data, strict,
3002 						    pin_root_path);
3003 		if (err)
3004 			return err;
3005 	}
3006 
3007 	for (i = 0; i < obj->nr_maps; i++) {
3008 		struct bpf_map *map = &obj->maps[i];
3009 
3010 		if (map->def.type != BPF_MAP_TYPE_ARENA)
3011 			continue;
3012 
3013 		if (obj->arena_map_idx >= 0) {
3014 			pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n",
3015 				map->name, obj->maps[obj->arena_map_idx].name);
3016 			return -EINVAL;
3017 		}
3018 		obj->arena_map_idx = i;
3019 
3020 		if (obj->efile.arena_data) {
3021 			err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx,
3022 						  obj->efile.arena_data->d_buf,
3023 						  obj->efile.arena_data->d_size);
3024 			if (err)
3025 				return err;
3026 		}
3027 	}
3028 	if (obj->efile.arena_data && obj->arena_map_idx < 0) {
3029 		pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n",
3030 			ARENA_SEC);
3031 		return -ENOENT;
3032 	}
3033 
3034 	return 0;
3035 }
3036 
bpf_object__init_maps(struct bpf_object * obj,const struct bpf_object_open_opts * opts)3037 static int bpf_object__init_maps(struct bpf_object *obj,
3038 				 const struct bpf_object_open_opts *opts)
3039 {
3040 	const char *pin_root_path;
3041 	bool strict;
3042 	int err = 0;
3043 
3044 	strict = !OPTS_GET(opts, relaxed_maps, false);
3045 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
3046 
3047 	err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
3048 	err = err ?: bpf_object__init_global_data_maps(obj);
3049 	err = err ?: bpf_object__init_kconfig_map(obj);
3050 	err = err ?: bpf_object_init_struct_ops(obj);
3051 
3052 	return err;
3053 }
3054 
section_have_execinstr(struct bpf_object * obj,int idx)3055 static bool section_have_execinstr(struct bpf_object *obj, int idx)
3056 {
3057 	Elf64_Shdr *sh;
3058 
3059 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
3060 	if (!sh)
3061 		return false;
3062 
3063 	return sh->sh_flags & SHF_EXECINSTR;
3064 }
3065 
starts_with_qmark(const char * s)3066 static bool starts_with_qmark(const char *s)
3067 {
3068 	return s && s[0] == '?';
3069 }
3070 
btf_needs_sanitization(struct bpf_object * obj)3071 static bool btf_needs_sanitization(struct bpf_object *obj)
3072 {
3073 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3074 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3075 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3076 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3077 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3078 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3079 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3080 	bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3081 
3082 	return !has_func || !has_datasec || !has_func_global || !has_float ||
3083 	       !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec;
3084 }
3085 
bpf_object__sanitize_btf(struct bpf_object * obj,struct btf * btf)3086 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
3087 {
3088 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3089 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3090 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3091 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3092 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3093 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3094 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3095 	bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3096 	int enum64_placeholder_id = 0;
3097 	struct btf_type *t;
3098 	int i, j, vlen;
3099 
3100 	for (i = 1; i < btf__type_cnt(btf); i++) {
3101 		t = (struct btf_type *)btf__type_by_id(btf, i);
3102 
3103 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
3104 			/* replace VAR/DECL_TAG with INT */
3105 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
3106 			/*
3107 			 * using size = 1 is the safest choice, 4 will be too
3108 			 * big and cause kernel BTF validation failure if
3109 			 * original variable took less than 4 bytes
3110 			 */
3111 			t->size = 1;
3112 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
3113 		} else if (!has_datasec && btf_is_datasec(t)) {
3114 			/* replace DATASEC with STRUCT */
3115 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
3116 			struct btf_member *m = btf_members(t);
3117 			struct btf_type *vt;
3118 			char *name;
3119 
3120 			name = (char *)btf__name_by_offset(btf, t->name_off);
3121 			while (*name) {
3122 				if (*name == '.' || *name == '?')
3123 					*name = '_';
3124 				name++;
3125 			}
3126 
3127 			vlen = btf_vlen(t);
3128 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
3129 			for (j = 0; j < vlen; j++, v++, m++) {
3130 				/* order of field assignments is important */
3131 				m->offset = v->offset * 8;
3132 				m->type = v->type;
3133 				/* preserve variable name as member name */
3134 				vt = (void *)btf__type_by_id(btf, v->type);
3135 				m->name_off = vt->name_off;
3136 			}
3137 		} else if (!has_qmark_datasec && btf_is_datasec(t) &&
3138 			   starts_with_qmark(btf__name_by_offset(btf, t->name_off))) {
3139 			/* replace '?' prefix with '_' for DATASEC names */
3140 			char *name;
3141 
3142 			name = (char *)btf__name_by_offset(btf, t->name_off);
3143 			if (name[0] == '?')
3144 				name[0] = '_';
3145 		} else if (!has_func && btf_is_func_proto(t)) {
3146 			/* replace FUNC_PROTO with ENUM */
3147 			vlen = btf_vlen(t);
3148 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
3149 			t->size = sizeof(__u32); /* kernel enforced */
3150 		} else if (!has_func && btf_is_func(t)) {
3151 			/* replace FUNC with TYPEDEF */
3152 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
3153 		} else if (!has_func_global && btf_is_func(t)) {
3154 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
3155 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
3156 		} else if (!has_float && btf_is_float(t)) {
3157 			/* replace FLOAT with an equally-sized empty STRUCT;
3158 			 * since C compilers do not accept e.g. "float" as a
3159 			 * valid struct name, make it anonymous
3160 			 */
3161 			t->name_off = 0;
3162 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
3163 		} else if (!has_type_tag && btf_is_type_tag(t)) {
3164 			/* replace TYPE_TAG with a CONST */
3165 			t->name_off = 0;
3166 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
3167 		} else if (!has_enum64 && btf_is_enum(t)) {
3168 			/* clear the kflag */
3169 			t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
3170 		} else if (!has_enum64 && btf_is_enum64(t)) {
3171 			/* replace ENUM64 with a union */
3172 			struct btf_member *m;
3173 
3174 			if (enum64_placeholder_id == 0) {
3175 				enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
3176 				if (enum64_placeholder_id < 0)
3177 					return enum64_placeholder_id;
3178 
3179 				t = (struct btf_type *)btf__type_by_id(btf, i);
3180 			}
3181 
3182 			m = btf_members(t);
3183 			vlen = btf_vlen(t);
3184 			t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
3185 			for (j = 0; j < vlen; j++, m++) {
3186 				m->type = enum64_placeholder_id;
3187 				m->offset = 0;
3188 			}
3189 		}
3190 	}
3191 
3192 	return 0;
3193 }
3194 
libbpf_needs_btf(const struct bpf_object * obj)3195 static bool libbpf_needs_btf(const struct bpf_object *obj)
3196 {
3197 	return obj->efile.btf_maps_shndx >= 0 ||
3198 	       obj->efile.has_st_ops ||
3199 	       obj->nr_extern > 0;
3200 }
3201 
kernel_needs_btf(const struct bpf_object * obj)3202 static bool kernel_needs_btf(const struct bpf_object *obj)
3203 {
3204 	return obj->efile.has_st_ops;
3205 }
3206 
bpf_object__init_btf(struct bpf_object * obj,Elf_Data * btf_data,Elf_Data * btf_ext_data)3207 static int bpf_object__init_btf(struct bpf_object *obj,
3208 				Elf_Data *btf_data,
3209 				Elf_Data *btf_ext_data)
3210 {
3211 	int err = -ENOENT;
3212 
3213 	if (btf_data) {
3214 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
3215 		err = libbpf_get_error(obj->btf);
3216 		if (err) {
3217 			obj->btf = NULL;
3218 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
3219 			goto out;
3220 		}
3221 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3222 		btf__set_pointer_size(obj->btf, 8);
3223 	}
3224 	if (btf_ext_data) {
3225 		struct btf_ext_info *ext_segs[3];
3226 		int seg_num, sec_num;
3227 
3228 		if (!obj->btf) {
3229 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
3230 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
3231 			goto out;
3232 		}
3233 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
3234 		err = libbpf_get_error(obj->btf_ext);
3235 		if (err) {
3236 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
3237 				BTF_EXT_ELF_SEC, err);
3238 			obj->btf_ext = NULL;
3239 			goto out;
3240 		}
3241 
3242 		/* setup .BTF.ext to ELF section mapping */
3243 		ext_segs[0] = &obj->btf_ext->func_info;
3244 		ext_segs[1] = &obj->btf_ext->line_info;
3245 		ext_segs[2] = &obj->btf_ext->core_relo_info;
3246 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
3247 			struct btf_ext_info *seg = ext_segs[seg_num];
3248 			const struct btf_ext_info_sec *sec;
3249 			const char *sec_name;
3250 			Elf_Scn *scn;
3251 
3252 			if (seg->sec_cnt == 0)
3253 				continue;
3254 
3255 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
3256 			if (!seg->sec_idxs) {
3257 				err = -ENOMEM;
3258 				goto out;
3259 			}
3260 
3261 			sec_num = 0;
3262 			for_each_btf_ext_sec(seg, sec) {
3263 				/* preventively increment index to avoid doing
3264 				 * this before every continue below
3265 				 */
3266 				sec_num++;
3267 
3268 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
3269 				if (str_is_empty(sec_name))
3270 					continue;
3271 				scn = elf_sec_by_name(obj, sec_name);
3272 				if (!scn)
3273 					continue;
3274 
3275 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
3276 			}
3277 		}
3278 	}
3279 out:
3280 	if (err && libbpf_needs_btf(obj)) {
3281 		pr_warn("BTF is required, but is missing or corrupted.\n");
3282 		return err;
3283 	}
3284 	return 0;
3285 }
3286 
compare_vsi_off(const void * _a,const void * _b)3287 static int compare_vsi_off(const void *_a, const void *_b)
3288 {
3289 	const struct btf_var_secinfo *a = _a;
3290 	const struct btf_var_secinfo *b = _b;
3291 
3292 	return a->offset - b->offset;
3293 }
3294 
btf_fixup_datasec(struct bpf_object * obj,struct btf * btf,struct btf_type * t)3295 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
3296 			     struct btf_type *t)
3297 {
3298 	__u32 size = 0, i, vars = btf_vlen(t);
3299 	const char *sec_name = btf__name_by_offset(btf, t->name_off);
3300 	struct btf_var_secinfo *vsi;
3301 	bool fixup_offsets = false;
3302 	int err;
3303 
3304 	if (!sec_name) {
3305 		pr_debug("No name found in string section for DATASEC kind.\n");
3306 		return -ENOENT;
3307 	}
3308 
3309 	/* Extern-backing datasecs (.ksyms, .kconfig) have their size and
3310 	 * variable offsets set at the previous step. Further, not every
3311 	 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
3312 	 * all fixups altogether for such sections and go straight to sorting
3313 	 * VARs within their DATASEC.
3314 	 */
3315 	if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
3316 		goto sort_vars;
3317 
3318 	/* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
3319 	 * fix this up. But BPF static linker already fixes this up and fills
3320 	 * all the sizes and offsets during static linking. So this step has
3321 	 * to be optional. But the STV_HIDDEN handling is non-optional for any
3322 	 * non-extern DATASEC, so the variable fixup loop below handles both
3323 	 * functions at the same time, paying the cost of BTF VAR <-> ELF
3324 	 * symbol matching just once.
3325 	 */
3326 	if (t->size == 0) {
3327 		err = find_elf_sec_sz(obj, sec_name, &size);
3328 		if (err || !size) {
3329 			pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
3330 				 sec_name, size, err);
3331 			return -ENOENT;
3332 		}
3333 
3334 		t->size = size;
3335 		fixup_offsets = true;
3336 	}
3337 
3338 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
3339 		const struct btf_type *t_var;
3340 		struct btf_var *var;
3341 		const char *var_name;
3342 		Elf64_Sym *sym;
3343 
3344 		t_var = btf__type_by_id(btf, vsi->type);
3345 		if (!t_var || !btf_is_var(t_var)) {
3346 			pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
3347 			return -EINVAL;
3348 		}
3349 
3350 		var = btf_var(t_var);
3351 		if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
3352 			continue;
3353 
3354 		var_name = btf__name_by_offset(btf, t_var->name_off);
3355 		if (!var_name) {
3356 			pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
3357 				 sec_name, i);
3358 			return -ENOENT;
3359 		}
3360 
3361 		sym = find_elf_var_sym(obj, var_name);
3362 		if (IS_ERR(sym)) {
3363 			pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
3364 				 sec_name, var_name);
3365 			return -ENOENT;
3366 		}
3367 
3368 		if (fixup_offsets)
3369 			vsi->offset = sym->st_value;
3370 
3371 		/* if variable is a global/weak symbol, but has restricted
3372 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3373 		 * as static. This follows similar logic for functions (BPF
3374 		 * subprogs) and influences libbpf's further decisions about
3375 		 * whether to make global data BPF array maps as
3376 		 * BPF_F_MMAPABLE.
3377 		 */
3378 		if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3379 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3380 			var->linkage = BTF_VAR_STATIC;
3381 	}
3382 
3383 sort_vars:
3384 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3385 	return 0;
3386 }
3387 
bpf_object_fixup_btf(struct bpf_object * obj)3388 static int bpf_object_fixup_btf(struct bpf_object *obj)
3389 {
3390 	int i, n, err = 0;
3391 
3392 	if (!obj->btf)
3393 		return 0;
3394 
3395 	n = btf__type_cnt(obj->btf);
3396 	for (i = 1; i < n; i++) {
3397 		struct btf_type *t = btf_type_by_id(obj->btf, i);
3398 
3399 		/* Loader needs to fix up some of the things compiler
3400 		 * couldn't get its hands on while emitting BTF. This
3401 		 * is section size and global variable offset. We use
3402 		 * the info from the ELF itself for this purpose.
3403 		 */
3404 		if (btf_is_datasec(t)) {
3405 			err = btf_fixup_datasec(obj, obj->btf, t);
3406 			if (err)
3407 				return err;
3408 		}
3409 	}
3410 
3411 	return 0;
3412 }
3413 
prog_needs_vmlinux_btf(struct bpf_program * prog)3414 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3415 {
3416 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3417 	    prog->type == BPF_PROG_TYPE_LSM)
3418 		return true;
3419 
3420 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3421 	 * also need vmlinux BTF
3422 	 */
3423 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3424 		return true;
3425 
3426 	return false;
3427 }
3428 
map_needs_vmlinux_btf(struct bpf_map * map)3429 static bool map_needs_vmlinux_btf(struct bpf_map *map)
3430 {
3431 	return bpf_map__is_struct_ops(map);
3432 }
3433 
obj_needs_vmlinux_btf(const struct bpf_object * obj)3434 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3435 {
3436 	struct bpf_program *prog;
3437 	struct bpf_map *map;
3438 	int i;
3439 
3440 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
3441 	 * is not specified
3442 	 */
3443 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3444 		return true;
3445 
3446 	/* Support for typed ksyms needs kernel BTF */
3447 	for (i = 0; i < obj->nr_extern; i++) {
3448 		const struct extern_desc *ext;
3449 
3450 		ext = &obj->externs[i];
3451 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
3452 			return true;
3453 	}
3454 
3455 	bpf_object__for_each_program(prog, obj) {
3456 		if (!prog->autoload)
3457 			continue;
3458 		if (prog_needs_vmlinux_btf(prog))
3459 			return true;
3460 	}
3461 
3462 	bpf_object__for_each_map(map, obj) {
3463 		if (map_needs_vmlinux_btf(map))
3464 			return true;
3465 	}
3466 
3467 	return false;
3468 }
3469 
bpf_object__load_vmlinux_btf(struct bpf_object * obj,bool force)3470 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3471 {
3472 	int err;
3473 
3474 	/* btf_vmlinux could be loaded earlier */
3475 	if (obj->btf_vmlinux || obj->gen_loader)
3476 		return 0;
3477 
3478 	if (!force && !obj_needs_vmlinux_btf(obj))
3479 		return 0;
3480 
3481 	obj->btf_vmlinux = btf__load_vmlinux_btf();
3482 	err = libbpf_get_error(obj->btf_vmlinux);
3483 	if (err) {
3484 		pr_warn("Error loading vmlinux BTF: %d\n", err);
3485 		obj->btf_vmlinux = NULL;
3486 		return err;
3487 	}
3488 	return 0;
3489 }
3490 
bpf_object__sanitize_and_load_btf(struct bpf_object * obj)3491 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3492 {
3493 	struct btf *kern_btf = obj->btf;
3494 	bool btf_mandatory, sanitize;
3495 	int i, err = 0;
3496 
3497 	if (!obj->btf)
3498 		return 0;
3499 
3500 	if (!kernel_supports(obj, FEAT_BTF)) {
3501 		if (kernel_needs_btf(obj)) {
3502 			err = -EOPNOTSUPP;
3503 			goto report;
3504 		}
3505 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3506 		return 0;
3507 	}
3508 
3509 	/* Even though some subprogs are global/weak, user might prefer more
3510 	 * permissive BPF verification process that BPF verifier performs for
3511 	 * static functions, taking into account more context from the caller
3512 	 * functions. In such case, they need to mark such subprogs with
3513 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
3514 	 * corresponding FUNC BTF type to be marked as static and trigger more
3515 	 * involved BPF verification process.
3516 	 */
3517 	for (i = 0; i < obj->nr_programs; i++) {
3518 		struct bpf_program *prog = &obj->programs[i];
3519 		struct btf_type *t;
3520 		const char *name;
3521 		int j, n;
3522 
3523 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3524 			continue;
3525 
3526 		n = btf__type_cnt(obj->btf);
3527 		for (j = 1; j < n; j++) {
3528 			t = btf_type_by_id(obj->btf, j);
3529 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3530 				continue;
3531 
3532 			name = btf__str_by_offset(obj->btf, t->name_off);
3533 			if (strcmp(name, prog->name) != 0)
3534 				continue;
3535 
3536 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3537 			break;
3538 		}
3539 	}
3540 
3541 	sanitize = btf_needs_sanitization(obj);
3542 	if (sanitize) {
3543 		const void *raw_data;
3544 		__u32 sz;
3545 
3546 		/* clone BTF to sanitize a copy and leave the original intact */
3547 		raw_data = btf__raw_data(obj->btf, &sz);
3548 		kern_btf = btf__new(raw_data, sz);
3549 		err = libbpf_get_error(kern_btf);
3550 		if (err)
3551 			return err;
3552 
3553 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3554 		btf__set_pointer_size(obj->btf, 8);
3555 		err = bpf_object__sanitize_btf(obj, kern_btf);
3556 		if (err)
3557 			return err;
3558 	}
3559 
3560 	if (obj->gen_loader) {
3561 		__u32 raw_size = 0;
3562 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3563 
3564 		if (!raw_data)
3565 			return -ENOMEM;
3566 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3567 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3568 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3569 		 */
3570 		btf__set_fd(kern_btf, 0);
3571 	} else {
3572 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3573 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3574 					   obj->log_level ? 1 : 0, obj->token_fd);
3575 	}
3576 	if (sanitize) {
3577 		if (!err) {
3578 			/* move fd to libbpf's BTF */
3579 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3580 			btf__set_fd(kern_btf, -1);
3581 		}
3582 		btf__free(kern_btf);
3583 	}
3584 report:
3585 	if (err) {
3586 		btf_mandatory = kernel_needs_btf(obj);
3587 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3588 			btf_mandatory ? "BTF is mandatory, can't proceed."
3589 				      : "BTF is optional, ignoring.");
3590 		if (!btf_mandatory)
3591 			err = 0;
3592 	}
3593 	return err;
3594 }
3595 
elf_sym_str(const struct bpf_object * obj,size_t off)3596 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3597 {
3598 	const char *name;
3599 
3600 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3601 	if (!name) {
3602 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3603 			off, obj->path, elf_errmsg(-1));
3604 		return NULL;
3605 	}
3606 
3607 	return name;
3608 }
3609 
elf_sec_str(const struct bpf_object * obj,size_t off)3610 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3611 {
3612 	const char *name;
3613 
3614 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3615 	if (!name) {
3616 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3617 			off, obj->path, elf_errmsg(-1));
3618 		return NULL;
3619 	}
3620 
3621 	return name;
3622 }
3623 
elf_sec_by_idx(const struct bpf_object * obj,size_t idx)3624 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3625 {
3626 	Elf_Scn *scn;
3627 
3628 	scn = elf_getscn(obj->efile.elf, idx);
3629 	if (!scn) {
3630 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3631 			idx, obj->path, elf_errmsg(-1));
3632 		return NULL;
3633 	}
3634 	return scn;
3635 }
3636 
elf_sec_by_name(const struct bpf_object * obj,const char * name)3637 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3638 {
3639 	Elf_Scn *scn = NULL;
3640 	Elf *elf = obj->efile.elf;
3641 	const char *sec_name;
3642 
3643 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3644 		sec_name = elf_sec_name(obj, scn);
3645 		if (!sec_name)
3646 			return NULL;
3647 
3648 		if (strcmp(sec_name, name) != 0)
3649 			continue;
3650 
3651 		return scn;
3652 	}
3653 	return NULL;
3654 }
3655 
elf_sec_hdr(const struct bpf_object * obj,Elf_Scn * scn)3656 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3657 {
3658 	Elf64_Shdr *shdr;
3659 
3660 	if (!scn)
3661 		return NULL;
3662 
3663 	shdr = elf64_getshdr(scn);
3664 	if (!shdr) {
3665 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3666 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3667 		return NULL;
3668 	}
3669 
3670 	return shdr;
3671 }
3672 
elf_sec_name(const struct bpf_object * obj,Elf_Scn * scn)3673 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3674 {
3675 	const char *name;
3676 	Elf64_Shdr *sh;
3677 
3678 	if (!scn)
3679 		return NULL;
3680 
3681 	sh = elf_sec_hdr(obj, scn);
3682 	if (!sh)
3683 		return NULL;
3684 
3685 	name = elf_sec_str(obj, sh->sh_name);
3686 	if (!name) {
3687 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3688 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3689 		return NULL;
3690 	}
3691 
3692 	return name;
3693 }
3694 
elf_sec_data(const struct bpf_object * obj,Elf_Scn * scn)3695 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3696 {
3697 	Elf_Data *data;
3698 
3699 	if (!scn)
3700 		return NULL;
3701 
3702 	data = elf_getdata(scn, 0);
3703 	if (!data) {
3704 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3705 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3706 			obj->path, elf_errmsg(-1));
3707 		return NULL;
3708 	}
3709 
3710 	return data;
3711 }
3712 
elf_sym_by_idx(const struct bpf_object * obj,size_t idx)3713 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3714 {
3715 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3716 		return NULL;
3717 
3718 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3719 }
3720 
elf_rel_by_idx(Elf_Data * data,size_t idx)3721 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3722 {
3723 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3724 		return NULL;
3725 
3726 	return (Elf64_Rel *)data->d_buf + idx;
3727 }
3728 
is_sec_name_dwarf(const char * name)3729 static bool is_sec_name_dwarf(const char *name)
3730 {
3731 	/* approximation, but the actual list is too long */
3732 	return str_has_pfx(name, ".debug_");
3733 }
3734 
ignore_elf_section(Elf64_Shdr * hdr,const char * name)3735 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3736 {
3737 	/* no special handling of .strtab */
3738 	if (hdr->sh_type == SHT_STRTAB)
3739 		return true;
3740 
3741 	/* ignore .llvm_addrsig section as well */
3742 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3743 		return true;
3744 
3745 	/* no subprograms will lead to an empty .text section, ignore it */
3746 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3747 	    strcmp(name, ".text") == 0)
3748 		return true;
3749 
3750 	/* DWARF sections */
3751 	if (is_sec_name_dwarf(name))
3752 		return true;
3753 
3754 	if (str_has_pfx(name, ".rel")) {
3755 		name += sizeof(".rel") - 1;
3756 		/* DWARF section relocations */
3757 		if (is_sec_name_dwarf(name))
3758 			return true;
3759 
3760 		/* .BTF and .BTF.ext don't need relocations */
3761 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3762 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3763 			return true;
3764 	}
3765 
3766 	return false;
3767 }
3768 
cmp_progs(const void * _a,const void * _b)3769 static int cmp_progs(const void *_a, const void *_b)
3770 {
3771 	const struct bpf_program *a = _a;
3772 	const struct bpf_program *b = _b;
3773 
3774 	if (a->sec_idx != b->sec_idx)
3775 		return a->sec_idx < b->sec_idx ? -1 : 1;
3776 
3777 	/* sec_insn_off can't be the same within the section */
3778 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3779 }
3780 
bpf_object__elf_collect(struct bpf_object * obj)3781 static int bpf_object__elf_collect(struct bpf_object *obj)
3782 {
3783 	struct elf_sec_desc *sec_desc;
3784 	Elf *elf = obj->efile.elf;
3785 	Elf_Data *btf_ext_data = NULL;
3786 	Elf_Data *btf_data = NULL;
3787 	int idx = 0, err = 0;
3788 	const char *name;
3789 	Elf_Data *data;
3790 	Elf_Scn *scn;
3791 	Elf64_Shdr *sh;
3792 
3793 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3794 	 * section. Since section count retrieved by elf_getshdrnum() does
3795 	 * include sec #0, it is already the necessary size of an array to keep
3796 	 * all the sections.
3797 	 */
3798 	if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3799 		pr_warn("elf: failed to get the number of sections for %s: %s\n",
3800 			obj->path, elf_errmsg(-1));
3801 		return -LIBBPF_ERRNO__FORMAT;
3802 	}
3803 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3804 	if (!obj->efile.secs)
3805 		return -ENOMEM;
3806 
3807 	/* a bunch of ELF parsing functionality depends on processing symbols,
3808 	 * so do the first pass and find the symbol table
3809 	 */
3810 	scn = NULL;
3811 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3812 		sh = elf_sec_hdr(obj, scn);
3813 		if (!sh)
3814 			return -LIBBPF_ERRNO__FORMAT;
3815 
3816 		if (sh->sh_type == SHT_SYMTAB) {
3817 			if (obj->efile.symbols) {
3818 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3819 				return -LIBBPF_ERRNO__FORMAT;
3820 			}
3821 
3822 			data = elf_sec_data(obj, scn);
3823 			if (!data)
3824 				return -LIBBPF_ERRNO__FORMAT;
3825 
3826 			idx = elf_ndxscn(scn);
3827 
3828 			obj->efile.symbols = data;
3829 			obj->efile.symbols_shndx = idx;
3830 			obj->efile.strtabidx = sh->sh_link;
3831 		}
3832 	}
3833 
3834 	if (!obj->efile.symbols) {
3835 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3836 			obj->path);
3837 		return -ENOENT;
3838 	}
3839 
3840 	scn = NULL;
3841 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3842 		idx = elf_ndxscn(scn);
3843 		sec_desc = &obj->efile.secs[idx];
3844 
3845 		sh = elf_sec_hdr(obj, scn);
3846 		if (!sh)
3847 			return -LIBBPF_ERRNO__FORMAT;
3848 
3849 		name = elf_sec_str(obj, sh->sh_name);
3850 		if (!name)
3851 			return -LIBBPF_ERRNO__FORMAT;
3852 
3853 		if (ignore_elf_section(sh, name))
3854 			continue;
3855 
3856 		data = elf_sec_data(obj, scn);
3857 		if (!data)
3858 			return -LIBBPF_ERRNO__FORMAT;
3859 
3860 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3861 			 idx, name, (unsigned long)data->d_size,
3862 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3863 			 (int)sh->sh_type);
3864 
3865 		if (strcmp(name, "license") == 0) {
3866 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3867 			if (err)
3868 				return err;
3869 		} else if (strcmp(name, "version") == 0) {
3870 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3871 			if (err)
3872 				return err;
3873 		} else if (strcmp(name, "maps") == 0) {
3874 			pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3875 			return -ENOTSUP;
3876 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3877 			obj->efile.btf_maps_shndx = idx;
3878 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3879 			if (sh->sh_type != SHT_PROGBITS)
3880 				return -LIBBPF_ERRNO__FORMAT;
3881 			btf_data = data;
3882 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3883 			if (sh->sh_type != SHT_PROGBITS)
3884 				return -LIBBPF_ERRNO__FORMAT;
3885 			btf_ext_data = data;
3886 		} else if (sh->sh_type == SHT_SYMTAB) {
3887 			/* already processed during the first pass above */
3888 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3889 			if (sh->sh_flags & SHF_EXECINSTR) {
3890 				if (strcmp(name, ".text") == 0)
3891 					obj->efile.text_shndx = idx;
3892 				err = bpf_object__add_programs(obj, data, name, idx);
3893 				if (err)
3894 					return err;
3895 			} else if (strcmp(name, DATA_SEC) == 0 ||
3896 				   str_has_pfx(name, DATA_SEC ".")) {
3897 				sec_desc->sec_type = SEC_DATA;
3898 				sec_desc->shdr = sh;
3899 				sec_desc->data = data;
3900 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3901 				   str_has_pfx(name, RODATA_SEC ".")) {
3902 				sec_desc->sec_type = SEC_RODATA;
3903 				sec_desc->shdr = sh;
3904 				sec_desc->data = data;
3905 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0 ||
3906 				   strcmp(name, STRUCT_OPS_LINK_SEC) == 0 ||
3907 				   strcmp(name, "?" STRUCT_OPS_SEC) == 0 ||
3908 				   strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) {
3909 				sec_desc->sec_type = SEC_ST_OPS;
3910 				sec_desc->shdr = sh;
3911 				sec_desc->data = data;
3912 				obj->efile.has_st_ops = true;
3913 			} else if (strcmp(name, ARENA_SEC) == 0) {
3914 				obj->efile.arena_data = data;
3915 				obj->efile.arena_data_shndx = idx;
3916 			} else {
3917 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3918 					idx, name);
3919 			}
3920 		} else if (sh->sh_type == SHT_REL) {
3921 			int targ_sec_idx = sh->sh_info; /* points to other section */
3922 
3923 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3924 			    targ_sec_idx >= obj->efile.sec_cnt)
3925 				return -LIBBPF_ERRNO__FORMAT;
3926 
3927 			/* Only do relo for section with exec instructions */
3928 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3929 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3930 			    strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3931 			    strcmp(name, ".rel?" STRUCT_OPS_SEC) &&
3932 			    strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) &&
3933 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3934 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3935 					idx, name, targ_sec_idx,
3936 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3937 				continue;
3938 			}
3939 
3940 			sec_desc->sec_type = SEC_RELO;
3941 			sec_desc->shdr = sh;
3942 			sec_desc->data = data;
3943 		} else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3944 							 str_has_pfx(name, BSS_SEC "."))) {
3945 			sec_desc->sec_type = SEC_BSS;
3946 			sec_desc->shdr = sh;
3947 			sec_desc->data = data;
3948 		} else {
3949 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3950 				(size_t)sh->sh_size);
3951 		}
3952 	}
3953 
3954 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3955 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3956 		return -LIBBPF_ERRNO__FORMAT;
3957 	}
3958 
3959 	/* sort BPF programs by section name and in-section instruction offset
3960 	 * for faster search
3961 	 */
3962 	if (obj->nr_programs)
3963 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3964 
3965 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3966 }
3967 
sym_is_extern(const Elf64_Sym * sym)3968 static bool sym_is_extern(const Elf64_Sym *sym)
3969 {
3970 	int bind = ELF64_ST_BIND(sym->st_info);
3971 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3972 	return sym->st_shndx == SHN_UNDEF &&
3973 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3974 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3975 }
3976 
sym_is_subprog(const Elf64_Sym * sym,int text_shndx)3977 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3978 {
3979 	int bind = ELF64_ST_BIND(sym->st_info);
3980 	int type = ELF64_ST_TYPE(sym->st_info);
3981 
3982 	/* in .text section */
3983 	if (sym->st_shndx != text_shndx)
3984 		return false;
3985 
3986 	/* local function */
3987 	if (bind == STB_LOCAL && type == STT_SECTION)
3988 		return true;
3989 
3990 	/* global function */
3991 	return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC;
3992 }
3993 
find_extern_btf_id(const struct btf * btf,const char * ext_name)3994 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3995 {
3996 	const struct btf_type *t;
3997 	const char *tname;
3998 	int i, n;
3999 
4000 	if (!btf)
4001 		return -ESRCH;
4002 
4003 	n = btf__type_cnt(btf);
4004 	for (i = 1; i < n; i++) {
4005 		t = btf__type_by_id(btf, i);
4006 
4007 		if (!btf_is_var(t) && !btf_is_func(t))
4008 			continue;
4009 
4010 		tname = btf__name_by_offset(btf, t->name_off);
4011 		if (strcmp(tname, ext_name))
4012 			continue;
4013 
4014 		if (btf_is_var(t) &&
4015 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
4016 			return -EINVAL;
4017 
4018 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
4019 			return -EINVAL;
4020 
4021 		return i;
4022 	}
4023 
4024 	return -ENOENT;
4025 }
4026 
find_extern_sec_btf_id(struct btf * btf,int ext_btf_id)4027 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
4028 	const struct btf_var_secinfo *vs;
4029 	const struct btf_type *t;
4030 	int i, j, n;
4031 
4032 	if (!btf)
4033 		return -ESRCH;
4034 
4035 	n = btf__type_cnt(btf);
4036 	for (i = 1; i < n; i++) {
4037 		t = btf__type_by_id(btf, i);
4038 
4039 		if (!btf_is_datasec(t))
4040 			continue;
4041 
4042 		vs = btf_var_secinfos(t);
4043 		for (j = 0; j < btf_vlen(t); j++, vs++) {
4044 			if (vs->type == ext_btf_id)
4045 				return i;
4046 		}
4047 	}
4048 
4049 	return -ENOENT;
4050 }
4051 
find_kcfg_type(const struct btf * btf,int id,bool * is_signed)4052 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
4053 				     bool *is_signed)
4054 {
4055 	const struct btf_type *t;
4056 	const char *name;
4057 
4058 	t = skip_mods_and_typedefs(btf, id, NULL);
4059 	name = btf__name_by_offset(btf, t->name_off);
4060 
4061 	if (is_signed)
4062 		*is_signed = false;
4063 	switch (btf_kind(t)) {
4064 	case BTF_KIND_INT: {
4065 		int enc = btf_int_encoding(t);
4066 
4067 		if (enc & BTF_INT_BOOL)
4068 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
4069 		if (is_signed)
4070 			*is_signed = enc & BTF_INT_SIGNED;
4071 		if (t->size == 1)
4072 			return KCFG_CHAR;
4073 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
4074 			return KCFG_UNKNOWN;
4075 		return KCFG_INT;
4076 	}
4077 	case BTF_KIND_ENUM:
4078 		if (t->size != 4)
4079 			return KCFG_UNKNOWN;
4080 		if (strcmp(name, "libbpf_tristate"))
4081 			return KCFG_UNKNOWN;
4082 		return KCFG_TRISTATE;
4083 	case BTF_KIND_ENUM64:
4084 		if (strcmp(name, "libbpf_tristate"))
4085 			return KCFG_UNKNOWN;
4086 		return KCFG_TRISTATE;
4087 	case BTF_KIND_ARRAY:
4088 		if (btf_array(t)->nelems == 0)
4089 			return KCFG_UNKNOWN;
4090 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
4091 			return KCFG_UNKNOWN;
4092 		return KCFG_CHAR_ARR;
4093 	default:
4094 		return KCFG_UNKNOWN;
4095 	}
4096 }
4097 
cmp_externs(const void * _a,const void * _b)4098 static int cmp_externs(const void *_a, const void *_b)
4099 {
4100 	const struct extern_desc *a = _a;
4101 	const struct extern_desc *b = _b;
4102 
4103 	if (a->type != b->type)
4104 		return a->type < b->type ? -1 : 1;
4105 
4106 	if (a->type == EXT_KCFG) {
4107 		/* descending order by alignment requirements */
4108 		if (a->kcfg.align != b->kcfg.align)
4109 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
4110 		/* ascending order by size, within same alignment class */
4111 		if (a->kcfg.sz != b->kcfg.sz)
4112 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
4113 	}
4114 
4115 	/* resolve ties by name */
4116 	return strcmp(a->name, b->name);
4117 }
4118 
find_int_btf_id(const struct btf * btf)4119 static int find_int_btf_id(const struct btf *btf)
4120 {
4121 	const struct btf_type *t;
4122 	int i, n;
4123 
4124 	n = btf__type_cnt(btf);
4125 	for (i = 1; i < n; i++) {
4126 		t = btf__type_by_id(btf, i);
4127 
4128 		if (btf_is_int(t) && btf_int_bits(t) == 32)
4129 			return i;
4130 	}
4131 
4132 	return 0;
4133 }
4134 
add_dummy_ksym_var(struct btf * btf)4135 static int add_dummy_ksym_var(struct btf *btf)
4136 {
4137 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
4138 	const struct btf_var_secinfo *vs;
4139 	const struct btf_type *sec;
4140 
4141 	if (!btf)
4142 		return 0;
4143 
4144 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
4145 					    BTF_KIND_DATASEC);
4146 	if (sec_btf_id < 0)
4147 		return 0;
4148 
4149 	sec = btf__type_by_id(btf, sec_btf_id);
4150 	vs = btf_var_secinfos(sec);
4151 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
4152 		const struct btf_type *vt;
4153 
4154 		vt = btf__type_by_id(btf, vs->type);
4155 		if (btf_is_func(vt))
4156 			break;
4157 	}
4158 
4159 	/* No func in ksyms sec.  No need to add dummy var. */
4160 	if (i == btf_vlen(sec))
4161 		return 0;
4162 
4163 	int_btf_id = find_int_btf_id(btf);
4164 	dummy_var_btf_id = btf__add_var(btf,
4165 					"dummy_ksym",
4166 					BTF_VAR_GLOBAL_ALLOCATED,
4167 					int_btf_id);
4168 	if (dummy_var_btf_id < 0)
4169 		pr_warn("cannot create a dummy_ksym var\n");
4170 
4171 	return dummy_var_btf_id;
4172 }
4173 
bpf_object__collect_externs(struct bpf_object * obj)4174 static int bpf_object__collect_externs(struct bpf_object *obj)
4175 {
4176 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
4177 	const struct btf_type *t;
4178 	struct extern_desc *ext;
4179 	int i, n, off, dummy_var_btf_id;
4180 	const char *ext_name, *sec_name;
4181 	size_t ext_essent_len;
4182 	Elf_Scn *scn;
4183 	Elf64_Shdr *sh;
4184 
4185 	if (!obj->efile.symbols)
4186 		return 0;
4187 
4188 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
4189 	sh = elf_sec_hdr(obj, scn);
4190 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
4191 		return -LIBBPF_ERRNO__FORMAT;
4192 
4193 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
4194 	if (dummy_var_btf_id < 0)
4195 		return dummy_var_btf_id;
4196 
4197 	n = sh->sh_size / sh->sh_entsize;
4198 	pr_debug("looking for externs among %d symbols...\n", n);
4199 
4200 	for (i = 0; i < n; i++) {
4201 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
4202 
4203 		if (!sym)
4204 			return -LIBBPF_ERRNO__FORMAT;
4205 		if (!sym_is_extern(sym))
4206 			continue;
4207 		ext_name = elf_sym_str(obj, sym->st_name);
4208 		if (!ext_name || !ext_name[0])
4209 			continue;
4210 
4211 		ext = obj->externs;
4212 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
4213 		if (!ext)
4214 			return -ENOMEM;
4215 		obj->externs = ext;
4216 		ext = &ext[obj->nr_extern];
4217 		memset(ext, 0, sizeof(*ext));
4218 		obj->nr_extern++;
4219 
4220 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
4221 		if (ext->btf_id <= 0) {
4222 			pr_warn("failed to find BTF for extern '%s': %d\n",
4223 				ext_name, ext->btf_id);
4224 			return ext->btf_id;
4225 		}
4226 		t = btf__type_by_id(obj->btf, ext->btf_id);
4227 		ext->name = strdup(btf__name_by_offset(obj->btf, t->name_off));
4228 		if (!ext->name)
4229 			return -ENOMEM;
4230 		ext->sym_idx = i;
4231 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
4232 
4233 		ext_essent_len = bpf_core_essential_name_len(ext->name);
4234 		ext->essent_name = NULL;
4235 		if (ext_essent_len != strlen(ext->name)) {
4236 			ext->essent_name = strndup(ext->name, ext_essent_len);
4237 			if (!ext->essent_name)
4238 				return -ENOMEM;
4239 		}
4240 
4241 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
4242 		if (ext->sec_btf_id <= 0) {
4243 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
4244 				ext_name, ext->btf_id, ext->sec_btf_id);
4245 			return ext->sec_btf_id;
4246 		}
4247 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
4248 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
4249 
4250 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
4251 			if (btf_is_func(t)) {
4252 				pr_warn("extern function %s is unsupported under %s section\n",
4253 					ext->name, KCONFIG_SEC);
4254 				return -ENOTSUP;
4255 			}
4256 			kcfg_sec = sec;
4257 			ext->type = EXT_KCFG;
4258 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
4259 			if (ext->kcfg.sz <= 0) {
4260 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
4261 					ext_name, ext->kcfg.sz);
4262 				return ext->kcfg.sz;
4263 			}
4264 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
4265 			if (ext->kcfg.align <= 0) {
4266 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
4267 					ext_name, ext->kcfg.align);
4268 				return -EINVAL;
4269 			}
4270 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
4271 							&ext->kcfg.is_signed);
4272 			if (ext->kcfg.type == KCFG_UNKNOWN) {
4273 				pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
4274 				return -ENOTSUP;
4275 			}
4276 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
4277 			ksym_sec = sec;
4278 			ext->type = EXT_KSYM;
4279 			skip_mods_and_typedefs(obj->btf, t->type,
4280 					       &ext->ksym.type_id);
4281 		} else {
4282 			pr_warn("unrecognized extern section '%s'\n", sec_name);
4283 			return -ENOTSUP;
4284 		}
4285 	}
4286 	pr_debug("collected %d externs total\n", obj->nr_extern);
4287 
4288 	if (!obj->nr_extern)
4289 		return 0;
4290 
4291 	/* sort externs by type, for kcfg ones also by (align, size, name) */
4292 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
4293 
4294 	/* for .ksyms section, we need to turn all externs into allocated
4295 	 * variables in BTF to pass kernel verification; we do this by
4296 	 * pretending that each extern is a 8-byte variable
4297 	 */
4298 	if (ksym_sec) {
4299 		/* find existing 4-byte integer type in BTF to use for fake
4300 		 * extern variables in DATASEC
4301 		 */
4302 		int int_btf_id = find_int_btf_id(obj->btf);
4303 		/* For extern function, a dummy_var added earlier
4304 		 * will be used to replace the vs->type and
4305 		 * its name string will be used to refill
4306 		 * the missing param's name.
4307 		 */
4308 		const struct btf_type *dummy_var;
4309 
4310 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
4311 		for (i = 0; i < obj->nr_extern; i++) {
4312 			ext = &obj->externs[i];
4313 			if (ext->type != EXT_KSYM)
4314 				continue;
4315 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
4316 				 i, ext->sym_idx, ext->name);
4317 		}
4318 
4319 		sec = ksym_sec;
4320 		n = btf_vlen(sec);
4321 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
4322 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4323 			struct btf_type *vt;
4324 
4325 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
4326 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
4327 			ext = find_extern_by_name(obj, ext_name);
4328 			if (!ext) {
4329 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
4330 					btf_kind_str(vt), ext_name);
4331 				return -ESRCH;
4332 			}
4333 			if (btf_is_func(vt)) {
4334 				const struct btf_type *func_proto;
4335 				struct btf_param *param;
4336 				int j;
4337 
4338 				func_proto = btf__type_by_id(obj->btf,
4339 							     vt->type);
4340 				param = btf_params(func_proto);
4341 				/* Reuse the dummy_var string if the
4342 				 * func proto does not have param name.
4343 				 */
4344 				for (j = 0; j < btf_vlen(func_proto); j++)
4345 					if (param[j].type && !param[j].name_off)
4346 						param[j].name_off =
4347 							dummy_var->name_off;
4348 				vs->type = dummy_var_btf_id;
4349 				vt->info &= ~0xffff;
4350 				vt->info |= BTF_FUNC_GLOBAL;
4351 			} else {
4352 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4353 				vt->type = int_btf_id;
4354 			}
4355 			vs->offset = off;
4356 			vs->size = sizeof(int);
4357 		}
4358 		sec->size = off;
4359 	}
4360 
4361 	if (kcfg_sec) {
4362 		sec = kcfg_sec;
4363 		/* for kcfg externs calculate their offsets within a .kconfig map */
4364 		off = 0;
4365 		for (i = 0; i < obj->nr_extern; i++) {
4366 			ext = &obj->externs[i];
4367 			if (ext->type != EXT_KCFG)
4368 				continue;
4369 
4370 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4371 			off = ext->kcfg.data_off + ext->kcfg.sz;
4372 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4373 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4374 		}
4375 		sec->size = off;
4376 		n = btf_vlen(sec);
4377 		for (i = 0; i < n; i++) {
4378 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4379 
4380 			t = btf__type_by_id(obj->btf, vs->type);
4381 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
4382 			ext = find_extern_by_name(obj, ext_name);
4383 			if (!ext) {
4384 				pr_warn("failed to find extern definition for BTF var '%s'\n",
4385 					ext_name);
4386 				return -ESRCH;
4387 			}
4388 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4389 			vs->offset = ext->kcfg.data_off;
4390 		}
4391 	}
4392 	return 0;
4393 }
4394 
prog_is_subprog(const struct bpf_object * obj,const struct bpf_program * prog)4395 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4396 {
4397 	return prog->sec_idx == obj->efile.text_shndx;
4398 }
4399 
4400 struct bpf_program *
bpf_object__find_program_by_name(const struct bpf_object * obj,const char * name)4401 bpf_object__find_program_by_name(const struct bpf_object *obj,
4402 				 const char *name)
4403 {
4404 	struct bpf_program *prog;
4405 
4406 	bpf_object__for_each_program(prog, obj) {
4407 		if (prog_is_subprog(obj, prog))
4408 			continue;
4409 		if (!strcmp(prog->name, name))
4410 			return prog;
4411 	}
4412 	return errno = ENOENT, NULL;
4413 }
4414 
bpf_object__shndx_is_data(const struct bpf_object * obj,int shndx)4415 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4416 				      int shndx)
4417 {
4418 	switch (obj->efile.secs[shndx].sec_type) {
4419 	case SEC_BSS:
4420 	case SEC_DATA:
4421 	case SEC_RODATA:
4422 		return true;
4423 	default:
4424 		return false;
4425 	}
4426 }
4427 
bpf_object__shndx_is_maps(const struct bpf_object * obj,int shndx)4428 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4429 				      int shndx)
4430 {
4431 	return shndx == obj->efile.btf_maps_shndx;
4432 }
4433 
4434 static enum libbpf_map_type
bpf_object__section_to_libbpf_map_type(const struct bpf_object * obj,int shndx)4435 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4436 {
4437 	if (shndx == obj->efile.symbols_shndx)
4438 		return LIBBPF_MAP_KCONFIG;
4439 
4440 	switch (obj->efile.secs[shndx].sec_type) {
4441 	case SEC_BSS:
4442 		return LIBBPF_MAP_BSS;
4443 	case SEC_DATA:
4444 		return LIBBPF_MAP_DATA;
4445 	case SEC_RODATA:
4446 		return LIBBPF_MAP_RODATA;
4447 	default:
4448 		return LIBBPF_MAP_UNSPEC;
4449 	}
4450 }
4451 
bpf_program__record_reloc(struct bpf_program * prog,struct reloc_desc * reloc_desc,__u32 insn_idx,const char * sym_name,const Elf64_Sym * sym,const Elf64_Rel * rel)4452 static int bpf_program__record_reloc(struct bpf_program *prog,
4453 				     struct reloc_desc *reloc_desc,
4454 				     __u32 insn_idx, const char *sym_name,
4455 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
4456 {
4457 	struct bpf_insn *insn = &prog->insns[insn_idx];
4458 	size_t map_idx, nr_maps = prog->obj->nr_maps;
4459 	struct bpf_object *obj = prog->obj;
4460 	__u32 shdr_idx = sym->st_shndx;
4461 	enum libbpf_map_type type;
4462 	const char *sym_sec_name;
4463 	struct bpf_map *map;
4464 
4465 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4466 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4467 			prog->name, sym_name, insn_idx, insn->code);
4468 		return -LIBBPF_ERRNO__RELOC;
4469 	}
4470 
4471 	if (sym_is_extern(sym)) {
4472 		int sym_idx = ELF64_R_SYM(rel->r_info);
4473 		int i, n = obj->nr_extern;
4474 		struct extern_desc *ext;
4475 
4476 		for (i = 0; i < n; i++) {
4477 			ext = &obj->externs[i];
4478 			if (ext->sym_idx == sym_idx)
4479 				break;
4480 		}
4481 		if (i >= n) {
4482 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4483 				prog->name, sym_name, sym_idx);
4484 			return -LIBBPF_ERRNO__RELOC;
4485 		}
4486 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4487 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4488 		if (insn->code == (BPF_JMP | BPF_CALL))
4489 			reloc_desc->type = RELO_EXTERN_CALL;
4490 		else
4491 			reloc_desc->type = RELO_EXTERN_LD64;
4492 		reloc_desc->insn_idx = insn_idx;
4493 		reloc_desc->ext_idx = i;
4494 		return 0;
4495 	}
4496 
4497 	/* sub-program call relocation */
4498 	if (is_call_insn(insn)) {
4499 		if (insn->src_reg != BPF_PSEUDO_CALL) {
4500 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4501 			return -LIBBPF_ERRNO__RELOC;
4502 		}
4503 		/* text_shndx can be 0, if no default "main" program exists */
4504 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4505 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4506 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4507 				prog->name, sym_name, sym_sec_name);
4508 			return -LIBBPF_ERRNO__RELOC;
4509 		}
4510 		if (sym->st_value % BPF_INSN_SZ) {
4511 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4512 				prog->name, sym_name, (size_t)sym->st_value);
4513 			return -LIBBPF_ERRNO__RELOC;
4514 		}
4515 		reloc_desc->type = RELO_CALL;
4516 		reloc_desc->insn_idx = insn_idx;
4517 		reloc_desc->sym_off = sym->st_value;
4518 		return 0;
4519 	}
4520 
4521 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4522 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4523 			prog->name, sym_name, shdr_idx);
4524 		return -LIBBPF_ERRNO__RELOC;
4525 	}
4526 
4527 	/* loading subprog addresses */
4528 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4529 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
4530 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4531 		 */
4532 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4533 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4534 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4535 			return -LIBBPF_ERRNO__RELOC;
4536 		}
4537 
4538 		reloc_desc->type = RELO_SUBPROG_ADDR;
4539 		reloc_desc->insn_idx = insn_idx;
4540 		reloc_desc->sym_off = sym->st_value;
4541 		return 0;
4542 	}
4543 
4544 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4545 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4546 
4547 	/* arena data relocation */
4548 	if (shdr_idx == obj->efile.arena_data_shndx) {
4549 		if (obj->arena_map_idx < 0) {
4550 			pr_warn("prog '%s': bad arena data relocation at insn %u, no arena maps defined\n",
4551 				prog->name, insn_idx);
4552 			return -LIBBPF_ERRNO__RELOC;
4553 		}
4554 		reloc_desc->type = RELO_DATA;
4555 		reloc_desc->insn_idx = insn_idx;
4556 		reloc_desc->map_idx = obj->arena_map_idx;
4557 		reloc_desc->sym_off = sym->st_value;
4558 
4559 		map = &obj->maps[obj->arena_map_idx];
4560 		pr_debug("prog '%s': found arena map %d (%s, sec %d, off %zu) for insn %u\n",
4561 			 prog->name, obj->arena_map_idx, map->name, map->sec_idx,
4562 			 map->sec_offset, insn_idx);
4563 		return 0;
4564 	}
4565 
4566 	/* generic map reference relocation */
4567 	if (type == LIBBPF_MAP_UNSPEC) {
4568 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4569 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4570 				prog->name, sym_name, sym_sec_name);
4571 			return -LIBBPF_ERRNO__RELOC;
4572 		}
4573 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4574 			map = &obj->maps[map_idx];
4575 			if (map->libbpf_type != type ||
4576 			    map->sec_idx != sym->st_shndx ||
4577 			    map->sec_offset != sym->st_value)
4578 				continue;
4579 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4580 				 prog->name, map_idx, map->name, map->sec_idx,
4581 				 map->sec_offset, insn_idx);
4582 			break;
4583 		}
4584 		if (map_idx >= nr_maps) {
4585 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4586 				prog->name, sym_sec_name, (size_t)sym->st_value);
4587 			return -LIBBPF_ERRNO__RELOC;
4588 		}
4589 		reloc_desc->type = RELO_LD64;
4590 		reloc_desc->insn_idx = insn_idx;
4591 		reloc_desc->map_idx = map_idx;
4592 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4593 		return 0;
4594 	}
4595 
4596 	/* global data map relocation */
4597 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4598 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4599 			prog->name, sym_sec_name);
4600 		return -LIBBPF_ERRNO__RELOC;
4601 	}
4602 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4603 		map = &obj->maps[map_idx];
4604 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4605 			continue;
4606 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4607 			 prog->name, map_idx, map->name, map->sec_idx,
4608 			 map->sec_offset, insn_idx);
4609 		break;
4610 	}
4611 	if (map_idx >= nr_maps) {
4612 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4613 			prog->name, sym_sec_name);
4614 		return -LIBBPF_ERRNO__RELOC;
4615 	}
4616 
4617 	reloc_desc->type = RELO_DATA;
4618 	reloc_desc->insn_idx = insn_idx;
4619 	reloc_desc->map_idx = map_idx;
4620 	reloc_desc->sym_off = sym->st_value;
4621 	return 0;
4622 }
4623 
prog_contains_insn(const struct bpf_program * prog,size_t insn_idx)4624 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4625 {
4626 	return insn_idx >= prog->sec_insn_off &&
4627 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4628 }
4629 
find_prog_by_sec_insn(const struct bpf_object * obj,size_t sec_idx,size_t insn_idx)4630 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4631 						 size_t sec_idx, size_t insn_idx)
4632 {
4633 	int l = 0, r = obj->nr_programs - 1, m;
4634 	struct bpf_program *prog;
4635 
4636 	if (!obj->nr_programs)
4637 		return NULL;
4638 
4639 	while (l < r) {
4640 		m = l + (r - l + 1) / 2;
4641 		prog = &obj->programs[m];
4642 
4643 		if (prog->sec_idx < sec_idx ||
4644 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4645 			l = m;
4646 		else
4647 			r = m - 1;
4648 	}
4649 	/* matching program could be at index l, but it still might be the
4650 	 * wrong one, so we need to double check conditions for the last time
4651 	 */
4652 	prog = &obj->programs[l];
4653 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4654 		return prog;
4655 	return NULL;
4656 }
4657 
4658 static int
bpf_object__collect_prog_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)4659 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4660 {
4661 	const char *relo_sec_name, *sec_name;
4662 	size_t sec_idx = shdr->sh_info, sym_idx;
4663 	struct bpf_program *prog;
4664 	struct reloc_desc *relos;
4665 	int err, i, nrels;
4666 	const char *sym_name;
4667 	__u32 insn_idx;
4668 	Elf_Scn *scn;
4669 	Elf_Data *scn_data;
4670 	Elf64_Sym *sym;
4671 	Elf64_Rel *rel;
4672 
4673 	if (sec_idx >= obj->efile.sec_cnt)
4674 		return -EINVAL;
4675 
4676 	scn = elf_sec_by_idx(obj, sec_idx);
4677 	scn_data = elf_sec_data(obj, scn);
4678 	if (!scn_data)
4679 		return -LIBBPF_ERRNO__FORMAT;
4680 
4681 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4682 	sec_name = elf_sec_name(obj, scn);
4683 	if (!relo_sec_name || !sec_name)
4684 		return -EINVAL;
4685 
4686 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4687 		 relo_sec_name, sec_idx, sec_name);
4688 	nrels = shdr->sh_size / shdr->sh_entsize;
4689 
4690 	for (i = 0; i < nrels; i++) {
4691 		rel = elf_rel_by_idx(data, i);
4692 		if (!rel) {
4693 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4694 			return -LIBBPF_ERRNO__FORMAT;
4695 		}
4696 
4697 		sym_idx = ELF64_R_SYM(rel->r_info);
4698 		sym = elf_sym_by_idx(obj, sym_idx);
4699 		if (!sym) {
4700 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4701 				relo_sec_name, sym_idx, i);
4702 			return -LIBBPF_ERRNO__FORMAT;
4703 		}
4704 
4705 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4706 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4707 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4708 			return -LIBBPF_ERRNO__FORMAT;
4709 		}
4710 
4711 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4712 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4713 				relo_sec_name, (size_t)rel->r_offset, i);
4714 			return -LIBBPF_ERRNO__FORMAT;
4715 		}
4716 
4717 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4718 		/* relocations against static functions are recorded as
4719 		 * relocations against the section that contains a function;
4720 		 * in such case, symbol will be STT_SECTION and sym.st_name
4721 		 * will point to empty string (0), so fetch section name
4722 		 * instead
4723 		 */
4724 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4725 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4726 		else
4727 			sym_name = elf_sym_str(obj, sym->st_name);
4728 		sym_name = sym_name ?: "<?";
4729 
4730 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4731 			 relo_sec_name, i, insn_idx, sym_name);
4732 
4733 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4734 		if (!prog) {
4735 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4736 				relo_sec_name, i, sec_name, insn_idx);
4737 			continue;
4738 		}
4739 
4740 		relos = libbpf_reallocarray(prog->reloc_desc,
4741 					    prog->nr_reloc + 1, sizeof(*relos));
4742 		if (!relos)
4743 			return -ENOMEM;
4744 		prog->reloc_desc = relos;
4745 
4746 		/* adjust insn_idx to local BPF program frame of reference */
4747 		insn_idx -= prog->sec_insn_off;
4748 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4749 						insn_idx, sym_name, sym, rel);
4750 		if (err)
4751 			return err;
4752 
4753 		prog->nr_reloc++;
4754 	}
4755 	return 0;
4756 }
4757 
map_fill_btf_type_info(struct bpf_object * obj,struct bpf_map * map)4758 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4759 {
4760 	int id;
4761 
4762 	if (!obj->btf)
4763 		return -ENOENT;
4764 
4765 	/* if it's BTF-defined map, we don't need to search for type IDs.
4766 	 * For struct_ops map, it does not need btf_key_type_id and
4767 	 * btf_value_type_id.
4768 	 */
4769 	if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4770 		return 0;
4771 
4772 	/*
4773 	 * LLVM annotates global data differently in BTF, that is,
4774 	 * only as '.data', '.bss' or '.rodata'.
4775 	 */
4776 	if (!bpf_map__is_internal(map))
4777 		return -ENOENT;
4778 
4779 	id = btf__find_by_name(obj->btf, map->real_name);
4780 	if (id < 0)
4781 		return id;
4782 
4783 	map->btf_key_type_id = 0;
4784 	map->btf_value_type_id = id;
4785 	return 0;
4786 }
4787 
bpf_get_map_info_from_fdinfo(int fd,struct bpf_map_info * info)4788 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4789 {
4790 	char file[PATH_MAX], buff[4096];
4791 	FILE *fp;
4792 	__u32 val;
4793 	int err;
4794 
4795 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4796 	memset(info, 0, sizeof(*info));
4797 
4798 	fp = fopen(file, "re");
4799 	if (!fp) {
4800 		err = -errno;
4801 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4802 			err);
4803 		return err;
4804 	}
4805 
4806 	while (fgets(buff, sizeof(buff), fp)) {
4807 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4808 			info->type = val;
4809 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4810 			info->key_size = val;
4811 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4812 			info->value_size = val;
4813 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4814 			info->max_entries = val;
4815 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4816 			info->map_flags = val;
4817 	}
4818 
4819 	fclose(fp);
4820 
4821 	return 0;
4822 }
4823 
bpf_map__autocreate(const struct bpf_map * map)4824 bool bpf_map__autocreate(const struct bpf_map *map)
4825 {
4826 	return map->autocreate;
4827 }
4828 
bpf_map__set_autocreate(struct bpf_map * map,bool autocreate)4829 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4830 {
4831 	if (map->obj->loaded)
4832 		return libbpf_err(-EBUSY);
4833 
4834 	map->autocreate = autocreate;
4835 	return 0;
4836 }
4837 
bpf_map__set_autoattach(struct bpf_map * map,bool autoattach)4838 int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach)
4839 {
4840 	if (!bpf_map__is_struct_ops(map))
4841 		return libbpf_err(-EINVAL);
4842 
4843 	map->autoattach = autoattach;
4844 	return 0;
4845 }
4846 
bpf_map__autoattach(const struct bpf_map * map)4847 bool bpf_map__autoattach(const struct bpf_map *map)
4848 {
4849 	return map->autoattach;
4850 }
4851 
bpf_map__reuse_fd(struct bpf_map * map,int fd)4852 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4853 {
4854 	struct bpf_map_info info;
4855 	__u32 len = sizeof(info), name_len;
4856 	int new_fd, err;
4857 	char *new_name;
4858 
4859 	memset(&info, 0, len);
4860 	err = bpf_map_get_info_by_fd(fd, &info, &len);
4861 	if (err && errno == EINVAL)
4862 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4863 	if (err)
4864 		return libbpf_err(err);
4865 
4866 	name_len = strlen(info.name);
4867 	if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4868 		new_name = strdup(map->name);
4869 	else
4870 		new_name = strdup(info.name);
4871 
4872 	if (!new_name)
4873 		return libbpf_err(-errno);
4874 
4875 	/*
4876 	 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4877 	 * This is similar to what we do in ensure_good_fd(), but without
4878 	 * closing original FD.
4879 	 */
4880 	new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4881 	if (new_fd < 0) {
4882 		err = -errno;
4883 		goto err_free_new_name;
4884 	}
4885 
4886 	err = reuse_fd(map->fd, new_fd);
4887 	if (err)
4888 		goto err_free_new_name;
4889 
4890 	free(map->name);
4891 
4892 	map->name = new_name;
4893 	map->def.type = info.type;
4894 	map->def.key_size = info.key_size;
4895 	map->def.value_size = info.value_size;
4896 	map->def.max_entries = info.max_entries;
4897 	map->def.map_flags = info.map_flags;
4898 	map->btf_key_type_id = info.btf_key_type_id;
4899 	map->btf_value_type_id = info.btf_value_type_id;
4900 	map->reused = true;
4901 	map->map_extra = info.map_extra;
4902 
4903 	return 0;
4904 
4905 err_free_new_name:
4906 	free(new_name);
4907 	return libbpf_err(err);
4908 }
4909 
bpf_map__max_entries(const struct bpf_map * map)4910 __u32 bpf_map__max_entries(const struct bpf_map *map)
4911 {
4912 	return map->def.max_entries;
4913 }
4914 
bpf_map__inner_map(struct bpf_map * map)4915 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4916 {
4917 	if (!bpf_map_type__is_map_in_map(map->def.type))
4918 		return errno = EINVAL, NULL;
4919 
4920 	return map->inner_map;
4921 }
4922 
bpf_map__set_max_entries(struct bpf_map * map,__u32 max_entries)4923 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4924 {
4925 	if (map->obj->loaded)
4926 		return libbpf_err(-EBUSY);
4927 
4928 	map->def.max_entries = max_entries;
4929 
4930 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4931 	if (map_is_ringbuf(map))
4932 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4933 
4934 	return 0;
4935 }
4936 
bpf_object_prepare_token(struct bpf_object * obj)4937 static int bpf_object_prepare_token(struct bpf_object *obj)
4938 {
4939 	const char *bpffs_path;
4940 	int bpffs_fd = -1, token_fd, err;
4941 	bool mandatory;
4942 	enum libbpf_print_level level;
4943 
4944 	/* token is explicitly prevented */
4945 	if (obj->token_path && obj->token_path[0] == '\0') {
4946 		pr_debug("object '%s': token is prevented, skipping...\n", obj->name);
4947 		return 0;
4948 	}
4949 
4950 	mandatory = obj->token_path != NULL;
4951 	level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG;
4952 
4953 	bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH;
4954 	bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR);
4955 	if (bpffs_fd < 0) {
4956 		err = -errno;
4957 		__pr(level, "object '%s': failed (%d) to open BPF FS mount at '%s'%s\n",
4958 		     obj->name, err, bpffs_path,
4959 		     mandatory ? "" : ", skipping optional step...");
4960 		return mandatory ? err : 0;
4961 	}
4962 
4963 	token_fd = bpf_token_create(bpffs_fd, 0);
4964 	close(bpffs_fd);
4965 	if (token_fd < 0) {
4966 		if (!mandatory && token_fd == -ENOENT) {
4967 			pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n",
4968 				 obj->name, bpffs_path);
4969 			return 0;
4970 		}
4971 		__pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n",
4972 		     obj->name, token_fd, bpffs_path,
4973 		     mandatory ? "" : ", skipping optional step...");
4974 		return mandatory ? token_fd : 0;
4975 	}
4976 
4977 	obj->feat_cache = calloc(1, sizeof(*obj->feat_cache));
4978 	if (!obj->feat_cache) {
4979 		close(token_fd);
4980 		return -ENOMEM;
4981 	}
4982 
4983 	obj->token_fd = token_fd;
4984 	obj->feat_cache->token_fd = token_fd;
4985 
4986 	return 0;
4987 }
4988 
4989 static int
bpf_object__probe_loading(struct bpf_object * obj)4990 bpf_object__probe_loading(struct bpf_object *obj)
4991 {
4992 	char *cp, errmsg[STRERR_BUFSIZE];
4993 	struct bpf_insn insns[] = {
4994 		BPF_MOV64_IMM(BPF_REG_0, 0),
4995 		BPF_EXIT_INSN(),
4996 	};
4997 	int ret, insn_cnt = ARRAY_SIZE(insns);
4998 	LIBBPF_OPTS(bpf_prog_load_opts, opts,
4999 		.token_fd = obj->token_fd,
5000 		.prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0,
5001 	);
5002 
5003 	if (obj->gen_loader)
5004 		return 0;
5005 
5006 	ret = bump_rlimit_memlock();
5007 	if (ret)
5008 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
5009 
5010 	/* make sure basic loading works */
5011 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts);
5012 	if (ret < 0)
5013 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts);
5014 	if (ret < 0) {
5015 		ret = errno;
5016 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
5017 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
5018 			"program. Make sure your kernel supports BPF "
5019 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
5020 			"set to big enough value.\n", __func__, cp, ret);
5021 		return -ret;
5022 	}
5023 	close(ret);
5024 
5025 	return 0;
5026 }
5027 
kernel_supports(const struct bpf_object * obj,enum kern_feature_id feat_id)5028 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
5029 {
5030 	if (obj->gen_loader)
5031 		/* To generate loader program assume the latest kernel
5032 		 * to avoid doing extra prog_load, map_create syscalls.
5033 		 */
5034 		return true;
5035 
5036 	if (obj->token_fd)
5037 		return feat_supported(obj->feat_cache, feat_id);
5038 
5039 	return feat_supported(NULL, feat_id);
5040 }
5041 
map_is_reuse_compat(const struct bpf_map * map,int map_fd)5042 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
5043 {
5044 	struct bpf_map_info map_info;
5045 	char msg[STRERR_BUFSIZE];
5046 	__u32 map_info_len = sizeof(map_info);
5047 	int err;
5048 
5049 	memset(&map_info, 0, map_info_len);
5050 	err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5051 	if (err && errno == EINVAL)
5052 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5053 	if (err) {
5054 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5055 			libbpf_strerror_r(errno, msg, sizeof(msg)));
5056 		return false;
5057 	}
5058 
5059 	return (map_info.type == map->def.type &&
5060 		map_info.key_size == map->def.key_size &&
5061 		map_info.value_size == map->def.value_size &&
5062 		map_info.max_entries == map->def.max_entries &&
5063 		map_info.map_flags == map->def.map_flags &&
5064 		map_info.map_extra == map->map_extra);
5065 }
5066 
5067 static int
bpf_object__reuse_map(struct bpf_map * map)5068 bpf_object__reuse_map(struct bpf_map *map)
5069 {
5070 	char *cp, errmsg[STRERR_BUFSIZE];
5071 	int err, pin_fd;
5072 
5073 	pin_fd = bpf_obj_get(map->pin_path);
5074 	if (pin_fd < 0) {
5075 		err = -errno;
5076 		if (err == -ENOENT) {
5077 			pr_debug("found no pinned map to reuse at '%s'\n",
5078 				 map->pin_path);
5079 			return 0;
5080 		}
5081 
5082 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
5083 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
5084 			map->pin_path, cp);
5085 		return err;
5086 	}
5087 
5088 	if (!map_is_reuse_compat(map, pin_fd)) {
5089 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5090 			map->pin_path);
5091 		close(pin_fd);
5092 		return -EINVAL;
5093 	}
5094 
5095 	err = bpf_map__reuse_fd(map, pin_fd);
5096 	close(pin_fd);
5097 	if (err)
5098 		return err;
5099 
5100 	map->pinned = true;
5101 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
5102 
5103 	return 0;
5104 }
5105 
5106 static int
bpf_object__populate_internal_map(struct bpf_object * obj,struct bpf_map * map)5107 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5108 {
5109 	enum libbpf_map_type map_type = map->libbpf_type;
5110 	char *cp, errmsg[STRERR_BUFSIZE];
5111 	int err, zero = 0;
5112 	size_t mmap_sz;
5113 
5114 	if (obj->gen_loader) {
5115 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5116 					 map->mmaped, map->def.value_size);
5117 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5118 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5119 		return 0;
5120 	}
5121 
5122 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5123 	if (err) {
5124 		err = -errno;
5125 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5126 		pr_warn("map '%s': failed to set initial contents: %s\n",
5127 			bpf_map__name(map), cp);
5128 		return err;
5129 	}
5130 
5131 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
5132 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5133 		err = bpf_map_freeze(map->fd);
5134 		if (err) {
5135 			err = -errno;
5136 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5137 			pr_warn("map '%s': failed to freeze as read-only: %s\n",
5138 				bpf_map__name(map), cp);
5139 			return err;
5140 		}
5141 	}
5142 
5143 	/* Remap anonymous mmap()-ed "map initialization image" as
5144 	 * a BPF map-backed mmap()-ed memory, but preserving the same
5145 	 * memory address. This will cause kernel to change process'
5146 	 * page table to point to a different piece of kernel memory,
5147 	 * but from userspace point of view memory address (and its
5148 	 * contents, being identical at this point) will stay the
5149 	 * same. This mapping will be released by bpf_object__close()
5150 	 * as per normal clean up procedure.
5151 	 */
5152 	mmap_sz = bpf_map_mmap_sz(map);
5153 	if (map->def.map_flags & BPF_F_MMAPABLE) {
5154 		void *mmaped;
5155 		int prot;
5156 
5157 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
5158 			prot = PROT_READ;
5159 		else
5160 			prot = PROT_READ | PROT_WRITE;
5161 		mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map->fd, 0);
5162 		if (mmaped == MAP_FAILED) {
5163 			err = -errno;
5164 			pr_warn("map '%s': failed to re-mmap() contents: %d\n",
5165 				bpf_map__name(map), err);
5166 			return err;
5167 		}
5168 		map->mmaped = mmaped;
5169 	} else if (map->mmaped) {
5170 		munmap(map->mmaped, mmap_sz);
5171 		map->mmaped = NULL;
5172 	}
5173 
5174 	return 0;
5175 }
5176 
5177 static void bpf_map__destroy(struct bpf_map *map);
5178 
map_is_created(const struct bpf_map * map)5179 static bool map_is_created(const struct bpf_map *map)
5180 {
5181 	return map->obj->loaded || map->reused;
5182 }
5183 
bpf_object__create_map(struct bpf_object * obj,struct bpf_map * map,bool is_inner)5184 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5185 {
5186 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5187 	struct bpf_map_def *def = &map->def;
5188 	const char *map_name = NULL;
5189 	int err = 0, map_fd;
5190 
5191 	if (kernel_supports(obj, FEAT_PROG_NAME))
5192 		map_name = map->name;
5193 	create_attr.map_ifindex = map->map_ifindex;
5194 	create_attr.map_flags = def->map_flags;
5195 	create_attr.numa_node = map->numa_node;
5196 	create_attr.map_extra = map->map_extra;
5197 	create_attr.token_fd = obj->token_fd;
5198 	if (obj->token_fd)
5199 		create_attr.map_flags |= BPF_F_TOKEN_FD;
5200 
5201 	if (bpf_map__is_struct_ops(map)) {
5202 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5203 		if (map->mod_btf_fd >= 0) {
5204 			create_attr.value_type_btf_obj_fd = map->mod_btf_fd;
5205 			create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD;
5206 		}
5207 	}
5208 
5209 	if (obj->btf && btf__fd(obj->btf) >= 0) {
5210 		create_attr.btf_fd = btf__fd(obj->btf);
5211 		create_attr.btf_key_type_id = map->btf_key_type_id;
5212 		create_attr.btf_value_type_id = map->btf_value_type_id;
5213 	}
5214 
5215 	if (bpf_map_type__is_map_in_map(def->type)) {
5216 		if (map->inner_map) {
5217 			err = map_set_def_max_entries(map->inner_map);
5218 			if (err)
5219 				return err;
5220 			err = bpf_object__create_map(obj, map->inner_map, true);
5221 			if (err) {
5222 				pr_warn("map '%s': failed to create inner map: %d\n",
5223 					map->name, err);
5224 				return err;
5225 			}
5226 			map->inner_map_fd = map->inner_map->fd;
5227 		}
5228 		if (map->inner_map_fd >= 0)
5229 			create_attr.inner_map_fd = map->inner_map_fd;
5230 	}
5231 
5232 	switch (def->type) {
5233 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5234 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5235 	case BPF_MAP_TYPE_STACK_TRACE:
5236 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5237 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5238 	case BPF_MAP_TYPE_DEVMAP:
5239 	case BPF_MAP_TYPE_DEVMAP_HASH:
5240 	case BPF_MAP_TYPE_CPUMAP:
5241 	case BPF_MAP_TYPE_XSKMAP:
5242 	case BPF_MAP_TYPE_SOCKMAP:
5243 	case BPF_MAP_TYPE_SOCKHASH:
5244 	case BPF_MAP_TYPE_QUEUE:
5245 	case BPF_MAP_TYPE_STACK:
5246 	case BPF_MAP_TYPE_ARENA:
5247 		create_attr.btf_fd = 0;
5248 		create_attr.btf_key_type_id = 0;
5249 		create_attr.btf_value_type_id = 0;
5250 		map->btf_key_type_id = 0;
5251 		map->btf_value_type_id = 0;
5252 		break;
5253 	case BPF_MAP_TYPE_STRUCT_OPS:
5254 		create_attr.btf_value_type_id = 0;
5255 		break;
5256 	default:
5257 		break;
5258 	}
5259 
5260 	if (obj->gen_loader) {
5261 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5262 				    def->key_size, def->value_size, def->max_entries,
5263 				    &create_attr, is_inner ? -1 : map - obj->maps);
5264 		/* We keep pretenting we have valid FD to pass various fd >= 0
5265 		 * checks by just keeping original placeholder FDs in place.
5266 		 * See bpf_object__add_map() comment.
5267 		 * This placeholder fd will not be used with any syscall and
5268 		 * will be reset to -1 eventually.
5269 		 */
5270 		map_fd = map->fd;
5271 	} else {
5272 		map_fd = bpf_map_create(def->type, map_name,
5273 					def->key_size, def->value_size,
5274 					def->max_entries, &create_attr);
5275 	}
5276 	if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) {
5277 		char *cp, errmsg[STRERR_BUFSIZE];
5278 
5279 		err = -errno;
5280 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5281 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5282 			map->name, cp, err);
5283 		create_attr.btf_fd = 0;
5284 		create_attr.btf_key_type_id = 0;
5285 		create_attr.btf_value_type_id = 0;
5286 		map->btf_key_type_id = 0;
5287 		map->btf_value_type_id = 0;
5288 		map_fd = bpf_map_create(def->type, map_name,
5289 					def->key_size, def->value_size,
5290 					def->max_entries, &create_attr);
5291 	}
5292 
5293 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5294 		if (obj->gen_loader)
5295 			map->inner_map->fd = -1;
5296 		bpf_map__destroy(map->inner_map);
5297 		zfree(&map->inner_map);
5298 	}
5299 
5300 	if (map_fd < 0)
5301 		return map_fd;
5302 
5303 	/* obj->gen_loader case, prevent reuse_fd() from closing map_fd */
5304 	if (map->fd == map_fd)
5305 		return 0;
5306 
5307 	/* Keep placeholder FD value but now point it to the BPF map object.
5308 	 * This way everything that relied on this map's FD (e.g., relocated
5309 	 * ldimm64 instructions) will stay valid and won't need adjustments.
5310 	 * map->fd stays valid but now point to what map_fd points to.
5311 	 */
5312 	return reuse_fd(map->fd, map_fd);
5313 }
5314 
init_map_in_map_slots(struct bpf_object * obj,struct bpf_map * map)5315 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5316 {
5317 	const struct bpf_map *targ_map;
5318 	unsigned int i;
5319 	int fd, err = 0;
5320 
5321 	for (i = 0; i < map->init_slots_sz; i++) {
5322 		if (!map->init_slots[i])
5323 			continue;
5324 
5325 		targ_map = map->init_slots[i];
5326 		fd = targ_map->fd;
5327 
5328 		if (obj->gen_loader) {
5329 			bpf_gen__populate_outer_map(obj->gen_loader,
5330 						    map - obj->maps, i,
5331 						    targ_map - obj->maps);
5332 		} else {
5333 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5334 		}
5335 		if (err) {
5336 			err = -errno;
5337 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5338 				map->name, i, targ_map->name, fd, err);
5339 			return err;
5340 		}
5341 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5342 			 map->name, i, targ_map->name, fd);
5343 	}
5344 
5345 	zfree(&map->init_slots);
5346 	map->init_slots_sz = 0;
5347 
5348 	return 0;
5349 }
5350 
init_prog_array_slots(struct bpf_object * obj,struct bpf_map * map)5351 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5352 {
5353 	const struct bpf_program *targ_prog;
5354 	unsigned int i;
5355 	int fd, err;
5356 
5357 	if (obj->gen_loader)
5358 		return -ENOTSUP;
5359 
5360 	for (i = 0; i < map->init_slots_sz; i++) {
5361 		if (!map->init_slots[i])
5362 			continue;
5363 
5364 		targ_prog = map->init_slots[i];
5365 		fd = bpf_program__fd(targ_prog);
5366 
5367 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5368 		if (err) {
5369 			err = -errno;
5370 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5371 				map->name, i, targ_prog->name, fd, err);
5372 			return err;
5373 		}
5374 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5375 			 map->name, i, targ_prog->name, fd);
5376 	}
5377 
5378 	zfree(&map->init_slots);
5379 	map->init_slots_sz = 0;
5380 
5381 	return 0;
5382 }
5383 
bpf_object_init_prog_arrays(struct bpf_object * obj)5384 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5385 {
5386 	struct bpf_map *map;
5387 	int i, err;
5388 
5389 	for (i = 0; i < obj->nr_maps; i++) {
5390 		map = &obj->maps[i];
5391 
5392 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5393 			continue;
5394 
5395 		err = init_prog_array_slots(obj, map);
5396 		if (err < 0)
5397 			return err;
5398 	}
5399 	return 0;
5400 }
5401 
map_set_def_max_entries(struct bpf_map * map)5402 static int map_set_def_max_entries(struct bpf_map *map)
5403 {
5404 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5405 		int nr_cpus;
5406 
5407 		nr_cpus = libbpf_num_possible_cpus();
5408 		if (nr_cpus < 0) {
5409 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5410 				map->name, nr_cpus);
5411 			return nr_cpus;
5412 		}
5413 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5414 		map->def.max_entries = nr_cpus;
5415 	}
5416 
5417 	return 0;
5418 }
5419 
5420 static int
bpf_object__create_maps(struct bpf_object * obj)5421 bpf_object__create_maps(struct bpf_object *obj)
5422 {
5423 	struct bpf_map *map;
5424 	char *cp, errmsg[STRERR_BUFSIZE];
5425 	unsigned int i, j;
5426 	int err;
5427 	bool retried;
5428 
5429 	for (i = 0; i < obj->nr_maps; i++) {
5430 		map = &obj->maps[i];
5431 
5432 		/* To support old kernels, we skip creating global data maps
5433 		 * (.rodata, .data, .kconfig, etc); later on, during program
5434 		 * loading, if we detect that at least one of the to-be-loaded
5435 		 * programs is referencing any global data map, we'll error
5436 		 * out with program name and relocation index logged.
5437 		 * This approach allows to accommodate Clang emitting
5438 		 * unnecessary .rodata.str1.1 sections for string literals,
5439 		 * but also it allows to have CO-RE applications that use
5440 		 * global variables in some of BPF programs, but not others.
5441 		 * If those global variable-using programs are not loaded at
5442 		 * runtime due to bpf_program__set_autoload(prog, false),
5443 		 * bpf_object loading will succeed just fine even on old
5444 		 * kernels.
5445 		 */
5446 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5447 			map->autocreate = false;
5448 
5449 		if (!map->autocreate) {
5450 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5451 			continue;
5452 		}
5453 
5454 		err = map_set_def_max_entries(map);
5455 		if (err)
5456 			goto err_out;
5457 
5458 		retried = false;
5459 retry:
5460 		if (map->pin_path) {
5461 			err = bpf_object__reuse_map(map);
5462 			if (err) {
5463 				pr_warn("map '%s': error reusing pinned map\n",
5464 					map->name);
5465 				goto err_out;
5466 			}
5467 			if (retried && map->fd < 0) {
5468 				pr_warn("map '%s': cannot find pinned map\n",
5469 					map->name);
5470 				err = -ENOENT;
5471 				goto err_out;
5472 			}
5473 		}
5474 
5475 		if (map->reused) {
5476 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5477 				 map->name, map->fd);
5478 		} else {
5479 			err = bpf_object__create_map(obj, map, false);
5480 			if (err)
5481 				goto err_out;
5482 
5483 			pr_debug("map '%s': created successfully, fd=%d\n",
5484 				 map->name, map->fd);
5485 
5486 			if (bpf_map__is_internal(map)) {
5487 				err = bpf_object__populate_internal_map(obj, map);
5488 				if (err < 0)
5489 					goto err_out;
5490 			} else if (map->def.type == BPF_MAP_TYPE_ARENA) {
5491 				map->mmaped = mmap((void *)(long)map->map_extra,
5492 						   bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
5493 						   map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED,
5494 						   map->fd, 0);
5495 				if (map->mmaped == MAP_FAILED) {
5496 					err = -errno;
5497 					map->mmaped = NULL;
5498 					pr_warn("map '%s': failed to mmap arena: %d\n",
5499 						map->name, err);
5500 					return err;
5501 				}
5502 				if (obj->arena_data) {
5503 					memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz);
5504 					zfree(&obj->arena_data);
5505 				}
5506 			}
5507 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5508 				err = init_map_in_map_slots(obj, map);
5509 				if (err < 0)
5510 					goto err_out;
5511 			}
5512 		}
5513 
5514 		if (map->pin_path && !map->pinned) {
5515 			err = bpf_map__pin(map, NULL);
5516 			if (err) {
5517 				if (!retried && err == -EEXIST) {
5518 					retried = true;
5519 					goto retry;
5520 				}
5521 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5522 					map->name, map->pin_path, err);
5523 				goto err_out;
5524 			}
5525 		}
5526 	}
5527 
5528 	return 0;
5529 
5530 err_out:
5531 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5532 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5533 	pr_perm_msg(err);
5534 	for (j = 0; j < i; j++)
5535 		zclose(obj->maps[j].fd);
5536 	return err;
5537 }
5538 
bpf_core_is_flavor_sep(const char * s)5539 static bool bpf_core_is_flavor_sep(const char *s)
5540 {
5541 	/* check X___Y name pattern, where X and Y are not underscores */
5542 	return s[0] != '_' &&				      /* X */
5543 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5544 	       s[4] != '_';				      /* Y */
5545 }
5546 
5547 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5548  * before last triple underscore. Struct name part after last triple
5549  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5550  */
bpf_core_essential_name_len(const char * name)5551 size_t bpf_core_essential_name_len(const char *name)
5552 {
5553 	size_t n = strlen(name);
5554 	int i;
5555 
5556 	for (i = n - 5; i >= 0; i--) {
5557 		if (bpf_core_is_flavor_sep(name + i))
5558 			return i + 1;
5559 	}
5560 	return n;
5561 }
5562 
bpf_core_free_cands(struct bpf_core_cand_list * cands)5563 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5564 {
5565 	if (!cands)
5566 		return;
5567 
5568 	free(cands->cands);
5569 	free(cands);
5570 }
5571 
bpf_core_add_cands(struct bpf_core_cand * local_cand,size_t local_essent_len,const struct btf * targ_btf,const char * targ_btf_name,int targ_start_id,struct bpf_core_cand_list * cands)5572 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5573 		       size_t local_essent_len,
5574 		       const struct btf *targ_btf,
5575 		       const char *targ_btf_name,
5576 		       int targ_start_id,
5577 		       struct bpf_core_cand_list *cands)
5578 {
5579 	struct bpf_core_cand *new_cands, *cand;
5580 	const struct btf_type *t, *local_t;
5581 	const char *targ_name, *local_name;
5582 	size_t targ_essent_len;
5583 	int n, i;
5584 
5585 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5586 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5587 
5588 	n = btf__type_cnt(targ_btf);
5589 	for (i = targ_start_id; i < n; i++) {
5590 		t = btf__type_by_id(targ_btf, i);
5591 		if (!btf_kind_core_compat(t, local_t))
5592 			continue;
5593 
5594 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5595 		if (str_is_empty(targ_name))
5596 			continue;
5597 
5598 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5599 		if (targ_essent_len != local_essent_len)
5600 			continue;
5601 
5602 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5603 			continue;
5604 
5605 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5606 			 local_cand->id, btf_kind_str(local_t),
5607 			 local_name, i, btf_kind_str(t), targ_name,
5608 			 targ_btf_name);
5609 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5610 					      sizeof(*cands->cands));
5611 		if (!new_cands)
5612 			return -ENOMEM;
5613 
5614 		cand = &new_cands[cands->len];
5615 		cand->btf = targ_btf;
5616 		cand->id = i;
5617 
5618 		cands->cands = new_cands;
5619 		cands->len++;
5620 	}
5621 	return 0;
5622 }
5623 
load_module_btfs(struct bpf_object * obj)5624 static int load_module_btfs(struct bpf_object *obj)
5625 {
5626 	struct bpf_btf_info info;
5627 	struct module_btf *mod_btf;
5628 	struct btf *btf;
5629 	char name[64];
5630 	__u32 id = 0, len;
5631 	int err, fd;
5632 
5633 	if (obj->btf_modules_loaded)
5634 		return 0;
5635 
5636 	if (obj->gen_loader)
5637 		return 0;
5638 
5639 	/* don't do this again, even if we find no module BTFs */
5640 	obj->btf_modules_loaded = true;
5641 
5642 	/* kernel too old to support module BTFs */
5643 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5644 		return 0;
5645 
5646 	while (true) {
5647 		err = bpf_btf_get_next_id(id, &id);
5648 		if (err && errno == ENOENT)
5649 			return 0;
5650 		if (err && errno == EPERM) {
5651 			pr_debug("skipping module BTFs loading, missing privileges\n");
5652 			return 0;
5653 		}
5654 		if (err) {
5655 			err = -errno;
5656 			pr_warn("failed to iterate BTF objects: %d\n", err);
5657 			return err;
5658 		}
5659 
5660 		fd = bpf_btf_get_fd_by_id(id);
5661 		if (fd < 0) {
5662 			if (errno == ENOENT)
5663 				continue; /* expected race: BTF was unloaded */
5664 			err = -errno;
5665 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5666 			return err;
5667 		}
5668 
5669 		len = sizeof(info);
5670 		memset(&info, 0, sizeof(info));
5671 		info.name = ptr_to_u64(name);
5672 		info.name_len = sizeof(name);
5673 
5674 		err = bpf_btf_get_info_by_fd(fd, &info, &len);
5675 		if (err) {
5676 			err = -errno;
5677 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5678 			goto err_out;
5679 		}
5680 
5681 		/* ignore non-module BTFs */
5682 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5683 			close(fd);
5684 			continue;
5685 		}
5686 
5687 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5688 		err = libbpf_get_error(btf);
5689 		if (err) {
5690 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5691 				name, id, err);
5692 			goto err_out;
5693 		}
5694 
5695 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5696 					sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5697 		if (err)
5698 			goto err_out;
5699 
5700 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5701 
5702 		mod_btf->btf = btf;
5703 		mod_btf->id = id;
5704 		mod_btf->fd = fd;
5705 		mod_btf->name = strdup(name);
5706 		if (!mod_btf->name) {
5707 			err = -ENOMEM;
5708 			goto err_out;
5709 		}
5710 		continue;
5711 
5712 err_out:
5713 		close(fd);
5714 		return err;
5715 	}
5716 
5717 	return 0;
5718 }
5719 
5720 static struct bpf_core_cand_list *
bpf_core_find_cands(struct bpf_object * obj,const struct btf * local_btf,__u32 local_type_id)5721 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5722 {
5723 	struct bpf_core_cand local_cand = {};
5724 	struct bpf_core_cand_list *cands;
5725 	const struct btf *main_btf;
5726 	const struct btf_type *local_t;
5727 	const char *local_name;
5728 	size_t local_essent_len;
5729 	int err, i;
5730 
5731 	local_cand.btf = local_btf;
5732 	local_cand.id = local_type_id;
5733 	local_t = btf__type_by_id(local_btf, local_type_id);
5734 	if (!local_t)
5735 		return ERR_PTR(-EINVAL);
5736 
5737 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5738 	if (str_is_empty(local_name))
5739 		return ERR_PTR(-EINVAL);
5740 	local_essent_len = bpf_core_essential_name_len(local_name);
5741 
5742 	cands = calloc(1, sizeof(*cands));
5743 	if (!cands)
5744 		return ERR_PTR(-ENOMEM);
5745 
5746 	/* Attempt to find target candidates in vmlinux BTF first */
5747 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5748 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5749 	if (err)
5750 		goto err_out;
5751 
5752 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5753 	if (cands->len)
5754 		return cands;
5755 
5756 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5757 	if (obj->btf_vmlinux_override)
5758 		return cands;
5759 
5760 	/* now look through module BTFs, trying to still find candidates */
5761 	err = load_module_btfs(obj);
5762 	if (err)
5763 		goto err_out;
5764 
5765 	for (i = 0; i < obj->btf_module_cnt; i++) {
5766 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5767 					 obj->btf_modules[i].btf,
5768 					 obj->btf_modules[i].name,
5769 					 btf__type_cnt(obj->btf_vmlinux),
5770 					 cands);
5771 		if (err)
5772 			goto err_out;
5773 	}
5774 
5775 	return cands;
5776 err_out:
5777 	bpf_core_free_cands(cands);
5778 	return ERR_PTR(err);
5779 }
5780 
5781 /* Check local and target types for compatibility. This check is used for
5782  * type-based CO-RE relocations and follow slightly different rules than
5783  * field-based relocations. This function assumes that root types were already
5784  * checked for name match. Beyond that initial root-level name check, names
5785  * are completely ignored. Compatibility rules are as follows:
5786  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5787  *     kind should match for local and target types (i.e., STRUCT is not
5788  *     compatible with UNION);
5789  *   - for ENUMs, the size is ignored;
5790  *   - for INT, size and signedness are ignored;
5791  *   - for ARRAY, dimensionality is ignored, element types are checked for
5792  *     compatibility recursively;
5793  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5794  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5795  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5796  *     number of input args and compatible return and argument types.
5797  * These rules are not set in stone and probably will be adjusted as we get
5798  * more experience with using BPF CO-RE relocations.
5799  */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5800 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5801 			      const struct btf *targ_btf, __u32 targ_id)
5802 {
5803 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5804 }
5805 
bpf_core_types_match(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5806 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5807 			 const struct btf *targ_btf, __u32 targ_id)
5808 {
5809 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5810 }
5811 
bpf_core_hash_fn(const long key,void * ctx)5812 static size_t bpf_core_hash_fn(const long key, void *ctx)
5813 {
5814 	return key;
5815 }
5816 
bpf_core_equal_fn(const long k1,const long k2,void * ctx)5817 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5818 {
5819 	return k1 == k2;
5820 }
5821 
record_relo_core(struct bpf_program * prog,const struct bpf_core_relo * core_relo,int insn_idx)5822 static int record_relo_core(struct bpf_program *prog,
5823 			    const struct bpf_core_relo *core_relo, int insn_idx)
5824 {
5825 	struct reloc_desc *relos, *relo;
5826 
5827 	relos = libbpf_reallocarray(prog->reloc_desc,
5828 				    prog->nr_reloc + 1, sizeof(*relos));
5829 	if (!relos)
5830 		return -ENOMEM;
5831 	relo = &relos[prog->nr_reloc];
5832 	relo->type = RELO_CORE;
5833 	relo->insn_idx = insn_idx;
5834 	relo->core_relo = core_relo;
5835 	prog->reloc_desc = relos;
5836 	prog->nr_reloc++;
5837 	return 0;
5838 }
5839 
find_relo_core(struct bpf_program * prog,int insn_idx)5840 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5841 {
5842 	struct reloc_desc *relo;
5843 	int i;
5844 
5845 	for (i = 0; i < prog->nr_reloc; i++) {
5846 		relo = &prog->reloc_desc[i];
5847 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5848 			continue;
5849 
5850 		return relo->core_relo;
5851 	}
5852 
5853 	return NULL;
5854 }
5855 
bpf_core_resolve_relo(struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct btf * local_btf,struct hashmap * cand_cache,struct bpf_core_relo_res * targ_res)5856 static int bpf_core_resolve_relo(struct bpf_program *prog,
5857 				 const struct bpf_core_relo *relo,
5858 				 int relo_idx,
5859 				 const struct btf *local_btf,
5860 				 struct hashmap *cand_cache,
5861 				 struct bpf_core_relo_res *targ_res)
5862 {
5863 	struct bpf_core_spec specs_scratch[3] = {};
5864 	struct bpf_core_cand_list *cands = NULL;
5865 	const char *prog_name = prog->name;
5866 	const struct btf_type *local_type;
5867 	const char *local_name;
5868 	__u32 local_id = relo->type_id;
5869 	int err;
5870 
5871 	local_type = btf__type_by_id(local_btf, local_id);
5872 	if (!local_type)
5873 		return -EINVAL;
5874 
5875 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5876 	if (!local_name)
5877 		return -EINVAL;
5878 
5879 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5880 	    !hashmap__find(cand_cache, local_id, &cands)) {
5881 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5882 		if (IS_ERR(cands)) {
5883 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5884 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5885 				local_name, PTR_ERR(cands));
5886 			return PTR_ERR(cands);
5887 		}
5888 		err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5889 		if (err) {
5890 			bpf_core_free_cands(cands);
5891 			return err;
5892 		}
5893 	}
5894 
5895 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5896 				       targ_res);
5897 }
5898 
5899 static int
bpf_object__relocate_core(struct bpf_object * obj,const char * targ_btf_path)5900 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5901 {
5902 	const struct btf_ext_info_sec *sec;
5903 	struct bpf_core_relo_res targ_res;
5904 	const struct bpf_core_relo *rec;
5905 	const struct btf_ext_info *seg;
5906 	struct hashmap_entry *entry;
5907 	struct hashmap *cand_cache = NULL;
5908 	struct bpf_program *prog;
5909 	struct bpf_insn *insn;
5910 	const char *sec_name;
5911 	int i, err = 0, insn_idx, sec_idx, sec_num;
5912 
5913 	if (obj->btf_ext->core_relo_info.len == 0)
5914 		return 0;
5915 
5916 	if (targ_btf_path) {
5917 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5918 		err = libbpf_get_error(obj->btf_vmlinux_override);
5919 		if (err) {
5920 			pr_warn("failed to parse target BTF: %d\n", err);
5921 			return err;
5922 		}
5923 	}
5924 
5925 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5926 	if (IS_ERR(cand_cache)) {
5927 		err = PTR_ERR(cand_cache);
5928 		goto out;
5929 	}
5930 
5931 	seg = &obj->btf_ext->core_relo_info;
5932 	sec_num = 0;
5933 	for_each_btf_ext_sec(seg, sec) {
5934 		sec_idx = seg->sec_idxs[sec_num];
5935 		sec_num++;
5936 
5937 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5938 		if (str_is_empty(sec_name)) {
5939 			err = -EINVAL;
5940 			goto out;
5941 		}
5942 
5943 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5944 
5945 		for_each_btf_ext_rec(seg, sec, i, rec) {
5946 			if (rec->insn_off % BPF_INSN_SZ)
5947 				return -EINVAL;
5948 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5949 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5950 			if (!prog) {
5951 				/* When __weak subprog is "overridden" by another instance
5952 				 * of the subprog from a different object file, linker still
5953 				 * appends all the .BTF.ext info that used to belong to that
5954 				 * eliminated subprogram.
5955 				 * This is similar to what x86-64 linker does for relocations.
5956 				 * So just ignore such relocations just like we ignore
5957 				 * subprog instructions when discovering subprograms.
5958 				 */
5959 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5960 					 sec_name, i, insn_idx);
5961 				continue;
5962 			}
5963 			/* no need to apply CO-RE relocation if the program is
5964 			 * not going to be loaded
5965 			 */
5966 			if (!prog->autoload)
5967 				continue;
5968 
5969 			/* adjust insn_idx from section frame of reference to the local
5970 			 * program's frame of reference; (sub-)program code is not yet
5971 			 * relocated, so it's enough to just subtract in-section offset
5972 			 */
5973 			insn_idx = insn_idx - prog->sec_insn_off;
5974 			if (insn_idx >= prog->insns_cnt)
5975 				return -EINVAL;
5976 			insn = &prog->insns[insn_idx];
5977 
5978 			err = record_relo_core(prog, rec, insn_idx);
5979 			if (err) {
5980 				pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5981 					prog->name, i, err);
5982 				goto out;
5983 			}
5984 
5985 			if (prog->obj->gen_loader)
5986 				continue;
5987 
5988 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5989 			if (err) {
5990 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5991 					prog->name, i, err);
5992 				goto out;
5993 			}
5994 
5995 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5996 			if (err) {
5997 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5998 					prog->name, i, insn_idx, err);
5999 				goto out;
6000 			}
6001 		}
6002 	}
6003 
6004 out:
6005 	/* obj->btf_vmlinux and module BTFs are freed after object load */
6006 	btf__free(obj->btf_vmlinux_override);
6007 	obj->btf_vmlinux_override = NULL;
6008 
6009 	if (!IS_ERR_OR_NULL(cand_cache)) {
6010 		hashmap__for_each_entry(cand_cache, entry, i) {
6011 			bpf_core_free_cands(entry->pvalue);
6012 		}
6013 		hashmap__free(cand_cache);
6014 	}
6015 	return err;
6016 }
6017 
6018 /* base map load ldimm64 special constant, used also for log fixup logic */
6019 #define POISON_LDIMM64_MAP_BASE 2001000000
6020 #define POISON_LDIMM64_MAP_PFX "200100"
6021 
poison_map_ldimm64(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int map_idx,const struct bpf_map * map)6022 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
6023 			       int insn_idx, struct bpf_insn *insn,
6024 			       int map_idx, const struct bpf_map *map)
6025 {
6026 	int i;
6027 
6028 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
6029 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
6030 
6031 	/* we turn single ldimm64 into two identical invalid calls */
6032 	for (i = 0; i < 2; i++) {
6033 		insn->code = BPF_JMP | BPF_CALL;
6034 		insn->dst_reg = 0;
6035 		insn->src_reg = 0;
6036 		insn->off = 0;
6037 		/* if this instruction is reachable (not a dead code),
6038 		 * verifier will complain with something like:
6039 		 * invalid func unknown#2001000123
6040 		 * where lower 123 is map index into obj->maps[] array
6041 		 */
6042 		insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
6043 
6044 		insn++;
6045 	}
6046 }
6047 
6048 /* unresolved kfunc call special constant, used also for log fixup logic */
6049 #define POISON_CALL_KFUNC_BASE 2002000000
6050 #define POISON_CALL_KFUNC_PFX "2002"
6051 
poison_kfunc_call(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int ext_idx,const struct extern_desc * ext)6052 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
6053 			      int insn_idx, struct bpf_insn *insn,
6054 			      int ext_idx, const struct extern_desc *ext)
6055 {
6056 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
6057 		 prog->name, relo_idx, insn_idx, ext->name);
6058 
6059 	/* we turn kfunc call into invalid helper call with identifiable constant */
6060 	insn->code = BPF_JMP | BPF_CALL;
6061 	insn->dst_reg = 0;
6062 	insn->src_reg = 0;
6063 	insn->off = 0;
6064 	/* if this instruction is reachable (not a dead code),
6065 	 * verifier will complain with something like:
6066 	 * invalid func unknown#2001000123
6067 	 * where lower 123 is extern index into obj->externs[] array
6068 	 */
6069 	insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
6070 }
6071 
6072 /* Relocate data references within program code:
6073  *  - map references;
6074  *  - global variable references;
6075  *  - extern references.
6076  */
6077 static int
bpf_object__relocate_data(struct bpf_object * obj,struct bpf_program * prog)6078 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6079 {
6080 	int i;
6081 
6082 	for (i = 0; i < prog->nr_reloc; i++) {
6083 		struct reloc_desc *relo = &prog->reloc_desc[i];
6084 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6085 		const struct bpf_map *map;
6086 		struct extern_desc *ext;
6087 
6088 		switch (relo->type) {
6089 		case RELO_LD64:
6090 			map = &obj->maps[relo->map_idx];
6091 			if (obj->gen_loader) {
6092 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
6093 				insn[0].imm = relo->map_idx;
6094 			} else if (map->autocreate) {
6095 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6096 				insn[0].imm = map->fd;
6097 			} else {
6098 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6099 						   relo->map_idx, map);
6100 			}
6101 			break;
6102 		case RELO_DATA:
6103 			map = &obj->maps[relo->map_idx];
6104 			insn[1].imm = insn[0].imm + relo->sym_off;
6105 			if (obj->gen_loader) {
6106 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6107 				insn[0].imm = relo->map_idx;
6108 			} else if (map->autocreate) {
6109 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6110 				insn[0].imm = map->fd;
6111 			} else {
6112 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6113 						   relo->map_idx, map);
6114 			}
6115 			break;
6116 		case RELO_EXTERN_LD64:
6117 			ext = &obj->externs[relo->ext_idx];
6118 			if (ext->type == EXT_KCFG) {
6119 				if (obj->gen_loader) {
6120 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6121 					insn[0].imm = obj->kconfig_map_idx;
6122 				} else {
6123 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6124 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6125 				}
6126 				insn[1].imm = ext->kcfg.data_off;
6127 			} else /* EXT_KSYM */ {
6128 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6129 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6130 					insn[0].imm = ext->ksym.kernel_btf_id;
6131 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6132 				} else { /* typeless ksyms or unresolved typed ksyms */
6133 					insn[0].imm = (__u32)ext->ksym.addr;
6134 					insn[1].imm = ext->ksym.addr >> 32;
6135 				}
6136 			}
6137 			break;
6138 		case RELO_EXTERN_CALL:
6139 			ext = &obj->externs[relo->ext_idx];
6140 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6141 			if (ext->is_set) {
6142 				insn[0].imm = ext->ksym.kernel_btf_id;
6143 				insn[0].off = ext->ksym.btf_fd_idx;
6144 			} else { /* unresolved weak kfunc call */
6145 				poison_kfunc_call(prog, i, relo->insn_idx, insn,
6146 						  relo->ext_idx, ext);
6147 			}
6148 			break;
6149 		case RELO_SUBPROG_ADDR:
6150 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6151 				pr_warn("prog '%s': relo #%d: bad insn\n",
6152 					prog->name, i);
6153 				return -EINVAL;
6154 			}
6155 			/* handled already */
6156 			break;
6157 		case RELO_CALL:
6158 			/* handled already */
6159 			break;
6160 		case RELO_CORE:
6161 			/* will be handled by bpf_program_record_relos() */
6162 			break;
6163 		default:
6164 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6165 				prog->name, i, relo->type);
6166 			return -EINVAL;
6167 		}
6168 	}
6169 
6170 	return 0;
6171 }
6172 
adjust_prog_btf_ext_info(const struct bpf_object * obj,const struct bpf_program * prog,const struct btf_ext_info * ext_info,void ** prog_info,__u32 * prog_rec_cnt,__u32 * prog_rec_sz)6173 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6174 				    const struct bpf_program *prog,
6175 				    const struct btf_ext_info *ext_info,
6176 				    void **prog_info, __u32 *prog_rec_cnt,
6177 				    __u32 *prog_rec_sz)
6178 {
6179 	void *copy_start = NULL, *copy_end = NULL;
6180 	void *rec, *rec_end, *new_prog_info;
6181 	const struct btf_ext_info_sec *sec;
6182 	size_t old_sz, new_sz;
6183 	int i, sec_num, sec_idx, off_adj;
6184 
6185 	sec_num = 0;
6186 	for_each_btf_ext_sec(ext_info, sec) {
6187 		sec_idx = ext_info->sec_idxs[sec_num];
6188 		sec_num++;
6189 		if (prog->sec_idx != sec_idx)
6190 			continue;
6191 
6192 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6193 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6194 
6195 			if (insn_off < prog->sec_insn_off)
6196 				continue;
6197 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6198 				break;
6199 
6200 			if (!copy_start)
6201 				copy_start = rec;
6202 			copy_end = rec + ext_info->rec_size;
6203 		}
6204 
6205 		if (!copy_start)
6206 			return -ENOENT;
6207 
6208 		/* append func/line info of a given (sub-)program to the main
6209 		 * program func/line info
6210 		 */
6211 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6212 		new_sz = old_sz + (copy_end - copy_start);
6213 		new_prog_info = realloc(*prog_info, new_sz);
6214 		if (!new_prog_info)
6215 			return -ENOMEM;
6216 		*prog_info = new_prog_info;
6217 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6218 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6219 
6220 		/* Kernel instruction offsets are in units of 8-byte
6221 		 * instructions, while .BTF.ext instruction offsets generated
6222 		 * by Clang are in units of bytes. So convert Clang offsets
6223 		 * into kernel offsets and adjust offset according to program
6224 		 * relocated position.
6225 		 */
6226 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6227 		rec = new_prog_info + old_sz;
6228 		rec_end = new_prog_info + new_sz;
6229 		for (; rec < rec_end; rec += ext_info->rec_size) {
6230 			__u32 *insn_off = rec;
6231 
6232 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6233 		}
6234 		*prog_rec_sz = ext_info->rec_size;
6235 		return 0;
6236 	}
6237 
6238 	return -ENOENT;
6239 }
6240 
6241 static int
reloc_prog_func_and_line_info(const struct bpf_object * obj,struct bpf_program * main_prog,const struct bpf_program * prog)6242 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6243 			      struct bpf_program *main_prog,
6244 			      const struct bpf_program *prog)
6245 {
6246 	int err;
6247 
6248 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6249 	 * support func/line info
6250 	 */
6251 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6252 		return 0;
6253 
6254 	/* only attempt func info relocation if main program's func_info
6255 	 * relocation was successful
6256 	 */
6257 	if (main_prog != prog && !main_prog->func_info)
6258 		goto line_info;
6259 
6260 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6261 				       &main_prog->func_info,
6262 				       &main_prog->func_info_cnt,
6263 				       &main_prog->func_info_rec_size);
6264 	if (err) {
6265 		if (err != -ENOENT) {
6266 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6267 				prog->name, err);
6268 			return err;
6269 		}
6270 		if (main_prog->func_info) {
6271 			/*
6272 			 * Some info has already been found but has problem
6273 			 * in the last btf_ext reloc. Must have to error out.
6274 			 */
6275 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6276 			return err;
6277 		}
6278 		/* Have problem loading the very first info. Ignore the rest. */
6279 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6280 			prog->name);
6281 	}
6282 
6283 line_info:
6284 	/* don't relocate line info if main program's relocation failed */
6285 	if (main_prog != prog && !main_prog->line_info)
6286 		return 0;
6287 
6288 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6289 				       &main_prog->line_info,
6290 				       &main_prog->line_info_cnt,
6291 				       &main_prog->line_info_rec_size);
6292 	if (err) {
6293 		if (err != -ENOENT) {
6294 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6295 				prog->name, err);
6296 			return err;
6297 		}
6298 		if (main_prog->line_info) {
6299 			/*
6300 			 * Some info has already been found but has problem
6301 			 * in the last btf_ext reloc. Must have to error out.
6302 			 */
6303 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6304 			return err;
6305 		}
6306 		/* Have problem loading the very first info. Ignore the rest. */
6307 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6308 			prog->name);
6309 	}
6310 	return 0;
6311 }
6312 
cmp_relo_by_insn_idx(const void * key,const void * elem)6313 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6314 {
6315 	size_t insn_idx = *(const size_t *)key;
6316 	const struct reloc_desc *relo = elem;
6317 
6318 	if (insn_idx == relo->insn_idx)
6319 		return 0;
6320 	return insn_idx < relo->insn_idx ? -1 : 1;
6321 }
6322 
find_prog_insn_relo(const struct bpf_program * prog,size_t insn_idx)6323 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6324 {
6325 	if (!prog->nr_reloc)
6326 		return NULL;
6327 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6328 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6329 }
6330 
append_subprog_relos(struct bpf_program * main_prog,struct bpf_program * subprog)6331 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6332 {
6333 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6334 	struct reloc_desc *relos;
6335 	int i;
6336 
6337 	if (main_prog == subprog)
6338 		return 0;
6339 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6340 	/* if new count is zero, reallocarray can return a valid NULL result;
6341 	 * in this case the previous pointer will be freed, so we *have to*
6342 	 * reassign old pointer to the new value (even if it's NULL)
6343 	 */
6344 	if (!relos && new_cnt)
6345 		return -ENOMEM;
6346 	if (subprog->nr_reloc)
6347 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6348 		       sizeof(*relos) * subprog->nr_reloc);
6349 
6350 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6351 		relos[i].insn_idx += subprog->sub_insn_off;
6352 	/* After insn_idx adjustment the 'relos' array is still sorted
6353 	 * by insn_idx and doesn't break bsearch.
6354 	 */
6355 	main_prog->reloc_desc = relos;
6356 	main_prog->nr_reloc = new_cnt;
6357 	return 0;
6358 }
6359 
6360 static int
bpf_object__append_subprog_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * subprog)6361 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6362 				struct bpf_program *subprog)
6363 {
6364        struct bpf_insn *insns;
6365        size_t new_cnt;
6366        int err;
6367 
6368        subprog->sub_insn_off = main_prog->insns_cnt;
6369 
6370        new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6371        insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6372        if (!insns) {
6373                pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6374                return -ENOMEM;
6375        }
6376        main_prog->insns = insns;
6377        main_prog->insns_cnt = new_cnt;
6378 
6379        memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6380               subprog->insns_cnt * sizeof(*insns));
6381 
6382        pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6383                 main_prog->name, subprog->insns_cnt, subprog->name);
6384 
6385        /* The subprog insns are now appended. Append its relos too. */
6386        err = append_subprog_relos(main_prog, subprog);
6387        if (err)
6388                return err;
6389        return 0;
6390 }
6391 
6392 static int
bpf_object__reloc_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * prog)6393 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6394 		       struct bpf_program *prog)
6395 {
6396 	size_t sub_insn_idx, insn_idx;
6397 	struct bpf_program *subprog;
6398 	struct reloc_desc *relo;
6399 	struct bpf_insn *insn;
6400 	int err;
6401 
6402 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6403 	if (err)
6404 		return err;
6405 
6406 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6407 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6408 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6409 			continue;
6410 
6411 		relo = find_prog_insn_relo(prog, insn_idx);
6412 		if (relo && relo->type == RELO_EXTERN_CALL)
6413 			/* kfunc relocations will be handled later
6414 			 * in bpf_object__relocate_data()
6415 			 */
6416 			continue;
6417 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6418 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6419 				prog->name, insn_idx, relo->type);
6420 			return -LIBBPF_ERRNO__RELOC;
6421 		}
6422 		if (relo) {
6423 			/* sub-program instruction index is a combination of
6424 			 * an offset of a symbol pointed to by relocation and
6425 			 * call instruction's imm field; for global functions,
6426 			 * call always has imm = -1, but for static functions
6427 			 * relocation is against STT_SECTION and insn->imm
6428 			 * points to a start of a static function
6429 			 *
6430 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6431 			 * the byte offset in the corresponding section.
6432 			 */
6433 			if (relo->type == RELO_CALL)
6434 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6435 			else
6436 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6437 		} else if (insn_is_pseudo_func(insn)) {
6438 			/*
6439 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6440 			 * functions are in the same section, so it shouldn't reach here.
6441 			 */
6442 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6443 				prog->name, insn_idx);
6444 			return -LIBBPF_ERRNO__RELOC;
6445 		} else {
6446 			/* if subprogram call is to a static function within
6447 			 * the same ELF section, there won't be any relocation
6448 			 * emitted, but it also means there is no additional
6449 			 * offset necessary, insns->imm is relative to
6450 			 * instruction's original position within the section
6451 			 */
6452 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6453 		}
6454 
6455 		/* we enforce that sub-programs should be in .text section */
6456 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6457 		if (!subprog) {
6458 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6459 				prog->name);
6460 			return -LIBBPF_ERRNO__RELOC;
6461 		}
6462 
6463 		/* if it's the first call instruction calling into this
6464 		 * subprogram (meaning this subprog hasn't been processed
6465 		 * yet) within the context of current main program:
6466 		 *   - append it at the end of main program's instructions blog;
6467 		 *   - process is recursively, while current program is put on hold;
6468 		 *   - if that subprogram calls some other not yet processes
6469 		 *   subprogram, same thing will happen recursively until
6470 		 *   there are no more unprocesses subprograms left to append
6471 		 *   and relocate.
6472 		 */
6473 		if (subprog->sub_insn_off == 0) {
6474 			err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6475 			if (err)
6476 				return err;
6477 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6478 			if (err)
6479 				return err;
6480 		}
6481 
6482 		/* main_prog->insns memory could have been re-allocated, so
6483 		 * calculate pointer again
6484 		 */
6485 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6486 		/* calculate correct instruction position within current main
6487 		 * prog; each main prog can have a different set of
6488 		 * subprograms appended (potentially in different order as
6489 		 * well), so position of any subprog can be different for
6490 		 * different main programs
6491 		 */
6492 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6493 
6494 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6495 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6496 	}
6497 
6498 	return 0;
6499 }
6500 
6501 /*
6502  * Relocate sub-program calls.
6503  *
6504  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6505  * main prog) is processed separately. For each subprog (non-entry functions,
6506  * that can be called from either entry progs or other subprogs) gets their
6507  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6508  * hasn't been yet appended and relocated within current main prog. Once its
6509  * relocated, sub_insn_off will point at the position within current main prog
6510  * where given subprog was appended. This will further be used to relocate all
6511  * the call instructions jumping into this subprog.
6512  *
6513  * We start with main program and process all call instructions. If the call
6514  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6515  * is zero), subprog instructions are appended at the end of main program's
6516  * instruction array. Then main program is "put on hold" while we recursively
6517  * process newly appended subprogram. If that subprogram calls into another
6518  * subprogram that hasn't been appended, new subprogram is appended again to
6519  * the *main* prog's instructions (subprog's instructions are always left
6520  * untouched, as they need to be in unmodified state for subsequent main progs
6521  * and subprog instructions are always sent only as part of a main prog) and
6522  * the process continues recursively. Once all the subprogs called from a main
6523  * prog or any of its subprogs are appended (and relocated), all their
6524  * positions within finalized instructions array are known, so it's easy to
6525  * rewrite call instructions with correct relative offsets, corresponding to
6526  * desired target subprog.
6527  *
6528  * Its important to realize that some subprogs might not be called from some
6529  * main prog and any of its called/used subprogs. Those will keep their
6530  * subprog->sub_insn_off as zero at all times and won't be appended to current
6531  * main prog and won't be relocated within the context of current main prog.
6532  * They might still be used from other main progs later.
6533  *
6534  * Visually this process can be shown as below. Suppose we have two main
6535  * programs mainA and mainB and BPF object contains three subprogs: subA,
6536  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6537  * subC both call subB:
6538  *
6539  *        +--------+ +-------+
6540  *        |        v v       |
6541  *     +--+---+ +--+-+-+ +---+--+
6542  *     | subA | | subB | | subC |
6543  *     +--+---+ +------+ +---+--+
6544  *        ^                  ^
6545  *        |                  |
6546  *    +---+-------+   +------+----+
6547  *    |   mainA   |   |   mainB   |
6548  *    +-----------+   +-----------+
6549  *
6550  * We'll start relocating mainA, will find subA, append it and start
6551  * processing sub A recursively:
6552  *
6553  *    +-----------+------+
6554  *    |   mainA   | subA |
6555  *    +-----------+------+
6556  *
6557  * At this point we notice that subB is used from subA, so we append it and
6558  * relocate (there are no further subcalls from subB):
6559  *
6560  *    +-----------+------+------+
6561  *    |   mainA   | subA | subB |
6562  *    +-----------+------+------+
6563  *
6564  * At this point, we relocate subA calls, then go one level up and finish with
6565  * relocatin mainA calls. mainA is done.
6566  *
6567  * For mainB process is similar but results in different order. We start with
6568  * mainB and skip subA and subB, as mainB never calls them (at least
6569  * directly), but we see subC is needed, so we append and start processing it:
6570  *
6571  *    +-----------+------+
6572  *    |   mainB   | subC |
6573  *    +-----------+------+
6574  * Now we see subC needs subB, so we go back to it, append and relocate it:
6575  *
6576  *    +-----------+------+------+
6577  *    |   mainB   | subC | subB |
6578  *    +-----------+------+------+
6579  *
6580  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6581  */
6582 static int
bpf_object__relocate_calls(struct bpf_object * obj,struct bpf_program * prog)6583 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6584 {
6585 	struct bpf_program *subprog;
6586 	int i, err;
6587 
6588 	/* mark all subprogs as not relocated (yet) within the context of
6589 	 * current main program
6590 	 */
6591 	for (i = 0; i < obj->nr_programs; i++) {
6592 		subprog = &obj->programs[i];
6593 		if (!prog_is_subprog(obj, subprog))
6594 			continue;
6595 
6596 		subprog->sub_insn_off = 0;
6597 	}
6598 
6599 	err = bpf_object__reloc_code(obj, prog, prog);
6600 	if (err)
6601 		return err;
6602 
6603 	return 0;
6604 }
6605 
6606 static void
bpf_object__free_relocs(struct bpf_object * obj)6607 bpf_object__free_relocs(struct bpf_object *obj)
6608 {
6609 	struct bpf_program *prog;
6610 	int i;
6611 
6612 	/* free up relocation descriptors */
6613 	for (i = 0; i < obj->nr_programs; i++) {
6614 		prog = &obj->programs[i];
6615 		zfree(&prog->reloc_desc);
6616 		prog->nr_reloc = 0;
6617 	}
6618 }
6619 
cmp_relocs(const void * _a,const void * _b)6620 static int cmp_relocs(const void *_a, const void *_b)
6621 {
6622 	const struct reloc_desc *a = _a;
6623 	const struct reloc_desc *b = _b;
6624 
6625 	if (a->insn_idx != b->insn_idx)
6626 		return a->insn_idx < b->insn_idx ? -1 : 1;
6627 
6628 	/* no two relocations should have the same insn_idx, but ... */
6629 	if (a->type != b->type)
6630 		return a->type < b->type ? -1 : 1;
6631 
6632 	return 0;
6633 }
6634 
bpf_object__sort_relos(struct bpf_object * obj)6635 static void bpf_object__sort_relos(struct bpf_object *obj)
6636 {
6637 	int i;
6638 
6639 	for (i = 0; i < obj->nr_programs; i++) {
6640 		struct bpf_program *p = &obj->programs[i];
6641 
6642 		if (!p->nr_reloc)
6643 			continue;
6644 
6645 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6646 	}
6647 }
6648 
bpf_prog_assign_exc_cb(struct bpf_object * obj,struct bpf_program * prog)6649 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog)
6650 {
6651 	const char *str = "exception_callback:";
6652 	size_t pfx_len = strlen(str);
6653 	int i, j, n;
6654 
6655 	if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG))
6656 		return 0;
6657 
6658 	n = btf__type_cnt(obj->btf);
6659 	for (i = 1; i < n; i++) {
6660 		const char *name;
6661 		struct btf_type *t;
6662 
6663 		t = btf_type_by_id(obj->btf, i);
6664 		if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
6665 			continue;
6666 
6667 		name = btf__str_by_offset(obj->btf, t->name_off);
6668 		if (strncmp(name, str, pfx_len) != 0)
6669 			continue;
6670 
6671 		t = btf_type_by_id(obj->btf, t->type);
6672 		if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
6673 			pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
6674 				prog->name);
6675 			return -EINVAL;
6676 		}
6677 		if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0)
6678 			continue;
6679 		/* Multiple callbacks are specified for the same prog,
6680 		 * the verifier will eventually return an error for this
6681 		 * case, hence simply skip appending a subprog.
6682 		 */
6683 		if (prog->exception_cb_idx >= 0) {
6684 			prog->exception_cb_idx = -1;
6685 			break;
6686 		}
6687 
6688 		name += pfx_len;
6689 		if (str_is_empty(name)) {
6690 			pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
6691 				prog->name);
6692 			return -EINVAL;
6693 		}
6694 
6695 		for (j = 0; j < obj->nr_programs; j++) {
6696 			struct bpf_program *subprog = &obj->programs[j];
6697 
6698 			if (!prog_is_subprog(obj, subprog))
6699 				continue;
6700 			if (strcmp(name, subprog->name) != 0)
6701 				continue;
6702 			/* Enforce non-hidden, as from verifier point of
6703 			 * view it expects global functions, whereas the
6704 			 * mark_btf_static fixes up linkage as static.
6705 			 */
6706 			if (!subprog->sym_global || subprog->mark_btf_static) {
6707 				pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
6708 					prog->name, subprog->name);
6709 				return -EINVAL;
6710 			}
6711 			/* Let's see if we already saw a static exception callback with the same name */
6712 			if (prog->exception_cb_idx >= 0) {
6713 				pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
6714 					prog->name, subprog->name);
6715 				return -EINVAL;
6716 			}
6717 			prog->exception_cb_idx = j;
6718 			break;
6719 		}
6720 
6721 		if (prog->exception_cb_idx >= 0)
6722 			continue;
6723 
6724 		pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
6725 		return -ENOENT;
6726 	}
6727 
6728 	return 0;
6729 }
6730 
6731 static struct {
6732 	enum bpf_prog_type prog_type;
6733 	const char *ctx_name;
6734 } global_ctx_map[] = {
6735 	{ BPF_PROG_TYPE_CGROUP_DEVICE,           "bpf_cgroup_dev_ctx" },
6736 	{ BPF_PROG_TYPE_CGROUP_SKB,              "__sk_buff" },
6737 	{ BPF_PROG_TYPE_CGROUP_SOCK,             "bpf_sock" },
6738 	{ BPF_PROG_TYPE_CGROUP_SOCK_ADDR,        "bpf_sock_addr" },
6739 	{ BPF_PROG_TYPE_CGROUP_SOCKOPT,          "bpf_sockopt" },
6740 	{ BPF_PROG_TYPE_CGROUP_SYSCTL,           "bpf_sysctl" },
6741 	{ BPF_PROG_TYPE_FLOW_DISSECTOR,          "__sk_buff" },
6742 	{ BPF_PROG_TYPE_KPROBE,                  "bpf_user_pt_regs_t" },
6743 	{ BPF_PROG_TYPE_LWT_IN,                  "__sk_buff" },
6744 	{ BPF_PROG_TYPE_LWT_OUT,                 "__sk_buff" },
6745 	{ BPF_PROG_TYPE_LWT_SEG6LOCAL,           "__sk_buff" },
6746 	{ BPF_PROG_TYPE_LWT_XMIT,                "__sk_buff" },
6747 	{ BPF_PROG_TYPE_NETFILTER,               "bpf_nf_ctx" },
6748 	{ BPF_PROG_TYPE_PERF_EVENT,              "bpf_perf_event_data" },
6749 	{ BPF_PROG_TYPE_RAW_TRACEPOINT,          "bpf_raw_tracepoint_args" },
6750 	{ BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" },
6751 	{ BPF_PROG_TYPE_SCHED_ACT,               "__sk_buff" },
6752 	{ BPF_PROG_TYPE_SCHED_CLS,               "__sk_buff" },
6753 	{ BPF_PROG_TYPE_SK_LOOKUP,               "bpf_sk_lookup" },
6754 	{ BPF_PROG_TYPE_SK_MSG,                  "sk_msg_md" },
6755 	{ BPF_PROG_TYPE_SK_REUSEPORT,            "sk_reuseport_md" },
6756 	{ BPF_PROG_TYPE_SK_SKB,                  "__sk_buff" },
6757 	{ BPF_PROG_TYPE_SOCK_OPS,                "bpf_sock_ops" },
6758 	{ BPF_PROG_TYPE_SOCKET_FILTER,           "__sk_buff" },
6759 	{ BPF_PROG_TYPE_XDP,                     "xdp_md" },
6760 	/* all other program types don't have "named" context structs */
6761 };
6762 
6763 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef,
6764  * for below __builtin_types_compatible_p() checks;
6765  * with this approach we don't need any extra arch-specific #ifdef guards
6766  */
6767 struct pt_regs;
6768 struct user_pt_regs;
6769 struct user_regs_struct;
6770 
need_func_arg_type_fixup(const struct btf * btf,const struct bpf_program * prog,const char * subprog_name,int arg_idx,int arg_type_id,const char * ctx_name)6771 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog,
6772 				     const char *subprog_name, int arg_idx,
6773 				     int arg_type_id, const char *ctx_name)
6774 {
6775 	const struct btf_type *t;
6776 	const char *tname;
6777 
6778 	/* check if existing parameter already matches verifier expectations */
6779 	t = skip_mods_and_typedefs(btf, arg_type_id, NULL);
6780 	if (!btf_is_ptr(t))
6781 		goto out_warn;
6782 
6783 	/* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe
6784 	 * and perf_event programs, so check this case early on and forget
6785 	 * about it for subsequent checks
6786 	 */
6787 	while (btf_is_mod(t))
6788 		t = btf__type_by_id(btf, t->type);
6789 	if (btf_is_typedef(t) &&
6790 	    (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) {
6791 		tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6792 		if (strcmp(tname, "bpf_user_pt_regs_t") == 0)
6793 			return false; /* canonical type for kprobe/perf_event */
6794 	}
6795 
6796 	/* now we can ignore typedefs moving forward */
6797 	t = skip_mods_and_typedefs(btf, t->type, NULL);
6798 
6799 	/* if it's `void *`, definitely fix up BTF info */
6800 	if (btf_is_void(t))
6801 		return true;
6802 
6803 	/* if it's already proper canonical type, no need to fix up */
6804 	tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6805 	if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0)
6806 		return false;
6807 
6808 	/* special cases */
6809 	switch (prog->type) {
6810 	case BPF_PROG_TYPE_KPROBE:
6811 		/* `struct pt_regs *` is expected, but we need to fix up */
6812 		if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6813 			return true;
6814 		break;
6815 	case BPF_PROG_TYPE_PERF_EVENT:
6816 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6817 		    btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6818 			return true;
6819 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6820 		    btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6821 			return true;
6822 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6823 		    btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6824 			return true;
6825 		break;
6826 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6827 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6828 		/* allow u64* as ctx */
6829 		if (btf_is_int(t) && t->size == 8)
6830 			return true;
6831 		break;
6832 	default:
6833 		break;
6834 	}
6835 
6836 out_warn:
6837 	pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n",
6838 		prog->name, subprog_name, arg_idx, ctx_name);
6839 	return false;
6840 }
6841 
clone_func_btf_info(struct btf * btf,int orig_fn_id,struct bpf_program * prog)6842 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog)
6843 {
6844 	int fn_id, fn_proto_id, ret_type_id, orig_proto_id;
6845 	int i, err, arg_cnt, fn_name_off, linkage;
6846 	struct btf_type *fn_t, *fn_proto_t, *t;
6847 	struct btf_param *p;
6848 
6849 	/* caller already validated FUNC -> FUNC_PROTO validity */
6850 	fn_t = btf_type_by_id(btf, orig_fn_id);
6851 	fn_proto_t = btf_type_by_id(btf, fn_t->type);
6852 
6853 	/* Note that each btf__add_xxx() operation invalidates
6854 	 * all btf_type and string pointers, so we need to be
6855 	 * very careful when cloning BTF types. BTF type
6856 	 * pointers have to be always refetched. And to avoid
6857 	 * problems with invalidated string pointers, we
6858 	 * add empty strings initially, then just fix up
6859 	 * name_off offsets in place. Offsets are stable for
6860 	 * existing strings, so that works out.
6861 	 */
6862 	fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */
6863 	linkage = btf_func_linkage(fn_t);
6864 	orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */
6865 	ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */
6866 	arg_cnt = btf_vlen(fn_proto_t);
6867 
6868 	/* clone FUNC_PROTO and its params */
6869 	fn_proto_id = btf__add_func_proto(btf, ret_type_id);
6870 	if (fn_proto_id < 0)
6871 		return -EINVAL;
6872 
6873 	for (i = 0; i < arg_cnt; i++) {
6874 		int name_off;
6875 
6876 		/* copy original parameter data */
6877 		t = btf_type_by_id(btf, orig_proto_id);
6878 		p = &btf_params(t)[i];
6879 		name_off = p->name_off;
6880 
6881 		err = btf__add_func_param(btf, "", p->type);
6882 		if (err)
6883 			return err;
6884 
6885 		fn_proto_t = btf_type_by_id(btf, fn_proto_id);
6886 		p = &btf_params(fn_proto_t)[i];
6887 		p->name_off = name_off; /* use remembered str offset */
6888 	}
6889 
6890 	/* clone FUNC now, btf__add_func() enforces non-empty name, so use
6891 	 * entry program's name as a placeholder, which we replace immediately
6892 	 * with original name_off
6893 	 */
6894 	fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id);
6895 	if (fn_id < 0)
6896 		return -EINVAL;
6897 
6898 	fn_t = btf_type_by_id(btf, fn_id);
6899 	fn_t->name_off = fn_name_off; /* reuse original string */
6900 
6901 	return fn_id;
6902 }
6903 
6904 /* Check if main program or global subprog's function prototype has `arg:ctx`
6905  * argument tags, and, if necessary, substitute correct type to match what BPF
6906  * verifier would expect, taking into account specific program type. This
6907  * allows to support __arg_ctx tag transparently on old kernels that don't yet
6908  * have a native support for it in the verifier, making user's life much
6909  * easier.
6910  */
bpf_program_fixup_func_info(struct bpf_object * obj,struct bpf_program * prog)6911 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog)
6912 {
6913 	const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name;
6914 	struct bpf_func_info_min *func_rec;
6915 	struct btf_type *fn_t, *fn_proto_t;
6916 	struct btf *btf = obj->btf;
6917 	const struct btf_type *t;
6918 	struct btf_param *p;
6919 	int ptr_id = 0, struct_id, tag_id, orig_fn_id;
6920 	int i, n, arg_idx, arg_cnt, err, rec_idx;
6921 	int *orig_ids;
6922 
6923 	/* no .BTF.ext, no problem */
6924 	if (!obj->btf_ext || !prog->func_info)
6925 		return 0;
6926 
6927 	/* don't do any fix ups if kernel natively supports __arg_ctx */
6928 	if (kernel_supports(obj, FEAT_ARG_CTX_TAG))
6929 		return 0;
6930 
6931 	/* some BPF program types just don't have named context structs, so
6932 	 * this fallback mechanism doesn't work for them
6933 	 */
6934 	for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) {
6935 		if (global_ctx_map[i].prog_type != prog->type)
6936 			continue;
6937 		ctx_name = global_ctx_map[i].ctx_name;
6938 		break;
6939 	}
6940 	if (!ctx_name)
6941 		return 0;
6942 
6943 	/* remember original func BTF IDs to detect if we already cloned them */
6944 	orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids));
6945 	if (!orig_ids)
6946 		return -ENOMEM;
6947 	for (i = 0; i < prog->func_info_cnt; i++) {
6948 		func_rec = prog->func_info + prog->func_info_rec_size * i;
6949 		orig_ids[i] = func_rec->type_id;
6950 	}
6951 
6952 	/* go through each DECL_TAG with "arg:ctx" and see if it points to one
6953 	 * of our subprogs; if yes and subprog is global and needs adjustment,
6954 	 * clone and adjust FUNC -> FUNC_PROTO combo
6955 	 */
6956 	for (i = 1, n = btf__type_cnt(btf); i < n; i++) {
6957 		/* only DECL_TAG with "arg:ctx" value are interesting */
6958 		t = btf__type_by_id(btf, i);
6959 		if (!btf_is_decl_tag(t))
6960 			continue;
6961 		if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0)
6962 			continue;
6963 
6964 		/* only global funcs need adjustment, if at all */
6965 		orig_fn_id = t->type;
6966 		fn_t = btf_type_by_id(btf, orig_fn_id);
6967 		if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL)
6968 			continue;
6969 
6970 		/* sanity check FUNC -> FUNC_PROTO chain, just in case */
6971 		fn_proto_t = btf_type_by_id(btf, fn_t->type);
6972 		if (!fn_proto_t || !btf_is_func_proto(fn_proto_t))
6973 			continue;
6974 
6975 		/* find corresponding func_info record */
6976 		func_rec = NULL;
6977 		for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) {
6978 			if (orig_ids[rec_idx] == t->type) {
6979 				func_rec = prog->func_info + prog->func_info_rec_size * rec_idx;
6980 				break;
6981 			}
6982 		}
6983 		/* current main program doesn't call into this subprog */
6984 		if (!func_rec)
6985 			continue;
6986 
6987 		/* some more sanity checking of DECL_TAG */
6988 		arg_cnt = btf_vlen(fn_proto_t);
6989 		arg_idx = btf_decl_tag(t)->component_idx;
6990 		if (arg_idx < 0 || arg_idx >= arg_cnt)
6991 			continue;
6992 
6993 		/* check if we should fix up argument type */
6994 		p = &btf_params(fn_proto_t)[arg_idx];
6995 		fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>";
6996 		if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name))
6997 			continue;
6998 
6999 		/* clone fn/fn_proto, unless we already did it for another arg */
7000 		if (func_rec->type_id == orig_fn_id) {
7001 			int fn_id;
7002 
7003 			fn_id = clone_func_btf_info(btf, orig_fn_id, prog);
7004 			if (fn_id < 0) {
7005 				err = fn_id;
7006 				goto err_out;
7007 			}
7008 
7009 			/* point func_info record to a cloned FUNC type */
7010 			func_rec->type_id = fn_id;
7011 		}
7012 
7013 		/* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument;
7014 		 * we do it just once per main BPF program, as all global
7015 		 * funcs share the same program type, so need only PTR ->
7016 		 * STRUCT type chain
7017 		 */
7018 		if (ptr_id == 0) {
7019 			struct_id = btf__add_struct(btf, ctx_name, 0);
7020 			ptr_id = btf__add_ptr(btf, struct_id);
7021 			if (ptr_id < 0 || struct_id < 0) {
7022 				err = -EINVAL;
7023 				goto err_out;
7024 			}
7025 		}
7026 
7027 		/* for completeness, clone DECL_TAG and point it to cloned param */
7028 		tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx);
7029 		if (tag_id < 0) {
7030 			err = -EINVAL;
7031 			goto err_out;
7032 		}
7033 
7034 		/* all the BTF manipulations invalidated pointers, refetch them */
7035 		fn_t = btf_type_by_id(btf, func_rec->type_id);
7036 		fn_proto_t = btf_type_by_id(btf, fn_t->type);
7037 
7038 		/* fix up type ID pointed to by param */
7039 		p = &btf_params(fn_proto_t)[arg_idx];
7040 		p->type = ptr_id;
7041 	}
7042 
7043 	free(orig_ids);
7044 	return 0;
7045 err_out:
7046 	free(orig_ids);
7047 	return err;
7048 }
7049 
bpf_object__relocate(struct bpf_object * obj,const char * targ_btf_path)7050 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
7051 {
7052 	struct bpf_program *prog;
7053 	size_t i, j;
7054 	int err;
7055 
7056 	if (obj->btf_ext) {
7057 		err = bpf_object__relocate_core(obj, targ_btf_path);
7058 		if (err) {
7059 			pr_warn("failed to perform CO-RE relocations: %d\n",
7060 				err);
7061 			return err;
7062 		}
7063 		bpf_object__sort_relos(obj);
7064 	}
7065 
7066 	/* Before relocating calls pre-process relocations and mark
7067 	 * few ld_imm64 instructions that points to subprogs.
7068 	 * Otherwise bpf_object__reloc_code() later would have to consider
7069 	 * all ld_imm64 insns as relocation candidates. That would
7070 	 * reduce relocation speed, since amount of find_prog_insn_relo()
7071 	 * would increase and most of them will fail to find a relo.
7072 	 */
7073 	for (i = 0; i < obj->nr_programs; i++) {
7074 		prog = &obj->programs[i];
7075 		for (j = 0; j < prog->nr_reloc; j++) {
7076 			struct reloc_desc *relo = &prog->reloc_desc[j];
7077 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
7078 
7079 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
7080 			if (relo->type == RELO_SUBPROG_ADDR)
7081 				insn[0].src_reg = BPF_PSEUDO_FUNC;
7082 		}
7083 	}
7084 
7085 	/* relocate subprogram calls and append used subprograms to main
7086 	 * programs; each copy of subprogram code needs to be relocated
7087 	 * differently for each main program, because its code location might
7088 	 * have changed.
7089 	 * Append subprog relos to main programs to allow data relos to be
7090 	 * processed after text is completely relocated.
7091 	 */
7092 	for (i = 0; i < obj->nr_programs; i++) {
7093 		prog = &obj->programs[i];
7094 		/* sub-program's sub-calls are relocated within the context of
7095 		 * its main program only
7096 		 */
7097 		if (prog_is_subprog(obj, prog))
7098 			continue;
7099 		if (!prog->autoload)
7100 			continue;
7101 
7102 		err = bpf_object__relocate_calls(obj, prog);
7103 		if (err) {
7104 			pr_warn("prog '%s': failed to relocate calls: %d\n",
7105 				prog->name, err);
7106 			return err;
7107 		}
7108 
7109 		err = bpf_prog_assign_exc_cb(obj, prog);
7110 		if (err)
7111 			return err;
7112 		/* Now, also append exception callback if it has not been done already. */
7113 		if (prog->exception_cb_idx >= 0) {
7114 			struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
7115 
7116 			/* Calling exception callback directly is disallowed, which the
7117 			 * verifier will reject later. In case it was processed already,
7118 			 * we can skip this step, otherwise for all other valid cases we
7119 			 * have to append exception callback now.
7120 			 */
7121 			if (subprog->sub_insn_off == 0) {
7122 				err = bpf_object__append_subprog_code(obj, prog, subprog);
7123 				if (err)
7124 					return err;
7125 				err = bpf_object__reloc_code(obj, prog, subprog);
7126 				if (err)
7127 					return err;
7128 			}
7129 		}
7130 	}
7131 	for (i = 0; i < obj->nr_programs; i++) {
7132 		prog = &obj->programs[i];
7133 		if (prog_is_subprog(obj, prog))
7134 			continue;
7135 		if (!prog->autoload)
7136 			continue;
7137 
7138 		/* Process data relos for main programs */
7139 		err = bpf_object__relocate_data(obj, prog);
7140 		if (err) {
7141 			pr_warn("prog '%s': failed to relocate data references: %d\n",
7142 				prog->name, err);
7143 			return err;
7144 		}
7145 
7146 		/* Fix up .BTF.ext information, if necessary */
7147 		err = bpf_program_fixup_func_info(obj, prog);
7148 		if (err) {
7149 			pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %d\n",
7150 				prog->name, err);
7151 			return err;
7152 		}
7153 	}
7154 
7155 	return 0;
7156 }
7157 
7158 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7159 					    Elf64_Shdr *shdr, Elf_Data *data);
7160 
bpf_object__collect_map_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)7161 static int bpf_object__collect_map_relos(struct bpf_object *obj,
7162 					 Elf64_Shdr *shdr, Elf_Data *data)
7163 {
7164 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7165 	int i, j, nrels, new_sz;
7166 	const struct btf_var_secinfo *vi = NULL;
7167 	const struct btf_type *sec, *var, *def;
7168 	struct bpf_map *map = NULL, *targ_map = NULL;
7169 	struct bpf_program *targ_prog = NULL;
7170 	bool is_prog_array, is_map_in_map;
7171 	const struct btf_member *member;
7172 	const char *name, *mname, *type;
7173 	unsigned int moff;
7174 	Elf64_Sym *sym;
7175 	Elf64_Rel *rel;
7176 	void *tmp;
7177 
7178 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7179 		return -EINVAL;
7180 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7181 	if (!sec)
7182 		return -EINVAL;
7183 
7184 	nrels = shdr->sh_size / shdr->sh_entsize;
7185 	for (i = 0; i < nrels; i++) {
7186 		rel = elf_rel_by_idx(data, i);
7187 		if (!rel) {
7188 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7189 			return -LIBBPF_ERRNO__FORMAT;
7190 		}
7191 
7192 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
7193 		if (!sym) {
7194 			pr_warn(".maps relo #%d: symbol %zx not found\n",
7195 				i, (size_t)ELF64_R_SYM(rel->r_info));
7196 			return -LIBBPF_ERRNO__FORMAT;
7197 		}
7198 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
7199 
7200 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
7201 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
7202 			 (size_t)rel->r_offset, sym->st_name, name);
7203 
7204 		for (j = 0; j < obj->nr_maps; j++) {
7205 			map = &obj->maps[j];
7206 			if (map->sec_idx != obj->efile.btf_maps_shndx)
7207 				continue;
7208 
7209 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
7210 			if (vi->offset <= rel->r_offset &&
7211 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7212 				break;
7213 		}
7214 		if (j == obj->nr_maps) {
7215 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
7216 				i, name, (size_t)rel->r_offset);
7217 			return -EINVAL;
7218 		}
7219 
7220 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
7221 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
7222 		type = is_map_in_map ? "map" : "prog";
7223 		if (is_map_in_map) {
7224 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
7225 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7226 					i, name);
7227 				return -LIBBPF_ERRNO__RELOC;
7228 			}
7229 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7230 			    map->def.key_size != sizeof(int)) {
7231 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7232 					i, map->name, sizeof(int));
7233 				return -EINVAL;
7234 			}
7235 			targ_map = bpf_object__find_map_by_name(obj, name);
7236 			if (!targ_map) {
7237 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
7238 					i, name);
7239 				return -ESRCH;
7240 			}
7241 		} else if (is_prog_array) {
7242 			targ_prog = bpf_object__find_program_by_name(obj, name);
7243 			if (!targ_prog) {
7244 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
7245 					i, name);
7246 				return -ESRCH;
7247 			}
7248 			if (targ_prog->sec_idx != sym->st_shndx ||
7249 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
7250 			    prog_is_subprog(obj, targ_prog)) {
7251 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
7252 					i, name);
7253 				return -LIBBPF_ERRNO__RELOC;
7254 			}
7255 		} else {
7256 			return -EINVAL;
7257 		}
7258 
7259 		var = btf__type_by_id(obj->btf, vi->type);
7260 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7261 		if (btf_vlen(def) == 0)
7262 			return -EINVAL;
7263 		member = btf_members(def) + btf_vlen(def) - 1;
7264 		mname = btf__name_by_offset(obj->btf, member->name_off);
7265 		if (strcmp(mname, "values"))
7266 			return -EINVAL;
7267 
7268 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7269 		if (rel->r_offset - vi->offset < moff)
7270 			return -EINVAL;
7271 
7272 		moff = rel->r_offset - vi->offset - moff;
7273 		/* here we use BPF pointer size, which is always 64 bit, as we
7274 		 * are parsing ELF that was built for BPF target
7275 		 */
7276 		if (moff % bpf_ptr_sz)
7277 			return -EINVAL;
7278 		moff /= bpf_ptr_sz;
7279 		if (moff >= map->init_slots_sz) {
7280 			new_sz = moff + 1;
7281 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7282 			if (!tmp)
7283 				return -ENOMEM;
7284 			map->init_slots = tmp;
7285 			memset(map->init_slots + map->init_slots_sz, 0,
7286 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
7287 			map->init_slots_sz = new_sz;
7288 		}
7289 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
7290 
7291 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
7292 			 i, map->name, moff, type, name);
7293 	}
7294 
7295 	return 0;
7296 }
7297 
bpf_object__collect_relos(struct bpf_object * obj)7298 static int bpf_object__collect_relos(struct bpf_object *obj)
7299 {
7300 	int i, err;
7301 
7302 	for (i = 0; i < obj->efile.sec_cnt; i++) {
7303 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
7304 		Elf64_Shdr *shdr;
7305 		Elf_Data *data;
7306 		int idx;
7307 
7308 		if (sec_desc->sec_type != SEC_RELO)
7309 			continue;
7310 
7311 		shdr = sec_desc->shdr;
7312 		data = sec_desc->data;
7313 		idx = shdr->sh_info;
7314 
7315 		if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) {
7316 			pr_warn("internal error at %d\n", __LINE__);
7317 			return -LIBBPF_ERRNO__INTERNAL;
7318 		}
7319 
7320 		if (obj->efile.secs[idx].sec_type == SEC_ST_OPS)
7321 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7322 		else if (idx == obj->efile.btf_maps_shndx)
7323 			err = bpf_object__collect_map_relos(obj, shdr, data);
7324 		else
7325 			err = bpf_object__collect_prog_relos(obj, shdr, data);
7326 		if (err)
7327 			return err;
7328 	}
7329 
7330 	bpf_object__sort_relos(obj);
7331 	return 0;
7332 }
7333 
insn_is_helper_call(struct bpf_insn * insn,enum bpf_func_id * func_id)7334 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7335 {
7336 	if (BPF_CLASS(insn->code) == BPF_JMP &&
7337 	    BPF_OP(insn->code) == BPF_CALL &&
7338 	    BPF_SRC(insn->code) == BPF_K &&
7339 	    insn->src_reg == 0 &&
7340 	    insn->dst_reg == 0) {
7341 		    *func_id = insn->imm;
7342 		    return true;
7343 	}
7344 	return false;
7345 }
7346 
bpf_object__sanitize_prog(struct bpf_object * obj,struct bpf_program * prog)7347 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7348 {
7349 	struct bpf_insn *insn = prog->insns;
7350 	enum bpf_func_id func_id;
7351 	int i;
7352 
7353 	if (obj->gen_loader)
7354 		return 0;
7355 
7356 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
7357 		if (!insn_is_helper_call(insn, &func_id))
7358 			continue;
7359 
7360 		/* on kernels that don't yet support
7361 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7362 		 * to bpf_probe_read() which works well for old kernels
7363 		 */
7364 		switch (func_id) {
7365 		case BPF_FUNC_probe_read_kernel:
7366 		case BPF_FUNC_probe_read_user:
7367 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7368 				insn->imm = BPF_FUNC_probe_read;
7369 			break;
7370 		case BPF_FUNC_probe_read_kernel_str:
7371 		case BPF_FUNC_probe_read_user_str:
7372 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7373 				insn->imm = BPF_FUNC_probe_read_str;
7374 			break;
7375 		default:
7376 			break;
7377 		}
7378 	}
7379 	return 0;
7380 }
7381 
7382 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
7383 				     int *btf_obj_fd, int *btf_type_id);
7384 
7385 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
libbpf_prepare_prog_load(struct bpf_program * prog,struct bpf_prog_load_opts * opts,long cookie)7386 static int libbpf_prepare_prog_load(struct bpf_program *prog,
7387 				    struct bpf_prog_load_opts *opts, long cookie)
7388 {
7389 	enum sec_def_flags def = cookie;
7390 
7391 	/* old kernels might not support specifying expected_attach_type */
7392 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
7393 		opts->expected_attach_type = 0;
7394 
7395 	if (def & SEC_SLEEPABLE)
7396 		opts->prog_flags |= BPF_F_SLEEPABLE;
7397 
7398 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
7399 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
7400 
7401 	/* special check for usdt to use uprobe_multi link */
7402 	if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) {
7403 		/* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type
7404 		 * in prog, and expected_attach_type we set in kernel is from opts, so we
7405 		 * update both.
7406 		 */
7407 		prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7408 		opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7409 	}
7410 
7411 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
7412 		int btf_obj_fd = 0, btf_type_id = 0, err;
7413 		const char *attach_name;
7414 
7415 		attach_name = strchr(prog->sec_name, '/');
7416 		if (!attach_name) {
7417 			/* if BPF program is annotated with just SEC("fentry")
7418 			 * (or similar) without declaratively specifying
7419 			 * target, then it is expected that target will be
7420 			 * specified with bpf_program__set_attach_target() at
7421 			 * runtime before BPF object load step. If not, then
7422 			 * there is nothing to load into the kernel as BPF
7423 			 * verifier won't be able to validate BPF program
7424 			 * correctness anyways.
7425 			 */
7426 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
7427 				prog->name);
7428 			return -EINVAL;
7429 		}
7430 		attach_name++; /* skip over / */
7431 
7432 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
7433 		if (err)
7434 			return err;
7435 
7436 		/* cache resolved BTF FD and BTF type ID in the prog */
7437 		prog->attach_btf_obj_fd = btf_obj_fd;
7438 		prog->attach_btf_id = btf_type_id;
7439 
7440 		/* but by now libbpf common logic is not utilizing
7441 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
7442 		 * this callback is called after opts were populated by
7443 		 * libbpf, so this callback has to update opts explicitly here
7444 		 */
7445 		opts->attach_btf_obj_fd = btf_obj_fd;
7446 		opts->attach_btf_id = btf_type_id;
7447 	}
7448 	return 0;
7449 }
7450 
7451 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7452 
bpf_object_load_prog(struct bpf_object * obj,struct bpf_program * prog,struct bpf_insn * insns,int insns_cnt,const char * license,__u32 kern_version,int * prog_fd)7453 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7454 				struct bpf_insn *insns, int insns_cnt,
7455 				const char *license, __u32 kern_version, int *prog_fd)
7456 {
7457 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7458 	const char *prog_name = NULL;
7459 	char *cp, errmsg[STRERR_BUFSIZE];
7460 	size_t log_buf_size = 0;
7461 	char *log_buf = NULL, *tmp;
7462 	bool own_log_buf = true;
7463 	__u32 log_level = prog->log_level;
7464 	int ret, err;
7465 
7466 	/* Be more helpful by rejecting programs that can't be validated early
7467 	 * with more meaningful and actionable error message.
7468 	 */
7469 	switch (prog->type) {
7470 	case BPF_PROG_TYPE_UNSPEC:
7471 		/*
7472 		 * The program type must be set.  Most likely we couldn't find a proper
7473 		 * section definition at load time, and thus we didn't infer the type.
7474 		 */
7475 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7476 			prog->name, prog->sec_name);
7477 		return -EINVAL;
7478 	case BPF_PROG_TYPE_STRUCT_OPS:
7479 		if (prog->attach_btf_id == 0) {
7480 			pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n",
7481 				prog->name);
7482 			return -EINVAL;
7483 		}
7484 		break;
7485 	default:
7486 		break;
7487 	}
7488 
7489 	if (!insns || !insns_cnt)
7490 		return -EINVAL;
7491 
7492 	if (kernel_supports(obj, FEAT_PROG_NAME))
7493 		prog_name = prog->name;
7494 	load_attr.attach_prog_fd = prog->attach_prog_fd;
7495 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7496 	load_attr.attach_btf_id = prog->attach_btf_id;
7497 	load_attr.kern_version = kern_version;
7498 	load_attr.prog_ifindex = prog->prog_ifindex;
7499 	load_attr.expected_attach_type = prog->expected_attach_type;
7500 
7501 	/* specify func_info/line_info only if kernel supports them */
7502 	if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7503 		load_attr.prog_btf_fd = btf__fd(obj->btf);
7504 		load_attr.func_info = prog->func_info;
7505 		load_attr.func_info_rec_size = prog->func_info_rec_size;
7506 		load_attr.func_info_cnt = prog->func_info_cnt;
7507 		load_attr.line_info = prog->line_info;
7508 		load_attr.line_info_rec_size = prog->line_info_rec_size;
7509 		load_attr.line_info_cnt = prog->line_info_cnt;
7510 	}
7511 	load_attr.log_level = log_level;
7512 	load_attr.prog_flags = prog->prog_flags;
7513 	load_attr.fd_array = obj->fd_array;
7514 
7515 	load_attr.token_fd = obj->token_fd;
7516 	if (obj->token_fd)
7517 		load_attr.prog_flags |= BPF_F_TOKEN_FD;
7518 
7519 	/* adjust load_attr if sec_def provides custom preload callback */
7520 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7521 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7522 		if (err < 0) {
7523 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
7524 				prog->name, err);
7525 			return err;
7526 		}
7527 		insns = prog->insns;
7528 		insns_cnt = prog->insns_cnt;
7529 	}
7530 
7531 	if (obj->gen_loader) {
7532 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7533 				   license, insns, insns_cnt, &load_attr,
7534 				   prog - obj->programs);
7535 		*prog_fd = -1;
7536 		return 0;
7537 	}
7538 
7539 retry_load:
7540 	/* if log_level is zero, we don't request logs initially even if
7541 	 * custom log_buf is specified; if the program load fails, then we'll
7542 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
7543 	 * our own and retry the load to get details on what failed
7544 	 */
7545 	if (log_level) {
7546 		if (prog->log_buf) {
7547 			log_buf = prog->log_buf;
7548 			log_buf_size = prog->log_size;
7549 			own_log_buf = false;
7550 		} else if (obj->log_buf) {
7551 			log_buf = obj->log_buf;
7552 			log_buf_size = obj->log_size;
7553 			own_log_buf = false;
7554 		} else {
7555 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7556 			tmp = realloc(log_buf, log_buf_size);
7557 			if (!tmp) {
7558 				ret = -ENOMEM;
7559 				goto out;
7560 			}
7561 			log_buf = tmp;
7562 			log_buf[0] = '\0';
7563 			own_log_buf = true;
7564 		}
7565 	}
7566 
7567 	load_attr.log_buf = log_buf;
7568 	load_attr.log_size = log_buf_size;
7569 	load_attr.log_level = log_level;
7570 
7571 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7572 	if (ret >= 0) {
7573 		if (log_level && own_log_buf) {
7574 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7575 				 prog->name, log_buf);
7576 		}
7577 
7578 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7579 			struct bpf_map *map;
7580 			int i;
7581 
7582 			for (i = 0; i < obj->nr_maps; i++) {
7583 				map = &prog->obj->maps[i];
7584 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
7585 					continue;
7586 
7587 				if (bpf_prog_bind_map(ret, map->fd, NULL)) {
7588 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7589 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
7590 						prog->name, map->real_name, cp);
7591 					/* Don't fail hard if can't bind rodata. */
7592 				}
7593 			}
7594 		}
7595 
7596 		*prog_fd = ret;
7597 		ret = 0;
7598 		goto out;
7599 	}
7600 
7601 	if (log_level == 0) {
7602 		log_level = 1;
7603 		goto retry_load;
7604 	}
7605 	/* On ENOSPC, increase log buffer size and retry, unless custom
7606 	 * log_buf is specified.
7607 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
7608 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7609 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
7610 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7611 	 */
7612 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7613 		goto retry_load;
7614 
7615 	ret = -errno;
7616 
7617 	/* post-process verifier log to improve error descriptions */
7618 	fixup_verifier_log(prog, log_buf, log_buf_size);
7619 
7620 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7621 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
7622 	pr_perm_msg(ret);
7623 
7624 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
7625 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7626 			prog->name, log_buf);
7627 	}
7628 
7629 out:
7630 	if (own_log_buf)
7631 		free(log_buf);
7632 	return ret;
7633 }
7634 
find_prev_line(char * buf,char * cur)7635 static char *find_prev_line(char *buf, char *cur)
7636 {
7637 	char *p;
7638 
7639 	if (cur == buf) /* end of a log buf */
7640 		return NULL;
7641 
7642 	p = cur - 1;
7643 	while (p - 1 >= buf && *(p - 1) != '\n')
7644 		p--;
7645 
7646 	return p;
7647 }
7648 
patch_log(char * buf,size_t buf_sz,size_t log_sz,char * orig,size_t orig_sz,const char * patch)7649 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7650 		      char *orig, size_t orig_sz, const char *patch)
7651 {
7652 	/* size of the remaining log content to the right from the to-be-replaced part */
7653 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7654 	size_t patch_sz = strlen(patch);
7655 
7656 	if (patch_sz != orig_sz) {
7657 		/* If patch line(s) are longer than original piece of verifier log,
7658 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
7659 		 * starting from after to-be-replaced part of the log.
7660 		 *
7661 		 * If patch line(s) are shorter than original piece of verifier log,
7662 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
7663 		 * starting from after to-be-replaced part of the log
7664 		 *
7665 		 * We need to be careful about not overflowing available
7666 		 * buf_sz capacity. If that's the case, we'll truncate the end
7667 		 * of the original log, as necessary.
7668 		 */
7669 		if (patch_sz > orig_sz) {
7670 			if (orig + patch_sz >= buf + buf_sz) {
7671 				/* patch is big enough to cover remaining space completely */
7672 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7673 				rem_sz = 0;
7674 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
7675 				/* patch causes part of remaining log to be truncated */
7676 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7677 			}
7678 		}
7679 		/* shift remaining log to the right by calculated amount */
7680 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7681 	}
7682 
7683 	memcpy(orig, patch, patch_sz);
7684 }
7685 
fixup_log_failed_core_relo(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7686 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7687 				       char *buf, size_t buf_sz, size_t log_sz,
7688 				       char *line1, char *line2, char *line3)
7689 {
7690 	/* Expected log for failed and not properly guarded CO-RE relocation:
7691 	 * line1 -> 123: (85) call unknown#195896080
7692 	 * line2 -> invalid func unknown#195896080
7693 	 * line3 -> <anything else or end of buffer>
7694 	 *
7695 	 * "123" is the index of the instruction that was poisoned. We extract
7696 	 * instruction index to find corresponding CO-RE relocation and
7697 	 * replace this part of the log with more relevant information about
7698 	 * failed CO-RE relocation.
7699 	 */
7700 	const struct bpf_core_relo *relo;
7701 	struct bpf_core_spec spec;
7702 	char patch[512], spec_buf[256];
7703 	int insn_idx, err, spec_len;
7704 
7705 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7706 		return;
7707 
7708 	relo = find_relo_core(prog, insn_idx);
7709 	if (!relo)
7710 		return;
7711 
7712 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7713 	if (err)
7714 		return;
7715 
7716 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7717 	snprintf(patch, sizeof(patch),
7718 		 "%d: <invalid CO-RE relocation>\n"
7719 		 "failed to resolve CO-RE relocation %s%s\n",
7720 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7721 
7722 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7723 }
7724 
fixup_log_missing_map_load(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7725 static void fixup_log_missing_map_load(struct bpf_program *prog,
7726 				       char *buf, size_t buf_sz, size_t log_sz,
7727 				       char *line1, char *line2, char *line3)
7728 {
7729 	/* Expected log for failed and not properly guarded map reference:
7730 	 * line1 -> 123: (85) call unknown#2001000345
7731 	 * line2 -> invalid func unknown#2001000345
7732 	 * line3 -> <anything else or end of buffer>
7733 	 *
7734 	 * "123" is the index of the instruction that was poisoned.
7735 	 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7736 	 */
7737 	struct bpf_object *obj = prog->obj;
7738 	const struct bpf_map *map;
7739 	int insn_idx, map_idx;
7740 	char patch[128];
7741 
7742 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7743 		return;
7744 
7745 	map_idx -= POISON_LDIMM64_MAP_BASE;
7746 	if (map_idx < 0 || map_idx >= obj->nr_maps)
7747 		return;
7748 	map = &obj->maps[map_idx];
7749 
7750 	snprintf(patch, sizeof(patch),
7751 		 "%d: <invalid BPF map reference>\n"
7752 		 "BPF map '%s' is referenced but wasn't created\n",
7753 		 insn_idx, map->name);
7754 
7755 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7756 }
7757 
fixup_log_missing_kfunc_call(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7758 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7759 					 char *buf, size_t buf_sz, size_t log_sz,
7760 					 char *line1, char *line2, char *line3)
7761 {
7762 	/* Expected log for failed and not properly guarded kfunc call:
7763 	 * line1 -> 123: (85) call unknown#2002000345
7764 	 * line2 -> invalid func unknown#2002000345
7765 	 * line3 -> <anything else or end of buffer>
7766 	 *
7767 	 * "123" is the index of the instruction that was poisoned.
7768 	 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7769 	 */
7770 	struct bpf_object *obj = prog->obj;
7771 	const struct extern_desc *ext;
7772 	int insn_idx, ext_idx;
7773 	char patch[128];
7774 
7775 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7776 		return;
7777 
7778 	ext_idx -= POISON_CALL_KFUNC_BASE;
7779 	if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7780 		return;
7781 	ext = &obj->externs[ext_idx];
7782 
7783 	snprintf(patch, sizeof(patch),
7784 		 "%d: <invalid kfunc call>\n"
7785 		 "kfunc '%s' is referenced but wasn't resolved\n",
7786 		 insn_idx, ext->name);
7787 
7788 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7789 }
7790 
fixup_verifier_log(struct bpf_program * prog,char * buf,size_t buf_sz)7791 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7792 {
7793 	/* look for familiar error patterns in last N lines of the log */
7794 	const size_t max_last_line_cnt = 10;
7795 	char *prev_line, *cur_line, *next_line;
7796 	size_t log_sz;
7797 	int i;
7798 
7799 	if (!buf)
7800 		return;
7801 
7802 	log_sz = strlen(buf) + 1;
7803 	next_line = buf + log_sz - 1;
7804 
7805 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7806 		cur_line = find_prev_line(buf, next_line);
7807 		if (!cur_line)
7808 			return;
7809 
7810 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7811 			prev_line = find_prev_line(buf, cur_line);
7812 			if (!prev_line)
7813 				continue;
7814 
7815 			/* failed CO-RE relocation case */
7816 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7817 						   prev_line, cur_line, next_line);
7818 			return;
7819 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7820 			prev_line = find_prev_line(buf, cur_line);
7821 			if (!prev_line)
7822 				continue;
7823 
7824 			/* reference to uncreated BPF map */
7825 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7826 						   prev_line, cur_line, next_line);
7827 			return;
7828 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7829 			prev_line = find_prev_line(buf, cur_line);
7830 			if (!prev_line)
7831 				continue;
7832 
7833 			/* reference to unresolved kfunc */
7834 			fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7835 						     prev_line, cur_line, next_line);
7836 			return;
7837 		}
7838 	}
7839 }
7840 
bpf_program_record_relos(struct bpf_program * prog)7841 static int bpf_program_record_relos(struct bpf_program *prog)
7842 {
7843 	struct bpf_object *obj = prog->obj;
7844 	int i;
7845 
7846 	for (i = 0; i < prog->nr_reloc; i++) {
7847 		struct reloc_desc *relo = &prog->reloc_desc[i];
7848 		struct extern_desc *ext = &obj->externs[relo->ext_idx];
7849 		int kind;
7850 
7851 		switch (relo->type) {
7852 		case RELO_EXTERN_LD64:
7853 			if (ext->type != EXT_KSYM)
7854 				continue;
7855 			kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7856 				BTF_KIND_VAR : BTF_KIND_FUNC;
7857 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7858 					       ext->is_weak, !ext->ksym.type_id,
7859 					       true, kind, relo->insn_idx);
7860 			break;
7861 		case RELO_EXTERN_CALL:
7862 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7863 					       ext->is_weak, false, false, BTF_KIND_FUNC,
7864 					       relo->insn_idx);
7865 			break;
7866 		case RELO_CORE: {
7867 			struct bpf_core_relo cr = {
7868 				.insn_off = relo->insn_idx * 8,
7869 				.type_id = relo->core_relo->type_id,
7870 				.access_str_off = relo->core_relo->access_str_off,
7871 				.kind = relo->core_relo->kind,
7872 			};
7873 
7874 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
7875 			break;
7876 		}
7877 		default:
7878 			continue;
7879 		}
7880 	}
7881 	return 0;
7882 }
7883 
7884 static int
bpf_object__load_progs(struct bpf_object * obj,int log_level)7885 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7886 {
7887 	struct bpf_program *prog;
7888 	size_t i;
7889 	int err;
7890 
7891 	for (i = 0; i < obj->nr_programs; i++) {
7892 		prog = &obj->programs[i];
7893 		err = bpf_object__sanitize_prog(obj, prog);
7894 		if (err)
7895 			return err;
7896 	}
7897 
7898 	for (i = 0; i < obj->nr_programs; i++) {
7899 		prog = &obj->programs[i];
7900 		if (prog_is_subprog(obj, prog))
7901 			continue;
7902 		if (!prog->autoload) {
7903 			pr_debug("prog '%s': skipped loading\n", prog->name);
7904 			continue;
7905 		}
7906 		prog->log_level |= log_level;
7907 
7908 		if (obj->gen_loader)
7909 			bpf_program_record_relos(prog);
7910 
7911 		err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7912 					   obj->license, obj->kern_version, &prog->fd);
7913 		if (err) {
7914 			pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7915 			return err;
7916 		}
7917 	}
7918 
7919 	bpf_object__free_relocs(obj);
7920 	return 0;
7921 }
7922 
7923 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7924 
bpf_object_init_progs(struct bpf_object * obj,const struct bpf_object_open_opts * opts)7925 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7926 {
7927 	struct bpf_program *prog;
7928 	int err;
7929 
7930 	bpf_object__for_each_program(prog, obj) {
7931 		prog->sec_def = find_sec_def(prog->sec_name);
7932 		if (!prog->sec_def) {
7933 			/* couldn't guess, but user might manually specify */
7934 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7935 				prog->name, prog->sec_name);
7936 			continue;
7937 		}
7938 
7939 		prog->type = prog->sec_def->prog_type;
7940 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
7941 
7942 		/* sec_def can have custom callback which should be called
7943 		 * after bpf_program is initialized to adjust its properties
7944 		 */
7945 		if (prog->sec_def->prog_setup_fn) {
7946 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7947 			if (err < 0) {
7948 				pr_warn("prog '%s': failed to initialize: %d\n",
7949 					prog->name, err);
7950 				return err;
7951 			}
7952 		}
7953 	}
7954 
7955 	return 0;
7956 }
7957 
bpf_object_open(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name,const struct bpf_object_open_opts * opts)7958 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7959 					  const char *obj_name,
7960 					  const struct bpf_object_open_opts *opts)
7961 {
7962 	const char *kconfig, *btf_tmp_path, *token_path;
7963 	struct bpf_object *obj;
7964 	int err;
7965 	char *log_buf;
7966 	size_t log_size;
7967 	__u32 log_level;
7968 
7969 	if (obj_buf && !obj_name)
7970 		return ERR_PTR(-EINVAL);
7971 
7972 	if (elf_version(EV_CURRENT) == EV_NONE) {
7973 		pr_warn("failed to init libelf for %s\n",
7974 			path ? : "(mem buf)");
7975 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7976 	}
7977 
7978 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7979 		return ERR_PTR(-EINVAL);
7980 
7981 	obj_name = OPTS_GET(opts, object_name, NULL) ?: obj_name;
7982 	if (obj_buf) {
7983 		path = obj_name;
7984 		pr_debug("loading object '%s' from buffer\n", obj_name);
7985 	} else {
7986 		pr_debug("loading object from %s\n", path);
7987 	}
7988 
7989 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7990 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7991 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7992 	if (log_size > UINT_MAX)
7993 		return ERR_PTR(-EINVAL);
7994 	if (log_size && !log_buf)
7995 		return ERR_PTR(-EINVAL);
7996 
7997 	token_path = OPTS_GET(opts, bpf_token_path, NULL);
7998 	/* if user didn't specify bpf_token_path explicitly, check if
7999 	 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path
8000 	 * option
8001 	 */
8002 	if (!token_path)
8003 		token_path = getenv("LIBBPF_BPF_TOKEN_PATH");
8004 	if (token_path && strlen(token_path) >= PATH_MAX)
8005 		return ERR_PTR(-ENAMETOOLONG);
8006 
8007 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
8008 	if (IS_ERR(obj))
8009 		return obj;
8010 
8011 	obj->log_buf = log_buf;
8012 	obj->log_size = log_size;
8013 	obj->log_level = log_level;
8014 
8015 	if (token_path) {
8016 		obj->token_path = strdup(token_path);
8017 		if (!obj->token_path) {
8018 			err = -ENOMEM;
8019 			goto out;
8020 		}
8021 	}
8022 
8023 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
8024 	if (btf_tmp_path) {
8025 		if (strlen(btf_tmp_path) >= PATH_MAX) {
8026 			err = -ENAMETOOLONG;
8027 			goto out;
8028 		}
8029 		obj->btf_custom_path = strdup(btf_tmp_path);
8030 		if (!obj->btf_custom_path) {
8031 			err = -ENOMEM;
8032 			goto out;
8033 		}
8034 	}
8035 
8036 	kconfig = OPTS_GET(opts, kconfig, NULL);
8037 	if (kconfig) {
8038 		obj->kconfig = strdup(kconfig);
8039 		if (!obj->kconfig) {
8040 			err = -ENOMEM;
8041 			goto out;
8042 		}
8043 	}
8044 
8045 	err = bpf_object__elf_init(obj);
8046 	err = err ? : bpf_object__check_endianness(obj);
8047 	err = err ? : bpf_object__elf_collect(obj);
8048 	err = err ? : bpf_object__collect_externs(obj);
8049 	err = err ? : bpf_object_fixup_btf(obj);
8050 	err = err ? : bpf_object__init_maps(obj, opts);
8051 	err = err ? : bpf_object_init_progs(obj, opts);
8052 	err = err ? : bpf_object__collect_relos(obj);
8053 	if (err)
8054 		goto out;
8055 
8056 	bpf_object__elf_finish(obj);
8057 
8058 	return obj;
8059 out:
8060 	bpf_object__close(obj);
8061 	return ERR_PTR(err);
8062 }
8063 
8064 struct bpf_object *
bpf_object__open_file(const char * path,const struct bpf_object_open_opts * opts)8065 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
8066 {
8067 	if (!path)
8068 		return libbpf_err_ptr(-EINVAL);
8069 
8070 	return libbpf_ptr(bpf_object_open(path, NULL, 0, NULL, opts));
8071 }
8072 
bpf_object__open(const char * path)8073 struct bpf_object *bpf_object__open(const char *path)
8074 {
8075 	return bpf_object__open_file(path, NULL);
8076 }
8077 
8078 struct bpf_object *
bpf_object__open_mem(const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)8079 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
8080 		     const struct bpf_object_open_opts *opts)
8081 {
8082 	char tmp_name[64];
8083 
8084 	if (!obj_buf || obj_buf_sz == 0)
8085 		return libbpf_err_ptr(-EINVAL);
8086 
8087 	/* create a (quite useless) default "name" for this memory buffer object */
8088 	snprintf(tmp_name, sizeof(tmp_name), "%lx-%zx", (unsigned long)obj_buf, obj_buf_sz);
8089 
8090 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, tmp_name, opts));
8091 }
8092 
bpf_object_unload(struct bpf_object * obj)8093 static int bpf_object_unload(struct bpf_object *obj)
8094 {
8095 	size_t i;
8096 
8097 	if (!obj)
8098 		return libbpf_err(-EINVAL);
8099 
8100 	for (i = 0; i < obj->nr_maps; i++) {
8101 		zclose(obj->maps[i].fd);
8102 		if (obj->maps[i].st_ops)
8103 			zfree(&obj->maps[i].st_ops->kern_vdata);
8104 	}
8105 
8106 	for (i = 0; i < obj->nr_programs; i++)
8107 		bpf_program__unload(&obj->programs[i]);
8108 
8109 	return 0;
8110 }
8111 
bpf_object__sanitize_maps(struct bpf_object * obj)8112 static int bpf_object__sanitize_maps(struct bpf_object *obj)
8113 {
8114 	struct bpf_map *m;
8115 
8116 	bpf_object__for_each_map(m, obj) {
8117 		if (!bpf_map__is_internal(m))
8118 			continue;
8119 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
8120 			m->def.map_flags &= ~BPF_F_MMAPABLE;
8121 	}
8122 
8123 	return 0;
8124 }
8125 
8126 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type,
8127 			     const char *sym_name, void *ctx);
8128 
libbpf_kallsyms_parse(kallsyms_cb_t cb,void * ctx)8129 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
8130 {
8131 	char sym_type, sym_name[500];
8132 	unsigned long long sym_addr;
8133 	int ret, err = 0;
8134 	FILE *f;
8135 
8136 	f = fopen("/proc/kallsyms", "re");
8137 	if (!f) {
8138 		err = -errno;
8139 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
8140 		return err;
8141 	}
8142 
8143 	while (true) {
8144 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
8145 			     &sym_addr, &sym_type, sym_name);
8146 		if (ret == EOF && feof(f))
8147 			break;
8148 		if (ret != 3) {
8149 			pr_warn("failed to read kallsyms entry: %d\n", ret);
8150 			err = -EINVAL;
8151 			break;
8152 		}
8153 
8154 		err = cb(sym_addr, sym_type, sym_name, ctx);
8155 		if (err)
8156 			break;
8157 	}
8158 
8159 	fclose(f);
8160 	return err;
8161 }
8162 
kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)8163 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
8164 		       const char *sym_name, void *ctx)
8165 {
8166 	struct bpf_object *obj = ctx;
8167 	const struct btf_type *t;
8168 	struct extern_desc *ext;
8169 	char *res;
8170 
8171 	res = strstr(sym_name, ".llvm.");
8172 	if (sym_type == 'd' && res)
8173 		ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name);
8174 	else
8175 		ext = find_extern_by_name(obj, sym_name);
8176 	if (!ext || ext->type != EXT_KSYM)
8177 		return 0;
8178 
8179 	t = btf__type_by_id(obj->btf, ext->btf_id);
8180 	if (!btf_is_var(t))
8181 		return 0;
8182 
8183 	if (ext->is_set && ext->ksym.addr != sym_addr) {
8184 		pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
8185 			sym_name, ext->ksym.addr, sym_addr);
8186 		return -EINVAL;
8187 	}
8188 	if (!ext->is_set) {
8189 		ext->is_set = true;
8190 		ext->ksym.addr = sym_addr;
8191 		pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
8192 	}
8193 	return 0;
8194 }
8195 
bpf_object__read_kallsyms_file(struct bpf_object * obj)8196 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
8197 {
8198 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
8199 }
8200 
find_ksym_btf_id(struct bpf_object * obj,const char * ksym_name,__u16 kind,struct btf ** res_btf,struct module_btf ** res_mod_btf)8201 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
8202 			    __u16 kind, struct btf **res_btf,
8203 			    struct module_btf **res_mod_btf)
8204 {
8205 	struct module_btf *mod_btf;
8206 	struct btf *btf;
8207 	int i, id, err;
8208 
8209 	btf = obj->btf_vmlinux;
8210 	mod_btf = NULL;
8211 	id = btf__find_by_name_kind(btf, ksym_name, kind);
8212 
8213 	if (id == -ENOENT) {
8214 		err = load_module_btfs(obj);
8215 		if (err)
8216 			return err;
8217 
8218 		for (i = 0; i < obj->btf_module_cnt; i++) {
8219 			/* we assume module_btf's BTF FD is always >0 */
8220 			mod_btf = &obj->btf_modules[i];
8221 			btf = mod_btf->btf;
8222 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
8223 			if (id != -ENOENT)
8224 				break;
8225 		}
8226 	}
8227 	if (id <= 0)
8228 		return -ESRCH;
8229 
8230 	*res_btf = btf;
8231 	*res_mod_btf = mod_btf;
8232 	return id;
8233 }
8234 
bpf_object__resolve_ksym_var_btf_id(struct bpf_object * obj,struct extern_desc * ext)8235 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
8236 					       struct extern_desc *ext)
8237 {
8238 	const struct btf_type *targ_var, *targ_type;
8239 	__u32 targ_type_id, local_type_id;
8240 	struct module_btf *mod_btf = NULL;
8241 	const char *targ_var_name;
8242 	struct btf *btf = NULL;
8243 	int id, err;
8244 
8245 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
8246 	if (id < 0) {
8247 		if (id == -ESRCH && ext->is_weak)
8248 			return 0;
8249 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
8250 			ext->name);
8251 		return id;
8252 	}
8253 
8254 	/* find local type_id */
8255 	local_type_id = ext->ksym.type_id;
8256 
8257 	/* find target type_id */
8258 	targ_var = btf__type_by_id(btf, id);
8259 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
8260 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
8261 
8262 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
8263 					btf, targ_type_id);
8264 	if (err <= 0) {
8265 		const struct btf_type *local_type;
8266 		const char *targ_name, *local_name;
8267 
8268 		local_type = btf__type_by_id(obj->btf, local_type_id);
8269 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
8270 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
8271 
8272 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
8273 			ext->name, local_type_id,
8274 			btf_kind_str(local_type), local_name, targ_type_id,
8275 			btf_kind_str(targ_type), targ_name);
8276 		return -EINVAL;
8277 	}
8278 
8279 	ext->is_set = true;
8280 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8281 	ext->ksym.kernel_btf_id = id;
8282 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
8283 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
8284 
8285 	return 0;
8286 }
8287 
bpf_object__resolve_ksym_func_btf_id(struct bpf_object * obj,struct extern_desc * ext)8288 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
8289 						struct extern_desc *ext)
8290 {
8291 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
8292 	struct module_btf *mod_btf = NULL;
8293 	const struct btf_type *kern_func;
8294 	struct btf *kern_btf = NULL;
8295 	int ret;
8296 
8297 	local_func_proto_id = ext->ksym.type_id;
8298 
8299 	kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
8300 				    &mod_btf);
8301 	if (kfunc_id < 0) {
8302 		if (kfunc_id == -ESRCH && ext->is_weak)
8303 			return 0;
8304 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
8305 			ext->name);
8306 		return kfunc_id;
8307 	}
8308 
8309 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
8310 	kfunc_proto_id = kern_func->type;
8311 
8312 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
8313 					kern_btf, kfunc_proto_id);
8314 	if (ret <= 0) {
8315 		if (ext->is_weak)
8316 			return 0;
8317 
8318 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
8319 			ext->name, local_func_proto_id,
8320 			mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
8321 		return -EINVAL;
8322 	}
8323 
8324 	/* set index for module BTF fd in fd_array, if unset */
8325 	if (mod_btf && !mod_btf->fd_array_idx) {
8326 		/* insn->off is s16 */
8327 		if (obj->fd_array_cnt == INT16_MAX) {
8328 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
8329 				ext->name, mod_btf->fd_array_idx);
8330 			return -E2BIG;
8331 		}
8332 		/* Cannot use index 0 for module BTF fd */
8333 		if (!obj->fd_array_cnt)
8334 			obj->fd_array_cnt = 1;
8335 
8336 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
8337 					obj->fd_array_cnt + 1);
8338 		if (ret)
8339 			return ret;
8340 		mod_btf->fd_array_idx = obj->fd_array_cnt;
8341 		/* we assume module BTF FD is always >0 */
8342 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
8343 	}
8344 
8345 	ext->is_set = true;
8346 	ext->ksym.kernel_btf_id = kfunc_id;
8347 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
8348 	/* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
8349 	 * populates FD into ld_imm64 insn when it's used to point to kfunc.
8350 	 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
8351 	 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
8352 	 */
8353 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8354 	pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
8355 		 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
8356 
8357 	return 0;
8358 }
8359 
bpf_object__resolve_ksyms_btf_id(struct bpf_object * obj)8360 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
8361 {
8362 	const struct btf_type *t;
8363 	struct extern_desc *ext;
8364 	int i, err;
8365 
8366 	for (i = 0; i < obj->nr_extern; i++) {
8367 		ext = &obj->externs[i];
8368 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
8369 			continue;
8370 
8371 		if (obj->gen_loader) {
8372 			ext->is_set = true;
8373 			ext->ksym.kernel_btf_obj_fd = 0;
8374 			ext->ksym.kernel_btf_id = 0;
8375 			continue;
8376 		}
8377 		t = btf__type_by_id(obj->btf, ext->btf_id);
8378 		if (btf_is_var(t))
8379 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
8380 		else
8381 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
8382 		if (err)
8383 			return err;
8384 	}
8385 	return 0;
8386 }
8387 
bpf_object__resolve_externs(struct bpf_object * obj,const char * extra_kconfig)8388 static int bpf_object__resolve_externs(struct bpf_object *obj,
8389 				       const char *extra_kconfig)
8390 {
8391 	bool need_config = false, need_kallsyms = false;
8392 	bool need_vmlinux_btf = false;
8393 	struct extern_desc *ext;
8394 	void *kcfg_data = NULL;
8395 	int err, i;
8396 
8397 	if (obj->nr_extern == 0)
8398 		return 0;
8399 
8400 	if (obj->kconfig_map_idx >= 0)
8401 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
8402 
8403 	for (i = 0; i < obj->nr_extern; i++) {
8404 		ext = &obj->externs[i];
8405 
8406 		if (ext->type == EXT_KSYM) {
8407 			if (ext->ksym.type_id)
8408 				need_vmlinux_btf = true;
8409 			else
8410 				need_kallsyms = true;
8411 			continue;
8412 		} else if (ext->type == EXT_KCFG) {
8413 			void *ext_ptr = kcfg_data + ext->kcfg.data_off;
8414 			__u64 value = 0;
8415 
8416 			/* Kconfig externs need actual /proc/config.gz */
8417 			if (str_has_pfx(ext->name, "CONFIG_")) {
8418 				need_config = true;
8419 				continue;
8420 			}
8421 
8422 			/* Virtual kcfg externs are customly handled by libbpf */
8423 			if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
8424 				value = get_kernel_version();
8425 				if (!value) {
8426 					pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
8427 					return -EINVAL;
8428 				}
8429 			} else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
8430 				value = kernel_supports(obj, FEAT_BPF_COOKIE);
8431 			} else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
8432 				value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
8433 			} else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
8434 				/* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
8435 				 * __kconfig externs, where LINUX_ ones are virtual and filled out
8436 				 * customly by libbpf (their values don't come from Kconfig).
8437 				 * If LINUX_xxx variable is not recognized by libbpf, but is marked
8438 				 * __weak, it defaults to zero value, just like for CONFIG_xxx
8439 				 * externs.
8440 				 */
8441 				pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
8442 				return -EINVAL;
8443 			}
8444 
8445 			err = set_kcfg_value_num(ext, ext_ptr, value);
8446 			if (err)
8447 				return err;
8448 			pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
8449 				 ext->name, (long long)value);
8450 		} else {
8451 			pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
8452 			return -EINVAL;
8453 		}
8454 	}
8455 	if (need_config && extra_kconfig) {
8456 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
8457 		if (err)
8458 			return -EINVAL;
8459 		need_config = false;
8460 		for (i = 0; i < obj->nr_extern; i++) {
8461 			ext = &obj->externs[i];
8462 			if (ext->type == EXT_KCFG && !ext->is_set) {
8463 				need_config = true;
8464 				break;
8465 			}
8466 		}
8467 	}
8468 	if (need_config) {
8469 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
8470 		if (err)
8471 			return -EINVAL;
8472 	}
8473 	if (need_kallsyms) {
8474 		err = bpf_object__read_kallsyms_file(obj);
8475 		if (err)
8476 			return -EINVAL;
8477 	}
8478 	if (need_vmlinux_btf) {
8479 		err = bpf_object__resolve_ksyms_btf_id(obj);
8480 		if (err)
8481 			return -EINVAL;
8482 	}
8483 	for (i = 0; i < obj->nr_extern; i++) {
8484 		ext = &obj->externs[i];
8485 
8486 		if (!ext->is_set && !ext->is_weak) {
8487 			pr_warn("extern '%s' (strong): not resolved\n", ext->name);
8488 			return -ESRCH;
8489 		} else if (!ext->is_set) {
8490 			pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8491 				 ext->name);
8492 		}
8493 	}
8494 
8495 	return 0;
8496 }
8497 
bpf_map_prepare_vdata(const struct bpf_map * map)8498 static void bpf_map_prepare_vdata(const struct bpf_map *map)
8499 {
8500 	const struct btf_type *type;
8501 	struct bpf_struct_ops *st_ops;
8502 	__u32 i;
8503 
8504 	st_ops = map->st_ops;
8505 	type = btf__type_by_id(map->obj->btf, st_ops->type_id);
8506 	for (i = 0; i < btf_vlen(type); i++) {
8507 		struct bpf_program *prog = st_ops->progs[i];
8508 		void *kern_data;
8509 		int prog_fd;
8510 
8511 		if (!prog)
8512 			continue;
8513 
8514 		prog_fd = bpf_program__fd(prog);
8515 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8516 		*(unsigned long *)kern_data = prog_fd;
8517 	}
8518 }
8519 
bpf_object_prepare_struct_ops(struct bpf_object * obj)8520 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8521 {
8522 	struct bpf_map *map;
8523 	int i;
8524 
8525 	for (i = 0; i < obj->nr_maps; i++) {
8526 		map = &obj->maps[i];
8527 
8528 		if (!bpf_map__is_struct_ops(map))
8529 			continue;
8530 
8531 		if (!map->autocreate)
8532 			continue;
8533 
8534 		bpf_map_prepare_vdata(map);
8535 	}
8536 
8537 	return 0;
8538 }
8539 
bpf_object_load(struct bpf_object * obj,int extra_log_level,const char * target_btf_path)8540 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8541 {
8542 	int err, i;
8543 
8544 	if (!obj)
8545 		return libbpf_err(-EINVAL);
8546 
8547 	if (obj->loaded) {
8548 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8549 		return libbpf_err(-EINVAL);
8550 	}
8551 
8552 	if (obj->gen_loader)
8553 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8554 
8555 	err = bpf_object_prepare_token(obj);
8556 	err = err ? : bpf_object__probe_loading(obj);
8557 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8558 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8559 	err = err ? : bpf_object__sanitize_maps(obj);
8560 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8561 	err = err ? : bpf_object_adjust_struct_ops_autoload(obj);
8562 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8563 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
8564 	err = err ? : bpf_object__create_maps(obj);
8565 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
8566 	err = err ? : bpf_object_init_prog_arrays(obj);
8567 	err = err ? : bpf_object_prepare_struct_ops(obj);
8568 
8569 	if (obj->gen_loader) {
8570 		/* reset FDs */
8571 		if (obj->btf)
8572 			btf__set_fd(obj->btf, -1);
8573 		if (!err)
8574 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8575 	}
8576 
8577 	/* clean up fd_array */
8578 	zfree(&obj->fd_array);
8579 
8580 	/* clean up module BTFs */
8581 	for (i = 0; i < obj->btf_module_cnt; i++) {
8582 		close(obj->btf_modules[i].fd);
8583 		btf__free(obj->btf_modules[i].btf);
8584 		free(obj->btf_modules[i].name);
8585 	}
8586 	free(obj->btf_modules);
8587 
8588 	/* clean up vmlinux BTF */
8589 	btf__free(obj->btf_vmlinux);
8590 	obj->btf_vmlinux = NULL;
8591 
8592 	obj->loaded = true; /* doesn't matter if successfully or not */
8593 
8594 	if (err)
8595 		goto out;
8596 
8597 	return 0;
8598 out:
8599 	/* unpin any maps that were auto-pinned during load */
8600 	for (i = 0; i < obj->nr_maps; i++)
8601 		if (obj->maps[i].pinned && !obj->maps[i].reused)
8602 			bpf_map__unpin(&obj->maps[i], NULL);
8603 
8604 	bpf_object_unload(obj);
8605 	pr_warn("failed to load object '%s'\n", obj->path);
8606 	return libbpf_err(err);
8607 }
8608 
bpf_object__load(struct bpf_object * obj)8609 int bpf_object__load(struct bpf_object *obj)
8610 {
8611 	return bpf_object_load(obj, 0, NULL);
8612 }
8613 
make_parent_dir(const char * path)8614 static int make_parent_dir(const char *path)
8615 {
8616 	char *cp, errmsg[STRERR_BUFSIZE];
8617 	char *dname, *dir;
8618 	int err = 0;
8619 
8620 	dname = strdup(path);
8621 	if (dname == NULL)
8622 		return -ENOMEM;
8623 
8624 	dir = dirname(dname);
8625 	if (mkdir(dir, 0700) && errno != EEXIST)
8626 		err = -errno;
8627 
8628 	free(dname);
8629 	if (err) {
8630 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8631 		pr_warn("failed to mkdir %s: %s\n", path, cp);
8632 	}
8633 	return err;
8634 }
8635 
check_path(const char * path)8636 static int check_path(const char *path)
8637 {
8638 	char *cp, errmsg[STRERR_BUFSIZE];
8639 	struct statfs st_fs;
8640 	char *dname, *dir;
8641 	int err = 0;
8642 
8643 	if (path == NULL)
8644 		return -EINVAL;
8645 
8646 	dname = strdup(path);
8647 	if (dname == NULL)
8648 		return -ENOMEM;
8649 
8650 	dir = dirname(dname);
8651 	if (statfs(dir, &st_fs)) {
8652 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8653 		pr_warn("failed to statfs %s: %s\n", dir, cp);
8654 		err = -errno;
8655 	}
8656 	free(dname);
8657 
8658 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8659 		pr_warn("specified path %s is not on BPF FS\n", path);
8660 		err = -EINVAL;
8661 	}
8662 
8663 	return err;
8664 }
8665 
bpf_program__pin(struct bpf_program * prog,const char * path)8666 int bpf_program__pin(struct bpf_program *prog, const char *path)
8667 {
8668 	char *cp, errmsg[STRERR_BUFSIZE];
8669 	int err;
8670 
8671 	if (prog->fd < 0) {
8672 		pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8673 		return libbpf_err(-EINVAL);
8674 	}
8675 
8676 	err = make_parent_dir(path);
8677 	if (err)
8678 		return libbpf_err(err);
8679 
8680 	err = check_path(path);
8681 	if (err)
8682 		return libbpf_err(err);
8683 
8684 	if (bpf_obj_pin(prog->fd, path)) {
8685 		err = -errno;
8686 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8687 		pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
8688 		return libbpf_err(err);
8689 	}
8690 
8691 	pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8692 	return 0;
8693 }
8694 
bpf_program__unpin(struct bpf_program * prog,const char * path)8695 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8696 {
8697 	int err;
8698 
8699 	if (prog->fd < 0) {
8700 		pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8701 		return libbpf_err(-EINVAL);
8702 	}
8703 
8704 	err = check_path(path);
8705 	if (err)
8706 		return libbpf_err(err);
8707 
8708 	err = unlink(path);
8709 	if (err)
8710 		return libbpf_err(-errno);
8711 
8712 	pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8713 	return 0;
8714 }
8715 
bpf_map__pin(struct bpf_map * map,const char * path)8716 int bpf_map__pin(struct bpf_map *map, const char *path)
8717 {
8718 	char *cp, errmsg[STRERR_BUFSIZE];
8719 	int err;
8720 
8721 	if (map == NULL) {
8722 		pr_warn("invalid map pointer\n");
8723 		return libbpf_err(-EINVAL);
8724 	}
8725 
8726 	if (map->fd < 0) {
8727 		pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name);
8728 		return libbpf_err(-EINVAL);
8729 	}
8730 
8731 	if (map->pin_path) {
8732 		if (path && strcmp(path, map->pin_path)) {
8733 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8734 				bpf_map__name(map), map->pin_path, path);
8735 			return libbpf_err(-EINVAL);
8736 		} else if (map->pinned) {
8737 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8738 				 bpf_map__name(map), map->pin_path);
8739 			return 0;
8740 		}
8741 	} else {
8742 		if (!path) {
8743 			pr_warn("missing a path to pin map '%s' at\n",
8744 				bpf_map__name(map));
8745 			return libbpf_err(-EINVAL);
8746 		} else if (map->pinned) {
8747 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8748 			return libbpf_err(-EEXIST);
8749 		}
8750 
8751 		map->pin_path = strdup(path);
8752 		if (!map->pin_path) {
8753 			err = -errno;
8754 			goto out_err;
8755 		}
8756 	}
8757 
8758 	err = make_parent_dir(map->pin_path);
8759 	if (err)
8760 		return libbpf_err(err);
8761 
8762 	err = check_path(map->pin_path);
8763 	if (err)
8764 		return libbpf_err(err);
8765 
8766 	if (bpf_obj_pin(map->fd, map->pin_path)) {
8767 		err = -errno;
8768 		goto out_err;
8769 	}
8770 
8771 	map->pinned = true;
8772 	pr_debug("pinned map '%s'\n", map->pin_path);
8773 
8774 	return 0;
8775 
8776 out_err:
8777 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8778 	pr_warn("failed to pin map: %s\n", cp);
8779 	return libbpf_err(err);
8780 }
8781 
bpf_map__unpin(struct bpf_map * map,const char * path)8782 int bpf_map__unpin(struct bpf_map *map, const char *path)
8783 {
8784 	int err;
8785 
8786 	if (map == NULL) {
8787 		pr_warn("invalid map pointer\n");
8788 		return libbpf_err(-EINVAL);
8789 	}
8790 
8791 	if (map->pin_path) {
8792 		if (path && strcmp(path, map->pin_path)) {
8793 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8794 				bpf_map__name(map), map->pin_path, path);
8795 			return libbpf_err(-EINVAL);
8796 		}
8797 		path = map->pin_path;
8798 	} else if (!path) {
8799 		pr_warn("no path to unpin map '%s' from\n",
8800 			bpf_map__name(map));
8801 		return libbpf_err(-EINVAL);
8802 	}
8803 
8804 	err = check_path(path);
8805 	if (err)
8806 		return libbpf_err(err);
8807 
8808 	err = unlink(path);
8809 	if (err != 0)
8810 		return libbpf_err(-errno);
8811 
8812 	map->pinned = false;
8813 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8814 
8815 	return 0;
8816 }
8817 
bpf_map__set_pin_path(struct bpf_map * map,const char * path)8818 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8819 {
8820 	char *new = NULL;
8821 
8822 	if (path) {
8823 		new = strdup(path);
8824 		if (!new)
8825 			return libbpf_err(-errno);
8826 	}
8827 
8828 	free(map->pin_path);
8829 	map->pin_path = new;
8830 	return 0;
8831 }
8832 
8833 __alias(bpf_map__pin_path)
8834 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8835 
bpf_map__pin_path(const struct bpf_map * map)8836 const char *bpf_map__pin_path(const struct bpf_map *map)
8837 {
8838 	return map->pin_path;
8839 }
8840 
bpf_map__is_pinned(const struct bpf_map * map)8841 bool bpf_map__is_pinned(const struct bpf_map *map)
8842 {
8843 	return map->pinned;
8844 }
8845 
sanitize_pin_path(char * s)8846 static void sanitize_pin_path(char *s)
8847 {
8848 	/* bpffs disallows periods in path names */
8849 	while (*s) {
8850 		if (*s == '.')
8851 			*s = '_';
8852 		s++;
8853 	}
8854 }
8855 
bpf_object__pin_maps(struct bpf_object * obj,const char * path)8856 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8857 {
8858 	struct bpf_map *map;
8859 	int err;
8860 
8861 	if (!obj)
8862 		return libbpf_err(-ENOENT);
8863 
8864 	if (!obj->loaded) {
8865 		pr_warn("object not yet loaded; load it first\n");
8866 		return libbpf_err(-ENOENT);
8867 	}
8868 
8869 	bpf_object__for_each_map(map, obj) {
8870 		char *pin_path = NULL;
8871 		char buf[PATH_MAX];
8872 
8873 		if (!map->autocreate)
8874 			continue;
8875 
8876 		if (path) {
8877 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8878 			if (err)
8879 				goto err_unpin_maps;
8880 			sanitize_pin_path(buf);
8881 			pin_path = buf;
8882 		} else if (!map->pin_path) {
8883 			continue;
8884 		}
8885 
8886 		err = bpf_map__pin(map, pin_path);
8887 		if (err)
8888 			goto err_unpin_maps;
8889 	}
8890 
8891 	return 0;
8892 
8893 err_unpin_maps:
8894 	while ((map = bpf_object__prev_map(obj, map))) {
8895 		if (!map->pin_path)
8896 			continue;
8897 
8898 		bpf_map__unpin(map, NULL);
8899 	}
8900 
8901 	return libbpf_err(err);
8902 }
8903 
bpf_object__unpin_maps(struct bpf_object * obj,const char * path)8904 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8905 {
8906 	struct bpf_map *map;
8907 	int err;
8908 
8909 	if (!obj)
8910 		return libbpf_err(-ENOENT);
8911 
8912 	bpf_object__for_each_map(map, obj) {
8913 		char *pin_path = NULL;
8914 		char buf[PATH_MAX];
8915 
8916 		if (path) {
8917 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8918 			if (err)
8919 				return libbpf_err(err);
8920 			sanitize_pin_path(buf);
8921 			pin_path = buf;
8922 		} else if (!map->pin_path) {
8923 			continue;
8924 		}
8925 
8926 		err = bpf_map__unpin(map, pin_path);
8927 		if (err)
8928 			return libbpf_err(err);
8929 	}
8930 
8931 	return 0;
8932 }
8933 
bpf_object__pin_programs(struct bpf_object * obj,const char * path)8934 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8935 {
8936 	struct bpf_program *prog;
8937 	char buf[PATH_MAX];
8938 	int err;
8939 
8940 	if (!obj)
8941 		return libbpf_err(-ENOENT);
8942 
8943 	if (!obj->loaded) {
8944 		pr_warn("object not yet loaded; load it first\n");
8945 		return libbpf_err(-ENOENT);
8946 	}
8947 
8948 	bpf_object__for_each_program(prog, obj) {
8949 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8950 		if (err)
8951 			goto err_unpin_programs;
8952 
8953 		err = bpf_program__pin(prog, buf);
8954 		if (err)
8955 			goto err_unpin_programs;
8956 	}
8957 
8958 	return 0;
8959 
8960 err_unpin_programs:
8961 	while ((prog = bpf_object__prev_program(obj, prog))) {
8962 		if (pathname_concat(buf, sizeof(buf), path, prog->name))
8963 			continue;
8964 
8965 		bpf_program__unpin(prog, buf);
8966 	}
8967 
8968 	return libbpf_err(err);
8969 }
8970 
bpf_object__unpin_programs(struct bpf_object * obj,const char * path)8971 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8972 {
8973 	struct bpf_program *prog;
8974 	int err;
8975 
8976 	if (!obj)
8977 		return libbpf_err(-ENOENT);
8978 
8979 	bpf_object__for_each_program(prog, obj) {
8980 		char buf[PATH_MAX];
8981 
8982 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8983 		if (err)
8984 			return libbpf_err(err);
8985 
8986 		err = bpf_program__unpin(prog, buf);
8987 		if (err)
8988 			return libbpf_err(err);
8989 	}
8990 
8991 	return 0;
8992 }
8993 
bpf_object__pin(struct bpf_object * obj,const char * path)8994 int bpf_object__pin(struct bpf_object *obj, const char *path)
8995 {
8996 	int err;
8997 
8998 	err = bpf_object__pin_maps(obj, path);
8999 	if (err)
9000 		return libbpf_err(err);
9001 
9002 	err = bpf_object__pin_programs(obj, path);
9003 	if (err) {
9004 		bpf_object__unpin_maps(obj, path);
9005 		return libbpf_err(err);
9006 	}
9007 
9008 	return 0;
9009 }
9010 
bpf_object__unpin(struct bpf_object * obj,const char * path)9011 int bpf_object__unpin(struct bpf_object *obj, const char *path)
9012 {
9013 	int err;
9014 
9015 	err = bpf_object__unpin_programs(obj, path);
9016 	if (err)
9017 		return libbpf_err(err);
9018 
9019 	err = bpf_object__unpin_maps(obj, path);
9020 	if (err)
9021 		return libbpf_err(err);
9022 
9023 	return 0;
9024 }
9025 
bpf_map__destroy(struct bpf_map * map)9026 static void bpf_map__destroy(struct bpf_map *map)
9027 {
9028 	if (map->inner_map) {
9029 		bpf_map__destroy(map->inner_map);
9030 		zfree(&map->inner_map);
9031 	}
9032 
9033 	zfree(&map->init_slots);
9034 	map->init_slots_sz = 0;
9035 
9036 	if (map->mmaped && map->mmaped != map->obj->arena_data)
9037 		munmap(map->mmaped, bpf_map_mmap_sz(map));
9038 	map->mmaped = NULL;
9039 
9040 	if (map->st_ops) {
9041 		zfree(&map->st_ops->data);
9042 		zfree(&map->st_ops->progs);
9043 		zfree(&map->st_ops->kern_func_off);
9044 		zfree(&map->st_ops);
9045 	}
9046 
9047 	zfree(&map->name);
9048 	zfree(&map->real_name);
9049 	zfree(&map->pin_path);
9050 
9051 	if (map->fd >= 0)
9052 		zclose(map->fd);
9053 }
9054 
bpf_object__close(struct bpf_object * obj)9055 void bpf_object__close(struct bpf_object *obj)
9056 {
9057 	size_t i;
9058 
9059 	if (IS_ERR_OR_NULL(obj))
9060 		return;
9061 
9062 	usdt_manager_free(obj->usdt_man);
9063 	obj->usdt_man = NULL;
9064 
9065 	bpf_gen__free(obj->gen_loader);
9066 	bpf_object__elf_finish(obj);
9067 	bpf_object_unload(obj);
9068 	btf__free(obj->btf);
9069 	btf__free(obj->btf_vmlinux);
9070 	btf_ext__free(obj->btf_ext);
9071 
9072 	for (i = 0; i < obj->nr_maps; i++)
9073 		bpf_map__destroy(&obj->maps[i]);
9074 
9075 	zfree(&obj->btf_custom_path);
9076 	zfree(&obj->kconfig);
9077 
9078 	for (i = 0; i < obj->nr_extern; i++) {
9079 		zfree(&obj->externs[i].name);
9080 		zfree(&obj->externs[i].essent_name);
9081 	}
9082 
9083 	zfree(&obj->externs);
9084 	obj->nr_extern = 0;
9085 
9086 	zfree(&obj->maps);
9087 	obj->nr_maps = 0;
9088 
9089 	if (obj->programs && obj->nr_programs) {
9090 		for (i = 0; i < obj->nr_programs; i++)
9091 			bpf_program__exit(&obj->programs[i]);
9092 	}
9093 	zfree(&obj->programs);
9094 
9095 	zfree(&obj->feat_cache);
9096 	zfree(&obj->token_path);
9097 	if (obj->token_fd > 0)
9098 		close(obj->token_fd);
9099 
9100 	zfree(&obj->arena_data);
9101 
9102 	free(obj);
9103 }
9104 
bpf_object__name(const struct bpf_object * obj)9105 const char *bpf_object__name(const struct bpf_object *obj)
9106 {
9107 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
9108 }
9109 
bpf_object__kversion(const struct bpf_object * obj)9110 unsigned int bpf_object__kversion(const struct bpf_object *obj)
9111 {
9112 	return obj ? obj->kern_version : 0;
9113 }
9114 
bpf_object__token_fd(const struct bpf_object * obj)9115 int bpf_object__token_fd(const struct bpf_object *obj)
9116 {
9117 	return obj->token_fd ?: -1;
9118 }
9119 
bpf_object__btf(const struct bpf_object * obj)9120 struct btf *bpf_object__btf(const struct bpf_object *obj)
9121 {
9122 	return obj ? obj->btf : NULL;
9123 }
9124 
bpf_object__btf_fd(const struct bpf_object * obj)9125 int bpf_object__btf_fd(const struct bpf_object *obj)
9126 {
9127 	return obj->btf ? btf__fd(obj->btf) : -1;
9128 }
9129 
bpf_object__set_kversion(struct bpf_object * obj,__u32 kern_version)9130 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
9131 {
9132 	if (obj->loaded)
9133 		return libbpf_err(-EINVAL);
9134 
9135 	obj->kern_version = kern_version;
9136 
9137 	return 0;
9138 }
9139 
bpf_object__gen_loader(struct bpf_object * obj,struct gen_loader_opts * opts)9140 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
9141 {
9142 	struct bpf_gen *gen;
9143 
9144 	if (!opts)
9145 		return -EFAULT;
9146 	if (!OPTS_VALID(opts, gen_loader_opts))
9147 		return -EINVAL;
9148 	gen = calloc(sizeof(*gen), 1);
9149 	if (!gen)
9150 		return -ENOMEM;
9151 	gen->opts = opts;
9152 	obj->gen_loader = gen;
9153 	return 0;
9154 }
9155 
9156 static struct bpf_program *
__bpf_program__iter(const struct bpf_program * p,const struct bpf_object * obj,bool forward)9157 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
9158 		    bool forward)
9159 {
9160 	size_t nr_programs = obj->nr_programs;
9161 	ssize_t idx;
9162 
9163 	if (!nr_programs)
9164 		return NULL;
9165 
9166 	if (!p)
9167 		/* Iter from the beginning */
9168 		return forward ? &obj->programs[0] :
9169 			&obj->programs[nr_programs - 1];
9170 
9171 	if (p->obj != obj) {
9172 		pr_warn("error: program handler doesn't match object\n");
9173 		return errno = EINVAL, NULL;
9174 	}
9175 
9176 	idx = (p - obj->programs) + (forward ? 1 : -1);
9177 	if (idx >= obj->nr_programs || idx < 0)
9178 		return NULL;
9179 	return &obj->programs[idx];
9180 }
9181 
9182 struct bpf_program *
bpf_object__next_program(const struct bpf_object * obj,struct bpf_program * prev)9183 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
9184 {
9185 	struct bpf_program *prog = prev;
9186 
9187 	do {
9188 		prog = __bpf_program__iter(prog, obj, true);
9189 	} while (prog && prog_is_subprog(obj, prog));
9190 
9191 	return prog;
9192 }
9193 
9194 struct bpf_program *
bpf_object__prev_program(const struct bpf_object * obj,struct bpf_program * next)9195 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
9196 {
9197 	struct bpf_program *prog = next;
9198 
9199 	do {
9200 		prog = __bpf_program__iter(prog, obj, false);
9201 	} while (prog && prog_is_subprog(obj, prog));
9202 
9203 	return prog;
9204 }
9205 
bpf_program__set_ifindex(struct bpf_program * prog,__u32 ifindex)9206 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
9207 {
9208 	prog->prog_ifindex = ifindex;
9209 }
9210 
bpf_program__name(const struct bpf_program * prog)9211 const char *bpf_program__name(const struct bpf_program *prog)
9212 {
9213 	return prog->name;
9214 }
9215 
bpf_program__section_name(const struct bpf_program * prog)9216 const char *bpf_program__section_name(const struct bpf_program *prog)
9217 {
9218 	return prog->sec_name;
9219 }
9220 
bpf_program__autoload(const struct bpf_program * prog)9221 bool bpf_program__autoload(const struct bpf_program *prog)
9222 {
9223 	return prog->autoload;
9224 }
9225 
bpf_program__set_autoload(struct bpf_program * prog,bool autoload)9226 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
9227 {
9228 	if (prog->obj->loaded)
9229 		return libbpf_err(-EINVAL);
9230 
9231 	prog->autoload = autoload;
9232 	return 0;
9233 }
9234 
bpf_program__autoattach(const struct bpf_program * prog)9235 bool bpf_program__autoattach(const struct bpf_program *prog)
9236 {
9237 	return prog->autoattach;
9238 }
9239 
bpf_program__set_autoattach(struct bpf_program * prog,bool autoattach)9240 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
9241 {
9242 	prog->autoattach = autoattach;
9243 }
9244 
bpf_program__insns(const struct bpf_program * prog)9245 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
9246 {
9247 	return prog->insns;
9248 }
9249 
bpf_program__insn_cnt(const struct bpf_program * prog)9250 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
9251 {
9252 	return prog->insns_cnt;
9253 }
9254 
bpf_program__set_insns(struct bpf_program * prog,struct bpf_insn * new_insns,size_t new_insn_cnt)9255 int bpf_program__set_insns(struct bpf_program *prog,
9256 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
9257 {
9258 	struct bpf_insn *insns;
9259 
9260 	if (prog->obj->loaded)
9261 		return -EBUSY;
9262 
9263 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
9264 	/* NULL is a valid return from reallocarray if the new count is zero */
9265 	if (!insns && new_insn_cnt) {
9266 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
9267 		return -ENOMEM;
9268 	}
9269 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
9270 
9271 	prog->insns = insns;
9272 	prog->insns_cnt = new_insn_cnt;
9273 	return 0;
9274 }
9275 
bpf_program__fd(const struct bpf_program * prog)9276 int bpf_program__fd(const struct bpf_program *prog)
9277 {
9278 	if (!prog)
9279 		return libbpf_err(-EINVAL);
9280 
9281 	if (prog->fd < 0)
9282 		return libbpf_err(-ENOENT);
9283 
9284 	return prog->fd;
9285 }
9286 
9287 __alias(bpf_program__type)
9288 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
9289 
bpf_program__type(const struct bpf_program * prog)9290 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
9291 {
9292 	return prog->type;
9293 }
9294 
9295 static size_t custom_sec_def_cnt;
9296 static struct bpf_sec_def *custom_sec_defs;
9297 static struct bpf_sec_def custom_fallback_def;
9298 static bool has_custom_fallback_def;
9299 static int last_custom_sec_def_handler_id;
9300 
bpf_program__set_type(struct bpf_program * prog,enum bpf_prog_type type)9301 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
9302 {
9303 	if (prog->obj->loaded)
9304 		return libbpf_err(-EBUSY);
9305 
9306 	/* if type is not changed, do nothing */
9307 	if (prog->type == type)
9308 		return 0;
9309 
9310 	prog->type = type;
9311 
9312 	/* If a program type was changed, we need to reset associated SEC()
9313 	 * handler, as it will be invalid now. The only exception is a generic
9314 	 * fallback handler, which by definition is program type-agnostic and
9315 	 * is a catch-all custom handler, optionally set by the application,
9316 	 * so should be able to handle any type of BPF program.
9317 	 */
9318 	if (prog->sec_def != &custom_fallback_def)
9319 		prog->sec_def = NULL;
9320 	return 0;
9321 }
9322 
9323 __alias(bpf_program__expected_attach_type)
9324 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
9325 
bpf_program__expected_attach_type(const struct bpf_program * prog)9326 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
9327 {
9328 	return prog->expected_attach_type;
9329 }
9330 
bpf_program__set_expected_attach_type(struct bpf_program * prog,enum bpf_attach_type type)9331 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
9332 					   enum bpf_attach_type type)
9333 {
9334 	if (prog->obj->loaded)
9335 		return libbpf_err(-EBUSY);
9336 
9337 	prog->expected_attach_type = type;
9338 	return 0;
9339 }
9340 
bpf_program__flags(const struct bpf_program * prog)9341 __u32 bpf_program__flags(const struct bpf_program *prog)
9342 {
9343 	return prog->prog_flags;
9344 }
9345 
bpf_program__set_flags(struct bpf_program * prog,__u32 flags)9346 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
9347 {
9348 	if (prog->obj->loaded)
9349 		return libbpf_err(-EBUSY);
9350 
9351 	prog->prog_flags = flags;
9352 	return 0;
9353 }
9354 
bpf_program__log_level(const struct bpf_program * prog)9355 __u32 bpf_program__log_level(const struct bpf_program *prog)
9356 {
9357 	return prog->log_level;
9358 }
9359 
bpf_program__set_log_level(struct bpf_program * prog,__u32 log_level)9360 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
9361 {
9362 	if (prog->obj->loaded)
9363 		return libbpf_err(-EBUSY);
9364 
9365 	prog->log_level = log_level;
9366 	return 0;
9367 }
9368 
bpf_program__log_buf(const struct bpf_program * prog,size_t * log_size)9369 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
9370 {
9371 	*log_size = prog->log_size;
9372 	return prog->log_buf;
9373 }
9374 
bpf_program__set_log_buf(struct bpf_program * prog,char * log_buf,size_t log_size)9375 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
9376 {
9377 	if (log_size && !log_buf)
9378 		return -EINVAL;
9379 	if (prog->log_size > UINT_MAX)
9380 		return -EINVAL;
9381 	if (prog->obj->loaded)
9382 		return -EBUSY;
9383 
9384 	prog->log_buf = log_buf;
9385 	prog->log_size = log_size;
9386 	return 0;
9387 }
9388 
9389 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
9390 	.sec = (char *)sec_pfx,						    \
9391 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
9392 	.expected_attach_type = atype,					    \
9393 	.cookie = (long)(flags),					    \
9394 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
9395 	__VA_ARGS__							    \
9396 }
9397 
9398 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9399 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9400 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9401 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9402 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9403 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9404 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9405 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9406 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9407 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9408 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9409 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9410 
9411 static const struct bpf_sec_def section_defs[] = {
9412 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE),
9413 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
9414 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
9415 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
9416 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
9417 	SEC_DEF("uprobe.s+",		KPROBE,	0, SEC_SLEEPABLE, attach_uprobe),
9418 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
9419 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
9420 	SEC_DEF("uretprobe.s+",		KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9421 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9422 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9423 	SEC_DEF("kprobe.session+",	KPROBE,	BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session),
9424 	SEC_DEF("uprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9425 	SEC_DEF("uretprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9426 	SEC_DEF("uprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9427 	SEC_DEF("uretprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9428 	SEC_DEF("ksyscall+",		KPROBE,	0, SEC_NONE, attach_ksyscall),
9429 	SEC_DEF("kretsyscall+",		KPROBE, 0, SEC_NONE, attach_ksyscall),
9430 	SEC_DEF("usdt+",		KPROBE,	0, SEC_USDT, attach_usdt),
9431 	SEC_DEF("usdt.s+",		KPROBE,	0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
9432 	SEC_DEF("tc/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
9433 	SEC_DEF("tc/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),  /* alias for tcx */
9434 	SEC_DEF("tcx/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
9435 	SEC_DEF("tcx/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
9436 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9437 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9438 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9439 	SEC_DEF("netkit/primary",	SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
9440 	SEC_DEF("netkit/peer",		SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
9441 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
9442 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
9443 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9444 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9445 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9446 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9447 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9448 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9449 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9450 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9451 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9452 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9453 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9454 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
9455 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9456 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9457 	SEC_DEF("lsm_cgroup+",		LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
9458 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9459 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9460 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
9461 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9462 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9463 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9464 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9465 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
9466 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
9467 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE),
9468 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE),
9469 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE),
9470 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE),
9471 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE),
9472 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
9473 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
9474 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
9475 	SEC_DEF("sk_skb/verdict",	SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT),
9476 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE),
9477 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
9478 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
9479 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
9480 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
9481 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
9482 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE),
9483 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
9484 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
9485 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
9486 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
9487 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
9488 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
9489 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
9490 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
9491 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
9492 	SEC_DEF("cgroup/connect_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
9493 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
9494 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
9495 	SEC_DEF("cgroup/sendmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
9496 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
9497 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
9498 	SEC_DEF("cgroup/recvmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
9499 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
9500 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
9501 	SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
9502 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
9503 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
9504 	SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
9505 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
9506 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
9507 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
9508 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
9509 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
9510 	SEC_DEF("struct_ops.s+",	STRUCT_OPS, 0, SEC_SLEEPABLE),
9511 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
9512 	SEC_DEF("netfilter",		NETFILTER, BPF_NETFILTER, SEC_NONE),
9513 };
9514 
libbpf_register_prog_handler(const char * sec,enum bpf_prog_type prog_type,enum bpf_attach_type exp_attach_type,const struct libbpf_prog_handler_opts * opts)9515 int libbpf_register_prog_handler(const char *sec,
9516 				 enum bpf_prog_type prog_type,
9517 				 enum bpf_attach_type exp_attach_type,
9518 				 const struct libbpf_prog_handler_opts *opts)
9519 {
9520 	struct bpf_sec_def *sec_def;
9521 
9522 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9523 		return libbpf_err(-EINVAL);
9524 
9525 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9526 		return libbpf_err(-E2BIG);
9527 
9528 	if (sec) {
9529 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9530 					      sizeof(*sec_def));
9531 		if (!sec_def)
9532 			return libbpf_err(-ENOMEM);
9533 
9534 		custom_sec_defs = sec_def;
9535 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
9536 	} else {
9537 		if (has_custom_fallback_def)
9538 			return libbpf_err(-EBUSY);
9539 
9540 		sec_def = &custom_fallback_def;
9541 	}
9542 
9543 	sec_def->sec = sec ? strdup(sec) : NULL;
9544 	if (sec && !sec_def->sec)
9545 		return libbpf_err(-ENOMEM);
9546 
9547 	sec_def->prog_type = prog_type;
9548 	sec_def->expected_attach_type = exp_attach_type;
9549 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
9550 
9551 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9552 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9553 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9554 
9555 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
9556 
9557 	if (sec)
9558 		custom_sec_def_cnt++;
9559 	else
9560 		has_custom_fallback_def = true;
9561 
9562 	return sec_def->handler_id;
9563 }
9564 
libbpf_unregister_prog_handler(int handler_id)9565 int libbpf_unregister_prog_handler(int handler_id)
9566 {
9567 	struct bpf_sec_def *sec_defs;
9568 	int i;
9569 
9570 	if (handler_id <= 0)
9571 		return libbpf_err(-EINVAL);
9572 
9573 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9574 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9575 		has_custom_fallback_def = false;
9576 		return 0;
9577 	}
9578 
9579 	for (i = 0; i < custom_sec_def_cnt; i++) {
9580 		if (custom_sec_defs[i].handler_id == handler_id)
9581 			break;
9582 	}
9583 
9584 	if (i == custom_sec_def_cnt)
9585 		return libbpf_err(-ENOENT);
9586 
9587 	free(custom_sec_defs[i].sec);
9588 	for (i = i + 1; i < custom_sec_def_cnt; i++)
9589 		custom_sec_defs[i - 1] = custom_sec_defs[i];
9590 	custom_sec_def_cnt--;
9591 
9592 	/* try to shrink the array, but it's ok if we couldn't */
9593 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9594 	/* if new count is zero, reallocarray can return a valid NULL result;
9595 	 * in this case the previous pointer will be freed, so we *have to*
9596 	 * reassign old pointer to the new value (even if it's NULL)
9597 	 */
9598 	if (sec_defs || custom_sec_def_cnt == 0)
9599 		custom_sec_defs = sec_defs;
9600 
9601 	return 0;
9602 }
9603 
sec_def_matches(const struct bpf_sec_def * sec_def,const char * sec_name)9604 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
9605 {
9606 	size_t len = strlen(sec_def->sec);
9607 
9608 	/* "type/" always has to have proper SEC("type/extras") form */
9609 	if (sec_def->sec[len - 1] == '/') {
9610 		if (str_has_pfx(sec_name, sec_def->sec))
9611 			return true;
9612 		return false;
9613 	}
9614 
9615 	/* "type+" means it can be either exact SEC("type") or
9616 	 * well-formed SEC("type/extras") with proper '/' separator
9617 	 */
9618 	if (sec_def->sec[len - 1] == '+') {
9619 		len--;
9620 		/* not even a prefix */
9621 		if (strncmp(sec_name, sec_def->sec, len) != 0)
9622 			return false;
9623 		/* exact match or has '/' separator */
9624 		if (sec_name[len] == '\0' || sec_name[len] == '/')
9625 			return true;
9626 		return false;
9627 	}
9628 
9629 	return strcmp(sec_name, sec_def->sec) == 0;
9630 }
9631 
find_sec_def(const char * sec_name)9632 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9633 {
9634 	const struct bpf_sec_def *sec_def;
9635 	int i, n;
9636 
9637 	n = custom_sec_def_cnt;
9638 	for (i = 0; i < n; i++) {
9639 		sec_def = &custom_sec_defs[i];
9640 		if (sec_def_matches(sec_def, sec_name))
9641 			return sec_def;
9642 	}
9643 
9644 	n = ARRAY_SIZE(section_defs);
9645 	for (i = 0; i < n; i++) {
9646 		sec_def = §ion_defs[i];
9647 		if (sec_def_matches(sec_def, sec_name))
9648 			return sec_def;
9649 	}
9650 
9651 	if (has_custom_fallback_def)
9652 		return &custom_fallback_def;
9653 
9654 	return NULL;
9655 }
9656 
9657 #define MAX_TYPE_NAME_SIZE 32
9658 
libbpf_get_type_names(bool attach_type)9659 static char *libbpf_get_type_names(bool attach_type)
9660 {
9661 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9662 	char *buf;
9663 
9664 	buf = malloc(len);
9665 	if (!buf)
9666 		return NULL;
9667 
9668 	buf[0] = '\0';
9669 	/* Forge string buf with all available names */
9670 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9671 		const struct bpf_sec_def *sec_def = §ion_defs[i];
9672 
9673 		if (attach_type) {
9674 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9675 				continue;
9676 
9677 			if (!(sec_def->cookie & SEC_ATTACHABLE))
9678 				continue;
9679 		}
9680 
9681 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9682 			free(buf);
9683 			return NULL;
9684 		}
9685 		strcat(buf, " ");
9686 		strcat(buf, section_defs[i].sec);
9687 	}
9688 
9689 	return buf;
9690 }
9691 
libbpf_prog_type_by_name(const char * name,enum bpf_prog_type * prog_type,enum bpf_attach_type * expected_attach_type)9692 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9693 			     enum bpf_attach_type *expected_attach_type)
9694 {
9695 	const struct bpf_sec_def *sec_def;
9696 	char *type_names;
9697 
9698 	if (!name)
9699 		return libbpf_err(-EINVAL);
9700 
9701 	sec_def = find_sec_def(name);
9702 	if (sec_def) {
9703 		*prog_type = sec_def->prog_type;
9704 		*expected_attach_type = sec_def->expected_attach_type;
9705 		return 0;
9706 	}
9707 
9708 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
9709 	type_names = libbpf_get_type_names(false);
9710 	if (type_names != NULL) {
9711 		pr_debug("supported section(type) names are:%s\n", type_names);
9712 		free(type_names);
9713 	}
9714 
9715 	return libbpf_err(-ESRCH);
9716 }
9717 
libbpf_bpf_attach_type_str(enum bpf_attach_type t)9718 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9719 {
9720 	if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9721 		return NULL;
9722 
9723 	return attach_type_name[t];
9724 }
9725 
libbpf_bpf_link_type_str(enum bpf_link_type t)9726 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9727 {
9728 	if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9729 		return NULL;
9730 
9731 	return link_type_name[t];
9732 }
9733 
libbpf_bpf_map_type_str(enum bpf_map_type t)9734 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9735 {
9736 	if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9737 		return NULL;
9738 
9739 	return map_type_name[t];
9740 }
9741 
libbpf_bpf_prog_type_str(enum bpf_prog_type t)9742 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9743 {
9744 	if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9745 		return NULL;
9746 
9747 	return prog_type_name[t];
9748 }
9749 
find_struct_ops_map_by_offset(struct bpf_object * obj,int sec_idx,size_t offset)9750 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9751 						     int sec_idx,
9752 						     size_t offset)
9753 {
9754 	struct bpf_map *map;
9755 	size_t i;
9756 
9757 	for (i = 0; i < obj->nr_maps; i++) {
9758 		map = &obj->maps[i];
9759 		if (!bpf_map__is_struct_ops(map))
9760 			continue;
9761 		if (map->sec_idx == sec_idx &&
9762 		    map->sec_offset <= offset &&
9763 		    offset - map->sec_offset < map->def.value_size)
9764 			return map;
9765 	}
9766 
9767 	return NULL;
9768 }
9769 
9770 /* Collect the reloc from ELF, populate the st_ops->progs[], and update
9771  * st_ops->data for shadow type.
9772  */
bpf_object__collect_st_ops_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)9773 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9774 					    Elf64_Shdr *shdr, Elf_Data *data)
9775 {
9776 	const struct btf_type *type;
9777 	const struct btf_member *member;
9778 	struct bpf_struct_ops *st_ops;
9779 	struct bpf_program *prog;
9780 	unsigned int shdr_idx;
9781 	const struct btf *btf;
9782 	struct bpf_map *map;
9783 	unsigned int moff, insn_idx;
9784 	const char *name;
9785 	__u32 member_idx;
9786 	Elf64_Sym *sym;
9787 	Elf64_Rel *rel;
9788 	int i, nrels;
9789 
9790 	btf = obj->btf;
9791 	nrels = shdr->sh_size / shdr->sh_entsize;
9792 	for (i = 0; i < nrels; i++) {
9793 		rel = elf_rel_by_idx(data, i);
9794 		if (!rel) {
9795 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9796 			return -LIBBPF_ERRNO__FORMAT;
9797 		}
9798 
9799 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9800 		if (!sym) {
9801 			pr_warn("struct_ops reloc: symbol %zx not found\n",
9802 				(size_t)ELF64_R_SYM(rel->r_info));
9803 			return -LIBBPF_ERRNO__FORMAT;
9804 		}
9805 
9806 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9807 		map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9808 		if (!map) {
9809 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9810 				(size_t)rel->r_offset);
9811 			return -EINVAL;
9812 		}
9813 
9814 		moff = rel->r_offset - map->sec_offset;
9815 		shdr_idx = sym->st_shndx;
9816 		st_ops = map->st_ops;
9817 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9818 			 map->name,
9819 			 (long long)(rel->r_info >> 32),
9820 			 (long long)sym->st_value,
9821 			 shdr_idx, (size_t)rel->r_offset,
9822 			 map->sec_offset, sym->st_name, name);
9823 
9824 		if (shdr_idx >= SHN_LORESERVE) {
9825 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9826 				map->name, (size_t)rel->r_offset, shdr_idx);
9827 			return -LIBBPF_ERRNO__RELOC;
9828 		}
9829 		if (sym->st_value % BPF_INSN_SZ) {
9830 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9831 				map->name, (unsigned long long)sym->st_value);
9832 			return -LIBBPF_ERRNO__FORMAT;
9833 		}
9834 		insn_idx = sym->st_value / BPF_INSN_SZ;
9835 
9836 		type = btf__type_by_id(btf, st_ops->type_id);
9837 		member = find_member_by_offset(type, moff * 8);
9838 		if (!member) {
9839 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9840 				map->name, moff);
9841 			return -EINVAL;
9842 		}
9843 		member_idx = member - btf_members(type);
9844 		name = btf__name_by_offset(btf, member->name_off);
9845 
9846 		if (!resolve_func_ptr(btf, member->type, NULL)) {
9847 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9848 				map->name, name);
9849 			return -EINVAL;
9850 		}
9851 
9852 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9853 		if (!prog) {
9854 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9855 				map->name, shdr_idx, name);
9856 			return -EINVAL;
9857 		}
9858 
9859 		/* prevent the use of BPF prog with invalid type */
9860 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9861 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9862 				map->name, prog->name);
9863 			return -EINVAL;
9864 		}
9865 
9866 		st_ops->progs[member_idx] = prog;
9867 
9868 		/* st_ops->data will be exposed to users, being returned by
9869 		 * bpf_map__initial_value() as a pointer to the shadow
9870 		 * type. All function pointers in the original struct type
9871 		 * should be converted to a pointer to struct bpf_program
9872 		 * in the shadow type.
9873 		 */
9874 		*((struct bpf_program **)(st_ops->data + moff)) = prog;
9875 	}
9876 
9877 	return 0;
9878 }
9879 
9880 #define BTF_TRACE_PREFIX "btf_trace_"
9881 #define BTF_LSM_PREFIX "bpf_lsm_"
9882 #define BTF_ITER_PREFIX "bpf_iter_"
9883 #define BTF_MAX_NAME_SIZE 128
9884 
btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,const char ** prefix,int * kind)9885 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9886 				const char **prefix, int *kind)
9887 {
9888 	switch (attach_type) {
9889 	case BPF_TRACE_RAW_TP:
9890 		*prefix = BTF_TRACE_PREFIX;
9891 		*kind = BTF_KIND_TYPEDEF;
9892 		break;
9893 	case BPF_LSM_MAC:
9894 	case BPF_LSM_CGROUP:
9895 		*prefix = BTF_LSM_PREFIX;
9896 		*kind = BTF_KIND_FUNC;
9897 		break;
9898 	case BPF_TRACE_ITER:
9899 		*prefix = BTF_ITER_PREFIX;
9900 		*kind = BTF_KIND_FUNC;
9901 		break;
9902 	default:
9903 		*prefix = "";
9904 		*kind = BTF_KIND_FUNC;
9905 	}
9906 }
9907 
find_btf_by_prefix_kind(const struct btf * btf,const char * prefix,const char * name,__u32 kind)9908 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9909 				   const char *name, __u32 kind)
9910 {
9911 	char btf_type_name[BTF_MAX_NAME_SIZE];
9912 	int ret;
9913 
9914 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
9915 		       "%s%s", prefix, name);
9916 	/* snprintf returns the number of characters written excluding the
9917 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9918 	 * indicates truncation.
9919 	 */
9920 	if (ret < 0 || ret >= sizeof(btf_type_name))
9921 		return -ENAMETOOLONG;
9922 	return btf__find_by_name_kind(btf, btf_type_name, kind);
9923 }
9924 
find_attach_btf_id(struct btf * btf,const char * name,enum bpf_attach_type attach_type)9925 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9926 				     enum bpf_attach_type attach_type)
9927 {
9928 	const char *prefix;
9929 	int kind;
9930 
9931 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9932 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
9933 }
9934 
libbpf_find_vmlinux_btf_id(const char * name,enum bpf_attach_type attach_type)9935 int libbpf_find_vmlinux_btf_id(const char *name,
9936 			       enum bpf_attach_type attach_type)
9937 {
9938 	struct btf *btf;
9939 	int err;
9940 
9941 	btf = btf__load_vmlinux_btf();
9942 	err = libbpf_get_error(btf);
9943 	if (err) {
9944 		pr_warn("vmlinux BTF is not found\n");
9945 		return libbpf_err(err);
9946 	}
9947 
9948 	err = find_attach_btf_id(btf, name, attach_type);
9949 	if (err <= 0)
9950 		pr_warn("%s is not found in vmlinux BTF\n", name);
9951 
9952 	btf__free(btf);
9953 	return libbpf_err(err);
9954 }
9955 
libbpf_find_prog_btf_id(const char * name,__u32 attach_prog_fd)9956 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9957 {
9958 	struct bpf_prog_info info;
9959 	__u32 info_len = sizeof(info);
9960 	struct btf *btf;
9961 	int err;
9962 
9963 	memset(&info, 0, info_len);
9964 	err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9965 	if (err) {
9966 		pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9967 			attach_prog_fd, err);
9968 		return err;
9969 	}
9970 
9971 	err = -EINVAL;
9972 	if (!info.btf_id) {
9973 		pr_warn("The target program doesn't have BTF\n");
9974 		goto out;
9975 	}
9976 	btf = btf__load_from_kernel_by_id(info.btf_id);
9977 	err = libbpf_get_error(btf);
9978 	if (err) {
9979 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9980 		goto out;
9981 	}
9982 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9983 	btf__free(btf);
9984 	if (err <= 0) {
9985 		pr_warn("%s is not found in prog's BTF\n", name);
9986 		goto out;
9987 	}
9988 out:
9989 	return err;
9990 }
9991 
find_kernel_btf_id(struct bpf_object * obj,const char * attach_name,enum bpf_attach_type attach_type,int * btf_obj_fd,int * btf_type_id)9992 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9993 			      enum bpf_attach_type attach_type,
9994 			      int *btf_obj_fd, int *btf_type_id)
9995 {
9996 	int ret, i, mod_len;
9997 	const char *fn_name, *mod_name = NULL;
9998 
9999 	fn_name = strchr(attach_name, ':');
10000 	if (fn_name) {
10001 		mod_name = attach_name;
10002 		mod_len = fn_name - mod_name;
10003 		fn_name++;
10004 	}
10005 
10006 	if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) {
10007 		ret = find_attach_btf_id(obj->btf_vmlinux,
10008 					 mod_name ? fn_name : attach_name,
10009 					 attach_type);
10010 		if (ret > 0) {
10011 			*btf_obj_fd = 0; /* vmlinux BTF */
10012 			*btf_type_id = ret;
10013 			return 0;
10014 		}
10015 		if (ret != -ENOENT)
10016 			return ret;
10017 	}
10018 
10019 	ret = load_module_btfs(obj);
10020 	if (ret)
10021 		return ret;
10022 
10023 	for (i = 0; i < obj->btf_module_cnt; i++) {
10024 		const struct module_btf *mod = &obj->btf_modules[i];
10025 
10026 		if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0)
10027 			continue;
10028 
10029 		ret = find_attach_btf_id(mod->btf,
10030 					 mod_name ? fn_name : attach_name,
10031 					 attach_type);
10032 		if (ret > 0) {
10033 			*btf_obj_fd = mod->fd;
10034 			*btf_type_id = ret;
10035 			return 0;
10036 		}
10037 		if (ret == -ENOENT)
10038 			continue;
10039 
10040 		return ret;
10041 	}
10042 
10043 	return -ESRCH;
10044 }
10045 
libbpf_find_attach_btf_id(struct bpf_program * prog,const char * attach_name,int * btf_obj_fd,int * btf_type_id)10046 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
10047 				     int *btf_obj_fd, int *btf_type_id)
10048 {
10049 	enum bpf_attach_type attach_type = prog->expected_attach_type;
10050 	__u32 attach_prog_fd = prog->attach_prog_fd;
10051 	int err = 0;
10052 
10053 	/* BPF program's BTF ID */
10054 	if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
10055 		if (!attach_prog_fd) {
10056 			pr_warn("prog '%s': attach program FD is not set\n", prog->name);
10057 			return -EINVAL;
10058 		}
10059 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
10060 		if (err < 0) {
10061 			pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
10062 				 prog->name, attach_prog_fd, attach_name, err);
10063 			return err;
10064 		}
10065 		*btf_obj_fd = 0;
10066 		*btf_type_id = err;
10067 		return 0;
10068 	}
10069 
10070 	/* kernel/module BTF ID */
10071 	if (prog->obj->gen_loader) {
10072 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
10073 		*btf_obj_fd = 0;
10074 		*btf_type_id = 1;
10075 	} else {
10076 		err = find_kernel_btf_id(prog->obj, attach_name,
10077 					 attach_type, btf_obj_fd,
10078 					 btf_type_id);
10079 	}
10080 	if (err) {
10081 		pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
10082 			prog->name, attach_name, err);
10083 		return err;
10084 	}
10085 	return 0;
10086 }
10087 
libbpf_attach_type_by_name(const char * name,enum bpf_attach_type * attach_type)10088 int libbpf_attach_type_by_name(const char *name,
10089 			       enum bpf_attach_type *attach_type)
10090 {
10091 	char *type_names;
10092 	const struct bpf_sec_def *sec_def;
10093 
10094 	if (!name)
10095 		return libbpf_err(-EINVAL);
10096 
10097 	sec_def = find_sec_def(name);
10098 	if (!sec_def) {
10099 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
10100 		type_names = libbpf_get_type_names(true);
10101 		if (type_names != NULL) {
10102 			pr_debug("attachable section(type) names are:%s\n", type_names);
10103 			free(type_names);
10104 		}
10105 
10106 		return libbpf_err(-EINVAL);
10107 	}
10108 
10109 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
10110 		return libbpf_err(-EINVAL);
10111 	if (!(sec_def->cookie & SEC_ATTACHABLE))
10112 		return libbpf_err(-EINVAL);
10113 
10114 	*attach_type = sec_def->expected_attach_type;
10115 	return 0;
10116 }
10117 
bpf_map__fd(const struct bpf_map * map)10118 int bpf_map__fd(const struct bpf_map *map)
10119 {
10120 	if (!map)
10121 		return libbpf_err(-EINVAL);
10122 	if (!map_is_created(map))
10123 		return -1;
10124 	return map->fd;
10125 }
10126 
map_uses_real_name(const struct bpf_map * map)10127 static bool map_uses_real_name(const struct bpf_map *map)
10128 {
10129 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
10130 	 * their user-visible name differs from kernel-visible name. Users see
10131 	 * such map's corresponding ELF section name as a map name.
10132 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
10133 	 * maps to know which name has to be returned to the user.
10134 	 */
10135 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
10136 		return true;
10137 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
10138 		return true;
10139 	return false;
10140 }
10141 
bpf_map__name(const struct bpf_map * map)10142 const char *bpf_map__name(const struct bpf_map *map)
10143 {
10144 	if (!map)
10145 		return NULL;
10146 
10147 	if (map_uses_real_name(map))
10148 		return map->real_name;
10149 
10150 	return map->name;
10151 }
10152 
bpf_map__type(const struct bpf_map * map)10153 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
10154 {
10155 	return map->def.type;
10156 }
10157 
bpf_map__set_type(struct bpf_map * map,enum bpf_map_type type)10158 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
10159 {
10160 	if (map_is_created(map))
10161 		return libbpf_err(-EBUSY);
10162 	map->def.type = type;
10163 	return 0;
10164 }
10165 
bpf_map__map_flags(const struct bpf_map * map)10166 __u32 bpf_map__map_flags(const struct bpf_map *map)
10167 {
10168 	return map->def.map_flags;
10169 }
10170 
bpf_map__set_map_flags(struct bpf_map * map,__u32 flags)10171 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
10172 {
10173 	if (map_is_created(map))
10174 		return libbpf_err(-EBUSY);
10175 	map->def.map_flags = flags;
10176 	return 0;
10177 }
10178 
bpf_map__map_extra(const struct bpf_map * map)10179 __u64 bpf_map__map_extra(const struct bpf_map *map)
10180 {
10181 	return map->map_extra;
10182 }
10183 
bpf_map__set_map_extra(struct bpf_map * map,__u64 map_extra)10184 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
10185 {
10186 	if (map_is_created(map))
10187 		return libbpf_err(-EBUSY);
10188 	map->map_extra = map_extra;
10189 	return 0;
10190 }
10191 
bpf_map__numa_node(const struct bpf_map * map)10192 __u32 bpf_map__numa_node(const struct bpf_map *map)
10193 {
10194 	return map->numa_node;
10195 }
10196 
bpf_map__set_numa_node(struct bpf_map * map,__u32 numa_node)10197 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
10198 {
10199 	if (map_is_created(map))
10200 		return libbpf_err(-EBUSY);
10201 	map->numa_node = numa_node;
10202 	return 0;
10203 }
10204 
bpf_map__key_size(const struct bpf_map * map)10205 __u32 bpf_map__key_size(const struct bpf_map *map)
10206 {
10207 	return map->def.key_size;
10208 }
10209 
bpf_map__set_key_size(struct bpf_map * map,__u32 size)10210 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
10211 {
10212 	if (map_is_created(map))
10213 		return libbpf_err(-EBUSY);
10214 	map->def.key_size = size;
10215 	return 0;
10216 }
10217 
bpf_map__value_size(const struct bpf_map * map)10218 __u32 bpf_map__value_size(const struct bpf_map *map)
10219 {
10220 	return map->def.value_size;
10221 }
10222 
map_btf_datasec_resize(struct bpf_map * map,__u32 size)10223 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
10224 {
10225 	struct btf *btf;
10226 	struct btf_type *datasec_type, *var_type;
10227 	struct btf_var_secinfo *var;
10228 	const struct btf_type *array_type;
10229 	const struct btf_array *array;
10230 	int vlen, element_sz, new_array_id;
10231 	__u32 nr_elements;
10232 
10233 	/* check btf existence */
10234 	btf = bpf_object__btf(map->obj);
10235 	if (!btf)
10236 		return -ENOENT;
10237 
10238 	/* verify map is datasec */
10239 	datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
10240 	if (!btf_is_datasec(datasec_type)) {
10241 		pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
10242 			bpf_map__name(map));
10243 		return -EINVAL;
10244 	}
10245 
10246 	/* verify datasec has at least one var */
10247 	vlen = btf_vlen(datasec_type);
10248 	if (vlen == 0) {
10249 		pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
10250 			bpf_map__name(map));
10251 		return -EINVAL;
10252 	}
10253 
10254 	/* verify last var in the datasec is an array */
10255 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
10256 	var_type = btf_type_by_id(btf, var->type);
10257 	array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
10258 	if (!btf_is_array(array_type)) {
10259 		pr_warn("map '%s': cannot be resized, last var must be an array\n",
10260 			bpf_map__name(map));
10261 		return -EINVAL;
10262 	}
10263 
10264 	/* verify request size aligns with array */
10265 	array = btf_array(array_type);
10266 	element_sz = btf__resolve_size(btf, array->type);
10267 	if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
10268 		pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
10269 			bpf_map__name(map), element_sz, size);
10270 		return -EINVAL;
10271 	}
10272 
10273 	/* create a new array based on the existing array, but with new length */
10274 	nr_elements = (size - var->offset) / element_sz;
10275 	new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
10276 	if (new_array_id < 0)
10277 		return new_array_id;
10278 
10279 	/* adding a new btf type invalidates existing pointers to btf objects,
10280 	 * so refresh pointers before proceeding
10281 	 */
10282 	datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
10283 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
10284 	var_type = btf_type_by_id(btf, var->type);
10285 
10286 	/* finally update btf info */
10287 	datasec_type->size = size;
10288 	var->size = size - var->offset;
10289 	var_type->type = new_array_id;
10290 
10291 	return 0;
10292 }
10293 
bpf_map__set_value_size(struct bpf_map * map,__u32 size)10294 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
10295 {
10296 	if (map->obj->loaded || map->reused)
10297 		return libbpf_err(-EBUSY);
10298 
10299 	if (map->mmaped) {
10300 		size_t mmap_old_sz, mmap_new_sz;
10301 		int err;
10302 
10303 		if (map->def.type != BPF_MAP_TYPE_ARRAY)
10304 			return -EOPNOTSUPP;
10305 
10306 		mmap_old_sz = bpf_map_mmap_sz(map);
10307 		mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries);
10308 		err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
10309 		if (err) {
10310 			pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
10311 				bpf_map__name(map), err);
10312 			return err;
10313 		}
10314 		err = map_btf_datasec_resize(map, size);
10315 		if (err && err != -ENOENT) {
10316 			pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
10317 				bpf_map__name(map), err);
10318 			map->btf_value_type_id = 0;
10319 			map->btf_key_type_id = 0;
10320 		}
10321 	}
10322 
10323 	map->def.value_size = size;
10324 	return 0;
10325 }
10326 
bpf_map__btf_key_type_id(const struct bpf_map * map)10327 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
10328 {
10329 	return map ? map->btf_key_type_id : 0;
10330 }
10331 
bpf_map__btf_value_type_id(const struct bpf_map * map)10332 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
10333 {
10334 	return map ? map->btf_value_type_id : 0;
10335 }
10336 
bpf_map__set_initial_value(struct bpf_map * map,const void * data,size_t size)10337 int bpf_map__set_initial_value(struct bpf_map *map,
10338 			       const void *data, size_t size)
10339 {
10340 	size_t actual_sz;
10341 
10342 	if (map->obj->loaded || map->reused)
10343 		return libbpf_err(-EBUSY);
10344 
10345 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG)
10346 		return libbpf_err(-EINVAL);
10347 
10348 	if (map->def.type == BPF_MAP_TYPE_ARENA)
10349 		actual_sz = map->obj->arena_data_sz;
10350 	else
10351 		actual_sz = map->def.value_size;
10352 	if (size != actual_sz)
10353 		return libbpf_err(-EINVAL);
10354 
10355 	memcpy(map->mmaped, data, size);
10356 	return 0;
10357 }
10358 
bpf_map__initial_value(const struct bpf_map * map,size_t * psize)10359 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize)
10360 {
10361 	if (bpf_map__is_struct_ops(map)) {
10362 		if (psize)
10363 			*psize = map->def.value_size;
10364 		return map->st_ops->data;
10365 	}
10366 
10367 	if (!map->mmaped)
10368 		return NULL;
10369 
10370 	if (map->def.type == BPF_MAP_TYPE_ARENA)
10371 		*psize = map->obj->arena_data_sz;
10372 	else
10373 		*psize = map->def.value_size;
10374 
10375 	return map->mmaped;
10376 }
10377 
bpf_map__is_internal(const struct bpf_map * map)10378 bool bpf_map__is_internal(const struct bpf_map *map)
10379 {
10380 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
10381 }
10382 
bpf_map__ifindex(const struct bpf_map * map)10383 __u32 bpf_map__ifindex(const struct bpf_map *map)
10384 {
10385 	return map->map_ifindex;
10386 }
10387 
bpf_map__set_ifindex(struct bpf_map * map,__u32 ifindex)10388 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
10389 {
10390 	if (map_is_created(map))
10391 		return libbpf_err(-EBUSY);
10392 	map->map_ifindex = ifindex;
10393 	return 0;
10394 }
10395 
bpf_map__set_inner_map_fd(struct bpf_map * map,int fd)10396 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
10397 {
10398 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
10399 		pr_warn("error: unsupported map type\n");
10400 		return libbpf_err(-EINVAL);
10401 	}
10402 	if (map->inner_map_fd != -1) {
10403 		pr_warn("error: inner_map_fd already specified\n");
10404 		return libbpf_err(-EINVAL);
10405 	}
10406 	if (map->inner_map) {
10407 		bpf_map__destroy(map->inner_map);
10408 		zfree(&map->inner_map);
10409 	}
10410 	map->inner_map_fd = fd;
10411 	return 0;
10412 }
10413 
10414 static struct bpf_map *
__bpf_map__iter(const struct bpf_map * m,const struct bpf_object * obj,int i)10415 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
10416 {
10417 	ssize_t idx;
10418 	struct bpf_map *s, *e;
10419 
10420 	if (!obj || !obj->maps)
10421 		return errno = EINVAL, NULL;
10422 
10423 	s = obj->maps;
10424 	e = obj->maps + obj->nr_maps;
10425 
10426 	if ((m < s) || (m >= e)) {
10427 		pr_warn("error in %s: map handler doesn't belong to object\n",
10428 			 __func__);
10429 		return errno = EINVAL, NULL;
10430 	}
10431 
10432 	idx = (m - obj->maps) + i;
10433 	if (idx >= obj->nr_maps || idx < 0)
10434 		return NULL;
10435 	return &obj->maps[idx];
10436 }
10437 
10438 struct bpf_map *
bpf_object__next_map(const struct bpf_object * obj,const struct bpf_map * prev)10439 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
10440 {
10441 	if (prev == NULL && obj != NULL)
10442 		return obj->maps;
10443 
10444 	return __bpf_map__iter(prev, obj, 1);
10445 }
10446 
10447 struct bpf_map *
bpf_object__prev_map(const struct bpf_object * obj,const struct bpf_map * next)10448 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
10449 {
10450 	if (next == NULL && obj != NULL) {
10451 		if (!obj->nr_maps)
10452 			return NULL;
10453 		return obj->maps + obj->nr_maps - 1;
10454 	}
10455 
10456 	return __bpf_map__iter(next, obj, -1);
10457 }
10458 
10459 struct bpf_map *
bpf_object__find_map_by_name(const struct bpf_object * obj,const char * name)10460 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
10461 {
10462 	struct bpf_map *pos;
10463 
10464 	bpf_object__for_each_map(pos, obj) {
10465 		/* if it's a special internal map name (which always starts
10466 		 * with dot) then check if that special name matches the
10467 		 * real map name (ELF section name)
10468 		 */
10469 		if (name[0] == '.') {
10470 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
10471 				return pos;
10472 			continue;
10473 		}
10474 		/* otherwise map name has to be an exact match */
10475 		if (map_uses_real_name(pos)) {
10476 			if (strcmp(pos->real_name, name) == 0)
10477 				return pos;
10478 			continue;
10479 		}
10480 		if (strcmp(pos->name, name) == 0)
10481 			return pos;
10482 	}
10483 	return errno = ENOENT, NULL;
10484 }
10485 
10486 int
bpf_object__find_map_fd_by_name(const struct bpf_object * obj,const char * name)10487 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
10488 {
10489 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
10490 }
10491 
validate_map_op(const struct bpf_map * map,size_t key_sz,size_t value_sz,bool check_value_sz)10492 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
10493 			   size_t value_sz, bool check_value_sz)
10494 {
10495 	if (!map_is_created(map)) /* map is not yet created */
10496 		return -ENOENT;
10497 
10498 	if (map->def.key_size != key_sz) {
10499 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
10500 			map->name, key_sz, map->def.key_size);
10501 		return -EINVAL;
10502 	}
10503 
10504 	if (map->fd < 0) {
10505 		pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
10506 		return -EINVAL;
10507 	}
10508 
10509 	if (!check_value_sz)
10510 		return 0;
10511 
10512 	switch (map->def.type) {
10513 	case BPF_MAP_TYPE_PERCPU_ARRAY:
10514 	case BPF_MAP_TYPE_PERCPU_HASH:
10515 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10516 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
10517 		int num_cpu = libbpf_num_possible_cpus();
10518 		size_t elem_sz = roundup(map->def.value_size, 8);
10519 
10520 		if (value_sz != num_cpu * elem_sz) {
10521 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
10522 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
10523 			return -EINVAL;
10524 		}
10525 		break;
10526 	}
10527 	default:
10528 		if (map->def.value_size != value_sz) {
10529 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
10530 				map->name, value_sz, map->def.value_size);
10531 			return -EINVAL;
10532 		}
10533 		break;
10534 	}
10535 	return 0;
10536 }
10537 
bpf_map__lookup_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)10538 int bpf_map__lookup_elem(const struct bpf_map *map,
10539 			 const void *key, size_t key_sz,
10540 			 void *value, size_t value_sz, __u64 flags)
10541 {
10542 	int err;
10543 
10544 	err = validate_map_op(map, key_sz, value_sz, true);
10545 	if (err)
10546 		return libbpf_err(err);
10547 
10548 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10549 }
10550 
bpf_map__update_elem(const struct bpf_map * map,const void * key,size_t key_sz,const void * value,size_t value_sz,__u64 flags)10551 int bpf_map__update_elem(const struct bpf_map *map,
10552 			 const void *key, size_t key_sz,
10553 			 const void *value, size_t value_sz, __u64 flags)
10554 {
10555 	int err;
10556 
10557 	err = validate_map_op(map, key_sz, value_sz, true);
10558 	if (err)
10559 		return libbpf_err(err);
10560 
10561 	return bpf_map_update_elem(map->fd, key, value, flags);
10562 }
10563 
bpf_map__delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,__u64 flags)10564 int bpf_map__delete_elem(const struct bpf_map *map,
10565 			 const void *key, size_t key_sz, __u64 flags)
10566 {
10567 	int err;
10568 
10569 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10570 	if (err)
10571 		return libbpf_err(err);
10572 
10573 	return bpf_map_delete_elem_flags(map->fd, key, flags);
10574 }
10575 
bpf_map__lookup_and_delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)10576 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10577 				    const void *key, size_t key_sz,
10578 				    void *value, size_t value_sz, __u64 flags)
10579 {
10580 	int err;
10581 
10582 	err = validate_map_op(map, key_sz, value_sz, true);
10583 	if (err)
10584 		return libbpf_err(err);
10585 
10586 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10587 }
10588 
bpf_map__get_next_key(const struct bpf_map * map,const void * cur_key,void * next_key,size_t key_sz)10589 int bpf_map__get_next_key(const struct bpf_map *map,
10590 			  const void *cur_key, void *next_key, size_t key_sz)
10591 {
10592 	int err;
10593 
10594 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10595 	if (err)
10596 		return libbpf_err(err);
10597 
10598 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
10599 }
10600 
libbpf_get_error(const void * ptr)10601 long libbpf_get_error(const void *ptr)
10602 {
10603 	if (!IS_ERR_OR_NULL(ptr))
10604 		return 0;
10605 
10606 	if (IS_ERR(ptr))
10607 		errno = -PTR_ERR(ptr);
10608 
10609 	/* If ptr == NULL, then errno should be already set by the failing
10610 	 * API, because libbpf never returns NULL on success and it now always
10611 	 * sets errno on error. So no extra errno handling for ptr == NULL
10612 	 * case.
10613 	 */
10614 	return -errno;
10615 }
10616 
10617 /* Replace link's underlying BPF program with the new one */
bpf_link__update_program(struct bpf_link * link,struct bpf_program * prog)10618 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10619 {
10620 	int ret;
10621 	int prog_fd = bpf_program__fd(prog);
10622 
10623 	if (prog_fd < 0) {
10624 		pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n",
10625 			prog->name);
10626 		return libbpf_err(-EINVAL);
10627 	}
10628 
10629 	ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL);
10630 	return libbpf_err_errno(ret);
10631 }
10632 
10633 /* Release "ownership" of underlying BPF resource (typically, BPF program
10634  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10635  * link, when destructed through bpf_link__destroy() call won't attempt to
10636  * detach/unregisted that BPF resource. This is useful in situations where,
10637  * say, attached BPF program has to outlive userspace program that attached it
10638  * in the system. Depending on type of BPF program, though, there might be
10639  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10640  * exit of userspace program doesn't trigger automatic detachment and clean up
10641  * inside the kernel.
10642  */
bpf_link__disconnect(struct bpf_link * link)10643 void bpf_link__disconnect(struct bpf_link *link)
10644 {
10645 	link->disconnected = true;
10646 }
10647 
bpf_link__destroy(struct bpf_link * link)10648 int bpf_link__destroy(struct bpf_link *link)
10649 {
10650 	int err = 0;
10651 
10652 	if (IS_ERR_OR_NULL(link))
10653 		return 0;
10654 
10655 	if (!link->disconnected && link->detach)
10656 		err = link->detach(link);
10657 	if (link->pin_path)
10658 		free(link->pin_path);
10659 	if (link->dealloc)
10660 		link->dealloc(link);
10661 	else
10662 		free(link);
10663 
10664 	return libbpf_err(err);
10665 }
10666 
bpf_link__fd(const struct bpf_link * link)10667 int bpf_link__fd(const struct bpf_link *link)
10668 {
10669 	return link->fd;
10670 }
10671 
bpf_link__pin_path(const struct bpf_link * link)10672 const char *bpf_link__pin_path(const struct bpf_link *link)
10673 {
10674 	return link->pin_path;
10675 }
10676 
bpf_link__detach_fd(struct bpf_link * link)10677 static int bpf_link__detach_fd(struct bpf_link *link)
10678 {
10679 	return libbpf_err_errno(close(link->fd));
10680 }
10681 
bpf_link__open(const char * path)10682 struct bpf_link *bpf_link__open(const char *path)
10683 {
10684 	struct bpf_link *link;
10685 	int fd;
10686 
10687 	fd = bpf_obj_get(path);
10688 	if (fd < 0) {
10689 		fd = -errno;
10690 		pr_warn("failed to open link at %s: %d\n", path, fd);
10691 		return libbpf_err_ptr(fd);
10692 	}
10693 
10694 	link = calloc(1, sizeof(*link));
10695 	if (!link) {
10696 		close(fd);
10697 		return libbpf_err_ptr(-ENOMEM);
10698 	}
10699 	link->detach = &bpf_link__detach_fd;
10700 	link->fd = fd;
10701 
10702 	link->pin_path = strdup(path);
10703 	if (!link->pin_path) {
10704 		bpf_link__destroy(link);
10705 		return libbpf_err_ptr(-ENOMEM);
10706 	}
10707 
10708 	return link;
10709 }
10710 
bpf_link__detach(struct bpf_link * link)10711 int bpf_link__detach(struct bpf_link *link)
10712 {
10713 	return bpf_link_detach(link->fd) ? -errno : 0;
10714 }
10715 
bpf_link__pin(struct bpf_link * link,const char * path)10716 int bpf_link__pin(struct bpf_link *link, const char *path)
10717 {
10718 	int err;
10719 
10720 	if (link->pin_path)
10721 		return libbpf_err(-EBUSY);
10722 	err = make_parent_dir(path);
10723 	if (err)
10724 		return libbpf_err(err);
10725 	err = check_path(path);
10726 	if (err)
10727 		return libbpf_err(err);
10728 
10729 	link->pin_path = strdup(path);
10730 	if (!link->pin_path)
10731 		return libbpf_err(-ENOMEM);
10732 
10733 	if (bpf_obj_pin(link->fd, link->pin_path)) {
10734 		err = -errno;
10735 		zfree(&link->pin_path);
10736 		return libbpf_err(err);
10737 	}
10738 
10739 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10740 	return 0;
10741 }
10742 
bpf_link__unpin(struct bpf_link * link)10743 int bpf_link__unpin(struct bpf_link *link)
10744 {
10745 	int err;
10746 
10747 	if (!link->pin_path)
10748 		return libbpf_err(-EINVAL);
10749 
10750 	err = unlink(link->pin_path);
10751 	if (err != 0)
10752 		return -errno;
10753 
10754 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10755 	zfree(&link->pin_path);
10756 	return 0;
10757 }
10758 
10759 struct bpf_link_perf {
10760 	struct bpf_link link;
10761 	int perf_event_fd;
10762 	/* legacy kprobe support: keep track of probe identifier and type */
10763 	char *legacy_probe_name;
10764 	bool legacy_is_kprobe;
10765 	bool legacy_is_retprobe;
10766 };
10767 
10768 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10769 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10770 
bpf_link_perf_detach(struct bpf_link * link)10771 static int bpf_link_perf_detach(struct bpf_link *link)
10772 {
10773 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10774 	int err = 0;
10775 
10776 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10777 		err = -errno;
10778 
10779 	if (perf_link->perf_event_fd != link->fd)
10780 		close(perf_link->perf_event_fd);
10781 	close(link->fd);
10782 
10783 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10784 	if (perf_link->legacy_probe_name) {
10785 		if (perf_link->legacy_is_kprobe) {
10786 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10787 							 perf_link->legacy_is_retprobe);
10788 		} else {
10789 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10790 							 perf_link->legacy_is_retprobe);
10791 		}
10792 	}
10793 
10794 	return err;
10795 }
10796 
bpf_link_perf_dealloc(struct bpf_link * link)10797 static void bpf_link_perf_dealloc(struct bpf_link *link)
10798 {
10799 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10800 
10801 	free(perf_link->legacy_probe_name);
10802 	free(perf_link);
10803 }
10804 
bpf_program__attach_perf_event_opts(const struct bpf_program * prog,int pfd,const struct bpf_perf_event_opts * opts)10805 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10806 						     const struct bpf_perf_event_opts *opts)
10807 {
10808 	char errmsg[STRERR_BUFSIZE];
10809 	struct bpf_link_perf *link;
10810 	int prog_fd, link_fd = -1, err;
10811 	bool force_ioctl_attach;
10812 
10813 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
10814 		return libbpf_err_ptr(-EINVAL);
10815 
10816 	if (pfd < 0) {
10817 		pr_warn("prog '%s': invalid perf event FD %d\n",
10818 			prog->name, pfd);
10819 		return libbpf_err_ptr(-EINVAL);
10820 	}
10821 	prog_fd = bpf_program__fd(prog);
10822 	if (prog_fd < 0) {
10823 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
10824 			prog->name);
10825 		return libbpf_err_ptr(-EINVAL);
10826 	}
10827 
10828 	link = calloc(1, sizeof(*link));
10829 	if (!link)
10830 		return libbpf_err_ptr(-ENOMEM);
10831 	link->link.detach = &bpf_link_perf_detach;
10832 	link->link.dealloc = &bpf_link_perf_dealloc;
10833 	link->perf_event_fd = pfd;
10834 
10835 	force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10836 	if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10837 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10838 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10839 
10840 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10841 		if (link_fd < 0) {
10842 			err = -errno;
10843 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10844 				prog->name, pfd,
10845 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10846 			goto err_out;
10847 		}
10848 		link->link.fd = link_fd;
10849 	} else {
10850 		if (OPTS_GET(opts, bpf_cookie, 0)) {
10851 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
10852 			err = -EOPNOTSUPP;
10853 			goto err_out;
10854 		}
10855 
10856 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10857 			err = -errno;
10858 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10859 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10860 			if (err == -EPROTO)
10861 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10862 					prog->name, pfd);
10863 			goto err_out;
10864 		}
10865 		link->link.fd = pfd;
10866 	}
10867 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10868 		err = -errno;
10869 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10870 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10871 		goto err_out;
10872 	}
10873 
10874 	return &link->link;
10875 err_out:
10876 	if (link_fd >= 0)
10877 		close(link_fd);
10878 	free(link);
10879 	return libbpf_err_ptr(err);
10880 }
10881 
bpf_program__attach_perf_event(const struct bpf_program * prog,int pfd)10882 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10883 {
10884 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10885 }
10886 
10887 /*
10888  * this function is expected to parse integer in the range of [0, 2^31-1] from
10889  * given file using scanf format string fmt. If actual parsed value is
10890  * negative, the result might be indistinguishable from error
10891  */
parse_uint_from_file(const char * file,const char * fmt)10892 static int parse_uint_from_file(const char *file, const char *fmt)
10893 {
10894 	char buf[STRERR_BUFSIZE];
10895 	int err, ret;
10896 	FILE *f;
10897 
10898 	f = fopen(file, "re");
10899 	if (!f) {
10900 		err = -errno;
10901 		pr_debug("failed to open '%s': %s\n", file,
10902 			 libbpf_strerror_r(err, buf, sizeof(buf)));
10903 		return err;
10904 	}
10905 	err = fscanf(f, fmt, &ret);
10906 	if (err != 1) {
10907 		err = err == EOF ? -EIO : -errno;
10908 		pr_debug("failed to parse '%s': %s\n", file,
10909 			libbpf_strerror_r(err, buf, sizeof(buf)));
10910 		fclose(f);
10911 		return err;
10912 	}
10913 	fclose(f);
10914 	return ret;
10915 }
10916 
determine_kprobe_perf_type(void)10917 static int determine_kprobe_perf_type(void)
10918 {
10919 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
10920 
10921 	return parse_uint_from_file(file, "%d\n");
10922 }
10923 
determine_uprobe_perf_type(void)10924 static int determine_uprobe_perf_type(void)
10925 {
10926 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
10927 
10928 	return parse_uint_from_file(file, "%d\n");
10929 }
10930 
determine_kprobe_retprobe_bit(void)10931 static int determine_kprobe_retprobe_bit(void)
10932 {
10933 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10934 
10935 	return parse_uint_from_file(file, "config:%d\n");
10936 }
10937 
determine_uprobe_retprobe_bit(void)10938 static int determine_uprobe_retprobe_bit(void)
10939 {
10940 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10941 
10942 	return parse_uint_from_file(file, "config:%d\n");
10943 }
10944 
10945 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10946 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10947 
perf_event_open_probe(bool uprobe,bool retprobe,const char * name,uint64_t offset,int pid,size_t ref_ctr_off)10948 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10949 				 uint64_t offset, int pid, size_t ref_ctr_off)
10950 {
10951 	const size_t attr_sz = sizeof(struct perf_event_attr);
10952 	struct perf_event_attr attr;
10953 	char errmsg[STRERR_BUFSIZE];
10954 	int type, pfd;
10955 
10956 	if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10957 		return -EINVAL;
10958 
10959 	memset(&attr, 0, attr_sz);
10960 
10961 	type = uprobe ? determine_uprobe_perf_type()
10962 		      : determine_kprobe_perf_type();
10963 	if (type < 0) {
10964 		pr_warn("failed to determine %s perf type: %s\n",
10965 			uprobe ? "uprobe" : "kprobe",
10966 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10967 		return type;
10968 	}
10969 	if (retprobe) {
10970 		int bit = uprobe ? determine_uprobe_retprobe_bit()
10971 				 : determine_kprobe_retprobe_bit();
10972 
10973 		if (bit < 0) {
10974 			pr_warn("failed to determine %s retprobe bit: %s\n",
10975 				uprobe ? "uprobe" : "kprobe",
10976 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10977 			return bit;
10978 		}
10979 		attr.config |= 1 << bit;
10980 	}
10981 	attr.size = attr_sz;
10982 	attr.type = type;
10983 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10984 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10985 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
10986 
10987 	/* pid filter is meaningful only for uprobes */
10988 	pfd = syscall(__NR_perf_event_open, &attr,
10989 		      pid < 0 ? -1 : pid /* pid */,
10990 		      pid == -1 ? 0 : -1 /* cpu */,
10991 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10992 	return pfd >= 0 ? pfd : -errno;
10993 }
10994 
append_to_file(const char * file,const char * fmt,...)10995 static int append_to_file(const char *file, const char *fmt, ...)
10996 {
10997 	int fd, n, err = 0;
10998 	va_list ap;
10999 	char buf[1024];
11000 
11001 	va_start(ap, fmt);
11002 	n = vsnprintf(buf, sizeof(buf), fmt, ap);
11003 	va_end(ap);
11004 
11005 	if (n < 0 || n >= sizeof(buf))
11006 		return -EINVAL;
11007 
11008 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
11009 	if (fd < 0)
11010 		return -errno;
11011 
11012 	if (write(fd, buf, n) < 0)
11013 		err = -errno;
11014 
11015 	close(fd);
11016 	return err;
11017 }
11018 
11019 #define DEBUGFS "/sys/kernel/debug/tracing"
11020 #define TRACEFS "/sys/kernel/tracing"
11021 
use_debugfs(void)11022 static bool use_debugfs(void)
11023 {
11024 	static int has_debugfs = -1;
11025 
11026 	if (has_debugfs < 0)
11027 		has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
11028 
11029 	return has_debugfs == 1;
11030 }
11031 
tracefs_path(void)11032 static const char *tracefs_path(void)
11033 {
11034 	return use_debugfs() ? DEBUGFS : TRACEFS;
11035 }
11036 
tracefs_kprobe_events(void)11037 static const char *tracefs_kprobe_events(void)
11038 {
11039 	return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
11040 }
11041 
tracefs_uprobe_events(void)11042 static const char *tracefs_uprobe_events(void)
11043 {
11044 	return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
11045 }
11046 
tracefs_available_filter_functions(void)11047 static const char *tracefs_available_filter_functions(void)
11048 {
11049 	return use_debugfs() ? DEBUGFS"/available_filter_functions"
11050 			     : TRACEFS"/available_filter_functions";
11051 }
11052 
tracefs_available_filter_functions_addrs(void)11053 static const char *tracefs_available_filter_functions_addrs(void)
11054 {
11055 	return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
11056 			     : TRACEFS"/available_filter_functions_addrs";
11057 }
11058 
gen_probe_legacy_event_name(char * buf,size_t buf_sz,const char * name,size_t offset)11059 static void gen_probe_legacy_event_name(char *buf, size_t buf_sz,
11060 					const char *name, size_t offset)
11061 {
11062 	static int index = 0;
11063 	int i;
11064 
11065 	snprintf(buf, buf_sz, "libbpf_%u_%d_%s_0x%zx", getpid(),
11066 		 __sync_fetch_and_add(&index, 1), name, offset);
11067 
11068 	/* sanitize name in the probe name */
11069 	for (i = 0; buf[i]; i++) {
11070 		if (!isalnum(buf[i]))
11071 			buf[i] = '_';
11072 	}
11073 }
11074 
add_kprobe_event_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset)11075 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
11076 				   const char *kfunc_name, size_t offset)
11077 {
11078 	return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
11079 			      retprobe ? 'r' : 'p',
11080 			      retprobe ? "kretprobes" : "kprobes",
11081 			      probe_name, kfunc_name, offset);
11082 }
11083 
remove_kprobe_event_legacy(const char * probe_name,bool retprobe)11084 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
11085 {
11086 	return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
11087 			      retprobe ? "kretprobes" : "kprobes", probe_name);
11088 }
11089 
determine_kprobe_perf_type_legacy(const char * probe_name,bool retprobe)11090 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11091 {
11092 	char file[256];
11093 
11094 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11095 		 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
11096 
11097 	return parse_uint_from_file(file, "%d\n");
11098 }
11099 
perf_event_kprobe_open_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset,int pid)11100 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
11101 					 const char *kfunc_name, size_t offset, int pid)
11102 {
11103 	const size_t attr_sz = sizeof(struct perf_event_attr);
11104 	struct perf_event_attr attr;
11105 	char errmsg[STRERR_BUFSIZE];
11106 	int type, pfd, err;
11107 
11108 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
11109 	if (err < 0) {
11110 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
11111 			kfunc_name, offset,
11112 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11113 		return err;
11114 	}
11115 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
11116 	if (type < 0) {
11117 		err = type;
11118 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
11119 			kfunc_name, offset,
11120 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11121 		goto err_clean_legacy;
11122 	}
11123 
11124 	memset(&attr, 0, attr_sz);
11125 	attr.size = attr_sz;
11126 	attr.config = type;
11127 	attr.type = PERF_TYPE_TRACEPOINT;
11128 
11129 	pfd = syscall(__NR_perf_event_open, &attr,
11130 		      pid < 0 ? -1 : pid, /* pid */
11131 		      pid == -1 ? 0 : -1, /* cpu */
11132 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11133 	if (pfd < 0) {
11134 		err = -errno;
11135 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
11136 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11137 		goto err_clean_legacy;
11138 	}
11139 	return pfd;
11140 
11141 err_clean_legacy:
11142 	/* Clear the newly added legacy kprobe_event */
11143 	remove_kprobe_event_legacy(probe_name, retprobe);
11144 	return err;
11145 }
11146 
arch_specific_syscall_pfx(void)11147 static const char *arch_specific_syscall_pfx(void)
11148 {
11149 #if defined(__x86_64__)
11150 	return "x64";
11151 #elif defined(__i386__)
11152 	return "ia32";
11153 #elif defined(__s390x__)
11154 	return "s390x";
11155 #elif defined(__s390__)
11156 	return "s390";
11157 #elif defined(__arm__)
11158 	return "arm";
11159 #elif defined(__aarch64__)
11160 	return "arm64";
11161 #elif defined(__mips__)
11162 	return "mips";
11163 #elif defined(__riscv)
11164 	return "riscv";
11165 #elif defined(__powerpc__)
11166 	return "powerpc";
11167 #elif defined(__powerpc64__)
11168 	return "powerpc64";
11169 #else
11170 	return NULL;
11171 #endif
11172 }
11173 
probe_kern_syscall_wrapper(int token_fd)11174 int probe_kern_syscall_wrapper(int token_fd)
11175 {
11176 	char syscall_name[64];
11177 	const char *ksys_pfx;
11178 
11179 	ksys_pfx = arch_specific_syscall_pfx();
11180 	if (!ksys_pfx)
11181 		return 0;
11182 
11183 	snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
11184 
11185 	if (determine_kprobe_perf_type() >= 0) {
11186 		int pfd;
11187 
11188 		pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
11189 		if (pfd >= 0)
11190 			close(pfd);
11191 
11192 		return pfd >= 0 ? 1 : 0;
11193 	} else { /* legacy mode */
11194 		char probe_name[MAX_EVENT_NAME_LEN];
11195 
11196 		gen_probe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
11197 		if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
11198 			return 0;
11199 
11200 		(void)remove_kprobe_event_legacy(probe_name, false);
11201 		return 1;
11202 	}
11203 }
11204 
11205 struct bpf_link *
bpf_program__attach_kprobe_opts(const struct bpf_program * prog,const char * func_name,const struct bpf_kprobe_opts * opts)11206 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
11207 				const char *func_name,
11208 				const struct bpf_kprobe_opts *opts)
11209 {
11210 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11211 	enum probe_attach_mode attach_mode;
11212 	char errmsg[STRERR_BUFSIZE];
11213 	char *legacy_probe = NULL;
11214 	struct bpf_link *link;
11215 	size_t offset;
11216 	bool retprobe, legacy;
11217 	int pfd, err;
11218 
11219 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
11220 		return libbpf_err_ptr(-EINVAL);
11221 
11222 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11223 	retprobe = OPTS_GET(opts, retprobe, false);
11224 	offset = OPTS_GET(opts, offset, 0);
11225 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11226 
11227 	legacy = determine_kprobe_perf_type() < 0;
11228 	switch (attach_mode) {
11229 	case PROBE_ATTACH_MODE_LEGACY:
11230 		legacy = true;
11231 		pe_opts.force_ioctl_attach = true;
11232 		break;
11233 	case PROBE_ATTACH_MODE_PERF:
11234 		if (legacy)
11235 			return libbpf_err_ptr(-ENOTSUP);
11236 		pe_opts.force_ioctl_attach = true;
11237 		break;
11238 	case PROBE_ATTACH_MODE_LINK:
11239 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11240 			return libbpf_err_ptr(-ENOTSUP);
11241 		break;
11242 	case PROBE_ATTACH_MODE_DEFAULT:
11243 		break;
11244 	default:
11245 		return libbpf_err_ptr(-EINVAL);
11246 	}
11247 
11248 	if (!legacy) {
11249 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
11250 					    func_name, offset,
11251 					    -1 /* pid */, 0 /* ref_ctr_off */);
11252 	} else {
11253 		char probe_name[MAX_EVENT_NAME_LEN];
11254 
11255 		gen_probe_legacy_event_name(probe_name, sizeof(probe_name),
11256 					    func_name, offset);
11257 
11258 		legacy_probe = strdup(probe_name);
11259 		if (!legacy_probe)
11260 			return libbpf_err_ptr(-ENOMEM);
11261 
11262 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
11263 						    offset, -1 /* pid */);
11264 	}
11265 	if (pfd < 0) {
11266 		err = -errno;
11267 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
11268 			prog->name, retprobe ? "kretprobe" : "kprobe",
11269 			func_name, offset,
11270 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11271 		goto err_out;
11272 	}
11273 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11274 	err = libbpf_get_error(link);
11275 	if (err) {
11276 		close(pfd);
11277 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
11278 			prog->name, retprobe ? "kretprobe" : "kprobe",
11279 			func_name, offset,
11280 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11281 		goto err_clean_legacy;
11282 	}
11283 	if (legacy) {
11284 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11285 
11286 		perf_link->legacy_probe_name = legacy_probe;
11287 		perf_link->legacy_is_kprobe = true;
11288 		perf_link->legacy_is_retprobe = retprobe;
11289 	}
11290 
11291 	return link;
11292 
11293 err_clean_legacy:
11294 	if (legacy)
11295 		remove_kprobe_event_legacy(legacy_probe, retprobe);
11296 err_out:
11297 	free(legacy_probe);
11298 	return libbpf_err_ptr(err);
11299 }
11300 
bpf_program__attach_kprobe(const struct bpf_program * prog,bool retprobe,const char * func_name)11301 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
11302 					    bool retprobe,
11303 					    const char *func_name)
11304 {
11305 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
11306 		.retprobe = retprobe,
11307 	);
11308 
11309 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
11310 }
11311 
bpf_program__attach_ksyscall(const struct bpf_program * prog,const char * syscall_name,const struct bpf_ksyscall_opts * opts)11312 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
11313 					      const char *syscall_name,
11314 					      const struct bpf_ksyscall_opts *opts)
11315 {
11316 	LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
11317 	char func_name[128];
11318 
11319 	if (!OPTS_VALID(opts, bpf_ksyscall_opts))
11320 		return libbpf_err_ptr(-EINVAL);
11321 
11322 	if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
11323 		/* arch_specific_syscall_pfx() should never return NULL here
11324 		 * because it is guarded by kernel_supports(). However, since
11325 		 * compiler does not know that we have an explicit conditional
11326 		 * as well.
11327 		 */
11328 		snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
11329 			 arch_specific_syscall_pfx() ? : "", syscall_name);
11330 	} else {
11331 		snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
11332 	}
11333 
11334 	kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
11335 	kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11336 
11337 	return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
11338 }
11339 
11340 /* Adapted from perf/util/string.c */
glob_match(const char * str,const char * pat)11341 bool glob_match(const char *str, const char *pat)
11342 {
11343 	while (*str && *pat && *pat != '*') {
11344 		if (*pat == '?') {      /* Matches any single character */
11345 			str++;
11346 			pat++;
11347 			continue;
11348 		}
11349 		if (*str != *pat)
11350 			return false;
11351 		str++;
11352 		pat++;
11353 	}
11354 	/* Check wild card */
11355 	if (*pat == '*') {
11356 		while (*pat == '*')
11357 			pat++;
11358 		if (!*pat) /* Tail wild card matches all */
11359 			return true;
11360 		while (*str)
11361 			if (glob_match(str++, pat))
11362 				return true;
11363 	}
11364 	return !*str && !*pat;
11365 }
11366 
11367 struct kprobe_multi_resolve {
11368 	const char *pattern;
11369 	unsigned long *addrs;
11370 	size_t cap;
11371 	size_t cnt;
11372 };
11373 
11374 struct avail_kallsyms_data {
11375 	char **syms;
11376 	size_t cnt;
11377 	struct kprobe_multi_resolve *res;
11378 };
11379 
avail_func_cmp(const void * a,const void * b)11380 static int avail_func_cmp(const void *a, const void *b)
11381 {
11382 	return strcmp(*(const char **)a, *(const char **)b);
11383 }
11384 
avail_kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)11385 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
11386 			     const char *sym_name, void *ctx)
11387 {
11388 	struct avail_kallsyms_data *data = ctx;
11389 	struct kprobe_multi_resolve *res = data->res;
11390 	int err;
11391 
11392 	if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
11393 		return 0;
11394 
11395 	err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
11396 	if (err)
11397 		return err;
11398 
11399 	res->addrs[res->cnt++] = (unsigned long)sym_addr;
11400 	return 0;
11401 }
11402 
libbpf_available_kallsyms_parse(struct kprobe_multi_resolve * res)11403 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
11404 {
11405 	const char *available_functions_file = tracefs_available_filter_functions();
11406 	struct avail_kallsyms_data data;
11407 	char sym_name[500];
11408 	FILE *f;
11409 	int err = 0, ret, i;
11410 	char **syms = NULL;
11411 	size_t cap = 0, cnt = 0;
11412 
11413 	f = fopen(available_functions_file, "re");
11414 	if (!f) {
11415 		err = -errno;
11416 		pr_warn("failed to open %s: %d\n", available_functions_file, err);
11417 		return err;
11418 	}
11419 
11420 	while (true) {
11421 		char *name;
11422 
11423 		ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
11424 		if (ret == EOF && feof(f))
11425 			break;
11426 
11427 		if (ret != 1) {
11428 			pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
11429 			err = -EINVAL;
11430 			goto cleanup;
11431 		}
11432 
11433 		if (!glob_match(sym_name, res->pattern))
11434 			continue;
11435 
11436 		err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
11437 		if (err)
11438 			goto cleanup;
11439 
11440 		name = strdup(sym_name);
11441 		if (!name) {
11442 			err = -errno;
11443 			goto cleanup;
11444 		}
11445 
11446 		syms[cnt++] = name;
11447 	}
11448 
11449 	/* no entries found, bail out */
11450 	if (cnt == 0) {
11451 		err = -ENOENT;
11452 		goto cleanup;
11453 	}
11454 
11455 	/* sort available functions */
11456 	qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
11457 
11458 	data.syms = syms;
11459 	data.res = res;
11460 	data.cnt = cnt;
11461 	libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
11462 
11463 	if (res->cnt == 0)
11464 		err = -ENOENT;
11465 
11466 cleanup:
11467 	for (i = 0; i < cnt; i++)
11468 		free((char *)syms[i]);
11469 	free(syms);
11470 
11471 	fclose(f);
11472 	return err;
11473 }
11474 
has_available_filter_functions_addrs(void)11475 static bool has_available_filter_functions_addrs(void)
11476 {
11477 	return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
11478 }
11479 
libbpf_available_kprobes_parse(struct kprobe_multi_resolve * res)11480 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
11481 {
11482 	const char *available_path = tracefs_available_filter_functions_addrs();
11483 	char sym_name[500];
11484 	FILE *f;
11485 	int ret, err = 0;
11486 	unsigned long long sym_addr;
11487 
11488 	f = fopen(available_path, "re");
11489 	if (!f) {
11490 		err = -errno;
11491 		pr_warn("failed to open %s: %d\n", available_path, err);
11492 		return err;
11493 	}
11494 
11495 	while (true) {
11496 		ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
11497 		if (ret == EOF && feof(f))
11498 			break;
11499 
11500 		if (ret != 2) {
11501 			pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
11502 				ret);
11503 			err = -EINVAL;
11504 			goto cleanup;
11505 		}
11506 
11507 		if (!glob_match(sym_name, res->pattern))
11508 			continue;
11509 
11510 		err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
11511 					sizeof(*res->addrs), res->cnt + 1);
11512 		if (err)
11513 			goto cleanup;
11514 
11515 		res->addrs[res->cnt++] = (unsigned long)sym_addr;
11516 	}
11517 
11518 	if (res->cnt == 0)
11519 		err = -ENOENT;
11520 
11521 cleanup:
11522 	fclose(f);
11523 	return err;
11524 }
11525 
11526 struct bpf_link *
bpf_program__attach_kprobe_multi_opts(const struct bpf_program * prog,const char * pattern,const struct bpf_kprobe_multi_opts * opts)11527 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
11528 				      const char *pattern,
11529 				      const struct bpf_kprobe_multi_opts *opts)
11530 {
11531 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11532 	struct kprobe_multi_resolve res = {
11533 		.pattern = pattern,
11534 	};
11535 	enum bpf_attach_type attach_type;
11536 	struct bpf_link *link = NULL;
11537 	char errmsg[STRERR_BUFSIZE];
11538 	const unsigned long *addrs;
11539 	int err, link_fd, prog_fd;
11540 	bool retprobe, session;
11541 	const __u64 *cookies;
11542 	const char **syms;
11543 	size_t cnt;
11544 
11545 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
11546 		return libbpf_err_ptr(-EINVAL);
11547 
11548 	prog_fd = bpf_program__fd(prog);
11549 	if (prog_fd < 0) {
11550 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
11551 			prog->name);
11552 		return libbpf_err_ptr(-EINVAL);
11553 	}
11554 
11555 	syms    = OPTS_GET(opts, syms, false);
11556 	addrs   = OPTS_GET(opts, addrs, false);
11557 	cnt     = OPTS_GET(opts, cnt, false);
11558 	cookies = OPTS_GET(opts, cookies, false);
11559 
11560 	if (!pattern && !addrs && !syms)
11561 		return libbpf_err_ptr(-EINVAL);
11562 	if (pattern && (addrs || syms || cookies || cnt))
11563 		return libbpf_err_ptr(-EINVAL);
11564 	if (!pattern && !cnt)
11565 		return libbpf_err_ptr(-EINVAL);
11566 	if (addrs && syms)
11567 		return libbpf_err_ptr(-EINVAL);
11568 
11569 	if (pattern) {
11570 		if (has_available_filter_functions_addrs())
11571 			err = libbpf_available_kprobes_parse(&res);
11572 		else
11573 			err = libbpf_available_kallsyms_parse(&res);
11574 		if (err)
11575 			goto error;
11576 		addrs = res.addrs;
11577 		cnt = res.cnt;
11578 	}
11579 
11580 	retprobe = OPTS_GET(opts, retprobe, false);
11581 	session  = OPTS_GET(opts, session, false);
11582 
11583 	if (retprobe && session)
11584 		return libbpf_err_ptr(-EINVAL);
11585 
11586 	attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI;
11587 
11588 	lopts.kprobe_multi.syms = syms;
11589 	lopts.kprobe_multi.addrs = addrs;
11590 	lopts.kprobe_multi.cookies = cookies;
11591 	lopts.kprobe_multi.cnt = cnt;
11592 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
11593 
11594 	link = calloc(1, sizeof(*link));
11595 	if (!link) {
11596 		err = -ENOMEM;
11597 		goto error;
11598 	}
11599 	link->detach = &bpf_link__detach_fd;
11600 
11601 	link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts);
11602 	if (link_fd < 0) {
11603 		err = -errno;
11604 		pr_warn("prog '%s': failed to attach: %s\n",
11605 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11606 		goto error;
11607 	}
11608 	link->fd = link_fd;
11609 	free(res.addrs);
11610 	return link;
11611 
11612 error:
11613 	free(link);
11614 	free(res.addrs);
11615 	return libbpf_err_ptr(err);
11616 }
11617 
attach_kprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11618 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11619 {
11620 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
11621 	unsigned long offset = 0;
11622 	const char *func_name;
11623 	char *func;
11624 	int n;
11625 
11626 	*link = NULL;
11627 
11628 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
11629 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
11630 		return 0;
11631 
11632 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
11633 	if (opts.retprobe)
11634 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
11635 	else
11636 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
11637 
11638 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
11639 	if (n < 1) {
11640 		pr_warn("kprobe name is invalid: %s\n", func_name);
11641 		return -EINVAL;
11642 	}
11643 	if (opts.retprobe && offset != 0) {
11644 		free(func);
11645 		pr_warn("kretprobes do not support offset specification\n");
11646 		return -EINVAL;
11647 	}
11648 
11649 	opts.offset = offset;
11650 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
11651 	free(func);
11652 	return libbpf_get_error(*link);
11653 }
11654 
attach_ksyscall(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11655 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11656 {
11657 	LIBBPF_OPTS(bpf_ksyscall_opts, opts);
11658 	const char *syscall_name;
11659 
11660 	*link = NULL;
11661 
11662 	/* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
11663 	if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
11664 		return 0;
11665 
11666 	opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
11667 	if (opts.retprobe)
11668 		syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
11669 	else
11670 		syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
11671 
11672 	*link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
11673 	return *link ? 0 : -errno;
11674 }
11675 
attach_kprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11676 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11677 {
11678 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
11679 	const char *spec;
11680 	char *pattern;
11681 	int n;
11682 
11683 	*link = NULL;
11684 
11685 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
11686 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
11687 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
11688 		return 0;
11689 
11690 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
11691 	if (opts.retprobe)
11692 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
11693 	else
11694 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
11695 
11696 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11697 	if (n < 1) {
11698 		pr_warn("kprobe multi pattern is invalid: %s\n", spec);
11699 		return -EINVAL;
11700 	}
11701 
11702 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11703 	free(pattern);
11704 	return libbpf_get_error(*link);
11705 }
11706 
attach_kprobe_session(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11707 static int attach_kprobe_session(const struct bpf_program *prog, long cookie,
11708 				 struct bpf_link **link)
11709 {
11710 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true);
11711 	const char *spec;
11712 	char *pattern;
11713 	int n;
11714 
11715 	*link = NULL;
11716 
11717 	/* no auto-attach for SEC("kprobe.session") */
11718 	if (strcmp(prog->sec_name, "kprobe.session") == 0)
11719 		return 0;
11720 
11721 	spec = prog->sec_name + sizeof("kprobe.session/") - 1;
11722 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11723 	if (n < 1) {
11724 		pr_warn("kprobe session pattern is invalid: %s\n", spec);
11725 		return -EINVAL;
11726 	}
11727 
11728 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11729 	free(pattern);
11730 	return *link ? 0 : -errno;
11731 }
11732 
attach_uprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11733 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11734 {
11735 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11736 	LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11737 	int n, ret = -EINVAL;
11738 
11739 	*link = NULL;
11740 
11741 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11742 		   &probe_type, &binary_path, &func_name);
11743 	switch (n) {
11744 	case 1:
11745 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11746 		ret = 0;
11747 		break;
11748 	case 3:
11749 		opts.retprobe = str_has_pfx(probe_type, "uretprobe.multi");
11750 		*link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11751 		ret = libbpf_get_error(*link);
11752 		break;
11753 	default:
11754 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11755 			prog->sec_name);
11756 		break;
11757 	}
11758 	free(probe_type);
11759 	free(binary_path);
11760 	free(func_name);
11761 	return ret;
11762 }
11763 
add_uprobe_event_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset)11764 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11765 					  const char *binary_path, size_t offset)
11766 {
11767 	return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11768 			      retprobe ? 'r' : 'p',
11769 			      retprobe ? "uretprobes" : "uprobes",
11770 			      probe_name, binary_path, offset);
11771 }
11772 
remove_uprobe_event_legacy(const char * probe_name,bool retprobe)11773 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11774 {
11775 	return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11776 			      retprobe ? "uretprobes" : "uprobes", probe_name);
11777 }
11778 
determine_uprobe_perf_type_legacy(const char * probe_name,bool retprobe)11779 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11780 {
11781 	char file[512];
11782 
11783 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11784 		 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11785 
11786 	return parse_uint_from_file(file, "%d\n");
11787 }
11788 
perf_event_uprobe_open_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset,int pid)11789 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11790 					 const char *binary_path, size_t offset, int pid)
11791 {
11792 	const size_t attr_sz = sizeof(struct perf_event_attr);
11793 	struct perf_event_attr attr;
11794 	int type, pfd, err;
11795 
11796 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11797 	if (err < 0) {
11798 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
11799 			binary_path, (size_t)offset, err);
11800 		return err;
11801 	}
11802 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11803 	if (type < 0) {
11804 		err = type;
11805 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
11806 			binary_path, offset, err);
11807 		goto err_clean_legacy;
11808 	}
11809 
11810 	memset(&attr, 0, attr_sz);
11811 	attr.size = attr_sz;
11812 	attr.config = type;
11813 	attr.type = PERF_TYPE_TRACEPOINT;
11814 
11815 	pfd = syscall(__NR_perf_event_open, &attr,
11816 		      pid < 0 ? -1 : pid, /* pid */
11817 		      pid == -1 ? 0 : -1, /* cpu */
11818 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11819 	if (pfd < 0) {
11820 		err = -errno;
11821 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
11822 		goto err_clean_legacy;
11823 	}
11824 	return pfd;
11825 
11826 err_clean_legacy:
11827 	/* Clear the newly added legacy uprobe_event */
11828 	remove_uprobe_event_legacy(probe_name, retprobe);
11829 	return err;
11830 }
11831 
11832 /* Find offset of function name in archive specified by path. Currently
11833  * supported are .zip files that do not compress their contents, as used on
11834  * Android in the form of APKs, for example. "file_name" is the name of the ELF
11835  * file inside the archive. "func_name" matches symbol name or name@@LIB for
11836  * library functions.
11837  *
11838  * An overview of the APK format specifically provided here:
11839  * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11840  */
elf_find_func_offset_from_archive(const char * archive_path,const char * file_name,const char * func_name)11841 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11842 					      const char *func_name)
11843 {
11844 	struct zip_archive *archive;
11845 	struct zip_entry entry;
11846 	long ret;
11847 	Elf *elf;
11848 
11849 	archive = zip_archive_open(archive_path);
11850 	if (IS_ERR(archive)) {
11851 		ret = PTR_ERR(archive);
11852 		pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11853 		return ret;
11854 	}
11855 
11856 	ret = zip_archive_find_entry(archive, file_name, &entry);
11857 	if (ret) {
11858 		pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11859 			archive_path, ret);
11860 		goto out;
11861 	}
11862 	pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11863 		 (unsigned long)entry.data_offset);
11864 
11865 	if (entry.compression) {
11866 		pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11867 			archive_path);
11868 		ret = -LIBBPF_ERRNO__FORMAT;
11869 		goto out;
11870 	}
11871 
11872 	elf = elf_memory((void *)entry.data, entry.data_length);
11873 	if (!elf) {
11874 		pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11875 			elf_errmsg(-1));
11876 		ret = -LIBBPF_ERRNO__LIBELF;
11877 		goto out;
11878 	}
11879 
11880 	ret = elf_find_func_offset(elf, file_name, func_name);
11881 	if (ret > 0) {
11882 		pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11883 			 func_name, file_name, archive_path, entry.data_offset, ret,
11884 			 ret + entry.data_offset);
11885 		ret += entry.data_offset;
11886 	}
11887 	elf_end(elf);
11888 
11889 out:
11890 	zip_archive_close(archive);
11891 	return ret;
11892 }
11893 
arch_specific_lib_paths(void)11894 static const char *arch_specific_lib_paths(void)
11895 {
11896 	/*
11897 	 * Based on https://packages.debian.org/sid/libc6.
11898 	 *
11899 	 * Assume that the traced program is built for the same architecture
11900 	 * as libbpf, which should cover the vast majority of cases.
11901 	 */
11902 #if defined(__x86_64__)
11903 	return "/lib/x86_64-linux-gnu";
11904 #elif defined(__i386__)
11905 	return "/lib/i386-linux-gnu";
11906 #elif defined(__s390x__)
11907 	return "/lib/s390x-linux-gnu";
11908 #elif defined(__s390__)
11909 	return "/lib/s390-linux-gnu";
11910 #elif defined(__arm__) && defined(__SOFTFP__)
11911 	return "/lib/arm-linux-gnueabi";
11912 #elif defined(__arm__) && !defined(__SOFTFP__)
11913 	return "/lib/arm-linux-gnueabihf";
11914 #elif defined(__aarch64__)
11915 	return "/lib/aarch64-linux-gnu";
11916 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11917 	return "/lib/mips64el-linux-gnuabi64";
11918 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11919 	return "/lib/mipsel-linux-gnu";
11920 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11921 	return "/lib/powerpc64le-linux-gnu";
11922 #elif defined(__sparc__) && defined(__arch64__)
11923 	return "/lib/sparc64-linux-gnu";
11924 #elif defined(__riscv) && __riscv_xlen == 64
11925 	return "/lib/riscv64-linux-gnu";
11926 #else
11927 	return NULL;
11928 #endif
11929 }
11930 
11931 /* Get full path to program/shared library. */
resolve_full_path(const char * file,char * result,size_t result_sz)11932 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11933 {
11934 	const char *search_paths[3] = {};
11935 	int i, perm;
11936 
11937 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11938 		search_paths[0] = getenv("LD_LIBRARY_PATH");
11939 		search_paths[1] = "/usr/lib64:/usr/lib";
11940 		search_paths[2] = arch_specific_lib_paths();
11941 		perm = R_OK;
11942 	} else {
11943 		search_paths[0] = getenv("PATH");
11944 		search_paths[1] = "/usr/bin:/usr/sbin";
11945 		perm = R_OK | X_OK;
11946 	}
11947 
11948 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11949 		const char *s;
11950 
11951 		if (!search_paths[i])
11952 			continue;
11953 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11954 			char *next_path;
11955 			int seg_len;
11956 
11957 			if (s[0] == ':')
11958 				s++;
11959 			next_path = strchr(s, ':');
11960 			seg_len = next_path ? next_path - s : strlen(s);
11961 			if (!seg_len)
11962 				continue;
11963 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11964 			/* ensure it has required permissions */
11965 			if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11966 				continue;
11967 			pr_debug("resolved '%s' to '%s'\n", file, result);
11968 			return 0;
11969 		}
11970 	}
11971 	return -ENOENT;
11972 }
11973 
11974 struct bpf_link *
bpf_program__attach_uprobe_multi(const struct bpf_program * prog,pid_t pid,const char * path,const char * func_pattern,const struct bpf_uprobe_multi_opts * opts)11975 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11976 				 pid_t pid,
11977 				 const char *path,
11978 				 const char *func_pattern,
11979 				 const struct bpf_uprobe_multi_opts *opts)
11980 {
11981 	const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11982 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11983 	unsigned long *resolved_offsets = NULL;
11984 	int err = 0, link_fd, prog_fd;
11985 	struct bpf_link *link = NULL;
11986 	char errmsg[STRERR_BUFSIZE];
11987 	char full_path[PATH_MAX];
11988 	const __u64 *cookies;
11989 	const char **syms;
11990 	size_t cnt;
11991 
11992 	if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11993 		return libbpf_err_ptr(-EINVAL);
11994 
11995 	prog_fd = bpf_program__fd(prog);
11996 	if (prog_fd < 0) {
11997 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
11998 			prog->name);
11999 		return libbpf_err_ptr(-EINVAL);
12000 	}
12001 
12002 	syms = OPTS_GET(opts, syms, NULL);
12003 	offsets = OPTS_GET(opts, offsets, NULL);
12004 	ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
12005 	cookies = OPTS_GET(opts, cookies, NULL);
12006 	cnt = OPTS_GET(opts, cnt, 0);
12007 
12008 	/*
12009 	 * User can specify 2 mutually exclusive set of inputs:
12010 	 *
12011 	 * 1) use only path/func_pattern/pid arguments
12012 	 *
12013 	 * 2) use path/pid with allowed combinations of:
12014 	 *    syms/offsets/ref_ctr_offsets/cookies/cnt
12015 	 *
12016 	 *    - syms and offsets are mutually exclusive
12017 	 *    - ref_ctr_offsets and cookies are optional
12018 	 *
12019 	 * Any other usage results in error.
12020 	 */
12021 
12022 	if (!path)
12023 		return libbpf_err_ptr(-EINVAL);
12024 	if (!func_pattern && cnt == 0)
12025 		return libbpf_err_ptr(-EINVAL);
12026 
12027 	if (func_pattern) {
12028 		if (syms || offsets || ref_ctr_offsets || cookies || cnt)
12029 			return libbpf_err_ptr(-EINVAL);
12030 	} else {
12031 		if (!!syms == !!offsets)
12032 			return libbpf_err_ptr(-EINVAL);
12033 	}
12034 
12035 	if (func_pattern) {
12036 		if (!strchr(path, '/')) {
12037 			err = resolve_full_path(path, full_path, sizeof(full_path));
12038 			if (err) {
12039 				pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
12040 					prog->name, path, err);
12041 				return libbpf_err_ptr(err);
12042 			}
12043 			path = full_path;
12044 		}
12045 
12046 		err = elf_resolve_pattern_offsets(path, func_pattern,
12047 						  &resolved_offsets, &cnt);
12048 		if (err < 0)
12049 			return libbpf_err_ptr(err);
12050 		offsets = resolved_offsets;
12051 	} else if (syms) {
12052 		err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC);
12053 		if (err < 0)
12054 			return libbpf_err_ptr(err);
12055 		offsets = resolved_offsets;
12056 	}
12057 
12058 	lopts.uprobe_multi.path = path;
12059 	lopts.uprobe_multi.offsets = offsets;
12060 	lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
12061 	lopts.uprobe_multi.cookies = cookies;
12062 	lopts.uprobe_multi.cnt = cnt;
12063 	lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0;
12064 
12065 	if (pid == 0)
12066 		pid = getpid();
12067 	if (pid > 0)
12068 		lopts.uprobe_multi.pid = pid;
12069 
12070 	link = calloc(1, sizeof(*link));
12071 	if (!link) {
12072 		err = -ENOMEM;
12073 		goto error;
12074 	}
12075 	link->detach = &bpf_link__detach_fd;
12076 
12077 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts);
12078 	if (link_fd < 0) {
12079 		err = -errno;
12080 		pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
12081 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12082 		goto error;
12083 	}
12084 	link->fd = link_fd;
12085 	free(resolved_offsets);
12086 	return link;
12087 
12088 error:
12089 	free(resolved_offsets);
12090 	free(link);
12091 	return libbpf_err_ptr(err);
12092 }
12093 
12094 LIBBPF_API struct bpf_link *
bpf_program__attach_uprobe_opts(const struct bpf_program * prog,pid_t pid,const char * binary_path,size_t func_offset,const struct bpf_uprobe_opts * opts)12095 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
12096 				const char *binary_path, size_t func_offset,
12097 				const struct bpf_uprobe_opts *opts)
12098 {
12099 	const char *archive_path = NULL, *archive_sep = NULL;
12100 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
12101 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12102 	enum probe_attach_mode attach_mode;
12103 	char full_path[PATH_MAX];
12104 	struct bpf_link *link;
12105 	size_t ref_ctr_off;
12106 	int pfd, err;
12107 	bool retprobe, legacy;
12108 	const char *func_name;
12109 
12110 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
12111 		return libbpf_err_ptr(-EINVAL);
12112 
12113 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
12114 	retprobe = OPTS_GET(opts, retprobe, false);
12115 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
12116 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12117 
12118 	if (!binary_path)
12119 		return libbpf_err_ptr(-EINVAL);
12120 
12121 	/* Check if "binary_path" refers to an archive. */
12122 	archive_sep = strstr(binary_path, "!/");
12123 	if (archive_sep) {
12124 		full_path[0] = '\0';
12125 		libbpf_strlcpy(full_path, binary_path,
12126 			       min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
12127 		archive_path = full_path;
12128 		binary_path = archive_sep + 2;
12129 	} else if (!strchr(binary_path, '/')) {
12130 		err = resolve_full_path(binary_path, full_path, sizeof(full_path));
12131 		if (err) {
12132 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
12133 				prog->name, binary_path, err);
12134 			return libbpf_err_ptr(err);
12135 		}
12136 		binary_path = full_path;
12137 	}
12138 	func_name = OPTS_GET(opts, func_name, NULL);
12139 	if (func_name) {
12140 		long sym_off;
12141 
12142 		if (archive_path) {
12143 			sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
12144 								    func_name);
12145 			binary_path = archive_path;
12146 		} else {
12147 			sym_off = elf_find_func_offset_from_file(binary_path, func_name);
12148 		}
12149 		if (sym_off < 0)
12150 			return libbpf_err_ptr(sym_off);
12151 		func_offset += sym_off;
12152 	}
12153 
12154 	legacy = determine_uprobe_perf_type() < 0;
12155 	switch (attach_mode) {
12156 	case PROBE_ATTACH_MODE_LEGACY:
12157 		legacy = true;
12158 		pe_opts.force_ioctl_attach = true;
12159 		break;
12160 	case PROBE_ATTACH_MODE_PERF:
12161 		if (legacy)
12162 			return libbpf_err_ptr(-ENOTSUP);
12163 		pe_opts.force_ioctl_attach = true;
12164 		break;
12165 	case PROBE_ATTACH_MODE_LINK:
12166 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
12167 			return libbpf_err_ptr(-ENOTSUP);
12168 		break;
12169 	case PROBE_ATTACH_MODE_DEFAULT:
12170 		break;
12171 	default:
12172 		return libbpf_err_ptr(-EINVAL);
12173 	}
12174 
12175 	if (!legacy) {
12176 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
12177 					    func_offset, pid, ref_ctr_off);
12178 	} else {
12179 		char probe_name[MAX_EVENT_NAME_LEN];
12180 
12181 		if (ref_ctr_off)
12182 			return libbpf_err_ptr(-EINVAL);
12183 
12184 		gen_probe_legacy_event_name(probe_name, sizeof(probe_name),
12185 					    strrchr(binary_path, '/') ? : binary_path,
12186 					    func_offset);
12187 
12188 		legacy_probe = strdup(probe_name);
12189 		if (!legacy_probe)
12190 			return libbpf_err_ptr(-ENOMEM);
12191 
12192 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
12193 						    binary_path, func_offset, pid);
12194 	}
12195 	if (pfd < 0) {
12196 		err = -errno;
12197 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
12198 			prog->name, retprobe ? "uretprobe" : "uprobe",
12199 			binary_path, func_offset,
12200 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12201 		goto err_out;
12202 	}
12203 
12204 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12205 	err = libbpf_get_error(link);
12206 	if (err) {
12207 		close(pfd);
12208 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
12209 			prog->name, retprobe ? "uretprobe" : "uprobe",
12210 			binary_path, func_offset,
12211 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12212 		goto err_clean_legacy;
12213 	}
12214 	if (legacy) {
12215 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
12216 
12217 		perf_link->legacy_probe_name = legacy_probe;
12218 		perf_link->legacy_is_kprobe = false;
12219 		perf_link->legacy_is_retprobe = retprobe;
12220 	}
12221 	return link;
12222 
12223 err_clean_legacy:
12224 	if (legacy)
12225 		remove_uprobe_event_legacy(legacy_probe, retprobe);
12226 err_out:
12227 	free(legacy_probe);
12228 	return libbpf_err_ptr(err);
12229 }
12230 
12231 /* Format of u[ret]probe section definition supporting auto-attach:
12232  * u[ret]probe/binary:function[+offset]
12233  *
12234  * binary can be an absolute/relative path or a filename; the latter is resolved to a
12235  * full binary path via bpf_program__attach_uprobe_opts.
12236  *
12237  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
12238  * specified (and auto-attach is not possible) or the above format is specified for
12239  * auto-attach.
12240  */
attach_uprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12241 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12242 {
12243 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
12244 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
12245 	int n, c, ret = -EINVAL;
12246 	long offset = 0;
12247 
12248 	*link = NULL;
12249 
12250 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
12251 		   &probe_type, &binary_path, &func_name);
12252 	switch (n) {
12253 	case 1:
12254 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
12255 		ret = 0;
12256 		break;
12257 	case 2:
12258 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
12259 			prog->name, prog->sec_name);
12260 		break;
12261 	case 3:
12262 		/* check if user specifies `+offset`, if yes, this should be
12263 		 * the last part of the string, make sure sscanf read to EOL
12264 		 */
12265 		func_off = strrchr(func_name, '+');
12266 		if (func_off) {
12267 			n = sscanf(func_off, "+%li%n", &offset, &c);
12268 			if (n == 1 && *(func_off + c) == '\0')
12269 				func_off[0] = '\0';
12270 			else
12271 				offset = 0;
12272 		}
12273 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
12274 				strcmp(probe_type, "uretprobe.s") == 0;
12275 		if (opts.retprobe && offset != 0) {
12276 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
12277 				prog->name);
12278 			break;
12279 		}
12280 		opts.func_name = func_name;
12281 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
12282 		ret = libbpf_get_error(*link);
12283 		break;
12284 	default:
12285 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
12286 			prog->sec_name);
12287 		break;
12288 	}
12289 	free(probe_type);
12290 	free(binary_path);
12291 	free(func_name);
12292 
12293 	return ret;
12294 }
12295 
bpf_program__attach_uprobe(const struct bpf_program * prog,bool retprobe,pid_t pid,const char * binary_path,size_t func_offset)12296 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
12297 					    bool retprobe, pid_t pid,
12298 					    const char *binary_path,
12299 					    size_t func_offset)
12300 {
12301 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
12302 
12303 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
12304 }
12305 
bpf_program__attach_usdt(const struct bpf_program * prog,pid_t pid,const char * binary_path,const char * usdt_provider,const char * usdt_name,const struct bpf_usdt_opts * opts)12306 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
12307 					  pid_t pid, const char *binary_path,
12308 					  const char *usdt_provider, const char *usdt_name,
12309 					  const struct bpf_usdt_opts *opts)
12310 {
12311 	char resolved_path[512];
12312 	struct bpf_object *obj = prog->obj;
12313 	struct bpf_link *link;
12314 	__u64 usdt_cookie;
12315 	int err;
12316 
12317 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
12318 		return libbpf_err_ptr(-EINVAL);
12319 
12320 	if (bpf_program__fd(prog) < 0) {
12321 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12322 			prog->name);
12323 		return libbpf_err_ptr(-EINVAL);
12324 	}
12325 
12326 	if (!binary_path)
12327 		return libbpf_err_ptr(-EINVAL);
12328 
12329 	if (!strchr(binary_path, '/')) {
12330 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
12331 		if (err) {
12332 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
12333 				prog->name, binary_path, err);
12334 			return libbpf_err_ptr(err);
12335 		}
12336 		binary_path = resolved_path;
12337 	}
12338 
12339 	/* USDT manager is instantiated lazily on first USDT attach. It will
12340 	 * be destroyed together with BPF object in bpf_object__close().
12341 	 */
12342 	if (IS_ERR(obj->usdt_man))
12343 		return libbpf_ptr(obj->usdt_man);
12344 	if (!obj->usdt_man) {
12345 		obj->usdt_man = usdt_manager_new(obj);
12346 		if (IS_ERR(obj->usdt_man))
12347 			return libbpf_ptr(obj->usdt_man);
12348 	}
12349 
12350 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
12351 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
12352 					usdt_provider, usdt_name, usdt_cookie);
12353 	err = libbpf_get_error(link);
12354 	if (err)
12355 		return libbpf_err_ptr(err);
12356 	return link;
12357 }
12358 
attach_usdt(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12359 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12360 {
12361 	char *path = NULL, *provider = NULL, *name = NULL;
12362 	const char *sec_name;
12363 	int n, err;
12364 
12365 	sec_name = bpf_program__section_name(prog);
12366 	if (strcmp(sec_name, "usdt") == 0) {
12367 		/* no auto-attach for just SEC("usdt") */
12368 		*link = NULL;
12369 		return 0;
12370 	}
12371 
12372 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
12373 	if (n != 3) {
12374 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
12375 			sec_name);
12376 		err = -EINVAL;
12377 	} else {
12378 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
12379 						 provider, name, NULL);
12380 		err = libbpf_get_error(*link);
12381 	}
12382 	free(path);
12383 	free(provider);
12384 	free(name);
12385 	return err;
12386 }
12387 
determine_tracepoint_id(const char * tp_category,const char * tp_name)12388 static int determine_tracepoint_id(const char *tp_category,
12389 				   const char *tp_name)
12390 {
12391 	char file[PATH_MAX];
12392 	int ret;
12393 
12394 	ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
12395 		       tracefs_path(), tp_category, tp_name);
12396 	if (ret < 0)
12397 		return -errno;
12398 	if (ret >= sizeof(file)) {
12399 		pr_debug("tracepoint %s/%s path is too long\n",
12400 			 tp_category, tp_name);
12401 		return -E2BIG;
12402 	}
12403 	return parse_uint_from_file(file, "%d\n");
12404 }
12405 
perf_event_open_tracepoint(const char * tp_category,const char * tp_name)12406 static int perf_event_open_tracepoint(const char *tp_category,
12407 				      const char *tp_name)
12408 {
12409 	const size_t attr_sz = sizeof(struct perf_event_attr);
12410 	struct perf_event_attr attr;
12411 	char errmsg[STRERR_BUFSIZE];
12412 	int tp_id, pfd, err;
12413 
12414 	tp_id = determine_tracepoint_id(tp_category, tp_name);
12415 	if (tp_id < 0) {
12416 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
12417 			tp_category, tp_name,
12418 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
12419 		return tp_id;
12420 	}
12421 
12422 	memset(&attr, 0, attr_sz);
12423 	attr.type = PERF_TYPE_TRACEPOINT;
12424 	attr.size = attr_sz;
12425 	attr.config = tp_id;
12426 
12427 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
12428 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
12429 	if (pfd < 0) {
12430 		err = -errno;
12431 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
12432 			tp_category, tp_name,
12433 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12434 		return err;
12435 	}
12436 	return pfd;
12437 }
12438 
bpf_program__attach_tracepoint_opts(const struct bpf_program * prog,const char * tp_category,const char * tp_name,const struct bpf_tracepoint_opts * opts)12439 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
12440 						     const char *tp_category,
12441 						     const char *tp_name,
12442 						     const struct bpf_tracepoint_opts *opts)
12443 {
12444 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12445 	char errmsg[STRERR_BUFSIZE];
12446 	struct bpf_link *link;
12447 	int pfd, err;
12448 
12449 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
12450 		return libbpf_err_ptr(-EINVAL);
12451 
12452 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12453 
12454 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
12455 	if (pfd < 0) {
12456 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
12457 			prog->name, tp_category, tp_name,
12458 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12459 		return libbpf_err_ptr(pfd);
12460 	}
12461 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12462 	err = libbpf_get_error(link);
12463 	if (err) {
12464 		close(pfd);
12465 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
12466 			prog->name, tp_category, tp_name,
12467 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12468 		return libbpf_err_ptr(err);
12469 	}
12470 	return link;
12471 }
12472 
bpf_program__attach_tracepoint(const struct bpf_program * prog,const char * tp_category,const char * tp_name)12473 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
12474 						const char *tp_category,
12475 						const char *tp_name)
12476 {
12477 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
12478 }
12479 
attach_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12480 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12481 {
12482 	char *sec_name, *tp_cat, *tp_name;
12483 
12484 	*link = NULL;
12485 
12486 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
12487 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
12488 		return 0;
12489 
12490 	sec_name = strdup(prog->sec_name);
12491 	if (!sec_name)
12492 		return -ENOMEM;
12493 
12494 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
12495 	if (str_has_pfx(prog->sec_name, "tp/"))
12496 		tp_cat = sec_name + sizeof("tp/") - 1;
12497 	else
12498 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
12499 	tp_name = strchr(tp_cat, '/');
12500 	if (!tp_name) {
12501 		free(sec_name);
12502 		return -EINVAL;
12503 	}
12504 	*tp_name = '\0';
12505 	tp_name++;
12506 
12507 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
12508 	free(sec_name);
12509 	return libbpf_get_error(*link);
12510 }
12511 
12512 struct bpf_link *
bpf_program__attach_raw_tracepoint_opts(const struct bpf_program * prog,const char * tp_name,struct bpf_raw_tracepoint_opts * opts)12513 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog,
12514 					const char *tp_name,
12515 					struct bpf_raw_tracepoint_opts *opts)
12516 {
12517 	LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts);
12518 	char errmsg[STRERR_BUFSIZE];
12519 	struct bpf_link *link;
12520 	int prog_fd, pfd;
12521 
12522 	if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts))
12523 		return libbpf_err_ptr(-EINVAL);
12524 
12525 	prog_fd = bpf_program__fd(prog);
12526 	if (prog_fd < 0) {
12527 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12528 		return libbpf_err_ptr(-EINVAL);
12529 	}
12530 
12531 	link = calloc(1, sizeof(*link));
12532 	if (!link)
12533 		return libbpf_err_ptr(-ENOMEM);
12534 	link->detach = &bpf_link__detach_fd;
12535 
12536 	raw_opts.tp_name = tp_name;
12537 	raw_opts.cookie = OPTS_GET(opts, cookie, 0);
12538 	pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts);
12539 	if (pfd < 0) {
12540 		pfd = -errno;
12541 		free(link);
12542 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
12543 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12544 		return libbpf_err_ptr(pfd);
12545 	}
12546 	link->fd = pfd;
12547 	return link;
12548 }
12549 
bpf_program__attach_raw_tracepoint(const struct bpf_program * prog,const char * tp_name)12550 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
12551 						    const char *tp_name)
12552 {
12553 	return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL);
12554 }
12555 
attach_raw_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12556 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12557 {
12558 	static const char *const prefixes[] = {
12559 		"raw_tp",
12560 		"raw_tracepoint",
12561 		"raw_tp.w",
12562 		"raw_tracepoint.w",
12563 	};
12564 	size_t i;
12565 	const char *tp_name = NULL;
12566 
12567 	*link = NULL;
12568 
12569 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
12570 		size_t pfx_len;
12571 
12572 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
12573 			continue;
12574 
12575 		pfx_len = strlen(prefixes[i]);
12576 		/* no auto-attach case of, e.g., SEC("raw_tp") */
12577 		if (prog->sec_name[pfx_len] == '\0')
12578 			return 0;
12579 
12580 		if (prog->sec_name[pfx_len] != '/')
12581 			continue;
12582 
12583 		tp_name = prog->sec_name + pfx_len + 1;
12584 		break;
12585 	}
12586 
12587 	if (!tp_name) {
12588 		pr_warn("prog '%s': invalid section name '%s'\n",
12589 			prog->name, prog->sec_name);
12590 		return -EINVAL;
12591 	}
12592 
12593 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
12594 	return libbpf_get_error(*link);
12595 }
12596 
12597 /* Common logic for all BPF program types that attach to a btf_id */
bpf_program__attach_btf_id(const struct bpf_program * prog,const struct bpf_trace_opts * opts)12598 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
12599 						   const struct bpf_trace_opts *opts)
12600 {
12601 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
12602 	char errmsg[STRERR_BUFSIZE];
12603 	struct bpf_link *link;
12604 	int prog_fd, pfd;
12605 
12606 	if (!OPTS_VALID(opts, bpf_trace_opts))
12607 		return libbpf_err_ptr(-EINVAL);
12608 
12609 	prog_fd = bpf_program__fd(prog);
12610 	if (prog_fd < 0) {
12611 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12612 		return libbpf_err_ptr(-EINVAL);
12613 	}
12614 
12615 	link = calloc(1, sizeof(*link));
12616 	if (!link)
12617 		return libbpf_err_ptr(-ENOMEM);
12618 	link->detach = &bpf_link__detach_fd;
12619 
12620 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
12621 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
12622 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
12623 	if (pfd < 0) {
12624 		pfd = -errno;
12625 		free(link);
12626 		pr_warn("prog '%s': failed to attach: %s\n",
12627 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12628 		return libbpf_err_ptr(pfd);
12629 	}
12630 	link->fd = pfd;
12631 	return link;
12632 }
12633 
bpf_program__attach_trace(const struct bpf_program * prog)12634 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
12635 {
12636 	return bpf_program__attach_btf_id(prog, NULL);
12637 }
12638 
bpf_program__attach_trace_opts(const struct bpf_program * prog,const struct bpf_trace_opts * opts)12639 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
12640 						const struct bpf_trace_opts *opts)
12641 {
12642 	return bpf_program__attach_btf_id(prog, opts);
12643 }
12644 
bpf_program__attach_lsm(const struct bpf_program * prog)12645 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
12646 {
12647 	return bpf_program__attach_btf_id(prog, NULL);
12648 }
12649 
attach_trace(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12650 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12651 {
12652 	*link = bpf_program__attach_trace(prog);
12653 	return libbpf_get_error(*link);
12654 }
12655 
attach_lsm(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12656 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12657 {
12658 	*link = bpf_program__attach_lsm(prog);
12659 	return libbpf_get_error(*link);
12660 }
12661 
12662 static struct bpf_link *
bpf_program_attach_fd(const struct bpf_program * prog,int target_fd,const char * target_name,const struct bpf_link_create_opts * opts)12663 bpf_program_attach_fd(const struct bpf_program *prog,
12664 		      int target_fd, const char *target_name,
12665 		      const struct bpf_link_create_opts *opts)
12666 {
12667 	enum bpf_attach_type attach_type;
12668 	char errmsg[STRERR_BUFSIZE];
12669 	struct bpf_link *link;
12670 	int prog_fd, link_fd;
12671 
12672 	prog_fd = bpf_program__fd(prog);
12673 	if (prog_fd < 0) {
12674 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12675 		return libbpf_err_ptr(-EINVAL);
12676 	}
12677 
12678 	link = calloc(1, sizeof(*link));
12679 	if (!link)
12680 		return libbpf_err_ptr(-ENOMEM);
12681 	link->detach = &bpf_link__detach_fd;
12682 
12683 	attach_type = bpf_program__expected_attach_type(prog);
12684 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
12685 	if (link_fd < 0) {
12686 		link_fd = -errno;
12687 		free(link);
12688 		pr_warn("prog '%s': failed to attach to %s: %s\n",
12689 			prog->name, target_name,
12690 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12691 		return libbpf_err_ptr(link_fd);
12692 	}
12693 	link->fd = link_fd;
12694 	return link;
12695 }
12696 
12697 struct bpf_link *
bpf_program__attach_cgroup(const struct bpf_program * prog,int cgroup_fd)12698 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
12699 {
12700 	return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
12701 }
12702 
12703 struct bpf_link *
bpf_program__attach_netns(const struct bpf_program * prog,int netns_fd)12704 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
12705 {
12706 	return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
12707 }
12708 
12709 struct bpf_link *
bpf_program__attach_sockmap(const struct bpf_program * prog,int map_fd)12710 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd)
12711 {
12712 	return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL);
12713 }
12714 
bpf_program__attach_xdp(const struct bpf_program * prog,int ifindex)12715 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
12716 {
12717 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
12718 	return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
12719 }
12720 
12721 struct bpf_link *
bpf_program__attach_tcx(const struct bpf_program * prog,int ifindex,const struct bpf_tcx_opts * opts)12722 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
12723 			const struct bpf_tcx_opts *opts)
12724 {
12725 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12726 	__u32 relative_id;
12727 	int relative_fd;
12728 
12729 	if (!OPTS_VALID(opts, bpf_tcx_opts))
12730 		return libbpf_err_ptr(-EINVAL);
12731 
12732 	relative_id = OPTS_GET(opts, relative_id, 0);
12733 	relative_fd = OPTS_GET(opts, relative_fd, 0);
12734 
12735 	/* validate we don't have unexpected combinations of non-zero fields */
12736 	if (!ifindex) {
12737 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12738 			prog->name);
12739 		return libbpf_err_ptr(-EINVAL);
12740 	}
12741 	if (relative_fd && relative_id) {
12742 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12743 			prog->name);
12744 		return libbpf_err_ptr(-EINVAL);
12745 	}
12746 
12747 	link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
12748 	link_create_opts.tcx.relative_fd = relative_fd;
12749 	link_create_opts.tcx.relative_id = relative_id;
12750 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
12751 
12752 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
12753 	return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12754 }
12755 
12756 struct bpf_link *
bpf_program__attach_netkit(const struct bpf_program * prog,int ifindex,const struct bpf_netkit_opts * opts)12757 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
12758 			   const struct bpf_netkit_opts *opts)
12759 {
12760 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12761 	__u32 relative_id;
12762 	int relative_fd;
12763 
12764 	if (!OPTS_VALID(opts, bpf_netkit_opts))
12765 		return libbpf_err_ptr(-EINVAL);
12766 
12767 	relative_id = OPTS_GET(opts, relative_id, 0);
12768 	relative_fd = OPTS_GET(opts, relative_fd, 0);
12769 
12770 	/* validate we don't have unexpected combinations of non-zero fields */
12771 	if (!ifindex) {
12772 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12773 			prog->name);
12774 		return libbpf_err_ptr(-EINVAL);
12775 	}
12776 	if (relative_fd && relative_id) {
12777 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12778 			prog->name);
12779 		return libbpf_err_ptr(-EINVAL);
12780 	}
12781 
12782 	link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
12783 	link_create_opts.netkit.relative_fd = relative_fd;
12784 	link_create_opts.netkit.relative_id = relative_id;
12785 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
12786 
12787 	return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
12788 }
12789 
bpf_program__attach_freplace(const struct bpf_program * prog,int target_fd,const char * attach_func_name)12790 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12791 					      int target_fd,
12792 					      const char *attach_func_name)
12793 {
12794 	int btf_id;
12795 
12796 	if (!!target_fd != !!attach_func_name) {
12797 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12798 			prog->name);
12799 		return libbpf_err_ptr(-EINVAL);
12800 	}
12801 
12802 	if (prog->type != BPF_PROG_TYPE_EXT) {
12803 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
12804 			prog->name);
12805 		return libbpf_err_ptr(-EINVAL);
12806 	}
12807 
12808 	if (target_fd) {
12809 		LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12810 
12811 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12812 		if (btf_id < 0)
12813 			return libbpf_err_ptr(btf_id);
12814 
12815 		target_opts.target_btf_id = btf_id;
12816 
12817 		return bpf_program_attach_fd(prog, target_fd, "freplace",
12818 					     &target_opts);
12819 	} else {
12820 		/* no target, so use raw_tracepoint_open for compatibility
12821 		 * with old kernels
12822 		 */
12823 		return bpf_program__attach_trace(prog);
12824 	}
12825 }
12826 
12827 struct bpf_link *
bpf_program__attach_iter(const struct bpf_program * prog,const struct bpf_iter_attach_opts * opts)12828 bpf_program__attach_iter(const struct bpf_program *prog,
12829 			 const struct bpf_iter_attach_opts *opts)
12830 {
12831 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12832 	char errmsg[STRERR_BUFSIZE];
12833 	struct bpf_link *link;
12834 	int prog_fd, link_fd;
12835 	__u32 target_fd = 0;
12836 
12837 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12838 		return libbpf_err_ptr(-EINVAL);
12839 
12840 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12841 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12842 
12843 	prog_fd = bpf_program__fd(prog);
12844 	if (prog_fd < 0) {
12845 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12846 		return libbpf_err_ptr(-EINVAL);
12847 	}
12848 
12849 	link = calloc(1, sizeof(*link));
12850 	if (!link)
12851 		return libbpf_err_ptr(-ENOMEM);
12852 	link->detach = &bpf_link__detach_fd;
12853 
12854 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12855 				  &link_create_opts);
12856 	if (link_fd < 0) {
12857 		link_fd = -errno;
12858 		free(link);
12859 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
12860 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12861 		return libbpf_err_ptr(link_fd);
12862 	}
12863 	link->fd = link_fd;
12864 	return link;
12865 }
12866 
attach_iter(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12867 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12868 {
12869 	*link = bpf_program__attach_iter(prog, NULL);
12870 	return libbpf_get_error(*link);
12871 }
12872 
bpf_program__attach_netfilter(const struct bpf_program * prog,const struct bpf_netfilter_opts * opts)12873 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12874 					       const struct bpf_netfilter_opts *opts)
12875 {
12876 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
12877 	struct bpf_link *link;
12878 	int prog_fd, link_fd;
12879 
12880 	if (!OPTS_VALID(opts, bpf_netfilter_opts))
12881 		return libbpf_err_ptr(-EINVAL);
12882 
12883 	prog_fd = bpf_program__fd(prog);
12884 	if (prog_fd < 0) {
12885 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12886 		return libbpf_err_ptr(-EINVAL);
12887 	}
12888 
12889 	link = calloc(1, sizeof(*link));
12890 	if (!link)
12891 		return libbpf_err_ptr(-ENOMEM);
12892 
12893 	link->detach = &bpf_link__detach_fd;
12894 
12895 	lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12896 	lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12897 	lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12898 	lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12899 
12900 	link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12901 	if (link_fd < 0) {
12902 		char errmsg[STRERR_BUFSIZE];
12903 
12904 		link_fd = -errno;
12905 		free(link);
12906 		pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12907 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12908 		return libbpf_err_ptr(link_fd);
12909 	}
12910 	link->fd = link_fd;
12911 
12912 	return link;
12913 }
12914 
bpf_program__attach(const struct bpf_program * prog)12915 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12916 {
12917 	struct bpf_link *link = NULL;
12918 	int err;
12919 
12920 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12921 		return libbpf_err_ptr(-EOPNOTSUPP);
12922 
12923 	if (bpf_program__fd(prog) < 0) {
12924 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12925 			prog->name);
12926 		return libbpf_err_ptr(-EINVAL);
12927 	}
12928 
12929 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12930 	if (err)
12931 		return libbpf_err_ptr(err);
12932 
12933 	/* When calling bpf_program__attach() explicitly, auto-attach support
12934 	 * is expected to work, so NULL returned link is considered an error.
12935 	 * This is different for skeleton's attach, see comment in
12936 	 * bpf_object__attach_skeleton().
12937 	 */
12938 	if (!link)
12939 		return libbpf_err_ptr(-EOPNOTSUPP);
12940 
12941 	return link;
12942 }
12943 
12944 struct bpf_link_struct_ops {
12945 	struct bpf_link link;
12946 	int map_fd;
12947 };
12948 
bpf_link__detach_struct_ops(struct bpf_link * link)12949 static int bpf_link__detach_struct_ops(struct bpf_link *link)
12950 {
12951 	struct bpf_link_struct_ops *st_link;
12952 	__u32 zero = 0;
12953 
12954 	st_link = container_of(link, struct bpf_link_struct_ops, link);
12955 
12956 	if (st_link->map_fd < 0)
12957 		/* w/o a real link */
12958 		return bpf_map_delete_elem(link->fd, &zero);
12959 
12960 	return close(link->fd);
12961 }
12962 
bpf_map__attach_struct_ops(const struct bpf_map * map)12963 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12964 {
12965 	struct bpf_link_struct_ops *link;
12966 	__u32 zero = 0;
12967 	int err, fd;
12968 
12969 	if (!bpf_map__is_struct_ops(map)) {
12970 		pr_warn("map '%s': can't attach non-struct_ops map\n", map->name);
12971 		return libbpf_err_ptr(-EINVAL);
12972 	}
12973 
12974 	if (map->fd < 0) {
12975 		pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name);
12976 		return libbpf_err_ptr(-EINVAL);
12977 	}
12978 
12979 	link = calloc(1, sizeof(*link));
12980 	if (!link)
12981 		return libbpf_err_ptr(-EINVAL);
12982 
12983 	/* kern_vdata should be prepared during the loading phase. */
12984 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12985 	/* It can be EBUSY if the map has been used to create or
12986 	 * update a link before.  We don't allow updating the value of
12987 	 * a struct_ops once it is set.  That ensures that the value
12988 	 * never changed.  So, it is safe to skip EBUSY.
12989 	 */
12990 	if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12991 		free(link);
12992 		return libbpf_err_ptr(err);
12993 	}
12994 
12995 	link->link.detach = bpf_link__detach_struct_ops;
12996 
12997 	if (!(map->def.map_flags & BPF_F_LINK)) {
12998 		/* w/o a real link */
12999 		link->link.fd = map->fd;
13000 		link->map_fd = -1;
13001 		return &link->link;
13002 	}
13003 
13004 	fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
13005 	if (fd < 0) {
13006 		free(link);
13007 		return libbpf_err_ptr(fd);
13008 	}
13009 
13010 	link->link.fd = fd;
13011 	link->map_fd = map->fd;
13012 
13013 	return &link->link;
13014 }
13015 
13016 /*
13017  * Swap the back struct_ops of a link with a new struct_ops map.
13018  */
bpf_link__update_map(struct bpf_link * link,const struct bpf_map * map)13019 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
13020 {
13021 	struct bpf_link_struct_ops *st_ops_link;
13022 	__u32 zero = 0;
13023 	int err;
13024 
13025 	if (!bpf_map__is_struct_ops(map))
13026 		return -EINVAL;
13027 
13028 	if (map->fd < 0) {
13029 		pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
13030 		return -EINVAL;
13031 	}
13032 
13033 	st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
13034 	/* Ensure the type of a link is correct */
13035 	if (st_ops_link->map_fd < 0)
13036 		return -EINVAL;
13037 
13038 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
13039 	/* It can be EBUSY if the map has been used to create or
13040 	 * update a link before.  We don't allow updating the value of
13041 	 * a struct_ops once it is set.  That ensures that the value
13042 	 * never changed.  So, it is safe to skip EBUSY.
13043 	 */
13044 	if (err && err != -EBUSY)
13045 		return err;
13046 
13047 	err = bpf_link_update(link->fd, map->fd, NULL);
13048 	if (err < 0)
13049 		return err;
13050 
13051 	st_ops_link->map_fd = map->fd;
13052 
13053 	return 0;
13054 }
13055 
13056 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
13057 							  void *private_data);
13058 
13059 static enum bpf_perf_event_ret
perf_event_read_simple(void * mmap_mem,size_t mmap_size,size_t page_size,void ** copy_mem,size_t * copy_size,bpf_perf_event_print_t fn,void * private_data)13060 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
13061 		       void **copy_mem, size_t *copy_size,
13062 		       bpf_perf_event_print_t fn, void *private_data)
13063 {
13064 	struct perf_event_mmap_page *header = mmap_mem;
13065 	__u64 data_head = ring_buffer_read_head(header);
13066 	__u64 data_tail = header->data_tail;
13067 	void *base = ((__u8 *)header) + page_size;
13068 	int ret = LIBBPF_PERF_EVENT_CONT;
13069 	struct perf_event_header *ehdr;
13070 	size_t ehdr_size;
13071 
13072 	while (data_head != data_tail) {
13073 		ehdr = base + (data_tail & (mmap_size - 1));
13074 		ehdr_size = ehdr->size;
13075 
13076 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
13077 			void *copy_start = ehdr;
13078 			size_t len_first = base + mmap_size - copy_start;
13079 			size_t len_secnd = ehdr_size - len_first;
13080 
13081 			if (*copy_size < ehdr_size) {
13082 				free(*copy_mem);
13083 				*copy_mem = malloc(ehdr_size);
13084 				if (!*copy_mem) {
13085 					*copy_size = 0;
13086 					ret = LIBBPF_PERF_EVENT_ERROR;
13087 					break;
13088 				}
13089 				*copy_size = ehdr_size;
13090 			}
13091 
13092 			memcpy(*copy_mem, copy_start, len_first);
13093 			memcpy(*copy_mem + len_first, base, len_secnd);
13094 			ehdr = *copy_mem;
13095 		}
13096 
13097 		ret = fn(ehdr, private_data);
13098 		data_tail += ehdr_size;
13099 		if (ret != LIBBPF_PERF_EVENT_CONT)
13100 			break;
13101 	}
13102 
13103 	ring_buffer_write_tail(header, data_tail);
13104 	return libbpf_err(ret);
13105 }
13106 
13107 struct perf_buffer;
13108 
13109 struct perf_buffer_params {
13110 	struct perf_event_attr *attr;
13111 	/* if event_cb is specified, it takes precendence */
13112 	perf_buffer_event_fn event_cb;
13113 	/* sample_cb and lost_cb are higher-level common-case callbacks */
13114 	perf_buffer_sample_fn sample_cb;
13115 	perf_buffer_lost_fn lost_cb;
13116 	void *ctx;
13117 	int cpu_cnt;
13118 	int *cpus;
13119 	int *map_keys;
13120 };
13121 
13122 struct perf_cpu_buf {
13123 	struct perf_buffer *pb;
13124 	void *base; /* mmap()'ed memory */
13125 	void *buf; /* for reconstructing segmented data */
13126 	size_t buf_size;
13127 	int fd;
13128 	int cpu;
13129 	int map_key;
13130 };
13131 
13132 struct perf_buffer {
13133 	perf_buffer_event_fn event_cb;
13134 	perf_buffer_sample_fn sample_cb;
13135 	perf_buffer_lost_fn lost_cb;
13136 	void *ctx; /* passed into callbacks */
13137 
13138 	size_t page_size;
13139 	size_t mmap_size;
13140 	struct perf_cpu_buf **cpu_bufs;
13141 	struct epoll_event *events;
13142 	int cpu_cnt; /* number of allocated CPU buffers */
13143 	int epoll_fd; /* perf event FD */
13144 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
13145 };
13146 
perf_buffer__free_cpu_buf(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)13147 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
13148 				      struct perf_cpu_buf *cpu_buf)
13149 {
13150 	if (!cpu_buf)
13151 		return;
13152 	if (cpu_buf->base &&
13153 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
13154 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
13155 	if (cpu_buf->fd >= 0) {
13156 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
13157 		close(cpu_buf->fd);
13158 	}
13159 	free(cpu_buf->buf);
13160 	free(cpu_buf);
13161 }
13162 
perf_buffer__free(struct perf_buffer * pb)13163 void perf_buffer__free(struct perf_buffer *pb)
13164 {
13165 	int i;
13166 
13167 	if (IS_ERR_OR_NULL(pb))
13168 		return;
13169 	if (pb->cpu_bufs) {
13170 		for (i = 0; i < pb->cpu_cnt; i++) {
13171 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13172 
13173 			if (!cpu_buf)
13174 				continue;
13175 
13176 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
13177 			perf_buffer__free_cpu_buf(pb, cpu_buf);
13178 		}
13179 		free(pb->cpu_bufs);
13180 	}
13181 	if (pb->epoll_fd >= 0)
13182 		close(pb->epoll_fd);
13183 	free(pb->events);
13184 	free(pb);
13185 }
13186 
13187 static struct perf_cpu_buf *
perf_buffer__open_cpu_buf(struct perf_buffer * pb,struct perf_event_attr * attr,int cpu,int map_key)13188 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
13189 			  int cpu, int map_key)
13190 {
13191 	struct perf_cpu_buf *cpu_buf;
13192 	char msg[STRERR_BUFSIZE];
13193 	int err;
13194 
13195 	cpu_buf = calloc(1, sizeof(*cpu_buf));
13196 	if (!cpu_buf)
13197 		return ERR_PTR(-ENOMEM);
13198 
13199 	cpu_buf->pb = pb;
13200 	cpu_buf->cpu = cpu;
13201 	cpu_buf->map_key = map_key;
13202 
13203 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
13204 			      -1, PERF_FLAG_FD_CLOEXEC);
13205 	if (cpu_buf->fd < 0) {
13206 		err = -errno;
13207 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
13208 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
13209 		goto error;
13210 	}
13211 
13212 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
13213 			     PROT_READ | PROT_WRITE, MAP_SHARED,
13214 			     cpu_buf->fd, 0);
13215 	if (cpu_buf->base == MAP_FAILED) {
13216 		cpu_buf->base = NULL;
13217 		err = -errno;
13218 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
13219 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
13220 		goto error;
13221 	}
13222 
13223 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
13224 		err = -errno;
13225 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
13226 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
13227 		goto error;
13228 	}
13229 
13230 	return cpu_buf;
13231 
13232 error:
13233 	perf_buffer__free_cpu_buf(pb, cpu_buf);
13234 	return (struct perf_cpu_buf *)ERR_PTR(err);
13235 }
13236 
13237 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13238 					      struct perf_buffer_params *p);
13239 
perf_buffer__new(int map_fd,size_t page_cnt,perf_buffer_sample_fn sample_cb,perf_buffer_lost_fn lost_cb,void * ctx,const struct perf_buffer_opts * opts)13240 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
13241 				     perf_buffer_sample_fn sample_cb,
13242 				     perf_buffer_lost_fn lost_cb,
13243 				     void *ctx,
13244 				     const struct perf_buffer_opts *opts)
13245 {
13246 	const size_t attr_sz = sizeof(struct perf_event_attr);
13247 	struct perf_buffer_params p = {};
13248 	struct perf_event_attr attr;
13249 	__u32 sample_period;
13250 
13251 	if (!OPTS_VALID(opts, perf_buffer_opts))
13252 		return libbpf_err_ptr(-EINVAL);
13253 
13254 	sample_period = OPTS_GET(opts, sample_period, 1);
13255 	if (!sample_period)
13256 		sample_period = 1;
13257 
13258 	memset(&attr, 0, attr_sz);
13259 	attr.size = attr_sz;
13260 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
13261 	attr.type = PERF_TYPE_SOFTWARE;
13262 	attr.sample_type = PERF_SAMPLE_RAW;
13263 	attr.wakeup_events = sample_period;
13264 
13265 	p.attr = &attr;
13266 	p.sample_cb = sample_cb;
13267 	p.lost_cb = lost_cb;
13268 	p.ctx = ctx;
13269 
13270 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13271 }
13272 
perf_buffer__new_raw(int map_fd,size_t page_cnt,struct perf_event_attr * attr,perf_buffer_event_fn event_cb,void * ctx,const struct perf_buffer_raw_opts * opts)13273 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
13274 					 struct perf_event_attr *attr,
13275 					 perf_buffer_event_fn event_cb, void *ctx,
13276 					 const struct perf_buffer_raw_opts *opts)
13277 {
13278 	struct perf_buffer_params p = {};
13279 
13280 	if (!attr)
13281 		return libbpf_err_ptr(-EINVAL);
13282 
13283 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
13284 		return libbpf_err_ptr(-EINVAL);
13285 
13286 	p.attr = attr;
13287 	p.event_cb = event_cb;
13288 	p.ctx = ctx;
13289 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
13290 	p.cpus = OPTS_GET(opts, cpus, NULL);
13291 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
13292 
13293 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13294 }
13295 
__perf_buffer__new(int map_fd,size_t page_cnt,struct perf_buffer_params * p)13296 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13297 					      struct perf_buffer_params *p)
13298 {
13299 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
13300 	struct bpf_map_info map;
13301 	char msg[STRERR_BUFSIZE];
13302 	struct perf_buffer *pb;
13303 	bool *online = NULL;
13304 	__u32 map_info_len;
13305 	int err, i, j, n;
13306 
13307 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
13308 		pr_warn("page count should be power of two, but is %zu\n",
13309 			page_cnt);
13310 		return ERR_PTR(-EINVAL);
13311 	}
13312 
13313 	/* best-effort sanity checks */
13314 	memset(&map, 0, sizeof(map));
13315 	map_info_len = sizeof(map);
13316 	err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
13317 	if (err) {
13318 		err = -errno;
13319 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
13320 		 * -EBADFD, -EFAULT, or -E2BIG on real error
13321 		 */
13322 		if (err != -EINVAL) {
13323 			pr_warn("failed to get map info for map FD %d: %s\n",
13324 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
13325 			return ERR_PTR(err);
13326 		}
13327 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
13328 			 map_fd);
13329 	} else {
13330 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
13331 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
13332 				map.name);
13333 			return ERR_PTR(-EINVAL);
13334 		}
13335 	}
13336 
13337 	pb = calloc(1, sizeof(*pb));
13338 	if (!pb)
13339 		return ERR_PTR(-ENOMEM);
13340 
13341 	pb->event_cb = p->event_cb;
13342 	pb->sample_cb = p->sample_cb;
13343 	pb->lost_cb = p->lost_cb;
13344 	pb->ctx = p->ctx;
13345 
13346 	pb->page_size = getpagesize();
13347 	pb->mmap_size = pb->page_size * page_cnt;
13348 	pb->map_fd = map_fd;
13349 
13350 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
13351 	if (pb->epoll_fd < 0) {
13352 		err = -errno;
13353 		pr_warn("failed to create epoll instance: %s\n",
13354 			libbpf_strerror_r(err, msg, sizeof(msg)));
13355 		goto error;
13356 	}
13357 
13358 	if (p->cpu_cnt > 0) {
13359 		pb->cpu_cnt = p->cpu_cnt;
13360 	} else {
13361 		pb->cpu_cnt = libbpf_num_possible_cpus();
13362 		if (pb->cpu_cnt < 0) {
13363 			err = pb->cpu_cnt;
13364 			goto error;
13365 		}
13366 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
13367 			pb->cpu_cnt = map.max_entries;
13368 	}
13369 
13370 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
13371 	if (!pb->events) {
13372 		err = -ENOMEM;
13373 		pr_warn("failed to allocate events: out of memory\n");
13374 		goto error;
13375 	}
13376 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
13377 	if (!pb->cpu_bufs) {
13378 		err = -ENOMEM;
13379 		pr_warn("failed to allocate buffers: out of memory\n");
13380 		goto error;
13381 	}
13382 
13383 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
13384 	if (err) {
13385 		pr_warn("failed to get online CPU mask: %d\n", err);
13386 		goto error;
13387 	}
13388 
13389 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
13390 		struct perf_cpu_buf *cpu_buf;
13391 		int cpu, map_key;
13392 
13393 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
13394 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
13395 
13396 		/* in case user didn't explicitly requested particular CPUs to
13397 		 * be attached to, skip offline/not present CPUs
13398 		 */
13399 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
13400 			continue;
13401 
13402 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
13403 		if (IS_ERR(cpu_buf)) {
13404 			err = PTR_ERR(cpu_buf);
13405 			goto error;
13406 		}
13407 
13408 		pb->cpu_bufs[j] = cpu_buf;
13409 
13410 		err = bpf_map_update_elem(pb->map_fd, &map_key,
13411 					  &cpu_buf->fd, 0);
13412 		if (err) {
13413 			err = -errno;
13414 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
13415 				cpu, map_key, cpu_buf->fd,
13416 				libbpf_strerror_r(err, msg, sizeof(msg)));
13417 			goto error;
13418 		}
13419 
13420 		pb->events[j].events = EPOLLIN;
13421 		pb->events[j].data.ptr = cpu_buf;
13422 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
13423 			      &pb->events[j]) < 0) {
13424 			err = -errno;
13425 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
13426 				cpu, cpu_buf->fd,
13427 				libbpf_strerror_r(err, msg, sizeof(msg)));
13428 			goto error;
13429 		}
13430 		j++;
13431 	}
13432 	pb->cpu_cnt = j;
13433 	free(online);
13434 
13435 	return pb;
13436 
13437 error:
13438 	free(online);
13439 	if (pb)
13440 		perf_buffer__free(pb);
13441 	return ERR_PTR(err);
13442 }
13443 
13444 struct perf_sample_raw {
13445 	struct perf_event_header header;
13446 	uint32_t size;
13447 	char data[];
13448 };
13449 
13450 struct perf_sample_lost {
13451 	struct perf_event_header header;
13452 	uint64_t id;
13453 	uint64_t lost;
13454 	uint64_t sample_id;
13455 };
13456 
13457 static enum bpf_perf_event_ret
perf_buffer__process_record(struct perf_event_header * e,void * ctx)13458 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
13459 {
13460 	struct perf_cpu_buf *cpu_buf = ctx;
13461 	struct perf_buffer *pb = cpu_buf->pb;
13462 	void *data = e;
13463 
13464 	/* user wants full control over parsing perf event */
13465 	if (pb->event_cb)
13466 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
13467 
13468 	switch (e->type) {
13469 	case PERF_RECORD_SAMPLE: {
13470 		struct perf_sample_raw *s = data;
13471 
13472 		if (pb->sample_cb)
13473 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
13474 		break;
13475 	}
13476 	case PERF_RECORD_LOST: {
13477 		struct perf_sample_lost *s = data;
13478 
13479 		if (pb->lost_cb)
13480 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
13481 		break;
13482 	}
13483 	default:
13484 		pr_warn("unknown perf sample type %d\n", e->type);
13485 		return LIBBPF_PERF_EVENT_ERROR;
13486 	}
13487 	return LIBBPF_PERF_EVENT_CONT;
13488 }
13489 
perf_buffer__process_records(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)13490 static int perf_buffer__process_records(struct perf_buffer *pb,
13491 					struct perf_cpu_buf *cpu_buf)
13492 {
13493 	enum bpf_perf_event_ret ret;
13494 
13495 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
13496 				     pb->page_size, &cpu_buf->buf,
13497 				     &cpu_buf->buf_size,
13498 				     perf_buffer__process_record, cpu_buf);
13499 	if (ret != LIBBPF_PERF_EVENT_CONT)
13500 		return ret;
13501 	return 0;
13502 }
13503 
perf_buffer__epoll_fd(const struct perf_buffer * pb)13504 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
13505 {
13506 	return pb->epoll_fd;
13507 }
13508 
perf_buffer__poll(struct perf_buffer * pb,int timeout_ms)13509 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
13510 {
13511 	int i, cnt, err;
13512 
13513 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
13514 	if (cnt < 0)
13515 		return -errno;
13516 
13517 	for (i = 0; i < cnt; i++) {
13518 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
13519 
13520 		err = perf_buffer__process_records(pb, cpu_buf);
13521 		if (err) {
13522 			pr_warn("error while processing records: %d\n", err);
13523 			return libbpf_err(err);
13524 		}
13525 	}
13526 	return cnt;
13527 }
13528 
13529 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
13530  * manager.
13531  */
perf_buffer__buffer_cnt(const struct perf_buffer * pb)13532 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
13533 {
13534 	return pb->cpu_cnt;
13535 }
13536 
13537 /*
13538  * Return perf_event FD of a ring buffer in *buf_idx* slot of
13539  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
13540  * select()/poll()/epoll() Linux syscalls.
13541  */
perf_buffer__buffer_fd(const struct perf_buffer * pb,size_t buf_idx)13542 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
13543 {
13544 	struct perf_cpu_buf *cpu_buf;
13545 
13546 	if (buf_idx >= pb->cpu_cnt)
13547 		return libbpf_err(-EINVAL);
13548 
13549 	cpu_buf = pb->cpu_bufs[buf_idx];
13550 	if (!cpu_buf)
13551 		return libbpf_err(-ENOENT);
13552 
13553 	return cpu_buf->fd;
13554 }
13555 
perf_buffer__buffer(struct perf_buffer * pb,int buf_idx,void ** buf,size_t * buf_size)13556 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
13557 {
13558 	struct perf_cpu_buf *cpu_buf;
13559 
13560 	if (buf_idx >= pb->cpu_cnt)
13561 		return libbpf_err(-EINVAL);
13562 
13563 	cpu_buf = pb->cpu_bufs[buf_idx];
13564 	if (!cpu_buf)
13565 		return libbpf_err(-ENOENT);
13566 
13567 	*buf = cpu_buf->base;
13568 	*buf_size = pb->mmap_size;
13569 	return 0;
13570 }
13571 
13572 /*
13573  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
13574  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
13575  * consume, do nothing and return success.
13576  * Returns:
13577  *   - 0 on success;
13578  *   - <0 on failure.
13579  */
perf_buffer__consume_buffer(struct perf_buffer * pb,size_t buf_idx)13580 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
13581 {
13582 	struct perf_cpu_buf *cpu_buf;
13583 
13584 	if (buf_idx >= pb->cpu_cnt)
13585 		return libbpf_err(-EINVAL);
13586 
13587 	cpu_buf = pb->cpu_bufs[buf_idx];
13588 	if (!cpu_buf)
13589 		return libbpf_err(-ENOENT);
13590 
13591 	return perf_buffer__process_records(pb, cpu_buf);
13592 }
13593 
perf_buffer__consume(struct perf_buffer * pb)13594 int perf_buffer__consume(struct perf_buffer *pb)
13595 {
13596 	int i, err;
13597 
13598 	for (i = 0; i < pb->cpu_cnt; i++) {
13599 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13600 
13601 		if (!cpu_buf)
13602 			continue;
13603 
13604 		err = perf_buffer__process_records(pb, cpu_buf);
13605 		if (err) {
13606 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
13607 			return libbpf_err(err);
13608 		}
13609 	}
13610 	return 0;
13611 }
13612 
bpf_program__set_attach_target(struct bpf_program * prog,int attach_prog_fd,const char * attach_func_name)13613 int bpf_program__set_attach_target(struct bpf_program *prog,
13614 				   int attach_prog_fd,
13615 				   const char *attach_func_name)
13616 {
13617 	int btf_obj_fd = 0, btf_id = 0, err;
13618 
13619 	if (!prog || attach_prog_fd < 0)
13620 		return libbpf_err(-EINVAL);
13621 
13622 	if (prog->obj->loaded)
13623 		return libbpf_err(-EINVAL);
13624 
13625 	if (attach_prog_fd && !attach_func_name) {
13626 		/* remember attach_prog_fd and let bpf_program__load() find
13627 		 * BTF ID during the program load
13628 		 */
13629 		prog->attach_prog_fd = attach_prog_fd;
13630 		return 0;
13631 	}
13632 
13633 	if (attach_prog_fd) {
13634 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
13635 						 attach_prog_fd);
13636 		if (btf_id < 0)
13637 			return libbpf_err(btf_id);
13638 	} else {
13639 		if (!attach_func_name)
13640 			return libbpf_err(-EINVAL);
13641 
13642 		/* load btf_vmlinux, if not yet */
13643 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
13644 		if (err)
13645 			return libbpf_err(err);
13646 		err = find_kernel_btf_id(prog->obj, attach_func_name,
13647 					 prog->expected_attach_type,
13648 					 &btf_obj_fd, &btf_id);
13649 		if (err)
13650 			return libbpf_err(err);
13651 	}
13652 
13653 	prog->attach_btf_id = btf_id;
13654 	prog->attach_btf_obj_fd = btf_obj_fd;
13655 	prog->attach_prog_fd = attach_prog_fd;
13656 	return 0;
13657 }
13658 
parse_cpu_mask_str(const char * s,bool ** mask,int * mask_sz)13659 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
13660 {
13661 	int err = 0, n, len, start, end = -1;
13662 	bool *tmp;
13663 
13664 	*mask = NULL;
13665 	*mask_sz = 0;
13666 
13667 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
13668 	while (*s) {
13669 		if (*s == ',' || *s == '\n') {
13670 			s++;
13671 			continue;
13672 		}
13673 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
13674 		if (n <= 0 || n > 2) {
13675 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
13676 			err = -EINVAL;
13677 			goto cleanup;
13678 		} else if (n == 1) {
13679 			end = start;
13680 		}
13681 		if (start < 0 || start > end) {
13682 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
13683 				start, end, s);
13684 			err = -EINVAL;
13685 			goto cleanup;
13686 		}
13687 		tmp = realloc(*mask, end + 1);
13688 		if (!tmp) {
13689 			err = -ENOMEM;
13690 			goto cleanup;
13691 		}
13692 		*mask = tmp;
13693 		memset(tmp + *mask_sz, 0, start - *mask_sz);
13694 		memset(tmp + start, 1, end - start + 1);
13695 		*mask_sz = end + 1;
13696 		s += len;
13697 	}
13698 	if (!*mask_sz) {
13699 		pr_warn("Empty CPU range\n");
13700 		return -EINVAL;
13701 	}
13702 	return 0;
13703 cleanup:
13704 	free(*mask);
13705 	*mask = NULL;
13706 	return err;
13707 }
13708 
parse_cpu_mask_file(const char * fcpu,bool ** mask,int * mask_sz)13709 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
13710 {
13711 	int fd, err = 0, len;
13712 	char buf[128];
13713 
13714 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
13715 	if (fd < 0) {
13716 		err = -errno;
13717 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
13718 		return err;
13719 	}
13720 	len = read(fd, buf, sizeof(buf));
13721 	close(fd);
13722 	if (len <= 0) {
13723 		err = len ? -errno : -EINVAL;
13724 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
13725 		return err;
13726 	}
13727 	if (len >= sizeof(buf)) {
13728 		pr_warn("CPU mask is too big in file %s\n", fcpu);
13729 		return -E2BIG;
13730 	}
13731 	buf[len] = '\0';
13732 
13733 	return parse_cpu_mask_str(buf, mask, mask_sz);
13734 }
13735 
libbpf_num_possible_cpus(void)13736 int libbpf_num_possible_cpus(void)
13737 {
13738 	static const char *fcpu = "/sys/devices/system/cpu/possible";
13739 	static int cpus;
13740 	int err, n, i, tmp_cpus;
13741 	bool *mask;
13742 
13743 	tmp_cpus = READ_ONCE(cpus);
13744 	if (tmp_cpus > 0)
13745 		return tmp_cpus;
13746 
13747 	err = parse_cpu_mask_file(fcpu, &mask, &n);
13748 	if (err)
13749 		return libbpf_err(err);
13750 
13751 	tmp_cpus = 0;
13752 	for (i = 0; i < n; i++) {
13753 		if (mask[i])
13754 			tmp_cpus++;
13755 	}
13756 	free(mask);
13757 
13758 	WRITE_ONCE(cpus, tmp_cpus);
13759 	return tmp_cpus;
13760 }
13761 
populate_skeleton_maps(const struct bpf_object * obj,struct bpf_map_skeleton * maps,size_t map_cnt,size_t map_skel_sz)13762 static int populate_skeleton_maps(const struct bpf_object *obj,
13763 				  struct bpf_map_skeleton *maps,
13764 				  size_t map_cnt, size_t map_skel_sz)
13765 {
13766 	int i;
13767 
13768 	for (i = 0; i < map_cnt; i++) {
13769 		struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz;
13770 		struct bpf_map **map = map_skel->map;
13771 		const char *name = map_skel->name;
13772 		void **mmaped = map_skel->mmaped;
13773 
13774 		*map = bpf_object__find_map_by_name(obj, name);
13775 		if (!*map) {
13776 			pr_warn("failed to find skeleton map '%s'\n", name);
13777 			return -ESRCH;
13778 		}
13779 
13780 		/* externs shouldn't be pre-setup from user code */
13781 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
13782 			*mmaped = (*map)->mmaped;
13783 	}
13784 	return 0;
13785 }
13786 
populate_skeleton_progs(const struct bpf_object * obj,struct bpf_prog_skeleton * progs,size_t prog_cnt,size_t prog_skel_sz)13787 static int populate_skeleton_progs(const struct bpf_object *obj,
13788 				   struct bpf_prog_skeleton *progs,
13789 				   size_t prog_cnt, size_t prog_skel_sz)
13790 {
13791 	int i;
13792 
13793 	for (i = 0; i < prog_cnt; i++) {
13794 		struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz;
13795 		struct bpf_program **prog = prog_skel->prog;
13796 		const char *name = prog_skel->name;
13797 
13798 		*prog = bpf_object__find_program_by_name(obj, name);
13799 		if (!*prog) {
13800 			pr_warn("failed to find skeleton program '%s'\n", name);
13801 			return -ESRCH;
13802 		}
13803 	}
13804 	return 0;
13805 }
13806 
bpf_object__open_skeleton(struct bpf_object_skeleton * s,const struct bpf_object_open_opts * opts)13807 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13808 			      const struct bpf_object_open_opts *opts)
13809 {
13810 	struct bpf_object *obj;
13811 	int err;
13812 
13813 	obj = bpf_object_open(NULL, s->data, s->data_sz, s->name, opts);
13814 	if (IS_ERR(obj)) {
13815 		err = PTR_ERR(obj);
13816 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n", s->name, err);
13817 		return libbpf_err(err);
13818 	}
13819 
13820 	*s->obj = obj;
13821 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz);
13822 	if (err) {
13823 		pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13824 		return libbpf_err(err);
13825 	}
13826 
13827 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz);
13828 	if (err) {
13829 		pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13830 		return libbpf_err(err);
13831 	}
13832 
13833 	return 0;
13834 }
13835 
bpf_object__open_subskeleton(struct bpf_object_subskeleton * s)13836 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13837 {
13838 	int err, len, var_idx, i;
13839 	const char *var_name;
13840 	const struct bpf_map *map;
13841 	struct btf *btf;
13842 	__u32 map_type_id;
13843 	const struct btf_type *map_type, *var_type;
13844 	const struct bpf_var_skeleton *var_skel;
13845 	struct btf_var_secinfo *var;
13846 
13847 	if (!s->obj)
13848 		return libbpf_err(-EINVAL);
13849 
13850 	btf = bpf_object__btf(s->obj);
13851 	if (!btf) {
13852 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
13853 			bpf_object__name(s->obj));
13854 		return libbpf_err(-errno);
13855 	}
13856 
13857 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz);
13858 	if (err) {
13859 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13860 		return libbpf_err(err);
13861 	}
13862 
13863 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz);
13864 	if (err) {
13865 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13866 		return libbpf_err(err);
13867 	}
13868 
13869 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13870 		var_skel = (void *)s->vars + var_idx * s->var_skel_sz;
13871 		map = *var_skel->map;
13872 		map_type_id = bpf_map__btf_value_type_id(map);
13873 		map_type = btf__type_by_id(btf, map_type_id);
13874 
13875 		if (!btf_is_datasec(map_type)) {
13876 			pr_warn("type for map '%1$s' is not a datasec: %2$s",
13877 				bpf_map__name(map),
13878 				__btf_kind_str(btf_kind(map_type)));
13879 			return libbpf_err(-EINVAL);
13880 		}
13881 
13882 		len = btf_vlen(map_type);
13883 		var = btf_var_secinfos(map_type);
13884 		for (i = 0; i < len; i++, var++) {
13885 			var_type = btf__type_by_id(btf, var->type);
13886 			var_name = btf__name_by_offset(btf, var_type->name_off);
13887 			if (strcmp(var_name, var_skel->name) == 0) {
13888 				*var_skel->addr = map->mmaped + var->offset;
13889 				break;
13890 			}
13891 		}
13892 	}
13893 	return 0;
13894 }
13895 
bpf_object__destroy_subskeleton(struct bpf_object_subskeleton * s)13896 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13897 {
13898 	if (!s)
13899 		return;
13900 	free(s->maps);
13901 	free(s->progs);
13902 	free(s->vars);
13903 	free(s);
13904 }
13905 
bpf_object__load_skeleton(struct bpf_object_skeleton * s)13906 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13907 {
13908 	int i, err;
13909 
13910 	err = bpf_object__load(*s->obj);
13911 	if (err) {
13912 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13913 		return libbpf_err(err);
13914 	}
13915 
13916 	for (i = 0; i < s->map_cnt; i++) {
13917 		struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
13918 		struct bpf_map *map = *map_skel->map;
13919 
13920 		if (!map_skel->mmaped)
13921 			continue;
13922 
13923 		*map_skel->mmaped = map->mmaped;
13924 	}
13925 
13926 	return 0;
13927 }
13928 
bpf_object__attach_skeleton(struct bpf_object_skeleton * s)13929 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13930 {
13931 	int i, err;
13932 
13933 	for (i = 0; i < s->prog_cnt; i++) {
13934 		struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
13935 		struct bpf_program *prog = *prog_skel->prog;
13936 		struct bpf_link **link = prog_skel->link;
13937 
13938 		if (!prog->autoload || !prog->autoattach)
13939 			continue;
13940 
13941 		/* auto-attaching not supported for this program */
13942 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13943 			continue;
13944 
13945 		/* if user already set the link manually, don't attempt auto-attach */
13946 		if (*link)
13947 			continue;
13948 
13949 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13950 		if (err) {
13951 			pr_warn("prog '%s': failed to auto-attach: %d\n",
13952 				bpf_program__name(prog), err);
13953 			return libbpf_err(err);
13954 		}
13955 
13956 		/* It's possible that for some SEC() definitions auto-attach
13957 		 * is supported in some cases (e.g., if definition completely
13958 		 * specifies target information), but is not in other cases.
13959 		 * SEC("uprobe") is one such case. If user specified target
13960 		 * binary and function name, such BPF program can be
13961 		 * auto-attached. But if not, it shouldn't trigger skeleton's
13962 		 * attach to fail. It should just be skipped.
13963 		 * attach_fn signals such case with returning 0 (no error) and
13964 		 * setting link to NULL.
13965 		 */
13966 	}
13967 
13968 
13969 	for (i = 0; i < s->map_cnt; i++) {
13970 		struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
13971 		struct bpf_map *map = *map_skel->map;
13972 		struct bpf_link **link;
13973 
13974 		if (!map->autocreate || !map->autoattach)
13975 			continue;
13976 
13977 		/* only struct_ops maps can be attached */
13978 		if (!bpf_map__is_struct_ops(map))
13979 			continue;
13980 
13981 		/* skeleton is created with earlier version of bpftool, notify user */
13982 		if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) {
13983 			pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n",
13984 				bpf_map__name(map));
13985 			continue;
13986 		}
13987 
13988 		link = map_skel->link;
13989 		if (!link) {
13990 			pr_warn("map '%s': BPF map skeleton link is uninitialized\n",
13991 				bpf_map__name(map));
13992 			continue;
13993 		}
13994 
13995 		if (*link)
13996 			continue;
13997 
13998 		*link = bpf_map__attach_struct_ops(map);
13999 		if (!*link) {
14000 			err = -errno;
14001 			pr_warn("map '%s': failed to auto-attach: %d\n", bpf_map__name(map), err);
14002 			return libbpf_err(err);
14003 		}
14004 	}
14005 
14006 	return 0;
14007 }
14008 
bpf_object__detach_skeleton(struct bpf_object_skeleton * s)14009 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
14010 {
14011 	int i;
14012 
14013 	for (i = 0; i < s->prog_cnt; i++) {
14014 		struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
14015 		struct bpf_link **link = prog_skel->link;
14016 
14017 		bpf_link__destroy(*link);
14018 		*link = NULL;
14019 	}
14020 
14021 	if (s->map_skel_sz < sizeof(struct bpf_map_skeleton))
14022 		return;
14023 
14024 	for (i = 0; i < s->map_cnt; i++) {
14025 		struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14026 		struct bpf_link **link = map_skel->link;
14027 
14028 		if (link) {
14029 			bpf_link__destroy(*link);
14030 			*link = NULL;
14031 		}
14032 	}
14033 }
14034 
bpf_object__destroy_skeleton(struct bpf_object_skeleton * s)14035 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
14036 {
14037 	if (!s)
14038 		return;
14039 
14040 	bpf_object__detach_skeleton(s);
14041 	if (s->obj)
14042 		bpf_object__close(*s->obj);
14043 	free(s->maps);
14044 	free(s->progs);
14045 	free(s);
14046 }
14047