• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <trace/events/ext4.h>
21 #include <kunit/static_stub.h>
22 
23 /*
24  * MUSTDO:
25  *   - test ext4_ext_search_left() and ext4_ext_search_right()
26  *   - search for metadata in few groups
27  *
28  * TODO v4:
29  *   - normalization should take into account whether file is still open
30  *   - discard preallocations if no free space left (policy?)
31  *   - don't normalize tails
32  *   - quota
33  *   - reservation for superuser
34  *
35  * TODO v3:
36  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
37  *   - track min/max extents in each group for better group selection
38  *   - mb_mark_used() may allocate chunk right after splitting buddy
39  *   - tree of groups sorted by number of free blocks
40  *   - error handling
41  */
42 
43 /*
44  * The allocation request involve request for multiple number of blocks
45  * near to the goal(block) value specified.
46  *
47  * During initialization phase of the allocator we decide to use the
48  * group preallocation or inode preallocation depending on the size of
49  * the file. The size of the file could be the resulting file size we
50  * would have after allocation, or the current file size, which ever
51  * is larger. If the size is less than sbi->s_mb_stream_request we
52  * select to use the group preallocation. The default value of
53  * s_mb_stream_request is 16 blocks. This can also be tuned via
54  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
55  * terms of number of blocks.
56  *
57  * The main motivation for having small file use group preallocation is to
58  * ensure that we have small files closer together on the disk.
59  *
60  * First stage the allocator looks at the inode prealloc list,
61  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
62  * spaces for this particular inode. The inode prealloc space is
63  * represented as:
64  *
65  * pa_lstart -> the logical start block for this prealloc space
66  * pa_pstart -> the physical start block for this prealloc space
67  * pa_len    -> length for this prealloc space (in clusters)
68  * pa_free   ->  free space available in this prealloc space (in clusters)
69  *
70  * The inode preallocation space is used looking at the _logical_ start
71  * block. If only the logical file block falls within the range of prealloc
72  * space we will consume the particular prealloc space. This makes sure that
73  * we have contiguous physical blocks representing the file blocks
74  *
75  * The important thing to be noted in case of inode prealloc space is that
76  * we don't modify the values associated to inode prealloc space except
77  * pa_free.
78  *
79  * If we are not able to find blocks in the inode prealloc space and if we
80  * have the group allocation flag set then we look at the locality group
81  * prealloc space. These are per CPU prealloc list represented as
82  *
83  * ext4_sb_info.s_locality_groups[smp_processor_id()]
84  *
85  * The reason for having a per cpu locality group is to reduce the contention
86  * between CPUs. It is possible to get scheduled at this point.
87  *
88  * The locality group prealloc space is used looking at whether we have
89  * enough free space (pa_free) within the prealloc space.
90  *
91  * If we can't allocate blocks via inode prealloc or/and locality group
92  * prealloc then we look at the buddy cache. The buddy cache is represented
93  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
94  * mapped to the buddy and bitmap information regarding different
95  * groups. The buddy information is attached to buddy cache inode so that
96  * we can access them through the page cache. The information regarding
97  * each group is loaded via ext4_mb_load_buddy.  The information involve
98  * block bitmap and buddy information. The information are stored in the
99  * inode as:
100  *
101  *  {                        page                        }
102  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
103  *
104  *
105  * one block each for bitmap and buddy information.  So for each group we
106  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
107  * blocksize) blocks.  So it can have information regarding groups_per_page
108  * which is blocks_per_page/2
109  *
110  * The buddy cache inode is not stored on disk. The inode is thrown
111  * away when the filesystem is unmounted.
112  *
113  * We look for count number of blocks in the buddy cache. If we were able
114  * to locate that many free blocks we return with additional information
115  * regarding rest of the contiguous physical block available
116  *
117  * Before allocating blocks via buddy cache we normalize the request
118  * blocks. This ensure we ask for more blocks that we needed. The extra
119  * blocks that we get after allocation is added to the respective prealloc
120  * list. In case of inode preallocation we follow a list of heuristics
121  * based on file size. This can be found in ext4_mb_normalize_request. If
122  * we are doing a group prealloc we try to normalize the request to
123  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
124  * dependent on the cluster size; for non-bigalloc file systems, it is
125  * 512 blocks. This can be tuned via
126  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
127  * terms of number of blocks. If we have mounted the file system with -O
128  * stripe=<value> option the group prealloc request is normalized to the
129  * smallest multiple of the stripe value (sbi->s_stripe) which is
130  * greater than the default mb_group_prealloc.
131  *
132  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
133  * structures in two data structures:
134  *
135  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
136  *
137  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
138  *
139  *    This is an array of lists where the index in the array represents the
140  *    largest free order in the buddy bitmap of the participating group infos of
141  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
142  *    number of buddy bitmap orders possible) number of lists. Group-infos are
143  *    placed in appropriate lists.
144  *
145  * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
146  *
147  *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
148  *
149  *    This is an array of lists where in the i-th list there are groups with
150  *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
151  *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
152  *    Note that we don't bother with a special list for completely empty groups
153  *    so we only have MB_NUM_ORDERS(sb) lists.
154  *
155  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
156  * structures to decide the order in which groups are to be traversed for
157  * fulfilling an allocation request.
158  *
159  * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
160  * >= the order of the request. We directly look at the largest free order list
161  * in the data structure (1) above where largest_free_order = order of the
162  * request. If that list is empty, we look at remaining list in the increasing
163  * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
164  * lookup in O(1) time.
165  *
166  * At CR_GOAL_LEN_FAST, we only consider groups where
167  * average fragment size > request size. So, we lookup a group which has average
168  * fragment size just above or equal to request size using our average fragment
169  * size group lists (data structure 2) in O(1) time.
170  *
171  * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
172  * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
173  * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
174  * fragment size > goal length. So before falling to the slower
175  * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
176  * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
177  * enough average fragment size. This increases the chances of finding a
178  * suitable block group in O(1) time and results in faster allocation at the
179  * cost of reduced size of allocation.
180  *
181  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
182  * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
183  * CR_GOAL_LEN_FAST phase.
184  *
185  * The regular allocator (using the buddy cache) supports a few tunables.
186  *
187  * /sys/fs/ext4/<partition>/mb_min_to_scan
188  * /sys/fs/ext4/<partition>/mb_max_to_scan
189  * /sys/fs/ext4/<partition>/mb_order2_req
190  * /sys/fs/ext4/<partition>/mb_linear_limit
191  *
192  * The regular allocator uses buddy scan only if the request len is power of
193  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
194  * value of s_mb_order2_reqs can be tuned via
195  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
196  * stripe size (sbi->s_stripe), we try to search for contiguous block in
197  * stripe size. This should result in better allocation on RAID setups. If
198  * not, we search in the specific group using bitmap for best extents. The
199  * tunable min_to_scan and max_to_scan control the behaviour here.
200  * min_to_scan indicate how long the mballoc __must__ look for a best
201  * extent and max_to_scan indicates how long the mballoc __can__ look for a
202  * best extent in the found extents. Searching for the blocks starts with
203  * the group specified as the goal value in allocation context via
204  * ac_g_ex. Each group is first checked based on the criteria whether it
205  * can be used for allocation. ext4_mb_good_group explains how the groups are
206  * checked.
207  *
208  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
209  * get traversed linearly. That may result in subsequent allocations being not
210  * close to each other. And so, the underlying device may get filled up in a
211  * non-linear fashion. While that may not matter on non-rotational devices, for
212  * rotational devices that may result in higher seek times. "mb_linear_limit"
213  * tells mballoc how many groups mballoc should search linearly before
214  * performing consulting above data structures for more efficient lookups. For
215  * non rotational devices, this value defaults to 0 and for rotational devices
216  * this is set to MB_DEFAULT_LINEAR_LIMIT.
217  *
218  * Both the prealloc space are getting populated as above. So for the first
219  * request we will hit the buddy cache which will result in this prealloc
220  * space getting filled. The prealloc space is then later used for the
221  * subsequent request.
222  */
223 
224 /*
225  * mballoc operates on the following data:
226  *  - on-disk bitmap
227  *  - in-core buddy (actually includes buddy and bitmap)
228  *  - preallocation descriptors (PAs)
229  *
230  * there are two types of preallocations:
231  *  - inode
232  *    assiged to specific inode and can be used for this inode only.
233  *    it describes part of inode's space preallocated to specific
234  *    physical blocks. any block from that preallocated can be used
235  *    independent. the descriptor just tracks number of blocks left
236  *    unused. so, before taking some block from descriptor, one must
237  *    make sure corresponded logical block isn't allocated yet. this
238  *    also means that freeing any block within descriptor's range
239  *    must discard all preallocated blocks.
240  *  - locality group
241  *    assigned to specific locality group which does not translate to
242  *    permanent set of inodes: inode can join and leave group. space
243  *    from this type of preallocation can be used for any inode. thus
244  *    it's consumed from the beginning to the end.
245  *
246  * relation between them can be expressed as:
247  *    in-core buddy = on-disk bitmap + preallocation descriptors
248  *
249  * this mean blocks mballoc considers used are:
250  *  - allocated blocks (persistent)
251  *  - preallocated blocks (non-persistent)
252  *
253  * consistency in mballoc world means that at any time a block is either
254  * free or used in ALL structures. notice: "any time" should not be read
255  * literally -- time is discrete and delimited by locks.
256  *
257  *  to keep it simple, we don't use block numbers, instead we count number of
258  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
259  *
260  * all operations can be expressed as:
261  *  - init buddy:			buddy = on-disk + PAs
262  *  - new PA:				buddy += N; PA = N
263  *  - use inode PA:			on-disk += N; PA -= N
264  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
265  *  - use locality group PA		on-disk += N; PA -= N
266  *  - discard locality group PA		buddy -= PA; PA = 0
267  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
268  *        is used in real operation because we can't know actual used
269  *        bits from PA, only from on-disk bitmap
270  *
271  * if we follow this strict logic, then all operations above should be atomic.
272  * given some of them can block, we'd have to use something like semaphores
273  * killing performance on high-end SMP hardware. let's try to relax it using
274  * the following knowledge:
275  *  1) if buddy is referenced, it's already initialized
276  *  2) while block is used in buddy and the buddy is referenced,
277  *     nobody can re-allocate that block
278  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
279  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
280  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
281  *     block
282  *
283  * so, now we're building a concurrency table:
284  *  - init buddy vs.
285  *    - new PA
286  *      blocks for PA are allocated in the buddy, buddy must be referenced
287  *      until PA is linked to allocation group to avoid concurrent buddy init
288  *    - use inode PA
289  *      we need to make sure that either on-disk bitmap or PA has uptodate data
290  *      given (3) we care that PA-=N operation doesn't interfere with init
291  *    - discard inode PA
292  *      the simplest way would be to have buddy initialized by the discard
293  *    - use locality group PA
294  *      again PA-=N must be serialized with init
295  *    - discard locality group PA
296  *      the simplest way would be to have buddy initialized by the discard
297  *  - new PA vs.
298  *    - use inode PA
299  *      i_data_sem serializes them
300  *    - discard inode PA
301  *      discard process must wait until PA isn't used by another process
302  *    - use locality group PA
303  *      some mutex should serialize them
304  *    - discard locality group PA
305  *      discard process must wait until PA isn't used by another process
306  *  - use inode PA
307  *    - use inode PA
308  *      i_data_sem or another mutex should serializes them
309  *    - discard inode PA
310  *      discard process must wait until PA isn't used by another process
311  *    - use locality group PA
312  *      nothing wrong here -- they're different PAs covering different blocks
313  *    - discard locality group PA
314  *      discard process must wait until PA isn't used by another process
315  *
316  * now we're ready to make few consequences:
317  *  - PA is referenced and while it is no discard is possible
318  *  - PA is referenced until block isn't marked in on-disk bitmap
319  *  - PA changes only after on-disk bitmap
320  *  - discard must not compete with init. either init is done before
321  *    any discard or they're serialized somehow
322  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
323  *
324  * a special case when we've used PA to emptiness. no need to modify buddy
325  * in this case, but we should care about concurrent init
326  *
327  */
328 
329  /*
330  * Logic in few words:
331  *
332  *  - allocation:
333  *    load group
334  *    find blocks
335  *    mark bits in on-disk bitmap
336  *    release group
337  *
338  *  - use preallocation:
339  *    find proper PA (per-inode or group)
340  *    load group
341  *    mark bits in on-disk bitmap
342  *    release group
343  *    release PA
344  *
345  *  - free:
346  *    load group
347  *    mark bits in on-disk bitmap
348  *    release group
349  *
350  *  - discard preallocations in group:
351  *    mark PAs deleted
352  *    move them onto local list
353  *    load on-disk bitmap
354  *    load group
355  *    remove PA from object (inode or locality group)
356  *    mark free blocks in-core
357  *
358  *  - discard inode's preallocations:
359  */
360 
361 /*
362  * Locking rules
363  *
364  * Locks:
365  *  - bitlock on a group	(group)
366  *  - object (inode/locality)	(object)
367  *  - per-pa lock		(pa)
368  *  - cr_power2_aligned lists lock	(cr_power2_aligned)
369  *  - cr_goal_len_fast lists lock	(cr_goal_len_fast)
370  *
371  * Paths:
372  *  - new pa
373  *    object
374  *    group
375  *
376  *  - find and use pa:
377  *    pa
378  *
379  *  - release consumed pa:
380  *    pa
381  *    group
382  *    object
383  *
384  *  - generate in-core bitmap:
385  *    group
386  *        pa
387  *
388  *  - discard all for given object (inode, locality group):
389  *    object
390  *        pa
391  *    group
392  *
393  *  - discard all for given group:
394  *    group
395  *        pa
396  *    group
397  *        object
398  *
399  *  - allocation path (ext4_mb_regular_allocator)
400  *    group
401  *    cr_power2_aligned/cr_goal_len_fast
402  */
403 static struct kmem_cache *ext4_pspace_cachep;
404 static struct kmem_cache *ext4_ac_cachep;
405 static struct kmem_cache *ext4_free_data_cachep;
406 
407 /* We create slab caches for groupinfo data structures based on the
408  * superblock block size.  There will be one per mounted filesystem for
409  * each unique s_blocksize_bits */
410 #define NR_GRPINFO_CACHES 8
411 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
412 
413 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
414 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
415 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
416 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
417 };
418 
419 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
420 					ext4_group_t group);
421 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
422 
423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
424 			       ext4_group_t group, enum criteria cr);
425 
426 static int ext4_try_to_trim_range(struct super_block *sb,
427 		struct ext4_buddy *e4b, ext4_grpblk_t start,
428 		ext4_grpblk_t max, ext4_grpblk_t minblocks);
429 
430 /*
431  * The algorithm using this percpu seq counter goes below:
432  * 1. We sample the percpu discard_pa_seq counter before trying for block
433  *    allocation in ext4_mb_new_blocks().
434  * 2. We increment this percpu discard_pa_seq counter when we either allocate
435  *    or free these blocks i.e. while marking those blocks as used/free in
436  *    mb_mark_used()/mb_free_blocks().
437  * 3. We also increment this percpu seq counter when we successfully identify
438  *    that the bb_prealloc_list is not empty and hence proceed for discarding
439  *    of those PAs inside ext4_mb_discard_group_preallocations().
440  *
441  * Now to make sure that the regular fast path of block allocation is not
442  * affected, as a small optimization we only sample the percpu seq counter
443  * on that cpu. Only when the block allocation fails and when freed blocks
444  * found were 0, that is when we sample percpu seq counter for all cpus using
445  * below function ext4_get_discard_pa_seq_sum(). This happens after making
446  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
447  */
448 static DEFINE_PER_CPU(u64, discard_pa_seq);
ext4_get_discard_pa_seq_sum(void)449 static inline u64 ext4_get_discard_pa_seq_sum(void)
450 {
451 	int __cpu;
452 	u64 __seq = 0;
453 
454 	for_each_possible_cpu(__cpu)
455 		__seq += per_cpu(discard_pa_seq, __cpu);
456 	return __seq;
457 }
458 
mb_correct_addr_and_bit(int * bit,void * addr)459 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
460 {
461 #if BITS_PER_LONG == 64
462 	*bit += ((unsigned long) addr & 7UL) << 3;
463 	addr = (void *) ((unsigned long) addr & ~7UL);
464 #elif BITS_PER_LONG == 32
465 	*bit += ((unsigned long) addr & 3UL) << 3;
466 	addr = (void *) ((unsigned long) addr & ~3UL);
467 #else
468 #error "how many bits you are?!"
469 #endif
470 	return addr;
471 }
472 
mb_test_bit(int bit,void * addr)473 static inline int mb_test_bit(int bit, void *addr)
474 {
475 	/*
476 	 * ext4_test_bit on architecture like powerpc
477 	 * needs unsigned long aligned address
478 	 */
479 	addr = mb_correct_addr_and_bit(&bit, addr);
480 	return ext4_test_bit(bit, addr);
481 }
482 
mb_set_bit(int bit,void * addr)483 static inline void mb_set_bit(int bit, void *addr)
484 {
485 	addr = mb_correct_addr_and_bit(&bit, addr);
486 	ext4_set_bit(bit, addr);
487 }
488 
mb_clear_bit(int bit,void * addr)489 static inline void mb_clear_bit(int bit, void *addr)
490 {
491 	addr = mb_correct_addr_and_bit(&bit, addr);
492 	ext4_clear_bit(bit, addr);
493 }
494 
mb_test_and_clear_bit(int bit,void * addr)495 static inline int mb_test_and_clear_bit(int bit, void *addr)
496 {
497 	addr = mb_correct_addr_and_bit(&bit, addr);
498 	return ext4_test_and_clear_bit(bit, addr);
499 }
500 
mb_find_next_zero_bit(void * addr,int max,int start)501 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
502 {
503 	int fix = 0, ret, tmpmax;
504 	addr = mb_correct_addr_and_bit(&fix, addr);
505 	tmpmax = max + fix;
506 	start += fix;
507 
508 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
509 	if (ret > max)
510 		return max;
511 	return ret;
512 }
513 
mb_find_next_bit(void * addr,int max,int start)514 static inline int mb_find_next_bit(void *addr, int max, int start)
515 {
516 	int fix = 0, ret, tmpmax;
517 	addr = mb_correct_addr_and_bit(&fix, addr);
518 	tmpmax = max + fix;
519 	start += fix;
520 
521 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
522 	if (ret > max)
523 		return max;
524 	return ret;
525 }
526 
mb_find_buddy(struct ext4_buddy * e4b,int order,int * max)527 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
528 {
529 	char *bb;
530 
531 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
532 	BUG_ON(max == NULL);
533 
534 	if (order > e4b->bd_blkbits + 1) {
535 		*max = 0;
536 		return NULL;
537 	}
538 
539 	/* at order 0 we see each particular block */
540 	if (order == 0) {
541 		*max = 1 << (e4b->bd_blkbits + 3);
542 		return e4b->bd_bitmap;
543 	}
544 
545 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
546 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
547 
548 	return bb;
549 }
550 
551 #ifdef DOUBLE_CHECK
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)552 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
553 			   int first, int count)
554 {
555 	int i;
556 	struct super_block *sb = e4b->bd_sb;
557 
558 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
559 		return;
560 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
561 	for (i = 0; i < count; i++) {
562 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
563 			ext4_fsblk_t blocknr;
564 
565 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
566 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
567 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
568 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
569 			ext4_grp_locked_error(sb, e4b->bd_group,
570 					      inode ? inode->i_ino : 0,
571 					      blocknr,
572 					      "freeing block already freed "
573 					      "(bit %u)",
574 					      first + i);
575 		}
576 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
577 	}
578 }
579 
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)580 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
581 {
582 	int i;
583 
584 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
585 		return;
586 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
587 	for (i = 0; i < count; i++) {
588 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
589 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
590 	}
591 }
592 
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)593 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
594 {
595 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
596 		return;
597 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
598 		unsigned char *b1, *b2;
599 		int i;
600 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
601 		b2 = (unsigned char *) bitmap;
602 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
603 			if (b1[i] != b2[i]) {
604 				ext4_msg(e4b->bd_sb, KERN_ERR,
605 					 "corruption in group %u "
606 					 "at byte %u(%u): %x in copy != %x "
607 					 "on disk/prealloc",
608 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
609 				BUG();
610 			}
611 		}
612 	}
613 }
614 
mb_group_bb_bitmap_alloc(struct super_block * sb,struct ext4_group_info * grp,ext4_group_t group)615 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
616 			struct ext4_group_info *grp, ext4_group_t group)
617 {
618 	struct buffer_head *bh;
619 
620 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
621 	if (!grp->bb_bitmap)
622 		return;
623 
624 	bh = ext4_read_block_bitmap(sb, group);
625 	if (IS_ERR_OR_NULL(bh)) {
626 		kfree(grp->bb_bitmap);
627 		grp->bb_bitmap = NULL;
628 		return;
629 	}
630 
631 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
632 	put_bh(bh);
633 }
634 
mb_group_bb_bitmap_free(struct ext4_group_info * grp)635 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
636 {
637 	kfree(grp->bb_bitmap);
638 }
639 
640 #else
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)641 static inline void mb_free_blocks_double(struct inode *inode,
642 				struct ext4_buddy *e4b, int first, int count)
643 {
644 	return;
645 }
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)646 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
647 						int first, int count)
648 {
649 	return;
650 }
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)651 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
652 {
653 	return;
654 }
655 
mb_group_bb_bitmap_alloc(struct super_block * sb,struct ext4_group_info * grp,ext4_group_t group)656 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
657 			struct ext4_group_info *grp, ext4_group_t group)
658 {
659 	return;
660 }
661 
mb_group_bb_bitmap_free(struct ext4_group_info * grp)662 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
663 {
664 	return;
665 }
666 #endif
667 
668 #ifdef AGGRESSIVE_CHECK
669 
670 #define MB_CHECK_ASSERT(assert)						\
671 do {									\
672 	if (!(assert)) {						\
673 		printk(KERN_EMERG					\
674 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
675 			function, file, line, # assert);		\
676 		BUG();							\
677 	}								\
678 } while (0)
679 
__mb_check_buddy(struct ext4_buddy * e4b,char * file,const char * function,int line)680 static void __mb_check_buddy(struct ext4_buddy *e4b, char *file,
681 				const char *function, int line)
682 {
683 	struct super_block *sb = e4b->bd_sb;
684 	int order = e4b->bd_blkbits + 1;
685 	int max;
686 	int max2;
687 	int i;
688 	int j;
689 	int k;
690 	int count;
691 	struct ext4_group_info *grp;
692 	int fragments = 0;
693 	int fstart;
694 	struct list_head *cur;
695 	void *buddy;
696 	void *buddy2;
697 
698 	if (e4b->bd_info->bb_check_counter++ % 10)
699 		return;
700 
701 	while (order > 1) {
702 		buddy = mb_find_buddy(e4b, order, &max);
703 		MB_CHECK_ASSERT(buddy);
704 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
705 		MB_CHECK_ASSERT(buddy2);
706 		MB_CHECK_ASSERT(buddy != buddy2);
707 		MB_CHECK_ASSERT(max * 2 == max2);
708 
709 		count = 0;
710 		for (i = 0; i < max; i++) {
711 
712 			if (mb_test_bit(i, buddy)) {
713 				/* only single bit in buddy2 may be 0 */
714 				if (!mb_test_bit(i << 1, buddy2)) {
715 					MB_CHECK_ASSERT(
716 						mb_test_bit((i<<1)+1, buddy2));
717 				}
718 				continue;
719 			}
720 
721 			/* both bits in buddy2 must be 1 */
722 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
723 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
724 
725 			for (j = 0; j < (1 << order); j++) {
726 				k = (i * (1 << order)) + j;
727 				MB_CHECK_ASSERT(
728 					!mb_test_bit(k, e4b->bd_bitmap));
729 			}
730 			count++;
731 		}
732 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
733 		order--;
734 	}
735 
736 	fstart = -1;
737 	buddy = mb_find_buddy(e4b, 0, &max);
738 	for (i = 0; i < max; i++) {
739 		if (!mb_test_bit(i, buddy)) {
740 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
741 			if (fstart == -1) {
742 				fragments++;
743 				fstart = i;
744 			}
745 			continue;
746 		}
747 		fstart = -1;
748 		/* check used bits only */
749 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
750 			buddy2 = mb_find_buddy(e4b, j, &max2);
751 			k = i >> j;
752 			MB_CHECK_ASSERT(k < max2);
753 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
754 		}
755 	}
756 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
757 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
758 
759 	grp = ext4_get_group_info(sb, e4b->bd_group);
760 	if (!grp)
761 		return;
762 	list_for_each(cur, &grp->bb_prealloc_list) {
763 		ext4_group_t groupnr;
764 		struct ext4_prealloc_space *pa;
765 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
766 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
767 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
768 		for (i = 0; i < pa->pa_len; i++)
769 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
770 	}
771 }
772 #undef MB_CHECK_ASSERT
773 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
774 					__FILE__, __func__, __LINE__)
775 #else
776 #define mb_check_buddy(e4b)
777 #endif
778 
779 /*
780  * Divide blocks started from @first with length @len into
781  * smaller chunks with power of 2 blocks.
782  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
783  * then increase bb_counters[] for corresponded chunk size.
784  */
ext4_mb_mark_free_simple(struct super_block * sb,void * buddy,ext4_grpblk_t first,ext4_grpblk_t len,struct ext4_group_info * grp)785 static void ext4_mb_mark_free_simple(struct super_block *sb,
786 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
787 					struct ext4_group_info *grp)
788 {
789 	struct ext4_sb_info *sbi = EXT4_SB(sb);
790 	ext4_grpblk_t min;
791 	ext4_grpblk_t max;
792 	ext4_grpblk_t chunk;
793 	unsigned int border;
794 
795 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
796 
797 	border = 2 << sb->s_blocksize_bits;
798 
799 	while (len > 0) {
800 		/* find how many blocks can be covered since this position */
801 		max = ffs(first | border) - 1;
802 
803 		/* find how many blocks of power 2 we need to mark */
804 		min = fls(len) - 1;
805 
806 		if (max < min)
807 			min = max;
808 		chunk = 1 << min;
809 
810 		/* mark multiblock chunks only */
811 		grp->bb_counters[min]++;
812 		if (min > 0)
813 			mb_clear_bit(first >> min,
814 				     buddy + sbi->s_mb_offsets[min]);
815 
816 		len -= chunk;
817 		first += chunk;
818 	}
819 }
820 
mb_avg_fragment_size_order(struct super_block * sb,ext4_grpblk_t len)821 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
822 {
823 	int order;
824 
825 	/*
826 	 * We don't bother with a special lists groups with only 1 block free
827 	 * extents and for completely empty groups.
828 	 */
829 	order = fls(len) - 2;
830 	if (order < 0)
831 		return 0;
832 	if (order == MB_NUM_ORDERS(sb))
833 		order--;
834 	if (WARN_ON_ONCE(order > MB_NUM_ORDERS(sb)))
835 		order = MB_NUM_ORDERS(sb) - 1;
836 	return order;
837 }
838 
839 /* Move group to appropriate avg_fragment_size list */
840 static void
mb_update_avg_fragment_size(struct super_block * sb,struct ext4_group_info * grp)841 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
842 {
843 	struct ext4_sb_info *sbi = EXT4_SB(sb);
844 	int new, old;
845 
846 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN))
847 		return;
848 
849 	old = grp->bb_avg_fragment_size_order;
850 	new = grp->bb_fragments == 0 ? -1 :
851 	      mb_avg_fragment_size_order(sb, grp->bb_free / grp->bb_fragments);
852 	if (new == old)
853 		return;
854 
855 	if (old >= 0) {
856 		write_lock(&sbi->s_mb_avg_fragment_size_locks[old]);
857 		list_del(&grp->bb_avg_fragment_size_node);
858 		write_unlock(&sbi->s_mb_avg_fragment_size_locks[old]);
859 	}
860 
861 	grp->bb_avg_fragment_size_order = new;
862 	if (new >= 0) {
863 		write_lock(&sbi->s_mb_avg_fragment_size_locks[new]);
864 		list_add_tail(&grp->bb_avg_fragment_size_node,
865 				&sbi->s_mb_avg_fragment_size[new]);
866 		write_unlock(&sbi->s_mb_avg_fragment_size_locks[new]);
867 	}
868 }
869 
870 /*
871  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
872  * cr level needs an update.
873  */
ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context * ac,enum criteria * new_cr,ext4_group_t * group)874 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
875 			enum criteria *new_cr, ext4_group_t *group)
876 {
877 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
878 	struct ext4_group_info *iter;
879 	int i;
880 
881 	if (ac->ac_status == AC_STATUS_FOUND)
882 		return;
883 
884 	if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
885 		atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
886 
887 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
888 		if (list_empty(&sbi->s_mb_largest_free_orders[i]))
889 			continue;
890 		read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
891 		if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
892 			read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
893 			continue;
894 		}
895 		list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
896 				    bb_largest_free_order_node) {
897 			if (sbi->s_mb_stats)
898 				atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
899 			if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
900 				*group = iter->bb_group;
901 				ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
902 				read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
903 				return;
904 			}
905 		}
906 		read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
907 	}
908 
909 	/* Increment cr and search again if no group is found */
910 	*new_cr = CR_GOAL_LEN_FAST;
911 }
912 
913 /*
914  * Find a suitable group of given order from the average fragments list.
915  */
916 static struct ext4_group_info *
ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context * ac,int order)917 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
918 {
919 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
920 	struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
921 	rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
922 	struct ext4_group_info *grp = NULL, *iter;
923 	enum criteria cr = ac->ac_criteria;
924 
925 	if (list_empty(frag_list))
926 		return NULL;
927 	read_lock(frag_list_lock);
928 	if (list_empty(frag_list)) {
929 		read_unlock(frag_list_lock);
930 		return NULL;
931 	}
932 	list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
933 		if (sbi->s_mb_stats)
934 			atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
935 		if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
936 			grp = iter;
937 			break;
938 		}
939 	}
940 	read_unlock(frag_list_lock);
941 	return grp;
942 }
943 
944 /*
945  * Choose next group by traversing average fragment size list of suitable
946  * order. Updates *new_cr if cr level needs an update.
947  */
ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context * ac,enum criteria * new_cr,ext4_group_t * group)948 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
949 		enum criteria *new_cr, ext4_group_t *group)
950 {
951 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
952 	struct ext4_group_info *grp = NULL;
953 	int i;
954 
955 	if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
956 		if (sbi->s_mb_stats)
957 			atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
958 	}
959 
960 	for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
961 	     i < MB_NUM_ORDERS(ac->ac_sb); i++) {
962 		grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
963 		if (grp) {
964 			*group = grp->bb_group;
965 			ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
966 			return;
967 		}
968 	}
969 
970 	/*
971 	 * CR_BEST_AVAIL_LEN works based on the concept that we have
972 	 * a larger normalized goal len request which can be trimmed to
973 	 * a smaller goal len such that it can still satisfy original
974 	 * request len. However, allocation request for non-regular
975 	 * files never gets normalized.
976 	 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
977 	 */
978 	if (ac->ac_flags & EXT4_MB_HINT_DATA)
979 		*new_cr = CR_BEST_AVAIL_LEN;
980 	else
981 		*new_cr = CR_GOAL_LEN_SLOW;
982 }
983 
984 /*
985  * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
986  * order we have and proactively trim the goal request length to that order to
987  * find a suitable group faster.
988  *
989  * This optimizes allocation speed at the cost of slightly reduced
990  * preallocations. However, we make sure that we don't trim the request too
991  * much and fall to CR_GOAL_LEN_SLOW in that case.
992  */
ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context * ac,enum criteria * new_cr,ext4_group_t * group)993 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
994 		enum criteria *new_cr, ext4_group_t *group)
995 {
996 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
997 	struct ext4_group_info *grp = NULL;
998 	int i, order, min_order;
999 	unsigned long num_stripe_clusters = 0;
1000 
1001 	if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1002 		if (sbi->s_mb_stats)
1003 			atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1004 	}
1005 
1006 	/*
1007 	 * mb_avg_fragment_size_order() returns order in a way that makes
1008 	 * retrieving back the length using (1 << order) inaccurate. Hence, use
1009 	 * fls() instead since we need to know the actual length while modifying
1010 	 * goal length.
1011 	 */
1012 	order = fls(ac->ac_g_ex.fe_len) - 1;
1013 	if (WARN_ON_ONCE(order - 1 > MB_NUM_ORDERS(ac->ac_sb)))
1014 		order = MB_NUM_ORDERS(ac->ac_sb);
1015 	min_order = order - sbi->s_mb_best_avail_max_trim_order;
1016 	if (min_order < 0)
1017 		min_order = 0;
1018 
1019 	if (sbi->s_stripe > 0) {
1020 		/*
1021 		 * We are assuming that stripe size is always a multiple of
1022 		 * cluster ratio otherwise __ext4_fill_super exists early.
1023 		 */
1024 		num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1025 		if (1 << min_order < num_stripe_clusters)
1026 			/*
1027 			 * We consider 1 order less because later we round
1028 			 * up the goal len to num_stripe_clusters
1029 			 */
1030 			min_order = fls(num_stripe_clusters) - 1;
1031 	}
1032 
1033 	if (1 << min_order < ac->ac_o_ex.fe_len)
1034 		min_order = fls(ac->ac_o_ex.fe_len);
1035 
1036 	for (i = order; i >= min_order; i--) {
1037 		int frag_order;
1038 		/*
1039 		 * Scale down goal len to make sure we find something
1040 		 * in the free fragments list. Basically, reduce
1041 		 * preallocations.
1042 		 */
1043 		ac->ac_g_ex.fe_len = 1 << i;
1044 
1045 		if (num_stripe_clusters > 0) {
1046 			/*
1047 			 * Try to round up the adjusted goal length to
1048 			 * stripe size (in cluster units) multiple for
1049 			 * efficiency.
1050 			 */
1051 			ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1052 						     num_stripe_clusters);
1053 		}
1054 
1055 		frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1056 							ac->ac_g_ex.fe_len);
1057 
1058 		grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1059 		if (grp) {
1060 			*group = grp->bb_group;
1061 			ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1062 			return;
1063 		}
1064 	}
1065 
1066 	/* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1067 	ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1068 	*new_cr = CR_GOAL_LEN_SLOW;
1069 }
1070 
should_optimize_scan(struct ext4_allocation_context * ac)1071 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1072 {
1073 	if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1074 		return 0;
1075 	if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1076 		return 0;
1077 	if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1078 		return 0;
1079 	return 1;
1080 }
1081 
1082 /*
1083  * Return next linear group for allocation.
1084  */
1085 static ext4_group_t
next_linear_group(ext4_group_t group,ext4_group_t ngroups)1086 next_linear_group(ext4_group_t group, ext4_group_t ngroups)
1087 {
1088 	/*
1089 	 * Artificially restricted ngroups for non-extent
1090 	 * files makes group > ngroups possible on first loop.
1091 	 */
1092 	return group + 1 >= ngroups ? 0 : group + 1;
1093 }
1094 
1095 /*
1096  * ext4_mb_choose_next_group: choose next group for allocation.
1097  *
1098  * @ac        Allocation Context
1099  * @new_cr    This is an output parameter. If the there is no good group
1100  *            available at current CR level, this field is updated to indicate
1101  *            the new cr level that should be used.
1102  * @group     This is an input / output parameter. As an input it indicates the
1103  *            next group that the allocator intends to use for allocation. As
1104  *            output, this field indicates the next group that should be used as
1105  *            determined by the optimization functions.
1106  * @ngroups   Total number of groups
1107  */
ext4_mb_choose_next_group(struct ext4_allocation_context * ac,enum criteria * new_cr,ext4_group_t * group,ext4_group_t ngroups)1108 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1109 		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1110 {
1111 	*new_cr = ac->ac_criteria;
1112 
1113 	if (!should_optimize_scan(ac)) {
1114 		*group = next_linear_group(*group, ngroups);
1115 		return;
1116 	}
1117 
1118 	/*
1119 	 * Optimized scanning can return non adjacent groups which can cause
1120 	 * seek overhead for rotational disks. So try few linear groups before
1121 	 * trying optimized scan.
1122 	 */
1123 	if (ac->ac_groups_linear_remaining) {
1124 		*group = next_linear_group(*group, ngroups);
1125 		ac->ac_groups_linear_remaining--;
1126 		return;
1127 	}
1128 
1129 	if (*new_cr == CR_POWER2_ALIGNED) {
1130 		ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group);
1131 	} else if (*new_cr == CR_GOAL_LEN_FAST) {
1132 		ext4_mb_choose_next_group_goal_fast(ac, new_cr, group);
1133 	} else if (*new_cr == CR_BEST_AVAIL_LEN) {
1134 		ext4_mb_choose_next_group_best_avail(ac, new_cr, group);
1135 	} else {
1136 		/*
1137 		 * TODO: For CR_GOAL_LEN_SLOW, we can arrange groups in an
1138 		 * rb tree sorted by bb_free. But until that happens, we should
1139 		 * never come here.
1140 		 */
1141 		WARN_ON(1);
1142 	}
1143 }
1144 
1145 /*
1146  * Cache the order of the largest free extent we have available in this block
1147  * group.
1148  */
1149 static void
mb_set_largest_free_order(struct super_block * sb,struct ext4_group_info * grp)1150 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1151 {
1152 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1153 	int new, old = grp->bb_largest_free_order;
1154 
1155 	for (new = MB_NUM_ORDERS(sb) - 1; new >= 0; new--)
1156 		if (grp->bb_counters[new] > 0)
1157 			break;
1158 
1159 	/* No need to move between order lists? */
1160 	if (new == old)
1161 		return;
1162 
1163 	if (old >= 0 && !list_empty(&grp->bb_largest_free_order_node)) {
1164 		write_lock(&sbi->s_mb_largest_free_orders_locks[old]);
1165 		list_del_init(&grp->bb_largest_free_order_node);
1166 		write_unlock(&sbi->s_mb_largest_free_orders_locks[old]);
1167 	}
1168 
1169 	grp->bb_largest_free_order = new;
1170 	if (test_opt2(sb, MB_OPTIMIZE_SCAN) && new >= 0 && grp->bb_free) {
1171 		write_lock(&sbi->s_mb_largest_free_orders_locks[new]);
1172 		list_add_tail(&grp->bb_largest_free_order_node,
1173 			      &sbi->s_mb_largest_free_orders[new]);
1174 		write_unlock(&sbi->s_mb_largest_free_orders_locks[new]);
1175 	}
1176 }
1177 
1178 static noinline_for_stack
ext4_mb_generate_buddy(struct super_block * sb,void * buddy,void * bitmap,ext4_group_t group,struct ext4_group_info * grp)1179 void ext4_mb_generate_buddy(struct super_block *sb,
1180 			    void *buddy, void *bitmap, ext4_group_t group,
1181 			    struct ext4_group_info *grp)
1182 {
1183 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1184 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1185 	ext4_grpblk_t i = 0;
1186 	ext4_grpblk_t first;
1187 	ext4_grpblk_t len;
1188 	unsigned free = 0;
1189 	unsigned fragments = 0;
1190 	unsigned long long period = get_cycles();
1191 
1192 	/* initialize buddy from bitmap which is aggregation
1193 	 * of on-disk bitmap and preallocations */
1194 	i = mb_find_next_zero_bit(bitmap, max, 0);
1195 	grp->bb_first_free = i;
1196 	while (i < max) {
1197 		fragments++;
1198 		first = i;
1199 		i = mb_find_next_bit(bitmap, max, i);
1200 		len = i - first;
1201 		free += len;
1202 		if (len > 1)
1203 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1204 		else
1205 			grp->bb_counters[0]++;
1206 		if (i < max)
1207 			i = mb_find_next_zero_bit(bitmap, max, i);
1208 	}
1209 	grp->bb_fragments = fragments;
1210 
1211 	if (free != grp->bb_free) {
1212 		ext4_grp_locked_error(sb, group, 0, 0,
1213 				      "block bitmap and bg descriptor "
1214 				      "inconsistent: %u vs %u free clusters",
1215 				      free, grp->bb_free);
1216 		/*
1217 		 * If we intend to continue, we consider group descriptor
1218 		 * corrupt and update bb_free using bitmap value
1219 		 */
1220 		grp->bb_free = free;
1221 		ext4_mark_group_bitmap_corrupted(sb, group,
1222 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1223 	}
1224 	mb_set_largest_free_order(sb, grp);
1225 	mb_update_avg_fragment_size(sb, grp);
1226 
1227 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1228 
1229 	period = get_cycles() - period;
1230 	atomic_inc(&sbi->s_mb_buddies_generated);
1231 	atomic64_add(period, &sbi->s_mb_generation_time);
1232 }
1233 
mb_regenerate_buddy(struct ext4_buddy * e4b)1234 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
1235 {
1236 	int count;
1237 	int order = 1;
1238 	void *buddy;
1239 
1240 	while ((buddy = mb_find_buddy(e4b, order++, &count)))
1241 		mb_set_bits(buddy, 0, count);
1242 
1243 	e4b->bd_info->bb_fragments = 0;
1244 	memset(e4b->bd_info->bb_counters, 0,
1245 		sizeof(*e4b->bd_info->bb_counters) *
1246 		(e4b->bd_sb->s_blocksize_bits + 2));
1247 
1248 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
1249 		e4b->bd_bitmap, e4b->bd_group, e4b->bd_info);
1250 }
1251 
1252 /* The buddy information is attached the buddy cache inode
1253  * for convenience. The information regarding each group
1254  * is loaded via ext4_mb_load_buddy. The information involve
1255  * block bitmap and buddy information. The information are
1256  * stored in the inode as
1257  *
1258  * {                        page                        }
1259  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1260  *
1261  *
1262  * one block each for bitmap and buddy information.
1263  * So for each group we take up 2 blocks. A page can
1264  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1265  * So it can have information regarding groups_per_page which
1266  * is blocks_per_page/2
1267  *
1268  * Locking note:  This routine takes the block group lock of all groups
1269  * for this page; do not hold this lock when calling this routine!
1270  */
1271 
ext4_mb_init_cache(struct folio * folio,char * incore,gfp_t gfp)1272 static int ext4_mb_init_cache(struct folio *folio, char *incore, gfp_t gfp)
1273 {
1274 	ext4_group_t ngroups;
1275 	unsigned int blocksize;
1276 	int blocks_per_page;
1277 	int groups_per_page;
1278 	int err = 0;
1279 	int i;
1280 	ext4_group_t first_group, group;
1281 	int first_block;
1282 	struct super_block *sb;
1283 	struct buffer_head *bhs;
1284 	struct buffer_head **bh = NULL;
1285 	struct inode *inode;
1286 	char *data;
1287 	char *bitmap;
1288 	struct ext4_group_info *grinfo;
1289 
1290 	inode = folio->mapping->host;
1291 	sb = inode->i_sb;
1292 	ngroups = ext4_get_groups_count(sb);
1293 	blocksize = i_blocksize(inode);
1294 	blocks_per_page = PAGE_SIZE / blocksize;
1295 
1296 	mb_debug(sb, "init folio %lu\n", folio->index);
1297 
1298 	groups_per_page = blocks_per_page >> 1;
1299 	if (groups_per_page == 0)
1300 		groups_per_page = 1;
1301 
1302 	/* allocate buffer_heads to read bitmaps */
1303 	if (groups_per_page > 1) {
1304 		i = sizeof(struct buffer_head *) * groups_per_page;
1305 		bh = kzalloc(i, gfp);
1306 		if (bh == NULL)
1307 			return -ENOMEM;
1308 	} else
1309 		bh = &bhs;
1310 
1311 	first_group = folio->index * blocks_per_page / 2;
1312 
1313 	/* read all groups the folio covers into the cache */
1314 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1315 		if (group >= ngroups)
1316 			break;
1317 
1318 		grinfo = ext4_get_group_info(sb, group);
1319 		if (!grinfo)
1320 			continue;
1321 		/*
1322 		 * If page is uptodate then we came here after online resize
1323 		 * which added some new uninitialized group info structs, so
1324 		 * we must skip all initialized uptodate buddies on the folio,
1325 		 * which may be currently in use by an allocating task.
1326 		 */
1327 		if (folio_test_uptodate(folio) &&
1328 				!EXT4_MB_GRP_NEED_INIT(grinfo)) {
1329 			bh[i] = NULL;
1330 			continue;
1331 		}
1332 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1333 		if (IS_ERR(bh[i])) {
1334 			err = PTR_ERR(bh[i]);
1335 			bh[i] = NULL;
1336 			goto out;
1337 		}
1338 		mb_debug(sb, "read bitmap for group %u\n", group);
1339 	}
1340 
1341 	/* wait for I/O completion */
1342 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1343 		int err2;
1344 
1345 		if (!bh[i])
1346 			continue;
1347 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1348 		if (!err)
1349 			err = err2;
1350 	}
1351 
1352 	first_block = folio->index * blocks_per_page;
1353 	for (i = 0; i < blocks_per_page; i++) {
1354 		group = (first_block + i) >> 1;
1355 		if (group >= ngroups)
1356 			break;
1357 
1358 		if (!bh[group - first_group])
1359 			/* skip initialized uptodate buddy */
1360 			continue;
1361 
1362 		if (!buffer_verified(bh[group - first_group]))
1363 			/* Skip faulty bitmaps */
1364 			continue;
1365 		err = 0;
1366 
1367 		/*
1368 		 * data carry information regarding this
1369 		 * particular group in the format specified
1370 		 * above
1371 		 *
1372 		 */
1373 		data = folio_address(folio) + (i * blocksize);
1374 		bitmap = bh[group - first_group]->b_data;
1375 
1376 		/*
1377 		 * We place the buddy block and bitmap block
1378 		 * close together
1379 		 */
1380 		grinfo = ext4_get_group_info(sb, group);
1381 		if (!grinfo) {
1382 			err = -EFSCORRUPTED;
1383 		        goto out;
1384 		}
1385 		if ((first_block + i) & 1) {
1386 			/* this is block of buddy */
1387 			BUG_ON(incore == NULL);
1388 			mb_debug(sb, "put buddy for group %u in folio %lu/%x\n",
1389 				group, folio->index, i * blocksize);
1390 			trace_ext4_mb_buddy_bitmap_load(sb, group);
1391 			grinfo->bb_fragments = 0;
1392 			memset(grinfo->bb_counters, 0,
1393 			       sizeof(*grinfo->bb_counters) *
1394 			       (MB_NUM_ORDERS(sb)));
1395 			/*
1396 			 * incore got set to the group block bitmap below
1397 			 */
1398 			ext4_lock_group(sb, group);
1399 			/* init the buddy */
1400 			memset(data, 0xff, blocksize);
1401 			ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1402 			ext4_unlock_group(sb, group);
1403 			incore = NULL;
1404 		} else {
1405 			/* this is block of bitmap */
1406 			BUG_ON(incore != NULL);
1407 			mb_debug(sb, "put bitmap for group %u in folio %lu/%x\n",
1408 				group, folio->index, i * blocksize);
1409 			trace_ext4_mb_bitmap_load(sb, group);
1410 
1411 			/* see comments in ext4_mb_put_pa() */
1412 			ext4_lock_group(sb, group);
1413 			memcpy(data, bitmap, blocksize);
1414 
1415 			/* mark all preallocated blks used in in-core bitmap */
1416 			ext4_mb_generate_from_pa(sb, data, group);
1417 			WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1418 			ext4_unlock_group(sb, group);
1419 
1420 			/* set incore so that the buddy information can be
1421 			 * generated using this
1422 			 */
1423 			incore = data;
1424 		}
1425 	}
1426 	folio_mark_uptodate(folio);
1427 
1428 out:
1429 	if (bh) {
1430 		for (i = 0; i < groups_per_page; i++)
1431 			brelse(bh[i]);
1432 		if (bh != &bhs)
1433 			kfree(bh);
1434 	}
1435 	return err;
1436 }
1437 
1438 /*
1439  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1440  * on the same buddy page doesn't happen whild holding the buddy page lock.
1441  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1442  * are on the same page e4b->bd_buddy_folio is NULL and return value is 0.
1443  */
ext4_mb_get_buddy_page_lock(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)1444 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1445 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1446 {
1447 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1448 	int block, pnum, poff;
1449 	int blocks_per_page;
1450 	struct folio *folio;
1451 
1452 	e4b->bd_buddy_folio = NULL;
1453 	e4b->bd_bitmap_folio = NULL;
1454 
1455 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1456 	/*
1457 	 * the buddy cache inode stores the block bitmap
1458 	 * and buddy information in consecutive blocks.
1459 	 * So for each group we need two blocks.
1460 	 */
1461 	block = group * 2;
1462 	pnum = block / blocks_per_page;
1463 	poff = block % blocks_per_page;
1464 	folio = __filemap_get_folio(inode->i_mapping, pnum,
1465 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1466 	if (IS_ERR(folio))
1467 		return PTR_ERR(folio);
1468 	BUG_ON(folio->mapping != inode->i_mapping);
1469 	e4b->bd_bitmap_folio = folio;
1470 	e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize);
1471 
1472 	if (blocks_per_page >= 2) {
1473 		/* buddy and bitmap are on the same page */
1474 		return 0;
1475 	}
1476 
1477 	/* blocks_per_page == 1, hence we need another page for the buddy */
1478 	folio = __filemap_get_folio(inode->i_mapping, block + 1,
1479 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1480 	if (IS_ERR(folio))
1481 		return PTR_ERR(folio);
1482 	BUG_ON(folio->mapping != inode->i_mapping);
1483 	e4b->bd_buddy_folio = folio;
1484 	return 0;
1485 }
1486 
ext4_mb_put_buddy_page_lock(struct ext4_buddy * e4b)1487 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1488 {
1489 	if (e4b->bd_bitmap_folio) {
1490 		folio_unlock(e4b->bd_bitmap_folio);
1491 		folio_put(e4b->bd_bitmap_folio);
1492 	}
1493 	if (e4b->bd_buddy_folio) {
1494 		folio_unlock(e4b->bd_buddy_folio);
1495 		folio_put(e4b->bd_buddy_folio);
1496 	}
1497 }
1498 
1499 /*
1500  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1501  * block group lock of all groups for this page; do not hold the BG lock when
1502  * calling this routine!
1503  */
1504 static noinline_for_stack
ext4_mb_init_group(struct super_block * sb,ext4_group_t group,gfp_t gfp)1505 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1506 {
1507 
1508 	struct ext4_group_info *this_grp;
1509 	struct ext4_buddy e4b;
1510 	struct folio *folio;
1511 	int ret = 0;
1512 
1513 	might_sleep();
1514 	mb_debug(sb, "init group %u\n", group);
1515 	this_grp = ext4_get_group_info(sb, group);
1516 	if (!this_grp)
1517 		return -EFSCORRUPTED;
1518 
1519 	/*
1520 	 * This ensures that we don't reinit the buddy cache
1521 	 * page which map to the group from which we are already
1522 	 * allocating. If we are looking at the buddy cache we would
1523 	 * have taken a reference using ext4_mb_load_buddy and that
1524 	 * would have pinned buddy page to page cache.
1525 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1526 	 * page accessed.
1527 	 */
1528 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1529 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1530 		/*
1531 		 * somebody initialized the group
1532 		 * return without doing anything
1533 		 */
1534 		goto err;
1535 	}
1536 
1537 	folio = e4b.bd_bitmap_folio;
1538 	ret = ext4_mb_init_cache(folio, NULL, gfp);
1539 	if (ret)
1540 		goto err;
1541 	if (!folio_test_uptodate(folio)) {
1542 		ret = -EIO;
1543 		goto err;
1544 	}
1545 
1546 	if (e4b.bd_buddy_folio == NULL) {
1547 		/*
1548 		 * If both the bitmap and buddy are in
1549 		 * the same page we don't need to force
1550 		 * init the buddy
1551 		 */
1552 		ret = 0;
1553 		goto err;
1554 	}
1555 	/* init buddy cache */
1556 	folio = e4b.bd_buddy_folio;
1557 	ret = ext4_mb_init_cache(folio, e4b.bd_bitmap, gfp);
1558 	if (ret)
1559 		goto err;
1560 	if (!folio_test_uptodate(folio)) {
1561 		ret = -EIO;
1562 		goto err;
1563 	}
1564 err:
1565 	ext4_mb_put_buddy_page_lock(&e4b);
1566 	return ret;
1567 }
1568 
1569 /*
1570  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1571  * block group lock of all groups for this page; do not hold the BG lock when
1572  * calling this routine!
1573  */
1574 static noinline_for_stack int
ext4_mb_load_buddy_gfp(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)1575 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1576 		       struct ext4_buddy *e4b, gfp_t gfp)
1577 {
1578 	int blocks_per_page;
1579 	int block;
1580 	int pnum;
1581 	int poff;
1582 	struct folio *folio;
1583 	int ret;
1584 	struct ext4_group_info *grp;
1585 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1586 	struct inode *inode = sbi->s_buddy_cache;
1587 
1588 	might_sleep();
1589 	mb_debug(sb, "load group %u\n", group);
1590 
1591 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1592 	grp = ext4_get_group_info(sb, group);
1593 	if (!grp)
1594 		return -EFSCORRUPTED;
1595 
1596 	e4b->bd_blkbits = sb->s_blocksize_bits;
1597 	e4b->bd_info = grp;
1598 	e4b->bd_sb = sb;
1599 	e4b->bd_group = group;
1600 	e4b->bd_buddy_folio = NULL;
1601 	e4b->bd_bitmap_folio = NULL;
1602 
1603 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1604 		/*
1605 		 * we need full data about the group
1606 		 * to make a good selection
1607 		 */
1608 		ret = ext4_mb_init_group(sb, group, gfp);
1609 		if (ret)
1610 			return ret;
1611 	}
1612 
1613 	/*
1614 	 * the buddy cache inode stores the block bitmap
1615 	 * and buddy information in consecutive blocks.
1616 	 * So for each group we need two blocks.
1617 	 */
1618 	block = group * 2;
1619 	pnum = block / blocks_per_page;
1620 	poff = block % blocks_per_page;
1621 
1622 	/* Avoid locking the folio in the fast path ... */
1623 	folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0);
1624 	if (IS_ERR(folio) || !folio_test_uptodate(folio)) {
1625 		if (!IS_ERR(folio))
1626 			/*
1627 			 * drop the folio reference and try
1628 			 * to get the folio with lock. If we
1629 			 * are not uptodate that implies
1630 			 * somebody just created the folio but
1631 			 * is yet to initialize it. So
1632 			 * wait for it to initialize.
1633 			 */
1634 			folio_put(folio);
1635 		folio = __filemap_get_folio(inode->i_mapping, pnum,
1636 				FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1637 		if (!IS_ERR(folio)) {
1638 			if (WARN_RATELIMIT(folio->mapping != inode->i_mapping,
1639 	"ext4: bitmap's mapping != inode->i_mapping\n")) {
1640 				/* should never happen */
1641 				folio_unlock(folio);
1642 				ret = -EINVAL;
1643 				goto err;
1644 			}
1645 			if (!folio_test_uptodate(folio)) {
1646 				ret = ext4_mb_init_cache(folio, NULL, gfp);
1647 				if (ret) {
1648 					folio_unlock(folio);
1649 					goto err;
1650 				}
1651 				mb_cmp_bitmaps(e4b, folio_address(folio) +
1652 					       (poff * sb->s_blocksize));
1653 			}
1654 			folio_unlock(folio);
1655 		}
1656 	}
1657 	if (IS_ERR(folio)) {
1658 		ret = PTR_ERR(folio);
1659 		goto err;
1660 	}
1661 	if (!folio_test_uptodate(folio)) {
1662 		ret = -EIO;
1663 		goto err;
1664 	}
1665 
1666 	/* Folios marked accessed already */
1667 	e4b->bd_bitmap_folio = folio;
1668 	e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize);
1669 
1670 	block++;
1671 	pnum = block / blocks_per_page;
1672 	poff = block % blocks_per_page;
1673 
1674 	folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0);
1675 	if (IS_ERR(folio) || !folio_test_uptodate(folio)) {
1676 		if (!IS_ERR(folio))
1677 			folio_put(folio);
1678 		folio = __filemap_get_folio(inode->i_mapping, pnum,
1679 				FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1680 		if (!IS_ERR(folio)) {
1681 			if (WARN_RATELIMIT(folio->mapping != inode->i_mapping,
1682 	"ext4: buddy bitmap's mapping != inode->i_mapping\n")) {
1683 				/* should never happen */
1684 				folio_unlock(folio);
1685 				ret = -EINVAL;
1686 				goto err;
1687 			}
1688 			if (!folio_test_uptodate(folio)) {
1689 				ret = ext4_mb_init_cache(folio, e4b->bd_bitmap,
1690 							 gfp);
1691 				if (ret) {
1692 					folio_unlock(folio);
1693 					goto err;
1694 				}
1695 			}
1696 			folio_unlock(folio);
1697 		}
1698 	}
1699 	if (IS_ERR(folio)) {
1700 		ret = PTR_ERR(folio);
1701 		goto err;
1702 	}
1703 	if (!folio_test_uptodate(folio)) {
1704 		ret = -EIO;
1705 		goto err;
1706 	}
1707 
1708 	/* Folios marked accessed already */
1709 	e4b->bd_buddy_folio = folio;
1710 	e4b->bd_buddy = folio_address(folio) + (poff * sb->s_blocksize);
1711 
1712 	return 0;
1713 
1714 err:
1715 	if (!IS_ERR_OR_NULL(folio))
1716 		folio_put(folio);
1717 	if (e4b->bd_bitmap_folio)
1718 		folio_put(e4b->bd_bitmap_folio);
1719 
1720 	e4b->bd_buddy = NULL;
1721 	e4b->bd_bitmap = NULL;
1722 	return ret;
1723 }
1724 
ext4_mb_load_buddy(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)1725 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1726 			      struct ext4_buddy *e4b)
1727 {
1728 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1729 }
1730 
ext4_mb_unload_buddy(struct ext4_buddy * e4b)1731 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1732 {
1733 	if (e4b->bd_bitmap_folio)
1734 		folio_put(e4b->bd_bitmap_folio);
1735 	if (e4b->bd_buddy_folio)
1736 		folio_put(e4b->bd_buddy_folio);
1737 }
1738 
1739 
mb_find_order_for_block(struct ext4_buddy * e4b,int block)1740 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1741 {
1742 	int order = 1, max;
1743 	void *bb;
1744 
1745 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1746 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1747 
1748 	while (order <= e4b->bd_blkbits + 1) {
1749 		bb = mb_find_buddy(e4b, order, &max);
1750 		if (!mb_test_bit(block >> order, bb)) {
1751 			/* this block is part of buddy of order 'order' */
1752 			return order;
1753 		}
1754 		order++;
1755 	}
1756 	return 0;
1757 }
1758 
mb_clear_bits(void * bm,int cur,int len)1759 static void mb_clear_bits(void *bm, int cur, int len)
1760 {
1761 	__u32 *addr;
1762 
1763 	len = cur + len;
1764 	while (cur < len) {
1765 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1766 			/* fast path: clear whole word at once */
1767 			addr = bm + (cur >> 3);
1768 			*addr = 0;
1769 			cur += 32;
1770 			continue;
1771 		}
1772 		mb_clear_bit(cur, bm);
1773 		cur++;
1774 	}
1775 }
1776 
1777 /* clear bits in given range
1778  * will return first found zero bit if any, -1 otherwise
1779  */
mb_test_and_clear_bits(void * bm,int cur,int len)1780 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1781 {
1782 	__u32 *addr;
1783 	int zero_bit = -1;
1784 
1785 	len = cur + len;
1786 	while (cur < len) {
1787 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1788 			/* fast path: clear whole word at once */
1789 			addr = bm + (cur >> 3);
1790 			if (*addr != (__u32)(-1) && zero_bit == -1)
1791 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1792 			*addr = 0;
1793 			cur += 32;
1794 			continue;
1795 		}
1796 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1797 			zero_bit = cur;
1798 		cur++;
1799 	}
1800 
1801 	return zero_bit;
1802 }
1803 
mb_set_bits(void * bm,int cur,int len)1804 void mb_set_bits(void *bm, int cur, int len)
1805 {
1806 	__u32 *addr;
1807 
1808 	len = cur + len;
1809 	while (cur < len) {
1810 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1811 			/* fast path: set whole word at once */
1812 			addr = bm + (cur >> 3);
1813 			*addr = 0xffffffff;
1814 			cur += 32;
1815 			continue;
1816 		}
1817 		mb_set_bit(cur, bm);
1818 		cur++;
1819 	}
1820 }
1821 
mb_buddy_adjust_border(int * bit,void * bitmap,int side)1822 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1823 {
1824 	if (mb_test_bit(*bit + side, bitmap)) {
1825 		mb_clear_bit(*bit, bitmap);
1826 		(*bit) -= side;
1827 		return 1;
1828 	}
1829 	else {
1830 		(*bit) += side;
1831 		mb_set_bit(*bit, bitmap);
1832 		return -1;
1833 	}
1834 }
1835 
mb_buddy_mark_free(struct ext4_buddy * e4b,int first,int last)1836 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1837 {
1838 	int max;
1839 	int order = 1;
1840 	void *buddy = mb_find_buddy(e4b, order, &max);
1841 
1842 	while (buddy) {
1843 		void *buddy2;
1844 
1845 		/* Bits in range [first; last] are known to be set since
1846 		 * corresponding blocks were allocated. Bits in range
1847 		 * (first; last) will stay set because they form buddies on
1848 		 * upper layer. We just deal with borders if they don't
1849 		 * align with upper layer and then go up.
1850 		 * Releasing entire group is all about clearing
1851 		 * single bit of highest order buddy.
1852 		 */
1853 
1854 		/* Example:
1855 		 * ---------------------------------
1856 		 * |   1   |   1   |   1   |   1   |
1857 		 * ---------------------------------
1858 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1859 		 * ---------------------------------
1860 		 *   0   1   2   3   4   5   6   7
1861 		 *      \_____________________/
1862 		 *
1863 		 * Neither [1] nor [6] is aligned to above layer.
1864 		 * Left neighbour [0] is free, so mark it busy,
1865 		 * decrease bb_counters and extend range to
1866 		 * [0; 6]
1867 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1868 		 * mark [6] free, increase bb_counters and shrink range to
1869 		 * [0; 5].
1870 		 * Then shift range to [0; 2], go up and do the same.
1871 		 */
1872 
1873 
1874 		if (first & 1)
1875 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1876 		if (!(last & 1))
1877 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1878 		if (first > last)
1879 			break;
1880 		order++;
1881 
1882 		buddy2 = mb_find_buddy(e4b, order, &max);
1883 		if (!buddy2) {
1884 			mb_clear_bits(buddy, first, last - first + 1);
1885 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1886 			break;
1887 		}
1888 		first >>= 1;
1889 		last >>= 1;
1890 		buddy = buddy2;
1891 	}
1892 }
1893 
mb_free_blocks(struct inode * inode,struct ext4_buddy * e4b,int first,int count)1894 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1895 			   int first, int count)
1896 {
1897 	int left_is_free = 0;
1898 	int right_is_free = 0;
1899 	int block;
1900 	int last = first + count - 1;
1901 	struct super_block *sb = e4b->bd_sb;
1902 
1903 	if (WARN_ON(count == 0))
1904 		return;
1905 	BUG_ON(last >= (sb->s_blocksize << 3));
1906 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1907 	/* Don't bother if the block group is corrupt. */
1908 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1909 		return;
1910 
1911 	mb_check_buddy(e4b);
1912 	mb_free_blocks_double(inode, e4b, first, count);
1913 
1914 	/* access memory sequentially: check left neighbour,
1915 	 * clear range and then check right neighbour
1916 	 */
1917 	if (first != 0)
1918 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1919 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1920 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1921 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1922 
1923 	if (unlikely(block != -1)) {
1924 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1925 		ext4_fsblk_t blocknr;
1926 
1927 		/*
1928 		 * Fastcommit replay can free already freed blocks which
1929 		 * corrupts allocation info. Regenerate it.
1930 		 */
1931 		if (sbi->s_mount_state & EXT4_FC_REPLAY) {
1932 			mb_regenerate_buddy(e4b);
1933 			goto check;
1934 		}
1935 
1936 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1937 		blocknr += EXT4_C2B(sbi, block);
1938 		ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1939 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1940 		ext4_grp_locked_error(sb, e4b->bd_group,
1941 				      inode ? inode->i_ino : 0, blocknr,
1942 				      "freeing already freed block (bit %u); block bitmap corrupt.",
1943 				      block);
1944 		return;
1945 	}
1946 
1947 	this_cpu_inc(discard_pa_seq);
1948 	e4b->bd_info->bb_free += count;
1949 	if (first < e4b->bd_info->bb_first_free)
1950 		e4b->bd_info->bb_first_free = first;
1951 
1952 	/* let's maintain fragments counter */
1953 	if (left_is_free && right_is_free)
1954 		e4b->bd_info->bb_fragments--;
1955 	else if (!left_is_free && !right_is_free)
1956 		e4b->bd_info->bb_fragments++;
1957 
1958 	/* buddy[0] == bd_bitmap is a special case, so handle
1959 	 * it right away and let mb_buddy_mark_free stay free of
1960 	 * zero order checks.
1961 	 * Check if neighbours are to be coaleasced,
1962 	 * adjust bitmap bb_counters and borders appropriately.
1963 	 */
1964 	if (first & 1) {
1965 		first += !left_is_free;
1966 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1967 	}
1968 	if (!(last & 1)) {
1969 		last -= !right_is_free;
1970 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1971 	}
1972 
1973 	if (first <= last)
1974 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1975 
1976 	mb_set_largest_free_order(sb, e4b->bd_info);
1977 	mb_update_avg_fragment_size(sb, e4b->bd_info);
1978 check:
1979 	mb_check_buddy(e4b);
1980 }
1981 
mb_find_extent(struct ext4_buddy * e4b,int block,int needed,struct ext4_free_extent * ex)1982 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1983 				int needed, struct ext4_free_extent *ex)
1984 {
1985 	int max, order, next;
1986 	void *buddy;
1987 
1988 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1989 	BUG_ON(ex == NULL);
1990 
1991 	buddy = mb_find_buddy(e4b, 0, &max);
1992 	BUG_ON(buddy == NULL);
1993 	BUG_ON(block >= max);
1994 	if (mb_test_bit(block, buddy)) {
1995 		ex->fe_len = 0;
1996 		ex->fe_start = 0;
1997 		ex->fe_group = 0;
1998 		return 0;
1999 	}
2000 
2001 	/* find actual order */
2002 	order = mb_find_order_for_block(e4b, block);
2003 
2004 	ex->fe_len = (1 << order) - (block & ((1 << order) - 1));
2005 	ex->fe_start = block;
2006 	ex->fe_group = e4b->bd_group;
2007 
2008 	block = block >> order;
2009 
2010 	while (needed > ex->fe_len &&
2011 	       mb_find_buddy(e4b, order, &max)) {
2012 
2013 		if (block + 1 >= max)
2014 			break;
2015 
2016 		next = (block + 1) * (1 << order);
2017 		if (mb_test_bit(next, e4b->bd_bitmap))
2018 			break;
2019 
2020 		order = mb_find_order_for_block(e4b, next);
2021 
2022 		block = next >> order;
2023 		ex->fe_len += 1 << order;
2024 	}
2025 
2026 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2027 		/* Should never happen! (but apparently sometimes does?!?) */
2028 		WARN_ON(1);
2029 		ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2030 			"corruption or bug in mb_find_extent "
2031 			"block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2032 			block, order, needed, ex->fe_group, ex->fe_start,
2033 			ex->fe_len, ex->fe_logical);
2034 		ex->fe_len = 0;
2035 		ex->fe_start = 0;
2036 		ex->fe_group = 0;
2037 	}
2038 	return ex->fe_len;
2039 }
2040 
mb_mark_used(struct ext4_buddy * e4b,struct ext4_free_extent * ex)2041 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2042 {
2043 	int ord;
2044 	int mlen = 0;
2045 	int max = 0;
2046 	int start = ex->fe_start;
2047 	int len = ex->fe_len;
2048 	unsigned ret = 0;
2049 	int len0 = len;
2050 	void *buddy;
2051 	int ord_start, ord_end;
2052 
2053 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2054 	BUG_ON(e4b->bd_group != ex->fe_group);
2055 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2056 	mb_check_buddy(e4b);
2057 	mb_mark_used_double(e4b, start, len);
2058 
2059 	this_cpu_inc(discard_pa_seq);
2060 	e4b->bd_info->bb_free -= len;
2061 	if (e4b->bd_info->bb_first_free == start)
2062 		e4b->bd_info->bb_first_free += len;
2063 
2064 	/* let's maintain fragments counter */
2065 	if (start != 0)
2066 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2067 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2068 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
2069 	if (mlen && max)
2070 		e4b->bd_info->bb_fragments++;
2071 	else if (!mlen && !max)
2072 		e4b->bd_info->bb_fragments--;
2073 
2074 	/* let's maintain buddy itself */
2075 	while (len) {
2076 		ord = mb_find_order_for_block(e4b, start);
2077 
2078 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2079 			/* the whole chunk may be allocated at once! */
2080 			mlen = 1 << ord;
2081 			buddy = mb_find_buddy(e4b, ord, &max);
2082 			BUG_ON((start >> ord) >= max);
2083 			mb_set_bit(start >> ord, buddy);
2084 			e4b->bd_info->bb_counters[ord]--;
2085 			start += mlen;
2086 			len -= mlen;
2087 			BUG_ON(len < 0);
2088 			continue;
2089 		}
2090 
2091 		/* store for history */
2092 		if (ret == 0)
2093 			ret = len | (ord << 16);
2094 
2095 		BUG_ON(ord <= 0);
2096 		buddy = mb_find_buddy(e4b, ord, &max);
2097 		mb_set_bit(start >> ord, buddy);
2098 		e4b->bd_info->bb_counters[ord]--;
2099 
2100 		ord_start = (start >> ord) << ord;
2101 		ord_end = ord_start + (1 << ord);
2102 		/* first chunk */
2103 		if (start > ord_start)
2104 			ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy,
2105 						 ord_start, start - ord_start,
2106 						 e4b->bd_info);
2107 
2108 		/* last chunk */
2109 		if (start + len < ord_end) {
2110 			ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy,
2111 						 start + len,
2112 						 ord_end - (start + len),
2113 						 e4b->bd_info);
2114 			break;
2115 		}
2116 		len = start + len - ord_end;
2117 		start = ord_end;
2118 	}
2119 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2120 
2121 	mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2122 	mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2123 	mb_check_buddy(e4b);
2124 
2125 	return ret;
2126 }
2127 
2128 /*
2129  * Must be called under group lock!
2130  */
ext4_mb_use_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2131 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2132 					struct ext4_buddy *e4b)
2133 {
2134 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2135 	int ret;
2136 
2137 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2138 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2139 
2140 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2141 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2142 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
2143 
2144 	/* preallocation can change ac_b_ex, thus we store actually
2145 	 * allocated blocks for history */
2146 	ac->ac_f_ex = ac->ac_b_ex;
2147 
2148 	ac->ac_status = AC_STATUS_FOUND;
2149 	ac->ac_tail = ret & 0xffff;
2150 	ac->ac_buddy = ret >> 16;
2151 
2152 	/*
2153 	 * take the page reference. We want the page to be pinned
2154 	 * so that we don't get a ext4_mb_init_cache_call for this
2155 	 * group until we update the bitmap. That would mean we
2156 	 * double allocate blocks. The reference is dropped
2157 	 * in ext4_mb_release_context
2158 	 */
2159 	ac->ac_bitmap_folio = e4b->bd_bitmap_folio;
2160 	folio_get(ac->ac_bitmap_folio);
2161 	ac->ac_buddy_folio = e4b->bd_buddy_folio;
2162 	folio_get(ac->ac_buddy_folio);
2163 	/* store last allocated for subsequent stream allocation */
2164 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2165 		spin_lock(&sbi->s_md_lock);
2166 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2167 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2168 		spin_unlock(&sbi->s_md_lock);
2169 	}
2170 	/*
2171 	 * As we've just preallocated more space than
2172 	 * user requested originally, we store allocated
2173 	 * space in a special descriptor.
2174 	 */
2175 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2176 		ext4_mb_new_preallocation(ac);
2177 
2178 }
2179 
ext4_mb_check_limits(struct ext4_allocation_context * ac,struct ext4_buddy * e4b,int finish_group)2180 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2181 					struct ext4_buddy *e4b,
2182 					int finish_group)
2183 {
2184 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2185 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2186 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2187 
2188 	if (ac->ac_status == AC_STATUS_FOUND)
2189 		return;
2190 	/*
2191 	 * We don't want to scan for a whole year
2192 	 */
2193 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
2194 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2195 		ac->ac_status = AC_STATUS_BREAK;
2196 		return;
2197 	}
2198 
2199 	/*
2200 	 * Haven't found good chunk so far, let's continue
2201 	 */
2202 	if (bex->fe_len < gex->fe_len)
2203 		return;
2204 
2205 	if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2206 		ext4_mb_use_best_found(ac, e4b);
2207 }
2208 
2209 /*
2210  * The routine checks whether found extent is good enough. If it is,
2211  * then the extent gets marked used and flag is set to the context
2212  * to stop scanning. Otherwise, the extent is compared with the
2213  * previous found extent and if new one is better, then it's stored
2214  * in the context. Later, the best found extent will be used, if
2215  * mballoc can't find good enough extent.
2216  *
2217  * The algorithm used is roughly as follows:
2218  *
2219  * * If free extent found is exactly as big as goal, then
2220  *   stop the scan and use it immediately
2221  *
2222  * * If free extent found is smaller than goal, then keep retrying
2223  *   upto a max of sbi->s_mb_max_to_scan times (default 200). After
2224  *   that stop scanning and use whatever we have.
2225  *
2226  * * If free extent found is bigger than goal, then keep retrying
2227  *   upto a max of sbi->s_mb_min_to_scan times (default 10) before
2228  *   stopping the scan and using the extent.
2229  *
2230  *
2231  * FIXME: real allocation policy is to be designed yet!
2232  */
ext4_mb_measure_extent(struct ext4_allocation_context * ac,struct ext4_free_extent * ex,struct ext4_buddy * e4b)2233 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2234 					struct ext4_free_extent *ex,
2235 					struct ext4_buddy *e4b)
2236 {
2237 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2238 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2239 
2240 	BUG_ON(ex->fe_len <= 0);
2241 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2242 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2243 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2244 
2245 	ac->ac_found++;
2246 	ac->ac_cX_found[ac->ac_criteria]++;
2247 
2248 	/*
2249 	 * The special case - take what you catch first
2250 	 */
2251 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2252 		*bex = *ex;
2253 		ext4_mb_use_best_found(ac, e4b);
2254 		return;
2255 	}
2256 
2257 	/*
2258 	 * Let's check whether the chuck is good enough
2259 	 */
2260 	if (ex->fe_len == gex->fe_len) {
2261 		*bex = *ex;
2262 		ext4_mb_use_best_found(ac, e4b);
2263 		return;
2264 	}
2265 
2266 	/*
2267 	 * If this is first found extent, just store it in the context
2268 	 */
2269 	if (bex->fe_len == 0) {
2270 		*bex = *ex;
2271 		return;
2272 	}
2273 
2274 	/*
2275 	 * If new found extent is better, store it in the context
2276 	 */
2277 	if (bex->fe_len < gex->fe_len) {
2278 		/* if the request isn't satisfied, any found extent
2279 		 * larger than previous best one is better */
2280 		if (ex->fe_len > bex->fe_len)
2281 			*bex = *ex;
2282 	} else if (ex->fe_len > gex->fe_len) {
2283 		/* if the request is satisfied, then we try to find
2284 		 * an extent that still satisfy the request, but is
2285 		 * smaller than previous one */
2286 		if (ex->fe_len < bex->fe_len)
2287 			*bex = *ex;
2288 	}
2289 
2290 	ext4_mb_check_limits(ac, e4b, 0);
2291 }
2292 
2293 static noinline_for_stack
ext4_mb_try_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2294 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2295 					struct ext4_buddy *e4b)
2296 {
2297 	struct ext4_free_extent ex = ac->ac_b_ex;
2298 	ext4_group_t group = ex.fe_group;
2299 	int max;
2300 	int err;
2301 
2302 	BUG_ON(ex.fe_len <= 0);
2303 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2304 	if (err)
2305 		return;
2306 
2307 	ext4_lock_group(ac->ac_sb, group);
2308 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2309 		goto out;
2310 
2311 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2312 
2313 	if (max > 0) {
2314 		ac->ac_b_ex = ex;
2315 		ext4_mb_use_best_found(ac, e4b);
2316 	}
2317 
2318 out:
2319 	ext4_unlock_group(ac->ac_sb, group);
2320 	ext4_mb_unload_buddy(e4b);
2321 }
2322 
2323 static noinline_for_stack
ext4_mb_find_by_goal(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2324 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2325 				struct ext4_buddy *e4b)
2326 {
2327 	ext4_group_t group = ac->ac_g_ex.fe_group;
2328 	int max;
2329 	int err;
2330 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2331 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2332 	struct ext4_free_extent ex;
2333 
2334 	if (!grp)
2335 		return -EFSCORRUPTED;
2336 	if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2337 		return 0;
2338 	if (grp->bb_free == 0)
2339 		return 0;
2340 
2341 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2342 	if (err)
2343 		return err;
2344 
2345 	ext4_lock_group(ac->ac_sb, group);
2346 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2347 		goto out;
2348 
2349 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2350 			     ac->ac_g_ex.fe_len, &ex);
2351 	ex.fe_logical = 0xDEADFA11; /* debug value */
2352 
2353 	if (max >= ac->ac_g_ex.fe_len &&
2354 	    ac->ac_g_ex.fe_len == EXT4_NUM_B2C(sbi, sbi->s_stripe)) {
2355 		ext4_fsblk_t start;
2356 
2357 		start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2358 		/* use do_div to get remainder (would be 64-bit modulo) */
2359 		if (do_div(start, sbi->s_stripe) == 0) {
2360 			ac->ac_found++;
2361 			ac->ac_b_ex = ex;
2362 			ext4_mb_use_best_found(ac, e4b);
2363 		}
2364 	} else if (max >= ac->ac_g_ex.fe_len) {
2365 		BUG_ON(ex.fe_len <= 0);
2366 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2367 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2368 		ac->ac_found++;
2369 		ac->ac_b_ex = ex;
2370 		ext4_mb_use_best_found(ac, e4b);
2371 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2372 		/* Sometimes, caller may want to merge even small
2373 		 * number of blocks to an existing extent */
2374 		BUG_ON(ex.fe_len <= 0);
2375 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2376 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2377 		ac->ac_found++;
2378 		ac->ac_b_ex = ex;
2379 		ext4_mb_use_best_found(ac, e4b);
2380 	}
2381 out:
2382 	ext4_unlock_group(ac->ac_sb, group);
2383 	ext4_mb_unload_buddy(e4b);
2384 
2385 	return 0;
2386 }
2387 
2388 /*
2389  * The routine scans buddy structures (not bitmap!) from given order
2390  * to max order and tries to find big enough chunk to satisfy the req
2391  */
2392 static noinline_for_stack
ext4_mb_simple_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2393 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2394 					struct ext4_buddy *e4b)
2395 {
2396 	struct super_block *sb = ac->ac_sb;
2397 	struct ext4_group_info *grp = e4b->bd_info;
2398 	void *buddy;
2399 	int i;
2400 	int k;
2401 	int max;
2402 
2403 	BUG_ON(ac->ac_2order <= 0);
2404 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2405 		if (grp->bb_counters[i] == 0)
2406 			continue;
2407 
2408 		buddy = mb_find_buddy(e4b, i, &max);
2409 		if (WARN_RATELIMIT(buddy == NULL,
2410 			 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2411 			continue;
2412 
2413 		k = mb_find_next_zero_bit(buddy, max, 0);
2414 		if (k >= max) {
2415 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2416 					e4b->bd_group,
2417 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2418 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2419 				"%d free clusters of order %d. But found 0",
2420 				grp->bb_counters[i], i);
2421 			break;
2422 		}
2423 		ac->ac_found++;
2424 		ac->ac_cX_found[ac->ac_criteria]++;
2425 
2426 		ac->ac_b_ex.fe_len = 1 << i;
2427 		ac->ac_b_ex.fe_start = k << i;
2428 		ac->ac_b_ex.fe_group = e4b->bd_group;
2429 
2430 		ext4_mb_use_best_found(ac, e4b);
2431 
2432 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2433 
2434 		if (EXT4_SB(sb)->s_mb_stats)
2435 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2436 
2437 		break;
2438 	}
2439 }
2440 
2441 /*
2442  * The routine scans the group and measures all found extents.
2443  * In order to optimize scanning, caller must pass number of
2444  * free blocks in the group, so the routine can know upper limit.
2445  */
2446 static noinline_for_stack
ext4_mb_complex_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2447 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2448 					struct ext4_buddy *e4b)
2449 {
2450 	struct super_block *sb = ac->ac_sb;
2451 	void *bitmap = e4b->bd_bitmap;
2452 	struct ext4_free_extent ex;
2453 	int i, j, freelen;
2454 	int free;
2455 
2456 	free = e4b->bd_info->bb_free;
2457 	if (WARN_ON(free <= 0))
2458 		return;
2459 
2460 	i = e4b->bd_info->bb_first_free;
2461 
2462 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2463 		i = mb_find_next_zero_bit(bitmap,
2464 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2465 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2466 			/*
2467 			 * IF we have corrupt bitmap, we won't find any
2468 			 * free blocks even though group info says we
2469 			 * have free blocks
2470 			 */
2471 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2472 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2473 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2474 					"%d free clusters as per "
2475 					"group info. But bitmap says 0",
2476 					free);
2477 			break;
2478 		}
2479 
2480 		if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2481 			/*
2482 			 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2483 			 * sure that this group will have a large enough
2484 			 * continuous free extent, so skip over the smaller free
2485 			 * extents
2486 			 */
2487 			j = mb_find_next_bit(bitmap,
2488 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2489 			freelen = j - i;
2490 
2491 			if (freelen < ac->ac_g_ex.fe_len) {
2492 				i = j;
2493 				free -= freelen;
2494 				continue;
2495 			}
2496 		}
2497 
2498 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2499 		if (WARN_ON(ex.fe_len <= 0))
2500 			break;
2501 		if (free < ex.fe_len) {
2502 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2503 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2504 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2505 					"%d free clusters as per "
2506 					"group info. But got %d blocks",
2507 					free, ex.fe_len);
2508 			/*
2509 			 * The number of free blocks differs. This mostly
2510 			 * indicate that the bitmap is corrupt. So exit
2511 			 * without claiming the space.
2512 			 */
2513 			break;
2514 		}
2515 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2516 		ext4_mb_measure_extent(ac, &ex, e4b);
2517 
2518 		i += ex.fe_len;
2519 		free -= ex.fe_len;
2520 	}
2521 
2522 	ext4_mb_check_limits(ac, e4b, 1);
2523 }
2524 
2525 /*
2526  * This is a special case for storages like raid5
2527  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2528  */
2529 static noinline_for_stack
ext4_mb_scan_aligned(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2530 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2531 				 struct ext4_buddy *e4b)
2532 {
2533 	struct super_block *sb = ac->ac_sb;
2534 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2535 	void *bitmap = e4b->bd_bitmap;
2536 	struct ext4_free_extent ex;
2537 	ext4_fsblk_t first_group_block;
2538 	ext4_fsblk_t a;
2539 	ext4_grpblk_t i, stripe;
2540 	int max;
2541 
2542 	BUG_ON(sbi->s_stripe == 0);
2543 
2544 	/* find first stripe-aligned block in group */
2545 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2546 
2547 	a = first_group_block + sbi->s_stripe - 1;
2548 	do_div(a, sbi->s_stripe);
2549 	i = (a * sbi->s_stripe) - first_group_block;
2550 
2551 	stripe = EXT4_NUM_B2C(sbi, sbi->s_stripe);
2552 	i = EXT4_B2C(sbi, i);
2553 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2554 		if (!mb_test_bit(i, bitmap)) {
2555 			max = mb_find_extent(e4b, i, stripe, &ex);
2556 			if (max >= stripe) {
2557 				ac->ac_found++;
2558 				ac->ac_cX_found[ac->ac_criteria]++;
2559 				ex.fe_logical = 0xDEADF00D; /* debug value */
2560 				ac->ac_b_ex = ex;
2561 				ext4_mb_use_best_found(ac, e4b);
2562 				break;
2563 			}
2564 		}
2565 		i += stripe;
2566 	}
2567 }
2568 
2569 /*
2570  * This is also called BEFORE we load the buddy bitmap.
2571  * Returns either 1 or 0 indicating that the group is either suitable
2572  * for the allocation or not.
2573  */
ext4_mb_good_group(struct ext4_allocation_context * ac,ext4_group_t group,enum criteria cr)2574 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2575 				ext4_group_t group, enum criteria cr)
2576 {
2577 	ext4_grpblk_t free, fragments;
2578 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2579 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2580 
2581 	BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2582 
2583 	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2584 		return false;
2585 
2586 	free = grp->bb_free;
2587 	if (free == 0)
2588 		return false;
2589 
2590 	fragments = grp->bb_fragments;
2591 	if (fragments == 0)
2592 		return false;
2593 
2594 	switch (cr) {
2595 	case CR_POWER2_ALIGNED:
2596 		BUG_ON(ac->ac_2order == 0);
2597 
2598 		/* Avoid using the first bg of a flexgroup for data files */
2599 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2600 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2601 		    ((group % flex_size) == 0))
2602 			return false;
2603 
2604 		if (free < ac->ac_g_ex.fe_len)
2605 			return false;
2606 
2607 		if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2608 			return true;
2609 
2610 		if (grp->bb_largest_free_order < ac->ac_2order)
2611 			return false;
2612 
2613 		return true;
2614 	case CR_GOAL_LEN_FAST:
2615 	case CR_BEST_AVAIL_LEN:
2616 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2617 			return true;
2618 		break;
2619 	case CR_GOAL_LEN_SLOW:
2620 		if (free >= ac->ac_g_ex.fe_len)
2621 			return true;
2622 		break;
2623 	case CR_ANY_FREE:
2624 		return true;
2625 	default:
2626 		BUG();
2627 	}
2628 
2629 	return false;
2630 }
2631 
2632 /*
2633  * This could return negative error code if something goes wrong
2634  * during ext4_mb_init_group(). This should not be called with
2635  * ext4_lock_group() held.
2636  *
2637  * Note: because we are conditionally operating with the group lock in
2638  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2639  * function using __acquire and __release.  This means we need to be
2640  * super careful before messing with the error path handling via "goto
2641  * out"!
2642  */
ext4_mb_good_group_nolock(struct ext4_allocation_context * ac,ext4_group_t group,enum criteria cr)2643 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2644 				     ext4_group_t group, enum criteria cr)
2645 {
2646 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2647 	struct super_block *sb = ac->ac_sb;
2648 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2649 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2650 	ext4_grpblk_t free;
2651 	int ret = 0;
2652 
2653 	if (!grp)
2654 		return -EFSCORRUPTED;
2655 	if (sbi->s_mb_stats)
2656 		atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2657 	if (should_lock) {
2658 		ext4_lock_group(sb, group);
2659 		__release(ext4_group_lock_ptr(sb, group));
2660 	}
2661 	free = grp->bb_free;
2662 	if (free == 0)
2663 		goto out;
2664 	/*
2665 	 * In all criterias except CR_ANY_FREE we try to avoid groups that
2666 	 * can't possibly satisfy the full goal request due to insufficient
2667 	 * free blocks.
2668 	 */
2669 	if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2670 		goto out;
2671 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2672 		goto out;
2673 	if (should_lock) {
2674 		__acquire(ext4_group_lock_ptr(sb, group));
2675 		ext4_unlock_group(sb, group);
2676 	}
2677 
2678 	/* We only do this if the grp has never been initialized */
2679 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2680 		struct ext4_group_desc *gdp =
2681 			ext4_get_group_desc(sb, group, NULL);
2682 		int ret;
2683 
2684 		/*
2685 		 * CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2686 		 * search to find large good chunks almost for free. If buddy
2687 		 * data is not ready, then this optimization makes no sense. But
2688 		 * we never skip the first block group in a flex_bg, since this
2689 		 * gets used for metadata block allocation, and we want to make
2690 		 * sure we locate metadata blocks in the first block group in
2691 		 * the flex_bg if possible.
2692 		 */
2693 		if (!ext4_mb_cr_expensive(cr) &&
2694 		    (!sbi->s_log_groups_per_flex ||
2695 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2696 		    !(ext4_has_group_desc_csum(sb) &&
2697 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2698 			return 0;
2699 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2700 		if (ret)
2701 			return ret;
2702 	}
2703 
2704 	if (should_lock) {
2705 		ext4_lock_group(sb, group);
2706 		__release(ext4_group_lock_ptr(sb, group));
2707 	}
2708 	ret = ext4_mb_good_group(ac, group, cr);
2709 out:
2710 	if (should_lock) {
2711 		__acquire(ext4_group_lock_ptr(sb, group));
2712 		ext4_unlock_group(sb, group);
2713 	}
2714 	return ret;
2715 }
2716 
2717 /*
2718  * Start prefetching @nr block bitmaps starting at @group.
2719  * Return the next group which needs to be prefetched.
2720  */
ext4_mb_prefetch(struct super_block * sb,ext4_group_t group,unsigned int nr,int * cnt)2721 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2722 			      unsigned int nr, int *cnt)
2723 {
2724 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2725 	struct buffer_head *bh;
2726 	struct blk_plug plug;
2727 
2728 	blk_start_plug(&plug);
2729 	while (nr-- > 0) {
2730 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2731 								  NULL);
2732 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2733 
2734 		/*
2735 		 * Prefetch block groups with free blocks; but don't
2736 		 * bother if it is marked uninitialized on disk, since
2737 		 * it won't require I/O to read.  Also only try to
2738 		 * prefetch once, so we avoid getblk() call, which can
2739 		 * be expensive.
2740 		 */
2741 		if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2742 		    EXT4_MB_GRP_NEED_INIT(grp) &&
2743 		    ext4_free_group_clusters(sb, gdp) > 0 ) {
2744 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2745 			if (bh && !IS_ERR(bh)) {
2746 				if (!buffer_uptodate(bh) && cnt)
2747 					(*cnt)++;
2748 				brelse(bh);
2749 			}
2750 		}
2751 		if (++group >= ngroups)
2752 			group = 0;
2753 	}
2754 	blk_finish_plug(&plug);
2755 	return group;
2756 }
2757 
2758 /*
2759  * Prefetching reads the block bitmap into the buffer cache; but we
2760  * need to make sure that the buddy bitmap in the page cache has been
2761  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2762  * is not yet completed, or indeed if it was not initiated by
2763  * ext4_mb_prefetch did not start the I/O.
2764  *
2765  * TODO: We should actually kick off the buddy bitmap setup in a work
2766  * queue when the buffer I/O is completed, so that we don't block
2767  * waiting for the block allocation bitmap read to finish when
2768  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2769  */
ext4_mb_prefetch_fini(struct super_block * sb,ext4_group_t group,unsigned int nr)2770 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2771 			   unsigned int nr)
2772 {
2773 	struct ext4_group_desc *gdp;
2774 	struct ext4_group_info *grp;
2775 
2776 	while (nr-- > 0) {
2777 		if (!group)
2778 			group = ext4_get_groups_count(sb);
2779 		group--;
2780 		gdp = ext4_get_group_desc(sb, group, NULL);
2781 		grp = ext4_get_group_info(sb, group);
2782 
2783 		if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2784 		    ext4_free_group_clusters(sb, gdp) > 0) {
2785 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2786 				break;
2787 		}
2788 	}
2789 }
2790 
2791 static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context * ac)2792 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2793 {
2794 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2795 	enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2796 	int err = 0, first_err = 0;
2797 	unsigned int nr = 0, prefetch_ios = 0;
2798 	struct ext4_sb_info *sbi;
2799 	struct super_block *sb;
2800 	struct ext4_buddy e4b;
2801 	int lost;
2802 
2803 	sb = ac->ac_sb;
2804 	sbi = EXT4_SB(sb);
2805 	ngroups = ext4_get_groups_count(sb);
2806 	/* non-extent files are limited to low blocks/groups */
2807 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2808 		ngroups = sbi->s_blockfile_groups;
2809 
2810 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2811 
2812 	/* first, try the goal */
2813 	err = ext4_mb_find_by_goal(ac, &e4b);
2814 	if (err || ac->ac_status == AC_STATUS_FOUND)
2815 		goto out;
2816 
2817 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2818 		goto out;
2819 
2820 	/*
2821 	 * ac->ac_2order is set only if the fe_len is a power of 2
2822 	 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2823 	 * so that we try exact allocation using buddy.
2824 	 */
2825 	i = fls(ac->ac_g_ex.fe_len);
2826 	ac->ac_2order = 0;
2827 	/*
2828 	 * We search using buddy data only if the order of the request
2829 	 * is greater than equal to the sbi_s_mb_order2_reqs
2830 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2831 	 * We also support searching for power-of-two requests only for
2832 	 * requests upto maximum buddy size we have constructed.
2833 	 */
2834 	if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2835 		if (is_power_of_2(ac->ac_g_ex.fe_len))
2836 			ac->ac_2order = array_index_nospec(i - 1,
2837 							   MB_NUM_ORDERS(sb));
2838 	}
2839 
2840 	/* if stream allocation is enabled, use global goal */
2841 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2842 		/* TBD: may be hot point */
2843 		spin_lock(&sbi->s_md_lock);
2844 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2845 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2846 		spin_unlock(&sbi->s_md_lock);
2847 	}
2848 
2849 	/*
2850 	 * Let's just scan groups to find more-less suitable blocks We
2851 	 * start with CR_GOAL_LEN_FAST, unless it is power of 2
2852 	 * aligned, in which case let's do that faster approach first.
2853 	 */
2854 	if (ac->ac_2order)
2855 		cr = CR_POWER2_ALIGNED;
2856 repeat:
2857 	for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2858 		ac->ac_criteria = cr;
2859 		/*
2860 		 * searching for the right group start
2861 		 * from the goal value specified
2862 		 */
2863 		group = ac->ac_g_ex.fe_group;
2864 		ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2865 		prefetch_grp = group;
2866 		nr = 0;
2867 
2868 		for (i = 0, new_cr = cr; i < ngroups; i++,
2869 		     ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2870 			int ret = 0;
2871 
2872 			cond_resched();
2873 			if (new_cr != cr) {
2874 				cr = new_cr;
2875 				goto repeat;
2876 			}
2877 
2878 			/*
2879 			 * Batch reads of the block allocation bitmaps
2880 			 * to get multiple READs in flight; limit
2881 			 * prefetching at inexpensive CR, otherwise mballoc
2882 			 * can spend a lot of time loading imperfect groups
2883 			 */
2884 			if ((prefetch_grp == group) &&
2885 			    (ext4_mb_cr_expensive(cr) ||
2886 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2887 				nr = sbi->s_mb_prefetch;
2888 				if (ext4_has_feature_flex_bg(sb)) {
2889 					nr = 1 << sbi->s_log_groups_per_flex;
2890 					nr -= group & (nr - 1);
2891 					nr = min(nr, sbi->s_mb_prefetch);
2892 				}
2893 				prefetch_grp = ext4_mb_prefetch(sb, group,
2894 							nr, &prefetch_ios);
2895 			}
2896 
2897 			/* This now checks without needing the buddy page */
2898 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2899 			if (ret <= 0) {
2900 				if (!first_err)
2901 					first_err = ret;
2902 				continue;
2903 			}
2904 
2905 			err = ext4_mb_load_buddy(sb, group, &e4b);
2906 			if (err)
2907 				goto out;
2908 
2909 			ext4_lock_group(sb, group);
2910 
2911 			/*
2912 			 * We need to check again after locking the
2913 			 * block group
2914 			 */
2915 			ret = ext4_mb_good_group(ac, group, cr);
2916 			if (ret == 0) {
2917 				ext4_unlock_group(sb, group);
2918 				ext4_mb_unload_buddy(&e4b);
2919 				continue;
2920 			}
2921 
2922 			ac->ac_groups_scanned++;
2923 			if (cr == CR_POWER2_ALIGNED)
2924 				ext4_mb_simple_scan_group(ac, &e4b);
2925 			else {
2926 				bool is_stripe_aligned =
2927 					(sbi->s_stripe >=
2928 					 sbi->s_cluster_ratio) &&
2929 					!(ac->ac_g_ex.fe_len %
2930 					  EXT4_NUM_B2C(sbi, sbi->s_stripe));
2931 
2932 				if ((cr == CR_GOAL_LEN_FAST ||
2933 				     cr == CR_BEST_AVAIL_LEN) &&
2934 				    is_stripe_aligned)
2935 					ext4_mb_scan_aligned(ac, &e4b);
2936 
2937 				if (ac->ac_status == AC_STATUS_CONTINUE)
2938 					ext4_mb_complex_scan_group(ac, &e4b);
2939 			}
2940 
2941 			ext4_unlock_group(sb, group);
2942 			ext4_mb_unload_buddy(&e4b);
2943 
2944 			if (ac->ac_status != AC_STATUS_CONTINUE)
2945 				break;
2946 		}
2947 		/* Processed all groups and haven't found blocks */
2948 		if (sbi->s_mb_stats && i == ngroups)
2949 			atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2950 
2951 		if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2952 			/* Reset goal length to original goal length before
2953 			 * falling into CR_GOAL_LEN_SLOW */
2954 			ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2955 	}
2956 
2957 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2958 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2959 		/*
2960 		 * We've been searching too long. Let's try to allocate
2961 		 * the best chunk we've found so far
2962 		 */
2963 		ext4_mb_try_best_found(ac, &e4b);
2964 		if (ac->ac_status != AC_STATUS_FOUND) {
2965 			/*
2966 			 * Someone more lucky has already allocated it.
2967 			 * The only thing we can do is just take first
2968 			 * found block(s)
2969 			 */
2970 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2971 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2972 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2973 				 ac->ac_b_ex.fe_len, lost);
2974 
2975 			ac->ac_b_ex.fe_group = 0;
2976 			ac->ac_b_ex.fe_start = 0;
2977 			ac->ac_b_ex.fe_len = 0;
2978 			ac->ac_status = AC_STATUS_CONTINUE;
2979 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2980 			cr = CR_ANY_FREE;
2981 			goto repeat;
2982 		}
2983 	}
2984 
2985 	if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2986 		atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2987 out:
2988 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2989 		err = first_err;
2990 
2991 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2992 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2993 		 ac->ac_flags, cr, err);
2994 
2995 	if (nr)
2996 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2997 
2998 	return err;
2999 }
3000 
ext4_mb_seq_groups_start(struct seq_file * seq,loff_t * pos)3001 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
3002 {
3003 	struct super_block *sb = pde_data(file_inode(seq->file));
3004 	ext4_group_t group;
3005 
3006 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3007 		return NULL;
3008 	group = *pos + 1;
3009 	return (void *) ((unsigned long) group);
3010 }
3011 
ext4_mb_seq_groups_next(struct seq_file * seq,void * v,loff_t * pos)3012 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
3013 {
3014 	struct super_block *sb = pde_data(file_inode(seq->file));
3015 	ext4_group_t group;
3016 
3017 	++*pos;
3018 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3019 		return NULL;
3020 	group = *pos + 1;
3021 	return (void *) ((unsigned long) group);
3022 }
3023 
ext4_mb_seq_groups_show(struct seq_file * seq,void * v)3024 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
3025 {
3026 	struct super_block *sb = pde_data(file_inode(seq->file));
3027 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
3028 	int i, err;
3029 	char nbuf[16];
3030 	struct ext4_buddy e4b;
3031 	struct ext4_group_info *grinfo;
3032 	unsigned char blocksize_bits = min_t(unsigned char,
3033 					     sb->s_blocksize_bits,
3034 					     EXT4_MAX_BLOCK_LOG_SIZE);
3035 	struct sg {
3036 		struct ext4_group_info info;
3037 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3038 	} sg;
3039 
3040 	group--;
3041 	if (group == 0)
3042 		seq_puts(seq, "#group: free  frags first ["
3043 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
3044 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
3045 
3046 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3047 		sizeof(struct ext4_group_info);
3048 
3049 	grinfo = ext4_get_group_info(sb, group);
3050 	if (!grinfo)
3051 		return 0;
3052 	/* Load the group info in memory only if not already loaded. */
3053 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3054 		err = ext4_mb_load_buddy(sb, group, &e4b);
3055 		if (err) {
3056 			seq_printf(seq, "#%-5u: %s\n", group, ext4_decode_error(NULL, err, nbuf));
3057 			return 0;
3058 		}
3059 		ext4_mb_unload_buddy(&e4b);
3060 	}
3061 
3062 	/*
3063 	 * We care only about free space counters in the group info and
3064 	 * these are safe to access even after the buddy has been unloaded
3065 	 */
3066 	memcpy(&sg, grinfo, i);
3067 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3068 			sg.info.bb_fragments, sg.info.bb_first_free);
3069 	for (i = 0; i <= 13; i++)
3070 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3071 				sg.info.bb_counters[i] : 0);
3072 	seq_puts(seq, " ]");
3073 	if (EXT4_MB_GRP_BBITMAP_CORRUPT(&sg.info))
3074 		seq_puts(seq, " Block bitmap corrupted!");
3075 	seq_putc(seq, '\n');
3076 	return 0;
3077 }
3078 
ext4_mb_seq_groups_stop(struct seq_file * seq,void * v)3079 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3080 {
3081 }
3082 
3083 const struct seq_operations ext4_mb_seq_groups_ops = {
3084 	.start  = ext4_mb_seq_groups_start,
3085 	.next   = ext4_mb_seq_groups_next,
3086 	.stop   = ext4_mb_seq_groups_stop,
3087 	.show   = ext4_mb_seq_groups_show,
3088 };
3089 
ext4_seq_mb_stats_show(struct seq_file * seq,void * offset)3090 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3091 {
3092 	struct super_block *sb = seq->private;
3093 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3094 
3095 	seq_puts(seq, "mballoc:\n");
3096 	if (!sbi->s_mb_stats) {
3097 		seq_puts(seq, "\tmb stats collection turned off.\n");
3098 		seq_puts(
3099 			seq,
3100 			"\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3101 		return 0;
3102 	}
3103 	seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3104 	seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3105 
3106 	seq_printf(seq, "\tgroups_scanned: %u\n",
3107 		   atomic_read(&sbi->s_bal_groups_scanned));
3108 
3109 	/* CR_POWER2_ALIGNED stats */
3110 	seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3111 	seq_printf(seq, "\t\thits: %llu\n",
3112 		   atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3113 	seq_printf(
3114 		seq, "\t\tgroups_considered: %llu\n",
3115 		atomic64_read(
3116 			&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3117 	seq_printf(seq, "\t\textents_scanned: %u\n",
3118 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3119 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3120 		   atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3121 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3122 		   atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3123 
3124 	/* CR_GOAL_LEN_FAST stats */
3125 	seq_puts(seq, "\tcr_goal_fast_stats:\n");
3126 	seq_printf(seq, "\t\thits: %llu\n",
3127 		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3128 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3129 		   atomic64_read(
3130 			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3131 	seq_printf(seq, "\t\textents_scanned: %u\n",
3132 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3133 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3134 		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3135 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3136 		   atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3137 
3138 	/* CR_BEST_AVAIL_LEN stats */
3139 	seq_puts(seq, "\tcr_best_avail_stats:\n");
3140 	seq_printf(seq, "\t\thits: %llu\n",
3141 		   atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3142 	seq_printf(
3143 		seq, "\t\tgroups_considered: %llu\n",
3144 		atomic64_read(
3145 			&sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3146 	seq_printf(seq, "\t\textents_scanned: %u\n",
3147 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3148 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3149 		   atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3150 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3151 		   atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3152 
3153 	/* CR_GOAL_LEN_SLOW stats */
3154 	seq_puts(seq, "\tcr_goal_slow_stats:\n");
3155 	seq_printf(seq, "\t\thits: %llu\n",
3156 		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3157 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3158 		   atomic64_read(
3159 			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3160 	seq_printf(seq, "\t\textents_scanned: %u\n",
3161 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3162 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3163 		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3164 
3165 	/* CR_ANY_FREE stats */
3166 	seq_puts(seq, "\tcr_any_free_stats:\n");
3167 	seq_printf(seq, "\t\thits: %llu\n",
3168 		   atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3169 	seq_printf(
3170 		seq, "\t\tgroups_considered: %llu\n",
3171 		atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3172 	seq_printf(seq, "\t\textents_scanned: %u\n",
3173 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3174 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3175 		   atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3176 
3177 	/* Aggregates */
3178 	seq_printf(seq, "\textents_scanned: %u\n",
3179 		   atomic_read(&sbi->s_bal_ex_scanned));
3180 	seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3181 	seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3182 		   atomic_read(&sbi->s_bal_len_goals));
3183 	seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3184 	seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3185 	seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3186 	seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3187 		   atomic_read(&sbi->s_mb_buddies_generated),
3188 		   ext4_get_groups_count(sb));
3189 	seq_printf(seq, "\tbuddies_time_used: %llu\n",
3190 		   atomic64_read(&sbi->s_mb_generation_time));
3191 	seq_printf(seq, "\tpreallocated: %u\n",
3192 		   atomic_read(&sbi->s_mb_preallocated));
3193 	seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3194 	return 0;
3195 }
3196 
ext4_mb_seq_structs_summary_start(struct seq_file * seq,loff_t * pos)3197 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3198 {
3199 	struct super_block *sb = pde_data(file_inode(seq->file));
3200 	unsigned long position;
3201 
3202 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3203 		return NULL;
3204 	position = *pos + 1;
3205 	return (void *) ((unsigned long) position);
3206 }
3207 
ext4_mb_seq_structs_summary_next(struct seq_file * seq,void * v,loff_t * pos)3208 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3209 {
3210 	struct super_block *sb = pde_data(file_inode(seq->file));
3211 	unsigned long position;
3212 
3213 	++*pos;
3214 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3215 		return NULL;
3216 	position = *pos + 1;
3217 	return (void *) ((unsigned long) position);
3218 }
3219 
ext4_mb_seq_structs_summary_show(struct seq_file * seq,void * v)3220 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3221 {
3222 	struct super_block *sb = pde_data(file_inode(seq->file));
3223 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3224 	unsigned long position = ((unsigned long) v);
3225 	struct ext4_group_info *grp;
3226 	unsigned int count;
3227 
3228 	position--;
3229 	if (position >= MB_NUM_ORDERS(sb)) {
3230 		position -= MB_NUM_ORDERS(sb);
3231 		if (position == 0)
3232 			seq_puts(seq, "avg_fragment_size_lists:\n");
3233 
3234 		count = 0;
3235 		read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3236 		list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3237 				    bb_avg_fragment_size_node)
3238 			count++;
3239 		read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3240 		seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3241 					(unsigned int)position, count);
3242 		return 0;
3243 	}
3244 
3245 	if (position == 0) {
3246 		seq_printf(seq, "optimize_scan: %d\n",
3247 			   test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3248 		seq_puts(seq, "max_free_order_lists:\n");
3249 	}
3250 	count = 0;
3251 	read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3252 	list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3253 			    bb_largest_free_order_node)
3254 		count++;
3255 	read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3256 	seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3257 		   (unsigned int)position, count);
3258 
3259 	return 0;
3260 }
3261 
ext4_mb_seq_structs_summary_stop(struct seq_file * seq,void * v)3262 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3263 {
3264 }
3265 
3266 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3267 	.start  = ext4_mb_seq_structs_summary_start,
3268 	.next   = ext4_mb_seq_structs_summary_next,
3269 	.stop   = ext4_mb_seq_structs_summary_stop,
3270 	.show   = ext4_mb_seq_structs_summary_show,
3271 };
3272 
get_groupinfo_cache(int blocksize_bits)3273 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3274 {
3275 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3276 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3277 
3278 	BUG_ON(!cachep);
3279 	return cachep;
3280 }
3281 
3282 /*
3283  * Allocate the top-level s_group_info array for the specified number
3284  * of groups
3285  */
ext4_mb_alloc_groupinfo(struct super_block * sb,ext4_group_t ngroups)3286 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3287 {
3288 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3289 	unsigned size;
3290 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3291 
3292 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3293 		EXT4_DESC_PER_BLOCK_BITS(sb);
3294 	if (size <= sbi->s_group_info_size)
3295 		return 0;
3296 
3297 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3298 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
3299 	if (!new_groupinfo) {
3300 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3301 		return -ENOMEM;
3302 	}
3303 	rcu_read_lock();
3304 	old_groupinfo = rcu_dereference(sbi->s_group_info);
3305 	if (old_groupinfo)
3306 		memcpy(new_groupinfo, old_groupinfo,
3307 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3308 	rcu_read_unlock();
3309 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3310 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3311 	if (old_groupinfo)
3312 		ext4_kvfree_array_rcu(old_groupinfo);
3313 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3314 		   sbi->s_group_info_size);
3315 	return 0;
3316 }
3317 
3318 /* Create and initialize ext4_group_info data for the given group. */
ext4_mb_add_groupinfo(struct super_block * sb,ext4_group_t group,struct ext4_group_desc * desc)3319 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3320 			  struct ext4_group_desc *desc)
3321 {
3322 	int i;
3323 	int metalen = 0;
3324 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3325 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3326 	struct ext4_group_info **meta_group_info;
3327 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3328 
3329 	/*
3330 	 * First check if this group is the first of a reserved block.
3331 	 * If it's true, we have to allocate a new table of pointers
3332 	 * to ext4_group_info structures
3333 	 */
3334 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3335 		metalen = sizeof(*meta_group_info) <<
3336 			EXT4_DESC_PER_BLOCK_BITS(sb);
3337 		meta_group_info = kmalloc(metalen, GFP_NOFS);
3338 		if (meta_group_info == NULL) {
3339 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
3340 				 "for a buddy group");
3341 			return -ENOMEM;
3342 		}
3343 		rcu_read_lock();
3344 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3345 		rcu_read_unlock();
3346 	}
3347 
3348 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3349 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3350 
3351 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3352 	if (meta_group_info[i] == NULL) {
3353 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3354 		goto exit_group_info;
3355 	}
3356 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3357 		&(meta_group_info[i]->bb_state));
3358 
3359 	/*
3360 	 * initialize bb_free to be able to skip
3361 	 * empty groups without initialization
3362 	 */
3363 	if (ext4_has_group_desc_csum(sb) &&
3364 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3365 		meta_group_info[i]->bb_free =
3366 			ext4_free_clusters_after_init(sb, group, desc);
3367 	} else {
3368 		meta_group_info[i]->bb_free =
3369 			ext4_free_group_clusters(sb, desc);
3370 	}
3371 
3372 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3373 	init_rwsem(&meta_group_info[i]->alloc_sem);
3374 	meta_group_info[i]->bb_free_root = RB_ROOT;
3375 	INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3376 	INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3377 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3378 	meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3379 	meta_group_info[i]->bb_group = group;
3380 
3381 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3382 	return 0;
3383 
3384 exit_group_info:
3385 	/* If a meta_group_info table has been allocated, release it now */
3386 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3387 		struct ext4_group_info ***group_info;
3388 
3389 		rcu_read_lock();
3390 		group_info = rcu_dereference(sbi->s_group_info);
3391 		kfree(group_info[idx]);
3392 		group_info[idx] = NULL;
3393 		rcu_read_unlock();
3394 	}
3395 	return -ENOMEM;
3396 } /* ext4_mb_add_groupinfo */
3397 
ext4_mb_init_backend(struct super_block * sb)3398 static int ext4_mb_init_backend(struct super_block *sb)
3399 {
3400 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3401 	ext4_group_t i;
3402 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3403 	int err;
3404 	struct ext4_group_desc *desc;
3405 	struct ext4_group_info ***group_info;
3406 	struct kmem_cache *cachep;
3407 
3408 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
3409 	if (err)
3410 		return err;
3411 
3412 	sbi->s_buddy_cache = new_inode(sb);
3413 	if (sbi->s_buddy_cache == NULL) {
3414 		ext4_msg(sb, KERN_ERR, "can't get new inode");
3415 		goto err_freesgi;
3416 	}
3417 	/* To avoid potentially colliding with an valid on-disk inode number,
3418 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3419 	 * not in the inode hash, so it should never be found by iget(), but
3420 	 * this will avoid confusion if it ever shows up during debugging. */
3421 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3422 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3423 	for (i = 0; i < ngroups; i++) {
3424 		cond_resched();
3425 		desc = ext4_get_group_desc(sb, i, NULL);
3426 		if (desc == NULL) {
3427 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3428 			goto err_freebuddy;
3429 		}
3430 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3431 			goto err_freebuddy;
3432 	}
3433 
3434 	if (ext4_has_feature_flex_bg(sb)) {
3435 		/* a single flex group is supposed to be read by a single IO.
3436 		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3437 		 * unsigned integer, so the maximum shift is 32.
3438 		 */
3439 		if (sbi->s_es->s_log_groups_per_flex >= 32) {
3440 			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3441 			goto err_freebuddy;
3442 		}
3443 		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3444 			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3445 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3446 	} else {
3447 		sbi->s_mb_prefetch = 32;
3448 	}
3449 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3450 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3451 	/*
3452 	 * now many real IOs to prefetch within a single allocation at
3453 	 * CR_POWER2_ALIGNED. Given CR_POWER2_ALIGNED is an CPU-related
3454 	 * optimization we shouldn't try to load too many groups, at some point
3455 	 * we should start to use what we've got in memory.
3456 	 * with an average random access time 5ms, it'd take a second to get
3457 	 * 200 groups (* N with flex_bg), so let's make this limit 4
3458 	 */
3459 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3460 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3461 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3462 
3463 	return 0;
3464 
3465 err_freebuddy:
3466 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3467 	while (i-- > 0) {
3468 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3469 
3470 		if (grp)
3471 			kmem_cache_free(cachep, grp);
3472 	}
3473 	i = sbi->s_group_info_size;
3474 	rcu_read_lock();
3475 	group_info = rcu_dereference(sbi->s_group_info);
3476 	while (i-- > 0)
3477 		kfree(group_info[i]);
3478 	rcu_read_unlock();
3479 	iput(sbi->s_buddy_cache);
3480 err_freesgi:
3481 	rcu_read_lock();
3482 	kvfree(rcu_dereference(sbi->s_group_info));
3483 	rcu_read_unlock();
3484 	return -ENOMEM;
3485 }
3486 
ext4_groupinfo_destroy_slabs(void)3487 static void ext4_groupinfo_destroy_slabs(void)
3488 {
3489 	int i;
3490 
3491 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3492 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
3493 		ext4_groupinfo_caches[i] = NULL;
3494 	}
3495 }
3496 
ext4_groupinfo_create_slab(size_t size)3497 static int ext4_groupinfo_create_slab(size_t size)
3498 {
3499 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3500 	int slab_size;
3501 	int blocksize_bits = order_base_2(size);
3502 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3503 	struct kmem_cache *cachep;
3504 
3505 	if (cache_index >= NR_GRPINFO_CACHES)
3506 		return -EINVAL;
3507 
3508 	if (unlikely(cache_index < 0))
3509 		cache_index = 0;
3510 
3511 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
3512 	if (ext4_groupinfo_caches[cache_index]) {
3513 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3514 		return 0;	/* Already created */
3515 	}
3516 
3517 	slab_size = offsetof(struct ext4_group_info,
3518 				bb_counters[blocksize_bits + 2]);
3519 
3520 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3521 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3522 					NULL);
3523 
3524 	ext4_groupinfo_caches[cache_index] = cachep;
3525 
3526 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3527 	if (!cachep) {
3528 		printk(KERN_EMERG
3529 		       "EXT4-fs: no memory for groupinfo slab cache\n");
3530 		return -ENOMEM;
3531 	}
3532 
3533 	return 0;
3534 }
3535 
ext4_discard_work(struct work_struct * work)3536 static void ext4_discard_work(struct work_struct *work)
3537 {
3538 	struct ext4_sb_info *sbi = container_of(work,
3539 			struct ext4_sb_info, s_discard_work);
3540 	struct super_block *sb = sbi->s_sb;
3541 	struct ext4_free_data *fd, *nfd;
3542 	struct ext4_buddy e4b;
3543 	LIST_HEAD(discard_list);
3544 	ext4_group_t grp, load_grp;
3545 	int err = 0;
3546 
3547 	spin_lock(&sbi->s_md_lock);
3548 	list_splice_init(&sbi->s_discard_list, &discard_list);
3549 	spin_unlock(&sbi->s_md_lock);
3550 
3551 	load_grp = UINT_MAX;
3552 	list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3553 		/*
3554 		 * If filesystem is umounting or no memory or suffering
3555 		 * from no space, give up the discard
3556 		 */
3557 		if ((sb->s_flags & SB_ACTIVE) && !err &&
3558 		    !atomic_read(&sbi->s_retry_alloc_pending)) {
3559 			grp = fd->efd_group;
3560 			if (grp != load_grp) {
3561 				if (load_grp != UINT_MAX)
3562 					ext4_mb_unload_buddy(&e4b);
3563 
3564 				err = ext4_mb_load_buddy(sb, grp, &e4b);
3565 				if (err) {
3566 					kmem_cache_free(ext4_free_data_cachep, fd);
3567 					load_grp = UINT_MAX;
3568 					continue;
3569 				} else {
3570 					load_grp = grp;
3571 				}
3572 			}
3573 
3574 			ext4_lock_group(sb, grp);
3575 			ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3576 						fd->efd_start_cluster + fd->efd_count - 1, 1);
3577 			ext4_unlock_group(sb, grp);
3578 		}
3579 		kmem_cache_free(ext4_free_data_cachep, fd);
3580 	}
3581 
3582 	if (load_grp != UINT_MAX)
3583 		ext4_mb_unload_buddy(&e4b);
3584 }
3585 
ext4_mb_init(struct super_block * sb)3586 int ext4_mb_init(struct super_block *sb)
3587 {
3588 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3589 	unsigned i, j;
3590 	unsigned offset, offset_incr;
3591 	unsigned max;
3592 	int ret;
3593 
3594 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3595 
3596 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3597 	if (sbi->s_mb_offsets == NULL) {
3598 		ret = -ENOMEM;
3599 		goto out;
3600 	}
3601 
3602 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3603 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3604 	if (sbi->s_mb_maxs == NULL) {
3605 		ret = -ENOMEM;
3606 		goto out;
3607 	}
3608 
3609 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3610 	if (ret < 0)
3611 		goto out;
3612 
3613 	/* order 0 is regular bitmap */
3614 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3615 	sbi->s_mb_offsets[0] = 0;
3616 
3617 	i = 1;
3618 	offset = 0;
3619 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
3620 	max = sb->s_blocksize << 2;
3621 	do {
3622 		sbi->s_mb_offsets[i] = offset;
3623 		sbi->s_mb_maxs[i] = max;
3624 		offset += offset_incr;
3625 		offset_incr = offset_incr >> 1;
3626 		max = max >> 1;
3627 		i++;
3628 	} while (i < MB_NUM_ORDERS(sb));
3629 
3630 	sbi->s_mb_avg_fragment_size =
3631 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3632 			GFP_KERNEL);
3633 	if (!sbi->s_mb_avg_fragment_size) {
3634 		ret = -ENOMEM;
3635 		goto out;
3636 	}
3637 	sbi->s_mb_avg_fragment_size_locks =
3638 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3639 			GFP_KERNEL);
3640 	if (!sbi->s_mb_avg_fragment_size_locks) {
3641 		ret = -ENOMEM;
3642 		goto out;
3643 	}
3644 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3645 		INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3646 		rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3647 	}
3648 	sbi->s_mb_largest_free_orders =
3649 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3650 			GFP_KERNEL);
3651 	if (!sbi->s_mb_largest_free_orders) {
3652 		ret = -ENOMEM;
3653 		goto out;
3654 	}
3655 	sbi->s_mb_largest_free_orders_locks =
3656 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3657 			GFP_KERNEL);
3658 	if (!sbi->s_mb_largest_free_orders_locks) {
3659 		ret = -ENOMEM;
3660 		goto out;
3661 	}
3662 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3663 		INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3664 		rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3665 	}
3666 
3667 	spin_lock_init(&sbi->s_md_lock);
3668 	sbi->s_mb_free_pending = 0;
3669 	INIT_LIST_HEAD(&sbi->s_freed_data_list[0]);
3670 	INIT_LIST_HEAD(&sbi->s_freed_data_list[1]);
3671 	INIT_LIST_HEAD(&sbi->s_discard_list);
3672 	INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3673 	atomic_set(&sbi->s_retry_alloc_pending, 0);
3674 
3675 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3676 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3677 	sbi->s_mb_stats = MB_DEFAULT_STATS;
3678 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3679 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3680 	sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3681 
3682 	/*
3683 	 * The default group preallocation is 512, which for 4k block
3684 	 * sizes translates to 2 megabytes.  However for bigalloc file
3685 	 * systems, this is probably too big (i.e, if the cluster size
3686 	 * is 1 megabyte, then group preallocation size becomes half a
3687 	 * gigabyte!).  As a default, we will keep a two megabyte
3688 	 * group pralloc size for cluster sizes up to 64k, and after
3689 	 * that, we will force a minimum group preallocation size of
3690 	 * 32 clusters.  This translates to 8 megs when the cluster
3691 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
3692 	 * which seems reasonable as a default.
3693 	 */
3694 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3695 				       sbi->s_cluster_bits, 32);
3696 	/*
3697 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3698 	 * to the lowest multiple of s_stripe which is bigger than
3699 	 * the s_mb_group_prealloc as determined above. We want
3700 	 * the preallocation size to be an exact multiple of the
3701 	 * RAID stripe size so that preallocations don't fragment
3702 	 * the stripes.
3703 	 */
3704 	if (sbi->s_stripe > 1) {
3705 		sbi->s_mb_group_prealloc = roundup(
3706 			sbi->s_mb_group_prealloc, EXT4_NUM_B2C(sbi, sbi->s_stripe));
3707 	}
3708 
3709 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3710 	if (sbi->s_locality_groups == NULL) {
3711 		ret = -ENOMEM;
3712 		goto out;
3713 	}
3714 	for_each_possible_cpu(i) {
3715 		struct ext4_locality_group *lg;
3716 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
3717 		mutex_init(&lg->lg_mutex);
3718 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
3719 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3720 		spin_lock_init(&lg->lg_prealloc_lock);
3721 	}
3722 
3723 	if (bdev_nonrot(sb->s_bdev))
3724 		sbi->s_mb_max_linear_groups = 0;
3725 	else
3726 		sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3727 	/* init file for buddy data */
3728 	ret = ext4_mb_init_backend(sb);
3729 	if (ret != 0)
3730 		goto out_free_locality_groups;
3731 
3732 	return 0;
3733 
3734 out_free_locality_groups:
3735 	free_percpu(sbi->s_locality_groups);
3736 	sbi->s_locality_groups = NULL;
3737 out:
3738 	kfree(sbi->s_mb_avg_fragment_size);
3739 	kfree(sbi->s_mb_avg_fragment_size_locks);
3740 	kfree(sbi->s_mb_largest_free_orders);
3741 	kfree(sbi->s_mb_largest_free_orders_locks);
3742 	kfree(sbi->s_mb_offsets);
3743 	sbi->s_mb_offsets = NULL;
3744 	kfree(sbi->s_mb_maxs);
3745 	sbi->s_mb_maxs = NULL;
3746 	return ret;
3747 }
3748 
3749 /* need to called with the ext4 group lock held */
ext4_mb_cleanup_pa(struct ext4_group_info * grp)3750 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3751 {
3752 	struct ext4_prealloc_space *pa;
3753 	struct list_head *cur, *tmp;
3754 	int count = 0;
3755 
3756 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3757 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3758 		list_del(&pa->pa_group_list);
3759 		count++;
3760 		kmem_cache_free(ext4_pspace_cachep, pa);
3761 	}
3762 	return count;
3763 }
3764 
ext4_mb_release(struct super_block * sb)3765 void ext4_mb_release(struct super_block *sb)
3766 {
3767 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3768 	ext4_group_t i;
3769 	int num_meta_group_infos;
3770 	struct ext4_group_info *grinfo, ***group_info;
3771 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3772 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3773 	int count;
3774 
3775 	if (test_opt(sb, DISCARD)) {
3776 		/*
3777 		 * wait the discard work to drain all of ext4_free_data
3778 		 */
3779 		flush_work(&sbi->s_discard_work);
3780 		WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3781 	}
3782 
3783 	if (sbi->s_group_info) {
3784 		for (i = 0; i < ngroups; i++) {
3785 			cond_resched();
3786 			grinfo = ext4_get_group_info(sb, i);
3787 			if (!grinfo)
3788 				continue;
3789 			mb_group_bb_bitmap_free(grinfo);
3790 			ext4_lock_group(sb, i);
3791 			count = ext4_mb_cleanup_pa(grinfo);
3792 			if (count)
3793 				mb_debug(sb, "mballoc: %d PAs left\n",
3794 					 count);
3795 			ext4_unlock_group(sb, i);
3796 			kmem_cache_free(cachep, grinfo);
3797 		}
3798 		num_meta_group_infos = (ngroups +
3799 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
3800 			EXT4_DESC_PER_BLOCK_BITS(sb);
3801 		rcu_read_lock();
3802 		group_info = rcu_dereference(sbi->s_group_info);
3803 		for (i = 0; i < num_meta_group_infos; i++)
3804 			kfree(group_info[i]);
3805 		kvfree(group_info);
3806 		rcu_read_unlock();
3807 	}
3808 	kfree(sbi->s_mb_avg_fragment_size);
3809 	kfree(sbi->s_mb_avg_fragment_size_locks);
3810 	kfree(sbi->s_mb_largest_free_orders);
3811 	kfree(sbi->s_mb_largest_free_orders_locks);
3812 	kfree(sbi->s_mb_offsets);
3813 	kfree(sbi->s_mb_maxs);
3814 	iput(sbi->s_buddy_cache);
3815 	if (sbi->s_mb_stats) {
3816 		ext4_msg(sb, KERN_INFO,
3817 		       "mballoc: %u blocks %u reqs (%u success)",
3818 				atomic_read(&sbi->s_bal_allocated),
3819 				atomic_read(&sbi->s_bal_reqs),
3820 				atomic_read(&sbi->s_bal_success));
3821 		ext4_msg(sb, KERN_INFO,
3822 		      "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3823 				"%u 2^N hits, %u breaks, %u lost",
3824 				atomic_read(&sbi->s_bal_ex_scanned),
3825 				atomic_read(&sbi->s_bal_groups_scanned),
3826 				atomic_read(&sbi->s_bal_goals),
3827 				atomic_read(&sbi->s_bal_2orders),
3828 				atomic_read(&sbi->s_bal_breaks),
3829 				atomic_read(&sbi->s_mb_lost_chunks));
3830 		ext4_msg(sb, KERN_INFO,
3831 		       "mballoc: %u generated and it took %llu",
3832 				atomic_read(&sbi->s_mb_buddies_generated),
3833 				atomic64_read(&sbi->s_mb_generation_time));
3834 		ext4_msg(sb, KERN_INFO,
3835 		       "mballoc: %u preallocated, %u discarded",
3836 				atomic_read(&sbi->s_mb_preallocated),
3837 				atomic_read(&sbi->s_mb_discarded));
3838 	}
3839 
3840 	free_percpu(sbi->s_locality_groups);
3841 }
3842 
ext4_issue_discard(struct super_block * sb,ext4_group_t block_group,ext4_grpblk_t cluster,int count)3843 static inline int ext4_issue_discard(struct super_block *sb,
3844 		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
3845 {
3846 	ext4_fsblk_t discard_block;
3847 
3848 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3849 			 ext4_group_first_block_no(sb, block_group));
3850 	count = EXT4_C2B(EXT4_SB(sb), count);
3851 	trace_ext4_discard_blocks(sb,
3852 			(unsigned long long) discard_block, count);
3853 
3854 	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3855 }
3856 
ext4_free_data_in_buddy(struct super_block * sb,struct ext4_free_data * entry)3857 static void ext4_free_data_in_buddy(struct super_block *sb,
3858 				    struct ext4_free_data *entry)
3859 {
3860 	struct ext4_buddy e4b;
3861 	struct ext4_group_info *db;
3862 	int err, count = 0;
3863 
3864 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3865 		 entry->efd_count, entry->efd_group, entry);
3866 
3867 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3868 	/* we expect to find existing buddy because it's pinned */
3869 	BUG_ON(err != 0);
3870 
3871 	spin_lock(&EXT4_SB(sb)->s_md_lock);
3872 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3873 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3874 
3875 	db = e4b.bd_info;
3876 	/* there are blocks to put in buddy to make them really free */
3877 	count += entry->efd_count;
3878 	ext4_lock_group(sb, entry->efd_group);
3879 	/* Take it out of per group rb tree */
3880 	rb_erase(&entry->efd_node, &(db->bb_free_root));
3881 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3882 
3883 	/*
3884 	 * Clear the trimmed flag for the group so that the next
3885 	 * ext4_trim_fs can trim it.
3886 	 */
3887 	EXT4_MB_GRP_CLEAR_TRIMMED(db);
3888 
3889 	if (!db->bb_free_root.rb_node) {
3890 		/* No more items in the per group rb tree
3891 		 * balance refcounts from ext4_mb_free_metadata()
3892 		 */
3893 		folio_put(e4b.bd_buddy_folio);
3894 		folio_put(e4b.bd_bitmap_folio);
3895 	}
3896 	ext4_unlock_group(sb, entry->efd_group);
3897 	ext4_mb_unload_buddy(&e4b);
3898 
3899 	mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3900 }
3901 
3902 /*
3903  * This function is called by the jbd2 layer once the commit has finished,
3904  * so we know we can free the blocks that were released with that commit.
3905  */
ext4_process_freed_data(struct super_block * sb,tid_t commit_tid)3906 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3907 {
3908 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3909 	struct ext4_free_data *entry, *tmp;
3910 	LIST_HEAD(freed_data_list);
3911 	struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1];
3912 	bool wake;
3913 
3914 	list_replace_init(s_freed_head, &freed_data_list);
3915 
3916 	list_for_each_entry(entry, &freed_data_list, efd_list)
3917 		ext4_free_data_in_buddy(sb, entry);
3918 
3919 	if (test_opt(sb, DISCARD)) {
3920 		spin_lock(&sbi->s_md_lock);
3921 		wake = list_empty(&sbi->s_discard_list);
3922 		list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3923 		spin_unlock(&sbi->s_md_lock);
3924 		if (wake)
3925 			queue_work(system_unbound_wq, &sbi->s_discard_work);
3926 	} else {
3927 		list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3928 			kmem_cache_free(ext4_free_data_cachep, entry);
3929 	}
3930 }
3931 
ext4_init_mballoc(void)3932 int __init ext4_init_mballoc(void)
3933 {
3934 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3935 					SLAB_RECLAIM_ACCOUNT);
3936 	if (ext4_pspace_cachep == NULL)
3937 		goto out;
3938 
3939 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3940 				    SLAB_RECLAIM_ACCOUNT);
3941 	if (ext4_ac_cachep == NULL)
3942 		goto out_pa_free;
3943 
3944 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3945 					   SLAB_RECLAIM_ACCOUNT);
3946 	if (ext4_free_data_cachep == NULL)
3947 		goto out_ac_free;
3948 
3949 	return 0;
3950 
3951 out_ac_free:
3952 	kmem_cache_destroy(ext4_ac_cachep);
3953 out_pa_free:
3954 	kmem_cache_destroy(ext4_pspace_cachep);
3955 out:
3956 	return -ENOMEM;
3957 }
3958 
ext4_exit_mballoc(void)3959 void ext4_exit_mballoc(void)
3960 {
3961 	/*
3962 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3963 	 * before destroying the slab cache.
3964 	 */
3965 	rcu_barrier();
3966 	kmem_cache_destroy(ext4_pspace_cachep);
3967 	kmem_cache_destroy(ext4_ac_cachep);
3968 	kmem_cache_destroy(ext4_free_data_cachep);
3969 	ext4_groupinfo_destroy_slabs();
3970 }
3971 
3972 #define EXT4_MB_BITMAP_MARKED_CHECK 0x0001
3973 #define EXT4_MB_SYNC_UPDATE 0x0002
3974 static int
ext4_mb_mark_context(handle_t * handle,struct super_block * sb,bool state,ext4_group_t group,ext4_grpblk_t blkoff,ext4_grpblk_t len,int flags,ext4_grpblk_t * ret_changed)3975 ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state,
3976 		     ext4_group_t group, ext4_grpblk_t blkoff,
3977 		     ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed)
3978 {
3979 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3980 	struct buffer_head *bitmap_bh = NULL;
3981 	struct ext4_group_desc *gdp;
3982 	struct buffer_head *gdp_bh;
3983 	int err;
3984 	unsigned int i, already, changed = len;
3985 
3986 	KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context,
3987 				   handle, sb, state, group, blkoff, len,
3988 				   flags, ret_changed);
3989 
3990 	if (ret_changed)
3991 		*ret_changed = 0;
3992 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3993 	if (IS_ERR(bitmap_bh))
3994 		return PTR_ERR(bitmap_bh);
3995 
3996 	if (handle) {
3997 		BUFFER_TRACE(bitmap_bh, "getting write access");
3998 		err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3999 						    EXT4_JTR_NONE);
4000 		if (err)
4001 			goto out_err;
4002 	}
4003 
4004 	err = -EIO;
4005 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4006 	if (!gdp)
4007 		goto out_err;
4008 
4009 	if (handle) {
4010 		BUFFER_TRACE(gdp_bh, "get_write_access");
4011 		err = ext4_journal_get_write_access(handle, sb, gdp_bh,
4012 						    EXT4_JTR_NONE);
4013 		if (err)
4014 			goto out_err;
4015 	}
4016 
4017 	ext4_lock_group(sb, group);
4018 	if (ext4_has_group_desc_csum(sb) &&
4019 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4020 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4021 		ext4_free_group_clusters_set(sb, gdp,
4022 			ext4_free_clusters_after_init(sb, group, gdp));
4023 	}
4024 
4025 	if (flags & EXT4_MB_BITMAP_MARKED_CHECK) {
4026 		already = 0;
4027 		for (i = 0; i < len; i++)
4028 			if (mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4029 					state)
4030 				already++;
4031 		changed = len - already;
4032 	}
4033 
4034 	if (state) {
4035 		mb_set_bits(bitmap_bh->b_data, blkoff, len);
4036 		ext4_free_group_clusters_set(sb, gdp,
4037 			ext4_free_group_clusters(sb, gdp) - changed);
4038 	} else {
4039 		mb_clear_bits(bitmap_bh->b_data, blkoff, len);
4040 		ext4_free_group_clusters_set(sb, gdp,
4041 			ext4_free_group_clusters(sb, gdp) + changed);
4042 	}
4043 
4044 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4045 	ext4_group_desc_csum_set(sb, group, gdp);
4046 	ext4_unlock_group(sb, group);
4047 	if (ret_changed)
4048 		*ret_changed = changed;
4049 
4050 	if (sbi->s_log_groups_per_flex) {
4051 		ext4_group_t flex_group = ext4_flex_group(sbi, group);
4052 		struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4053 					   s_flex_groups, flex_group);
4054 
4055 		if (state)
4056 			atomic64_sub(changed, &fg->free_clusters);
4057 		else
4058 			atomic64_add(changed, &fg->free_clusters);
4059 	}
4060 
4061 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4062 	if (err)
4063 		goto out_err;
4064 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4065 	if (err)
4066 		goto out_err;
4067 
4068 	if (flags & EXT4_MB_SYNC_UPDATE) {
4069 		sync_dirty_buffer(bitmap_bh);
4070 		sync_dirty_buffer(gdp_bh);
4071 	}
4072 
4073 out_err:
4074 	brelse(bitmap_bh);
4075 	return err;
4076 }
4077 
4078 /*
4079  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
4080  * Returns 0 if success or error code
4081  */
4082 static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context * ac,handle_t * handle,unsigned int reserv_clstrs)4083 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
4084 				handle_t *handle, unsigned int reserv_clstrs)
4085 {
4086 	struct ext4_group_desc *gdp;
4087 	struct ext4_sb_info *sbi;
4088 	struct super_block *sb;
4089 	ext4_fsblk_t block;
4090 	int err, len;
4091 	int flags = 0;
4092 	ext4_grpblk_t changed;
4093 
4094 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4095 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4096 
4097 	sb = ac->ac_sb;
4098 	sbi = EXT4_SB(sb);
4099 
4100 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL);
4101 	if (!gdp)
4102 		return -EIO;
4103 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
4104 			ext4_free_group_clusters(sb, gdp));
4105 
4106 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4107 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4108 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4109 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4110 			   "fs metadata", block, block+len);
4111 		/* File system mounted not to panic on error
4112 		 * Fix the bitmap and return EFSCORRUPTED
4113 		 * We leak some of the blocks here.
4114 		 */
4115 		err = ext4_mb_mark_context(handle, sb, true,
4116 					   ac->ac_b_ex.fe_group,
4117 					   ac->ac_b_ex.fe_start,
4118 					   ac->ac_b_ex.fe_len,
4119 					   0, NULL);
4120 		if (!err)
4121 			err = -EFSCORRUPTED;
4122 		return err;
4123 	}
4124 
4125 #ifdef AGGRESSIVE_CHECK
4126 	flags |= EXT4_MB_BITMAP_MARKED_CHECK;
4127 #endif
4128 	err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group,
4129 				   ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len,
4130 				   flags, &changed);
4131 
4132 	if (err && changed == 0)
4133 		return err;
4134 
4135 #ifdef AGGRESSIVE_CHECK
4136 	BUG_ON(changed != ac->ac_b_ex.fe_len);
4137 #endif
4138 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4139 	/*
4140 	 * Now reduce the dirty block count also. Should not go negative
4141 	 */
4142 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4143 		/* release all the reserved blocks if non delalloc */
4144 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4145 				   reserv_clstrs);
4146 
4147 	return err;
4148 }
4149 
4150 /*
4151  * Idempotent helper for Ext4 fast commit replay path to set the state of
4152  * blocks in bitmaps and update counters.
4153  */
ext4_mb_mark_bb(struct super_block * sb,ext4_fsblk_t block,int len,bool state)4154 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4155 		     int len, bool state)
4156 {
4157 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4158 	ext4_group_t group;
4159 	ext4_grpblk_t blkoff;
4160 	int err = 0;
4161 	unsigned int clen, thisgrp_len;
4162 
4163 	while (len > 0) {
4164 		ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4165 
4166 		/*
4167 		 * Check to see if we are freeing blocks across a group
4168 		 * boundary.
4169 		 * In case of flex_bg, this can happen that (block, len) may
4170 		 * span across more than one group. In that case we need to
4171 		 * get the corresponding group metadata to work with.
4172 		 * For this we have goto again loop.
4173 		 */
4174 		thisgrp_len = min_t(unsigned int, (unsigned int)len,
4175 			EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4176 		clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4177 
4178 		if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4179 			ext4_error(sb, "Marking blocks in system zone - "
4180 				   "Block = %llu, len = %u",
4181 				   block, thisgrp_len);
4182 			break;
4183 		}
4184 
4185 		err = ext4_mb_mark_context(NULL, sb, state,
4186 					   group, blkoff, clen,
4187 					   EXT4_MB_BITMAP_MARKED_CHECK |
4188 					   EXT4_MB_SYNC_UPDATE,
4189 					   NULL);
4190 		if (err)
4191 			break;
4192 
4193 		block += thisgrp_len;
4194 		len -= thisgrp_len;
4195 		BUG_ON(len < 0);
4196 	}
4197 }
4198 
4199 /*
4200  * here we normalize request for locality group
4201  * Group request are normalized to s_mb_group_prealloc, which goes to
4202  * s_strip if we set the same via mount option.
4203  * s_mb_group_prealloc can be configured via
4204  * /sys/fs/ext4/<partition>/mb_group_prealloc
4205  *
4206  * XXX: should we try to preallocate more than the group has now?
4207  */
ext4_mb_normalize_group_request(struct ext4_allocation_context * ac)4208 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4209 {
4210 	struct super_block *sb = ac->ac_sb;
4211 	struct ext4_locality_group *lg = ac->ac_lg;
4212 
4213 	BUG_ON(lg == NULL);
4214 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4215 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4216 }
4217 
4218 /*
4219  * This function returns the next element to look at during inode
4220  * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4221  * (ei->i_prealloc_lock)
4222  *
4223  * new_start	The start of the range we want to compare
4224  * cur_start	The existing start that we are comparing against
4225  * node	The node of the rb_tree
4226  */
4227 static inline struct rb_node*
ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start,ext4_lblk_t cur_start,struct rb_node * node)4228 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4229 {
4230 	if (new_start < cur_start)
4231 		return node->rb_left;
4232 	else
4233 		return node->rb_right;
4234 }
4235 
4236 static inline void
ext4_mb_pa_assert_overlap(struct ext4_allocation_context * ac,ext4_lblk_t start,loff_t end)4237 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4238 			  ext4_lblk_t start, loff_t end)
4239 {
4240 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4241 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4242 	struct ext4_prealloc_space *tmp_pa;
4243 	ext4_lblk_t tmp_pa_start;
4244 	loff_t tmp_pa_end;
4245 	struct rb_node *iter;
4246 
4247 	read_lock(&ei->i_prealloc_lock);
4248 	for (iter = ei->i_prealloc_node.rb_node; iter;
4249 	     iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4250 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4251 				  pa_node.inode_node);
4252 		tmp_pa_start = tmp_pa->pa_lstart;
4253 		tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4254 
4255 		spin_lock(&tmp_pa->pa_lock);
4256 		if (tmp_pa->pa_deleted == 0)
4257 			BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4258 		spin_unlock(&tmp_pa->pa_lock);
4259 	}
4260 	read_unlock(&ei->i_prealloc_lock);
4261 }
4262 
4263 /*
4264  * Given an allocation context "ac" and a range "start", "end", check
4265  * and adjust boundaries if the range overlaps with any of the existing
4266  * preallocatoins stored in the corresponding inode of the allocation context.
4267  *
4268  * Parameters:
4269  *	ac			allocation context
4270  *	start			start of the new range
4271  *	end			end of the new range
4272  */
4273 static inline void
ext4_mb_pa_adjust_overlap(struct ext4_allocation_context * ac,ext4_lblk_t * start,loff_t * end)4274 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4275 			  ext4_lblk_t *start, loff_t *end)
4276 {
4277 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4278 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4279 	struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4280 	struct rb_node *iter;
4281 	ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4282 	loff_t new_end, tmp_pa_end, left_pa_end = -1;
4283 
4284 	new_start = *start;
4285 	new_end = *end;
4286 
4287 	/*
4288 	 * Adjust the normalized range so that it doesn't overlap with any
4289 	 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4290 	 * so it doesn't change underneath us.
4291 	 */
4292 	read_lock(&ei->i_prealloc_lock);
4293 
4294 	/* Step 1: find any one immediate neighboring PA of the normalized range */
4295 	for (iter = ei->i_prealloc_node.rb_node; iter;
4296 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4297 					    tmp_pa_start, iter)) {
4298 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4299 				  pa_node.inode_node);
4300 		tmp_pa_start = tmp_pa->pa_lstart;
4301 		tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4302 
4303 		/* PA must not overlap original request */
4304 		spin_lock(&tmp_pa->pa_lock);
4305 		if (tmp_pa->pa_deleted == 0)
4306 			BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4307 				 ac->ac_o_ex.fe_logical < tmp_pa_start));
4308 		spin_unlock(&tmp_pa->pa_lock);
4309 	}
4310 
4311 	/*
4312 	 * Step 2: check if the found PA is left or right neighbor and
4313 	 * get the other neighbor
4314 	 */
4315 	if (tmp_pa) {
4316 		if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4317 			struct rb_node *tmp;
4318 
4319 			left_pa = tmp_pa;
4320 			tmp = rb_next(&left_pa->pa_node.inode_node);
4321 			if (tmp) {
4322 				right_pa = rb_entry(tmp,
4323 						    struct ext4_prealloc_space,
4324 						    pa_node.inode_node);
4325 			}
4326 		} else {
4327 			struct rb_node *tmp;
4328 
4329 			right_pa = tmp_pa;
4330 			tmp = rb_prev(&right_pa->pa_node.inode_node);
4331 			if (tmp) {
4332 				left_pa = rb_entry(tmp,
4333 						   struct ext4_prealloc_space,
4334 						   pa_node.inode_node);
4335 			}
4336 		}
4337 	}
4338 
4339 	/* Step 3: get the non deleted neighbors */
4340 	if (left_pa) {
4341 		for (iter = &left_pa->pa_node.inode_node;;
4342 		     iter = rb_prev(iter)) {
4343 			if (!iter) {
4344 				left_pa = NULL;
4345 				break;
4346 			}
4347 
4348 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4349 					  pa_node.inode_node);
4350 			left_pa = tmp_pa;
4351 			spin_lock(&tmp_pa->pa_lock);
4352 			if (tmp_pa->pa_deleted == 0) {
4353 				spin_unlock(&tmp_pa->pa_lock);
4354 				break;
4355 			}
4356 			spin_unlock(&tmp_pa->pa_lock);
4357 		}
4358 	}
4359 
4360 	if (right_pa) {
4361 		for (iter = &right_pa->pa_node.inode_node;;
4362 		     iter = rb_next(iter)) {
4363 			if (!iter) {
4364 				right_pa = NULL;
4365 				break;
4366 			}
4367 
4368 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4369 					  pa_node.inode_node);
4370 			right_pa = tmp_pa;
4371 			spin_lock(&tmp_pa->pa_lock);
4372 			if (tmp_pa->pa_deleted == 0) {
4373 				spin_unlock(&tmp_pa->pa_lock);
4374 				break;
4375 			}
4376 			spin_unlock(&tmp_pa->pa_lock);
4377 		}
4378 	}
4379 
4380 	if (left_pa) {
4381 		left_pa_end = pa_logical_end(sbi, left_pa);
4382 		BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4383 	}
4384 
4385 	if (right_pa) {
4386 		right_pa_start = right_pa->pa_lstart;
4387 		BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4388 	}
4389 
4390 	/* Step 4: trim our normalized range to not overlap with the neighbors */
4391 	if (left_pa) {
4392 		if (left_pa_end > new_start)
4393 			new_start = left_pa_end;
4394 	}
4395 
4396 	if (right_pa) {
4397 		if (right_pa_start < new_end)
4398 			new_end = right_pa_start;
4399 	}
4400 	read_unlock(&ei->i_prealloc_lock);
4401 
4402 	/* XXX: extra loop to check we really don't overlap preallocations */
4403 	ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4404 
4405 	*start = new_start;
4406 	*end = new_end;
4407 }
4408 
4409 /*
4410  * Normalization means making request better in terms of
4411  * size and alignment
4412  */
4413 static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)4414 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4415 				struct ext4_allocation_request *ar)
4416 {
4417 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4418 	struct ext4_super_block *es = sbi->s_es;
4419 	int bsbits, max;
4420 	loff_t size, start_off, end;
4421 	loff_t orig_size __maybe_unused;
4422 	ext4_lblk_t start;
4423 
4424 	/* do normalize only data requests, metadata requests
4425 	   do not need preallocation */
4426 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4427 		return;
4428 
4429 	/* sometime caller may want exact blocks */
4430 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4431 		return;
4432 
4433 	/* caller may indicate that preallocation isn't
4434 	 * required (it's a tail, for example) */
4435 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4436 		return;
4437 
4438 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4439 		ext4_mb_normalize_group_request(ac);
4440 		return ;
4441 	}
4442 
4443 	bsbits = ac->ac_sb->s_blocksize_bits;
4444 
4445 	/* first, let's learn actual file size
4446 	 * given current request is allocated */
4447 	size = extent_logical_end(sbi, &ac->ac_o_ex);
4448 	size = size << bsbits;
4449 	if (size < i_size_read(ac->ac_inode))
4450 		size = i_size_read(ac->ac_inode);
4451 	orig_size = size;
4452 
4453 	/* max size of free chunks */
4454 	max = 2 << bsbits;
4455 
4456 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
4457 		(req <= (size) || max <= (chunk_size))
4458 
4459 	/* first, try to predict filesize */
4460 	/* XXX: should this table be tunable? */
4461 	start_off = 0;
4462 	if (size <= 16 * 1024) {
4463 		size = 16 * 1024;
4464 	} else if (size <= 32 * 1024) {
4465 		size = 32 * 1024;
4466 	} else if (size <= 64 * 1024) {
4467 		size = 64 * 1024;
4468 	} else if (size <= 128 * 1024) {
4469 		size = 128 * 1024;
4470 	} else if (size <= 256 * 1024) {
4471 		size = 256 * 1024;
4472 	} else if (size <= 512 * 1024) {
4473 		size = 512 * 1024;
4474 	} else if (size <= 1024 * 1024) {
4475 		size = 1024 * 1024;
4476 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4477 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4478 						(21 - bsbits)) << 21;
4479 		size = 2 * 1024 * 1024;
4480 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4481 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4482 							(22 - bsbits)) << 22;
4483 		size = 4 * 1024 * 1024;
4484 	} else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4485 					(8<<20)>>bsbits, max, 8 * 1024)) {
4486 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4487 							(23 - bsbits)) << 23;
4488 		size = 8 * 1024 * 1024;
4489 	} else {
4490 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4491 		size	  = (loff_t) EXT4_C2B(sbi,
4492 					      ac->ac_o_ex.fe_len) << bsbits;
4493 	}
4494 	size = size >> bsbits;
4495 	start = start_off >> bsbits;
4496 
4497 	/*
4498 	 * For tiny groups (smaller than 8MB) the chosen allocation
4499 	 * alignment may be larger than group size. Make sure the
4500 	 * alignment does not move allocation to a different group which
4501 	 * makes mballoc fail assertions later.
4502 	 */
4503 	start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4504 			(ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4505 
4506 	/* avoid unnecessary preallocation that may trigger assertions */
4507 	if (start + size > EXT_MAX_BLOCKS)
4508 		size = EXT_MAX_BLOCKS - start;
4509 
4510 	/* don't cover already allocated blocks in selected range */
4511 	if (ar->pleft && start <= ar->lleft) {
4512 		size -= ar->lleft + 1 - start;
4513 		start = ar->lleft + 1;
4514 	}
4515 	if (ar->pright && start + size - 1 >= ar->lright)
4516 		size -= start + size - ar->lright;
4517 
4518 	/*
4519 	 * Trim allocation request for filesystems with artificially small
4520 	 * groups.
4521 	 */
4522 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4523 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4524 
4525 	end = start + size;
4526 
4527 	ext4_mb_pa_adjust_overlap(ac, &start, &end);
4528 
4529 	size = end - start;
4530 
4531 	/*
4532 	 * In this function "start" and "size" are normalized for better
4533 	 * alignment and length such that we could preallocate more blocks.
4534 	 * This normalization is done such that original request of
4535 	 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4536 	 * "size" boundaries.
4537 	 * (Note fe_len can be relaxed since FS block allocation API does not
4538 	 * provide gurantee on number of contiguous blocks allocation since that
4539 	 * depends upon free space left, etc).
4540 	 * In case of inode pa, later we use the allocated blocks
4541 	 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4542 	 * range of goal/best blocks [start, size] to put it at the
4543 	 * ac_o_ex.fe_logical extent of this inode.
4544 	 * (See ext4_mb_use_inode_pa() for more details)
4545 	 */
4546 	if (start + size <= ac->ac_o_ex.fe_logical ||
4547 			start > ac->ac_o_ex.fe_logical) {
4548 		ext4_msg(ac->ac_sb, KERN_ERR,
4549 			 "start %lu, size %lu, fe_logical %lu",
4550 			 (unsigned long) start, (unsigned long) size,
4551 			 (unsigned long) ac->ac_o_ex.fe_logical);
4552 		BUG();
4553 	}
4554 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4555 
4556 	/* now prepare goal request */
4557 
4558 	/* XXX: is it better to align blocks WRT to logical
4559 	 * placement or satisfy big request as is */
4560 	ac->ac_g_ex.fe_logical = start;
4561 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4562 	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4563 
4564 	/* define goal start in order to merge */
4565 	if (ar->pright && (ar->lright == (start + size)) &&
4566 	    ar->pright >= size &&
4567 	    ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4568 		/* merge to the right */
4569 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4570 						&ac->ac_g_ex.fe_group,
4571 						&ac->ac_g_ex.fe_start);
4572 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4573 	}
4574 	if (ar->pleft && (ar->lleft + 1 == start) &&
4575 	    ar->pleft + 1 < ext4_blocks_count(es)) {
4576 		/* merge to the left */
4577 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4578 						&ac->ac_g_ex.fe_group,
4579 						&ac->ac_g_ex.fe_start);
4580 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4581 	}
4582 
4583 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4584 		 orig_size, start);
4585 }
4586 
ext4_mb_collect_stats(struct ext4_allocation_context * ac)4587 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4588 {
4589 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4590 
4591 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4592 		atomic_inc(&sbi->s_bal_reqs);
4593 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4594 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4595 			atomic_inc(&sbi->s_bal_success);
4596 
4597 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4598 		for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4599 			atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4600 		}
4601 
4602 		atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4603 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4604 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4605 			atomic_inc(&sbi->s_bal_goals);
4606 		/* did we allocate as much as normalizer originally wanted? */
4607 		if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4608 			atomic_inc(&sbi->s_bal_len_goals);
4609 
4610 		if (ac->ac_found > sbi->s_mb_max_to_scan)
4611 			atomic_inc(&sbi->s_bal_breaks);
4612 	}
4613 
4614 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4615 		trace_ext4_mballoc_alloc(ac);
4616 	else
4617 		trace_ext4_mballoc_prealloc(ac);
4618 }
4619 
4620 /*
4621  * Called on failure; free up any blocks from the inode PA for this
4622  * context.  We don't need this for MB_GROUP_PA because we only change
4623  * pa_free in ext4_mb_release_context(), but on failure, we've already
4624  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4625  */
ext4_discard_allocated_blocks(struct ext4_allocation_context * ac)4626 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4627 {
4628 	struct ext4_prealloc_space *pa = ac->ac_pa;
4629 	struct ext4_buddy e4b;
4630 	int err;
4631 
4632 	if (pa == NULL) {
4633 		if (ac->ac_f_ex.fe_len == 0)
4634 			return;
4635 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4636 		if (WARN_RATELIMIT(err,
4637 				   "ext4: mb_load_buddy failed (%d)", err))
4638 			/*
4639 			 * This should never happen since we pin the
4640 			 * pages in the ext4_allocation_context so
4641 			 * ext4_mb_load_buddy() should never fail.
4642 			 */
4643 			return;
4644 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4645 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4646 			       ac->ac_f_ex.fe_len);
4647 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4648 		ext4_mb_unload_buddy(&e4b);
4649 		return;
4650 	}
4651 	if (pa->pa_type == MB_INODE_PA) {
4652 		spin_lock(&pa->pa_lock);
4653 		pa->pa_free += ac->ac_b_ex.fe_len;
4654 		spin_unlock(&pa->pa_lock);
4655 	}
4656 }
4657 
4658 /*
4659  * use blocks preallocated to inode
4660  */
ext4_mb_use_inode_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)4661 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4662 				struct ext4_prealloc_space *pa)
4663 {
4664 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4665 	ext4_fsblk_t start;
4666 	ext4_fsblk_t end;
4667 	int len;
4668 
4669 	/* found preallocated blocks, use them */
4670 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4671 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4672 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4673 	len = EXT4_NUM_B2C(sbi, end - start);
4674 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4675 					&ac->ac_b_ex.fe_start);
4676 	ac->ac_b_ex.fe_len = len;
4677 	ac->ac_status = AC_STATUS_FOUND;
4678 	ac->ac_pa = pa;
4679 
4680 	BUG_ON(start < pa->pa_pstart);
4681 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4682 	BUG_ON(pa->pa_free < len);
4683 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4684 	pa->pa_free -= len;
4685 
4686 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4687 }
4688 
4689 /*
4690  * use blocks preallocated to locality group
4691  */
ext4_mb_use_group_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)4692 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4693 				struct ext4_prealloc_space *pa)
4694 {
4695 	unsigned int len = ac->ac_o_ex.fe_len;
4696 
4697 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4698 					&ac->ac_b_ex.fe_group,
4699 					&ac->ac_b_ex.fe_start);
4700 	ac->ac_b_ex.fe_len = len;
4701 	ac->ac_status = AC_STATUS_FOUND;
4702 	ac->ac_pa = pa;
4703 
4704 	/* we don't correct pa_pstart or pa_len here to avoid
4705 	 * possible race when the group is being loaded concurrently
4706 	 * instead we correct pa later, after blocks are marked
4707 	 * in on-disk bitmap -- see ext4_mb_release_context()
4708 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
4709 	 */
4710 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4711 		 pa->pa_lstart, len, pa);
4712 }
4713 
4714 /*
4715  * Return the prealloc space that have minimal distance
4716  * from the goal block. @cpa is the prealloc
4717  * space that is having currently known minimal distance
4718  * from the goal block.
4719  */
4720 static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,struct ext4_prealloc_space * pa,struct ext4_prealloc_space * cpa)4721 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4722 			struct ext4_prealloc_space *pa,
4723 			struct ext4_prealloc_space *cpa)
4724 {
4725 	ext4_fsblk_t cur_distance, new_distance;
4726 
4727 	if (cpa == NULL) {
4728 		atomic_inc(&pa->pa_count);
4729 		return pa;
4730 	}
4731 	cur_distance = abs(goal_block - cpa->pa_pstart);
4732 	new_distance = abs(goal_block - pa->pa_pstart);
4733 
4734 	if (cur_distance <= new_distance)
4735 		return cpa;
4736 
4737 	/* drop the previous reference */
4738 	atomic_dec(&cpa->pa_count);
4739 	atomic_inc(&pa->pa_count);
4740 	return pa;
4741 }
4742 
4743 /*
4744  * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4745  */
4746 static bool
ext4_mb_pa_goal_check(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)4747 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4748 		      struct ext4_prealloc_space *pa)
4749 {
4750 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4751 	ext4_fsblk_t start;
4752 
4753 	if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4754 		return true;
4755 
4756 	/*
4757 	 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4758 	 * in ext4_mb_normalize_request and will keep same with ac_o_ex
4759 	 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4760 	 * consistent with ext4_mb_find_by_goal.
4761 	 */
4762 	start = pa->pa_pstart +
4763 		(ac->ac_g_ex.fe_logical - pa->pa_lstart);
4764 	if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4765 		return false;
4766 
4767 	if (ac->ac_g_ex.fe_len > pa->pa_len -
4768 	    EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4769 		return false;
4770 
4771 	return true;
4772 }
4773 
4774 /*
4775  * search goal blocks in preallocated space
4776  */
4777 static noinline_for_stack bool
ext4_mb_use_preallocated(struct ext4_allocation_context * ac)4778 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4779 {
4780 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4781 	int order, i;
4782 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4783 	struct ext4_locality_group *lg;
4784 	struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4785 	struct rb_node *iter;
4786 	ext4_fsblk_t goal_block;
4787 
4788 	/* only data can be preallocated */
4789 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4790 		return false;
4791 
4792 	/*
4793 	 * first, try per-file preallocation by searching the inode pa rbtree.
4794 	 *
4795 	 * Here, we can't do a direct traversal of the tree because
4796 	 * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4797 	 * deleted and that can cause direct traversal to skip some entries.
4798 	 */
4799 	read_lock(&ei->i_prealloc_lock);
4800 
4801 	if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4802 		goto try_group_pa;
4803 	}
4804 
4805 	/*
4806 	 * Step 1: Find a pa with logical start immediately adjacent to the
4807 	 * original logical start. This could be on the left or right.
4808 	 *
4809 	 * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4810 	 */
4811 	for (iter = ei->i_prealloc_node.rb_node; iter;
4812 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4813 					    tmp_pa->pa_lstart, iter)) {
4814 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4815 				  pa_node.inode_node);
4816 	}
4817 
4818 	/*
4819 	 * Step 2: The adjacent pa might be to the right of logical start, find
4820 	 * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4821 	 * logical start is towards the left of original request's logical start
4822 	 */
4823 	if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4824 		struct rb_node *tmp;
4825 		tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4826 
4827 		if (tmp) {
4828 			tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4829 					    pa_node.inode_node);
4830 		} else {
4831 			/*
4832 			 * If there is no adjacent pa to the left then finding
4833 			 * an overlapping pa is not possible hence stop searching
4834 			 * inode pa tree
4835 			 */
4836 			goto try_group_pa;
4837 		}
4838 	}
4839 
4840 	BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4841 
4842 	/*
4843 	 * Step 3: If the left adjacent pa is deleted, keep moving left to find
4844 	 * the first non deleted adjacent pa. After this step we should have a
4845 	 * valid tmp_pa which is guaranteed to be non deleted.
4846 	 */
4847 	for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4848 		if (!iter) {
4849 			/*
4850 			 * no non deleted left adjacent pa, so stop searching
4851 			 * inode pa tree
4852 			 */
4853 			goto try_group_pa;
4854 		}
4855 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4856 				  pa_node.inode_node);
4857 		spin_lock(&tmp_pa->pa_lock);
4858 		if (tmp_pa->pa_deleted == 0) {
4859 			/*
4860 			 * We will keep holding the pa_lock from
4861 			 * this point on because we don't want group discard
4862 			 * to delete this pa underneath us. Since group
4863 			 * discard is anyways an ENOSPC operation it
4864 			 * should be okay for it to wait a few more cycles.
4865 			 */
4866 			break;
4867 		} else {
4868 			spin_unlock(&tmp_pa->pa_lock);
4869 		}
4870 	}
4871 
4872 	BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4873 	BUG_ON(tmp_pa->pa_deleted == 1);
4874 
4875 	/*
4876 	 * Step 4: We now have the non deleted left adjacent pa. Only this
4877 	 * pa can possibly satisfy the request hence check if it overlaps
4878 	 * original logical start and stop searching if it doesn't.
4879 	 */
4880 	if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4881 		spin_unlock(&tmp_pa->pa_lock);
4882 		goto try_group_pa;
4883 	}
4884 
4885 	/* non-extent files can't have physical blocks past 2^32 */
4886 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4887 	    (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4888 	     EXT4_MAX_BLOCK_FILE_PHYS)) {
4889 		/*
4890 		 * Since PAs don't overlap, we won't find any other PA to
4891 		 * satisfy this.
4892 		 */
4893 		spin_unlock(&tmp_pa->pa_lock);
4894 		goto try_group_pa;
4895 	}
4896 
4897 	if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4898 		atomic_inc(&tmp_pa->pa_count);
4899 		ext4_mb_use_inode_pa(ac, tmp_pa);
4900 		spin_unlock(&tmp_pa->pa_lock);
4901 		read_unlock(&ei->i_prealloc_lock);
4902 		return true;
4903 	} else {
4904 		/*
4905 		 * We found a valid overlapping pa but couldn't use it because
4906 		 * it had no free blocks. This should ideally never happen
4907 		 * because:
4908 		 *
4909 		 * 1. When a new inode pa is added to rbtree it must have
4910 		 *    pa_free > 0 since otherwise we won't actually need
4911 		 *    preallocation.
4912 		 *
4913 		 * 2. An inode pa that is in the rbtree can only have it's
4914 		 *    pa_free become zero when another thread calls:
4915 		 *      ext4_mb_new_blocks
4916 		 *       ext4_mb_use_preallocated
4917 		 *        ext4_mb_use_inode_pa
4918 		 *
4919 		 * 3. Further, after the above calls make pa_free == 0, we will
4920 		 *    immediately remove it from the rbtree in:
4921 		 *      ext4_mb_new_blocks
4922 		 *       ext4_mb_release_context
4923 		 *        ext4_mb_put_pa
4924 		 *
4925 		 * 4. Since the pa_free becoming 0 and pa_free getting removed
4926 		 * from tree both happen in ext4_mb_new_blocks, which is always
4927 		 * called with i_data_sem held for data allocations, we can be
4928 		 * sure that another process will never see a pa in rbtree with
4929 		 * pa_free == 0.
4930 		 */
4931 		WARN_ON_ONCE(tmp_pa->pa_free == 0);
4932 	}
4933 	spin_unlock(&tmp_pa->pa_lock);
4934 try_group_pa:
4935 	read_unlock(&ei->i_prealloc_lock);
4936 
4937 	/* can we use group allocation? */
4938 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4939 		return false;
4940 
4941 	/* inode may have no locality group for some reason */
4942 	lg = ac->ac_lg;
4943 	if (lg == NULL)
4944 		return false;
4945 	order  = fls(ac->ac_o_ex.fe_len) - 1;
4946 	if (order > PREALLOC_TB_SIZE - 1)
4947 		/* The max size of hash table is PREALLOC_TB_SIZE */
4948 		order = PREALLOC_TB_SIZE - 1;
4949 
4950 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4951 	/*
4952 	 * search for the prealloc space that is having
4953 	 * minimal distance from the goal block.
4954 	 */
4955 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
4956 		rcu_read_lock();
4957 		list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4958 					pa_node.lg_list) {
4959 			spin_lock(&tmp_pa->pa_lock);
4960 			if (tmp_pa->pa_deleted == 0 &&
4961 					tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4962 
4963 				cpa = ext4_mb_check_group_pa(goal_block,
4964 								tmp_pa, cpa);
4965 			}
4966 			spin_unlock(&tmp_pa->pa_lock);
4967 		}
4968 		rcu_read_unlock();
4969 	}
4970 	if (cpa) {
4971 		ext4_mb_use_group_pa(ac, cpa);
4972 		return true;
4973 	}
4974 	return false;
4975 }
4976 
4977 /*
4978  * the function goes through all preallocation in this group and marks them
4979  * used in in-core bitmap. buddy must be generated from this bitmap
4980  * Need to be called with ext4 group lock held
4981  */
4982 static noinline_for_stack
ext4_mb_generate_from_pa(struct super_block * sb,void * bitmap,ext4_group_t group)4983 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4984 					ext4_group_t group)
4985 {
4986 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4987 	struct ext4_prealloc_space *pa;
4988 	struct list_head *cur;
4989 	ext4_group_t groupnr;
4990 	ext4_grpblk_t start;
4991 	int preallocated = 0;
4992 	int len;
4993 
4994 	if (!grp)
4995 		return;
4996 
4997 	/* all form of preallocation discards first load group,
4998 	 * so the only competing code is preallocation use.
4999 	 * we don't need any locking here
5000 	 * notice we do NOT ignore preallocations with pa_deleted
5001 	 * otherwise we could leave used blocks available for
5002 	 * allocation in buddy when concurrent ext4_mb_put_pa()
5003 	 * is dropping preallocation
5004 	 */
5005 	list_for_each(cur, &grp->bb_prealloc_list) {
5006 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5007 		spin_lock(&pa->pa_lock);
5008 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5009 					     &groupnr, &start);
5010 		len = pa->pa_len;
5011 		spin_unlock(&pa->pa_lock);
5012 		if (unlikely(len == 0))
5013 			continue;
5014 		BUG_ON(groupnr != group);
5015 		mb_set_bits(bitmap, start, len);
5016 		preallocated += len;
5017 	}
5018 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5019 }
5020 
ext4_mb_mark_pa_deleted(struct super_block * sb,struct ext4_prealloc_space * pa)5021 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5022 				    struct ext4_prealloc_space *pa)
5023 {
5024 	struct ext4_inode_info *ei;
5025 
5026 	if (pa->pa_deleted) {
5027 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5028 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5029 			     pa->pa_len);
5030 		return;
5031 	}
5032 
5033 	pa->pa_deleted = 1;
5034 
5035 	if (pa->pa_type == MB_INODE_PA) {
5036 		ei = EXT4_I(pa->pa_inode);
5037 		atomic_dec(&ei->i_prealloc_active);
5038 	}
5039 }
5040 
ext4_mb_pa_free(struct ext4_prealloc_space * pa)5041 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5042 {
5043 	BUG_ON(!pa);
5044 	BUG_ON(atomic_read(&pa->pa_count));
5045 	BUG_ON(pa->pa_deleted == 0);
5046 	kmem_cache_free(ext4_pspace_cachep, pa);
5047 }
5048 
ext4_mb_pa_callback(struct rcu_head * head)5049 static void ext4_mb_pa_callback(struct rcu_head *head)
5050 {
5051 	struct ext4_prealloc_space *pa;
5052 
5053 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5054 	ext4_mb_pa_free(pa);
5055 }
5056 
5057 /*
5058  * drops a reference to preallocated space descriptor
5059  * if this was the last reference and the space is consumed
5060  */
ext4_mb_put_pa(struct ext4_allocation_context * ac,struct super_block * sb,struct ext4_prealloc_space * pa)5061 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5062 			struct super_block *sb, struct ext4_prealloc_space *pa)
5063 {
5064 	ext4_group_t grp;
5065 	ext4_fsblk_t grp_blk;
5066 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5067 
5068 	/* in this short window concurrent discard can set pa_deleted */
5069 	spin_lock(&pa->pa_lock);
5070 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5071 		spin_unlock(&pa->pa_lock);
5072 		return;
5073 	}
5074 
5075 	if (pa->pa_deleted == 1) {
5076 		spin_unlock(&pa->pa_lock);
5077 		return;
5078 	}
5079 
5080 	ext4_mb_mark_pa_deleted(sb, pa);
5081 	spin_unlock(&pa->pa_lock);
5082 
5083 	grp_blk = pa->pa_pstart;
5084 	/*
5085 	 * If doing group-based preallocation, pa_pstart may be in the
5086 	 * next group when pa is used up
5087 	 */
5088 	if (pa->pa_type == MB_GROUP_PA)
5089 		grp_blk--;
5090 
5091 	grp = ext4_get_group_number(sb, grp_blk);
5092 
5093 	/*
5094 	 * possible race:
5095 	 *
5096 	 *  P1 (buddy init)			P2 (regular allocation)
5097 	 *					find block B in PA
5098 	 *  copy on-disk bitmap to buddy
5099 	 *  					mark B in on-disk bitmap
5100 	 *					drop PA from group
5101 	 *  mark all PAs in buddy
5102 	 *
5103 	 * thus, P1 initializes buddy with B available. to prevent this
5104 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5105 	 * against that pair
5106 	 */
5107 	ext4_lock_group(sb, grp);
5108 	list_del(&pa->pa_group_list);
5109 	ext4_unlock_group(sb, grp);
5110 
5111 	if (pa->pa_type == MB_INODE_PA) {
5112 		write_lock(pa->pa_node_lock.inode_lock);
5113 		rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5114 		write_unlock(pa->pa_node_lock.inode_lock);
5115 		ext4_mb_pa_free(pa);
5116 	} else {
5117 		spin_lock(pa->pa_node_lock.lg_lock);
5118 		list_del_rcu(&pa->pa_node.lg_list);
5119 		spin_unlock(pa->pa_node_lock.lg_lock);
5120 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5121 	}
5122 }
5123 
ext4_mb_pa_rb_insert(struct rb_root * root,struct rb_node * new)5124 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5125 {
5126 	struct rb_node **iter = &root->rb_node, *parent = NULL;
5127 	struct ext4_prealloc_space *iter_pa, *new_pa;
5128 	ext4_lblk_t iter_start, new_start;
5129 
5130 	while (*iter) {
5131 		iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5132 				   pa_node.inode_node);
5133 		new_pa = rb_entry(new, struct ext4_prealloc_space,
5134 				   pa_node.inode_node);
5135 		iter_start = iter_pa->pa_lstart;
5136 		new_start = new_pa->pa_lstart;
5137 
5138 		parent = *iter;
5139 		if (new_start < iter_start)
5140 			iter = &((*iter)->rb_left);
5141 		else
5142 			iter = &((*iter)->rb_right);
5143 	}
5144 
5145 	rb_link_node(new, parent, iter);
5146 	rb_insert_color(new, root);
5147 }
5148 
5149 /*
5150  * creates new preallocated space for given inode
5151  */
5152 static noinline_for_stack void
ext4_mb_new_inode_pa(struct ext4_allocation_context * ac)5153 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5154 {
5155 	struct super_block *sb = ac->ac_sb;
5156 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5157 	struct ext4_prealloc_space *pa;
5158 	struct ext4_group_info *grp;
5159 	struct ext4_inode_info *ei;
5160 
5161 	/* preallocate only when found space is larger then requested */
5162 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5163 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5164 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5165 	BUG_ON(ac->ac_pa == NULL);
5166 
5167 	pa = ac->ac_pa;
5168 
5169 	if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5170 		struct ext4_free_extent ex = {
5171 			.fe_logical = ac->ac_g_ex.fe_logical,
5172 			.fe_len = ac->ac_orig_goal_len,
5173 		};
5174 		loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5175 		loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex);
5176 
5177 		/*
5178 		 * We can't allocate as much as normalizer wants, so we try
5179 		 * to get proper lstart to cover the original request, except
5180 		 * when the goal doesn't cover the original request as below:
5181 		 *
5182 		 * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048
5183 		 * best_ex:0/200(200) -> adjusted: 1848/2048(200)
5184 		 */
5185 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5186 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5187 
5188 		/*
5189 		 * Use the below logic for adjusting best extent as it keeps
5190 		 * fragmentation in check while ensuring logical range of best
5191 		 * extent doesn't overflow out of goal extent:
5192 		 *
5193 		 * 1. Check if best ex can be kept at end of goal (before
5194 		 *    cr_best_avail trimmed it) and still cover original start
5195 		 * 2. Else, check if best ex can be kept at start of goal and
5196 		 *    still cover original end
5197 		 * 3. Else, keep the best ex at start of original request.
5198 		 */
5199 		ex.fe_len = ac->ac_b_ex.fe_len;
5200 
5201 		ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5202 		if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5203 			goto adjust_bex;
5204 
5205 		ex.fe_logical = ac->ac_g_ex.fe_logical;
5206 		if (o_ex_end <= extent_logical_end(sbi, &ex))
5207 			goto adjust_bex;
5208 
5209 		ex.fe_logical = ac->ac_o_ex.fe_logical;
5210 adjust_bex:
5211 		ac->ac_b_ex.fe_logical = ex.fe_logical;
5212 
5213 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5214 		BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5215 	}
5216 
5217 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
5218 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5219 	pa->pa_len = ac->ac_b_ex.fe_len;
5220 	pa->pa_free = pa->pa_len;
5221 	spin_lock_init(&pa->pa_lock);
5222 	INIT_LIST_HEAD(&pa->pa_group_list);
5223 	pa->pa_deleted = 0;
5224 	pa->pa_type = MB_INODE_PA;
5225 
5226 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5227 		 pa->pa_len, pa->pa_lstart);
5228 	trace_ext4_mb_new_inode_pa(ac, pa);
5229 
5230 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5231 	ext4_mb_use_inode_pa(ac, pa);
5232 
5233 	ei = EXT4_I(ac->ac_inode);
5234 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5235 	if (!grp)
5236 		return;
5237 
5238 	pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5239 	pa->pa_inode = ac->ac_inode;
5240 
5241 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5242 
5243 	write_lock(pa->pa_node_lock.inode_lock);
5244 	ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5245 	write_unlock(pa->pa_node_lock.inode_lock);
5246 	atomic_inc(&ei->i_prealloc_active);
5247 }
5248 
5249 /*
5250  * creates new preallocated space for locality group inodes belongs to
5251  */
5252 static noinline_for_stack void
ext4_mb_new_group_pa(struct ext4_allocation_context * ac)5253 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5254 {
5255 	struct super_block *sb = ac->ac_sb;
5256 	struct ext4_locality_group *lg;
5257 	struct ext4_prealloc_space *pa;
5258 	struct ext4_group_info *grp;
5259 
5260 	/* preallocate only when found space is larger then requested */
5261 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5262 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5263 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5264 	BUG_ON(ac->ac_pa == NULL);
5265 
5266 	pa = ac->ac_pa;
5267 
5268 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5269 	pa->pa_lstart = pa->pa_pstart;
5270 	pa->pa_len = ac->ac_b_ex.fe_len;
5271 	pa->pa_free = pa->pa_len;
5272 	spin_lock_init(&pa->pa_lock);
5273 	INIT_LIST_HEAD(&pa->pa_node.lg_list);
5274 	INIT_LIST_HEAD(&pa->pa_group_list);
5275 	pa->pa_deleted = 0;
5276 	pa->pa_type = MB_GROUP_PA;
5277 
5278 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5279 		 pa->pa_len, pa->pa_lstart);
5280 	trace_ext4_mb_new_group_pa(ac, pa);
5281 
5282 	ext4_mb_use_group_pa(ac, pa);
5283 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5284 
5285 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5286 	if (!grp)
5287 		return;
5288 	lg = ac->ac_lg;
5289 	BUG_ON(lg == NULL);
5290 
5291 	pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5292 	pa->pa_inode = NULL;
5293 
5294 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5295 
5296 	/*
5297 	 * We will later add the new pa to the right bucket
5298 	 * after updating the pa_free in ext4_mb_release_context
5299 	 */
5300 }
5301 
ext4_mb_new_preallocation(struct ext4_allocation_context * ac)5302 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5303 {
5304 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5305 		ext4_mb_new_group_pa(ac);
5306 	else
5307 		ext4_mb_new_inode_pa(ac);
5308 }
5309 
5310 /*
5311  * finds all unused blocks in on-disk bitmap, frees them in
5312  * in-core bitmap and buddy.
5313  * @pa must be unlinked from inode and group lists, so that
5314  * nobody else can find/use it.
5315  * the caller MUST hold group/inode locks.
5316  * TODO: optimize the case when there are no in-core structures yet
5317  */
5318 static noinline_for_stack void
ext4_mb_release_inode_pa(struct ext4_buddy * e4b,struct buffer_head * bitmap_bh,struct ext4_prealloc_space * pa)5319 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5320 			struct ext4_prealloc_space *pa)
5321 {
5322 	struct super_block *sb = e4b->bd_sb;
5323 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5324 	unsigned int end;
5325 	unsigned int next;
5326 	ext4_group_t group;
5327 	ext4_grpblk_t bit;
5328 	unsigned long long grp_blk_start;
5329 	int free = 0;
5330 
5331 	BUG_ON(pa->pa_deleted == 0);
5332 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5333 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5334 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5335 	end = bit + pa->pa_len;
5336 
5337 	while (bit < end) {
5338 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5339 		if (bit >= end)
5340 			break;
5341 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5342 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
5343 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
5344 			 (unsigned) next - bit, (unsigned) group);
5345 		free += next - bit;
5346 
5347 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5348 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5349 						    EXT4_C2B(sbi, bit)),
5350 					       next - bit);
5351 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5352 		bit = next + 1;
5353 	}
5354 	if (free != pa->pa_free) {
5355 		ext4_msg(e4b->bd_sb, KERN_CRIT,
5356 			 "pa %p: logic %lu, phys. %lu, len %d",
5357 			 pa, (unsigned long) pa->pa_lstart,
5358 			 (unsigned long) pa->pa_pstart,
5359 			 pa->pa_len);
5360 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5361 					free, pa->pa_free);
5362 		/*
5363 		 * pa is already deleted so we use the value obtained
5364 		 * from the bitmap and continue.
5365 		 */
5366 	}
5367 	atomic_add(free, &sbi->s_mb_discarded);
5368 }
5369 
5370 static noinline_for_stack void
ext4_mb_release_group_pa(struct ext4_buddy * e4b,struct ext4_prealloc_space * pa)5371 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5372 				struct ext4_prealloc_space *pa)
5373 {
5374 	struct super_block *sb = e4b->bd_sb;
5375 	ext4_group_t group;
5376 	ext4_grpblk_t bit;
5377 
5378 	trace_ext4_mb_release_group_pa(sb, pa);
5379 	BUG_ON(pa->pa_deleted == 0);
5380 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5381 	if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5382 		ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5383 			     e4b->bd_group, group, pa->pa_pstart);
5384 		return;
5385 	}
5386 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5387 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5388 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5389 }
5390 
5391 /*
5392  * releases all preallocations in given group
5393  *
5394  * first, we need to decide discard policy:
5395  * - when do we discard
5396  *   1) ENOSPC
5397  * - how many do we discard
5398  *   1) how many requested
5399  */
5400 static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block * sb,ext4_group_t group,int * busy)5401 ext4_mb_discard_group_preallocations(struct super_block *sb,
5402 				     ext4_group_t group, int *busy)
5403 {
5404 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5405 	struct buffer_head *bitmap_bh = NULL;
5406 	struct ext4_prealloc_space *pa, *tmp;
5407 	LIST_HEAD(list);
5408 	struct ext4_buddy e4b;
5409 	struct ext4_inode_info *ei;
5410 	int err;
5411 	int free = 0;
5412 
5413 	if (!grp)
5414 		return 0;
5415 	mb_debug(sb, "discard preallocation for group %u\n", group);
5416 	if (list_empty(&grp->bb_prealloc_list))
5417 		goto out_dbg;
5418 
5419 	bitmap_bh = ext4_read_block_bitmap(sb, group);
5420 	if (IS_ERR(bitmap_bh)) {
5421 		err = PTR_ERR(bitmap_bh);
5422 		ext4_error_err(sb, -err,
5423 			       "Error %d reading block bitmap for %u",
5424 			       err, group);
5425 		goto out_dbg;
5426 	}
5427 
5428 	err = ext4_mb_load_buddy(sb, group, &e4b);
5429 	if (err) {
5430 		ext4_warning(sb, "Error %d loading buddy information for %u",
5431 			     err, group);
5432 		put_bh(bitmap_bh);
5433 		goto out_dbg;
5434 	}
5435 
5436 	ext4_lock_group(sb, group);
5437 	list_for_each_entry_safe(pa, tmp,
5438 				&grp->bb_prealloc_list, pa_group_list) {
5439 		spin_lock(&pa->pa_lock);
5440 		if (atomic_read(&pa->pa_count)) {
5441 			spin_unlock(&pa->pa_lock);
5442 			*busy = 1;
5443 			continue;
5444 		}
5445 		if (pa->pa_deleted) {
5446 			spin_unlock(&pa->pa_lock);
5447 			continue;
5448 		}
5449 
5450 		/* seems this one can be freed ... */
5451 		ext4_mb_mark_pa_deleted(sb, pa);
5452 
5453 		if (!free)
5454 			this_cpu_inc(discard_pa_seq);
5455 
5456 		/* we can trust pa_free ... */
5457 		free += pa->pa_free;
5458 
5459 		spin_unlock(&pa->pa_lock);
5460 
5461 		list_del(&pa->pa_group_list);
5462 		list_add(&pa->u.pa_tmp_list, &list);
5463 	}
5464 
5465 	/* now free all selected PAs */
5466 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5467 
5468 		/* remove from object (inode or locality group) */
5469 		if (pa->pa_type == MB_GROUP_PA) {
5470 			spin_lock(pa->pa_node_lock.lg_lock);
5471 			list_del_rcu(&pa->pa_node.lg_list);
5472 			spin_unlock(pa->pa_node_lock.lg_lock);
5473 		} else {
5474 			write_lock(pa->pa_node_lock.inode_lock);
5475 			ei = EXT4_I(pa->pa_inode);
5476 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5477 			write_unlock(pa->pa_node_lock.inode_lock);
5478 		}
5479 
5480 		list_del(&pa->u.pa_tmp_list);
5481 
5482 		if (pa->pa_type == MB_GROUP_PA) {
5483 			ext4_mb_release_group_pa(&e4b, pa);
5484 			call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5485 		} else {
5486 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5487 			ext4_mb_pa_free(pa);
5488 		}
5489 	}
5490 
5491 	ext4_unlock_group(sb, group);
5492 	ext4_mb_unload_buddy(&e4b);
5493 	put_bh(bitmap_bh);
5494 out_dbg:
5495 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5496 		 free, group, grp->bb_free);
5497 	return free;
5498 }
5499 
5500 /*
5501  * releases all non-used preallocated blocks for given inode
5502  *
5503  * It's important to discard preallocations under i_data_sem
5504  * We don't want another block to be served from the prealloc
5505  * space when we are discarding the inode prealloc space.
5506  *
5507  * FIXME!! Make sure it is valid at all the call sites
5508  */
ext4_discard_preallocations(struct inode * inode)5509 void ext4_discard_preallocations(struct inode *inode)
5510 {
5511 	struct ext4_inode_info *ei = EXT4_I(inode);
5512 	struct super_block *sb = inode->i_sb;
5513 	struct buffer_head *bitmap_bh = NULL;
5514 	struct ext4_prealloc_space *pa, *tmp;
5515 	ext4_group_t group = 0;
5516 	LIST_HEAD(list);
5517 	struct ext4_buddy e4b;
5518 	struct rb_node *iter;
5519 	int err;
5520 
5521 	if (!S_ISREG(inode->i_mode))
5522 		return;
5523 
5524 	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5525 		return;
5526 
5527 	mb_debug(sb, "discard preallocation for inode %lu\n",
5528 		 inode->i_ino);
5529 	trace_ext4_discard_preallocations(inode,
5530 			atomic_read(&ei->i_prealloc_active));
5531 
5532 repeat:
5533 	/* first, collect all pa's in the inode */
5534 	write_lock(&ei->i_prealloc_lock);
5535 	for (iter = rb_first(&ei->i_prealloc_node); iter;
5536 	     iter = rb_next(iter)) {
5537 		pa = rb_entry(iter, struct ext4_prealloc_space,
5538 			      pa_node.inode_node);
5539 		BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5540 
5541 		spin_lock(&pa->pa_lock);
5542 		if (atomic_read(&pa->pa_count)) {
5543 			/* this shouldn't happen often - nobody should
5544 			 * use preallocation while we're discarding it */
5545 			spin_unlock(&pa->pa_lock);
5546 			write_unlock(&ei->i_prealloc_lock);
5547 			ext4_msg(sb, KERN_ERR,
5548 				 "uh-oh! used pa while discarding");
5549 			WARN_ON(1);
5550 			schedule_timeout_uninterruptible(HZ);
5551 			goto repeat;
5552 
5553 		}
5554 		if (pa->pa_deleted == 0) {
5555 			ext4_mb_mark_pa_deleted(sb, pa);
5556 			spin_unlock(&pa->pa_lock);
5557 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5558 			list_add(&pa->u.pa_tmp_list, &list);
5559 			continue;
5560 		}
5561 
5562 		/* someone is deleting pa right now */
5563 		spin_unlock(&pa->pa_lock);
5564 		write_unlock(&ei->i_prealloc_lock);
5565 
5566 		/* we have to wait here because pa_deleted
5567 		 * doesn't mean pa is already unlinked from
5568 		 * the list. as we might be called from
5569 		 * ->clear_inode() the inode will get freed
5570 		 * and concurrent thread which is unlinking
5571 		 * pa from inode's list may access already
5572 		 * freed memory, bad-bad-bad */
5573 
5574 		/* XXX: if this happens too often, we can
5575 		 * add a flag to force wait only in case
5576 		 * of ->clear_inode(), but not in case of
5577 		 * regular truncate */
5578 		schedule_timeout_uninterruptible(HZ);
5579 		goto repeat;
5580 	}
5581 	write_unlock(&ei->i_prealloc_lock);
5582 
5583 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5584 		BUG_ON(pa->pa_type != MB_INODE_PA);
5585 		group = ext4_get_group_number(sb, pa->pa_pstart);
5586 
5587 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5588 					     GFP_NOFS|__GFP_NOFAIL);
5589 		if (err) {
5590 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5591 				       err, group);
5592 			continue;
5593 		}
5594 
5595 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5596 		if (IS_ERR(bitmap_bh)) {
5597 			err = PTR_ERR(bitmap_bh);
5598 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5599 				       err, group);
5600 			ext4_mb_unload_buddy(&e4b);
5601 			continue;
5602 		}
5603 
5604 		ext4_lock_group(sb, group);
5605 		list_del(&pa->pa_group_list);
5606 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5607 		ext4_unlock_group(sb, group);
5608 
5609 		ext4_mb_unload_buddy(&e4b);
5610 		put_bh(bitmap_bh);
5611 
5612 		list_del(&pa->u.pa_tmp_list);
5613 		ext4_mb_pa_free(pa);
5614 	}
5615 }
5616 
ext4_mb_pa_alloc(struct ext4_allocation_context * ac)5617 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5618 {
5619 	struct ext4_prealloc_space *pa;
5620 
5621 	BUG_ON(ext4_pspace_cachep == NULL);
5622 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5623 	if (!pa)
5624 		return -ENOMEM;
5625 	atomic_set(&pa->pa_count, 1);
5626 	ac->ac_pa = pa;
5627 	return 0;
5628 }
5629 
ext4_mb_pa_put_free(struct ext4_allocation_context * ac)5630 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5631 {
5632 	struct ext4_prealloc_space *pa = ac->ac_pa;
5633 
5634 	BUG_ON(!pa);
5635 	ac->ac_pa = NULL;
5636 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5637 	/*
5638 	 * current function is only called due to an error or due to
5639 	 * len of found blocks < len of requested blocks hence the PA has not
5640 	 * been added to grp->bb_prealloc_list. So we don't need to lock it
5641 	 */
5642 	pa->pa_deleted = 1;
5643 	ext4_mb_pa_free(pa);
5644 }
5645 
5646 #ifdef CONFIG_EXT4_DEBUG
ext4_mb_show_pa(struct super_block * sb)5647 static inline void ext4_mb_show_pa(struct super_block *sb)
5648 {
5649 	ext4_group_t i, ngroups;
5650 
5651 	if (ext4_forced_shutdown(sb))
5652 		return;
5653 
5654 	ngroups = ext4_get_groups_count(sb);
5655 	mb_debug(sb, "groups: ");
5656 	for (i = 0; i < ngroups; i++) {
5657 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5658 		struct ext4_prealloc_space *pa;
5659 		ext4_grpblk_t start;
5660 		struct list_head *cur;
5661 
5662 		if (!grp)
5663 			continue;
5664 		ext4_lock_group(sb, i);
5665 		list_for_each(cur, &grp->bb_prealloc_list) {
5666 			pa = list_entry(cur, struct ext4_prealloc_space,
5667 					pa_group_list);
5668 			spin_lock(&pa->pa_lock);
5669 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5670 						     NULL, &start);
5671 			spin_unlock(&pa->pa_lock);
5672 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5673 				 pa->pa_len);
5674 		}
5675 		ext4_unlock_group(sb, i);
5676 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5677 			 grp->bb_fragments);
5678 	}
5679 }
5680 
ext4_mb_show_ac(struct ext4_allocation_context * ac)5681 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5682 {
5683 	struct super_block *sb = ac->ac_sb;
5684 
5685 	if (ext4_forced_shutdown(sb))
5686 		return;
5687 
5688 	mb_debug(sb, "Can't allocate:"
5689 			" Allocation context details:");
5690 	mb_debug(sb, "status %u flags 0x%x",
5691 			ac->ac_status, ac->ac_flags);
5692 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5693 			"goal %lu/%lu/%lu@%lu, "
5694 			"best %lu/%lu/%lu@%lu cr %d",
5695 			(unsigned long)ac->ac_o_ex.fe_group,
5696 			(unsigned long)ac->ac_o_ex.fe_start,
5697 			(unsigned long)ac->ac_o_ex.fe_len,
5698 			(unsigned long)ac->ac_o_ex.fe_logical,
5699 			(unsigned long)ac->ac_g_ex.fe_group,
5700 			(unsigned long)ac->ac_g_ex.fe_start,
5701 			(unsigned long)ac->ac_g_ex.fe_len,
5702 			(unsigned long)ac->ac_g_ex.fe_logical,
5703 			(unsigned long)ac->ac_b_ex.fe_group,
5704 			(unsigned long)ac->ac_b_ex.fe_start,
5705 			(unsigned long)ac->ac_b_ex.fe_len,
5706 			(unsigned long)ac->ac_b_ex.fe_logical,
5707 			(int)ac->ac_criteria);
5708 	mb_debug(sb, "%u found", ac->ac_found);
5709 	mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5710 	if (ac->ac_pa)
5711 		mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5712 			 "group pa" : "inode pa");
5713 	ext4_mb_show_pa(sb);
5714 }
5715 #else
ext4_mb_show_pa(struct super_block * sb)5716 static inline void ext4_mb_show_pa(struct super_block *sb)
5717 {
5718 }
ext4_mb_show_ac(struct ext4_allocation_context * ac)5719 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5720 {
5721 	ext4_mb_show_pa(ac->ac_sb);
5722 }
5723 #endif
5724 
5725 /*
5726  * We use locality group preallocation for small size file. The size of the
5727  * file is determined by the current size or the resulting size after
5728  * allocation which ever is larger
5729  *
5730  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5731  */
ext4_mb_group_or_file(struct ext4_allocation_context * ac)5732 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5733 {
5734 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5735 	int bsbits = ac->ac_sb->s_blocksize_bits;
5736 	loff_t size, isize;
5737 	bool inode_pa_eligible, group_pa_eligible;
5738 
5739 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5740 		return;
5741 
5742 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5743 		return;
5744 
5745 	group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5746 	inode_pa_eligible = true;
5747 	size = extent_logical_end(sbi, &ac->ac_o_ex);
5748 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5749 		>> bsbits;
5750 
5751 	/* No point in using inode preallocation for closed files */
5752 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5753 	    !inode_is_open_for_write(ac->ac_inode))
5754 		inode_pa_eligible = false;
5755 
5756 	size = max(size, isize);
5757 	/* Don't use group allocation for large files */
5758 	if (size > sbi->s_mb_stream_request)
5759 		group_pa_eligible = false;
5760 
5761 	if (!group_pa_eligible) {
5762 		if (inode_pa_eligible)
5763 			ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5764 		else
5765 			ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5766 		return;
5767 	}
5768 
5769 	BUG_ON(ac->ac_lg != NULL);
5770 	/*
5771 	 * locality group prealloc space are per cpu. The reason for having
5772 	 * per cpu locality group is to reduce the contention between block
5773 	 * request from multiple CPUs.
5774 	 */
5775 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5776 
5777 	/* we're going to use group allocation */
5778 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5779 
5780 	/* serialize all allocations in the group */
5781 	mutex_lock(&ac->ac_lg->lg_mutex);
5782 }
5783 
5784 static noinline_for_stack void
ext4_mb_initialize_context(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)5785 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5786 				struct ext4_allocation_request *ar)
5787 {
5788 	struct super_block *sb = ar->inode->i_sb;
5789 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5790 	struct ext4_super_block *es = sbi->s_es;
5791 	ext4_group_t group;
5792 	unsigned int len;
5793 	ext4_fsblk_t goal;
5794 	ext4_grpblk_t block;
5795 
5796 	/* we can't allocate > group size */
5797 	len = ar->len;
5798 
5799 	/* just a dirty hack to filter too big requests  */
5800 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5801 		len = EXT4_CLUSTERS_PER_GROUP(sb);
5802 
5803 	/* start searching from the goal */
5804 	goal = ar->goal;
5805 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5806 			goal >= ext4_blocks_count(es))
5807 		goal = le32_to_cpu(es->s_first_data_block);
5808 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
5809 
5810 	/* set up allocation goals */
5811 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5812 	ac->ac_status = AC_STATUS_CONTINUE;
5813 	ac->ac_sb = sb;
5814 	ac->ac_inode = ar->inode;
5815 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5816 	ac->ac_o_ex.fe_group = group;
5817 	ac->ac_o_ex.fe_start = block;
5818 	ac->ac_o_ex.fe_len = len;
5819 	ac->ac_g_ex = ac->ac_o_ex;
5820 	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5821 	ac->ac_flags = ar->flags;
5822 
5823 	/* we have to define context: we'll work with a file or
5824 	 * locality group. this is a policy, actually */
5825 	ext4_mb_group_or_file(ac);
5826 
5827 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5828 			"left: %u/%u, right %u/%u to %swritable\n",
5829 			(unsigned) ar->len, (unsigned) ar->logical,
5830 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5831 			(unsigned) ar->lleft, (unsigned) ar->pleft,
5832 			(unsigned) ar->lright, (unsigned) ar->pright,
5833 			inode_is_open_for_write(ar->inode) ? "" : "non-");
5834 }
5835 
5836 static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block * sb,struct ext4_locality_group * lg,int order,int total_entries)5837 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5838 					struct ext4_locality_group *lg,
5839 					int order, int total_entries)
5840 {
5841 	ext4_group_t group = 0;
5842 	struct ext4_buddy e4b;
5843 	LIST_HEAD(discard_list);
5844 	struct ext4_prealloc_space *pa, *tmp;
5845 
5846 	mb_debug(sb, "discard locality group preallocation\n");
5847 
5848 	spin_lock(&lg->lg_prealloc_lock);
5849 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5850 				pa_node.lg_list,
5851 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5852 		spin_lock(&pa->pa_lock);
5853 		if (atomic_read(&pa->pa_count)) {
5854 			/*
5855 			 * This is the pa that we just used
5856 			 * for block allocation. So don't
5857 			 * free that
5858 			 */
5859 			spin_unlock(&pa->pa_lock);
5860 			continue;
5861 		}
5862 		if (pa->pa_deleted) {
5863 			spin_unlock(&pa->pa_lock);
5864 			continue;
5865 		}
5866 		/* only lg prealloc space */
5867 		BUG_ON(pa->pa_type != MB_GROUP_PA);
5868 
5869 		/* seems this one can be freed ... */
5870 		ext4_mb_mark_pa_deleted(sb, pa);
5871 		spin_unlock(&pa->pa_lock);
5872 
5873 		list_del_rcu(&pa->pa_node.lg_list);
5874 		list_add(&pa->u.pa_tmp_list, &discard_list);
5875 
5876 		total_entries--;
5877 		if (total_entries <= 5) {
5878 			/*
5879 			 * we want to keep only 5 entries
5880 			 * allowing it to grow to 8. This
5881 			 * mak sure we don't call discard
5882 			 * soon for this list.
5883 			 */
5884 			break;
5885 		}
5886 	}
5887 	spin_unlock(&lg->lg_prealloc_lock);
5888 
5889 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5890 		int err;
5891 
5892 		group = ext4_get_group_number(sb, pa->pa_pstart);
5893 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5894 					     GFP_NOFS|__GFP_NOFAIL);
5895 		if (err) {
5896 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5897 				       err, group);
5898 			continue;
5899 		}
5900 		ext4_lock_group(sb, group);
5901 		list_del(&pa->pa_group_list);
5902 		ext4_mb_release_group_pa(&e4b, pa);
5903 		ext4_unlock_group(sb, group);
5904 
5905 		ext4_mb_unload_buddy(&e4b);
5906 		list_del(&pa->u.pa_tmp_list);
5907 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5908 	}
5909 }
5910 
5911 /*
5912  * We have incremented pa_count. So it cannot be freed at this
5913  * point. Also we hold lg_mutex. So no parallel allocation is
5914  * possible from this lg. That means pa_free cannot be updated.
5915  *
5916  * A parallel ext4_mb_discard_group_preallocations is possible.
5917  * which can cause the lg_prealloc_list to be updated.
5918  */
5919 
ext4_mb_add_n_trim(struct ext4_allocation_context * ac)5920 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5921 {
5922 	int order, added = 0, lg_prealloc_count = 1;
5923 	struct super_block *sb = ac->ac_sb;
5924 	struct ext4_locality_group *lg = ac->ac_lg;
5925 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5926 
5927 	order = fls(pa->pa_free) - 1;
5928 	if (order > PREALLOC_TB_SIZE - 1)
5929 		/* The max size of hash table is PREALLOC_TB_SIZE */
5930 		order = PREALLOC_TB_SIZE - 1;
5931 	/* Add the prealloc space to lg */
5932 	spin_lock(&lg->lg_prealloc_lock);
5933 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5934 				pa_node.lg_list,
5935 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5936 		spin_lock(&tmp_pa->pa_lock);
5937 		if (tmp_pa->pa_deleted) {
5938 			spin_unlock(&tmp_pa->pa_lock);
5939 			continue;
5940 		}
5941 		if (!added && pa->pa_free < tmp_pa->pa_free) {
5942 			/* Add to the tail of the previous entry */
5943 			list_add_tail_rcu(&pa->pa_node.lg_list,
5944 						&tmp_pa->pa_node.lg_list);
5945 			added = 1;
5946 			/*
5947 			 * we want to count the total
5948 			 * number of entries in the list
5949 			 */
5950 		}
5951 		spin_unlock(&tmp_pa->pa_lock);
5952 		lg_prealloc_count++;
5953 	}
5954 	if (!added)
5955 		list_add_tail_rcu(&pa->pa_node.lg_list,
5956 					&lg->lg_prealloc_list[order]);
5957 	spin_unlock(&lg->lg_prealloc_lock);
5958 
5959 	/* Now trim the list to be not more than 8 elements */
5960 	if (lg_prealloc_count > 8)
5961 		ext4_mb_discard_lg_preallocations(sb, lg,
5962 						  order, lg_prealloc_count);
5963 }
5964 
5965 /*
5966  * release all resource we used in allocation
5967  */
ext4_mb_release_context(struct ext4_allocation_context * ac)5968 static void ext4_mb_release_context(struct ext4_allocation_context *ac)
5969 {
5970 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5971 	struct ext4_prealloc_space *pa = ac->ac_pa;
5972 	if (pa) {
5973 		if (pa->pa_type == MB_GROUP_PA) {
5974 			/* see comment in ext4_mb_use_group_pa() */
5975 			spin_lock(&pa->pa_lock);
5976 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5977 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5978 			pa->pa_free -= ac->ac_b_ex.fe_len;
5979 			pa->pa_len -= ac->ac_b_ex.fe_len;
5980 			spin_unlock(&pa->pa_lock);
5981 
5982 			/*
5983 			 * We want to add the pa to the right bucket.
5984 			 * Remove it from the list and while adding
5985 			 * make sure the list to which we are adding
5986 			 * doesn't grow big.
5987 			 */
5988 			if (likely(pa->pa_free)) {
5989 				spin_lock(pa->pa_node_lock.lg_lock);
5990 				list_del_rcu(&pa->pa_node.lg_list);
5991 				spin_unlock(pa->pa_node_lock.lg_lock);
5992 				ext4_mb_add_n_trim(ac);
5993 			}
5994 		}
5995 
5996 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
5997 	}
5998 	if (ac->ac_bitmap_folio)
5999 		folio_put(ac->ac_bitmap_folio);
6000 	if (ac->ac_buddy_folio)
6001 		folio_put(ac->ac_buddy_folio);
6002 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
6003 		mutex_unlock(&ac->ac_lg->lg_mutex);
6004 	ext4_mb_collect_stats(ac);
6005 }
6006 
ext4_mb_discard_preallocations(struct super_block * sb,int needed)6007 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6008 {
6009 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6010 	int ret;
6011 	int freed = 0, busy = 0;
6012 	int retry = 0;
6013 
6014 	trace_ext4_mb_discard_preallocations(sb, needed);
6015 
6016 	if (needed == 0)
6017 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6018  repeat:
6019 	for (i = 0; i < ngroups && needed > 0; i++) {
6020 		ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6021 		freed += ret;
6022 		needed -= ret;
6023 		cond_resched();
6024 	}
6025 
6026 	if (needed > 0 && busy && ++retry < 3) {
6027 		busy = 0;
6028 		goto repeat;
6029 	}
6030 
6031 	return freed;
6032 }
6033 
ext4_mb_discard_preallocations_should_retry(struct super_block * sb,struct ext4_allocation_context * ac,u64 * seq)6034 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6035 			struct ext4_allocation_context *ac, u64 *seq)
6036 {
6037 	int freed;
6038 	u64 seq_retry = 0;
6039 	bool ret = false;
6040 
6041 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6042 	if (freed) {
6043 		ret = true;
6044 		goto out_dbg;
6045 	}
6046 	seq_retry = ext4_get_discard_pa_seq_sum();
6047 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6048 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6049 		*seq = seq_retry;
6050 		ret = true;
6051 	}
6052 
6053 out_dbg:
6054 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6055 	return ret;
6056 }
6057 
6058 /*
6059  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6060  * linearly starting at the goal block and also excludes the blocks which
6061  * are going to be in use after fast commit replay.
6062  */
6063 static ext4_fsblk_t
ext4_mb_new_blocks_simple(struct ext4_allocation_request * ar,int * errp)6064 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6065 {
6066 	struct buffer_head *bitmap_bh;
6067 	struct super_block *sb = ar->inode->i_sb;
6068 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6069 	ext4_group_t group, nr;
6070 	ext4_grpblk_t blkoff;
6071 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6072 	ext4_grpblk_t i = 0;
6073 	ext4_fsblk_t goal, block;
6074 	struct ext4_super_block *es = sbi->s_es;
6075 
6076 	goal = ar->goal;
6077 	if (goal < le32_to_cpu(es->s_first_data_block) ||
6078 			goal >= ext4_blocks_count(es))
6079 		goal = le32_to_cpu(es->s_first_data_block);
6080 
6081 	ar->len = 0;
6082 	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6083 	for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6084 		bitmap_bh = ext4_read_block_bitmap(sb, group);
6085 		if (IS_ERR(bitmap_bh)) {
6086 			*errp = PTR_ERR(bitmap_bh);
6087 			pr_warn("Failed to read block bitmap\n");
6088 			return 0;
6089 		}
6090 
6091 		while (1) {
6092 			i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6093 						blkoff);
6094 			if (i >= max)
6095 				break;
6096 			if (ext4_fc_replay_check_excluded(sb,
6097 				ext4_group_first_block_no(sb, group) +
6098 				EXT4_C2B(sbi, i))) {
6099 				blkoff = i + 1;
6100 			} else
6101 				break;
6102 		}
6103 		brelse(bitmap_bh);
6104 		if (i < max)
6105 			break;
6106 
6107 		if (++group >= ext4_get_groups_count(sb))
6108 			group = 0;
6109 
6110 		blkoff = 0;
6111 	}
6112 
6113 	if (i >= max) {
6114 		*errp = -ENOSPC;
6115 		return 0;
6116 	}
6117 
6118 	block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6119 	ext4_mb_mark_bb(sb, block, 1, true);
6120 	ar->len = 1;
6121 
6122 	*errp = 0;
6123 	return block;
6124 }
6125 
6126 /*
6127  * Main entry point into mballoc to allocate blocks
6128  * it tries to use preallocation first, then falls back
6129  * to usual allocation
6130  */
ext4_mb_new_blocks(handle_t * handle,struct ext4_allocation_request * ar,int * errp)6131 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6132 				struct ext4_allocation_request *ar, int *errp)
6133 {
6134 	struct ext4_allocation_context *ac = NULL;
6135 	struct ext4_sb_info *sbi;
6136 	struct super_block *sb;
6137 	ext4_fsblk_t block = 0;
6138 	unsigned int inquota = 0;
6139 	unsigned int reserv_clstrs = 0;
6140 	int retries = 0;
6141 	u64 seq;
6142 
6143 	might_sleep();
6144 	sb = ar->inode->i_sb;
6145 	sbi = EXT4_SB(sb);
6146 
6147 	trace_ext4_request_blocks(ar);
6148 	if (sbi->s_mount_state & EXT4_FC_REPLAY)
6149 		return ext4_mb_new_blocks_simple(ar, errp);
6150 
6151 	/* Allow to use superuser reservation for quota file */
6152 	if (ext4_is_quota_file(ar->inode))
6153 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6154 
6155 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6156 		/* Without delayed allocation we need to verify
6157 		 * there is enough free blocks to do block allocation
6158 		 * and verify allocation doesn't exceed the quota limits.
6159 		 */
6160 		while (ar->len &&
6161 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6162 
6163 			/* let others to free the space */
6164 			cond_resched();
6165 			ar->len = ar->len >> 1;
6166 		}
6167 		if (!ar->len) {
6168 			ext4_mb_show_pa(sb);
6169 			*errp = -ENOSPC;
6170 			return 0;
6171 		}
6172 		reserv_clstrs = ar->len;
6173 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6174 			dquot_alloc_block_nofail(ar->inode,
6175 						 EXT4_C2B(sbi, ar->len));
6176 		} else {
6177 			while (ar->len &&
6178 				dquot_alloc_block(ar->inode,
6179 						  EXT4_C2B(sbi, ar->len))) {
6180 
6181 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6182 				ar->len--;
6183 			}
6184 		}
6185 		inquota = ar->len;
6186 		if (ar->len == 0) {
6187 			*errp = -EDQUOT;
6188 			goto out;
6189 		}
6190 	}
6191 
6192 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6193 	if (!ac) {
6194 		ar->len = 0;
6195 		*errp = -ENOMEM;
6196 		goto out;
6197 	}
6198 
6199 	ext4_mb_initialize_context(ac, ar);
6200 
6201 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6202 	seq = this_cpu_read(discard_pa_seq);
6203 	if (!ext4_mb_use_preallocated(ac)) {
6204 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6205 		ext4_mb_normalize_request(ac, ar);
6206 
6207 		*errp = ext4_mb_pa_alloc(ac);
6208 		if (*errp)
6209 			goto errout;
6210 repeat:
6211 		/* allocate space in core */
6212 		*errp = ext4_mb_regular_allocator(ac);
6213 		/*
6214 		 * pa allocated above is added to grp->bb_prealloc_list only
6215 		 * when we were able to allocate some block i.e. when
6216 		 * ac->ac_status == AC_STATUS_FOUND.
6217 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
6218 		 * So we have to free this pa here itself.
6219 		 */
6220 		if (*errp) {
6221 			ext4_mb_pa_put_free(ac);
6222 			ext4_discard_allocated_blocks(ac);
6223 			goto errout;
6224 		}
6225 		if (ac->ac_status == AC_STATUS_FOUND &&
6226 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6227 			ext4_mb_pa_put_free(ac);
6228 	}
6229 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6230 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6231 		if (*errp) {
6232 			ext4_discard_allocated_blocks(ac);
6233 			goto errout;
6234 		} else {
6235 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6236 			ar->len = ac->ac_b_ex.fe_len;
6237 		}
6238 	} else {
6239 		if (++retries < 3 &&
6240 		    ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6241 			goto repeat;
6242 		/*
6243 		 * If block allocation fails then the pa allocated above
6244 		 * needs to be freed here itself.
6245 		 */
6246 		ext4_mb_pa_put_free(ac);
6247 		*errp = -ENOSPC;
6248 	}
6249 
6250 	if (*errp) {
6251 errout:
6252 		ac->ac_b_ex.fe_len = 0;
6253 		ar->len = 0;
6254 		ext4_mb_show_ac(ac);
6255 	}
6256 	ext4_mb_release_context(ac);
6257 	kmem_cache_free(ext4_ac_cachep, ac);
6258 out:
6259 	if (inquota && ar->len < inquota)
6260 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6261 	if (!ar->len) {
6262 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6263 			/* release all the reserved blocks if non delalloc */
6264 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6265 						reserv_clstrs);
6266 	}
6267 
6268 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6269 
6270 	return block;
6271 }
6272 
6273 /*
6274  * We can merge two free data extents only if the physical blocks
6275  * are contiguous, AND the extents were freed by the same transaction,
6276  * AND the blocks are associated with the same group.
6277  */
ext4_try_merge_freed_extent(struct ext4_sb_info * sbi,struct ext4_free_data * entry,struct ext4_free_data * new_entry,struct rb_root * entry_rb_root)6278 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6279 					struct ext4_free_data *entry,
6280 					struct ext4_free_data *new_entry,
6281 					struct rb_root *entry_rb_root)
6282 {
6283 	if ((entry->efd_tid != new_entry->efd_tid) ||
6284 	    (entry->efd_group != new_entry->efd_group))
6285 		return;
6286 	if (entry->efd_start_cluster + entry->efd_count ==
6287 	    new_entry->efd_start_cluster) {
6288 		new_entry->efd_start_cluster = entry->efd_start_cluster;
6289 		new_entry->efd_count += entry->efd_count;
6290 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6291 		   entry->efd_start_cluster) {
6292 		new_entry->efd_count += entry->efd_count;
6293 	} else
6294 		return;
6295 	spin_lock(&sbi->s_md_lock);
6296 	list_del(&entry->efd_list);
6297 	spin_unlock(&sbi->s_md_lock);
6298 	rb_erase(&entry->efd_node, entry_rb_root);
6299 	kmem_cache_free(ext4_free_data_cachep, entry);
6300 }
6301 
6302 static noinline_for_stack void
ext4_mb_free_metadata(handle_t * handle,struct ext4_buddy * e4b,struct ext4_free_data * new_entry)6303 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6304 		      struct ext4_free_data *new_entry)
6305 {
6306 	ext4_group_t group = e4b->bd_group;
6307 	ext4_grpblk_t cluster;
6308 	ext4_grpblk_t clusters = new_entry->efd_count;
6309 	struct ext4_free_data *entry;
6310 	struct ext4_group_info *db = e4b->bd_info;
6311 	struct super_block *sb = e4b->bd_sb;
6312 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6313 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
6314 	struct rb_node *parent = NULL, *new_node;
6315 
6316 	BUG_ON(!ext4_handle_valid(handle));
6317 	BUG_ON(e4b->bd_bitmap_folio == NULL);
6318 	BUG_ON(e4b->bd_buddy_folio == NULL);
6319 
6320 	new_node = &new_entry->efd_node;
6321 	cluster = new_entry->efd_start_cluster;
6322 
6323 	if (!*n) {
6324 		/* first free block exent. We need to
6325 		   protect buddy cache from being freed,
6326 		 * otherwise we'll refresh it from
6327 		 * on-disk bitmap and lose not-yet-available
6328 		 * blocks */
6329 		folio_get(e4b->bd_buddy_folio);
6330 		folio_get(e4b->bd_bitmap_folio);
6331 	}
6332 	while (*n) {
6333 		parent = *n;
6334 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
6335 		if (cluster < entry->efd_start_cluster)
6336 			n = &(*n)->rb_left;
6337 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6338 			n = &(*n)->rb_right;
6339 		else {
6340 			ext4_grp_locked_error(sb, group, 0,
6341 				ext4_group_first_block_no(sb, group) +
6342 				EXT4_C2B(sbi, cluster),
6343 				"Block already on to-be-freed list");
6344 			kmem_cache_free(ext4_free_data_cachep, new_entry);
6345 			return;
6346 		}
6347 	}
6348 
6349 	rb_link_node(new_node, parent, n);
6350 	rb_insert_color(new_node, &db->bb_free_root);
6351 
6352 	/* Now try to see the extent can be merged to left and right */
6353 	node = rb_prev(new_node);
6354 	if (node) {
6355 		entry = rb_entry(node, struct ext4_free_data, efd_node);
6356 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6357 					    &(db->bb_free_root));
6358 	}
6359 
6360 	node = rb_next(new_node);
6361 	if (node) {
6362 		entry = rb_entry(node, struct ext4_free_data, efd_node);
6363 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6364 					    &(db->bb_free_root));
6365 	}
6366 
6367 	spin_lock(&sbi->s_md_lock);
6368 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]);
6369 	sbi->s_mb_free_pending += clusters;
6370 	spin_unlock(&sbi->s_md_lock);
6371 }
6372 
ext4_free_blocks_simple(struct inode * inode,ext4_fsblk_t block,unsigned long count)6373 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6374 					unsigned long count)
6375 {
6376 	struct super_block *sb = inode->i_sb;
6377 	ext4_group_t group;
6378 	ext4_grpblk_t blkoff;
6379 
6380 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6381 	ext4_mb_mark_context(NULL, sb, false, group, blkoff, count,
6382 			     EXT4_MB_BITMAP_MARKED_CHECK |
6383 			     EXT4_MB_SYNC_UPDATE,
6384 			     NULL);
6385 }
6386 
6387 /**
6388  * ext4_mb_clear_bb() -- helper function for freeing blocks.
6389  *			Used by ext4_free_blocks()
6390  * @handle:		handle for this transaction
6391  * @inode:		inode
6392  * @block:		starting physical block to be freed
6393  * @count:		number of blocks to be freed
6394  * @flags:		flags used by ext4_free_blocks
6395  */
ext4_mb_clear_bb(handle_t * handle,struct inode * inode,ext4_fsblk_t block,unsigned long count,int flags)6396 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6397 			       ext4_fsblk_t block, unsigned long count,
6398 			       int flags)
6399 {
6400 	struct super_block *sb = inode->i_sb;
6401 	struct ext4_group_info *grp;
6402 	unsigned int overflow;
6403 	ext4_grpblk_t bit;
6404 	ext4_group_t block_group;
6405 	struct ext4_sb_info *sbi;
6406 	struct ext4_buddy e4b;
6407 	unsigned int count_clusters;
6408 	int err = 0;
6409 	int mark_flags = 0;
6410 	ext4_grpblk_t changed;
6411 
6412 	sbi = EXT4_SB(sb);
6413 
6414 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6415 	    !ext4_inode_block_valid(inode, block, count)) {
6416 		ext4_error(sb, "Freeing blocks in system zone - "
6417 			   "Block = %llu, count = %lu", block, count);
6418 		/* err = 0. ext4_std_error should be a no op */
6419 		goto error_out;
6420 	}
6421 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6422 
6423 do_more:
6424 	overflow = 0;
6425 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6426 
6427 	grp = ext4_get_group_info(sb, block_group);
6428 	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6429 		return;
6430 
6431 	/*
6432 	 * Check to see if we are freeing blocks across a group
6433 	 * boundary.
6434 	 */
6435 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6436 		overflow = EXT4_C2B(sbi, bit) + count -
6437 			EXT4_BLOCKS_PER_GROUP(sb);
6438 		count -= overflow;
6439 		/* The range changed so it's no longer validated */
6440 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6441 	}
6442 	count_clusters = EXT4_NUM_B2C(sbi, count);
6443 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6444 
6445 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6446 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6447 				     GFP_NOFS|__GFP_NOFAIL);
6448 	if (err)
6449 		goto error_out;
6450 
6451 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6452 	    !ext4_inode_block_valid(inode, block, count)) {
6453 		ext4_error(sb, "Freeing blocks in system zone - "
6454 			   "Block = %llu, count = %lu", block, count);
6455 		/* err = 0. ext4_std_error should be a no op */
6456 		goto error_clean;
6457 	}
6458 
6459 #ifdef AGGRESSIVE_CHECK
6460 	mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK;
6461 #endif
6462 	err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6463 				   count_clusters, mark_flags, &changed);
6464 
6465 
6466 	if (err && changed == 0)
6467 		goto error_clean;
6468 
6469 #ifdef AGGRESSIVE_CHECK
6470 	BUG_ON(changed != count_clusters);
6471 #endif
6472 
6473 	/*
6474 	 * We need to make sure we don't reuse the freed block until after the
6475 	 * transaction is committed. We make an exception if the inode is to be
6476 	 * written in writeback mode since writeback mode has weak data
6477 	 * consistency guarantees.
6478 	 */
6479 	if (ext4_handle_valid(handle) &&
6480 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6481 	     !ext4_should_writeback_data(inode))) {
6482 		struct ext4_free_data *new_entry;
6483 		/*
6484 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6485 		 * to fail.
6486 		 */
6487 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6488 				GFP_NOFS|__GFP_NOFAIL);
6489 		new_entry->efd_start_cluster = bit;
6490 		new_entry->efd_group = block_group;
6491 		new_entry->efd_count = count_clusters;
6492 		new_entry->efd_tid = handle->h_transaction->t_tid;
6493 
6494 		ext4_lock_group(sb, block_group);
6495 		ext4_mb_free_metadata(handle, &e4b, new_entry);
6496 	} else {
6497 		if (test_opt(sb, DISCARD)) {
6498 			err = ext4_issue_discard(sb, block_group, bit,
6499 						 count_clusters);
6500 			/*
6501 			 * Ignore EOPNOTSUPP error. This is consistent with
6502 			 * what happens when using journal.
6503 			 */
6504 			if (err == -EOPNOTSUPP)
6505 				err = 0;
6506 			if (err)
6507 				ext4_msg(sb, KERN_WARNING, "discard request in"
6508 					 " group:%u block:%d count:%lu failed"
6509 					 " with %d", block_group, bit, count,
6510 					 err);
6511 		}
6512 
6513 		EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6514 
6515 		ext4_lock_group(sb, block_group);
6516 		mb_free_blocks(inode, &e4b, bit, count_clusters);
6517 	}
6518 
6519 	ext4_unlock_group(sb, block_group);
6520 
6521 	/*
6522 	 * on a bigalloc file system, defer the s_freeclusters_counter
6523 	 * update to the caller (ext4_remove_space and friends) so they
6524 	 * can determine if a cluster freed here should be rereserved
6525 	 */
6526 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6527 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6528 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6529 		percpu_counter_add(&sbi->s_freeclusters_counter,
6530 				   count_clusters);
6531 	}
6532 
6533 	if (overflow && !err) {
6534 		block += count;
6535 		count = overflow;
6536 		ext4_mb_unload_buddy(&e4b);
6537 		/* The range changed so it's no longer validated */
6538 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6539 		goto do_more;
6540 	}
6541 
6542 error_clean:
6543 	ext4_mb_unload_buddy(&e4b);
6544 error_out:
6545 	ext4_std_error(sb, err);
6546 }
6547 
6548 /**
6549  * ext4_free_blocks() -- Free given blocks and update quota
6550  * @handle:		handle for this transaction
6551  * @inode:		inode
6552  * @bh:			optional buffer of the block to be freed
6553  * @block:		starting physical block to be freed
6554  * @count:		number of blocks to be freed
6555  * @flags:		flags used by ext4_free_blocks
6556  */
ext4_free_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block,unsigned long count,int flags)6557 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6558 		      struct buffer_head *bh, ext4_fsblk_t block,
6559 		      unsigned long count, int flags)
6560 {
6561 	struct super_block *sb = inode->i_sb;
6562 	unsigned int overflow;
6563 	struct ext4_sb_info *sbi;
6564 
6565 	sbi = EXT4_SB(sb);
6566 
6567 	if (bh) {
6568 		if (block)
6569 			BUG_ON(block != bh->b_blocknr);
6570 		else
6571 			block = bh->b_blocknr;
6572 	}
6573 
6574 	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6575 		ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6576 		return;
6577 	}
6578 
6579 	might_sleep();
6580 
6581 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6582 	    !ext4_inode_block_valid(inode, block, count)) {
6583 		ext4_error(sb, "Freeing blocks not in datazone - "
6584 			   "block = %llu, count = %lu", block, count);
6585 		return;
6586 	}
6587 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6588 
6589 	ext4_debug("freeing block %llu\n", block);
6590 	trace_ext4_free_blocks(inode, block, count, flags);
6591 
6592 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6593 		BUG_ON(count > 1);
6594 
6595 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6596 			    inode, bh, block);
6597 	}
6598 
6599 	/*
6600 	 * If the extent to be freed does not begin on a cluster
6601 	 * boundary, we need to deal with partial clusters at the
6602 	 * beginning and end of the extent.  Normally we will free
6603 	 * blocks at the beginning or the end unless we are explicitly
6604 	 * requested to avoid doing so.
6605 	 */
6606 	overflow = EXT4_PBLK_COFF(sbi, block);
6607 	if (overflow) {
6608 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6609 			overflow = sbi->s_cluster_ratio - overflow;
6610 			block += overflow;
6611 			if (count > overflow)
6612 				count -= overflow;
6613 			else
6614 				return;
6615 		} else {
6616 			block -= overflow;
6617 			count += overflow;
6618 		}
6619 		/* The range changed so it's no longer validated */
6620 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6621 	}
6622 	overflow = EXT4_LBLK_COFF(sbi, count);
6623 	if (overflow) {
6624 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6625 			if (count > overflow)
6626 				count -= overflow;
6627 			else
6628 				return;
6629 		} else
6630 			count += sbi->s_cluster_ratio - overflow;
6631 		/* The range changed so it's no longer validated */
6632 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6633 	}
6634 
6635 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6636 		int i;
6637 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6638 
6639 		for (i = 0; i < count; i++) {
6640 			cond_resched();
6641 			if (is_metadata)
6642 				bh = sb_find_get_block_nonatomic(inode->i_sb,
6643 								 block + i);
6644 			ext4_forget(handle, is_metadata, inode, bh, block + i);
6645 		}
6646 	}
6647 
6648 	ext4_mb_clear_bb(handle, inode, block, count, flags);
6649 }
6650 
6651 /**
6652  * ext4_group_add_blocks() -- Add given blocks to an existing group
6653  * @handle:			handle to this transaction
6654  * @sb:				super block
6655  * @block:			start physical block to add to the block group
6656  * @count:			number of blocks to free
6657  *
6658  * This marks the blocks as free in the bitmap and buddy.
6659  */
ext4_group_add_blocks(handle_t * handle,struct super_block * sb,ext4_fsblk_t block,unsigned long count)6660 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6661 			 ext4_fsblk_t block, unsigned long count)
6662 {
6663 	ext4_group_t block_group;
6664 	ext4_grpblk_t bit;
6665 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6666 	struct ext4_buddy e4b;
6667 	int err = 0;
6668 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6669 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6670 	unsigned long cluster_count = last_cluster - first_cluster + 1;
6671 	ext4_grpblk_t changed;
6672 
6673 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6674 
6675 	if (cluster_count == 0)
6676 		return 0;
6677 
6678 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6679 	/*
6680 	 * Check to see if we are freeing blocks across a group
6681 	 * boundary.
6682 	 */
6683 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6684 		ext4_warning(sb, "too many blocks added to group %u",
6685 			     block_group);
6686 		err = -EINVAL;
6687 		goto error_out;
6688 	}
6689 
6690 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
6691 	if (err)
6692 		goto error_out;
6693 
6694 	if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6695 		ext4_error(sb, "Adding blocks in system zones - "
6696 			   "Block = %llu, count = %lu",
6697 			   block, count);
6698 		err = -EINVAL;
6699 		goto error_clean;
6700 	}
6701 
6702 	err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6703 				   cluster_count, EXT4_MB_BITMAP_MARKED_CHECK,
6704 				   &changed);
6705 	if (err && changed == 0)
6706 		goto error_clean;
6707 
6708 	if (changed != cluster_count)
6709 		ext4_error(sb, "bit already cleared in group %u", block_group);
6710 
6711 	ext4_lock_group(sb, block_group);
6712 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
6713 	ext4_unlock_group(sb, block_group);
6714 	percpu_counter_add(&sbi->s_freeclusters_counter,
6715 			   changed);
6716 
6717 error_clean:
6718 	ext4_mb_unload_buddy(&e4b);
6719 error_out:
6720 	ext4_std_error(sb, err);
6721 	return err;
6722 }
6723 
6724 /**
6725  * ext4_trim_extent -- function to TRIM one single free extent in the group
6726  * @sb:		super block for the file system
6727  * @start:	starting block of the free extent in the alloc. group
6728  * @count:	number of blocks to TRIM
6729  * @e4b:	ext4 buddy for the group
6730  *
6731  * Trim "count" blocks starting at "start" in the "group". To assure that no
6732  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6733  * be called with under the group lock.
6734  */
ext4_trim_extent(struct super_block * sb,int start,int count,struct ext4_buddy * e4b)6735 static int ext4_trim_extent(struct super_block *sb,
6736 		int start, int count, struct ext4_buddy *e4b)
6737 __releases(bitlock)
6738 __acquires(bitlock)
6739 {
6740 	struct ext4_free_extent ex;
6741 	ext4_group_t group = e4b->bd_group;
6742 	int ret = 0;
6743 
6744 	trace_ext4_trim_extent(sb, group, start, count);
6745 
6746 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
6747 
6748 	ex.fe_start = start;
6749 	ex.fe_group = group;
6750 	ex.fe_len = count;
6751 
6752 	/*
6753 	 * Mark blocks used, so no one can reuse them while
6754 	 * being trimmed.
6755 	 */
6756 	mb_mark_used(e4b, &ex);
6757 	ext4_unlock_group(sb, group);
6758 	ret = ext4_issue_discard(sb, group, start, count);
6759 	ext4_lock_group(sb, group);
6760 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
6761 	return ret;
6762 }
6763 
ext4_last_grp_cluster(struct super_block * sb,ext4_group_t grp)6764 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6765 					   ext4_group_t grp)
6766 {
6767 	unsigned long nr_clusters_in_group;
6768 
6769 	if (grp < (ext4_get_groups_count(sb) - 1))
6770 		nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
6771 	else
6772 		nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6773 					ext4_group_first_block_no(sb, grp))
6774 				       >> EXT4_CLUSTER_BITS(sb);
6775 
6776 	return nr_clusters_in_group - 1;
6777 }
6778 
ext4_trim_interrupted(void)6779 static bool ext4_trim_interrupted(void)
6780 {
6781 	return fatal_signal_pending(current) || freezing(current);
6782 }
6783 
ext4_try_to_trim_range(struct super_block * sb,struct ext4_buddy * e4b,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks)6784 static int ext4_try_to_trim_range(struct super_block *sb,
6785 		struct ext4_buddy *e4b, ext4_grpblk_t start,
6786 		ext4_grpblk_t max, ext4_grpblk_t minblocks)
6787 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6788 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6789 {
6790 	ext4_grpblk_t next, count, free_count, last, origin_start;
6791 	bool set_trimmed = false;
6792 	void *bitmap;
6793 
6794 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
6795 		return 0;
6796 
6797 	last = ext4_last_grp_cluster(sb, e4b->bd_group);
6798 	bitmap = e4b->bd_bitmap;
6799 	if (start == 0 && max >= last)
6800 		set_trimmed = true;
6801 	origin_start = start;
6802 	start = max(e4b->bd_info->bb_first_free, start);
6803 	count = 0;
6804 	free_count = 0;
6805 
6806 	while (start <= max) {
6807 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
6808 		if (start > max)
6809 			break;
6810 
6811 		next = mb_find_next_bit(bitmap, last + 1, start);
6812 		if (origin_start == 0 && next >= last)
6813 			set_trimmed = true;
6814 
6815 		if ((next - start) >= minblocks) {
6816 			int ret = ext4_trim_extent(sb, start, next - start, e4b);
6817 
6818 			if (ret && ret != -EOPNOTSUPP)
6819 				return count;
6820 			count += next - start;
6821 		}
6822 		free_count += next - start;
6823 		start = next + 1;
6824 
6825 		if (ext4_trim_interrupted())
6826 			return count;
6827 
6828 		if (need_resched()) {
6829 			ext4_unlock_group(sb, e4b->bd_group);
6830 			cond_resched();
6831 			ext4_lock_group(sb, e4b->bd_group);
6832 		}
6833 
6834 		if ((e4b->bd_info->bb_free - free_count) < minblocks)
6835 			break;
6836 	}
6837 
6838 	if (set_trimmed)
6839 		EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6840 
6841 	return count;
6842 }
6843 
6844 /**
6845  * ext4_trim_all_free -- function to trim all free space in alloc. group
6846  * @sb:			super block for file system
6847  * @group:		group to be trimmed
6848  * @start:		first group block to examine
6849  * @max:		last group block to examine
6850  * @minblocks:		minimum extent block count
6851  *
6852  * ext4_trim_all_free walks through group's block bitmap searching for free
6853  * extents. When the free extent is found, mark it as used in group buddy
6854  * bitmap. Then issue a TRIM command on this extent and free the extent in
6855  * the group buddy bitmap.
6856  */
6857 static ext4_grpblk_t
ext4_trim_all_free(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks)6858 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6859 		   ext4_grpblk_t start, ext4_grpblk_t max,
6860 		   ext4_grpblk_t minblocks)
6861 {
6862 	struct ext4_buddy e4b;
6863 	int ret;
6864 
6865 	trace_ext4_trim_all_free(sb, group, start, max);
6866 
6867 	ret = ext4_mb_load_buddy(sb, group, &e4b);
6868 	if (ret) {
6869 		ext4_warning(sb, "Error %d loading buddy information for %u",
6870 			     ret, group);
6871 		return ret;
6872 	}
6873 
6874 	ext4_lock_group(sb, group);
6875 
6876 	if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6877 	    minblocks < EXT4_SB(sb)->s_last_trim_minblks)
6878 		ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6879 	else
6880 		ret = 0;
6881 
6882 	ext4_unlock_group(sb, group);
6883 	ext4_mb_unload_buddy(&e4b);
6884 
6885 	ext4_debug("trimmed %d blocks in the group %d\n",
6886 		ret, group);
6887 
6888 	return ret;
6889 }
6890 
6891 /**
6892  * ext4_trim_fs() -- trim ioctl handle function
6893  * @sb:			superblock for filesystem
6894  * @range:		fstrim_range structure
6895  *
6896  * start:	First Byte to trim
6897  * len:		number of Bytes to trim from start
6898  * minlen:	minimum extent length in Bytes
6899  * ext4_trim_fs goes through all allocation groups containing Bytes from
6900  * start to start+len. For each such a group ext4_trim_all_free function
6901  * is invoked to trim all free space.
6902  */
ext4_trim_fs(struct super_block * sb,struct fstrim_range * range)6903 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6904 {
6905 	unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6906 	struct ext4_group_info *grp;
6907 	ext4_group_t group, first_group, last_group;
6908 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6909 	uint64_t start, end, minlen, trimmed = 0;
6910 	ext4_fsblk_t first_data_blk =
6911 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6912 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6913 	int ret = 0;
6914 
6915 	start = range->start >> sb->s_blocksize_bits;
6916 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
6917 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6918 			      range->minlen >> sb->s_blocksize_bits);
6919 
6920 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6921 	    start >= max_blks ||
6922 	    range->len < sb->s_blocksize)
6923 		return -EINVAL;
6924 	/* No point to try to trim less than discard granularity */
6925 	if (range->minlen < discard_granularity) {
6926 		minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6927 				discard_granularity >> sb->s_blocksize_bits);
6928 		if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6929 			goto out;
6930 	}
6931 	if (end >= max_blks - 1)
6932 		end = max_blks - 1;
6933 	if (end <= first_data_blk)
6934 		goto out;
6935 	if (start < first_data_blk)
6936 		start = first_data_blk;
6937 
6938 	/* Determine first and last group to examine based on start and end */
6939 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6940 				     &first_group, &first_cluster);
6941 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6942 				     &last_group, &last_cluster);
6943 
6944 	/* end now represents the last cluster to discard in this group */
6945 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6946 
6947 	for (group = first_group; group <= last_group; group++) {
6948 		if (ext4_trim_interrupted())
6949 			break;
6950 		grp = ext4_get_group_info(sb, group);
6951 		if (!grp)
6952 			continue;
6953 		/* We only do this if the grp has never been initialized */
6954 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6955 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6956 			if (ret)
6957 				break;
6958 		}
6959 
6960 		/*
6961 		 * For all the groups except the last one, last cluster will
6962 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6963 		 * change it for the last group, note that last_cluster is
6964 		 * already computed earlier by ext4_get_group_no_and_offset()
6965 		 */
6966 		if (group == last_group)
6967 			end = last_cluster;
6968 		if (grp->bb_free >= minlen) {
6969 			cnt = ext4_trim_all_free(sb, group, first_cluster,
6970 						 end, minlen);
6971 			if (cnt < 0) {
6972 				ret = cnt;
6973 				break;
6974 			}
6975 			trimmed += cnt;
6976 		}
6977 
6978 		/*
6979 		 * For every group except the first one, we are sure
6980 		 * that the first cluster to discard will be cluster #0.
6981 		 */
6982 		first_cluster = 0;
6983 	}
6984 
6985 	if (!ret)
6986 		EXT4_SB(sb)->s_last_trim_minblks = minlen;
6987 
6988 out:
6989 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6990 	return ret;
6991 }
6992 
6993 /* Iterate all the free extents in the group. */
6994 int
ext4_mballoc_query_range(struct super_block * sb,ext4_group_t group,ext4_grpblk_t first,ext4_grpblk_t end,ext4_mballoc_query_range_fn meta_formatter,ext4_mballoc_query_range_fn formatter,void * priv)6995 ext4_mballoc_query_range(
6996 	struct super_block		*sb,
6997 	ext4_group_t			group,
6998 	ext4_grpblk_t			first,
6999 	ext4_grpblk_t			end,
7000 	ext4_mballoc_query_range_fn	meta_formatter,
7001 	ext4_mballoc_query_range_fn	formatter,
7002 	void				*priv)
7003 {
7004 	void				*bitmap;
7005 	ext4_grpblk_t			start, next;
7006 	struct ext4_buddy		e4b;
7007 	int				error;
7008 
7009 	error = ext4_mb_load_buddy(sb, group, &e4b);
7010 	if (error)
7011 		return error;
7012 	bitmap = e4b.bd_bitmap;
7013 
7014 	ext4_lock_group(sb, group);
7015 
7016 	start = max(e4b.bd_info->bb_first_free, first);
7017 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7018 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7019 	if (meta_formatter && start != first) {
7020 		if (start > end)
7021 			start = end;
7022 		ext4_unlock_group(sb, group);
7023 		error = meta_formatter(sb, group, first, start - first,
7024 				       priv);
7025 		if (error)
7026 			goto out_unload;
7027 		ext4_lock_group(sb, group);
7028 	}
7029 	while (start <= end) {
7030 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
7031 		if (start > end)
7032 			break;
7033 		next = mb_find_next_bit(bitmap, end + 1, start);
7034 
7035 		ext4_unlock_group(sb, group);
7036 		error = formatter(sb, group, start, next - start, priv);
7037 		if (error)
7038 			goto out_unload;
7039 		ext4_lock_group(sb, group);
7040 
7041 		start = next + 1;
7042 	}
7043 
7044 	ext4_unlock_group(sb, group);
7045 out_unload:
7046 	ext4_mb_unload_buddy(&e4b);
7047 
7048 	return error;
7049 }
7050 
7051 #ifdef CONFIG_EXT4_KUNIT_TESTS
7052 #include "mballoc-test.c"
7053 #endif
7054