1 // SPDX-License-Identifier: GPL-2.0
2 #include "builtin.h"
3 #include "perf-sys.h"
4
5 #include "util/cpumap.h"
6 #include "util/evlist.h"
7 #include "util/evsel.h"
8 #include "util/evsel_fprintf.h"
9 #include "util/mutex.h"
10 #include "util/symbol.h"
11 #include "util/thread.h"
12 #include "util/header.h"
13 #include "util/session.h"
14 #include "util/tool.h"
15 #include "util/cloexec.h"
16 #include "util/thread_map.h"
17 #include "util/color.h"
18 #include "util/stat.h"
19 #include "util/string2.h"
20 #include "util/callchain.h"
21 #include "util/time-utils.h"
22
23 #include <subcmd/pager.h>
24 #include <subcmd/parse-options.h>
25 #include "util/trace-event.h"
26
27 #include "util/debug.h"
28 #include "util/event.h"
29 #include "util/util.h"
30
31 #include <linux/kernel.h>
32 #include <linux/log2.h>
33 #include <linux/zalloc.h>
34 #include <sys/prctl.h>
35 #include <sys/resource.h>
36 #include <inttypes.h>
37
38 #include <errno.h>
39 #include <semaphore.h>
40 #include <pthread.h>
41 #include <math.h>
42 #include <api/fs/fs.h>
43 #include <perf/cpumap.h>
44 #include <linux/time64.h>
45 #include <linux/err.h>
46
47 #include <linux/ctype.h>
48
49 #define PR_SET_NAME 15 /* Set process name */
50 #define MAX_CPUS 4096
51 #define COMM_LEN 20
52 #define SYM_LEN 129
53 #define MAX_PID 1024000
54 #define MAX_PRIO 140
55
56 static const char *cpu_list;
57 static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
58
59 struct sched_atom;
60
61 struct task_desc {
62 unsigned long nr;
63 unsigned long pid;
64 char comm[COMM_LEN];
65
66 unsigned long nr_events;
67 unsigned long curr_event;
68 struct sched_atom **atoms;
69
70 pthread_t thread;
71 sem_t sleep_sem;
72
73 sem_t ready_for_work;
74 sem_t work_done_sem;
75
76 u64 cpu_usage;
77 };
78
79 enum sched_event_type {
80 SCHED_EVENT_RUN,
81 SCHED_EVENT_SLEEP,
82 SCHED_EVENT_WAKEUP,
83 SCHED_EVENT_MIGRATION,
84 };
85
86 struct sched_atom {
87 enum sched_event_type type;
88 int specific_wait;
89 u64 timestamp;
90 u64 duration;
91 unsigned long nr;
92 sem_t *wait_sem;
93 struct task_desc *wakee;
94 };
95
96 enum thread_state {
97 THREAD_SLEEPING = 0,
98 THREAD_WAIT_CPU,
99 THREAD_SCHED_IN,
100 THREAD_IGNORE
101 };
102
103 struct work_atom {
104 struct list_head list;
105 enum thread_state state;
106 u64 sched_out_time;
107 u64 wake_up_time;
108 u64 sched_in_time;
109 u64 runtime;
110 };
111
112 struct work_atoms {
113 struct list_head work_list;
114 struct thread *thread;
115 struct rb_node node;
116 u64 max_lat;
117 u64 max_lat_start;
118 u64 max_lat_end;
119 u64 total_lat;
120 u64 nb_atoms;
121 u64 total_runtime;
122 int num_merged;
123 };
124
125 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
126
127 struct perf_sched;
128
129 struct trace_sched_handler {
130 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
131 struct perf_sample *sample, struct machine *machine);
132
133 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
134 struct perf_sample *sample, struct machine *machine);
135
136 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
137 struct perf_sample *sample, struct machine *machine);
138
139 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
140 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
141 struct machine *machine);
142
143 int (*migrate_task_event)(struct perf_sched *sched,
144 struct evsel *evsel,
145 struct perf_sample *sample,
146 struct machine *machine);
147 };
148
149 #define COLOR_PIDS PERF_COLOR_BLUE
150 #define COLOR_CPUS PERF_COLOR_BG_RED
151
152 struct perf_sched_map {
153 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
154 struct perf_cpu *comp_cpus;
155 bool comp;
156 struct perf_thread_map *color_pids;
157 const char *color_pids_str;
158 struct perf_cpu_map *color_cpus;
159 const char *color_cpus_str;
160 const char *task_name;
161 struct strlist *task_names;
162 bool fuzzy;
163 struct perf_cpu_map *cpus;
164 const char *cpus_str;
165 };
166
167 struct perf_sched {
168 struct perf_tool tool;
169 const char *sort_order;
170 unsigned long nr_tasks;
171 struct task_desc **pid_to_task;
172 struct task_desc **tasks;
173 const struct trace_sched_handler *tp_handler;
174 struct mutex start_work_mutex;
175 struct mutex work_done_wait_mutex;
176 int profile_cpu;
177 /*
178 * Track the current task - that way we can know whether there's any
179 * weird events, such as a task being switched away that is not current.
180 */
181 struct perf_cpu max_cpu;
182 u32 *curr_pid;
183 struct thread **curr_thread;
184 struct thread **curr_out_thread;
185 char next_shortname1;
186 char next_shortname2;
187 unsigned int replay_repeat;
188 unsigned long nr_run_events;
189 unsigned long nr_sleep_events;
190 unsigned long nr_wakeup_events;
191 unsigned long nr_sleep_corrections;
192 unsigned long nr_run_events_optimized;
193 unsigned long targetless_wakeups;
194 unsigned long multitarget_wakeups;
195 unsigned long nr_runs;
196 unsigned long nr_timestamps;
197 unsigned long nr_unordered_timestamps;
198 unsigned long nr_context_switch_bugs;
199 unsigned long nr_events;
200 unsigned long nr_lost_chunks;
201 unsigned long nr_lost_events;
202 u64 run_measurement_overhead;
203 u64 sleep_measurement_overhead;
204 u64 start_time;
205 u64 cpu_usage;
206 u64 runavg_cpu_usage;
207 u64 parent_cpu_usage;
208 u64 runavg_parent_cpu_usage;
209 u64 sum_runtime;
210 u64 sum_fluct;
211 u64 run_avg;
212 u64 all_runtime;
213 u64 all_count;
214 u64 *cpu_last_switched;
215 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
216 struct list_head sort_list, cmp_pid;
217 bool force;
218 bool skip_merge;
219 struct perf_sched_map map;
220
221 /* options for timehist command */
222 bool summary;
223 bool summary_only;
224 bool idle_hist;
225 bool show_callchain;
226 unsigned int max_stack;
227 bool show_cpu_visual;
228 bool show_wakeups;
229 bool show_next;
230 bool show_migrations;
231 bool show_state;
232 bool show_prio;
233 u64 skipped_samples;
234 const char *time_str;
235 struct perf_time_interval ptime;
236 struct perf_time_interval hist_time;
237 volatile bool thread_funcs_exit;
238 const char *prio_str;
239 DECLARE_BITMAP(prio_bitmap, MAX_PRIO);
240 };
241
242 /* per thread run time data */
243 struct thread_runtime {
244 u64 last_time; /* time of previous sched in/out event */
245 u64 dt_run; /* run time */
246 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */
247 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */
248 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */
249 u64 dt_delay; /* time between wakeup and sched-in */
250 u64 ready_to_run; /* time of wakeup */
251
252 struct stats run_stats;
253 u64 total_run_time;
254 u64 total_sleep_time;
255 u64 total_iowait_time;
256 u64 total_preempt_time;
257 u64 total_delay_time;
258
259 char last_state;
260
261 char shortname[3];
262 bool comm_changed;
263
264 u64 migrations;
265
266 int prio;
267 };
268
269 /* per event run time data */
270 struct evsel_runtime {
271 u64 *last_time; /* time this event was last seen per cpu */
272 u32 ncpu; /* highest cpu slot allocated */
273 };
274
275 /* per cpu idle time data */
276 struct idle_thread_runtime {
277 struct thread_runtime tr;
278 struct thread *last_thread;
279 struct rb_root_cached sorted_root;
280 struct callchain_root callchain;
281 struct callchain_cursor cursor;
282 };
283
284 /* track idle times per cpu */
285 static struct thread **idle_threads;
286 static int idle_max_cpu;
287 static char idle_comm[] = "<idle>";
288
get_nsecs(void)289 static u64 get_nsecs(void)
290 {
291 struct timespec ts;
292
293 clock_gettime(CLOCK_MONOTONIC, &ts);
294
295 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
296 }
297
burn_nsecs(struct perf_sched * sched,u64 nsecs)298 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
299 {
300 u64 T0 = get_nsecs(), T1;
301
302 do {
303 T1 = get_nsecs();
304 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
305 }
306
sleep_nsecs(u64 nsecs)307 static void sleep_nsecs(u64 nsecs)
308 {
309 struct timespec ts;
310
311 ts.tv_nsec = nsecs % 999999999;
312 ts.tv_sec = nsecs / 999999999;
313
314 nanosleep(&ts, NULL);
315 }
316
calibrate_run_measurement_overhead(struct perf_sched * sched)317 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
318 {
319 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
320 int i;
321
322 for (i = 0; i < 10; i++) {
323 T0 = get_nsecs();
324 burn_nsecs(sched, 0);
325 T1 = get_nsecs();
326 delta = T1-T0;
327 min_delta = min(min_delta, delta);
328 }
329 sched->run_measurement_overhead = min_delta;
330
331 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
332 }
333
calibrate_sleep_measurement_overhead(struct perf_sched * sched)334 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
335 {
336 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
337 int i;
338
339 for (i = 0; i < 10; i++) {
340 T0 = get_nsecs();
341 sleep_nsecs(10000);
342 T1 = get_nsecs();
343 delta = T1-T0;
344 min_delta = min(min_delta, delta);
345 }
346 min_delta -= 10000;
347 sched->sleep_measurement_overhead = min_delta;
348
349 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
350 }
351
352 static struct sched_atom *
get_new_event(struct task_desc * task,u64 timestamp)353 get_new_event(struct task_desc *task, u64 timestamp)
354 {
355 struct sched_atom *event = zalloc(sizeof(*event));
356 unsigned long idx = task->nr_events;
357 size_t size;
358
359 event->timestamp = timestamp;
360 event->nr = idx;
361
362 task->nr_events++;
363 size = sizeof(struct sched_atom *) * task->nr_events;
364 task->atoms = realloc(task->atoms, size);
365 BUG_ON(!task->atoms);
366
367 task->atoms[idx] = event;
368
369 return event;
370 }
371
last_event(struct task_desc * task)372 static struct sched_atom *last_event(struct task_desc *task)
373 {
374 if (!task->nr_events)
375 return NULL;
376
377 return task->atoms[task->nr_events - 1];
378 }
379
add_sched_event_run(struct perf_sched * sched,struct task_desc * task,u64 timestamp,u64 duration)380 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
381 u64 timestamp, u64 duration)
382 {
383 struct sched_atom *event, *curr_event = last_event(task);
384
385 /*
386 * optimize an existing RUN event by merging this one
387 * to it:
388 */
389 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
390 sched->nr_run_events_optimized++;
391 curr_event->duration += duration;
392 return;
393 }
394
395 event = get_new_event(task, timestamp);
396
397 event->type = SCHED_EVENT_RUN;
398 event->duration = duration;
399
400 sched->nr_run_events++;
401 }
402
add_sched_event_wakeup(struct perf_sched * sched,struct task_desc * task,u64 timestamp,struct task_desc * wakee)403 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
404 u64 timestamp, struct task_desc *wakee)
405 {
406 struct sched_atom *event, *wakee_event;
407
408 event = get_new_event(task, timestamp);
409 event->type = SCHED_EVENT_WAKEUP;
410 event->wakee = wakee;
411
412 wakee_event = last_event(wakee);
413 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
414 sched->targetless_wakeups++;
415 return;
416 }
417 if (wakee_event->wait_sem) {
418 sched->multitarget_wakeups++;
419 return;
420 }
421
422 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
423 sem_init(wakee_event->wait_sem, 0, 0);
424 wakee_event->specific_wait = 1;
425 event->wait_sem = wakee_event->wait_sem;
426
427 sched->nr_wakeup_events++;
428 }
429
add_sched_event_sleep(struct perf_sched * sched,struct task_desc * task,u64 timestamp,const char task_state __maybe_unused)430 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
431 u64 timestamp, const char task_state __maybe_unused)
432 {
433 struct sched_atom *event = get_new_event(task, timestamp);
434
435 event->type = SCHED_EVENT_SLEEP;
436
437 sched->nr_sleep_events++;
438 }
439
register_pid(struct perf_sched * sched,unsigned long pid,const char * comm)440 static struct task_desc *register_pid(struct perf_sched *sched,
441 unsigned long pid, const char *comm)
442 {
443 struct task_desc *task;
444 static int pid_max;
445
446 if (sched->pid_to_task == NULL) {
447 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
448 pid_max = MAX_PID;
449 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
450 }
451 if (pid >= (unsigned long)pid_max) {
452 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
453 sizeof(struct task_desc *))) == NULL);
454 while (pid >= (unsigned long)pid_max)
455 sched->pid_to_task[pid_max++] = NULL;
456 }
457
458 task = sched->pid_to_task[pid];
459
460 if (task)
461 return task;
462
463 task = zalloc(sizeof(*task));
464 task->pid = pid;
465 task->nr = sched->nr_tasks;
466 strcpy(task->comm, comm);
467 /*
468 * every task starts in sleeping state - this gets ignored
469 * if there's no wakeup pointing to this sleep state:
470 */
471 add_sched_event_sleep(sched, task, 0, 0);
472
473 sched->pid_to_task[pid] = task;
474 sched->nr_tasks++;
475 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
476 BUG_ON(!sched->tasks);
477 sched->tasks[task->nr] = task;
478
479 if (verbose > 0)
480 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
481
482 return task;
483 }
484
485
print_task_traces(struct perf_sched * sched)486 static void print_task_traces(struct perf_sched *sched)
487 {
488 struct task_desc *task;
489 unsigned long i;
490
491 for (i = 0; i < sched->nr_tasks; i++) {
492 task = sched->tasks[i];
493 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
494 task->nr, task->comm, task->pid, task->nr_events);
495 }
496 }
497
add_cross_task_wakeups(struct perf_sched * sched)498 static void add_cross_task_wakeups(struct perf_sched *sched)
499 {
500 struct task_desc *task1, *task2;
501 unsigned long i, j;
502
503 for (i = 0; i < sched->nr_tasks; i++) {
504 task1 = sched->tasks[i];
505 j = i + 1;
506 if (j == sched->nr_tasks)
507 j = 0;
508 task2 = sched->tasks[j];
509 add_sched_event_wakeup(sched, task1, 0, task2);
510 }
511 }
512
perf_sched__process_event(struct perf_sched * sched,struct sched_atom * atom)513 static void perf_sched__process_event(struct perf_sched *sched,
514 struct sched_atom *atom)
515 {
516 int ret = 0;
517
518 switch (atom->type) {
519 case SCHED_EVENT_RUN:
520 burn_nsecs(sched, atom->duration);
521 break;
522 case SCHED_EVENT_SLEEP:
523 if (atom->wait_sem)
524 ret = sem_wait(atom->wait_sem);
525 BUG_ON(ret);
526 break;
527 case SCHED_EVENT_WAKEUP:
528 if (atom->wait_sem)
529 ret = sem_post(atom->wait_sem);
530 BUG_ON(ret);
531 break;
532 case SCHED_EVENT_MIGRATION:
533 break;
534 default:
535 BUG_ON(1);
536 }
537 }
538
get_cpu_usage_nsec_parent(void)539 static u64 get_cpu_usage_nsec_parent(void)
540 {
541 struct rusage ru;
542 u64 sum;
543 int err;
544
545 err = getrusage(RUSAGE_SELF, &ru);
546 BUG_ON(err);
547
548 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
549 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
550
551 return sum;
552 }
553
self_open_counters(struct perf_sched * sched,unsigned long cur_task)554 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
555 {
556 struct perf_event_attr attr;
557 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
558 int fd;
559 struct rlimit limit;
560 bool need_privilege = false;
561
562 memset(&attr, 0, sizeof(attr));
563
564 attr.type = PERF_TYPE_SOFTWARE;
565 attr.config = PERF_COUNT_SW_TASK_CLOCK;
566
567 force_again:
568 fd = sys_perf_event_open(&attr, 0, -1, -1,
569 perf_event_open_cloexec_flag());
570
571 if (fd < 0) {
572 if (errno == EMFILE) {
573 if (sched->force) {
574 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
575 limit.rlim_cur += sched->nr_tasks - cur_task;
576 if (limit.rlim_cur > limit.rlim_max) {
577 limit.rlim_max = limit.rlim_cur;
578 need_privilege = true;
579 }
580 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
581 if (need_privilege && errno == EPERM)
582 strcpy(info, "Need privilege\n");
583 } else
584 goto force_again;
585 } else
586 strcpy(info, "Have a try with -f option\n");
587 }
588 pr_err("Error: sys_perf_event_open() syscall returned "
589 "with %d (%s)\n%s", fd,
590 str_error_r(errno, sbuf, sizeof(sbuf)), info);
591 exit(EXIT_FAILURE);
592 }
593 return fd;
594 }
595
get_cpu_usage_nsec_self(int fd)596 static u64 get_cpu_usage_nsec_self(int fd)
597 {
598 u64 runtime;
599 int ret;
600
601 ret = read(fd, &runtime, sizeof(runtime));
602 BUG_ON(ret != sizeof(runtime));
603
604 return runtime;
605 }
606
607 struct sched_thread_parms {
608 struct task_desc *task;
609 struct perf_sched *sched;
610 int fd;
611 };
612
thread_func(void * ctx)613 static void *thread_func(void *ctx)
614 {
615 struct sched_thread_parms *parms = ctx;
616 struct task_desc *this_task = parms->task;
617 struct perf_sched *sched = parms->sched;
618 u64 cpu_usage_0, cpu_usage_1;
619 unsigned long i, ret;
620 char comm2[22];
621 int fd = parms->fd;
622
623 zfree(&parms);
624
625 sprintf(comm2, ":%s", this_task->comm);
626 prctl(PR_SET_NAME, comm2);
627 if (fd < 0)
628 return NULL;
629
630 while (!sched->thread_funcs_exit) {
631 ret = sem_post(&this_task->ready_for_work);
632 BUG_ON(ret);
633 mutex_lock(&sched->start_work_mutex);
634 mutex_unlock(&sched->start_work_mutex);
635
636 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
637
638 for (i = 0; i < this_task->nr_events; i++) {
639 this_task->curr_event = i;
640 perf_sched__process_event(sched, this_task->atoms[i]);
641 }
642
643 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
644 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
645 ret = sem_post(&this_task->work_done_sem);
646 BUG_ON(ret);
647
648 mutex_lock(&sched->work_done_wait_mutex);
649 mutex_unlock(&sched->work_done_wait_mutex);
650 }
651 return NULL;
652 }
653
create_tasks(struct perf_sched * sched)654 static void create_tasks(struct perf_sched *sched)
655 EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
656 EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
657 {
658 struct task_desc *task;
659 pthread_attr_t attr;
660 unsigned long i;
661 int err;
662
663 err = pthread_attr_init(&attr);
664 BUG_ON(err);
665 err = pthread_attr_setstacksize(&attr,
666 (size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
667 BUG_ON(err);
668 mutex_lock(&sched->start_work_mutex);
669 mutex_lock(&sched->work_done_wait_mutex);
670 for (i = 0; i < sched->nr_tasks; i++) {
671 struct sched_thread_parms *parms = malloc(sizeof(*parms));
672 BUG_ON(parms == NULL);
673 parms->task = task = sched->tasks[i];
674 parms->sched = sched;
675 parms->fd = self_open_counters(sched, i);
676 sem_init(&task->sleep_sem, 0, 0);
677 sem_init(&task->ready_for_work, 0, 0);
678 sem_init(&task->work_done_sem, 0, 0);
679 task->curr_event = 0;
680 err = pthread_create(&task->thread, &attr, thread_func, parms);
681 BUG_ON(err);
682 }
683 }
684
destroy_tasks(struct perf_sched * sched)685 static void destroy_tasks(struct perf_sched *sched)
686 UNLOCK_FUNCTION(sched->start_work_mutex)
687 UNLOCK_FUNCTION(sched->work_done_wait_mutex)
688 {
689 struct task_desc *task;
690 unsigned long i;
691 int err;
692
693 mutex_unlock(&sched->start_work_mutex);
694 mutex_unlock(&sched->work_done_wait_mutex);
695 /* Get rid of threads so they won't be upset by mutex destrunction */
696 for (i = 0; i < sched->nr_tasks; i++) {
697 task = sched->tasks[i];
698 err = pthread_join(task->thread, NULL);
699 BUG_ON(err);
700 sem_destroy(&task->sleep_sem);
701 sem_destroy(&task->ready_for_work);
702 sem_destroy(&task->work_done_sem);
703 }
704 }
705
wait_for_tasks(struct perf_sched * sched)706 static void wait_for_tasks(struct perf_sched *sched)
707 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
708 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
709 {
710 u64 cpu_usage_0, cpu_usage_1;
711 struct task_desc *task;
712 unsigned long i, ret;
713
714 sched->start_time = get_nsecs();
715 sched->cpu_usage = 0;
716 mutex_unlock(&sched->work_done_wait_mutex);
717
718 for (i = 0; i < sched->nr_tasks; i++) {
719 task = sched->tasks[i];
720 ret = sem_wait(&task->ready_for_work);
721 BUG_ON(ret);
722 sem_init(&task->ready_for_work, 0, 0);
723 }
724 mutex_lock(&sched->work_done_wait_mutex);
725
726 cpu_usage_0 = get_cpu_usage_nsec_parent();
727
728 mutex_unlock(&sched->start_work_mutex);
729
730 for (i = 0; i < sched->nr_tasks; i++) {
731 task = sched->tasks[i];
732 ret = sem_wait(&task->work_done_sem);
733 BUG_ON(ret);
734 sem_init(&task->work_done_sem, 0, 0);
735 sched->cpu_usage += task->cpu_usage;
736 task->cpu_usage = 0;
737 }
738
739 cpu_usage_1 = get_cpu_usage_nsec_parent();
740 if (!sched->runavg_cpu_usage)
741 sched->runavg_cpu_usage = sched->cpu_usage;
742 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
743
744 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
745 if (!sched->runavg_parent_cpu_usage)
746 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
747 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
748 sched->parent_cpu_usage)/sched->replay_repeat;
749
750 mutex_lock(&sched->start_work_mutex);
751
752 for (i = 0; i < sched->nr_tasks; i++) {
753 task = sched->tasks[i];
754 sem_init(&task->sleep_sem, 0, 0);
755 task->curr_event = 0;
756 }
757 }
758
run_one_test(struct perf_sched * sched)759 static void run_one_test(struct perf_sched *sched)
760 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
761 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
762 {
763 u64 T0, T1, delta, avg_delta, fluct;
764
765 T0 = get_nsecs();
766 wait_for_tasks(sched);
767 T1 = get_nsecs();
768
769 delta = T1 - T0;
770 sched->sum_runtime += delta;
771 sched->nr_runs++;
772
773 avg_delta = sched->sum_runtime / sched->nr_runs;
774 if (delta < avg_delta)
775 fluct = avg_delta - delta;
776 else
777 fluct = delta - avg_delta;
778 sched->sum_fluct += fluct;
779 if (!sched->run_avg)
780 sched->run_avg = delta;
781 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
782
783 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
784
785 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
786
787 printf("cpu: %0.2f / %0.2f",
788 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
789
790 #if 0
791 /*
792 * rusage statistics done by the parent, these are less
793 * accurate than the sched->sum_exec_runtime based statistics:
794 */
795 printf(" [%0.2f / %0.2f]",
796 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
797 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
798 #endif
799
800 printf("\n");
801
802 if (sched->nr_sleep_corrections)
803 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
804 sched->nr_sleep_corrections = 0;
805 }
806
test_calibrations(struct perf_sched * sched)807 static void test_calibrations(struct perf_sched *sched)
808 {
809 u64 T0, T1;
810
811 T0 = get_nsecs();
812 burn_nsecs(sched, NSEC_PER_MSEC);
813 T1 = get_nsecs();
814
815 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
816
817 T0 = get_nsecs();
818 sleep_nsecs(NSEC_PER_MSEC);
819 T1 = get_nsecs();
820
821 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
822 }
823
824 static int
replay_wakeup_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)825 replay_wakeup_event(struct perf_sched *sched,
826 struct evsel *evsel, struct perf_sample *sample,
827 struct machine *machine __maybe_unused)
828 {
829 const char *comm = evsel__strval(evsel, sample, "comm");
830 const u32 pid = evsel__intval(evsel, sample, "pid");
831 struct task_desc *waker, *wakee;
832
833 if (verbose > 0) {
834 printf("sched_wakeup event %p\n", evsel);
835
836 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
837 }
838
839 waker = register_pid(sched, sample->tid, "<unknown>");
840 wakee = register_pid(sched, pid, comm);
841
842 add_sched_event_wakeup(sched, waker, sample->time, wakee);
843 return 0;
844 }
845
replay_switch_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)846 static int replay_switch_event(struct perf_sched *sched,
847 struct evsel *evsel,
848 struct perf_sample *sample,
849 struct machine *machine __maybe_unused)
850 {
851 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"),
852 *next_comm = evsel__strval(evsel, sample, "next_comm");
853 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
854 next_pid = evsel__intval(evsel, sample, "next_pid");
855 const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
856 struct task_desc *prev, __maybe_unused *next;
857 u64 timestamp0, timestamp = sample->time;
858 int cpu = sample->cpu;
859 s64 delta;
860
861 if (verbose > 0)
862 printf("sched_switch event %p\n", evsel);
863
864 if (cpu >= MAX_CPUS || cpu < 0)
865 return 0;
866
867 timestamp0 = sched->cpu_last_switched[cpu];
868 if (timestamp0)
869 delta = timestamp - timestamp0;
870 else
871 delta = 0;
872
873 if (delta < 0) {
874 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
875 return -1;
876 }
877
878 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
879 prev_comm, prev_pid, next_comm, next_pid, delta);
880
881 prev = register_pid(sched, prev_pid, prev_comm);
882 next = register_pid(sched, next_pid, next_comm);
883
884 sched->cpu_last_switched[cpu] = timestamp;
885
886 add_sched_event_run(sched, prev, timestamp, delta);
887 add_sched_event_sleep(sched, prev, timestamp, prev_state);
888
889 return 0;
890 }
891
replay_fork_event(struct perf_sched * sched,union perf_event * event,struct machine * machine)892 static int replay_fork_event(struct perf_sched *sched,
893 union perf_event *event,
894 struct machine *machine)
895 {
896 struct thread *child, *parent;
897
898 child = machine__findnew_thread(machine, event->fork.pid,
899 event->fork.tid);
900 parent = machine__findnew_thread(machine, event->fork.ppid,
901 event->fork.ptid);
902
903 if (child == NULL || parent == NULL) {
904 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
905 child, parent);
906 goto out_put;
907 }
908
909 if (verbose > 0) {
910 printf("fork event\n");
911 printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
912 printf("... child: %s/%d\n", thread__comm_str(child), thread__tid(child));
913 }
914
915 register_pid(sched, thread__tid(parent), thread__comm_str(parent));
916 register_pid(sched, thread__tid(child), thread__comm_str(child));
917 out_put:
918 thread__put(child);
919 thread__put(parent);
920 return 0;
921 }
922
923 struct sort_dimension {
924 const char *name;
925 sort_fn_t cmp;
926 struct list_head list;
927 };
928
init_prio(struct thread_runtime * r)929 static inline void init_prio(struct thread_runtime *r)
930 {
931 r->prio = -1;
932 }
933
934 /*
935 * handle runtime stats saved per thread
936 */
thread__init_runtime(struct thread * thread)937 static struct thread_runtime *thread__init_runtime(struct thread *thread)
938 {
939 struct thread_runtime *r;
940
941 r = zalloc(sizeof(struct thread_runtime));
942 if (!r)
943 return NULL;
944
945 init_stats(&r->run_stats);
946 init_prio(r);
947 thread__set_priv(thread, r);
948
949 return r;
950 }
951
thread__get_runtime(struct thread * thread)952 static struct thread_runtime *thread__get_runtime(struct thread *thread)
953 {
954 struct thread_runtime *tr;
955
956 tr = thread__priv(thread);
957 if (tr == NULL) {
958 tr = thread__init_runtime(thread);
959 if (tr == NULL)
960 pr_debug("Failed to malloc memory for runtime data.\n");
961 }
962
963 return tr;
964 }
965
966 static int
thread_lat_cmp(struct list_head * list,struct work_atoms * l,struct work_atoms * r)967 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
968 {
969 struct sort_dimension *sort;
970 int ret = 0;
971
972 BUG_ON(list_empty(list));
973
974 list_for_each_entry(sort, list, list) {
975 ret = sort->cmp(l, r);
976 if (ret)
977 return ret;
978 }
979
980 return ret;
981 }
982
983 static struct work_atoms *
thread_atoms_search(struct rb_root_cached * root,struct thread * thread,struct list_head * sort_list)984 thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
985 struct list_head *sort_list)
986 {
987 struct rb_node *node = root->rb_root.rb_node;
988 struct work_atoms key = { .thread = thread };
989
990 while (node) {
991 struct work_atoms *atoms;
992 int cmp;
993
994 atoms = container_of(node, struct work_atoms, node);
995
996 cmp = thread_lat_cmp(sort_list, &key, atoms);
997 if (cmp > 0)
998 node = node->rb_left;
999 else if (cmp < 0)
1000 node = node->rb_right;
1001 else {
1002 BUG_ON(!RC_CHK_EQUAL(thread, atoms->thread));
1003 return atoms;
1004 }
1005 }
1006 return NULL;
1007 }
1008
1009 static void
__thread_latency_insert(struct rb_root_cached * root,struct work_atoms * data,struct list_head * sort_list)1010 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1011 struct list_head *sort_list)
1012 {
1013 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1014 bool leftmost = true;
1015
1016 while (*new) {
1017 struct work_atoms *this;
1018 int cmp;
1019
1020 this = container_of(*new, struct work_atoms, node);
1021 parent = *new;
1022
1023 cmp = thread_lat_cmp(sort_list, data, this);
1024
1025 if (cmp > 0)
1026 new = &((*new)->rb_left);
1027 else {
1028 new = &((*new)->rb_right);
1029 leftmost = false;
1030 }
1031 }
1032
1033 rb_link_node(&data->node, parent, new);
1034 rb_insert_color_cached(&data->node, root, leftmost);
1035 }
1036
thread_atoms_insert(struct perf_sched * sched,struct thread * thread)1037 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1038 {
1039 struct work_atoms *atoms = zalloc(sizeof(*atoms));
1040 if (!atoms) {
1041 pr_err("No memory at %s\n", __func__);
1042 return -1;
1043 }
1044
1045 atoms->thread = thread__get(thread);
1046 INIT_LIST_HEAD(&atoms->work_list);
1047 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1048 return 0;
1049 }
1050
1051 static int
add_sched_out_event(struct work_atoms * atoms,char run_state,u64 timestamp)1052 add_sched_out_event(struct work_atoms *atoms,
1053 char run_state,
1054 u64 timestamp)
1055 {
1056 struct work_atom *atom = zalloc(sizeof(*atom));
1057 if (!atom) {
1058 pr_err("Non memory at %s", __func__);
1059 return -1;
1060 }
1061
1062 atom->sched_out_time = timestamp;
1063
1064 if (run_state == 'R') {
1065 atom->state = THREAD_WAIT_CPU;
1066 atom->wake_up_time = atom->sched_out_time;
1067 }
1068
1069 list_add_tail(&atom->list, &atoms->work_list);
1070 return 0;
1071 }
1072
1073 static void
add_runtime_event(struct work_atoms * atoms,u64 delta,u64 timestamp __maybe_unused)1074 add_runtime_event(struct work_atoms *atoms, u64 delta,
1075 u64 timestamp __maybe_unused)
1076 {
1077 struct work_atom *atom;
1078
1079 BUG_ON(list_empty(&atoms->work_list));
1080
1081 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1082
1083 atom->runtime += delta;
1084 atoms->total_runtime += delta;
1085 }
1086
1087 static void
add_sched_in_event(struct work_atoms * atoms,u64 timestamp)1088 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1089 {
1090 struct work_atom *atom;
1091 u64 delta;
1092
1093 if (list_empty(&atoms->work_list))
1094 return;
1095
1096 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1097
1098 if (atom->state != THREAD_WAIT_CPU)
1099 return;
1100
1101 if (timestamp < atom->wake_up_time) {
1102 atom->state = THREAD_IGNORE;
1103 return;
1104 }
1105
1106 atom->state = THREAD_SCHED_IN;
1107 atom->sched_in_time = timestamp;
1108
1109 delta = atom->sched_in_time - atom->wake_up_time;
1110 atoms->total_lat += delta;
1111 if (delta > atoms->max_lat) {
1112 atoms->max_lat = delta;
1113 atoms->max_lat_start = atom->wake_up_time;
1114 atoms->max_lat_end = timestamp;
1115 }
1116 atoms->nb_atoms++;
1117 }
1118
free_work_atoms(struct work_atoms * atoms)1119 static void free_work_atoms(struct work_atoms *atoms)
1120 {
1121 struct work_atom *atom, *tmp;
1122
1123 if (atoms == NULL)
1124 return;
1125
1126 list_for_each_entry_safe(atom, tmp, &atoms->work_list, list) {
1127 list_del(&atom->list);
1128 free(atom);
1129 }
1130 thread__zput(atoms->thread);
1131 free(atoms);
1132 }
1133
latency_switch_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1134 static int latency_switch_event(struct perf_sched *sched,
1135 struct evsel *evsel,
1136 struct perf_sample *sample,
1137 struct machine *machine)
1138 {
1139 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1140 next_pid = evsel__intval(evsel, sample, "next_pid");
1141 const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
1142 struct work_atoms *out_events, *in_events;
1143 struct thread *sched_out, *sched_in;
1144 u64 timestamp0, timestamp = sample->time;
1145 int cpu = sample->cpu, err = -1;
1146 s64 delta;
1147
1148 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1149
1150 timestamp0 = sched->cpu_last_switched[cpu];
1151 sched->cpu_last_switched[cpu] = timestamp;
1152 if (timestamp0)
1153 delta = timestamp - timestamp0;
1154 else
1155 delta = 0;
1156
1157 if (delta < 0) {
1158 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1159 return -1;
1160 }
1161
1162 sched_out = machine__findnew_thread(machine, -1, prev_pid);
1163 sched_in = machine__findnew_thread(machine, -1, next_pid);
1164 if (sched_out == NULL || sched_in == NULL)
1165 goto out_put;
1166
1167 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1168 if (!out_events) {
1169 if (thread_atoms_insert(sched, sched_out))
1170 goto out_put;
1171 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1172 if (!out_events) {
1173 pr_err("out-event: Internal tree error");
1174 goto out_put;
1175 }
1176 }
1177 if (add_sched_out_event(out_events, prev_state, timestamp))
1178 return -1;
1179
1180 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1181 if (!in_events) {
1182 if (thread_atoms_insert(sched, sched_in))
1183 goto out_put;
1184 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1185 if (!in_events) {
1186 pr_err("in-event: Internal tree error");
1187 goto out_put;
1188 }
1189 /*
1190 * Take came in we have not heard about yet,
1191 * add in an initial atom in runnable state:
1192 */
1193 if (add_sched_out_event(in_events, 'R', timestamp))
1194 goto out_put;
1195 }
1196 add_sched_in_event(in_events, timestamp);
1197 err = 0;
1198 out_put:
1199 thread__put(sched_out);
1200 thread__put(sched_in);
1201 return err;
1202 }
1203
latency_runtime_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1204 static int latency_runtime_event(struct perf_sched *sched,
1205 struct evsel *evsel,
1206 struct perf_sample *sample,
1207 struct machine *machine)
1208 {
1209 const u32 pid = evsel__intval(evsel, sample, "pid");
1210 const u64 runtime = evsel__intval(evsel, sample, "runtime");
1211 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1212 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1213 u64 timestamp = sample->time;
1214 int cpu = sample->cpu, err = -1;
1215
1216 if (thread == NULL)
1217 return -1;
1218
1219 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1220 if (!atoms) {
1221 if (thread_atoms_insert(sched, thread))
1222 goto out_put;
1223 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1224 if (!atoms) {
1225 pr_err("in-event: Internal tree error");
1226 goto out_put;
1227 }
1228 if (add_sched_out_event(atoms, 'R', timestamp))
1229 goto out_put;
1230 }
1231
1232 add_runtime_event(atoms, runtime, timestamp);
1233 err = 0;
1234 out_put:
1235 thread__put(thread);
1236 return err;
1237 }
1238
latency_wakeup_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1239 static int latency_wakeup_event(struct perf_sched *sched,
1240 struct evsel *evsel,
1241 struct perf_sample *sample,
1242 struct machine *machine)
1243 {
1244 const u32 pid = evsel__intval(evsel, sample, "pid");
1245 struct work_atoms *atoms;
1246 struct work_atom *atom;
1247 struct thread *wakee;
1248 u64 timestamp = sample->time;
1249 int err = -1;
1250
1251 wakee = machine__findnew_thread(machine, -1, pid);
1252 if (wakee == NULL)
1253 return -1;
1254 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1255 if (!atoms) {
1256 if (thread_atoms_insert(sched, wakee))
1257 goto out_put;
1258 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1259 if (!atoms) {
1260 pr_err("wakeup-event: Internal tree error");
1261 goto out_put;
1262 }
1263 if (add_sched_out_event(atoms, 'S', timestamp))
1264 goto out_put;
1265 }
1266
1267 BUG_ON(list_empty(&atoms->work_list));
1268
1269 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1270
1271 /*
1272 * As we do not guarantee the wakeup event happens when
1273 * task is out of run queue, also may happen when task is
1274 * on run queue and wakeup only change ->state to TASK_RUNNING,
1275 * then we should not set the ->wake_up_time when wake up a
1276 * task which is on run queue.
1277 *
1278 * You WILL be missing events if you've recorded only
1279 * one CPU, or are only looking at only one, so don't
1280 * skip in this case.
1281 */
1282 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1283 goto out_ok;
1284
1285 sched->nr_timestamps++;
1286 if (atom->sched_out_time > timestamp) {
1287 sched->nr_unordered_timestamps++;
1288 goto out_ok;
1289 }
1290
1291 atom->state = THREAD_WAIT_CPU;
1292 atom->wake_up_time = timestamp;
1293 out_ok:
1294 err = 0;
1295 out_put:
1296 thread__put(wakee);
1297 return err;
1298 }
1299
latency_migrate_task_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1300 static int latency_migrate_task_event(struct perf_sched *sched,
1301 struct evsel *evsel,
1302 struct perf_sample *sample,
1303 struct machine *machine)
1304 {
1305 const u32 pid = evsel__intval(evsel, sample, "pid");
1306 u64 timestamp = sample->time;
1307 struct work_atoms *atoms;
1308 struct work_atom *atom;
1309 struct thread *migrant;
1310 int err = -1;
1311
1312 /*
1313 * Only need to worry about migration when profiling one CPU.
1314 */
1315 if (sched->profile_cpu == -1)
1316 return 0;
1317
1318 migrant = machine__findnew_thread(machine, -1, pid);
1319 if (migrant == NULL)
1320 return -1;
1321 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1322 if (!atoms) {
1323 if (thread_atoms_insert(sched, migrant))
1324 goto out_put;
1325 register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1326 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1327 if (!atoms) {
1328 pr_err("migration-event: Internal tree error");
1329 goto out_put;
1330 }
1331 if (add_sched_out_event(atoms, 'R', timestamp))
1332 goto out_put;
1333 }
1334
1335 BUG_ON(list_empty(&atoms->work_list));
1336
1337 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1338 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1339
1340 sched->nr_timestamps++;
1341
1342 if (atom->sched_out_time > timestamp)
1343 sched->nr_unordered_timestamps++;
1344 err = 0;
1345 out_put:
1346 thread__put(migrant);
1347 return err;
1348 }
1349
output_lat_thread(struct perf_sched * sched,struct work_atoms * work_list)1350 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1351 {
1352 int i;
1353 int ret;
1354 u64 avg;
1355 char max_lat_start[32], max_lat_end[32];
1356
1357 if (!work_list->nb_atoms)
1358 return;
1359 /*
1360 * Ignore idle threads:
1361 */
1362 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1363 return;
1364
1365 sched->all_runtime += work_list->total_runtime;
1366 sched->all_count += work_list->nb_atoms;
1367
1368 if (work_list->num_merged > 1) {
1369 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread),
1370 work_list->num_merged);
1371 } else {
1372 ret = printf(" %s:%d ", thread__comm_str(work_list->thread),
1373 thread__tid(work_list->thread));
1374 }
1375
1376 for (i = 0; i < 24 - ret; i++)
1377 printf(" ");
1378
1379 avg = work_list->total_lat / work_list->nb_atoms;
1380 timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1381 timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1382
1383 printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1384 (double)work_list->total_runtime / NSEC_PER_MSEC,
1385 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1386 (double)work_list->max_lat / NSEC_PER_MSEC,
1387 max_lat_start, max_lat_end);
1388 }
1389
pid_cmp(struct work_atoms * l,struct work_atoms * r)1390 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1391 {
1392 pid_t l_tid, r_tid;
1393
1394 if (RC_CHK_EQUAL(l->thread, r->thread))
1395 return 0;
1396 l_tid = thread__tid(l->thread);
1397 r_tid = thread__tid(r->thread);
1398 if (l_tid < r_tid)
1399 return -1;
1400 if (l_tid > r_tid)
1401 return 1;
1402 return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
1403 }
1404
avg_cmp(struct work_atoms * l,struct work_atoms * r)1405 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1406 {
1407 u64 avgl, avgr;
1408
1409 if (!l->nb_atoms)
1410 return -1;
1411
1412 if (!r->nb_atoms)
1413 return 1;
1414
1415 avgl = l->total_lat / l->nb_atoms;
1416 avgr = r->total_lat / r->nb_atoms;
1417
1418 if (avgl < avgr)
1419 return -1;
1420 if (avgl > avgr)
1421 return 1;
1422
1423 return 0;
1424 }
1425
max_cmp(struct work_atoms * l,struct work_atoms * r)1426 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1427 {
1428 if (l->max_lat < r->max_lat)
1429 return -1;
1430 if (l->max_lat > r->max_lat)
1431 return 1;
1432
1433 return 0;
1434 }
1435
switch_cmp(struct work_atoms * l,struct work_atoms * r)1436 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1437 {
1438 if (l->nb_atoms < r->nb_atoms)
1439 return -1;
1440 if (l->nb_atoms > r->nb_atoms)
1441 return 1;
1442
1443 return 0;
1444 }
1445
runtime_cmp(struct work_atoms * l,struct work_atoms * r)1446 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1447 {
1448 if (l->total_runtime < r->total_runtime)
1449 return -1;
1450 if (l->total_runtime > r->total_runtime)
1451 return 1;
1452
1453 return 0;
1454 }
1455
sort_dimension__add(const char * tok,struct list_head * list)1456 static int sort_dimension__add(const char *tok, struct list_head *list)
1457 {
1458 size_t i;
1459 static struct sort_dimension avg_sort_dimension = {
1460 .name = "avg",
1461 .cmp = avg_cmp,
1462 };
1463 static struct sort_dimension max_sort_dimension = {
1464 .name = "max",
1465 .cmp = max_cmp,
1466 };
1467 static struct sort_dimension pid_sort_dimension = {
1468 .name = "pid",
1469 .cmp = pid_cmp,
1470 };
1471 static struct sort_dimension runtime_sort_dimension = {
1472 .name = "runtime",
1473 .cmp = runtime_cmp,
1474 };
1475 static struct sort_dimension switch_sort_dimension = {
1476 .name = "switch",
1477 .cmp = switch_cmp,
1478 };
1479 struct sort_dimension *available_sorts[] = {
1480 &pid_sort_dimension,
1481 &avg_sort_dimension,
1482 &max_sort_dimension,
1483 &switch_sort_dimension,
1484 &runtime_sort_dimension,
1485 };
1486
1487 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1488 if (!strcmp(available_sorts[i]->name, tok)) {
1489 list_add_tail(&available_sorts[i]->list, list);
1490
1491 return 0;
1492 }
1493 }
1494
1495 return -1;
1496 }
1497
perf_sched__sort_lat(struct perf_sched * sched)1498 static void perf_sched__sort_lat(struct perf_sched *sched)
1499 {
1500 struct rb_node *node;
1501 struct rb_root_cached *root = &sched->atom_root;
1502 again:
1503 for (;;) {
1504 struct work_atoms *data;
1505 node = rb_first_cached(root);
1506 if (!node)
1507 break;
1508
1509 rb_erase_cached(node, root);
1510 data = rb_entry(node, struct work_atoms, node);
1511 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1512 }
1513 if (root == &sched->atom_root) {
1514 root = &sched->merged_atom_root;
1515 goto again;
1516 }
1517 }
1518
process_sched_wakeup_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1519 static int process_sched_wakeup_event(const struct perf_tool *tool,
1520 struct evsel *evsel,
1521 struct perf_sample *sample,
1522 struct machine *machine)
1523 {
1524 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1525
1526 if (sched->tp_handler->wakeup_event)
1527 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1528
1529 return 0;
1530 }
1531
process_sched_wakeup_ignore(const struct perf_tool * tool __maybe_unused,struct evsel * evsel __maybe_unused,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)1532 static int process_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
1533 struct evsel *evsel __maybe_unused,
1534 struct perf_sample *sample __maybe_unused,
1535 struct machine *machine __maybe_unused)
1536 {
1537 return 0;
1538 }
1539
1540 union map_priv {
1541 void *ptr;
1542 bool color;
1543 };
1544
thread__has_color(struct thread * thread)1545 static bool thread__has_color(struct thread *thread)
1546 {
1547 union map_priv priv = {
1548 .ptr = thread__priv(thread),
1549 };
1550
1551 return priv.color;
1552 }
1553
1554 static struct thread*
map__findnew_thread(struct perf_sched * sched,struct machine * machine,pid_t pid,pid_t tid)1555 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1556 {
1557 struct thread *thread = machine__findnew_thread(machine, pid, tid);
1558 union map_priv priv = {
1559 .color = false,
1560 };
1561
1562 if (!sched->map.color_pids || !thread || thread__priv(thread))
1563 return thread;
1564
1565 if (thread_map__has(sched->map.color_pids, tid))
1566 priv.color = true;
1567
1568 thread__set_priv(thread, priv.ptr);
1569 return thread;
1570 }
1571
sched_match_task(struct perf_sched * sched,const char * comm_str)1572 static bool sched_match_task(struct perf_sched *sched, const char *comm_str)
1573 {
1574 bool fuzzy_match = sched->map.fuzzy;
1575 struct strlist *task_names = sched->map.task_names;
1576 struct str_node *node;
1577
1578 strlist__for_each_entry(node, task_names) {
1579 bool match_found = fuzzy_match ? !!strstr(comm_str, node->s) :
1580 !strcmp(comm_str, node->s);
1581 if (match_found)
1582 return true;
1583 }
1584
1585 return false;
1586 }
1587
print_sched_map(struct perf_sched * sched,struct perf_cpu this_cpu,int cpus_nr,const char * color,bool sched_out)1588 static void print_sched_map(struct perf_sched *sched, struct perf_cpu this_cpu, int cpus_nr,
1589 const char *color, bool sched_out)
1590 {
1591 for (int i = 0; i < cpus_nr; i++) {
1592 struct perf_cpu cpu = {
1593 .cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1594 };
1595 struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1596 struct thread *curr_out_thread = sched->curr_out_thread[cpu.cpu];
1597 struct thread_runtime *curr_tr;
1598 const char *pid_color = color;
1599 const char *cpu_color = color;
1600 char symbol = ' ';
1601 struct thread *thread_to_check = sched_out ? curr_out_thread : curr_thread;
1602
1603 if (thread_to_check && thread__has_color(thread_to_check))
1604 pid_color = COLOR_PIDS;
1605
1606 if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1607 cpu_color = COLOR_CPUS;
1608
1609 if (cpu.cpu == this_cpu.cpu)
1610 symbol = '*';
1611
1612 color_fprintf(stdout, cpu.cpu != this_cpu.cpu ? color : cpu_color, "%c", symbol);
1613
1614 thread_to_check = sched_out ? sched->curr_out_thread[cpu.cpu] :
1615 sched->curr_thread[cpu.cpu];
1616
1617 if (thread_to_check) {
1618 curr_tr = thread__get_runtime(thread_to_check);
1619 if (curr_tr == NULL)
1620 return;
1621
1622 if (sched_out) {
1623 if (cpu.cpu == this_cpu.cpu)
1624 color_fprintf(stdout, color, "- ");
1625 else {
1626 curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1627 if (curr_tr != NULL)
1628 color_fprintf(stdout, pid_color, "%2s ",
1629 curr_tr->shortname);
1630 }
1631 } else
1632 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1633 } else
1634 color_fprintf(stdout, color, " ");
1635 }
1636 }
1637
map_switch_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1638 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1639 struct perf_sample *sample, struct machine *machine)
1640 {
1641 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1642 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid");
1643 struct thread *sched_in, *sched_out;
1644 struct thread_runtime *tr;
1645 int new_shortname;
1646 u64 timestamp0, timestamp = sample->time;
1647 s64 delta;
1648 struct perf_cpu this_cpu = {
1649 .cpu = sample->cpu,
1650 };
1651 int cpus_nr;
1652 int proceed;
1653 bool new_cpu = false;
1654 const char *color = PERF_COLOR_NORMAL;
1655 char stimestamp[32];
1656 const char *str;
1657 int ret = -1;
1658
1659 BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1660
1661 if (this_cpu.cpu > sched->max_cpu.cpu)
1662 sched->max_cpu = this_cpu;
1663
1664 if (sched->map.comp) {
1665 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1666 if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1667 sched->map.comp_cpus[cpus_nr++] = this_cpu;
1668 new_cpu = true;
1669 }
1670 } else
1671 cpus_nr = sched->max_cpu.cpu;
1672
1673 timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1674 sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1675 if (timestamp0)
1676 delta = timestamp - timestamp0;
1677 else
1678 delta = 0;
1679
1680 if (delta < 0) {
1681 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1682 return -1;
1683 }
1684
1685 sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1686 sched_out = map__findnew_thread(sched, machine, -1, prev_pid);
1687 if (sched_in == NULL || sched_out == NULL)
1688 goto out;
1689
1690 tr = thread__get_runtime(sched_in);
1691 if (tr == NULL)
1692 goto out;
1693
1694 thread__put(sched->curr_thread[this_cpu.cpu]);
1695 thread__put(sched->curr_out_thread[this_cpu.cpu]);
1696
1697 sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1698 sched->curr_out_thread[this_cpu.cpu] = thread__get(sched_out);
1699
1700 ret = 0;
1701
1702 str = thread__comm_str(sched_in);
1703 new_shortname = 0;
1704 if (!tr->shortname[0]) {
1705 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1706 /*
1707 * Don't allocate a letter-number for swapper:0
1708 * as a shortname. Instead, we use '.' for it.
1709 */
1710 tr->shortname[0] = '.';
1711 tr->shortname[1] = ' ';
1712 } else if (!sched->map.task_name || sched_match_task(sched, str)) {
1713 tr->shortname[0] = sched->next_shortname1;
1714 tr->shortname[1] = sched->next_shortname2;
1715
1716 if (sched->next_shortname1 < 'Z') {
1717 sched->next_shortname1++;
1718 } else {
1719 sched->next_shortname1 = 'A';
1720 if (sched->next_shortname2 < '9')
1721 sched->next_shortname2++;
1722 else
1723 sched->next_shortname2 = '0';
1724 }
1725 } else {
1726 tr->shortname[0] = '-';
1727 tr->shortname[1] = ' ';
1728 }
1729 new_shortname = 1;
1730 }
1731
1732 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1733 goto out;
1734
1735 proceed = 0;
1736 str = thread__comm_str(sched_in);
1737 /*
1738 * Check which of sched_in and sched_out matches the passed --task-name
1739 * arguments and call the corresponding print_sched_map.
1740 */
1741 if (sched->map.task_name && !sched_match_task(sched, str)) {
1742 if (!sched_match_task(sched, thread__comm_str(sched_out)))
1743 goto out;
1744 else
1745 goto sched_out;
1746
1747 } else {
1748 str = thread__comm_str(sched_out);
1749 if (!(sched->map.task_name && !sched_match_task(sched, str)))
1750 proceed = 1;
1751 }
1752
1753 printf(" ");
1754
1755 print_sched_map(sched, this_cpu, cpus_nr, color, false);
1756
1757 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1758 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1759 if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1760 const char *pid_color = color;
1761
1762 if (thread__has_color(sched_in))
1763 pid_color = COLOR_PIDS;
1764
1765 color_fprintf(stdout, pid_color, "%s => %s:%d",
1766 tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1767 tr->comm_changed = false;
1768 }
1769
1770 if (sched->map.comp && new_cpu)
1771 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1772
1773 if (proceed != 1) {
1774 color_fprintf(stdout, color, "\n");
1775 goto out;
1776 }
1777
1778 sched_out:
1779 if (sched->map.task_name) {
1780 tr = thread__get_runtime(sched->curr_out_thread[this_cpu.cpu]);
1781 if (strcmp(tr->shortname, "") == 0)
1782 goto out;
1783
1784 if (proceed == 1)
1785 color_fprintf(stdout, color, "\n");
1786
1787 printf(" ");
1788 print_sched_map(sched, this_cpu, cpus_nr, color, true);
1789 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1790 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1791 }
1792
1793 color_fprintf(stdout, color, "\n");
1794
1795 out:
1796 thread__put(sched_out);
1797 thread__put(sched_in);
1798
1799 return ret;
1800 }
1801
process_sched_switch_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1802 static int process_sched_switch_event(const struct perf_tool *tool,
1803 struct evsel *evsel,
1804 struct perf_sample *sample,
1805 struct machine *machine)
1806 {
1807 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1808 int this_cpu = sample->cpu, err = 0;
1809 u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1810 next_pid = evsel__intval(evsel, sample, "next_pid");
1811
1812 if (sched->curr_pid[this_cpu] != (u32)-1) {
1813 /*
1814 * Are we trying to switch away a PID that is
1815 * not current?
1816 */
1817 if (sched->curr_pid[this_cpu] != prev_pid)
1818 sched->nr_context_switch_bugs++;
1819 }
1820
1821 if (sched->tp_handler->switch_event)
1822 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1823
1824 sched->curr_pid[this_cpu] = next_pid;
1825 return err;
1826 }
1827
process_sched_runtime_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1828 static int process_sched_runtime_event(const struct perf_tool *tool,
1829 struct evsel *evsel,
1830 struct perf_sample *sample,
1831 struct machine *machine)
1832 {
1833 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1834
1835 if (sched->tp_handler->runtime_event)
1836 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1837
1838 return 0;
1839 }
1840
perf_sched__process_fork_event(const struct perf_tool * tool,union perf_event * event,struct perf_sample * sample,struct machine * machine)1841 static int perf_sched__process_fork_event(const struct perf_tool *tool,
1842 union perf_event *event,
1843 struct perf_sample *sample,
1844 struct machine *machine)
1845 {
1846 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1847
1848 /* run the fork event through the perf machinery */
1849 perf_event__process_fork(tool, event, sample, machine);
1850
1851 /* and then run additional processing needed for this command */
1852 if (sched->tp_handler->fork_event)
1853 return sched->tp_handler->fork_event(sched, event, machine);
1854
1855 return 0;
1856 }
1857
process_sched_migrate_task_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1858 static int process_sched_migrate_task_event(const struct perf_tool *tool,
1859 struct evsel *evsel,
1860 struct perf_sample *sample,
1861 struct machine *machine)
1862 {
1863 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1864
1865 if (sched->tp_handler->migrate_task_event)
1866 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1867
1868 return 0;
1869 }
1870
1871 typedef int (*tracepoint_handler)(const struct perf_tool *tool,
1872 struct evsel *evsel,
1873 struct perf_sample *sample,
1874 struct machine *machine);
1875
perf_sched__process_tracepoint_sample(const struct perf_tool * tool __maybe_unused,union perf_event * event __maybe_unused,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)1876 static int perf_sched__process_tracepoint_sample(const struct perf_tool *tool __maybe_unused,
1877 union perf_event *event __maybe_unused,
1878 struct perf_sample *sample,
1879 struct evsel *evsel,
1880 struct machine *machine)
1881 {
1882 int err = 0;
1883
1884 if (evsel->handler != NULL) {
1885 tracepoint_handler f = evsel->handler;
1886 err = f(tool, evsel, sample, machine);
1887 }
1888
1889 return err;
1890 }
1891
perf_sched__process_comm(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_sample * sample,struct machine * machine)1892 static int perf_sched__process_comm(const struct perf_tool *tool __maybe_unused,
1893 union perf_event *event,
1894 struct perf_sample *sample,
1895 struct machine *machine)
1896 {
1897 struct thread *thread;
1898 struct thread_runtime *tr;
1899 int err;
1900
1901 err = perf_event__process_comm(tool, event, sample, machine);
1902 if (err)
1903 return err;
1904
1905 thread = machine__find_thread(machine, sample->pid, sample->tid);
1906 if (!thread) {
1907 pr_err("Internal error: can't find thread\n");
1908 return -1;
1909 }
1910
1911 tr = thread__get_runtime(thread);
1912 if (tr == NULL) {
1913 thread__put(thread);
1914 return -1;
1915 }
1916
1917 tr->comm_changed = true;
1918 thread__put(thread);
1919
1920 return 0;
1921 }
1922
perf_sched__read_events(struct perf_sched * sched)1923 static int perf_sched__read_events(struct perf_sched *sched)
1924 {
1925 struct evsel_str_handler handlers[] = {
1926 { "sched:sched_switch", process_sched_switch_event, },
1927 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1928 { "sched:sched_wakeup", process_sched_wakeup_event, },
1929 { "sched:sched_waking", process_sched_wakeup_event, },
1930 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1931 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1932 };
1933 struct perf_session *session;
1934 struct perf_data data = {
1935 .path = input_name,
1936 .mode = PERF_DATA_MODE_READ,
1937 .force = sched->force,
1938 };
1939 int rc = -1;
1940
1941 session = perf_session__new(&data, &sched->tool);
1942 if (IS_ERR(session)) {
1943 pr_debug("Error creating perf session");
1944 return PTR_ERR(session);
1945 }
1946
1947 symbol__init(&session->header.env);
1948
1949 /* prefer sched_waking if it is captured */
1950 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1951 handlers[2].handler = process_sched_wakeup_ignore;
1952
1953 if (perf_session__set_tracepoints_handlers(session, handlers))
1954 goto out_delete;
1955
1956 if (perf_session__has_traces(session, "record -R")) {
1957 int err = perf_session__process_events(session);
1958 if (err) {
1959 pr_err("Failed to process events, error %d", err);
1960 goto out_delete;
1961 }
1962
1963 sched->nr_events = session->evlist->stats.nr_events[0];
1964 sched->nr_lost_events = session->evlist->stats.total_lost;
1965 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1966 }
1967
1968 rc = 0;
1969 out_delete:
1970 perf_session__delete(session);
1971 return rc;
1972 }
1973
1974 /*
1975 * scheduling times are printed as msec.usec
1976 */
print_sched_time(unsigned long long nsecs,int width)1977 static inline void print_sched_time(unsigned long long nsecs, int width)
1978 {
1979 unsigned long msecs;
1980 unsigned long usecs;
1981
1982 msecs = nsecs / NSEC_PER_MSEC;
1983 nsecs -= msecs * NSEC_PER_MSEC;
1984 usecs = nsecs / NSEC_PER_USEC;
1985 printf("%*lu.%03lu ", width, msecs, usecs);
1986 }
1987
1988 /*
1989 * returns runtime data for event, allocating memory for it the
1990 * first time it is used.
1991 */
evsel__get_runtime(struct evsel * evsel)1992 static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1993 {
1994 struct evsel_runtime *r = evsel->priv;
1995
1996 if (r == NULL) {
1997 r = zalloc(sizeof(struct evsel_runtime));
1998 evsel->priv = r;
1999 }
2000
2001 return r;
2002 }
2003
2004 /*
2005 * save last time event was seen per cpu
2006 */
evsel__save_time(struct evsel * evsel,u64 timestamp,u32 cpu)2007 static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
2008 {
2009 struct evsel_runtime *r = evsel__get_runtime(evsel);
2010
2011 if (r == NULL)
2012 return;
2013
2014 if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
2015 int i, n = __roundup_pow_of_two(cpu+1);
2016 void *p = r->last_time;
2017
2018 p = realloc(r->last_time, n * sizeof(u64));
2019 if (!p)
2020 return;
2021
2022 r->last_time = p;
2023 for (i = r->ncpu; i < n; ++i)
2024 r->last_time[i] = (u64) 0;
2025
2026 r->ncpu = n;
2027 }
2028
2029 r->last_time[cpu] = timestamp;
2030 }
2031
2032 /* returns last time this event was seen on the given cpu */
evsel__get_time(struct evsel * evsel,u32 cpu)2033 static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
2034 {
2035 struct evsel_runtime *r = evsel__get_runtime(evsel);
2036
2037 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
2038 return 0;
2039
2040 return r->last_time[cpu];
2041 }
2042
timehist__evsel_priv_destructor(void * priv)2043 static void timehist__evsel_priv_destructor(void *priv)
2044 {
2045 struct evsel_runtime *r = priv;
2046
2047 if (r) {
2048 free(r->last_time);
2049 free(r);
2050 }
2051 }
2052
2053 static int comm_width = 30;
2054
timehist_get_commstr(struct thread * thread)2055 static char *timehist_get_commstr(struct thread *thread)
2056 {
2057 static char str[32];
2058 const char *comm = thread__comm_str(thread);
2059 pid_t tid = thread__tid(thread);
2060 pid_t pid = thread__pid(thread);
2061 int n;
2062
2063 if (pid == 0)
2064 n = scnprintf(str, sizeof(str), "%s", comm);
2065
2066 else if (tid != pid)
2067 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
2068
2069 else
2070 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
2071
2072 if (n > comm_width)
2073 comm_width = n;
2074
2075 return str;
2076 }
2077
2078 /* prio field format: xxx or xxx->yyy */
2079 #define MAX_PRIO_STR_LEN 8
timehist_get_priostr(struct evsel * evsel,struct thread * thread,struct perf_sample * sample)2080 static char *timehist_get_priostr(struct evsel *evsel,
2081 struct thread *thread,
2082 struct perf_sample *sample)
2083 {
2084 static char prio_str[16];
2085 int prev_prio = (int)evsel__intval(evsel, sample, "prev_prio");
2086 struct thread_runtime *tr = thread__priv(thread);
2087
2088 if (tr->prio != prev_prio && tr->prio != -1)
2089 scnprintf(prio_str, sizeof(prio_str), "%d->%d", tr->prio, prev_prio);
2090 else
2091 scnprintf(prio_str, sizeof(prio_str), "%d", prev_prio);
2092
2093 return prio_str;
2094 }
2095
timehist_header(struct perf_sched * sched)2096 static void timehist_header(struct perf_sched *sched)
2097 {
2098 u32 ncpus = sched->max_cpu.cpu + 1;
2099 u32 i, j;
2100
2101 printf("%15s %6s ", "time", "cpu");
2102
2103 if (sched->show_cpu_visual) {
2104 printf(" ");
2105 for (i = 0, j = 0; i < ncpus; ++i) {
2106 printf("%x", j++);
2107 if (j > 15)
2108 j = 0;
2109 }
2110 printf(" ");
2111 }
2112
2113 if (sched->show_prio) {
2114 printf(" %-*s %-*s %9s %9s %9s",
2115 comm_width, "task name", MAX_PRIO_STR_LEN, "prio",
2116 "wait time", "sch delay", "run time");
2117 } else {
2118 printf(" %-*s %9s %9s %9s", comm_width,
2119 "task name", "wait time", "sch delay", "run time");
2120 }
2121
2122 if (sched->show_state)
2123 printf(" %s", "state");
2124
2125 printf("\n");
2126
2127 /*
2128 * units row
2129 */
2130 printf("%15s %-6s ", "", "");
2131
2132 if (sched->show_cpu_visual)
2133 printf(" %*s ", ncpus, "");
2134
2135 if (sched->show_prio) {
2136 printf(" %-*s %-*s %9s %9s %9s",
2137 comm_width, "[tid/pid]", MAX_PRIO_STR_LEN, "",
2138 "(msec)", "(msec)", "(msec)");
2139 } else {
2140 printf(" %-*s %9s %9s %9s", comm_width,
2141 "[tid/pid]", "(msec)", "(msec)", "(msec)");
2142 }
2143
2144 if (sched->show_state)
2145 printf(" %5s", "");
2146
2147 printf("\n");
2148
2149 /*
2150 * separator
2151 */
2152 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2153
2154 if (sched->show_cpu_visual)
2155 printf(" %.*s ", ncpus, graph_dotted_line);
2156
2157 if (sched->show_prio) {
2158 printf(" %.*s %.*s %.9s %.9s %.9s",
2159 comm_width, graph_dotted_line, MAX_PRIO_STR_LEN, graph_dotted_line,
2160 graph_dotted_line, graph_dotted_line, graph_dotted_line);
2161 } else {
2162 printf(" %.*s %.9s %.9s %.9s", comm_width,
2163 graph_dotted_line, graph_dotted_line, graph_dotted_line,
2164 graph_dotted_line);
2165 }
2166
2167 if (sched->show_state)
2168 printf(" %.5s", graph_dotted_line);
2169
2170 printf("\n");
2171 }
2172
timehist_print_sample(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct addr_location * al,struct thread * thread,u64 t,const char state)2173 static void timehist_print_sample(struct perf_sched *sched,
2174 struct evsel *evsel,
2175 struct perf_sample *sample,
2176 struct addr_location *al,
2177 struct thread *thread,
2178 u64 t, const char state)
2179 {
2180 struct thread_runtime *tr = thread__priv(thread);
2181 const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2182 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2183 u32 max_cpus = sched->max_cpu.cpu + 1;
2184 char tstr[64];
2185 char nstr[30];
2186 u64 wait_time;
2187
2188 if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2189 return;
2190
2191 timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2192 printf("%15s [%04d] ", tstr, sample->cpu);
2193
2194 if (sched->show_cpu_visual) {
2195 u32 i;
2196 char c;
2197
2198 printf(" ");
2199 for (i = 0; i < max_cpus; ++i) {
2200 /* flag idle times with 'i'; others are sched events */
2201 if (i == sample->cpu)
2202 c = (thread__tid(thread) == 0) ? 'i' : 's';
2203 else
2204 c = ' ';
2205 printf("%c", c);
2206 }
2207 printf(" ");
2208 }
2209
2210 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2211
2212 if (sched->show_prio)
2213 printf(" %-*s ", MAX_PRIO_STR_LEN, timehist_get_priostr(evsel, thread, sample));
2214
2215 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2216 print_sched_time(wait_time, 6);
2217
2218 print_sched_time(tr->dt_delay, 6);
2219 print_sched_time(tr->dt_run, 6);
2220
2221 if (sched->show_state)
2222 printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state);
2223
2224 if (sched->show_next) {
2225 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2226 printf(" %-*s", comm_width, nstr);
2227 }
2228
2229 if (sched->show_wakeups && !sched->show_next)
2230 printf(" %-*s", comm_width, "");
2231
2232 if (thread__tid(thread) == 0)
2233 goto out;
2234
2235 if (sched->show_callchain)
2236 printf(" ");
2237
2238 sample__fprintf_sym(sample, al, 0,
2239 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2240 EVSEL__PRINT_CALLCHAIN_ARROW |
2241 EVSEL__PRINT_SKIP_IGNORED,
2242 get_tls_callchain_cursor(), symbol_conf.bt_stop_list, stdout);
2243
2244 out:
2245 printf("\n");
2246 }
2247
2248 /*
2249 * Explanation of delta-time stats:
2250 *
2251 * t = time of current schedule out event
2252 * tprev = time of previous sched out event
2253 * also time of schedule-in event for current task
2254 * last_time = time of last sched change event for current task
2255 * (i.e, time process was last scheduled out)
2256 * ready_to_run = time of wakeup for current task
2257 *
2258 * -----|------------|------------|------------|------
2259 * last ready tprev t
2260 * time to run
2261 *
2262 * |-------- dt_wait --------|
2263 * |- dt_delay -|-- dt_run --|
2264 *
2265 * dt_run = run time of current task
2266 * dt_wait = time between last schedule out event for task and tprev
2267 * represents time spent off the cpu
2268 * dt_delay = time between wakeup and schedule-in of task
2269 */
2270
timehist_update_runtime_stats(struct thread_runtime * r,u64 t,u64 tprev)2271 static void timehist_update_runtime_stats(struct thread_runtime *r,
2272 u64 t, u64 tprev)
2273 {
2274 r->dt_delay = 0;
2275 r->dt_sleep = 0;
2276 r->dt_iowait = 0;
2277 r->dt_preempt = 0;
2278 r->dt_run = 0;
2279
2280 if (tprev) {
2281 r->dt_run = t - tprev;
2282 if (r->ready_to_run) {
2283 if (r->ready_to_run > tprev)
2284 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2285 else
2286 r->dt_delay = tprev - r->ready_to_run;
2287 }
2288
2289 if (r->last_time > tprev)
2290 pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2291 else if (r->last_time) {
2292 u64 dt_wait = tprev - r->last_time;
2293
2294 if (r->last_state == 'R')
2295 r->dt_preempt = dt_wait;
2296 else if (r->last_state == 'D')
2297 r->dt_iowait = dt_wait;
2298 else
2299 r->dt_sleep = dt_wait;
2300 }
2301 }
2302
2303 update_stats(&r->run_stats, r->dt_run);
2304
2305 r->total_run_time += r->dt_run;
2306 r->total_delay_time += r->dt_delay;
2307 r->total_sleep_time += r->dt_sleep;
2308 r->total_iowait_time += r->dt_iowait;
2309 r->total_preempt_time += r->dt_preempt;
2310 }
2311
is_idle_sample(struct perf_sample * sample,struct evsel * evsel)2312 static bool is_idle_sample(struct perf_sample *sample,
2313 struct evsel *evsel)
2314 {
2315 /* pid 0 == swapper == idle task */
2316 if (evsel__name_is(evsel, "sched:sched_switch"))
2317 return evsel__intval(evsel, sample, "prev_pid") == 0;
2318
2319 return sample->pid == 0;
2320 }
2321
save_task_callchain(struct perf_sched * sched,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)2322 static void save_task_callchain(struct perf_sched *sched,
2323 struct perf_sample *sample,
2324 struct evsel *evsel,
2325 struct machine *machine)
2326 {
2327 struct callchain_cursor *cursor;
2328 struct thread *thread;
2329
2330 /* want main thread for process - has maps */
2331 thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2332 if (thread == NULL) {
2333 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2334 return;
2335 }
2336
2337 if (!sched->show_callchain || sample->callchain == NULL)
2338 return;
2339
2340 cursor = get_tls_callchain_cursor();
2341
2342 if (thread__resolve_callchain(thread, cursor, evsel, sample,
2343 NULL, NULL, sched->max_stack + 2) != 0) {
2344 if (verbose > 0)
2345 pr_err("Failed to resolve callchain. Skipping\n");
2346
2347 return;
2348 }
2349
2350 callchain_cursor_commit(cursor);
2351
2352 while (true) {
2353 struct callchain_cursor_node *node;
2354 struct symbol *sym;
2355
2356 node = callchain_cursor_current(cursor);
2357 if (node == NULL)
2358 break;
2359
2360 sym = node->ms.sym;
2361 if (sym) {
2362 if (!strcmp(sym->name, "schedule") ||
2363 !strcmp(sym->name, "__schedule") ||
2364 !strcmp(sym->name, "preempt_schedule"))
2365 sym->ignore = 1;
2366 }
2367
2368 callchain_cursor_advance(cursor);
2369 }
2370 }
2371
init_idle_thread(struct thread * thread)2372 static int init_idle_thread(struct thread *thread)
2373 {
2374 struct idle_thread_runtime *itr;
2375
2376 thread__set_comm(thread, idle_comm, 0);
2377
2378 itr = zalloc(sizeof(*itr));
2379 if (itr == NULL)
2380 return -ENOMEM;
2381
2382 init_prio(&itr->tr);
2383 init_stats(&itr->tr.run_stats);
2384 callchain_init(&itr->callchain);
2385 callchain_cursor_reset(&itr->cursor);
2386 thread__set_priv(thread, itr);
2387
2388 return 0;
2389 }
2390
2391 /*
2392 * Track idle stats per cpu by maintaining a local thread
2393 * struct for the idle task on each cpu.
2394 */
init_idle_threads(int ncpu)2395 static int init_idle_threads(int ncpu)
2396 {
2397 int i, ret;
2398
2399 idle_threads = zalloc(ncpu * sizeof(struct thread *));
2400 if (!idle_threads)
2401 return -ENOMEM;
2402
2403 idle_max_cpu = ncpu;
2404
2405 /* allocate the actual thread struct if needed */
2406 for (i = 0; i < ncpu; ++i) {
2407 idle_threads[i] = thread__new(0, 0);
2408 if (idle_threads[i] == NULL)
2409 return -ENOMEM;
2410
2411 ret = init_idle_thread(idle_threads[i]);
2412 if (ret < 0)
2413 return ret;
2414 }
2415
2416 return 0;
2417 }
2418
free_idle_threads(void)2419 static void free_idle_threads(void)
2420 {
2421 int i;
2422
2423 if (idle_threads == NULL)
2424 return;
2425
2426 for (i = 0; i < idle_max_cpu; ++i) {
2427 if ((idle_threads[i]))
2428 thread__delete(idle_threads[i]);
2429 }
2430
2431 free(idle_threads);
2432 }
2433
get_idle_thread(int cpu)2434 static struct thread *get_idle_thread(int cpu)
2435 {
2436 /*
2437 * expand/allocate array of pointers to local thread
2438 * structs if needed
2439 */
2440 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2441 int i, j = __roundup_pow_of_two(cpu+1);
2442 void *p;
2443
2444 p = realloc(idle_threads, j * sizeof(struct thread *));
2445 if (!p)
2446 return NULL;
2447
2448 idle_threads = (struct thread **) p;
2449 for (i = idle_max_cpu; i < j; ++i)
2450 idle_threads[i] = NULL;
2451
2452 idle_max_cpu = j;
2453 }
2454
2455 /* allocate a new thread struct if needed */
2456 if (idle_threads[cpu] == NULL) {
2457 idle_threads[cpu] = thread__new(0, 0);
2458
2459 if (idle_threads[cpu]) {
2460 if (init_idle_thread(idle_threads[cpu]) < 0)
2461 return NULL;
2462 }
2463 }
2464
2465 return idle_threads[cpu];
2466 }
2467
save_idle_callchain(struct perf_sched * sched,struct idle_thread_runtime * itr,struct perf_sample * sample)2468 static void save_idle_callchain(struct perf_sched *sched,
2469 struct idle_thread_runtime *itr,
2470 struct perf_sample *sample)
2471 {
2472 struct callchain_cursor *cursor;
2473
2474 if (!sched->show_callchain || sample->callchain == NULL)
2475 return;
2476
2477 cursor = get_tls_callchain_cursor();
2478 if (cursor == NULL)
2479 return;
2480
2481 callchain_cursor__copy(&itr->cursor, cursor);
2482 }
2483
timehist_get_thread(struct perf_sched * sched,struct perf_sample * sample,struct machine * machine,struct evsel * evsel)2484 static struct thread *timehist_get_thread(struct perf_sched *sched,
2485 struct perf_sample *sample,
2486 struct machine *machine,
2487 struct evsel *evsel)
2488 {
2489 struct thread *thread;
2490
2491 if (is_idle_sample(sample, evsel)) {
2492 thread = get_idle_thread(sample->cpu);
2493 if (thread == NULL)
2494 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2495
2496 } else {
2497 /* there were samples with tid 0 but non-zero pid */
2498 thread = machine__findnew_thread(machine, sample->pid,
2499 sample->tid ?: sample->pid);
2500 if (thread == NULL) {
2501 pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2502 sample->tid);
2503 }
2504
2505 save_task_callchain(sched, sample, evsel, machine);
2506 if (sched->idle_hist) {
2507 struct thread *idle;
2508 struct idle_thread_runtime *itr;
2509
2510 idle = get_idle_thread(sample->cpu);
2511 if (idle == NULL) {
2512 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2513 return NULL;
2514 }
2515
2516 itr = thread__priv(idle);
2517 if (itr == NULL)
2518 return NULL;
2519
2520 itr->last_thread = thread;
2521
2522 /* copy task callchain when entering to idle */
2523 if (evsel__intval(evsel, sample, "next_pid") == 0)
2524 save_idle_callchain(sched, itr, sample);
2525 }
2526 }
2527
2528 return thread;
2529 }
2530
timehist_skip_sample(struct perf_sched * sched,struct thread * thread,struct evsel * evsel,struct perf_sample * sample)2531 static bool timehist_skip_sample(struct perf_sched *sched,
2532 struct thread *thread,
2533 struct evsel *evsel,
2534 struct perf_sample *sample)
2535 {
2536 bool rc = false;
2537 int prio = -1;
2538 struct thread_runtime *tr = NULL;
2539
2540 if (thread__is_filtered(thread)) {
2541 rc = true;
2542 sched->skipped_samples++;
2543 }
2544
2545 if (sched->prio_str) {
2546 /*
2547 * Because priority may be changed during task execution,
2548 * first read priority from prev sched_in event for current task.
2549 * If prev sched_in event is not saved, then read priority from
2550 * current task sched_out event.
2551 */
2552 tr = thread__get_runtime(thread);
2553 if (tr && tr->prio != -1)
2554 prio = tr->prio;
2555 else if (evsel__name_is(evsel, "sched:sched_switch"))
2556 prio = evsel__intval(evsel, sample, "prev_prio");
2557
2558 if (prio != -1 && !test_bit(prio, sched->prio_bitmap)) {
2559 rc = true;
2560 sched->skipped_samples++;
2561 }
2562 }
2563
2564 if (sched->idle_hist) {
2565 if (!evsel__name_is(evsel, "sched:sched_switch"))
2566 rc = true;
2567 else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2568 evsel__intval(evsel, sample, "next_pid") != 0)
2569 rc = true;
2570 }
2571
2572 return rc;
2573 }
2574
timehist_print_wakeup_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine,struct thread * awakened)2575 static void timehist_print_wakeup_event(struct perf_sched *sched,
2576 struct evsel *evsel,
2577 struct perf_sample *sample,
2578 struct machine *machine,
2579 struct thread *awakened)
2580 {
2581 struct thread *thread;
2582 char tstr[64];
2583
2584 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2585 if (thread == NULL)
2586 return;
2587
2588 /* show wakeup unless both awakee and awaker are filtered */
2589 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2590 timehist_skip_sample(sched, awakened, evsel, sample)) {
2591 return;
2592 }
2593
2594 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2595 printf("%15s [%04d] ", tstr, sample->cpu);
2596 if (sched->show_cpu_visual)
2597 printf(" %*s ", sched->max_cpu.cpu + 1, "");
2598
2599 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2600
2601 /* dt spacer */
2602 printf(" %9s %9s %9s ", "", "", "");
2603
2604 printf("awakened: %s", timehist_get_commstr(awakened));
2605
2606 printf("\n");
2607 }
2608
timehist_sched_wakeup_ignore(const struct perf_tool * tool __maybe_unused,union perf_event * event __maybe_unused,struct evsel * evsel __maybe_unused,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)2609 static int timehist_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
2610 union perf_event *event __maybe_unused,
2611 struct evsel *evsel __maybe_unused,
2612 struct perf_sample *sample __maybe_unused,
2613 struct machine *machine __maybe_unused)
2614 {
2615 return 0;
2616 }
2617
timehist_sched_wakeup_event(const struct perf_tool * tool,union perf_event * event __maybe_unused,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2618 static int timehist_sched_wakeup_event(const struct perf_tool *tool,
2619 union perf_event *event __maybe_unused,
2620 struct evsel *evsel,
2621 struct perf_sample *sample,
2622 struct machine *machine)
2623 {
2624 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2625 struct thread *thread;
2626 struct thread_runtime *tr = NULL;
2627 /* want pid of awakened task not pid in sample */
2628 const u32 pid = evsel__intval(evsel, sample, "pid");
2629
2630 thread = machine__findnew_thread(machine, 0, pid);
2631 if (thread == NULL)
2632 return -1;
2633
2634 tr = thread__get_runtime(thread);
2635 if (tr == NULL)
2636 return -1;
2637
2638 if (tr->ready_to_run == 0)
2639 tr->ready_to_run = sample->time;
2640
2641 /* show wakeups if requested */
2642 if (sched->show_wakeups &&
2643 !perf_time__skip_sample(&sched->ptime, sample->time))
2644 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2645
2646 return 0;
2647 }
2648
timehist_print_migration_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine,struct thread * migrated)2649 static void timehist_print_migration_event(struct perf_sched *sched,
2650 struct evsel *evsel,
2651 struct perf_sample *sample,
2652 struct machine *machine,
2653 struct thread *migrated)
2654 {
2655 struct thread *thread;
2656 char tstr[64];
2657 u32 max_cpus;
2658 u32 ocpu, dcpu;
2659
2660 if (sched->summary_only)
2661 return;
2662
2663 max_cpus = sched->max_cpu.cpu + 1;
2664 ocpu = evsel__intval(evsel, sample, "orig_cpu");
2665 dcpu = evsel__intval(evsel, sample, "dest_cpu");
2666
2667 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2668 if (thread == NULL)
2669 return;
2670
2671 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2672 timehist_skip_sample(sched, migrated, evsel, sample)) {
2673 return;
2674 }
2675
2676 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2677 printf("%15s [%04d] ", tstr, sample->cpu);
2678
2679 if (sched->show_cpu_visual) {
2680 u32 i;
2681 char c;
2682
2683 printf(" ");
2684 for (i = 0; i < max_cpus; ++i) {
2685 c = (i == sample->cpu) ? 'm' : ' ';
2686 printf("%c", c);
2687 }
2688 printf(" ");
2689 }
2690
2691 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2692
2693 /* dt spacer */
2694 printf(" %9s %9s %9s ", "", "", "");
2695
2696 printf("migrated: %s", timehist_get_commstr(migrated));
2697 printf(" cpu %d => %d", ocpu, dcpu);
2698
2699 printf("\n");
2700 }
2701
timehist_migrate_task_event(const struct perf_tool * tool,union perf_event * event __maybe_unused,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2702 static int timehist_migrate_task_event(const struct perf_tool *tool,
2703 union perf_event *event __maybe_unused,
2704 struct evsel *evsel,
2705 struct perf_sample *sample,
2706 struct machine *machine)
2707 {
2708 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2709 struct thread *thread;
2710 struct thread_runtime *tr = NULL;
2711 /* want pid of migrated task not pid in sample */
2712 const u32 pid = evsel__intval(evsel, sample, "pid");
2713
2714 thread = machine__findnew_thread(machine, 0, pid);
2715 if (thread == NULL)
2716 return -1;
2717
2718 tr = thread__get_runtime(thread);
2719 if (tr == NULL)
2720 return -1;
2721
2722 tr->migrations++;
2723
2724 /* show migrations if requested */
2725 timehist_print_migration_event(sched, evsel, sample, machine, thread);
2726
2727 return 0;
2728 }
2729
timehist_update_task_prio(struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2730 static void timehist_update_task_prio(struct evsel *evsel,
2731 struct perf_sample *sample,
2732 struct machine *machine)
2733 {
2734 struct thread *thread;
2735 struct thread_runtime *tr = NULL;
2736 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2737 const u32 next_prio = evsel__intval(evsel, sample, "next_prio");
2738
2739 if (next_pid == 0)
2740 thread = get_idle_thread(sample->cpu);
2741 else
2742 thread = machine__findnew_thread(machine, -1, next_pid);
2743
2744 if (thread == NULL)
2745 return;
2746
2747 tr = thread__get_runtime(thread);
2748 if (tr == NULL)
2749 return;
2750
2751 tr->prio = next_prio;
2752 }
2753
timehist_sched_change_event(const struct perf_tool * tool,union perf_event * event,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2754 static int timehist_sched_change_event(const struct perf_tool *tool,
2755 union perf_event *event,
2756 struct evsel *evsel,
2757 struct perf_sample *sample,
2758 struct machine *machine)
2759 {
2760 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2761 struct perf_time_interval *ptime = &sched->ptime;
2762 struct addr_location al;
2763 struct thread *thread;
2764 struct thread_runtime *tr = NULL;
2765 u64 tprev, t = sample->time;
2766 int rc = 0;
2767 const char state = evsel__taskstate(evsel, sample, "prev_state");
2768
2769 addr_location__init(&al);
2770 if (machine__resolve(machine, &al, sample) < 0) {
2771 pr_err("problem processing %d event. skipping it\n",
2772 event->header.type);
2773 rc = -1;
2774 goto out;
2775 }
2776
2777 if (sched->show_prio || sched->prio_str)
2778 timehist_update_task_prio(evsel, sample, machine);
2779
2780 thread = timehist_get_thread(sched, sample, machine, evsel);
2781 if (thread == NULL) {
2782 rc = -1;
2783 goto out;
2784 }
2785
2786 if (timehist_skip_sample(sched, thread, evsel, sample))
2787 goto out;
2788
2789 tr = thread__get_runtime(thread);
2790 if (tr == NULL) {
2791 rc = -1;
2792 goto out;
2793 }
2794
2795 tprev = evsel__get_time(evsel, sample->cpu);
2796
2797 /*
2798 * If start time given:
2799 * - sample time is under window user cares about - skip sample
2800 * - tprev is under window user cares about - reset to start of window
2801 */
2802 if (ptime->start && ptime->start > t)
2803 goto out;
2804
2805 if (tprev && ptime->start > tprev)
2806 tprev = ptime->start;
2807
2808 /*
2809 * If end time given:
2810 * - previous sched event is out of window - we are done
2811 * - sample time is beyond window user cares about - reset it
2812 * to close out stats for time window interest
2813 * - If tprev is 0, that is, sched_in event for current task is
2814 * not recorded, cannot determine whether sched_in event is
2815 * within time window interest - ignore it
2816 */
2817 if (ptime->end) {
2818 if (!tprev || tprev > ptime->end)
2819 goto out;
2820
2821 if (t > ptime->end)
2822 t = ptime->end;
2823 }
2824
2825 if (!sched->idle_hist || thread__tid(thread) == 0) {
2826 if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2827 timehist_update_runtime_stats(tr, t, tprev);
2828
2829 if (sched->idle_hist) {
2830 struct idle_thread_runtime *itr = (void *)tr;
2831 struct thread_runtime *last_tr;
2832
2833 if (itr->last_thread == NULL)
2834 goto out;
2835
2836 /* add current idle time as last thread's runtime */
2837 last_tr = thread__get_runtime(itr->last_thread);
2838 if (last_tr == NULL)
2839 goto out;
2840
2841 timehist_update_runtime_stats(last_tr, t, tprev);
2842 /*
2843 * remove delta time of last thread as it's not updated
2844 * and otherwise it will show an invalid value next
2845 * time. we only care total run time and run stat.
2846 */
2847 last_tr->dt_run = 0;
2848 last_tr->dt_delay = 0;
2849 last_tr->dt_sleep = 0;
2850 last_tr->dt_iowait = 0;
2851 last_tr->dt_preempt = 0;
2852
2853 if (itr->cursor.nr)
2854 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2855
2856 itr->last_thread = NULL;
2857 }
2858
2859 if (!sched->summary_only)
2860 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2861 }
2862
2863 out:
2864 if (sched->hist_time.start == 0 && t >= ptime->start)
2865 sched->hist_time.start = t;
2866 if (ptime->end == 0 || t <= ptime->end)
2867 sched->hist_time.end = t;
2868
2869 if (tr) {
2870 /* time of this sched_switch event becomes last time task seen */
2871 tr->last_time = sample->time;
2872
2873 /* last state is used to determine where to account wait time */
2874 tr->last_state = state;
2875
2876 /* sched out event for task so reset ready to run time */
2877 if (state == 'R')
2878 tr->ready_to_run = t;
2879 else
2880 tr->ready_to_run = 0;
2881 }
2882
2883 evsel__save_time(evsel, sample->time, sample->cpu);
2884
2885 addr_location__exit(&al);
2886 return rc;
2887 }
2888
timehist_sched_switch_event(const struct perf_tool * tool,union perf_event * event,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)2889 static int timehist_sched_switch_event(const struct perf_tool *tool,
2890 union perf_event *event,
2891 struct evsel *evsel,
2892 struct perf_sample *sample,
2893 struct machine *machine __maybe_unused)
2894 {
2895 return timehist_sched_change_event(tool, event, evsel, sample, machine);
2896 }
2897
process_lost(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_sample * sample,struct machine * machine __maybe_unused)2898 static int process_lost(const struct perf_tool *tool __maybe_unused,
2899 union perf_event *event,
2900 struct perf_sample *sample,
2901 struct machine *machine __maybe_unused)
2902 {
2903 char tstr[64];
2904
2905 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2906 printf("%15s ", tstr);
2907 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2908
2909 return 0;
2910 }
2911
2912
print_thread_runtime(struct thread * t,struct thread_runtime * r)2913 static void print_thread_runtime(struct thread *t,
2914 struct thread_runtime *r)
2915 {
2916 double mean = avg_stats(&r->run_stats);
2917 float stddev;
2918
2919 printf("%*s %5d %9" PRIu64 " ",
2920 comm_width, timehist_get_commstr(t), thread__ppid(t),
2921 (u64) r->run_stats.n);
2922
2923 print_sched_time(r->total_run_time, 8);
2924 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2925 print_sched_time(r->run_stats.min, 6);
2926 printf(" ");
2927 print_sched_time((u64) mean, 6);
2928 printf(" ");
2929 print_sched_time(r->run_stats.max, 6);
2930 printf(" ");
2931 printf("%5.2f", stddev);
2932 printf(" %5" PRIu64, r->migrations);
2933 printf("\n");
2934 }
2935
print_thread_waittime(struct thread * t,struct thread_runtime * r)2936 static void print_thread_waittime(struct thread *t,
2937 struct thread_runtime *r)
2938 {
2939 printf("%*s %5d %9" PRIu64 " ",
2940 comm_width, timehist_get_commstr(t), thread__ppid(t),
2941 (u64) r->run_stats.n);
2942
2943 print_sched_time(r->total_run_time, 8);
2944 print_sched_time(r->total_sleep_time, 6);
2945 printf(" ");
2946 print_sched_time(r->total_iowait_time, 6);
2947 printf(" ");
2948 print_sched_time(r->total_preempt_time, 6);
2949 printf(" ");
2950 print_sched_time(r->total_delay_time, 6);
2951 printf("\n");
2952 }
2953
2954 struct total_run_stats {
2955 struct perf_sched *sched;
2956 u64 sched_count;
2957 u64 task_count;
2958 u64 total_run_time;
2959 };
2960
show_thread_runtime(struct thread * t,void * priv)2961 static int show_thread_runtime(struct thread *t, void *priv)
2962 {
2963 struct total_run_stats *stats = priv;
2964 struct thread_runtime *r;
2965
2966 if (thread__is_filtered(t))
2967 return 0;
2968
2969 r = thread__priv(t);
2970 if (r && r->run_stats.n) {
2971 stats->task_count++;
2972 stats->sched_count += r->run_stats.n;
2973 stats->total_run_time += r->total_run_time;
2974
2975 if (stats->sched->show_state)
2976 print_thread_waittime(t, r);
2977 else
2978 print_thread_runtime(t, r);
2979 }
2980
2981 return 0;
2982 }
2983
callchain__fprintf_folded(FILE * fp,struct callchain_node * node)2984 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2985 {
2986 const char *sep = " <- ";
2987 struct callchain_list *chain;
2988 size_t ret = 0;
2989 char bf[1024];
2990 bool first;
2991
2992 if (node == NULL)
2993 return 0;
2994
2995 ret = callchain__fprintf_folded(fp, node->parent);
2996 first = (ret == 0);
2997
2998 list_for_each_entry(chain, &node->val, list) {
2999 if (chain->ip >= PERF_CONTEXT_MAX)
3000 continue;
3001 if (chain->ms.sym && chain->ms.sym->ignore)
3002 continue;
3003 ret += fprintf(fp, "%s%s", first ? "" : sep,
3004 callchain_list__sym_name(chain, bf, sizeof(bf),
3005 false));
3006 first = false;
3007 }
3008
3009 return ret;
3010 }
3011
timehist_print_idlehist_callchain(struct rb_root_cached * root)3012 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
3013 {
3014 size_t ret = 0;
3015 FILE *fp = stdout;
3016 struct callchain_node *chain;
3017 struct rb_node *rb_node = rb_first_cached(root);
3018
3019 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
3020 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
3021 graph_dotted_line);
3022
3023 while (rb_node) {
3024 chain = rb_entry(rb_node, struct callchain_node, rb_node);
3025 rb_node = rb_next(rb_node);
3026
3027 ret += fprintf(fp, " ");
3028 print_sched_time(chain->hit, 12);
3029 ret += 16; /* print_sched_time returns 2nd arg + 4 */
3030 ret += fprintf(fp, " %8d ", chain->count);
3031 ret += callchain__fprintf_folded(fp, chain);
3032 ret += fprintf(fp, "\n");
3033 }
3034
3035 return ret;
3036 }
3037
timehist_print_summary(struct perf_sched * sched,struct perf_session * session)3038 static void timehist_print_summary(struct perf_sched *sched,
3039 struct perf_session *session)
3040 {
3041 struct machine *m = &session->machines.host;
3042 struct total_run_stats totals;
3043 u64 task_count;
3044 struct thread *t;
3045 struct thread_runtime *r;
3046 int i;
3047 u64 hist_time = sched->hist_time.end - sched->hist_time.start;
3048
3049 memset(&totals, 0, sizeof(totals));
3050 totals.sched = sched;
3051
3052 if (sched->idle_hist) {
3053 printf("\nIdle-time summary\n");
3054 printf("%*s parent sched-out ", comm_width, "comm");
3055 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
3056 } else if (sched->show_state) {
3057 printf("\nWait-time summary\n");
3058 printf("%*s parent sched-in ", comm_width, "comm");
3059 printf(" run-time sleep iowait preempt delay\n");
3060 } else {
3061 printf("\nRuntime summary\n");
3062 printf("%*s parent sched-in ", comm_width, "comm");
3063 printf(" run-time min-run avg-run max-run stddev migrations\n");
3064 }
3065 printf("%*s (count) ", comm_width, "");
3066 printf(" (msec) (msec) (msec) (msec) %s\n",
3067 sched->show_state ? "(msec)" : "%");
3068 printf("%.117s\n", graph_dotted_line);
3069
3070 machine__for_each_thread(m, show_thread_runtime, &totals);
3071 task_count = totals.task_count;
3072 if (!task_count)
3073 printf("<no still running tasks>\n");
3074
3075 /* CPU idle stats not tracked when samples were skipped */
3076 if (sched->skipped_samples && !sched->idle_hist)
3077 return;
3078
3079 printf("\nIdle stats:\n");
3080 for (i = 0; i < idle_max_cpu; ++i) {
3081 if (cpu_list && !test_bit(i, cpu_bitmap))
3082 continue;
3083
3084 t = idle_threads[i];
3085 if (!t)
3086 continue;
3087
3088 r = thread__priv(t);
3089 if (r && r->run_stats.n) {
3090 totals.sched_count += r->run_stats.n;
3091 printf(" CPU %2d idle for ", i);
3092 print_sched_time(r->total_run_time, 6);
3093 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
3094 } else
3095 printf(" CPU %2d idle entire time window\n", i);
3096 }
3097
3098 if (sched->idle_hist && sched->show_callchain) {
3099 callchain_param.mode = CHAIN_FOLDED;
3100 callchain_param.value = CCVAL_PERIOD;
3101
3102 callchain_register_param(&callchain_param);
3103
3104 printf("\nIdle stats by callchain:\n");
3105 for (i = 0; i < idle_max_cpu; ++i) {
3106 struct idle_thread_runtime *itr;
3107
3108 t = idle_threads[i];
3109 if (!t)
3110 continue;
3111
3112 itr = thread__priv(t);
3113 if (itr == NULL)
3114 continue;
3115
3116 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
3117 0, &callchain_param);
3118
3119 printf(" CPU %2d:", i);
3120 print_sched_time(itr->tr.total_run_time, 6);
3121 printf(" msec\n");
3122 timehist_print_idlehist_callchain(&itr->sorted_root);
3123 printf("\n");
3124 }
3125 }
3126
3127 printf("\n"
3128 " Total number of unique tasks: %" PRIu64 "\n"
3129 "Total number of context switches: %" PRIu64 "\n",
3130 totals.task_count, totals.sched_count);
3131
3132 printf(" Total run time (msec): ");
3133 print_sched_time(totals.total_run_time, 2);
3134 printf("\n");
3135
3136 printf(" Total scheduling time (msec): ");
3137 print_sched_time(hist_time, 2);
3138 printf(" (x %d)\n", sched->max_cpu.cpu);
3139 }
3140
3141 typedef int (*sched_handler)(const struct perf_tool *tool,
3142 union perf_event *event,
3143 struct evsel *evsel,
3144 struct perf_sample *sample,
3145 struct machine *machine);
3146
perf_timehist__process_sample(const struct perf_tool * tool,union perf_event * event,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)3147 static int perf_timehist__process_sample(const struct perf_tool *tool,
3148 union perf_event *event,
3149 struct perf_sample *sample,
3150 struct evsel *evsel,
3151 struct machine *machine)
3152 {
3153 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
3154 int err = 0;
3155 struct perf_cpu this_cpu = {
3156 .cpu = sample->cpu,
3157 };
3158
3159 if (this_cpu.cpu > sched->max_cpu.cpu)
3160 sched->max_cpu = this_cpu;
3161
3162 if (evsel->handler != NULL) {
3163 sched_handler f = evsel->handler;
3164
3165 err = f(tool, event, evsel, sample, machine);
3166 }
3167
3168 return err;
3169 }
3170
timehist_check_attr(struct perf_sched * sched,struct evlist * evlist)3171 static int timehist_check_attr(struct perf_sched *sched,
3172 struct evlist *evlist)
3173 {
3174 struct evsel *evsel;
3175 struct evsel_runtime *er;
3176
3177 list_for_each_entry(evsel, &evlist->core.entries, core.node) {
3178 er = evsel__get_runtime(evsel);
3179 if (er == NULL) {
3180 pr_err("Failed to allocate memory for evsel runtime data\n");
3181 return -1;
3182 }
3183
3184 /* only need to save callchain related to sched_switch event */
3185 if (sched->show_callchain &&
3186 evsel__name_is(evsel, "sched:sched_switch") &&
3187 !evsel__has_callchain(evsel)) {
3188 pr_info("Samples of sched_switch event do not have callchains.\n");
3189 sched->show_callchain = 0;
3190 symbol_conf.use_callchain = 0;
3191 }
3192 }
3193
3194 return 0;
3195 }
3196
timehist_parse_prio_str(struct perf_sched * sched)3197 static int timehist_parse_prio_str(struct perf_sched *sched)
3198 {
3199 char *p;
3200 unsigned long start_prio, end_prio;
3201 const char *str = sched->prio_str;
3202
3203 if (!str)
3204 return 0;
3205
3206 while (isdigit(*str)) {
3207 p = NULL;
3208 start_prio = strtoul(str, &p, 0);
3209 if (start_prio >= MAX_PRIO || (*p != '\0' && *p != ',' && *p != '-'))
3210 return -1;
3211
3212 if (*p == '-') {
3213 str = ++p;
3214 p = NULL;
3215 end_prio = strtoul(str, &p, 0);
3216
3217 if (end_prio >= MAX_PRIO || (*p != '\0' && *p != ','))
3218 return -1;
3219
3220 if (end_prio < start_prio)
3221 return -1;
3222 } else {
3223 end_prio = start_prio;
3224 }
3225
3226 for (; start_prio <= end_prio; start_prio++)
3227 __set_bit(start_prio, sched->prio_bitmap);
3228
3229 if (*p)
3230 ++p;
3231
3232 str = p;
3233 }
3234
3235 return 0;
3236 }
3237
perf_sched__timehist(struct perf_sched * sched)3238 static int perf_sched__timehist(struct perf_sched *sched)
3239 {
3240 struct evsel_str_handler handlers[] = {
3241 { "sched:sched_switch", timehist_sched_switch_event, },
3242 { "sched:sched_wakeup", timehist_sched_wakeup_event, },
3243 { "sched:sched_waking", timehist_sched_wakeup_event, },
3244 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
3245 };
3246 const struct evsel_str_handler migrate_handlers[] = {
3247 { "sched:sched_migrate_task", timehist_migrate_task_event, },
3248 };
3249 struct perf_data data = {
3250 .path = input_name,
3251 .mode = PERF_DATA_MODE_READ,
3252 .force = sched->force,
3253 };
3254
3255 struct perf_session *session;
3256 struct evlist *evlist;
3257 int err = -1;
3258
3259 /*
3260 * event handlers for timehist option
3261 */
3262 sched->tool.sample = perf_timehist__process_sample;
3263 sched->tool.mmap = perf_event__process_mmap;
3264 sched->tool.comm = perf_event__process_comm;
3265 sched->tool.exit = perf_event__process_exit;
3266 sched->tool.fork = perf_event__process_fork;
3267 sched->tool.lost = process_lost;
3268 sched->tool.attr = perf_event__process_attr;
3269 sched->tool.tracing_data = perf_event__process_tracing_data;
3270 sched->tool.build_id = perf_event__process_build_id;
3271
3272 sched->tool.ordering_requires_timestamps = true;
3273
3274 symbol_conf.use_callchain = sched->show_callchain;
3275
3276 session = perf_session__new(&data, &sched->tool);
3277 if (IS_ERR(session))
3278 return PTR_ERR(session);
3279
3280 if (cpu_list) {
3281 err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3282 if (err < 0)
3283 goto out;
3284 }
3285
3286 evlist = session->evlist;
3287
3288 symbol__init(&session->header.env);
3289
3290 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3291 pr_err("Invalid time string\n");
3292 err = -EINVAL;
3293 goto out;
3294 }
3295
3296 if (timehist_check_attr(sched, evlist) != 0)
3297 goto out;
3298
3299 if (timehist_parse_prio_str(sched) != 0) {
3300 pr_err("Invalid prio string\n");
3301 goto out;
3302 }
3303
3304 setup_pager();
3305
3306 evsel__set_priv_destructor(timehist__evsel_priv_destructor);
3307
3308 /* prefer sched_waking if it is captured */
3309 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3310 handlers[1].handler = timehist_sched_wakeup_ignore;
3311
3312 /* setup per-evsel handlers */
3313 if (perf_session__set_tracepoints_handlers(session, handlers))
3314 goto out;
3315
3316 /* sched_switch event at a minimum needs to exist */
3317 if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3318 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3319 goto out;
3320 }
3321
3322 if (sched->show_migrations &&
3323 perf_session__set_tracepoints_handlers(session, migrate_handlers))
3324 goto out;
3325
3326 /* pre-allocate struct for per-CPU idle stats */
3327 sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3328 if (sched->max_cpu.cpu == 0)
3329 sched->max_cpu.cpu = 4;
3330 if (init_idle_threads(sched->max_cpu.cpu))
3331 goto out;
3332
3333 /* summary_only implies summary option, but don't overwrite summary if set */
3334 if (sched->summary_only)
3335 sched->summary = sched->summary_only;
3336
3337 if (!sched->summary_only)
3338 timehist_header(sched);
3339
3340 err = perf_session__process_events(session);
3341 if (err) {
3342 pr_err("Failed to process events, error %d", err);
3343 goto out;
3344 }
3345
3346 sched->nr_events = evlist->stats.nr_events[0];
3347 sched->nr_lost_events = evlist->stats.total_lost;
3348 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3349
3350 if (sched->summary)
3351 timehist_print_summary(sched, session);
3352
3353 out:
3354 free_idle_threads();
3355 perf_session__delete(session);
3356
3357 return err;
3358 }
3359
3360
print_bad_events(struct perf_sched * sched)3361 static void print_bad_events(struct perf_sched *sched)
3362 {
3363 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3364 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3365 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3366 sched->nr_unordered_timestamps, sched->nr_timestamps);
3367 }
3368 if (sched->nr_lost_events && sched->nr_events) {
3369 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3370 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3371 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3372 }
3373 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3374 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3375 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3376 sched->nr_context_switch_bugs, sched->nr_timestamps);
3377 if (sched->nr_lost_events)
3378 printf(" (due to lost events?)");
3379 printf("\n");
3380 }
3381 }
3382
__merge_work_atoms(struct rb_root_cached * root,struct work_atoms * data)3383 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3384 {
3385 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3386 struct work_atoms *this;
3387 const char *comm = thread__comm_str(data->thread), *this_comm;
3388 bool leftmost = true;
3389
3390 while (*new) {
3391 int cmp;
3392
3393 this = container_of(*new, struct work_atoms, node);
3394 parent = *new;
3395
3396 this_comm = thread__comm_str(this->thread);
3397 cmp = strcmp(comm, this_comm);
3398 if (cmp > 0) {
3399 new = &((*new)->rb_left);
3400 } else if (cmp < 0) {
3401 new = &((*new)->rb_right);
3402 leftmost = false;
3403 } else {
3404 this->num_merged++;
3405 this->total_runtime += data->total_runtime;
3406 this->nb_atoms += data->nb_atoms;
3407 this->total_lat += data->total_lat;
3408 list_splice_init(&data->work_list, &this->work_list);
3409 if (this->max_lat < data->max_lat) {
3410 this->max_lat = data->max_lat;
3411 this->max_lat_start = data->max_lat_start;
3412 this->max_lat_end = data->max_lat_end;
3413 }
3414 free_work_atoms(data);
3415 return;
3416 }
3417 }
3418
3419 data->num_merged++;
3420 rb_link_node(&data->node, parent, new);
3421 rb_insert_color_cached(&data->node, root, leftmost);
3422 }
3423
perf_sched__merge_lat(struct perf_sched * sched)3424 static void perf_sched__merge_lat(struct perf_sched *sched)
3425 {
3426 struct work_atoms *data;
3427 struct rb_node *node;
3428
3429 if (sched->skip_merge)
3430 return;
3431
3432 while ((node = rb_first_cached(&sched->atom_root))) {
3433 rb_erase_cached(node, &sched->atom_root);
3434 data = rb_entry(node, struct work_atoms, node);
3435 __merge_work_atoms(&sched->merged_atom_root, data);
3436 }
3437 }
3438
setup_cpus_switch_event(struct perf_sched * sched)3439 static int setup_cpus_switch_event(struct perf_sched *sched)
3440 {
3441 unsigned int i;
3442
3443 sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched)));
3444 if (!sched->cpu_last_switched)
3445 return -1;
3446
3447 sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid)));
3448 if (!sched->curr_pid) {
3449 zfree(&sched->cpu_last_switched);
3450 return -1;
3451 }
3452
3453 for (i = 0; i < MAX_CPUS; i++)
3454 sched->curr_pid[i] = -1;
3455
3456 return 0;
3457 }
3458
free_cpus_switch_event(struct perf_sched * sched)3459 static void free_cpus_switch_event(struct perf_sched *sched)
3460 {
3461 zfree(&sched->curr_pid);
3462 zfree(&sched->cpu_last_switched);
3463 }
3464
perf_sched__lat(struct perf_sched * sched)3465 static int perf_sched__lat(struct perf_sched *sched)
3466 {
3467 int rc = -1;
3468 struct rb_node *next;
3469
3470 setup_pager();
3471
3472 if (setup_cpus_switch_event(sched))
3473 return rc;
3474
3475 if (perf_sched__read_events(sched))
3476 goto out_free_cpus_switch_event;
3477
3478 perf_sched__merge_lat(sched);
3479 perf_sched__sort_lat(sched);
3480
3481 printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3482 printf(" Task | Runtime ms | Count | Avg delay ms | Max delay ms | Max delay start | Max delay end |\n");
3483 printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3484
3485 next = rb_first_cached(&sched->sorted_atom_root);
3486
3487 while (next) {
3488 struct work_atoms *work_list;
3489
3490 work_list = rb_entry(next, struct work_atoms, node);
3491 output_lat_thread(sched, work_list);
3492 next = rb_next(next);
3493 }
3494
3495 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3496 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
3497 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3498
3499 printf(" ---------------------------------------------------\n");
3500
3501 print_bad_events(sched);
3502 printf("\n");
3503
3504 rc = 0;
3505
3506 while ((next = rb_first_cached(&sched->sorted_atom_root))) {
3507 struct work_atoms *data;
3508
3509 data = rb_entry(next, struct work_atoms, node);
3510 rb_erase_cached(next, &sched->sorted_atom_root);
3511 free_work_atoms(data);
3512 }
3513 out_free_cpus_switch_event:
3514 free_cpus_switch_event(sched);
3515 return rc;
3516 }
3517
setup_map_cpus(struct perf_sched * sched)3518 static int setup_map_cpus(struct perf_sched *sched)
3519 {
3520 sched->max_cpu.cpu = sysconf(_SC_NPROCESSORS_CONF);
3521
3522 if (sched->map.comp) {
3523 sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3524 if (!sched->map.comp_cpus)
3525 return -1;
3526 }
3527
3528 if (sched->map.cpus_str) {
3529 sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str);
3530 if (!sched->map.cpus) {
3531 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3532 zfree(&sched->map.comp_cpus);
3533 return -1;
3534 }
3535 }
3536
3537 return 0;
3538 }
3539
setup_color_pids(struct perf_sched * sched)3540 static int setup_color_pids(struct perf_sched *sched)
3541 {
3542 struct perf_thread_map *map;
3543
3544 if (!sched->map.color_pids_str)
3545 return 0;
3546
3547 map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3548 if (!map) {
3549 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3550 return -1;
3551 }
3552
3553 sched->map.color_pids = map;
3554 return 0;
3555 }
3556
setup_color_cpus(struct perf_sched * sched)3557 static int setup_color_cpus(struct perf_sched *sched)
3558 {
3559 struct perf_cpu_map *map;
3560
3561 if (!sched->map.color_cpus_str)
3562 return 0;
3563
3564 map = perf_cpu_map__new(sched->map.color_cpus_str);
3565 if (!map) {
3566 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3567 return -1;
3568 }
3569
3570 sched->map.color_cpus = map;
3571 return 0;
3572 }
3573
perf_sched__map(struct perf_sched * sched)3574 static int perf_sched__map(struct perf_sched *sched)
3575 {
3576 int rc = -1;
3577
3578 sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread)));
3579 if (!sched->curr_thread)
3580 return rc;
3581
3582 sched->curr_out_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_out_thread)));
3583 if (!sched->curr_out_thread)
3584 goto out_free_curr_thread;
3585
3586 if (setup_cpus_switch_event(sched))
3587 goto out_free_curr_out_thread;
3588
3589 if (setup_map_cpus(sched))
3590 goto out_free_cpus_switch_event;
3591
3592 if (setup_color_pids(sched))
3593 goto out_put_map_cpus;
3594
3595 if (setup_color_cpus(sched))
3596 goto out_put_color_pids;
3597
3598 setup_pager();
3599 if (perf_sched__read_events(sched))
3600 goto out_put_color_cpus;
3601
3602 rc = 0;
3603 print_bad_events(sched);
3604
3605 out_put_color_cpus:
3606 perf_cpu_map__put(sched->map.color_cpus);
3607
3608 out_put_color_pids:
3609 perf_thread_map__put(sched->map.color_pids);
3610
3611 out_put_map_cpus:
3612 zfree(&sched->map.comp_cpus);
3613 perf_cpu_map__put(sched->map.cpus);
3614
3615 out_free_cpus_switch_event:
3616 free_cpus_switch_event(sched);
3617
3618 out_free_curr_out_thread:
3619 for (int i = 0; i < MAX_CPUS; i++)
3620 thread__put(sched->curr_out_thread[i]);
3621 zfree(&sched->curr_out_thread);
3622
3623 out_free_curr_thread:
3624 for (int i = 0; i < MAX_CPUS; i++)
3625 thread__put(sched->curr_thread[i]);
3626 zfree(&sched->curr_thread);
3627 return rc;
3628 }
3629
perf_sched__replay(struct perf_sched * sched)3630 static int perf_sched__replay(struct perf_sched *sched)
3631 {
3632 int ret;
3633 unsigned long i;
3634
3635 mutex_init(&sched->start_work_mutex);
3636 mutex_init(&sched->work_done_wait_mutex);
3637
3638 ret = setup_cpus_switch_event(sched);
3639 if (ret)
3640 goto out_mutex_destroy;
3641
3642 calibrate_run_measurement_overhead(sched);
3643 calibrate_sleep_measurement_overhead(sched);
3644
3645 test_calibrations(sched);
3646
3647 ret = perf_sched__read_events(sched);
3648 if (ret)
3649 goto out_free_cpus_switch_event;
3650
3651 printf("nr_run_events: %ld\n", sched->nr_run_events);
3652 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3653 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3654
3655 if (sched->targetless_wakeups)
3656 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3657 if (sched->multitarget_wakeups)
3658 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3659 if (sched->nr_run_events_optimized)
3660 printf("run atoms optimized: %ld\n",
3661 sched->nr_run_events_optimized);
3662
3663 print_task_traces(sched);
3664 add_cross_task_wakeups(sched);
3665
3666 sched->thread_funcs_exit = false;
3667 create_tasks(sched);
3668 printf("------------------------------------------------------------\n");
3669 if (sched->replay_repeat == 0)
3670 sched->replay_repeat = UINT_MAX;
3671
3672 for (i = 0; i < sched->replay_repeat; i++)
3673 run_one_test(sched);
3674
3675 sched->thread_funcs_exit = true;
3676 destroy_tasks(sched);
3677
3678 out_free_cpus_switch_event:
3679 free_cpus_switch_event(sched);
3680
3681 out_mutex_destroy:
3682 mutex_destroy(&sched->start_work_mutex);
3683 mutex_destroy(&sched->work_done_wait_mutex);
3684 return ret;
3685 }
3686
setup_sorting(struct perf_sched * sched,const struct option * options,const char * const usage_msg[])3687 static void setup_sorting(struct perf_sched *sched, const struct option *options,
3688 const char * const usage_msg[])
3689 {
3690 char *tmp, *tok, *str = strdup(sched->sort_order);
3691
3692 for (tok = strtok_r(str, ", ", &tmp);
3693 tok; tok = strtok_r(NULL, ", ", &tmp)) {
3694 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3695 usage_with_options_msg(usage_msg, options,
3696 "Unknown --sort key: `%s'", tok);
3697 }
3698 }
3699
3700 free(str);
3701
3702 sort_dimension__add("pid", &sched->cmp_pid);
3703 }
3704
schedstat_events_exposed(void)3705 static bool schedstat_events_exposed(void)
3706 {
3707 /*
3708 * Select "sched:sched_stat_wait" event to check
3709 * whether schedstat tracepoints are exposed.
3710 */
3711 return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3712 false : true;
3713 }
3714
__cmd_record(int argc,const char ** argv)3715 static int __cmd_record(int argc, const char **argv)
3716 {
3717 unsigned int rec_argc, i, j;
3718 char **rec_argv;
3719 const char **rec_argv_copy;
3720 const char * const record_args[] = {
3721 "record",
3722 "-a",
3723 "-R",
3724 "-m", "1024",
3725 "-c", "1",
3726 "-e", "sched:sched_switch",
3727 "-e", "sched:sched_stat_runtime",
3728 "-e", "sched:sched_process_fork",
3729 "-e", "sched:sched_wakeup_new",
3730 "-e", "sched:sched_migrate_task",
3731 };
3732
3733 /*
3734 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3735 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3736 * to prevent "perf sched record" execution failure, determine
3737 * whether to record schedstat events according to actual situation.
3738 */
3739 const char * const schedstat_args[] = {
3740 "-e", "sched:sched_stat_wait",
3741 "-e", "sched:sched_stat_sleep",
3742 "-e", "sched:sched_stat_iowait",
3743 };
3744 unsigned int schedstat_argc = schedstat_events_exposed() ?
3745 ARRAY_SIZE(schedstat_args) : 0;
3746
3747 struct tep_event *waking_event;
3748 int ret;
3749
3750 /*
3751 * +2 for either "-e", "sched:sched_wakeup" or
3752 * "-e", "sched:sched_waking"
3753 */
3754 rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3755 rec_argv = calloc(rec_argc + 1, sizeof(char *));
3756 if (rec_argv == NULL)
3757 return -ENOMEM;
3758 rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3759 if (rec_argv_copy == NULL) {
3760 free(rec_argv);
3761 return -ENOMEM;
3762 }
3763
3764 for (i = 0; i < ARRAY_SIZE(record_args); i++)
3765 rec_argv[i] = strdup(record_args[i]);
3766
3767 rec_argv[i++] = strdup("-e");
3768 waking_event = trace_event__tp_format("sched", "sched_waking");
3769 if (!IS_ERR(waking_event))
3770 rec_argv[i++] = strdup("sched:sched_waking");
3771 else
3772 rec_argv[i++] = strdup("sched:sched_wakeup");
3773
3774 for (j = 0; j < schedstat_argc; j++)
3775 rec_argv[i++] = strdup(schedstat_args[j]);
3776
3777 for (j = 1; j < (unsigned int)argc; j++, i++)
3778 rec_argv[i] = strdup(argv[j]);
3779
3780 BUG_ON(i != rec_argc);
3781
3782 memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3783 ret = cmd_record(rec_argc, rec_argv_copy);
3784
3785 for (i = 0; i < rec_argc; i++)
3786 free(rec_argv[i]);
3787 free(rec_argv);
3788 free(rec_argv_copy);
3789
3790 return ret;
3791 }
3792
cmd_sched(int argc,const char ** argv)3793 int cmd_sched(int argc, const char **argv)
3794 {
3795 static const char default_sort_order[] = "avg, max, switch, runtime";
3796 struct perf_sched sched = {
3797 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3798 .sort_list = LIST_HEAD_INIT(sched.sort_list),
3799 .sort_order = default_sort_order,
3800 .replay_repeat = 10,
3801 .profile_cpu = -1,
3802 .next_shortname1 = 'A',
3803 .next_shortname2 = '0',
3804 .skip_merge = 0,
3805 .show_callchain = 1,
3806 .max_stack = 5,
3807 };
3808 const struct option sched_options[] = {
3809 OPT_STRING('i', "input", &input_name, "file",
3810 "input file name"),
3811 OPT_INCR('v', "verbose", &verbose,
3812 "be more verbose (show symbol address, etc)"),
3813 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3814 "dump raw trace in ASCII"),
3815 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3816 OPT_END()
3817 };
3818 const struct option latency_options[] = {
3819 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3820 "sort by key(s): runtime, switch, avg, max"),
3821 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3822 "CPU to profile on"),
3823 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3824 "latency stats per pid instead of per comm"),
3825 OPT_PARENT(sched_options)
3826 };
3827 const struct option replay_options[] = {
3828 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3829 "repeat the workload replay N times (0: infinite)"),
3830 OPT_PARENT(sched_options)
3831 };
3832 const struct option map_options[] = {
3833 OPT_BOOLEAN(0, "compact", &sched.map.comp,
3834 "map output in compact mode"),
3835 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3836 "highlight given pids in map"),
3837 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3838 "highlight given CPUs in map"),
3839 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3840 "display given CPUs in map"),
3841 OPT_STRING(0, "task-name", &sched.map.task_name, "task",
3842 "map output only for the given task name(s)."),
3843 OPT_BOOLEAN(0, "fuzzy-name", &sched.map.fuzzy,
3844 "given command name can be partially matched (fuzzy matching)"),
3845 OPT_PARENT(sched_options)
3846 };
3847 const struct option timehist_options[] = {
3848 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3849 "file", "vmlinux pathname"),
3850 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3851 "file", "kallsyms pathname"),
3852 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3853 "Display call chains if present (default on)"),
3854 OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3855 "Maximum number of functions to display backtrace."),
3856 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3857 "Look for files with symbols relative to this directory"),
3858 OPT_BOOLEAN('s', "summary", &sched.summary_only,
3859 "Show only syscall summary with statistics"),
3860 OPT_BOOLEAN('S', "with-summary", &sched.summary,
3861 "Show all syscalls and summary with statistics"),
3862 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3863 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3864 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3865 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3866 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3867 OPT_STRING(0, "time", &sched.time_str, "str",
3868 "Time span for analysis (start,stop)"),
3869 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3870 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3871 "analyze events only for given process id(s)"),
3872 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3873 "analyze events only for given thread id(s)"),
3874 OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3875 OPT_BOOLEAN(0, "show-prio", &sched.show_prio, "Show task priority"),
3876 OPT_STRING(0, "prio", &sched.prio_str, "prio",
3877 "analyze events only for given task priority(ies)"),
3878 OPT_PARENT(sched_options)
3879 };
3880
3881 const char * const latency_usage[] = {
3882 "perf sched latency [<options>]",
3883 NULL
3884 };
3885 const char * const replay_usage[] = {
3886 "perf sched replay [<options>]",
3887 NULL
3888 };
3889 const char * const map_usage[] = {
3890 "perf sched map [<options>]",
3891 NULL
3892 };
3893 const char * const timehist_usage[] = {
3894 "perf sched timehist [<options>]",
3895 NULL
3896 };
3897 const char *const sched_subcommands[] = { "record", "latency", "map",
3898 "replay", "script",
3899 "timehist", NULL };
3900 const char *sched_usage[] = {
3901 NULL,
3902 NULL
3903 };
3904 struct trace_sched_handler lat_ops = {
3905 .wakeup_event = latency_wakeup_event,
3906 .switch_event = latency_switch_event,
3907 .runtime_event = latency_runtime_event,
3908 .migrate_task_event = latency_migrate_task_event,
3909 };
3910 struct trace_sched_handler map_ops = {
3911 .switch_event = map_switch_event,
3912 };
3913 struct trace_sched_handler replay_ops = {
3914 .wakeup_event = replay_wakeup_event,
3915 .switch_event = replay_switch_event,
3916 .fork_event = replay_fork_event,
3917 };
3918 int ret;
3919
3920 perf_tool__init(&sched.tool, /*ordered_events=*/true);
3921 sched.tool.sample = perf_sched__process_tracepoint_sample;
3922 sched.tool.comm = perf_sched__process_comm;
3923 sched.tool.namespaces = perf_event__process_namespaces;
3924 sched.tool.lost = perf_event__process_lost;
3925 sched.tool.fork = perf_sched__process_fork_event;
3926
3927 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3928 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3929 if (!argc)
3930 usage_with_options(sched_usage, sched_options);
3931
3932 thread__set_priv_destructor(free);
3933
3934 /*
3935 * Aliased to 'perf script' for now:
3936 */
3937 if (!strcmp(argv[0], "script")) {
3938 ret = cmd_script(argc, argv);
3939 } else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3940 ret = __cmd_record(argc, argv);
3941 } else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3942 sched.tp_handler = &lat_ops;
3943 if (argc > 1) {
3944 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3945 if (argc)
3946 usage_with_options(latency_usage, latency_options);
3947 }
3948 setup_sorting(&sched, latency_options, latency_usage);
3949 ret = perf_sched__lat(&sched);
3950 } else if (!strcmp(argv[0], "map")) {
3951 if (argc) {
3952 argc = parse_options(argc, argv, map_options, map_usage, 0);
3953 if (argc)
3954 usage_with_options(map_usage, map_options);
3955
3956 if (sched.map.task_name) {
3957 sched.map.task_names = strlist__new(sched.map.task_name, NULL);
3958 if (sched.map.task_names == NULL) {
3959 fprintf(stderr, "Failed to parse task names\n");
3960 ret = -1;
3961 goto out;
3962 }
3963 }
3964 }
3965 sched.tp_handler = &map_ops;
3966 setup_sorting(&sched, latency_options, latency_usage);
3967 ret = perf_sched__map(&sched);
3968 } else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3969 sched.tp_handler = &replay_ops;
3970 if (argc) {
3971 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3972 if (argc)
3973 usage_with_options(replay_usage, replay_options);
3974 }
3975 ret = perf_sched__replay(&sched);
3976 } else if (!strcmp(argv[0], "timehist")) {
3977 if (argc) {
3978 argc = parse_options(argc, argv, timehist_options,
3979 timehist_usage, 0);
3980 if (argc)
3981 usage_with_options(timehist_usage, timehist_options);
3982 }
3983 if ((sched.show_wakeups || sched.show_next) &&
3984 sched.summary_only) {
3985 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3986 parse_options_usage(timehist_usage, timehist_options, "s", true);
3987 if (sched.show_wakeups)
3988 parse_options_usage(NULL, timehist_options, "w", true);
3989 if (sched.show_next)
3990 parse_options_usage(NULL, timehist_options, "n", true);
3991 ret = -EINVAL;
3992 goto out;
3993 }
3994 ret = symbol__validate_sym_arguments();
3995 if (!ret)
3996 ret = perf_sched__timehist(&sched);
3997 } else {
3998 usage_with_options(sched_usage, sched_options);
3999 }
4000
4001 out:
4002 /* free usage string allocated by parse_options_subcommand */
4003 free((void *)sched_usage[0]);
4004
4005 return ret;
4006 }
4007