• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_VMX_H
3 #define __KVM_X86_VMX_H
4 
5 #include <linux/kvm_host.h>
6 
7 #include <asm/kvm.h>
8 #include <asm/intel_pt.h>
9 #include <asm/perf_event.h>
10 #include <asm/posted_intr.h>
11 
12 #include "capabilities.h"
13 #include "../kvm_cache_regs.h"
14 #include "vmcs.h"
15 #include "vmx_ops.h"
16 #include "../cpuid.h"
17 #include "run_flags.h"
18 #include "../mmu.h"
19 
20 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
21 
22 #ifdef CONFIG_X86_64
23 #define MAX_NR_USER_RETURN_MSRS	7
24 #else
25 #define MAX_NR_USER_RETURN_MSRS	4
26 #endif
27 
28 #define MAX_NR_LOADSTORE_MSRS	8
29 
30 struct vmx_msrs {
31 	unsigned int		nr;
32 	struct vmx_msr_entry	val[MAX_NR_LOADSTORE_MSRS];
33 };
34 
35 struct vmx_uret_msr {
36 	bool load_into_hardware;
37 	u64 data;
38 	u64 mask;
39 };
40 
41 enum segment_cache_field {
42 	SEG_FIELD_SEL = 0,
43 	SEG_FIELD_BASE = 1,
44 	SEG_FIELD_LIMIT = 2,
45 	SEG_FIELD_AR = 3,
46 
47 	SEG_FIELD_NR = 4
48 };
49 
50 #define RTIT_ADDR_RANGE		4
51 
52 struct pt_ctx {
53 	u64 ctl;
54 	u64 status;
55 	u64 output_base;
56 	u64 output_mask;
57 	u64 cr3_match;
58 	u64 addr_a[RTIT_ADDR_RANGE];
59 	u64 addr_b[RTIT_ADDR_RANGE];
60 };
61 
62 struct pt_desc {
63 	u64 ctl_bitmask;
64 	u32 num_address_ranges;
65 	u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
66 	struct pt_ctx host;
67 	struct pt_ctx guest;
68 };
69 
70 union vmx_exit_reason {
71 	struct {
72 		u32	basic			: 16;
73 		u32	reserved16		: 1;
74 		u32	reserved17		: 1;
75 		u32	reserved18		: 1;
76 		u32	reserved19		: 1;
77 		u32	reserved20		: 1;
78 		u32	reserved21		: 1;
79 		u32	reserved22		: 1;
80 		u32	reserved23		: 1;
81 		u32	reserved24		: 1;
82 		u32	reserved25		: 1;
83 		u32	bus_lock_detected	: 1;
84 		u32	enclave_mode		: 1;
85 		u32	smi_pending_mtf		: 1;
86 		u32	smi_from_vmx_root	: 1;
87 		u32	reserved30		: 1;
88 		u32	failed_vmentry		: 1;
89 	};
90 	u32 full;
91 };
92 
93 struct lbr_desc {
94 	/* Basic info about guest LBR records. */
95 	struct x86_pmu_lbr records;
96 
97 	/*
98 	 * Emulate LBR feature via passthrough LBR registers when the
99 	 * per-vcpu guest LBR event is scheduled on the current pcpu.
100 	 *
101 	 * The records may be inaccurate if the host reclaims the LBR.
102 	 */
103 	struct perf_event *event;
104 
105 	/* True if LBRs are marked as not intercepted in the MSR bitmap */
106 	bool msr_passthrough;
107 };
108 
109 extern struct x86_pmu_lbr vmx_lbr_caps;
110 
111 /*
112  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
113  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
114  */
115 struct nested_vmx {
116 	/* Has the level1 guest done vmxon? */
117 	bool vmxon;
118 	gpa_t vmxon_ptr;
119 	bool pml_full;
120 
121 	/* The guest-physical address of the current VMCS L1 keeps for L2 */
122 	gpa_t current_vmptr;
123 	/*
124 	 * Cache of the guest's VMCS, existing outside of guest memory.
125 	 * Loaded from guest memory during VMPTRLD. Flushed to guest
126 	 * memory during VMCLEAR and VMPTRLD.
127 	 */
128 	struct vmcs12 *cached_vmcs12;
129 	/*
130 	 * Cache of the guest's shadow VMCS, existing outside of guest
131 	 * memory. Loaded from guest memory during VM entry. Flushed
132 	 * to guest memory during VM exit.
133 	 */
134 	struct vmcs12 *cached_shadow_vmcs12;
135 
136 	/*
137 	 * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer
138 	 */
139 	struct gfn_to_hva_cache shadow_vmcs12_cache;
140 
141 	/*
142 	 * GPA to HVA cache for VMCS12
143 	 */
144 	struct gfn_to_hva_cache vmcs12_cache;
145 
146 	/*
147 	 * Indicates if the shadow vmcs or enlightened vmcs must be updated
148 	 * with the data held by struct vmcs12.
149 	 */
150 	bool need_vmcs12_to_shadow_sync;
151 	bool dirty_vmcs12;
152 
153 	/*
154 	 * Indicates whether MSR bitmap for L2 needs to be rebuilt due to
155 	 * changes in MSR bitmap for L1 or switching to a different L2. Note,
156 	 * this flag can only be used reliably in conjunction with a paravirt L1
157 	 * which informs L0 whether any changes to MSR bitmap for L2 were done
158 	 * on its side.
159 	 */
160 	bool force_msr_bitmap_recalc;
161 
162 	/*
163 	 * Indicates lazily loaded guest state has not yet been decached from
164 	 * vmcs02.
165 	 */
166 	bool need_sync_vmcs02_to_vmcs12_rare;
167 
168 	/*
169 	 * vmcs02 has been initialized, i.e. state that is constant for
170 	 * vmcs02 has been written to the backing VMCS.  Initialization
171 	 * is delayed until L1 actually attempts to run a nested VM.
172 	 */
173 	bool vmcs02_initialized;
174 
175 	bool change_vmcs01_virtual_apic_mode;
176 	bool reload_vmcs01_apic_access_page;
177 	bool update_vmcs01_cpu_dirty_logging;
178 	bool update_vmcs01_apicv_status;
179 	bool update_vmcs01_hwapic_isr;
180 
181 	/*
182 	 * Enlightened VMCS has been enabled. It does not mean that L1 has to
183 	 * use it. However, VMX features available to L1 will be limited based
184 	 * on what the enlightened VMCS supports.
185 	 */
186 	bool enlightened_vmcs_enabled;
187 
188 	/* L2 must run next, and mustn't decide to exit to L1. */
189 	bool nested_run_pending;
190 
191 	/* Pending MTF VM-exit into L1.  */
192 	bool mtf_pending;
193 
194 	struct loaded_vmcs vmcs02;
195 
196 	/*
197 	 * Guest pages referred to in the vmcs02 with host-physical
198 	 * pointers, so we must keep them pinned while L2 runs.
199 	 */
200 	struct kvm_host_map apic_access_page_map;
201 	struct kvm_host_map virtual_apic_map;
202 	struct kvm_host_map pi_desc_map;
203 
204 	struct kvm_host_map msr_bitmap_map;
205 
206 	struct pi_desc *pi_desc;
207 	bool pi_pending;
208 	u16 posted_intr_nv;
209 
210 	struct hrtimer preemption_timer;
211 	u64 preemption_timer_deadline;
212 	bool has_preemption_timer_deadline;
213 	bool preemption_timer_expired;
214 
215 	/*
216 	 * Used to snapshot MSRs that are conditionally loaded on VM-Enter in
217 	 * order to propagate the guest's pre-VM-Enter value into vmcs02.  For
218 	 * emulation of VMLAUNCH/VMRESUME, the snapshot will be of L1's value.
219 	 * For KVM_SET_NESTED_STATE, the snapshot is of L2's value, _if_
220 	 * userspace restores MSRs before nested state.  If userspace restores
221 	 * MSRs after nested state, the snapshot holds garbage, but KVM can't
222 	 * detect that, and the garbage value in vmcs02 will be overwritten by
223 	 * MSR restoration in any case.
224 	 */
225 	u64 pre_vmenter_debugctl;
226 	u64 pre_vmenter_bndcfgs;
227 
228 	/* to migrate it to L1 if L2 writes to L1's CR8 directly */
229 	int l1_tpr_threshold;
230 
231 	u16 vpid02;
232 	u16 last_vpid;
233 
234 	struct nested_vmx_msrs msrs;
235 
236 	/* SMM related state */
237 	struct {
238 		/* in VMX operation on SMM entry? */
239 		bool vmxon;
240 		/* in guest mode on SMM entry? */
241 		bool guest_mode;
242 	} smm;
243 
244 #ifdef CONFIG_KVM_HYPERV
245 	gpa_t hv_evmcs_vmptr;
246 	struct kvm_host_map hv_evmcs_map;
247 	struct hv_enlightened_vmcs *hv_evmcs;
248 #endif
249 };
250 
251 struct vcpu_vmx {
252 	struct kvm_vcpu       vcpu;
253 	u8                    fail;
254 	u8		      x2apic_msr_bitmap_mode;
255 
256 	/*
257 	 * If true, host state has been stored in vmx->loaded_vmcs for
258 	 * the CPU registers that only need to be switched when transitioning
259 	 * to/from the kernel, and the registers have been loaded with guest
260 	 * values.  If false, host state is loaded in the CPU registers
261 	 * and vmx->loaded_vmcs->host_state is invalid.
262 	 */
263 	bool		      guest_state_loaded;
264 
265 	unsigned long         exit_qualification;
266 	u32                   exit_intr_info;
267 	u32                   idt_vectoring_info;
268 	ulong                 rflags;
269 
270 	/*
271 	 * User return MSRs are always emulated when enabled in the guest, but
272 	 * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
273 	 * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
274 	 * be loaded into hardware if those conditions aren't met.
275 	 */
276 	struct vmx_uret_msr   guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
277 	bool                  guest_uret_msrs_loaded;
278 #ifdef CONFIG_X86_64
279 	u64		      msr_host_kernel_gs_base;
280 	u64		      msr_guest_kernel_gs_base;
281 #endif
282 
283 	u64		      spec_ctrl;
284 	u32		      msr_ia32_umwait_control;
285 
286 	/*
287 	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
288 	 * non-nested (L1) guest, it always points to vmcs01. For a nested
289 	 * guest (L2), it points to a different VMCS.
290 	 */
291 	struct loaded_vmcs    vmcs01;
292 	struct loaded_vmcs   *loaded_vmcs;
293 
294 	struct msr_autoload {
295 		struct vmx_msrs guest;
296 		struct vmx_msrs host;
297 	} msr_autoload;
298 
299 	struct msr_autostore {
300 		struct vmx_msrs guest;
301 	} msr_autostore;
302 
303 	struct {
304 		int vm86_active;
305 		ulong save_rflags;
306 		struct kvm_segment segs[8];
307 	} rmode;
308 	struct {
309 		u32 bitmask; /* 4 bits per segment (1 bit per field) */
310 		struct kvm_save_segment {
311 			u16 selector;
312 			unsigned long base;
313 			u32 limit;
314 			u32 ar;
315 		} seg[8];
316 	} segment_cache;
317 	int vpid;
318 	bool emulation_required;
319 
320 	union vmx_exit_reason exit_reason;
321 
322 	/* Posted interrupt descriptor */
323 	struct pi_desc pi_desc;
324 
325 	/* Used if this vCPU is waiting for PI notification wakeup. */
326 	struct list_head pi_wakeup_list;
327 
328 	/* Support for a guest hypervisor (nested VMX) */
329 	struct nested_vmx nested;
330 
331 	/* Dynamic PLE window. */
332 	unsigned int ple_window;
333 	bool ple_window_dirty;
334 
335 	/* Support for PML */
336 #define PML_ENTITY_NUM		512
337 	struct page *pml_pg;
338 
339 	/* apic deadline value in host tsc */
340 	u64 hv_deadline_tsc;
341 
342 	/*
343 	 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
344 	 * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
345 	 * in msr_ia32_feature_control_valid_bits.
346 	 */
347 	u64 msr_ia32_feature_control;
348 	u64 msr_ia32_feature_control_valid_bits;
349 	/* SGX Launch Control public key hash */
350 	u64 msr_ia32_sgxlepubkeyhash[4];
351 	u64 msr_ia32_mcu_opt_ctrl;
352 	bool disable_fb_clear;
353 
354 	struct pt_desc pt_desc;
355 	struct lbr_desc lbr_desc;
356 
357 	/* Save desired MSR intercept (read: pass-through) state */
358 #define MAX_POSSIBLE_PASSTHROUGH_MSRS	16
359 	struct {
360 		DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
361 		DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
362 	} shadow_msr_intercept;
363 
364 	/* ve_info must be page aligned. */
365 	struct vmx_ve_information *ve_info;
366 };
367 
368 struct kvm_vmx {
369 	struct kvm kvm;
370 
371 	unsigned int tss_addr;
372 	bool ept_identity_pagetable_done;
373 	gpa_t ept_identity_map_addr;
374 	/* Posted Interrupt Descriptor (PID) table for IPI virtualization */
375 	u64 *pid_table;
376 };
377 
378 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
379 			struct loaded_vmcs *buddy);
380 int allocate_vpid(void);
381 void free_vpid(int vpid);
382 void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
383 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
384 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
385 			unsigned long fs_base, unsigned long gs_base);
386 int vmx_get_cpl(struct kvm_vcpu *vcpu);
387 bool vmx_emulation_required(struct kvm_vcpu *vcpu);
388 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
389 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
390 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
391 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
392 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
393 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
394 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
395 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
396 void ept_save_pdptrs(struct kvm_vcpu *vcpu);
397 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
398 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
399 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
400 
401 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu);
402 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
403 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
404 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
405 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
406 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
407 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
408 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
409 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
410 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
411 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
412 void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags);
413 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx);
414 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs,
415 		    unsigned int flags);
416 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
417 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
418 
419 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
420 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
421 
422 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu);
423 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu);
424 
425 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
426 
vmx_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool value)427 static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr,
428 					     int type, bool value)
429 {
430 	if (value)
431 		vmx_enable_intercept_for_msr(vcpu, msr, type);
432 	else
433 		vmx_disable_intercept_for_msr(vcpu, msr, type);
434 }
435 
436 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
437 
438 u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated);
439 bool vmx_is_valid_debugctl(struct kvm_vcpu *vcpu, u64 data, bool host_initiated);
440 
vmx_guest_debugctl_write(struct kvm_vcpu * vcpu,u64 val)441 static inline void vmx_guest_debugctl_write(struct kvm_vcpu *vcpu, u64 val)
442 {
443 	WARN_ON_ONCE(val & DEBUGCTLMSR_FREEZE_IN_SMM);
444 
445 	val |= vcpu->arch.host_debugctl & DEBUGCTLMSR_FREEZE_IN_SMM;
446 	vmcs_write64(GUEST_IA32_DEBUGCTL, val);
447 }
448 
vmx_guest_debugctl_read(void)449 static inline u64 vmx_guest_debugctl_read(void)
450 {
451 	return vmcs_read64(GUEST_IA32_DEBUGCTL) & ~DEBUGCTLMSR_FREEZE_IN_SMM;
452 }
453 
vmx_reload_guest_debugctl(struct kvm_vcpu * vcpu)454 static inline void vmx_reload_guest_debugctl(struct kvm_vcpu *vcpu)
455 {
456 	u64 val = vmcs_read64(GUEST_IA32_DEBUGCTL);
457 
458 	if (!((val ^ vcpu->arch.host_debugctl) & DEBUGCTLMSR_FREEZE_IN_SMM))
459 		return;
460 
461 	vmx_guest_debugctl_write(vcpu, val & ~DEBUGCTLMSR_FREEZE_IN_SMM);
462 }
463 
464 /*
465  * Note, early Intel manuals have the write-low and read-high bitmap offsets
466  * the wrong way round.  The bitmaps control MSRs 0x00000000-0x00001fff and
467  * 0xc0000000-0xc0001fff.  The former (low) uses bytes 0-0x3ff for reads and
468  * 0x800-0xbff for writes.  The latter (high) uses 0x400-0x7ff for reads and
469  * 0xc00-0xfff for writes.  MSRs not covered by either of the ranges always
470  * VM-Exit.
471  */
472 #define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base)      \
473 static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap,  \
474 						       u32 msr)		       \
475 {									       \
476 	int f = sizeof(unsigned long);					       \
477 									       \
478 	if (msr <= 0x1fff)						       \
479 		return bitop##_bit(msr, bitmap + base / f);		       \
480 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))		       \
481 		return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \
482 	return (rtype)true;						       \
483 }
484 #define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop)		       \
485 	__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read,  0x0)     \
486 	__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800)
487 
BUILD_VMX_MSR_BITMAP_HELPERS(bool,test,test)488 BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test)
489 BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear)
490 BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set)
491 
492 static inline u8 vmx_get_rvi(void)
493 {
494 	return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
495 }
496 
497 #define __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS				\
498 	(VM_ENTRY_LOAD_DEBUG_CONTROLS)
499 #ifdef CONFIG_X86_64
500 	#define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS			\
501 		(__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS |			\
502 		 VM_ENTRY_IA32E_MODE)
503 #else
504 	#define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS			\
505 		__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS
506 #endif
507 #define KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS				\
508 	(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |				\
509 	 VM_ENTRY_LOAD_IA32_PAT |					\
510 	 VM_ENTRY_LOAD_IA32_EFER |					\
511 	 VM_ENTRY_LOAD_BNDCFGS |					\
512 	 VM_ENTRY_PT_CONCEAL_PIP |					\
513 	 VM_ENTRY_LOAD_IA32_RTIT_CTL)
514 
515 #define __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS				\
516 	(VM_EXIT_SAVE_DEBUG_CONTROLS |					\
517 	 VM_EXIT_ACK_INTR_ON_EXIT)
518 #ifdef CONFIG_X86_64
519 	#define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS			\
520 		(__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS |			\
521 		 VM_EXIT_HOST_ADDR_SPACE_SIZE)
522 #else
523 	#define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS			\
524 		__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS
525 #endif
526 #define KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS				\
527 	      (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |			\
528 	       VM_EXIT_SAVE_IA32_PAT |					\
529 	       VM_EXIT_LOAD_IA32_PAT |					\
530 	       VM_EXIT_SAVE_IA32_EFER |					\
531 	       VM_EXIT_SAVE_VMX_PREEMPTION_TIMER |			\
532 	       VM_EXIT_LOAD_IA32_EFER |					\
533 	       VM_EXIT_CLEAR_BNDCFGS |					\
534 	       VM_EXIT_PT_CONCEAL_PIP |					\
535 	       VM_EXIT_CLEAR_IA32_RTIT_CTL)
536 
537 #define KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL			\
538 	(PIN_BASED_EXT_INTR_MASK |					\
539 	 PIN_BASED_NMI_EXITING)
540 #define KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL			\
541 	(PIN_BASED_VIRTUAL_NMIS |					\
542 	 PIN_BASED_POSTED_INTR |					\
543 	 PIN_BASED_VMX_PREEMPTION_TIMER)
544 
545 #define __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL			\
546 	(CPU_BASED_HLT_EXITING |					\
547 	 CPU_BASED_CR3_LOAD_EXITING |					\
548 	 CPU_BASED_CR3_STORE_EXITING |					\
549 	 CPU_BASED_UNCOND_IO_EXITING |					\
550 	 CPU_BASED_MOV_DR_EXITING |					\
551 	 CPU_BASED_USE_TSC_OFFSETTING |					\
552 	 CPU_BASED_MWAIT_EXITING |					\
553 	 CPU_BASED_MONITOR_EXITING |					\
554 	 CPU_BASED_INVLPG_EXITING |					\
555 	 CPU_BASED_RDPMC_EXITING |					\
556 	 CPU_BASED_INTR_WINDOW_EXITING)
557 
558 #ifdef CONFIG_X86_64
559 	#define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL		\
560 		(__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL |		\
561 		 CPU_BASED_CR8_LOAD_EXITING |				\
562 		 CPU_BASED_CR8_STORE_EXITING)
563 #else
564 	#define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL		\
565 		__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL
566 #endif
567 
568 #define KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL			\
569 	(CPU_BASED_RDTSC_EXITING |					\
570 	 CPU_BASED_TPR_SHADOW |						\
571 	 CPU_BASED_USE_IO_BITMAPS |					\
572 	 CPU_BASED_MONITOR_TRAP_FLAG |					\
573 	 CPU_BASED_USE_MSR_BITMAPS |					\
574 	 CPU_BASED_NMI_WINDOW_EXITING |					\
575 	 CPU_BASED_PAUSE_EXITING |					\
576 	 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS |			\
577 	 CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
578 
579 #define KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL 0
580 #define KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL			\
581 	(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |			\
582 	 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |			\
583 	 SECONDARY_EXEC_WBINVD_EXITING |				\
584 	 SECONDARY_EXEC_ENABLE_VPID |					\
585 	 SECONDARY_EXEC_ENABLE_EPT |					\
586 	 SECONDARY_EXEC_UNRESTRICTED_GUEST |				\
587 	 SECONDARY_EXEC_PAUSE_LOOP_EXITING |				\
588 	 SECONDARY_EXEC_DESC |						\
589 	 SECONDARY_EXEC_ENABLE_RDTSCP |					\
590 	 SECONDARY_EXEC_ENABLE_INVPCID |				\
591 	 SECONDARY_EXEC_APIC_REGISTER_VIRT |				\
592 	 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |				\
593 	 SECONDARY_EXEC_SHADOW_VMCS |					\
594 	 SECONDARY_EXEC_ENABLE_XSAVES |					\
595 	 SECONDARY_EXEC_RDSEED_EXITING |				\
596 	 SECONDARY_EXEC_RDRAND_EXITING |				\
597 	 SECONDARY_EXEC_ENABLE_PML |					\
598 	 SECONDARY_EXEC_TSC_SCALING |					\
599 	 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |				\
600 	 SECONDARY_EXEC_PT_USE_GPA |					\
601 	 SECONDARY_EXEC_PT_CONCEAL_VMX |				\
602 	 SECONDARY_EXEC_ENABLE_VMFUNC |					\
603 	 SECONDARY_EXEC_BUS_LOCK_DETECTION |				\
604 	 SECONDARY_EXEC_NOTIFY_VM_EXITING |				\
605 	 SECONDARY_EXEC_ENCLS_EXITING |					\
606 	 SECONDARY_EXEC_EPT_VIOLATION_VE)
607 
608 #define KVM_REQUIRED_VMX_TERTIARY_VM_EXEC_CONTROL 0
609 #define KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL			\
610 	(TERTIARY_EXEC_IPI_VIRT)
611 
612 #define BUILD_CONTROLS_SHADOW(lname, uname, bits)						\
613 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u##bits val)			\
614 {												\
615 	if (vmx->loaded_vmcs->controls_shadow.lname != val) {					\
616 		vmcs_write##bits(uname, val);							\
617 		vmx->loaded_vmcs->controls_shadow.lname = val;					\
618 	}											\
619 }												\
620 static inline u##bits __##lname##_controls_get(struct loaded_vmcs *vmcs)			\
621 {												\
622 	return vmcs->controls_shadow.lname;							\
623 }												\
624 static inline u##bits lname##_controls_get(struct vcpu_vmx *vmx)				\
625 {												\
626 	return __##lname##_controls_get(vmx->loaded_vmcs);					\
627 }												\
628 static __always_inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u##bits val)		\
629 {												\
630 	BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname)));		\
631 	lname##_controls_set(vmx, lname##_controls_get(vmx) | val);				\
632 }												\
633 static __always_inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u##bits val)	\
634 {												\
635 	BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname)));		\
636 	lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val);				\
637 }
638 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS, 32)
639 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS, 32)
640 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL, 32)
641 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL, 32)
642 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL, 32)
643 BUILD_CONTROLS_SHADOW(tertiary_exec, TERTIARY_VM_EXEC_CONTROL, 64)
644 
645 /*
646  * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the
647  * cache on demand.  Other registers not listed here are synced to
648  * the cache immediately after VM-Exit.
649  */
650 #define VMX_REGS_LAZY_LOAD_SET	((1 << VCPU_REGS_RIP) |         \
651 				(1 << VCPU_REGS_RSP) |          \
652 				(1 << VCPU_EXREG_RFLAGS) |      \
653 				(1 << VCPU_EXREG_PDPTR) |       \
654 				(1 << VCPU_EXREG_SEGMENTS) |    \
655 				(1 << VCPU_EXREG_CR0) |         \
656 				(1 << VCPU_EXREG_CR3) |         \
657 				(1 << VCPU_EXREG_CR4) |         \
658 				(1 << VCPU_EXREG_EXIT_INFO_1) | \
659 				(1 << VCPU_EXREG_EXIT_INFO_2))
660 
vmx_l1_guest_owned_cr0_bits(void)661 static inline unsigned long vmx_l1_guest_owned_cr0_bits(void)
662 {
663 	unsigned long bits = KVM_POSSIBLE_CR0_GUEST_BITS;
664 
665 	/*
666 	 * CR0.WP needs to be intercepted when KVM is shadowing legacy paging
667 	 * in order to construct shadow PTEs with the correct protections.
668 	 * Note!  CR0.WP technically can be passed through to the guest if
669 	 * paging is disabled, but checking CR0.PG would generate a cyclical
670 	 * dependency of sorts due to forcing the caller to ensure CR0 holds
671 	 * the correct value prior to determining which CR0 bits can be owned
672 	 * by L1.  Keep it simple and limit the optimization to EPT.
673 	 */
674 	if (!enable_ept)
675 		bits &= ~X86_CR0_WP;
676 	return bits;
677 }
678 
to_kvm_vmx(struct kvm * kvm)679 static __always_inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
680 {
681 	return container_of(kvm, struct kvm_vmx, kvm);
682 }
683 
to_vmx(struct kvm_vcpu * vcpu)684 static __always_inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
685 {
686 	return container_of(vcpu, struct vcpu_vmx, vcpu);
687 }
688 
vcpu_to_lbr_desc(struct kvm_vcpu * vcpu)689 static inline struct lbr_desc *vcpu_to_lbr_desc(struct kvm_vcpu *vcpu)
690 {
691 	return &to_vmx(vcpu)->lbr_desc;
692 }
693 
vcpu_to_lbr_records(struct kvm_vcpu * vcpu)694 static inline struct x86_pmu_lbr *vcpu_to_lbr_records(struct kvm_vcpu *vcpu)
695 {
696 	return &vcpu_to_lbr_desc(vcpu)->records;
697 }
698 
intel_pmu_lbr_is_enabled(struct kvm_vcpu * vcpu)699 static inline bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu)
700 {
701 	return !!vcpu_to_lbr_records(vcpu)->nr;
702 }
703 
704 void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu);
705 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
706 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
707 
vmx_get_exit_qual(struct kvm_vcpu * vcpu)708 static __always_inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
709 {
710 	struct vcpu_vmx *vmx = to_vmx(vcpu);
711 
712 	if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1))
713 		vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
714 
715 	return vmx->exit_qualification;
716 }
717 
vmx_get_intr_info(struct kvm_vcpu * vcpu)718 static __always_inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
719 {
720 	struct vcpu_vmx *vmx = to_vmx(vcpu);
721 
722 	if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2))
723 		vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
724 
725 	return vmx->exit_intr_info;
726 }
727 
728 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
729 void free_vmcs(struct vmcs *vmcs);
730 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
731 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
732 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
733 
alloc_vmcs(bool shadow)734 static inline struct vmcs *alloc_vmcs(bool shadow)
735 {
736 	return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
737 			      GFP_KERNEL_ACCOUNT);
738 }
739 
vmx_has_waitpkg(struct vcpu_vmx * vmx)740 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
741 {
742 	return secondary_exec_controls_get(vmx) &
743 		SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
744 }
745 
vmx_need_pf_intercept(struct kvm_vcpu * vcpu)746 static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
747 {
748 	if (!enable_ept)
749 		return true;
750 
751 	return allow_smaller_maxphyaddr &&
752 	       cpuid_maxphyaddr(vcpu) < kvm_host.maxphyaddr;
753 }
754 
is_unrestricted_guest(struct kvm_vcpu * vcpu)755 static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
756 {
757 	return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
758 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
759 	    SECONDARY_EXEC_UNRESTRICTED_GUEST));
760 }
761 
762 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
vmx_guest_state_valid(struct kvm_vcpu * vcpu)763 static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
764 {
765 	return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
766 }
767 
768 void dump_vmcs(struct kvm_vcpu *vcpu);
769 
vmx_get_instr_info_reg2(u32 vmx_instr_info)770 static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info)
771 {
772 	return (vmx_instr_info >> 28) & 0xf;
773 }
774 
vmx_can_use_ipiv(struct kvm_vcpu * vcpu)775 static inline bool vmx_can_use_ipiv(struct kvm_vcpu *vcpu)
776 {
777 	return  lapic_in_kernel(vcpu) && enable_ipiv;
778 }
779 
vmx_segment_cache_clear(struct vcpu_vmx * vmx)780 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
781 {
782 	vmx->segment_cache.bitmask = 0;
783 }
784 
785 #endif /* __KVM_X86_VMX_H */
786