1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/objtool.h>
5 #include <linux/percpu.h>
6
7 #include <asm/debugreg.h>
8 #include <asm/mmu_context.h>
9
10 #include "x86.h"
11 #include "cpuid.h"
12 #include "hyperv.h"
13 #include "mmu.h"
14 #include "nested.h"
15 #include "pmu.h"
16 #include "posted_intr.h"
17 #include "sgx.h"
18 #include "trace.h"
19 #include "vmx.h"
20 #include "smm.h"
21
22 static bool __read_mostly enable_shadow_vmcs = 1;
23 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
24
25 static bool __read_mostly nested_early_check = 0;
26 module_param(nested_early_check, bool, S_IRUGO);
27
28 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
29
30 /*
31 * Hyper-V requires all of these, so mark them as supported even though
32 * they are just treated the same as all-context.
33 */
34 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
35 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
36 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
37 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
38 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
39
40 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
41
42 enum {
43 VMX_VMREAD_BITMAP,
44 VMX_VMWRITE_BITMAP,
45 VMX_BITMAP_NR
46 };
47 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
48
49 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
50 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
51
52 struct shadow_vmcs_field {
53 u16 encoding;
54 u16 offset;
55 };
56 static struct shadow_vmcs_field shadow_read_only_fields[] = {
57 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
58 #include "vmcs_shadow_fields.h"
59 };
60 static int max_shadow_read_only_fields =
61 ARRAY_SIZE(shadow_read_only_fields);
62
63 static struct shadow_vmcs_field shadow_read_write_fields[] = {
64 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
65 #include "vmcs_shadow_fields.h"
66 };
67 static int max_shadow_read_write_fields =
68 ARRAY_SIZE(shadow_read_write_fields);
69
init_vmcs_shadow_fields(void)70 static void init_vmcs_shadow_fields(void)
71 {
72 int i, j;
73
74 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
75 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
76
77 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
78 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
79 u16 field = entry.encoding;
80
81 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
82 (i + 1 == max_shadow_read_only_fields ||
83 shadow_read_only_fields[i + 1].encoding != field + 1))
84 pr_err("Missing field from shadow_read_only_field %x\n",
85 field + 1);
86
87 clear_bit(field, vmx_vmread_bitmap);
88 if (field & 1)
89 #ifdef CONFIG_X86_64
90 continue;
91 #else
92 entry.offset += sizeof(u32);
93 #endif
94 shadow_read_only_fields[j++] = entry;
95 }
96 max_shadow_read_only_fields = j;
97
98 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
99 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
100 u16 field = entry.encoding;
101
102 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
103 (i + 1 == max_shadow_read_write_fields ||
104 shadow_read_write_fields[i + 1].encoding != field + 1))
105 pr_err("Missing field from shadow_read_write_field %x\n",
106 field + 1);
107
108 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
109 field <= GUEST_TR_AR_BYTES,
110 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
111
112 /*
113 * PML and the preemption timer can be emulated, but the
114 * processor cannot vmwrite to fields that don't exist
115 * on bare metal.
116 */
117 switch (field) {
118 case GUEST_PML_INDEX:
119 if (!cpu_has_vmx_pml())
120 continue;
121 break;
122 case VMX_PREEMPTION_TIMER_VALUE:
123 if (!cpu_has_vmx_preemption_timer())
124 continue;
125 break;
126 case GUEST_INTR_STATUS:
127 if (!cpu_has_vmx_apicv())
128 continue;
129 break;
130 default:
131 break;
132 }
133
134 clear_bit(field, vmx_vmwrite_bitmap);
135 clear_bit(field, vmx_vmread_bitmap);
136 if (field & 1)
137 #ifdef CONFIG_X86_64
138 continue;
139 #else
140 entry.offset += sizeof(u32);
141 #endif
142 shadow_read_write_fields[j++] = entry;
143 }
144 max_shadow_read_write_fields = j;
145 }
146
147 /*
148 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
149 * set the success or error code of an emulated VMX instruction (as specified
150 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
151 * instruction.
152 */
nested_vmx_succeed(struct kvm_vcpu * vcpu)153 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
154 {
155 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
156 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
157 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
158 return kvm_skip_emulated_instruction(vcpu);
159 }
160
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)161 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
162 {
163 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
164 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
165 X86_EFLAGS_SF | X86_EFLAGS_OF))
166 | X86_EFLAGS_CF);
167 return kvm_skip_emulated_instruction(vcpu);
168 }
169
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)170 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
171 u32 vm_instruction_error)
172 {
173 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
174 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
175 X86_EFLAGS_SF | X86_EFLAGS_OF))
176 | X86_EFLAGS_ZF);
177 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
178 /*
179 * We don't need to force sync to shadow VMCS because
180 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
181 * fields and thus must be synced.
182 */
183 if (nested_vmx_is_evmptr12_set(to_vmx(vcpu)))
184 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
185
186 return kvm_skip_emulated_instruction(vcpu);
187 }
188
nested_vmx_fail(struct kvm_vcpu * vcpu,u32 vm_instruction_error)189 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
190 {
191 struct vcpu_vmx *vmx = to_vmx(vcpu);
192
193 /*
194 * failValid writes the error number to the current VMCS, which
195 * can't be done if there isn't a current VMCS.
196 */
197 if (vmx->nested.current_vmptr == INVALID_GPA &&
198 !nested_vmx_is_evmptr12_valid(vmx))
199 return nested_vmx_failInvalid(vcpu);
200
201 return nested_vmx_failValid(vcpu, vm_instruction_error);
202 }
203
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)204 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
205 {
206 /* TODO: not to reset guest simply here. */
207 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
208 pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
209 }
210
vmx_control_verify(u32 control,u32 low,u32 high)211 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
212 {
213 return fixed_bits_valid(control, low, high);
214 }
215
vmx_control_msr(u32 low,u32 high)216 static inline u64 vmx_control_msr(u32 low, u32 high)
217 {
218 return low | ((u64)high << 32);
219 }
220
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)221 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
222 {
223 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
224 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
225 vmx->nested.need_vmcs12_to_shadow_sync = false;
226 }
227
nested_release_evmcs(struct kvm_vcpu * vcpu)228 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
229 {
230 #ifdef CONFIG_KVM_HYPERV
231 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
232 struct vcpu_vmx *vmx = to_vmx(vcpu);
233
234 if (nested_vmx_is_evmptr12_valid(vmx)) {
235 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
236 vmx->nested.hv_evmcs = NULL;
237 }
238
239 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
240
241 if (hv_vcpu) {
242 hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
243 hv_vcpu->nested.vm_id = 0;
244 hv_vcpu->nested.vp_id = 0;
245 }
246 #endif
247 }
248
nested_evmcs_handle_vmclear(struct kvm_vcpu * vcpu,gpa_t vmptr)249 static bool nested_evmcs_handle_vmclear(struct kvm_vcpu *vcpu, gpa_t vmptr)
250 {
251 #ifdef CONFIG_KVM_HYPERV
252 struct vcpu_vmx *vmx = to_vmx(vcpu);
253 /*
254 * When Enlightened VMEntry is enabled on the calling CPU we treat
255 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
256 * way to distinguish it from VMCS12) and we must not corrupt it by
257 * writing to the non-existent 'launch_state' field. The area doesn't
258 * have to be the currently active EVMCS on the calling CPU and there's
259 * nothing KVM has to do to transition it from 'active' to 'non-active'
260 * state. It is possible that the area will stay mapped as
261 * vmx->nested.hv_evmcs but this shouldn't be a problem.
262 */
263 if (!guest_cpuid_has_evmcs(vcpu) ||
264 !evmptr_is_valid(nested_get_evmptr(vcpu)))
265 return false;
266
267 if (nested_vmx_evmcs(vmx) && vmptr == vmx->nested.hv_evmcs_vmptr)
268 nested_release_evmcs(vcpu);
269
270 return true;
271 #else
272 return false;
273 #endif
274 }
275
vmx_sync_vmcs_host_state(struct vcpu_vmx * vmx,struct loaded_vmcs * prev)276 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
277 struct loaded_vmcs *prev)
278 {
279 struct vmcs_host_state *dest, *src;
280
281 if (unlikely(!vmx->guest_state_loaded))
282 return;
283
284 src = &prev->host_state;
285 dest = &vmx->loaded_vmcs->host_state;
286
287 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
288 dest->ldt_sel = src->ldt_sel;
289 #ifdef CONFIG_X86_64
290 dest->ds_sel = src->ds_sel;
291 dest->es_sel = src->es_sel;
292 #endif
293 }
294
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)295 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
296 {
297 struct vcpu_vmx *vmx = to_vmx(vcpu);
298 struct loaded_vmcs *prev;
299 int cpu;
300
301 if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
302 return;
303
304 cpu = get_cpu();
305 prev = vmx->loaded_vmcs;
306 vmx->loaded_vmcs = vmcs;
307 vmx_vcpu_load_vmcs(vcpu, cpu, prev);
308 vmx_sync_vmcs_host_state(vmx, prev);
309 put_cpu();
310
311 vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
312
313 /*
314 * All lazily updated registers will be reloaded from VMCS12 on both
315 * vmentry and vmexit.
316 */
317 vcpu->arch.regs_dirty = 0;
318 }
319
320 /*
321 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
322 * just stops using VMX.
323 */
free_nested(struct kvm_vcpu * vcpu)324 static void free_nested(struct kvm_vcpu *vcpu)
325 {
326 struct vcpu_vmx *vmx = to_vmx(vcpu);
327
328 if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
329 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
330
331 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
332 return;
333
334 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
335
336 vmx->nested.vmxon = false;
337 vmx->nested.smm.vmxon = false;
338 vmx->nested.vmxon_ptr = INVALID_GPA;
339 free_vpid(vmx->nested.vpid02);
340 vmx->nested.posted_intr_nv = -1;
341 vmx->nested.current_vmptr = INVALID_GPA;
342 if (enable_shadow_vmcs) {
343 vmx_disable_shadow_vmcs(vmx);
344 vmcs_clear(vmx->vmcs01.shadow_vmcs);
345 free_vmcs(vmx->vmcs01.shadow_vmcs);
346 vmx->vmcs01.shadow_vmcs = NULL;
347 }
348 kfree(vmx->nested.cached_vmcs12);
349 vmx->nested.cached_vmcs12 = NULL;
350 kfree(vmx->nested.cached_shadow_vmcs12);
351 vmx->nested.cached_shadow_vmcs12 = NULL;
352 /*
353 * Unpin physical memory we referred to in the vmcs02. The APIC access
354 * page's backing page (yeah, confusing) shouldn't actually be accessed,
355 * and if it is written, the contents are irrelevant.
356 */
357 kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
358 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
359 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
360 vmx->nested.pi_desc = NULL;
361
362 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
363
364 nested_release_evmcs(vcpu);
365
366 free_loaded_vmcs(&vmx->nested.vmcs02);
367 }
368
369 /*
370 * Ensure that the current vmcs of the logical processor is the
371 * vmcs01 of the vcpu before calling free_nested().
372 */
nested_vmx_free_vcpu(struct kvm_vcpu * vcpu)373 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
374 {
375 vcpu_load(vcpu);
376 vmx_leave_nested(vcpu);
377 vcpu_put(vcpu);
378 }
379
380 #define EPTP_PA_MASK GENMASK_ULL(51, 12)
381
nested_ept_root_matches(hpa_t root_hpa,u64 root_eptp,u64 eptp)382 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
383 {
384 return VALID_PAGE(root_hpa) &&
385 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
386 }
387
nested_ept_invalidate_addr(struct kvm_vcpu * vcpu,gpa_t eptp,gpa_t addr)388 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
389 gpa_t addr)
390 {
391 unsigned long roots = 0;
392 uint i;
393 struct kvm_mmu_root_info *cached_root;
394
395 WARN_ON_ONCE(!mmu_is_nested(vcpu));
396
397 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
398 cached_root = &vcpu->arch.mmu->prev_roots[i];
399
400 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
401 eptp))
402 roots |= KVM_MMU_ROOT_PREVIOUS(i);
403 }
404 if (roots)
405 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots);
406 }
407
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)408 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
409 struct x86_exception *fault)
410 {
411 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
412 struct vcpu_vmx *vmx = to_vmx(vcpu);
413 unsigned long exit_qualification;
414 u32 vm_exit_reason;
415
416 if (vmx->nested.pml_full) {
417 vm_exit_reason = EXIT_REASON_PML_FULL;
418 vmx->nested.pml_full = false;
419
420 /*
421 * It should be impossible to trigger a nested PML Full VM-Exit
422 * for anything other than an EPT Violation from L2. KVM *can*
423 * trigger nEPT page fault injection in response to an EPT
424 * Misconfig, e.g. if the MMIO SPTE was stale and L1's EPT
425 * tables also changed, but KVM should not treat EPT Misconfig
426 * VM-Exits as writes.
427 */
428 WARN_ON_ONCE(vmx->exit_reason.basic != EXIT_REASON_EPT_VIOLATION);
429
430 /*
431 * PML Full and EPT Violation VM-Exits both use bit 12 to report
432 * "NMI unblocking due to IRET", i.e. the bit can be propagated
433 * as-is from the original EXIT_QUALIFICATION.
434 */
435 exit_qualification = vmx_get_exit_qual(vcpu) & INTR_INFO_UNBLOCK_NMI;
436 } else {
437 if (fault->error_code & PFERR_RSVD_MASK) {
438 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
439 exit_qualification = 0;
440 } else {
441 exit_qualification = fault->exit_qualification;
442 exit_qualification |= vmx_get_exit_qual(vcpu) &
443 (EPT_VIOLATION_GVA_IS_VALID |
444 EPT_VIOLATION_GVA_TRANSLATED);
445 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
446 }
447
448 /*
449 * Although the caller (kvm_inject_emulated_page_fault) would
450 * have already synced the faulting address in the shadow EPT
451 * tables for the current EPTP12, we also need to sync it for
452 * any other cached EPTP02s based on the same EP4TA, since the
453 * TLB associates mappings to the EP4TA rather than the full EPTP.
454 */
455 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
456 fault->address);
457 }
458
459 nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
460 vmcs12->guest_physical_address = fault->address;
461 }
462
nested_ept_new_eptp(struct kvm_vcpu * vcpu)463 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
464 {
465 struct vcpu_vmx *vmx = to_vmx(vcpu);
466 bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
467 int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
468
469 kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
470 nested_ept_ad_enabled(vcpu),
471 nested_ept_get_eptp(vcpu));
472 }
473
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)474 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
475 {
476 WARN_ON(mmu_is_nested(vcpu));
477
478 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
479 nested_ept_new_eptp(vcpu);
480 vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp;
481 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
482 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
483
484 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
485 }
486
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)487 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
488 {
489 vcpu->arch.mmu = &vcpu->arch.root_mmu;
490 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
491 }
492
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)493 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
494 u16 error_code)
495 {
496 bool inequality, bit;
497
498 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
499 inequality =
500 (error_code & vmcs12->page_fault_error_code_mask) !=
501 vmcs12->page_fault_error_code_match;
502 return inequality ^ bit;
503 }
504
nested_vmx_is_exception_vmexit(struct kvm_vcpu * vcpu,u8 vector,u32 error_code)505 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
506 u32 error_code)
507 {
508 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
509
510 /*
511 * Drop bits 31:16 of the error code when performing the #PF mask+match
512 * check. All VMCS fields involved are 32 bits, but Intel CPUs never
513 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
514 * error code. Including the to-be-dropped bits in the check might
515 * result in an "impossible" or missed exit from L1's perspective.
516 */
517 if (vector == PF_VECTOR)
518 return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
519
520 return (vmcs12->exception_bitmap & (1u << vector));
521 }
522
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)523 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
524 struct vmcs12 *vmcs12)
525 {
526 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
527 return 0;
528
529 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
530 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
531 return -EINVAL;
532
533 return 0;
534 }
535
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)536 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
537 struct vmcs12 *vmcs12)
538 {
539 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
540 return 0;
541
542 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
543 return -EINVAL;
544
545 return 0;
546 }
547
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)548 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
549 struct vmcs12 *vmcs12)
550 {
551 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
552 return 0;
553
554 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
555 return -EINVAL;
556
557 return 0;
558 }
559
560 /*
561 * For x2APIC MSRs, ignore the vmcs01 bitmap. L1 can enable x2APIC without L1
562 * itself utilizing x2APIC. All MSRs were previously set to be intercepted,
563 * only the "disable intercept" case needs to be handled.
564 */
nested_vmx_disable_intercept_for_x2apic_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_l0,u32 msr,int type)565 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
566 unsigned long *msr_bitmap_l0,
567 u32 msr, int type)
568 {
569 if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
570 vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
571
572 if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
573 vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
574 }
575
enable_x2apic_msr_intercepts(unsigned long * msr_bitmap)576 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
577 {
578 int msr;
579
580 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
581 unsigned word = msr / BITS_PER_LONG;
582
583 msr_bitmap[word] = ~0;
584 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
585 }
586 }
587
588 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw) \
589 static inline \
590 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx, \
591 unsigned long *msr_bitmap_l1, \
592 unsigned long *msr_bitmap_l0, u32 msr) \
593 { \
594 if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) || \
595 vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr)) \
596 vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr); \
597 else \
598 vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr); \
599 }
600 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
BUILD_NVMX_MSR_INTERCEPT_HELPER(write)601 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
602
603 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
604 unsigned long *msr_bitmap_l1,
605 unsigned long *msr_bitmap_l0,
606 u32 msr, int types)
607 {
608 if (types & MSR_TYPE_R)
609 nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
610 msr_bitmap_l0, msr);
611 if (types & MSR_TYPE_W)
612 nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
613 msr_bitmap_l0, msr);
614 }
615
616 /*
617 * Merge L0's and L1's MSR bitmap, return false to indicate that
618 * we do not use the hardware.
619 */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)620 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
621 struct vmcs12 *vmcs12)
622 {
623 struct vcpu_vmx *vmx = to_vmx(vcpu);
624 int msr;
625 unsigned long *msr_bitmap_l1;
626 unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
627 struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
628
629 /* Nothing to do if the MSR bitmap is not in use. */
630 if (!cpu_has_vmx_msr_bitmap() ||
631 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
632 return false;
633
634 /*
635 * MSR bitmap update can be skipped when:
636 * - MSR bitmap for L1 hasn't changed.
637 * - Nested hypervisor (L1) is attempting to launch the same L2 as
638 * before.
639 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
640 * and tells KVM (L0) there were no changes in MSR bitmap for L2.
641 */
642 if (!vmx->nested.force_msr_bitmap_recalc) {
643 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
644
645 if (evmcs && evmcs->hv_enlightenments_control.msr_bitmap &&
646 evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
647 return true;
648 }
649
650 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
651 return false;
652
653 msr_bitmap_l1 = (unsigned long *)map->hva;
654
655 /*
656 * To keep the control flow simple, pay eight 8-byte writes (sixteen
657 * 4-byte writes on 32-bit systems) up front to enable intercepts for
658 * the x2APIC MSR range and selectively toggle those relevant to L2.
659 */
660 enable_x2apic_msr_intercepts(msr_bitmap_l0);
661
662 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
663 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
664 /*
665 * L0 need not intercept reads for MSRs between 0x800
666 * and 0x8ff, it just lets the processor take the value
667 * from the virtual-APIC page; take those 256 bits
668 * directly from the L1 bitmap.
669 */
670 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
671 unsigned word = msr / BITS_PER_LONG;
672
673 msr_bitmap_l0[word] = msr_bitmap_l1[word];
674 }
675 }
676
677 nested_vmx_disable_intercept_for_x2apic_msr(
678 msr_bitmap_l1, msr_bitmap_l0,
679 X2APIC_MSR(APIC_TASKPRI),
680 MSR_TYPE_R | MSR_TYPE_W);
681
682 if (nested_cpu_has_vid(vmcs12)) {
683 nested_vmx_disable_intercept_for_x2apic_msr(
684 msr_bitmap_l1, msr_bitmap_l0,
685 X2APIC_MSR(APIC_EOI),
686 MSR_TYPE_W);
687 nested_vmx_disable_intercept_for_x2apic_msr(
688 msr_bitmap_l1, msr_bitmap_l0,
689 X2APIC_MSR(APIC_SELF_IPI),
690 MSR_TYPE_W);
691 }
692 }
693
694 /*
695 * Always check vmcs01's bitmap to honor userspace MSR filters and any
696 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
697 */
698 #ifdef CONFIG_X86_64
699 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
700 MSR_FS_BASE, MSR_TYPE_RW);
701
702 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
703 MSR_GS_BASE, MSR_TYPE_RW);
704
705 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
706 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
707 #endif
708 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
709 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
710
711 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
712 MSR_IA32_PRED_CMD, MSR_TYPE_W);
713
714 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
715 MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
716
717 kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
718
719 vmx->nested.force_msr_bitmap_recalc = false;
720
721 return true;
722 }
723
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)724 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
725 struct vmcs12 *vmcs12)
726 {
727 struct vcpu_vmx *vmx = to_vmx(vcpu);
728 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
729
730 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
731 vmcs12->vmcs_link_pointer == INVALID_GPA)
732 return;
733
734 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
735 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
736 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
737 return;
738
739 kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
740 VMCS12_SIZE);
741 }
742
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)743 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
744 struct vmcs12 *vmcs12)
745 {
746 struct vcpu_vmx *vmx = to_vmx(vcpu);
747 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
748
749 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
750 vmcs12->vmcs_link_pointer == INVALID_GPA)
751 return;
752
753 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
754 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
755 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
756 return;
757
758 kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
759 VMCS12_SIZE);
760 }
761
762 /*
763 * In nested virtualization, check if L1 has set
764 * VM_EXIT_ACK_INTR_ON_EXIT
765 */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)766 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
767 {
768 return get_vmcs12(vcpu)->vm_exit_controls &
769 VM_EXIT_ACK_INTR_ON_EXIT;
770 }
771
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)772 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
773 struct vmcs12 *vmcs12)
774 {
775 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
776 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
777 return -EINVAL;
778 else
779 return 0;
780 }
781
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)782 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
783 struct vmcs12 *vmcs12)
784 {
785 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
786 !nested_cpu_has_apic_reg_virt(vmcs12) &&
787 !nested_cpu_has_vid(vmcs12) &&
788 !nested_cpu_has_posted_intr(vmcs12))
789 return 0;
790
791 /*
792 * If virtualize x2apic mode is enabled,
793 * virtualize apic access must be disabled.
794 */
795 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
796 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
797 return -EINVAL;
798
799 /*
800 * If virtual interrupt delivery is enabled,
801 * we must exit on external interrupts.
802 */
803 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
804 return -EINVAL;
805
806 /*
807 * bits 15:8 should be zero in posted_intr_nv,
808 * the descriptor address has been already checked
809 * in nested_get_vmcs12_pages.
810 *
811 * bits 5:0 of posted_intr_desc_addr should be zero.
812 */
813 if (nested_cpu_has_posted_intr(vmcs12) &&
814 (CC(!nested_cpu_has_vid(vmcs12)) ||
815 CC(!nested_exit_intr_ack_set(vcpu)) ||
816 CC((vmcs12->posted_intr_nv & 0xff00)) ||
817 CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
818 return -EINVAL;
819
820 /* tpr shadow is needed by all apicv features. */
821 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
822 return -EINVAL;
823
824 return 0;
825 }
826
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,u32 count,u64 addr)827 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
828 u32 count, u64 addr)
829 {
830 if (count == 0)
831 return 0;
832
833 if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
834 !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
835 return -EINVAL;
836
837 return 0;
838 }
839
nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)840 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
841 struct vmcs12 *vmcs12)
842 {
843 if (CC(nested_vmx_check_msr_switch(vcpu,
844 vmcs12->vm_exit_msr_load_count,
845 vmcs12->vm_exit_msr_load_addr)) ||
846 CC(nested_vmx_check_msr_switch(vcpu,
847 vmcs12->vm_exit_msr_store_count,
848 vmcs12->vm_exit_msr_store_addr)))
849 return -EINVAL;
850
851 return 0;
852 }
853
nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)854 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
855 struct vmcs12 *vmcs12)
856 {
857 if (CC(nested_vmx_check_msr_switch(vcpu,
858 vmcs12->vm_entry_msr_load_count,
859 vmcs12->vm_entry_msr_load_addr)))
860 return -EINVAL;
861
862 return 0;
863 }
864
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)865 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
866 struct vmcs12 *vmcs12)
867 {
868 if (!nested_cpu_has_pml(vmcs12))
869 return 0;
870
871 if (CC(!nested_cpu_has_ept(vmcs12)) ||
872 CC(!page_address_valid(vcpu, vmcs12->pml_address)))
873 return -EINVAL;
874
875 return 0;
876 }
877
nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)878 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
879 struct vmcs12 *vmcs12)
880 {
881 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
882 !nested_cpu_has_ept(vmcs12)))
883 return -EINVAL;
884 return 0;
885 }
886
nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)887 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
888 struct vmcs12 *vmcs12)
889 {
890 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
891 !nested_cpu_has_ept(vmcs12)))
892 return -EINVAL;
893 return 0;
894 }
895
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)896 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
897 struct vmcs12 *vmcs12)
898 {
899 if (!nested_cpu_has_shadow_vmcs(vmcs12))
900 return 0;
901
902 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
903 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
904 return -EINVAL;
905
906 return 0;
907 }
908
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)909 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
910 struct vmx_msr_entry *e)
911 {
912 /* x2APIC MSR accesses are not allowed */
913 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
914 return -EINVAL;
915 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
916 CC(e->index == MSR_IA32_UCODE_REV))
917 return -EINVAL;
918 if (CC(e->reserved != 0))
919 return -EINVAL;
920 return 0;
921 }
922
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)923 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
924 struct vmx_msr_entry *e)
925 {
926 if (CC(e->index == MSR_FS_BASE) ||
927 CC(e->index == MSR_GS_BASE) ||
928 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
929 nested_vmx_msr_check_common(vcpu, e))
930 return -EINVAL;
931 return 0;
932 }
933
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)934 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
935 struct vmx_msr_entry *e)
936 {
937 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
938 nested_vmx_msr_check_common(vcpu, e))
939 return -EINVAL;
940 return 0;
941 }
942
nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu * vcpu)943 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
944 {
945 struct vcpu_vmx *vmx = to_vmx(vcpu);
946 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
947 vmx->nested.msrs.misc_high);
948
949 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
950 }
951
952 /*
953 * Load guest's/host's msr at nested entry/exit.
954 * return 0 for success, entry index for failure.
955 *
956 * One of the failure modes for MSR load/store is when a list exceeds the
957 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
958 * as possible, process all valid entries before failing rather than precheck
959 * for a capacity violation.
960 */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)961 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
962 {
963 u32 i;
964 struct vmx_msr_entry e;
965 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
966
967 for (i = 0; i < count; i++) {
968 if (unlikely(i >= max_msr_list_size))
969 goto fail;
970
971 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
972 &e, sizeof(e))) {
973 pr_debug_ratelimited(
974 "%s cannot read MSR entry (%u, 0x%08llx)\n",
975 __func__, i, gpa + i * sizeof(e));
976 goto fail;
977 }
978 if (nested_vmx_load_msr_check(vcpu, &e)) {
979 pr_debug_ratelimited(
980 "%s check failed (%u, 0x%x, 0x%x)\n",
981 __func__, i, e.index, e.reserved);
982 goto fail;
983 }
984 if (kvm_set_msr_with_filter(vcpu, e.index, e.value)) {
985 pr_debug_ratelimited(
986 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
987 __func__, i, e.index, e.value);
988 goto fail;
989 }
990 }
991 return 0;
992 fail:
993 /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
994 return i + 1;
995 }
996
nested_vmx_get_vmexit_msr_value(struct kvm_vcpu * vcpu,u32 msr_index,u64 * data)997 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
998 u32 msr_index,
999 u64 *data)
1000 {
1001 struct vcpu_vmx *vmx = to_vmx(vcpu);
1002
1003 /*
1004 * If the L0 hypervisor stored a more accurate value for the TSC that
1005 * does not include the time taken for emulation of the L2->L1
1006 * VM-exit in L0, use the more accurate value.
1007 */
1008 if (msr_index == MSR_IA32_TSC) {
1009 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
1010 MSR_IA32_TSC);
1011
1012 if (i >= 0) {
1013 u64 val = vmx->msr_autostore.guest.val[i].value;
1014
1015 *data = kvm_read_l1_tsc(vcpu, val);
1016 return true;
1017 }
1018 }
1019
1020 if (kvm_get_msr_with_filter(vcpu, msr_index, data)) {
1021 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
1022 msr_index);
1023 return false;
1024 }
1025 return true;
1026 }
1027
read_and_check_msr_entry(struct kvm_vcpu * vcpu,u64 gpa,int i,struct vmx_msr_entry * e)1028 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1029 struct vmx_msr_entry *e)
1030 {
1031 if (kvm_vcpu_read_guest(vcpu,
1032 gpa + i * sizeof(*e),
1033 e, 2 * sizeof(u32))) {
1034 pr_debug_ratelimited(
1035 "%s cannot read MSR entry (%u, 0x%08llx)\n",
1036 __func__, i, gpa + i * sizeof(*e));
1037 return false;
1038 }
1039 if (nested_vmx_store_msr_check(vcpu, e)) {
1040 pr_debug_ratelimited(
1041 "%s check failed (%u, 0x%x, 0x%x)\n",
1042 __func__, i, e->index, e->reserved);
1043 return false;
1044 }
1045 return true;
1046 }
1047
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)1048 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1049 {
1050 u64 data;
1051 u32 i;
1052 struct vmx_msr_entry e;
1053 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1054
1055 for (i = 0; i < count; i++) {
1056 if (unlikely(i >= max_msr_list_size))
1057 return -EINVAL;
1058
1059 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1060 return -EINVAL;
1061
1062 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1063 return -EINVAL;
1064
1065 if (kvm_vcpu_write_guest(vcpu,
1066 gpa + i * sizeof(e) +
1067 offsetof(struct vmx_msr_entry, value),
1068 &data, sizeof(data))) {
1069 pr_debug_ratelimited(
1070 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1071 __func__, i, e.index, data);
1072 return -EINVAL;
1073 }
1074 }
1075 return 0;
1076 }
1077
nested_msr_store_list_has_msr(struct kvm_vcpu * vcpu,u32 msr_index)1078 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1079 {
1080 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1081 u32 count = vmcs12->vm_exit_msr_store_count;
1082 u64 gpa = vmcs12->vm_exit_msr_store_addr;
1083 struct vmx_msr_entry e;
1084 u32 i;
1085
1086 for (i = 0; i < count; i++) {
1087 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1088 return false;
1089
1090 if (e.index == msr_index)
1091 return true;
1092 }
1093 return false;
1094 }
1095
prepare_vmx_msr_autostore_list(struct kvm_vcpu * vcpu,u32 msr_index)1096 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1097 u32 msr_index)
1098 {
1099 struct vcpu_vmx *vmx = to_vmx(vcpu);
1100 struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1101 bool in_vmcs12_store_list;
1102 int msr_autostore_slot;
1103 bool in_autostore_list;
1104 int last;
1105
1106 msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1107 in_autostore_list = msr_autostore_slot >= 0;
1108 in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1109
1110 if (in_vmcs12_store_list && !in_autostore_list) {
1111 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1112 /*
1113 * Emulated VMEntry does not fail here. Instead a less
1114 * accurate value will be returned by
1115 * nested_vmx_get_vmexit_msr_value() by reading KVM's
1116 * internal MSR state instead of reading the value from
1117 * the vmcs02 VMExit MSR-store area.
1118 */
1119 pr_warn_ratelimited(
1120 "Not enough msr entries in msr_autostore. Can't add msr %x\n",
1121 msr_index);
1122 return;
1123 }
1124 last = autostore->nr++;
1125 autostore->val[last].index = msr_index;
1126 } else if (!in_vmcs12_store_list && in_autostore_list) {
1127 last = --autostore->nr;
1128 autostore->val[msr_autostore_slot] = autostore->val[last];
1129 }
1130 }
1131
1132 /*
1133 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
1134 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected
1135 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1136 * @entry_failure_code.
1137 */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,bool reload_pdptrs,enum vm_entry_failure_code * entry_failure_code)1138 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1139 bool nested_ept, bool reload_pdptrs,
1140 enum vm_entry_failure_code *entry_failure_code)
1141 {
1142 if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) {
1143 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1144 return -EINVAL;
1145 }
1146
1147 /*
1148 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1149 * must not be dereferenced.
1150 */
1151 if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1152 CC(!load_pdptrs(vcpu, cr3))) {
1153 *entry_failure_code = ENTRY_FAIL_PDPTE;
1154 return -EINVAL;
1155 }
1156
1157 vcpu->arch.cr3 = cr3;
1158 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1159
1160 /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1161 kvm_init_mmu(vcpu);
1162
1163 if (!nested_ept)
1164 kvm_mmu_new_pgd(vcpu, cr3);
1165
1166 return 0;
1167 }
1168
1169 /*
1170 * Returns if KVM is able to config CPU to tag TLB entries
1171 * populated by L2 differently than TLB entries populated
1172 * by L1.
1173 *
1174 * If L0 uses EPT, L1 and L2 run with different EPTP because
1175 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1176 * are tagged with different EPTP.
1177 *
1178 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1179 * with different VPID (L1 entries are tagged with vmx->vpid
1180 * while L2 entries are tagged with vmx->nested.vpid02).
1181 */
nested_has_guest_tlb_tag(struct kvm_vcpu * vcpu)1182 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1183 {
1184 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1185
1186 return enable_ept ||
1187 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1188 }
1189
nested_vmx_transition_tlb_flush(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool is_vmenter)1190 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1191 struct vmcs12 *vmcs12,
1192 bool is_vmenter)
1193 {
1194 struct vcpu_vmx *vmx = to_vmx(vcpu);
1195
1196 /* Handle pending Hyper-V TLB flush requests */
1197 kvm_hv_nested_transtion_tlb_flush(vcpu, enable_ept);
1198
1199 /*
1200 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
1201 * same VPID as the host, and so architecturally, linear and combined
1202 * mappings for VPID=0 must be flushed at VM-Enter and VM-Exit. KVM
1203 * emulates L2 sharing L1's VPID=0 by using vpid01 while running L2,
1204 * and so KVM must also emulate TLB flush of VPID=0, i.e. vpid01. This
1205 * is required if VPID is disabled in KVM, as a TLB flush (there are no
1206 * VPIDs) still occurs from L1's perspective, and KVM may need to
1207 * synchronize the MMU in response to the guest TLB flush.
1208 *
1209 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1210 * EPT is a special snowflake, as guest-physical mappings aren't
1211 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1212 * VPID disabled. As a result, KVM _never_ needs to sync nEPT
1213 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1214 * those mappings.
1215 */
1216 if (!nested_cpu_has_vpid(vmcs12)) {
1217 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1218 return;
1219 }
1220
1221 /* L2 should never have a VPID if VPID is disabled. */
1222 WARN_ON(!enable_vpid);
1223
1224 /*
1225 * VPID is enabled and in use by vmcs12. If vpid12 is changing, then
1226 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1227 * is the VPID incorporated into the MMU context. I.e. KVM must assume
1228 * that the new vpid12 has never been used and thus represents a new
1229 * guest ASID that cannot have entries in the TLB.
1230 */
1231 if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1232 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1233 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1234 return;
1235 }
1236
1237 /*
1238 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1239 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1240 * KVM was unable to allocate a VPID for L2, flush the current context
1241 * as the effective ASID is common to both L1 and L2.
1242 */
1243 if (!nested_has_guest_tlb_tag(vcpu))
1244 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1245 }
1246
is_bitwise_subset(u64 superset,u64 subset,u64 mask)1247 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1248 {
1249 superset &= mask;
1250 subset &= mask;
1251
1252 return (superset | subset) == superset;
1253 }
1254
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)1255 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1256 {
1257 const u64 feature_bits = VMX_BASIC_DUAL_MONITOR_TREATMENT |
1258 VMX_BASIC_INOUT |
1259 VMX_BASIC_TRUE_CTLS;
1260
1261 const u64 reserved_bits = GENMASK_ULL(63, 56) |
1262 GENMASK_ULL(47, 45) |
1263 BIT_ULL(31);
1264
1265 u64 vmx_basic = vmcs_config.nested.basic;
1266
1267 BUILD_BUG_ON(feature_bits & reserved_bits);
1268
1269 /*
1270 * Except for 32BIT_PHYS_ADDR_ONLY, which is an anti-feature bit (has
1271 * inverted polarity), the incoming value must not set feature bits or
1272 * reserved bits that aren't allowed/supported by KVM. Fields, i.e.
1273 * multi-bit values, are explicitly checked below.
1274 */
1275 if (!is_bitwise_subset(vmx_basic, data, feature_bits | reserved_bits))
1276 return -EINVAL;
1277
1278 /*
1279 * KVM does not emulate a version of VMX that constrains physical
1280 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1281 */
1282 if (data & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
1283 return -EINVAL;
1284
1285 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1286 vmx_basic_vmcs_revision_id(data))
1287 return -EINVAL;
1288
1289 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1290 return -EINVAL;
1291
1292 vmx->nested.msrs.basic = data;
1293 return 0;
1294 }
1295
vmx_get_control_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u32 ** low,u32 ** high)1296 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1297 u32 **low, u32 **high)
1298 {
1299 switch (msr_index) {
1300 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1301 *low = &msrs->pinbased_ctls_low;
1302 *high = &msrs->pinbased_ctls_high;
1303 break;
1304 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1305 *low = &msrs->procbased_ctls_low;
1306 *high = &msrs->procbased_ctls_high;
1307 break;
1308 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1309 *low = &msrs->exit_ctls_low;
1310 *high = &msrs->exit_ctls_high;
1311 break;
1312 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1313 *low = &msrs->entry_ctls_low;
1314 *high = &msrs->entry_ctls_high;
1315 break;
1316 case MSR_IA32_VMX_PROCBASED_CTLS2:
1317 *low = &msrs->secondary_ctls_low;
1318 *high = &msrs->secondary_ctls_high;
1319 break;
1320 default:
1321 BUG();
1322 }
1323 }
1324
1325 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1326 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1327 {
1328 u32 *lowp, *highp;
1329 u64 supported;
1330
1331 vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1332
1333 supported = vmx_control_msr(*lowp, *highp);
1334
1335 /* Check must-be-1 bits are still 1. */
1336 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1337 return -EINVAL;
1338
1339 /* Check must-be-0 bits are still 0. */
1340 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1341 return -EINVAL;
1342
1343 vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1344 *lowp = data;
1345 *highp = data >> 32;
1346 return 0;
1347 }
1348
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)1349 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1350 {
1351 const u64 feature_bits = VMX_MISC_SAVE_EFER_LMA |
1352 VMX_MISC_ACTIVITY_HLT |
1353 VMX_MISC_ACTIVITY_SHUTDOWN |
1354 VMX_MISC_ACTIVITY_WAIT_SIPI |
1355 VMX_MISC_INTEL_PT |
1356 VMX_MISC_RDMSR_IN_SMM |
1357 VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
1358 VMX_MISC_VMXOFF_BLOCK_SMI |
1359 VMX_MISC_ZERO_LEN_INS;
1360
1361 const u64 reserved_bits = BIT_ULL(31) | GENMASK_ULL(13, 9);
1362
1363 u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1364 vmcs_config.nested.misc_high);
1365
1366 BUILD_BUG_ON(feature_bits & reserved_bits);
1367
1368 /*
1369 * The incoming value must not set feature bits or reserved bits that
1370 * aren't allowed/supported by KVM. Fields, i.e. multi-bit values, are
1371 * explicitly checked below.
1372 */
1373 if (!is_bitwise_subset(vmx_misc, data, feature_bits | reserved_bits))
1374 return -EINVAL;
1375
1376 if ((vmx->nested.msrs.pinbased_ctls_high &
1377 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1378 vmx_misc_preemption_timer_rate(data) !=
1379 vmx_misc_preemption_timer_rate(vmx_misc))
1380 return -EINVAL;
1381
1382 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1383 return -EINVAL;
1384
1385 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1386 return -EINVAL;
1387
1388 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1389 return -EINVAL;
1390
1391 vmx->nested.msrs.misc_low = data;
1392 vmx->nested.msrs.misc_high = data >> 32;
1393
1394 return 0;
1395 }
1396
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)1397 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1398 {
1399 u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1400 vmcs_config.nested.vpid_caps);
1401
1402 /* Every bit is either reserved or a feature bit. */
1403 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1404 return -EINVAL;
1405
1406 vmx->nested.msrs.ept_caps = data;
1407 vmx->nested.msrs.vpid_caps = data >> 32;
1408 return 0;
1409 }
1410
vmx_get_fixed0_msr(struct nested_vmx_msrs * msrs,u32 msr_index)1411 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1412 {
1413 switch (msr_index) {
1414 case MSR_IA32_VMX_CR0_FIXED0:
1415 return &msrs->cr0_fixed0;
1416 case MSR_IA32_VMX_CR4_FIXED0:
1417 return &msrs->cr4_fixed0;
1418 default:
1419 BUG();
1420 }
1421 }
1422
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1423 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1424 {
1425 const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1426
1427 /*
1428 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1429 * must be 1 in the restored value.
1430 */
1431 if (!is_bitwise_subset(data, *msr, -1ULL))
1432 return -EINVAL;
1433
1434 *vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1435 return 0;
1436 }
1437
1438 /*
1439 * Called when userspace is restoring VMX MSRs.
1440 *
1441 * Returns 0 on success, non-0 otherwise.
1442 */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)1443 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1444 {
1445 struct vcpu_vmx *vmx = to_vmx(vcpu);
1446
1447 /*
1448 * Don't allow changes to the VMX capability MSRs while the vCPU
1449 * is in VMX operation.
1450 */
1451 if (vmx->nested.vmxon)
1452 return -EBUSY;
1453
1454 switch (msr_index) {
1455 case MSR_IA32_VMX_BASIC:
1456 return vmx_restore_vmx_basic(vmx, data);
1457 case MSR_IA32_VMX_PINBASED_CTLS:
1458 case MSR_IA32_VMX_PROCBASED_CTLS:
1459 case MSR_IA32_VMX_EXIT_CTLS:
1460 case MSR_IA32_VMX_ENTRY_CTLS:
1461 /*
1462 * The "non-true" VMX capability MSRs are generated from the
1463 * "true" MSRs, so we do not support restoring them directly.
1464 *
1465 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1466 * should restore the "true" MSRs with the must-be-1 bits
1467 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1468 * DEFAULT SETTINGS".
1469 */
1470 return -EINVAL;
1471 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1472 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1473 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1474 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1475 case MSR_IA32_VMX_PROCBASED_CTLS2:
1476 return vmx_restore_control_msr(vmx, msr_index, data);
1477 case MSR_IA32_VMX_MISC:
1478 return vmx_restore_vmx_misc(vmx, data);
1479 case MSR_IA32_VMX_CR0_FIXED0:
1480 case MSR_IA32_VMX_CR4_FIXED0:
1481 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1482 case MSR_IA32_VMX_CR0_FIXED1:
1483 case MSR_IA32_VMX_CR4_FIXED1:
1484 /*
1485 * These MSRs are generated based on the vCPU's CPUID, so we
1486 * do not support restoring them directly.
1487 */
1488 return -EINVAL;
1489 case MSR_IA32_VMX_EPT_VPID_CAP:
1490 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1491 case MSR_IA32_VMX_VMCS_ENUM:
1492 vmx->nested.msrs.vmcs_enum = data;
1493 return 0;
1494 case MSR_IA32_VMX_VMFUNC:
1495 if (data & ~vmcs_config.nested.vmfunc_controls)
1496 return -EINVAL;
1497 vmx->nested.msrs.vmfunc_controls = data;
1498 return 0;
1499 default:
1500 /*
1501 * The rest of the VMX capability MSRs do not support restore.
1502 */
1503 return -EINVAL;
1504 }
1505 }
1506
1507 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)1508 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1509 {
1510 switch (msr_index) {
1511 case MSR_IA32_VMX_BASIC:
1512 *pdata = msrs->basic;
1513 break;
1514 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1515 case MSR_IA32_VMX_PINBASED_CTLS:
1516 *pdata = vmx_control_msr(
1517 msrs->pinbased_ctls_low,
1518 msrs->pinbased_ctls_high);
1519 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1520 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1521 break;
1522 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1523 case MSR_IA32_VMX_PROCBASED_CTLS:
1524 *pdata = vmx_control_msr(
1525 msrs->procbased_ctls_low,
1526 msrs->procbased_ctls_high);
1527 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1528 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1529 break;
1530 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1531 case MSR_IA32_VMX_EXIT_CTLS:
1532 *pdata = vmx_control_msr(
1533 msrs->exit_ctls_low,
1534 msrs->exit_ctls_high);
1535 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1536 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1537 break;
1538 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1539 case MSR_IA32_VMX_ENTRY_CTLS:
1540 *pdata = vmx_control_msr(
1541 msrs->entry_ctls_low,
1542 msrs->entry_ctls_high);
1543 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1544 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1545 break;
1546 case MSR_IA32_VMX_MISC:
1547 *pdata = vmx_control_msr(
1548 msrs->misc_low,
1549 msrs->misc_high);
1550 break;
1551 case MSR_IA32_VMX_CR0_FIXED0:
1552 *pdata = msrs->cr0_fixed0;
1553 break;
1554 case MSR_IA32_VMX_CR0_FIXED1:
1555 *pdata = msrs->cr0_fixed1;
1556 break;
1557 case MSR_IA32_VMX_CR4_FIXED0:
1558 *pdata = msrs->cr4_fixed0;
1559 break;
1560 case MSR_IA32_VMX_CR4_FIXED1:
1561 *pdata = msrs->cr4_fixed1;
1562 break;
1563 case MSR_IA32_VMX_VMCS_ENUM:
1564 *pdata = msrs->vmcs_enum;
1565 break;
1566 case MSR_IA32_VMX_PROCBASED_CTLS2:
1567 *pdata = vmx_control_msr(
1568 msrs->secondary_ctls_low,
1569 msrs->secondary_ctls_high);
1570 break;
1571 case MSR_IA32_VMX_EPT_VPID_CAP:
1572 *pdata = msrs->ept_caps |
1573 ((u64)msrs->vpid_caps << 32);
1574 break;
1575 case MSR_IA32_VMX_VMFUNC:
1576 *pdata = msrs->vmfunc_controls;
1577 break;
1578 default:
1579 return 1;
1580 }
1581
1582 return 0;
1583 }
1584
1585 /*
1586 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1587 * been modified by the L1 guest. Note, "writable" in this context means
1588 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1589 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1590 * VM-exit information fields (which are actually writable if the vCPU is
1591 * configured to support "VMWRITE to any supported field in the VMCS").
1592 */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)1593 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1594 {
1595 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1596 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1597 struct shadow_vmcs_field field;
1598 unsigned long val;
1599 int i;
1600
1601 if (WARN_ON(!shadow_vmcs))
1602 return;
1603
1604 preempt_disable();
1605
1606 vmcs_load(shadow_vmcs);
1607
1608 for (i = 0; i < max_shadow_read_write_fields; i++) {
1609 field = shadow_read_write_fields[i];
1610 val = __vmcs_readl(field.encoding);
1611 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1612 }
1613
1614 vmcs_clear(shadow_vmcs);
1615 vmcs_load(vmx->loaded_vmcs->vmcs);
1616
1617 preempt_enable();
1618 }
1619
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)1620 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1621 {
1622 const struct shadow_vmcs_field *fields[] = {
1623 shadow_read_write_fields,
1624 shadow_read_only_fields
1625 };
1626 const int max_fields[] = {
1627 max_shadow_read_write_fields,
1628 max_shadow_read_only_fields
1629 };
1630 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1631 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1632 struct shadow_vmcs_field field;
1633 unsigned long val;
1634 int i, q;
1635
1636 if (WARN_ON(!shadow_vmcs))
1637 return;
1638
1639 vmcs_load(shadow_vmcs);
1640
1641 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1642 for (i = 0; i < max_fields[q]; i++) {
1643 field = fields[q][i];
1644 val = vmcs12_read_any(vmcs12, field.encoding,
1645 field.offset);
1646 __vmcs_writel(field.encoding, val);
1647 }
1648 }
1649
1650 vmcs_clear(shadow_vmcs);
1651 vmcs_load(vmx->loaded_vmcs->vmcs);
1652 }
1653
copy_enlightened_to_vmcs12(struct vcpu_vmx * vmx,u32 hv_clean_fields)1654 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1655 {
1656 #ifdef CONFIG_KVM_HYPERV
1657 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1658 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1659 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
1660
1661 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1662 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1663 vmcs12->guest_rip = evmcs->guest_rip;
1664
1665 if (unlikely(!(hv_clean_fields &
1666 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1667 hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1668 hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1669 hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1670 }
1671
1672 if (unlikely(!(hv_clean_fields &
1673 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1674 vmcs12->guest_rsp = evmcs->guest_rsp;
1675 vmcs12->guest_rflags = evmcs->guest_rflags;
1676 vmcs12->guest_interruptibility_info =
1677 evmcs->guest_interruptibility_info;
1678 /*
1679 * Not present in struct vmcs12:
1680 * vmcs12->guest_ssp = evmcs->guest_ssp;
1681 */
1682 }
1683
1684 if (unlikely(!(hv_clean_fields &
1685 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1686 vmcs12->cpu_based_vm_exec_control =
1687 evmcs->cpu_based_vm_exec_control;
1688 }
1689
1690 if (unlikely(!(hv_clean_fields &
1691 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1692 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1693 }
1694
1695 if (unlikely(!(hv_clean_fields &
1696 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1697 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1698 }
1699
1700 if (unlikely(!(hv_clean_fields &
1701 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1702 vmcs12->vm_entry_intr_info_field =
1703 evmcs->vm_entry_intr_info_field;
1704 vmcs12->vm_entry_exception_error_code =
1705 evmcs->vm_entry_exception_error_code;
1706 vmcs12->vm_entry_instruction_len =
1707 evmcs->vm_entry_instruction_len;
1708 }
1709
1710 if (unlikely(!(hv_clean_fields &
1711 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1712 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1713 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1714 vmcs12->host_cr0 = evmcs->host_cr0;
1715 vmcs12->host_cr3 = evmcs->host_cr3;
1716 vmcs12->host_cr4 = evmcs->host_cr4;
1717 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1718 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1719 vmcs12->host_rip = evmcs->host_rip;
1720 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1721 vmcs12->host_es_selector = evmcs->host_es_selector;
1722 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1723 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1724 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1725 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1726 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1727 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1728 vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1729 /*
1730 * Not present in struct vmcs12:
1731 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1732 * vmcs12->host_ssp = evmcs->host_ssp;
1733 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1734 */
1735 }
1736
1737 if (unlikely(!(hv_clean_fields &
1738 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1739 vmcs12->pin_based_vm_exec_control =
1740 evmcs->pin_based_vm_exec_control;
1741 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1742 vmcs12->secondary_vm_exec_control =
1743 evmcs->secondary_vm_exec_control;
1744 }
1745
1746 if (unlikely(!(hv_clean_fields &
1747 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1748 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1749 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1750 }
1751
1752 if (unlikely(!(hv_clean_fields &
1753 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1754 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1755 }
1756
1757 if (unlikely(!(hv_clean_fields &
1758 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1759 vmcs12->guest_es_base = evmcs->guest_es_base;
1760 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1761 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1762 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1763 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1764 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1765 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1766 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1767 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1768 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1769 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1770 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1771 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1772 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1773 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1774 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1775 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1776 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1777 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1778 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1779 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1780 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1781 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1782 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1783 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1784 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1785 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1786 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1787 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1788 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1789 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1790 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1791 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1792 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1793 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1794 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1795 }
1796
1797 if (unlikely(!(hv_clean_fields &
1798 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1799 vmcs12->tsc_offset = evmcs->tsc_offset;
1800 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1801 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1802 vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1803 vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1804 }
1805
1806 if (unlikely(!(hv_clean_fields &
1807 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1808 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1809 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1810 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1811 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1812 vmcs12->guest_cr0 = evmcs->guest_cr0;
1813 vmcs12->guest_cr3 = evmcs->guest_cr3;
1814 vmcs12->guest_cr4 = evmcs->guest_cr4;
1815 vmcs12->guest_dr7 = evmcs->guest_dr7;
1816 }
1817
1818 if (unlikely(!(hv_clean_fields &
1819 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1820 vmcs12->host_fs_base = evmcs->host_fs_base;
1821 vmcs12->host_gs_base = evmcs->host_gs_base;
1822 vmcs12->host_tr_base = evmcs->host_tr_base;
1823 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1824 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1825 vmcs12->host_rsp = evmcs->host_rsp;
1826 }
1827
1828 if (unlikely(!(hv_clean_fields &
1829 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1830 vmcs12->ept_pointer = evmcs->ept_pointer;
1831 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1832 }
1833
1834 if (unlikely(!(hv_clean_fields &
1835 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1836 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1837 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1838 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1839 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1840 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1841 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1842 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1843 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1844 vmcs12->guest_pending_dbg_exceptions =
1845 evmcs->guest_pending_dbg_exceptions;
1846 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1847 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1848 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1849 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1850 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1851 vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1852 /*
1853 * Not present in struct vmcs12:
1854 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1855 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1856 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1857 */
1858 }
1859
1860 /*
1861 * Not used?
1862 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1863 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1864 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1865 * vmcs12->page_fault_error_code_mask =
1866 * evmcs->page_fault_error_code_mask;
1867 * vmcs12->page_fault_error_code_match =
1868 * evmcs->page_fault_error_code_match;
1869 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1870 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1871 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1872 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1873 */
1874
1875 /*
1876 * Read only fields:
1877 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1878 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1879 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1880 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1881 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1882 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1883 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1884 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1885 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1886 * vmcs12->exit_qualification = evmcs->exit_qualification;
1887 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1888 *
1889 * Not present in struct vmcs12:
1890 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1891 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1892 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1893 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1894 */
1895
1896 return;
1897 #else /* CONFIG_KVM_HYPERV */
1898 KVM_BUG_ON(1, vmx->vcpu.kvm);
1899 #endif /* CONFIG_KVM_HYPERV */
1900 }
1901
copy_vmcs12_to_enlightened(struct vcpu_vmx * vmx)1902 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1903 {
1904 #ifdef CONFIG_KVM_HYPERV
1905 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1906 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1907
1908 /*
1909 * Should not be changed by KVM:
1910 *
1911 * evmcs->host_es_selector = vmcs12->host_es_selector;
1912 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1913 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1914 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1915 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1916 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1917 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1918 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1919 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1920 * evmcs->host_cr0 = vmcs12->host_cr0;
1921 * evmcs->host_cr3 = vmcs12->host_cr3;
1922 * evmcs->host_cr4 = vmcs12->host_cr4;
1923 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1924 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1925 * evmcs->host_rip = vmcs12->host_rip;
1926 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1927 * evmcs->host_fs_base = vmcs12->host_fs_base;
1928 * evmcs->host_gs_base = vmcs12->host_gs_base;
1929 * evmcs->host_tr_base = vmcs12->host_tr_base;
1930 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1931 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1932 * evmcs->host_rsp = vmcs12->host_rsp;
1933 * sync_vmcs02_to_vmcs12() doesn't read these:
1934 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1935 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1936 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1937 * evmcs->ept_pointer = vmcs12->ept_pointer;
1938 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1939 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1940 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1941 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1942 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1943 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1944 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1945 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1946 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1947 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1948 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1949 * evmcs->page_fault_error_code_mask =
1950 * vmcs12->page_fault_error_code_mask;
1951 * evmcs->page_fault_error_code_match =
1952 * vmcs12->page_fault_error_code_match;
1953 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1954 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1955 * evmcs->tsc_offset = vmcs12->tsc_offset;
1956 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1957 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1958 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1959 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1960 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1961 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1962 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1963 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1964 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
1965 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
1966 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
1967 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
1968 *
1969 * Not present in struct vmcs12:
1970 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1971 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1972 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1973 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1974 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
1975 * evmcs->host_ssp = vmcs12->host_ssp;
1976 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
1977 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
1978 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
1979 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
1980 * evmcs->guest_ssp = vmcs12->guest_ssp;
1981 */
1982
1983 evmcs->guest_es_selector = vmcs12->guest_es_selector;
1984 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1985 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1986 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1987 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1988 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1989 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1990 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1991
1992 evmcs->guest_es_limit = vmcs12->guest_es_limit;
1993 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1994 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1995 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1996 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1997 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1998 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1999 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
2000 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
2001 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
2002
2003 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
2004 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
2005 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
2006 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
2007 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
2008 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
2009 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
2010 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
2011
2012 evmcs->guest_es_base = vmcs12->guest_es_base;
2013 evmcs->guest_cs_base = vmcs12->guest_cs_base;
2014 evmcs->guest_ss_base = vmcs12->guest_ss_base;
2015 evmcs->guest_ds_base = vmcs12->guest_ds_base;
2016 evmcs->guest_fs_base = vmcs12->guest_fs_base;
2017 evmcs->guest_gs_base = vmcs12->guest_gs_base;
2018 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
2019 evmcs->guest_tr_base = vmcs12->guest_tr_base;
2020 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
2021 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
2022
2023 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
2024 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
2025
2026 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
2027 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
2028 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
2029 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
2030
2031 evmcs->guest_pending_dbg_exceptions =
2032 vmcs12->guest_pending_dbg_exceptions;
2033 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
2034 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
2035
2036 evmcs->guest_activity_state = vmcs12->guest_activity_state;
2037 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
2038
2039 evmcs->guest_cr0 = vmcs12->guest_cr0;
2040 evmcs->guest_cr3 = vmcs12->guest_cr3;
2041 evmcs->guest_cr4 = vmcs12->guest_cr4;
2042 evmcs->guest_dr7 = vmcs12->guest_dr7;
2043
2044 evmcs->guest_physical_address = vmcs12->guest_physical_address;
2045
2046 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
2047 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
2048 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
2049 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
2050 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
2051 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
2052 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
2053 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
2054
2055 evmcs->exit_qualification = vmcs12->exit_qualification;
2056
2057 evmcs->guest_linear_address = vmcs12->guest_linear_address;
2058 evmcs->guest_rsp = vmcs12->guest_rsp;
2059 evmcs->guest_rflags = vmcs12->guest_rflags;
2060
2061 evmcs->guest_interruptibility_info =
2062 vmcs12->guest_interruptibility_info;
2063 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
2064 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
2065 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
2066 evmcs->vm_entry_exception_error_code =
2067 vmcs12->vm_entry_exception_error_code;
2068 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
2069
2070 evmcs->guest_rip = vmcs12->guest_rip;
2071
2072 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
2073
2074 return;
2075 #else /* CONFIG_KVM_HYPERV */
2076 KVM_BUG_ON(1, vmx->vcpu.kvm);
2077 #endif /* CONFIG_KVM_HYPERV */
2078 }
2079
2080 /*
2081 * This is an equivalent of the nested hypervisor executing the vmptrld
2082 * instruction.
2083 */
nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu * vcpu,bool from_launch)2084 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2085 struct kvm_vcpu *vcpu, bool from_launch)
2086 {
2087 #ifdef CONFIG_KVM_HYPERV
2088 struct vcpu_vmx *vmx = to_vmx(vcpu);
2089 bool evmcs_gpa_changed = false;
2090 u64 evmcs_gpa;
2091
2092 if (likely(!guest_cpuid_has_evmcs(vcpu)))
2093 return EVMPTRLD_DISABLED;
2094
2095 evmcs_gpa = nested_get_evmptr(vcpu);
2096 if (!evmptr_is_valid(evmcs_gpa)) {
2097 nested_release_evmcs(vcpu);
2098 return EVMPTRLD_DISABLED;
2099 }
2100
2101 if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2102 vmx->nested.current_vmptr = INVALID_GPA;
2103
2104 nested_release_evmcs(vcpu);
2105
2106 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2107 &vmx->nested.hv_evmcs_map))
2108 return EVMPTRLD_ERROR;
2109
2110 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2111
2112 /*
2113 * Currently, KVM only supports eVMCS version 1
2114 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2115 * value to first u32 field of eVMCS which should specify eVMCS
2116 * VersionNumber.
2117 *
2118 * Guest should be aware of supported eVMCS versions by host by
2119 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2120 * expected to set this CPUID leaf according to the value
2121 * returned in vmcs_version from nested_enable_evmcs().
2122 *
2123 * However, it turns out that Microsoft Hyper-V fails to comply
2124 * to their own invented interface: When Hyper-V use eVMCS, it
2125 * just sets first u32 field of eVMCS to revision_id specified
2126 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2127 * which is one of the supported versions specified in
2128 * CPUID.0x4000000A.EAX[0:15].
2129 *
2130 * To overcome Hyper-V bug, we accept here either a supported
2131 * eVMCS version or VMCS12 revision_id as valid values for first
2132 * u32 field of eVMCS.
2133 */
2134 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2135 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2136 nested_release_evmcs(vcpu);
2137 return EVMPTRLD_VMFAIL;
2138 }
2139
2140 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2141
2142 evmcs_gpa_changed = true;
2143 /*
2144 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2145 * reloaded from guest's memory (read only fields, fields not
2146 * present in struct hv_enlightened_vmcs, ...). Make sure there
2147 * are no leftovers.
2148 */
2149 if (from_launch) {
2150 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2151 memset(vmcs12, 0, sizeof(*vmcs12));
2152 vmcs12->hdr.revision_id = VMCS12_REVISION;
2153 }
2154
2155 }
2156
2157 /*
2158 * Clean fields data can't be used on VMLAUNCH and when we switch
2159 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2160 */
2161 if (from_launch || evmcs_gpa_changed) {
2162 vmx->nested.hv_evmcs->hv_clean_fields &=
2163 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2164
2165 vmx->nested.force_msr_bitmap_recalc = true;
2166 }
2167
2168 return EVMPTRLD_SUCCEEDED;
2169 #else
2170 return EVMPTRLD_DISABLED;
2171 #endif
2172 }
2173
nested_sync_vmcs12_to_shadow(struct kvm_vcpu * vcpu)2174 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2175 {
2176 struct vcpu_vmx *vmx = to_vmx(vcpu);
2177
2178 if (nested_vmx_is_evmptr12_valid(vmx))
2179 copy_vmcs12_to_enlightened(vmx);
2180 else
2181 copy_vmcs12_to_shadow(vmx);
2182
2183 vmx->nested.need_vmcs12_to_shadow_sync = false;
2184 }
2185
vmx_preemption_timer_fn(struct hrtimer * timer)2186 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2187 {
2188 struct vcpu_vmx *vmx =
2189 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2190
2191 vmx->nested.preemption_timer_expired = true;
2192 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2193 kvm_vcpu_kick(&vmx->vcpu);
2194
2195 return HRTIMER_NORESTART;
2196 }
2197
vmx_calc_preemption_timer_value(struct kvm_vcpu * vcpu)2198 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2199 {
2200 struct vcpu_vmx *vmx = to_vmx(vcpu);
2201 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2202
2203 u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2204 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2205
2206 if (!vmx->nested.has_preemption_timer_deadline) {
2207 vmx->nested.preemption_timer_deadline =
2208 vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2209 vmx->nested.has_preemption_timer_deadline = true;
2210 }
2211 return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2212 }
2213
vmx_start_preemption_timer(struct kvm_vcpu * vcpu,u64 preemption_timeout)2214 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2215 u64 preemption_timeout)
2216 {
2217 struct vcpu_vmx *vmx = to_vmx(vcpu);
2218
2219 /*
2220 * A timer value of zero is architecturally guaranteed to cause
2221 * a VMExit prior to executing any instructions in the guest.
2222 */
2223 if (preemption_timeout == 0) {
2224 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2225 return;
2226 }
2227
2228 if (vcpu->arch.virtual_tsc_khz == 0)
2229 return;
2230
2231 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2232 preemption_timeout *= 1000000;
2233 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2234 hrtimer_start(&vmx->nested.preemption_timer,
2235 ktime_add_ns(ktime_get(), preemption_timeout),
2236 HRTIMER_MODE_ABS_PINNED);
2237 }
2238
nested_vmx_calc_efer(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2239 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2240 {
2241 if (vmx->nested.nested_run_pending &&
2242 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2243 return vmcs12->guest_ia32_efer;
2244 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2245 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2246 else
2247 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2248 }
2249
prepare_vmcs02_constant_state(struct vcpu_vmx * vmx)2250 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2251 {
2252 struct kvm *kvm = vmx->vcpu.kvm;
2253
2254 /*
2255 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2256 * according to L0's settings (vmcs12 is irrelevant here). Host
2257 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2258 * will be set as needed prior to VMLAUNCH/VMRESUME.
2259 */
2260 if (vmx->nested.vmcs02_initialized)
2261 return;
2262 vmx->nested.vmcs02_initialized = true;
2263
2264 /*
2265 * We don't care what the EPTP value is we just need to guarantee
2266 * it's valid so we don't get a false positive when doing early
2267 * consistency checks.
2268 */
2269 if (enable_ept && nested_early_check)
2270 vmcs_write64(EPT_POINTER,
2271 construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2272
2273 if (vmx->ve_info)
2274 vmcs_write64(VE_INFORMATION_ADDRESS, __pa(vmx->ve_info));
2275
2276 /* All VMFUNCs are currently emulated through L0 vmexits. */
2277 if (cpu_has_vmx_vmfunc())
2278 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2279
2280 if (cpu_has_vmx_posted_intr())
2281 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2282
2283 if (cpu_has_vmx_msr_bitmap())
2284 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2285
2286 /*
2287 * PML is emulated for L2, but never enabled in hardware as the MMU
2288 * handles A/D emulation. Disabling PML for L2 also avoids having to
2289 * deal with filtering out L2 GPAs from the buffer.
2290 */
2291 if (enable_pml) {
2292 vmcs_write64(PML_ADDRESS, 0);
2293 vmcs_write16(GUEST_PML_INDEX, -1);
2294 }
2295
2296 if (cpu_has_vmx_encls_vmexit())
2297 vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2298
2299 if (kvm_notify_vmexit_enabled(kvm))
2300 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2301
2302 /*
2303 * Set the MSR load/store lists to match L0's settings. Only the
2304 * addresses are constant (for vmcs02), the counts can change based
2305 * on L2's behavior, e.g. switching to/from long mode.
2306 */
2307 vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2308 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2309 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2310
2311 vmx_set_constant_host_state(vmx);
2312 }
2313
prepare_vmcs02_early_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2314 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2315 struct vmcs12 *vmcs12)
2316 {
2317 prepare_vmcs02_constant_state(vmx);
2318
2319 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2320
2321 /*
2322 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
2323 * same VPID as the host. Emulate this behavior by using vpid01 for L2
2324 * if VPID is disabled in vmcs12. Note, if VPID is disabled, VM-Enter
2325 * and VM-Exit are architecturally required to flush VPID=0, but *only*
2326 * VPID=0. I.e. using vpid02 would be ok (so long as KVM emulates the
2327 * required flushes), but doing so would cause KVM to over-flush. E.g.
2328 * if L1 runs L2 X with VPID12=1, then runs L2 Y with VPID12 disabled,
2329 * and then runs L2 X again, then KVM can and should retain TLB entries
2330 * for VPID12=1.
2331 */
2332 if (enable_vpid) {
2333 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2334 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2335 else
2336 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2337 }
2338 }
2339
prepare_vmcs02_early(struct vcpu_vmx * vmx,struct loaded_vmcs * vmcs01,struct vmcs12 * vmcs12)2340 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2341 struct vmcs12 *vmcs12)
2342 {
2343 u32 exec_control;
2344 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2345
2346 if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx))
2347 prepare_vmcs02_early_rare(vmx, vmcs12);
2348
2349 /*
2350 * PIN CONTROLS
2351 */
2352 exec_control = __pin_controls_get(vmcs01);
2353 exec_control |= (vmcs12->pin_based_vm_exec_control &
2354 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2355
2356 /* Posted interrupts setting is only taken from vmcs12. */
2357 vmx->nested.pi_pending = false;
2358 if (nested_cpu_has_posted_intr(vmcs12)) {
2359 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2360 } else {
2361 vmx->nested.posted_intr_nv = -1;
2362 exec_control &= ~PIN_BASED_POSTED_INTR;
2363 }
2364 pin_controls_set(vmx, exec_control);
2365
2366 /*
2367 * EXEC CONTROLS
2368 */
2369 exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2370 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2371 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2372 exec_control &= ~CPU_BASED_TPR_SHADOW;
2373 exec_control |= vmcs12->cpu_based_vm_exec_control;
2374
2375 vmx->nested.l1_tpr_threshold = -1;
2376 if (exec_control & CPU_BASED_TPR_SHADOW)
2377 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2378 #ifdef CONFIG_X86_64
2379 else
2380 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2381 CPU_BASED_CR8_STORE_EXITING;
2382 #endif
2383
2384 /*
2385 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2386 * for I/O port accesses.
2387 */
2388 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2389 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2390
2391 /*
2392 * This bit will be computed in nested_get_vmcs12_pages, because
2393 * we do not have access to L1's MSR bitmap yet. For now, keep
2394 * the same bit as before, hoping to avoid multiple VMWRITEs that
2395 * only set/clear this bit.
2396 */
2397 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2398 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2399
2400 exec_controls_set(vmx, exec_control);
2401
2402 /*
2403 * SECONDARY EXEC CONTROLS
2404 */
2405 if (cpu_has_secondary_exec_ctrls()) {
2406 exec_control = __secondary_exec_controls_get(vmcs01);
2407
2408 /* Take the following fields only from vmcs12 */
2409 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2410 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2411 SECONDARY_EXEC_ENABLE_INVPCID |
2412 SECONDARY_EXEC_ENABLE_RDTSCP |
2413 SECONDARY_EXEC_ENABLE_XSAVES |
2414 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2415 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2416 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2417 SECONDARY_EXEC_ENABLE_VMFUNC |
2418 SECONDARY_EXEC_DESC);
2419
2420 if (nested_cpu_has(vmcs12,
2421 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2422 exec_control |= vmcs12->secondary_vm_exec_control;
2423
2424 /* PML is emulated and never enabled in hardware for L2. */
2425 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2426
2427 /* VMCS shadowing for L2 is emulated for now */
2428 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2429
2430 /*
2431 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2432 * will not have to rewrite the controls just for this bit.
2433 */
2434 if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP))
2435 exec_control |= SECONDARY_EXEC_DESC;
2436
2437 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2438 vmcs_write16(GUEST_INTR_STATUS,
2439 vmcs12->guest_intr_status);
2440
2441 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2442 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2443
2444 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2445 vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2446
2447 secondary_exec_controls_set(vmx, exec_control);
2448 }
2449
2450 /*
2451 * ENTRY CONTROLS
2452 *
2453 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2454 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2455 * on the related bits (if supported by the CPU) in the hope that
2456 * we can avoid VMWrites during vmx_set_efer().
2457 *
2458 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2459 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2460 * do the same for L2.
2461 */
2462 exec_control = __vm_entry_controls_get(vmcs01);
2463 exec_control |= (vmcs12->vm_entry_controls &
2464 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2465 exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2466 if (cpu_has_load_ia32_efer()) {
2467 if (guest_efer & EFER_LMA)
2468 exec_control |= VM_ENTRY_IA32E_MODE;
2469 if (guest_efer != kvm_host.efer)
2470 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2471 }
2472 vm_entry_controls_set(vmx, exec_control);
2473
2474 /*
2475 * EXIT CONTROLS
2476 *
2477 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2478 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2479 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2480 */
2481 exec_control = __vm_exit_controls_get(vmcs01);
2482 if (cpu_has_load_ia32_efer() && guest_efer != kvm_host.efer)
2483 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2484 else
2485 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2486 vm_exit_controls_set(vmx, exec_control);
2487
2488 /*
2489 * Interrupt/Exception Fields
2490 */
2491 if (vmx->nested.nested_run_pending) {
2492 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2493 vmcs12->vm_entry_intr_info_field);
2494 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2495 vmcs12->vm_entry_exception_error_code);
2496 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2497 vmcs12->vm_entry_instruction_len);
2498 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2499 vmcs12->guest_interruptibility_info);
2500 vmx->loaded_vmcs->nmi_known_unmasked =
2501 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2502 } else {
2503 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2504 }
2505 }
2506
prepare_vmcs02_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2507 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2508 {
2509 struct hv_enlightened_vmcs *hv_evmcs = nested_vmx_evmcs(vmx);
2510
2511 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2512 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2513
2514 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2515 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2516 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2517 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2518 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2519 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2520 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2521 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2522 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2523 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2524 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2525 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2526 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2527 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2528 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2529 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2530 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2531 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2532 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2533 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2534 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2535 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2536 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2537 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2538 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2539 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2540 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2541 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2542 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2543 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2544 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2545 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2546 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2547 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2548 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2549 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2550
2551 vmx_segment_cache_clear(vmx);
2552 }
2553
2554 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2555 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2556 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2557 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2558 vmcs12->guest_pending_dbg_exceptions);
2559 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2560 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2561
2562 /*
2563 * L1 may access the L2's PDPTR, so save them to construct
2564 * vmcs12
2565 */
2566 if (enable_ept) {
2567 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2568 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2569 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2570 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2571 }
2572
2573 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2574 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2575 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2576 }
2577
2578 if (nested_cpu_has_xsaves(vmcs12))
2579 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2580
2581 /*
2582 * Whether page-faults are trapped is determined by a combination of
2583 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0
2584 * doesn't care about page faults then we should set all of these to
2585 * L1's desires. However, if L0 does care about (some) page faults, it
2586 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2587 * simply ask to exit on each and every L2 page fault. This is done by
2588 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2589 * Note that below we don't need special code to set EB.PF beyond the
2590 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2591 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2592 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2593 */
2594 if (vmx_need_pf_intercept(&vmx->vcpu)) {
2595 /*
2596 * TODO: if both L0 and L1 need the same MASK and MATCH,
2597 * go ahead and use it?
2598 */
2599 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2600 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2601 } else {
2602 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2603 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2604 }
2605
2606 if (cpu_has_vmx_apicv()) {
2607 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2608 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2609 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2610 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2611 }
2612
2613 /*
2614 * Make sure the msr_autostore list is up to date before we set the
2615 * count in the vmcs02.
2616 */
2617 prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2618
2619 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2620 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2621 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2622
2623 set_cr4_guest_host_mask(vmx);
2624 }
2625
2626 /*
2627 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2628 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2629 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2630 * guest in a way that will both be appropriate to L1's requests, and our
2631 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2632 * function also has additional necessary side-effects, like setting various
2633 * vcpu->arch fields.
2634 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2635 * is assigned to entry_failure_code on failure.
2636 */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool from_vmentry,enum vm_entry_failure_code * entry_failure_code)2637 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2638 bool from_vmentry,
2639 enum vm_entry_failure_code *entry_failure_code)
2640 {
2641 struct vcpu_vmx *vmx = to_vmx(vcpu);
2642 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
2643 bool load_guest_pdptrs_vmcs12 = false;
2644
2645 if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) {
2646 prepare_vmcs02_rare(vmx, vmcs12);
2647 vmx->nested.dirty_vmcs12 = false;
2648
2649 load_guest_pdptrs_vmcs12 = !nested_vmx_is_evmptr12_valid(vmx) ||
2650 !(evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2651 }
2652
2653 if (vmx->nested.nested_run_pending &&
2654 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2655 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2656 vmx_guest_debugctl_write(vcpu, vmcs12->guest_ia32_debugctl &
2657 vmx_get_supported_debugctl(vcpu, false));
2658 } else {
2659 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2660 vmx_guest_debugctl_write(vcpu, vmx->nested.pre_vmenter_debugctl);
2661 }
2662 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2663 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2664 vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2665 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2666
2667 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2668 * bitwise-or of what L1 wants to trap for L2, and what we want to
2669 * trap. Note that CR0.TS also needs updating - we do this later.
2670 */
2671 vmx_update_exception_bitmap(vcpu);
2672 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2673 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2674
2675 if (vmx->nested.nested_run_pending &&
2676 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2677 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2678 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2679 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2680 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2681 }
2682
2683 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2684 vcpu->arch.l1_tsc_offset,
2685 vmx_get_l2_tsc_offset(vcpu),
2686 vmx_get_l2_tsc_multiplier(vcpu));
2687
2688 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2689 vcpu->arch.l1_tsc_scaling_ratio,
2690 vmx_get_l2_tsc_multiplier(vcpu));
2691
2692 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2693 if (kvm_caps.has_tsc_control)
2694 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2695
2696 nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2697
2698 if (nested_cpu_has_ept(vmcs12))
2699 nested_ept_init_mmu_context(vcpu);
2700
2701 /*
2702 * Override the CR0/CR4 read shadows after setting the effective guest
2703 * CR0/CR4. The common helpers also set the shadows, but they don't
2704 * account for vmcs12's cr0/4_guest_host_mask.
2705 */
2706 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2707 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2708
2709 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2710 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2711
2712 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2713 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2714 vmx_set_efer(vcpu, vcpu->arch.efer);
2715
2716 /*
2717 * Guest state is invalid and unrestricted guest is disabled,
2718 * which means L1 attempted VMEntry to L2 with invalid state.
2719 * Fail the VMEntry.
2720 *
2721 * However when force loading the guest state (SMM exit or
2722 * loading nested state after migration, it is possible to
2723 * have invalid guest state now, which will be later fixed by
2724 * restoring L2 register state
2725 */
2726 if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2727 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2728 return -EINVAL;
2729 }
2730
2731 /* Shadow page tables on either EPT or shadow page tables. */
2732 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2733 from_vmentry, entry_failure_code))
2734 return -EINVAL;
2735
2736 /*
2737 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
2738 * on nested VM-Exit, which can occur without actually running L2 and
2739 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2740 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2741 * transition to HLT instead of running L2.
2742 */
2743 if (enable_ept)
2744 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2745
2746 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2747 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2748 is_pae_paging(vcpu)) {
2749 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2750 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2751 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2752 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2753 }
2754
2755 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2756 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2757 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2758 vmcs12->guest_ia32_perf_global_ctrl))) {
2759 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2760 return -EINVAL;
2761 }
2762
2763 kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2764 kvm_rip_write(vcpu, vmcs12->guest_rip);
2765
2766 /*
2767 * It was observed that genuine Hyper-V running in L1 doesn't reset
2768 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2769 * bits when it changes a field in eVMCS. Mark all fields as clean
2770 * here.
2771 */
2772 if (nested_vmx_is_evmptr12_valid(vmx))
2773 evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2774
2775 return 0;
2776 }
2777
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)2778 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2779 {
2780 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2781 nested_cpu_has_virtual_nmis(vmcs12)))
2782 return -EINVAL;
2783
2784 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2785 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2786 return -EINVAL;
2787
2788 return 0;
2789 }
2790
nested_vmx_check_eptp(struct kvm_vcpu * vcpu,u64 new_eptp)2791 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2792 {
2793 struct vcpu_vmx *vmx = to_vmx(vcpu);
2794
2795 /* Check for memory type validity */
2796 switch (new_eptp & VMX_EPTP_MT_MASK) {
2797 case VMX_EPTP_MT_UC:
2798 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2799 return false;
2800 break;
2801 case VMX_EPTP_MT_WB:
2802 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2803 return false;
2804 break;
2805 default:
2806 return false;
2807 }
2808
2809 /* Page-walk levels validity. */
2810 switch (new_eptp & VMX_EPTP_PWL_MASK) {
2811 case VMX_EPTP_PWL_5:
2812 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2813 return false;
2814 break;
2815 case VMX_EPTP_PWL_4:
2816 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2817 return false;
2818 break;
2819 default:
2820 return false;
2821 }
2822
2823 /* Reserved bits should not be set */
2824 if (CC(!kvm_vcpu_is_legal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2825 return false;
2826
2827 /* AD, if set, should be supported */
2828 if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2829 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2830 return false;
2831 }
2832
2833 return true;
2834 }
2835
2836 /*
2837 * Checks related to VM-Execution Control Fields
2838 */
nested_check_vm_execution_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2839 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2840 struct vmcs12 *vmcs12)
2841 {
2842 struct vcpu_vmx *vmx = to_vmx(vcpu);
2843
2844 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2845 vmx->nested.msrs.pinbased_ctls_low,
2846 vmx->nested.msrs.pinbased_ctls_high)) ||
2847 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2848 vmx->nested.msrs.procbased_ctls_low,
2849 vmx->nested.msrs.procbased_ctls_high)))
2850 return -EINVAL;
2851
2852 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2853 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2854 vmx->nested.msrs.secondary_ctls_low,
2855 vmx->nested.msrs.secondary_ctls_high)))
2856 return -EINVAL;
2857
2858 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2859 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2860 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2861 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2862 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2863 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2864 nested_vmx_check_nmi_controls(vmcs12) ||
2865 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2866 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2867 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2868 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2869 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2870 return -EINVAL;
2871
2872 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2873 nested_cpu_has_save_preemption_timer(vmcs12))
2874 return -EINVAL;
2875
2876 if (nested_cpu_has_ept(vmcs12) &&
2877 CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2878 return -EINVAL;
2879
2880 if (nested_cpu_has_vmfunc(vmcs12)) {
2881 if (CC(vmcs12->vm_function_control &
2882 ~vmx->nested.msrs.vmfunc_controls))
2883 return -EINVAL;
2884
2885 if (nested_cpu_has_eptp_switching(vmcs12)) {
2886 if (CC(!nested_cpu_has_ept(vmcs12)) ||
2887 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2888 return -EINVAL;
2889 }
2890 }
2891
2892 return 0;
2893 }
2894
2895 /*
2896 * Checks related to VM-Exit Control Fields
2897 */
nested_check_vm_exit_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2898 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2899 struct vmcs12 *vmcs12)
2900 {
2901 struct vcpu_vmx *vmx = to_vmx(vcpu);
2902
2903 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2904 vmx->nested.msrs.exit_ctls_low,
2905 vmx->nested.msrs.exit_ctls_high)) ||
2906 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2907 return -EINVAL;
2908
2909 return 0;
2910 }
2911
2912 /*
2913 * Checks related to VM-Entry Control Fields
2914 */
nested_check_vm_entry_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2915 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2916 struct vmcs12 *vmcs12)
2917 {
2918 struct vcpu_vmx *vmx = to_vmx(vcpu);
2919
2920 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2921 vmx->nested.msrs.entry_ctls_low,
2922 vmx->nested.msrs.entry_ctls_high)))
2923 return -EINVAL;
2924
2925 /*
2926 * From the Intel SDM, volume 3:
2927 * Fields relevant to VM-entry event injection must be set properly.
2928 * These fields are the VM-entry interruption-information field, the
2929 * VM-entry exception error code, and the VM-entry instruction length.
2930 */
2931 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2932 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2933 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2934 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2935 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2936 bool should_have_error_code;
2937 bool urg = nested_cpu_has2(vmcs12,
2938 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2939 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2940
2941 /* VM-entry interruption-info field: interruption type */
2942 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2943 CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2944 !nested_cpu_supports_monitor_trap_flag(vcpu)))
2945 return -EINVAL;
2946
2947 /* VM-entry interruption-info field: vector */
2948 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2949 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2950 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2951 return -EINVAL;
2952
2953 /* VM-entry interruption-info field: deliver error code */
2954 should_have_error_code =
2955 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2956 x86_exception_has_error_code(vector);
2957 if (CC(has_error_code != should_have_error_code))
2958 return -EINVAL;
2959
2960 /* VM-entry exception error code */
2961 if (CC(has_error_code &&
2962 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2963 return -EINVAL;
2964
2965 /* VM-entry interruption-info field: reserved bits */
2966 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2967 return -EINVAL;
2968
2969 /* VM-entry instruction length */
2970 switch (intr_type) {
2971 case INTR_TYPE_SOFT_EXCEPTION:
2972 case INTR_TYPE_SOFT_INTR:
2973 case INTR_TYPE_PRIV_SW_EXCEPTION:
2974 if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2975 CC(vmcs12->vm_entry_instruction_len == 0 &&
2976 CC(!nested_cpu_has_zero_length_injection(vcpu))))
2977 return -EINVAL;
2978 }
2979 }
2980
2981 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2982 return -EINVAL;
2983
2984 return 0;
2985 }
2986
nested_vmx_check_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2987 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2988 struct vmcs12 *vmcs12)
2989 {
2990 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2991 nested_check_vm_exit_controls(vcpu, vmcs12) ||
2992 nested_check_vm_entry_controls(vcpu, vmcs12))
2993 return -EINVAL;
2994
2995 #ifdef CONFIG_KVM_HYPERV
2996 if (guest_cpuid_has_evmcs(vcpu))
2997 return nested_evmcs_check_controls(vmcs12);
2998 #endif
2999
3000 return 0;
3001 }
3002
nested_vmx_check_address_space_size(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3003 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
3004 struct vmcs12 *vmcs12)
3005 {
3006 #ifdef CONFIG_X86_64
3007 if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
3008 !!(vcpu->arch.efer & EFER_LMA)))
3009 return -EINVAL;
3010 #endif
3011 return 0;
3012 }
3013
nested_vmx_check_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3014 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
3015 struct vmcs12 *vmcs12)
3016 {
3017 bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
3018
3019 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
3020 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
3021 CC(!kvm_vcpu_is_legal_cr3(vcpu, vmcs12->host_cr3)))
3022 return -EINVAL;
3023
3024 if (CC(is_noncanonical_msr_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
3025 CC(is_noncanonical_msr_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
3026 return -EINVAL;
3027
3028 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
3029 CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
3030 return -EINVAL;
3031
3032 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3033 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3034 vmcs12->host_ia32_perf_global_ctrl)))
3035 return -EINVAL;
3036
3037 if (ia32e) {
3038 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
3039 return -EINVAL;
3040 } else {
3041 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
3042 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
3043 CC((vmcs12->host_rip) >> 32))
3044 return -EINVAL;
3045 }
3046
3047 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3048 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3049 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3050 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3051 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3052 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3053 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3054 CC(vmcs12->host_cs_selector == 0) ||
3055 CC(vmcs12->host_tr_selector == 0) ||
3056 CC(vmcs12->host_ss_selector == 0 && !ia32e))
3057 return -EINVAL;
3058
3059 if (CC(is_noncanonical_base_address(vmcs12->host_fs_base, vcpu)) ||
3060 CC(is_noncanonical_base_address(vmcs12->host_gs_base, vcpu)) ||
3061 CC(is_noncanonical_base_address(vmcs12->host_gdtr_base, vcpu)) ||
3062 CC(is_noncanonical_base_address(vmcs12->host_idtr_base, vcpu)) ||
3063 CC(is_noncanonical_base_address(vmcs12->host_tr_base, vcpu)) ||
3064 CC(is_noncanonical_address(vmcs12->host_rip, vcpu, 0)))
3065 return -EINVAL;
3066
3067 /*
3068 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
3069 * IA32_EFER MSR must be 0 in the field for that register. In addition,
3070 * the values of the LMA and LME bits in the field must each be that of
3071 * the host address-space size VM-exit control.
3072 */
3073 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
3074 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
3075 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
3076 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
3077 return -EINVAL;
3078 }
3079
3080 return 0;
3081 }
3082
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3083 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
3084 struct vmcs12 *vmcs12)
3085 {
3086 struct vcpu_vmx *vmx = to_vmx(vcpu);
3087 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
3088 struct vmcs_hdr hdr;
3089
3090 if (vmcs12->vmcs_link_pointer == INVALID_GPA)
3091 return 0;
3092
3093 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
3094 return -EINVAL;
3095
3096 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
3097 CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
3098 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
3099 return -EINVAL;
3100
3101 if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
3102 offsetof(struct vmcs12, hdr),
3103 sizeof(hdr))))
3104 return -EINVAL;
3105
3106 if (CC(hdr.revision_id != VMCS12_REVISION) ||
3107 CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3108 return -EINVAL;
3109
3110 return 0;
3111 }
3112
3113 /*
3114 * Checks related to Guest Non-register State
3115 */
nested_check_guest_non_reg_state(struct vmcs12 * vmcs12)3116 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3117 {
3118 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3119 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3120 vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3121 return -EINVAL;
3122
3123 return 0;
3124 }
3125
nested_vmx_check_guest_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)3126 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3127 struct vmcs12 *vmcs12,
3128 enum vm_entry_failure_code *entry_failure_code)
3129 {
3130 bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3131
3132 *entry_failure_code = ENTRY_FAIL_DEFAULT;
3133
3134 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3135 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3136 return -EINVAL;
3137
3138 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3139 (CC(!kvm_dr7_valid(vmcs12->guest_dr7)) ||
3140 CC(!vmx_is_valid_debugctl(vcpu, vmcs12->guest_ia32_debugctl, false))))
3141 return -EINVAL;
3142
3143 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3144 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3145 return -EINVAL;
3146
3147 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3148 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3149 return -EINVAL;
3150 }
3151
3152 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3153 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3154 vmcs12->guest_ia32_perf_global_ctrl)))
3155 return -EINVAL;
3156
3157 if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3158 return -EINVAL;
3159
3160 if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3161 CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3162 return -EINVAL;
3163
3164 /*
3165 * If the load IA32_EFER VM-entry control is 1, the following checks
3166 * are performed on the field for the IA32_EFER MSR:
3167 * - Bits reserved in the IA32_EFER MSR must be 0.
3168 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3169 * the IA-32e mode guest VM-exit control. It must also be identical
3170 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3171 * CR0.PG) is 1.
3172 */
3173 if (to_vmx(vcpu)->nested.nested_run_pending &&
3174 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3175 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3176 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3177 CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3178 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3179 return -EINVAL;
3180 }
3181
3182 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3183 (CC(is_noncanonical_msr_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3184 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3185 return -EINVAL;
3186
3187 if (nested_check_guest_non_reg_state(vmcs12))
3188 return -EINVAL;
3189
3190 return 0;
3191 }
3192
nested_vmx_check_vmentry_hw(struct kvm_vcpu * vcpu)3193 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3194 {
3195 struct vcpu_vmx *vmx = to_vmx(vcpu);
3196 unsigned long cr3, cr4;
3197 bool vm_fail;
3198
3199 if (!nested_early_check)
3200 return 0;
3201
3202 if (vmx->msr_autoload.host.nr)
3203 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3204 if (vmx->msr_autoload.guest.nr)
3205 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3206
3207 preempt_disable();
3208
3209 vmx_prepare_switch_to_guest(vcpu);
3210
3211 /*
3212 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3213 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
3214 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3215 * there is no need to preserve other bits or save/restore the field.
3216 */
3217 vmcs_writel(GUEST_RFLAGS, 0);
3218
3219 cr3 = __get_current_cr3_fast();
3220 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3221 vmcs_writel(HOST_CR3, cr3);
3222 vmx->loaded_vmcs->host_state.cr3 = cr3;
3223 }
3224
3225 cr4 = cr4_read_shadow();
3226 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3227 vmcs_writel(HOST_CR4, cr4);
3228 vmx->loaded_vmcs->host_state.cr4 = cr4;
3229 }
3230
3231 vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3232 __vmx_vcpu_run_flags(vmx));
3233
3234 if (vmx->msr_autoload.host.nr)
3235 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3236 if (vmx->msr_autoload.guest.nr)
3237 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3238
3239 if (vm_fail) {
3240 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3241
3242 preempt_enable();
3243
3244 trace_kvm_nested_vmenter_failed(
3245 "early hardware check VM-instruction error: ", error);
3246 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3247 return 1;
3248 }
3249
3250 /*
3251 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3252 */
3253 if (hw_breakpoint_active())
3254 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3255 local_irq_enable();
3256 preempt_enable();
3257
3258 /*
3259 * A non-failing VMEntry means we somehow entered guest mode with
3260 * an illegal RIP, and that's just the tip of the iceberg. There
3261 * is no telling what memory has been modified or what state has
3262 * been exposed to unknown code. Hitting this all but guarantees
3263 * a (very critical) hardware issue.
3264 */
3265 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3266 VMX_EXIT_REASONS_FAILED_VMENTRY));
3267
3268 return 0;
3269 }
3270
3271 #ifdef CONFIG_KVM_HYPERV
nested_get_evmcs_page(struct kvm_vcpu * vcpu)3272 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3273 {
3274 struct vcpu_vmx *vmx = to_vmx(vcpu);
3275
3276 /*
3277 * hv_evmcs may end up being not mapped after migration (when
3278 * L2 was running), map it here to make sure vmcs12 changes are
3279 * properly reflected.
3280 */
3281 if (guest_cpuid_has_evmcs(vcpu) &&
3282 vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3283 enum nested_evmptrld_status evmptrld_status =
3284 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3285
3286 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3287 evmptrld_status == EVMPTRLD_ERROR)
3288 return false;
3289
3290 /*
3291 * Post migration VMCS12 always provides the most actual
3292 * information, copy it to eVMCS upon entry.
3293 */
3294 vmx->nested.need_vmcs12_to_shadow_sync = true;
3295 }
3296
3297 return true;
3298 }
3299 #endif
3300
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)3301 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3302 {
3303 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3304 struct vcpu_vmx *vmx = to_vmx(vcpu);
3305 struct kvm_host_map *map;
3306
3307 if (!vcpu->arch.pdptrs_from_userspace &&
3308 !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3309 /*
3310 * Reload the guest's PDPTRs since after a migration
3311 * the guest CR3 might be restored prior to setting the nested
3312 * state which can lead to a load of wrong PDPTRs.
3313 */
3314 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3315 return false;
3316 }
3317
3318
3319 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3320 map = &vmx->nested.apic_access_page_map;
3321
3322 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3323 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3324 } else {
3325 pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3326 __func__);
3327 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3328 vcpu->run->internal.suberror =
3329 KVM_INTERNAL_ERROR_EMULATION;
3330 vcpu->run->internal.ndata = 0;
3331 return false;
3332 }
3333 }
3334
3335 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3336 map = &vmx->nested.virtual_apic_map;
3337
3338 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3339 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3340 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3341 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3342 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3343 /*
3344 * The processor will never use the TPR shadow, simply
3345 * clear the bit from the execution control. Such a
3346 * configuration is useless, but it happens in tests.
3347 * For any other configuration, failing the vm entry is
3348 * _not_ what the processor does but it's basically the
3349 * only possibility we have.
3350 */
3351 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3352 } else {
3353 /*
3354 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3355 * force VM-Entry to fail.
3356 */
3357 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3358 }
3359 }
3360
3361 if (nested_cpu_has_posted_intr(vmcs12)) {
3362 map = &vmx->nested.pi_desc_map;
3363
3364 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3365 vmx->nested.pi_desc =
3366 (struct pi_desc *)(((void *)map->hva) +
3367 offset_in_page(vmcs12->posted_intr_desc_addr));
3368 vmcs_write64(POSTED_INTR_DESC_ADDR,
3369 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3370 } else {
3371 /*
3372 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3373 * access the contents of the VMCS12 posted interrupt
3374 * descriptor. (Note that KVM may do this when it
3375 * should not, per the architectural specification.)
3376 */
3377 vmx->nested.pi_desc = NULL;
3378 pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3379 }
3380 }
3381 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3382 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3383 else
3384 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3385
3386 return true;
3387 }
3388
vmx_get_nested_state_pages(struct kvm_vcpu * vcpu)3389 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3390 {
3391 #ifdef CONFIG_KVM_HYPERV
3392 /*
3393 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3394 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3395 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3396 * migration.
3397 */
3398 if (!nested_get_evmcs_page(vcpu)) {
3399 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3400 __func__);
3401 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3402 vcpu->run->internal.suberror =
3403 KVM_INTERNAL_ERROR_EMULATION;
3404 vcpu->run->internal.ndata = 0;
3405
3406 return false;
3407 }
3408 #endif
3409
3410 if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3411 return false;
3412
3413 return true;
3414 }
3415
nested_vmx_write_pml_buffer(struct kvm_vcpu * vcpu,gpa_t gpa)3416 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3417 {
3418 struct vmcs12 *vmcs12;
3419 struct vcpu_vmx *vmx = to_vmx(vcpu);
3420 gpa_t dst;
3421
3422 if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3423 return 0;
3424
3425 if (WARN_ON_ONCE(vmx->nested.pml_full))
3426 return 1;
3427
3428 /*
3429 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3430 * set is already checked as part of A/D emulation.
3431 */
3432 vmcs12 = get_vmcs12(vcpu);
3433 if (!nested_cpu_has_pml(vmcs12))
3434 return 0;
3435
3436 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3437 vmx->nested.pml_full = true;
3438 return 1;
3439 }
3440
3441 gpa &= ~0xFFFull;
3442 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3443
3444 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3445 offset_in_page(dst), sizeof(gpa)))
3446 return 0;
3447
3448 vmcs12->guest_pml_index--;
3449
3450 return 0;
3451 }
3452
3453 /*
3454 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3455 * for running VMX instructions (except VMXON, whose prerequisites are
3456 * slightly different). It also specifies what exception to inject otherwise.
3457 * Note that many of these exceptions have priority over VM exits, so they
3458 * don't have to be checked again here.
3459 */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)3460 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3461 {
3462 if (!to_vmx(vcpu)->nested.vmxon) {
3463 kvm_queue_exception(vcpu, UD_VECTOR);
3464 return 0;
3465 }
3466
3467 if (vmx_get_cpl(vcpu)) {
3468 kvm_inject_gp(vcpu, 0);
3469 return 0;
3470 }
3471
3472 return 1;
3473 }
3474
vmx_has_apicv_interrupt(struct kvm_vcpu * vcpu)3475 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3476 {
3477 u8 rvi = vmx_get_rvi();
3478 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3479
3480 return ((rvi & 0xf0) > (vppr & 0xf0));
3481 }
3482
3483 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3484 struct vmcs12 *vmcs12);
3485
3486 /*
3487 * If from_vmentry is false, this is being called from state restore (either RSM
3488 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3489 *
3490 * Returns:
3491 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3492 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail
3493 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit
3494 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3495 */
nested_vmx_enter_non_root_mode(struct kvm_vcpu * vcpu,bool from_vmentry)3496 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3497 bool from_vmentry)
3498 {
3499 struct vcpu_vmx *vmx = to_vmx(vcpu);
3500 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3501 enum vm_entry_failure_code entry_failure_code;
3502 bool evaluate_pending_interrupts;
3503 union vmx_exit_reason exit_reason = {
3504 .basic = EXIT_REASON_INVALID_STATE,
3505 .failed_vmentry = 1,
3506 };
3507 u32 failed_index;
3508
3509 trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3510 vmx->nested.current_vmptr,
3511 vmcs12->guest_rip,
3512 vmcs12->guest_intr_status,
3513 vmcs12->vm_entry_intr_info_field,
3514 vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3515 vmcs12->ept_pointer,
3516 vmcs12->guest_cr3,
3517 KVM_ISA_VMX);
3518
3519 kvm_service_local_tlb_flush_requests(vcpu);
3520
3521 evaluate_pending_interrupts = exec_controls_get(vmx) &
3522 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3523 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3524 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3525 if (!evaluate_pending_interrupts)
3526 evaluate_pending_interrupts |= kvm_apic_has_pending_init_or_sipi(vcpu);
3527
3528 if (!vmx->nested.nested_run_pending ||
3529 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3530 vmx->nested.pre_vmenter_debugctl = vmx_guest_debugctl_read();
3531 if (kvm_mpx_supported() &&
3532 (!vmx->nested.nested_run_pending ||
3533 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3534 vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3535
3536 /*
3537 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3538 * nested early checks are disabled. In the event of a "late" VM-Fail,
3539 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3540 * software model to the pre-VMEntry host state. When EPT is disabled,
3541 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3542 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
3543 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3544 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
3545 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3546 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3547 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3548 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3549 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3550 * path would need to manually save/restore vmcs01.GUEST_CR3.
3551 */
3552 if (!enable_ept && !nested_early_check)
3553 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3554
3555 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3556
3557 prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3558
3559 if (from_vmentry) {
3560 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3561 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3562 return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3563 }
3564
3565 if (nested_vmx_check_vmentry_hw(vcpu)) {
3566 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3567 return NVMX_VMENTRY_VMFAIL;
3568 }
3569
3570 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3571 &entry_failure_code)) {
3572 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3573 vmcs12->exit_qualification = entry_failure_code;
3574 goto vmentry_fail_vmexit;
3575 }
3576 }
3577
3578 enter_guest_mode(vcpu);
3579
3580 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3581 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3582 vmcs12->exit_qualification = entry_failure_code;
3583 goto vmentry_fail_vmexit_guest_mode;
3584 }
3585
3586 if (from_vmentry) {
3587 failed_index = nested_vmx_load_msr(vcpu,
3588 vmcs12->vm_entry_msr_load_addr,
3589 vmcs12->vm_entry_msr_load_count);
3590 if (failed_index) {
3591 exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3592 vmcs12->exit_qualification = failed_index;
3593 goto vmentry_fail_vmexit_guest_mode;
3594 }
3595 } else {
3596 /*
3597 * The MMU is not initialized to point at the right entities yet and
3598 * "get pages" would need to read data from the guest (i.e. we will
3599 * need to perform gpa to hpa translation). Request a call
3600 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3601 * have already been set at vmentry time and should not be reset.
3602 */
3603 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3604 }
3605
3606 /*
3607 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3608 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3609 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3610 * unconditionally.
3611 */
3612 if (unlikely(evaluate_pending_interrupts))
3613 kvm_make_request(KVM_REQ_EVENT, vcpu);
3614
3615 /*
3616 * Do not start the preemption timer hrtimer until after we know
3617 * we are successful, so that only nested_vmx_vmexit needs to cancel
3618 * the timer.
3619 */
3620 vmx->nested.preemption_timer_expired = false;
3621 if (nested_cpu_has_preemption_timer(vmcs12)) {
3622 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3623 vmx_start_preemption_timer(vcpu, timer_value);
3624 }
3625
3626 /*
3627 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3628 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3629 * returned as far as L1 is concerned. It will only return (and set
3630 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3631 */
3632 return NVMX_VMENTRY_SUCCESS;
3633
3634 /*
3635 * A failed consistency check that leads to a VMExit during L1's
3636 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3637 * 26.7 "VM-entry failures during or after loading guest state".
3638 */
3639 vmentry_fail_vmexit_guest_mode:
3640 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3641 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3642 leave_guest_mode(vcpu);
3643
3644 vmentry_fail_vmexit:
3645 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3646
3647 if (!from_vmentry)
3648 return NVMX_VMENTRY_VMEXIT;
3649
3650 load_vmcs12_host_state(vcpu, vmcs12);
3651 vmcs12->vm_exit_reason = exit_reason.full;
3652 if (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx))
3653 vmx->nested.need_vmcs12_to_shadow_sync = true;
3654 return NVMX_VMENTRY_VMEXIT;
3655 }
3656
3657 /*
3658 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3659 * for running an L2 nested guest.
3660 */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)3661 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3662 {
3663 struct vmcs12 *vmcs12;
3664 enum nvmx_vmentry_status status;
3665 struct vcpu_vmx *vmx = to_vmx(vcpu);
3666 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3667 enum nested_evmptrld_status evmptrld_status;
3668
3669 if (!nested_vmx_check_permission(vcpu))
3670 return 1;
3671
3672 evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3673 if (evmptrld_status == EVMPTRLD_ERROR) {
3674 kvm_queue_exception(vcpu, UD_VECTOR);
3675 return 1;
3676 }
3677
3678 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
3679
3680 if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3681 return nested_vmx_failInvalid(vcpu);
3682
3683 if (CC(!nested_vmx_is_evmptr12_valid(vmx) &&
3684 vmx->nested.current_vmptr == INVALID_GPA))
3685 return nested_vmx_failInvalid(vcpu);
3686
3687 vmcs12 = get_vmcs12(vcpu);
3688
3689 /*
3690 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3691 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3692 * rather than RFLAGS.ZF, and no error number is stored to the
3693 * VM-instruction error field.
3694 */
3695 if (CC(vmcs12->hdr.shadow_vmcs))
3696 return nested_vmx_failInvalid(vcpu);
3697
3698 if (nested_vmx_is_evmptr12_valid(vmx)) {
3699 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
3700
3701 copy_enlightened_to_vmcs12(vmx, evmcs->hv_clean_fields);
3702 /* Enlightened VMCS doesn't have launch state */
3703 vmcs12->launch_state = !launch;
3704 } else if (enable_shadow_vmcs) {
3705 copy_shadow_to_vmcs12(vmx);
3706 }
3707
3708 /*
3709 * The nested entry process starts with enforcing various prerequisites
3710 * on vmcs12 as required by the Intel SDM, and act appropriately when
3711 * they fail: As the SDM explains, some conditions should cause the
3712 * instruction to fail, while others will cause the instruction to seem
3713 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3714 * To speed up the normal (success) code path, we should avoid checking
3715 * for misconfigurations which will anyway be caught by the processor
3716 * when using the merged vmcs02.
3717 */
3718 if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3719 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3720
3721 if (CC(vmcs12->launch_state == launch))
3722 return nested_vmx_fail(vcpu,
3723 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3724 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3725
3726 if (nested_vmx_check_controls(vcpu, vmcs12))
3727 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3728
3729 if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3730 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3731
3732 if (nested_vmx_check_host_state(vcpu, vmcs12))
3733 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3734
3735 /*
3736 * We're finally done with prerequisite checking, and can start with
3737 * the nested entry.
3738 */
3739 vmx->nested.nested_run_pending = 1;
3740 vmx->nested.has_preemption_timer_deadline = false;
3741 status = nested_vmx_enter_non_root_mode(vcpu, true);
3742 if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3743 goto vmentry_failed;
3744
3745 /* Emulate processing of posted interrupts on VM-Enter. */
3746 if (nested_cpu_has_posted_intr(vmcs12) &&
3747 kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3748 vmx->nested.pi_pending = true;
3749 kvm_make_request(KVM_REQ_EVENT, vcpu);
3750 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3751 }
3752
3753 /* Hide L1D cache contents from the nested guest. */
3754 vmx->vcpu.arch.l1tf_flush_l1d = true;
3755
3756 /*
3757 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3758 * also be used as part of restoring nVMX state for
3759 * snapshot restore (migration).
3760 *
3761 * In this flow, it is assumed that vmcs12 cache was
3762 * transferred as part of captured nVMX state and should
3763 * therefore not be read from guest memory (which may not
3764 * exist on destination host yet).
3765 */
3766 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3767
3768 switch (vmcs12->guest_activity_state) {
3769 case GUEST_ACTIVITY_HLT:
3770 /*
3771 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3772 * awakened by event injection or by an NMI-window VM-exit or
3773 * by an interrupt-window VM-exit, halt the vcpu.
3774 */
3775 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3776 !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3777 !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3778 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3779 vmx->nested.nested_run_pending = 0;
3780 return kvm_emulate_halt_noskip(vcpu);
3781 }
3782 break;
3783 case GUEST_ACTIVITY_WAIT_SIPI:
3784 vmx->nested.nested_run_pending = 0;
3785 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3786 break;
3787 default:
3788 break;
3789 }
3790
3791 return 1;
3792
3793 vmentry_failed:
3794 vmx->nested.nested_run_pending = 0;
3795 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3796 return 0;
3797 if (status == NVMX_VMENTRY_VMEXIT)
3798 return 1;
3799 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3800 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3801 }
3802
3803 /*
3804 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3805 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3806 * This function returns the new value we should put in vmcs12.guest_cr0.
3807 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3808 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3809 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3810 * didn't trap the bit, because if L1 did, so would L0).
3811 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3812 * been modified by L2, and L1 knows it. So just leave the old value of
3813 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3814 * isn't relevant, because if L0 traps this bit it can set it to anything.
3815 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3816 * changed these bits, and therefore they need to be updated, but L0
3817 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3818 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3819 */
3820 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3821 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3822 {
3823 return
3824 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3825 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3826 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3827 vcpu->arch.cr0_guest_owned_bits));
3828 }
3829
3830 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3831 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3832 {
3833 return
3834 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3835 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3836 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3837 vcpu->arch.cr4_guest_owned_bits));
3838 }
3839
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info)3840 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3841 struct vmcs12 *vmcs12,
3842 u32 vm_exit_reason, u32 exit_intr_info)
3843 {
3844 u32 idt_vectoring;
3845 unsigned int nr;
3846
3847 /*
3848 * Per the SDM, VM-Exits due to double and triple faults are never
3849 * considered to occur during event delivery, even if the double/triple
3850 * fault is the result of an escalating vectoring issue.
3851 *
3852 * Note, the SDM qualifies the double fault behavior with "The original
3853 * event results in a double-fault exception". It's unclear why the
3854 * qualification exists since exits due to double fault can occur only
3855 * while vectoring a different exception (injected events are never
3856 * subject to interception), i.e. there's _always_ an original event.
3857 *
3858 * The SDM also uses NMI as a confusing example for the "original event
3859 * causes the VM exit directly" clause. NMI isn't special in any way,
3860 * the same rule applies to all events that cause an exit directly.
3861 * NMI is an odd choice for the example because NMIs can only occur on
3862 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3863 */
3864 if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3865 ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3866 is_double_fault(exit_intr_info))) {
3867 vmcs12->idt_vectoring_info_field = 0;
3868 } else if (vcpu->arch.exception.injected) {
3869 nr = vcpu->arch.exception.vector;
3870 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3871
3872 if (kvm_exception_is_soft(nr)) {
3873 vmcs12->vm_exit_instruction_len =
3874 vcpu->arch.event_exit_inst_len;
3875 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3876 } else
3877 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3878
3879 if (vcpu->arch.exception.has_error_code) {
3880 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3881 vmcs12->idt_vectoring_error_code =
3882 vcpu->arch.exception.error_code;
3883 }
3884
3885 vmcs12->idt_vectoring_info_field = idt_vectoring;
3886 } else if (vcpu->arch.nmi_injected) {
3887 vmcs12->idt_vectoring_info_field =
3888 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3889 } else if (vcpu->arch.interrupt.injected) {
3890 nr = vcpu->arch.interrupt.nr;
3891 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3892
3893 if (vcpu->arch.interrupt.soft) {
3894 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3895 vmcs12->vm_entry_instruction_len =
3896 vcpu->arch.event_exit_inst_len;
3897 } else
3898 idt_vectoring |= INTR_TYPE_EXT_INTR;
3899
3900 vmcs12->idt_vectoring_info_field = idt_vectoring;
3901 } else {
3902 vmcs12->idt_vectoring_info_field = 0;
3903 }
3904 }
3905
3906
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)3907 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3908 {
3909 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3910 gfn_t gfn;
3911
3912 /*
3913 * Don't need to mark the APIC access page dirty; it is never
3914 * written to by the CPU during APIC virtualization.
3915 */
3916
3917 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3918 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3919 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3920 }
3921
3922 if (nested_cpu_has_posted_intr(vmcs12)) {
3923 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3924 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3925 }
3926 }
3927
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)3928 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3929 {
3930 struct vcpu_vmx *vmx = to_vmx(vcpu);
3931 int max_irr;
3932 void *vapic_page;
3933 u16 status;
3934
3935 if (!vmx->nested.pi_pending)
3936 return 0;
3937
3938 if (!vmx->nested.pi_desc)
3939 goto mmio_needed;
3940
3941 vmx->nested.pi_pending = false;
3942
3943 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3944 return 0;
3945
3946 max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
3947 if (max_irr > 0) {
3948 vapic_page = vmx->nested.virtual_apic_map.hva;
3949 if (!vapic_page)
3950 goto mmio_needed;
3951
3952 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3953 vapic_page, &max_irr);
3954 status = vmcs_read16(GUEST_INTR_STATUS);
3955 if ((u8)max_irr > ((u8)status & 0xff)) {
3956 status &= ~0xff;
3957 status |= (u8)max_irr;
3958 vmcs_write16(GUEST_INTR_STATUS, status);
3959 }
3960 }
3961
3962 nested_mark_vmcs12_pages_dirty(vcpu);
3963 return 0;
3964
3965 mmio_needed:
3966 kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3967 return -ENXIO;
3968 }
3969
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu)3970 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
3971 {
3972 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
3973 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
3974 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3975 unsigned long exit_qual;
3976
3977 if (ex->has_payload) {
3978 exit_qual = ex->payload;
3979 } else if (ex->vector == PF_VECTOR) {
3980 exit_qual = vcpu->arch.cr2;
3981 } else if (ex->vector == DB_VECTOR) {
3982 exit_qual = vcpu->arch.dr6;
3983 exit_qual &= ~DR6_BT;
3984 exit_qual ^= DR6_ACTIVE_LOW;
3985 } else {
3986 exit_qual = 0;
3987 }
3988
3989 /*
3990 * Unlike AMD's Paged Real Mode, which reports an error code on #PF
3991 * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
3992 * "has error code" flags on VM-Exit if the CPU is in Real Mode.
3993 */
3994 if (ex->has_error_code && is_protmode(vcpu)) {
3995 /*
3996 * Intel CPUs do not generate error codes with bits 31:16 set,
3997 * and more importantly VMX disallows setting bits 31:16 in the
3998 * injected error code for VM-Entry. Drop the bits to mimic
3999 * hardware and avoid inducing failure on nested VM-Entry if L1
4000 * chooses to inject the exception back to L2. AMD CPUs _do_
4001 * generate "full" 32-bit error codes, so KVM allows userspace
4002 * to inject exception error codes with bits 31:16 set.
4003 */
4004 vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
4005 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
4006 }
4007
4008 if (kvm_exception_is_soft(ex->vector))
4009 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
4010 else
4011 intr_info |= INTR_TYPE_HARD_EXCEPTION;
4012
4013 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
4014 vmx_get_nmi_mask(vcpu))
4015 intr_info |= INTR_INFO_UNBLOCK_NMI;
4016
4017 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
4018 }
4019
4020 /*
4021 * Returns true if a debug trap is (likely) pending delivery. Infer the class
4022 * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
4023 * Using the payload is flawed because code breakpoints (fault-like) and data
4024 * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
4025 * this will return false positives if a to-be-injected code breakpoint #DB is
4026 * pending (from KVM's perspective, but not "pending" across an instruction
4027 * boundary). ICEBP, a.k.a. INT1, is also not reflected here even though it
4028 * too is trap-like.
4029 *
4030 * KVM "works" despite these flaws as ICEBP isn't currently supported by the
4031 * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
4032 * #DB has already happened), and MTF isn't marked pending on code breakpoints
4033 * from the emulator (because such #DBs are fault-like and thus don't trigger
4034 * actions that fire on instruction retire).
4035 */
vmx_get_pending_dbg_trap(struct kvm_queued_exception * ex)4036 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
4037 {
4038 if (!ex->pending || ex->vector != DB_VECTOR)
4039 return 0;
4040
4041 /* General Detect #DBs are always fault-like. */
4042 return ex->payload & ~DR6_BD;
4043 }
4044
4045 /*
4046 * Returns true if there's a pending #DB exception that is lower priority than
4047 * a pending Monitor Trap Flag VM-Exit. TSS T-flag #DBs are not emulated by
4048 * KVM, but could theoretically be injected by userspace. Note, this code is
4049 * imperfect, see above.
4050 */
vmx_is_low_priority_db_trap(struct kvm_queued_exception * ex)4051 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
4052 {
4053 return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
4054 }
4055
4056 /*
4057 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
4058 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
4059 * represents these debug traps with a payload that is said to be compatible
4060 * with the 'pending debug exceptions' field, write the payload to the VMCS
4061 * field if a VM-exit is delivered before the debug trap.
4062 */
nested_vmx_update_pending_dbg(struct kvm_vcpu * vcpu)4063 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
4064 {
4065 unsigned long pending_dbg;
4066
4067 pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
4068 if (pending_dbg)
4069 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
4070 }
4071
nested_vmx_preemption_timer_pending(struct kvm_vcpu * vcpu)4072 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
4073 {
4074 return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
4075 to_vmx(vcpu)->nested.preemption_timer_expired;
4076 }
4077
vmx_has_nested_events(struct kvm_vcpu * vcpu,bool for_injection)4078 static bool vmx_has_nested_events(struct kvm_vcpu *vcpu, bool for_injection)
4079 {
4080 struct vcpu_vmx *vmx = to_vmx(vcpu);
4081 void *vapic = vmx->nested.virtual_apic_map.hva;
4082 int max_irr, vppr;
4083
4084 if (nested_vmx_preemption_timer_pending(vcpu) ||
4085 vmx->nested.mtf_pending)
4086 return true;
4087
4088 /*
4089 * Virtual Interrupt Delivery doesn't require manual injection. Either
4090 * the interrupt is already in GUEST_RVI and will be recognized by CPU
4091 * at VM-Entry, or there is a KVM_REQ_EVENT pending and KVM will move
4092 * the interrupt from the PIR to RVI prior to entering the guest.
4093 */
4094 if (for_injection)
4095 return false;
4096
4097 if (!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4098 __vmx_interrupt_blocked(vcpu))
4099 return false;
4100
4101 if (!vapic)
4102 return false;
4103
4104 vppr = *((u32 *)(vapic + APIC_PROCPRI));
4105
4106 max_irr = vmx_get_rvi();
4107 if ((max_irr & 0xf0) > (vppr & 0xf0))
4108 return true;
4109
4110 if (vmx->nested.pi_pending && vmx->nested.pi_desc &&
4111 pi_test_on(vmx->nested.pi_desc)) {
4112 max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
4113 if (max_irr > 0 && (max_irr & 0xf0) > (vppr & 0xf0))
4114 return true;
4115 }
4116
4117 return false;
4118 }
4119
4120 /*
4121 * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
4122 * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
4123 * and less minor edits to splice in the priority of VMX Non-Root specific
4124 * events, e.g. MTF and NMI/INTR-window exiting.
4125 *
4126 * 1 Hardware Reset and Machine Checks
4127 * - RESET
4128 * - Machine Check
4129 *
4130 * 2 Trap on Task Switch
4131 * - T flag in TSS is set (on task switch)
4132 *
4133 * 3 External Hardware Interventions
4134 * - FLUSH
4135 * - STOPCLK
4136 * - SMI
4137 * - INIT
4138 *
4139 * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
4140 *
4141 * 4 Traps on Previous Instruction
4142 * - Breakpoints
4143 * - Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
4144 * breakpoint, or #DB due to a split-lock access)
4145 *
4146 * 4.3 VMX-preemption timer expired VM-exit
4147 *
4148 * 4.6 NMI-window exiting VM-exit[2]
4149 *
4150 * 5 Nonmaskable Interrupts (NMI)
4151 *
4152 * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4153 *
4154 * 6 Maskable Hardware Interrupts
4155 *
4156 * 7 Code Breakpoint Fault
4157 *
4158 * 8 Faults from Fetching Next Instruction
4159 * - Code-Segment Limit Violation
4160 * - Code Page Fault
4161 * - Control protection exception (missing ENDBRANCH at target of indirect
4162 * call or jump)
4163 *
4164 * 9 Faults from Decoding Next Instruction
4165 * - Instruction length > 15 bytes
4166 * - Invalid Opcode
4167 * - Coprocessor Not Available
4168 *
4169 *10 Faults on Executing Instruction
4170 * - Overflow
4171 * - Bound error
4172 * - Invalid TSS
4173 * - Segment Not Present
4174 * - Stack fault
4175 * - General Protection
4176 * - Data Page Fault
4177 * - Alignment Check
4178 * - x86 FPU Floating-point exception
4179 * - SIMD floating-point exception
4180 * - Virtualization exception
4181 * - Control protection exception
4182 *
4183 * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4184 * INIT signals, and higher priority events take priority over MTF VM exits.
4185 * MTF VM exits take priority over debug-trap exceptions and lower priority
4186 * events.
4187 *
4188 * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4189 * caused by the VMX-preemption timer. VM exits caused by the VMX-preemption
4190 * timer take priority over VM exits caused by the "NMI-window exiting"
4191 * VM-execution control and lower priority events.
4192 *
4193 * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4194 * caused by "NMI-window exiting". VM exits caused by this control take
4195 * priority over non-maskable interrupts (NMIs) and lower priority events.
4196 *
4197 * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4198 * the 1-setting of the "interrupt-window exiting" VM-execution control. Thus,
4199 * non-maskable interrupts (NMIs) and higher priority events take priority over
4200 * delivery of a virtual interrupt; delivery of a virtual interrupt takes
4201 * priority over external interrupts and lower priority events.
4202 */
vmx_check_nested_events(struct kvm_vcpu * vcpu)4203 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4204 {
4205 struct kvm_lapic *apic = vcpu->arch.apic;
4206 struct vcpu_vmx *vmx = to_vmx(vcpu);
4207 /*
4208 * Only a pending nested run blocks a pending exception. If there is a
4209 * previously injected event, the pending exception occurred while said
4210 * event was being delivered and thus needs to be handled.
4211 */
4212 bool block_nested_exceptions = vmx->nested.nested_run_pending;
4213 /*
4214 * New events (not exceptions) are only recognized at instruction
4215 * boundaries. If an event needs reinjection, then KVM is handling a
4216 * VM-Exit that occurred _during_ instruction execution; new events are
4217 * blocked until the instruction completes.
4218 */
4219 bool block_nested_events = block_nested_exceptions ||
4220 kvm_event_needs_reinjection(vcpu);
4221
4222 if (lapic_in_kernel(vcpu) &&
4223 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4224 if (block_nested_events)
4225 return -EBUSY;
4226 nested_vmx_update_pending_dbg(vcpu);
4227 clear_bit(KVM_APIC_INIT, &apic->pending_events);
4228 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4229 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4230
4231 /* MTF is discarded if the vCPU is in WFS. */
4232 vmx->nested.mtf_pending = false;
4233 return 0;
4234 }
4235
4236 if (lapic_in_kernel(vcpu) &&
4237 test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4238 if (block_nested_events)
4239 return -EBUSY;
4240
4241 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4242 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4243 nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4244 apic->sipi_vector & 0xFFUL);
4245 return 0;
4246 }
4247 /* Fallthrough, the SIPI is completely ignored. */
4248 }
4249
4250 /*
4251 * Process exceptions that are higher priority than Monitor Trap Flag:
4252 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4253 * could theoretically come in from userspace), and ICEBP (INT1).
4254 *
4255 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4256 * for TSS T flag #DBs). KVM also doesn't save/restore pending MTF
4257 * across SMI/RSM as it should; that needs to be addressed in order to
4258 * prioritize SMI over MTF and trap-like #DBs.
4259 */
4260 if (vcpu->arch.exception_vmexit.pending &&
4261 !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4262 if (block_nested_exceptions)
4263 return -EBUSY;
4264
4265 nested_vmx_inject_exception_vmexit(vcpu);
4266 return 0;
4267 }
4268
4269 if (vcpu->arch.exception.pending &&
4270 !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4271 if (block_nested_exceptions)
4272 return -EBUSY;
4273 goto no_vmexit;
4274 }
4275
4276 if (vmx->nested.mtf_pending) {
4277 if (block_nested_events)
4278 return -EBUSY;
4279 nested_vmx_update_pending_dbg(vcpu);
4280 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4281 return 0;
4282 }
4283
4284 if (vcpu->arch.exception_vmexit.pending) {
4285 if (block_nested_exceptions)
4286 return -EBUSY;
4287
4288 nested_vmx_inject_exception_vmexit(vcpu);
4289 return 0;
4290 }
4291
4292 if (vcpu->arch.exception.pending) {
4293 if (block_nested_exceptions)
4294 return -EBUSY;
4295 goto no_vmexit;
4296 }
4297
4298 if (nested_vmx_preemption_timer_pending(vcpu)) {
4299 if (block_nested_events)
4300 return -EBUSY;
4301 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4302 return 0;
4303 }
4304
4305 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4306 if (block_nested_events)
4307 return -EBUSY;
4308 goto no_vmexit;
4309 }
4310
4311 if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4312 if (block_nested_events)
4313 return -EBUSY;
4314 if (!nested_exit_on_nmi(vcpu))
4315 goto no_vmexit;
4316
4317 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4318 NMI_VECTOR | INTR_TYPE_NMI_INTR |
4319 INTR_INFO_VALID_MASK, 0);
4320 /*
4321 * The NMI-triggered VM exit counts as injection:
4322 * clear this one and block further NMIs.
4323 */
4324 vcpu->arch.nmi_pending = 0;
4325 vmx_set_nmi_mask(vcpu, true);
4326 return 0;
4327 }
4328
4329 if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4330 int irq;
4331
4332 if (block_nested_events)
4333 return -EBUSY;
4334 if (!nested_exit_on_intr(vcpu))
4335 goto no_vmexit;
4336
4337 if (!nested_exit_intr_ack_set(vcpu)) {
4338 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4339 return 0;
4340 }
4341
4342 irq = kvm_cpu_get_extint(vcpu);
4343 if (irq != -1) {
4344 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4345 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
4346 return 0;
4347 }
4348
4349 irq = kvm_apic_has_interrupt(vcpu);
4350 if (WARN_ON_ONCE(irq < 0))
4351 goto no_vmexit;
4352
4353 /*
4354 * If the IRQ is L2's PI notification vector, process posted
4355 * interrupts for L2 instead of injecting VM-Exit, as the
4356 * detection/morphing architecturally occurs when the IRQ is
4357 * delivered to the CPU. Note, only interrupts that are routed
4358 * through the local APIC trigger posted interrupt processing,
4359 * and enabling posted interrupts requires ACK-on-exit.
4360 */
4361 if (irq == vmx->nested.posted_intr_nv) {
4362 vmx->nested.pi_pending = true;
4363 kvm_apic_clear_irr(vcpu, irq);
4364 goto no_vmexit;
4365 }
4366
4367 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4368 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
4369
4370 /*
4371 * ACK the interrupt _after_ emulating VM-Exit, as the IRQ must
4372 * be marked as in-service in vmcs01.GUEST_INTERRUPT_STATUS.SVI
4373 * if APICv is active.
4374 */
4375 kvm_apic_ack_interrupt(vcpu, irq);
4376 return 0;
4377 }
4378
4379 no_vmexit:
4380 return vmx_complete_nested_posted_interrupt(vcpu);
4381 }
4382
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)4383 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4384 {
4385 ktime_t remaining =
4386 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4387 u64 value;
4388
4389 if (ktime_to_ns(remaining) <= 0)
4390 return 0;
4391
4392 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4393 do_div(value, 1000000);
4394 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4395 }
4396
is_vmcs12_ext_field(unsigned long field)4397 static bool is_vmcs12_ext_field(unsigned long field)
4398 {
4399 switch (field) {
4400 case GUEST_ES_SELECTOR:
4401 case GUEST_CS_SELECTOR:
4402 case GUEST_SS_SELECTOR:
4403 case GUEST_DS_SELECTOR:
4404 case GUEST_FS_SELECTOR:
4405 case GUEST_GS_SELECTOR:
4406 case GUEST_LDTR_SELECTOR:
4407 case GUEST_TR_SELECTOR:
4408 case GUEST_ES_LIMIT:
4409 case GUEST_CS_LIMIT:
4410 case GUEST_SS_LIMIT:
4411 case GUEST_DS_LIMIT:
4412 case GUEST_FS_LIMIT:
4413 case GUEST_GS_LIMIT:
4414 case GUEST_LDTR_LIMIT:
4415 case GUEST_TR_LIMIT:
4416 case GUEST_GDTR_LIMIT:
4417 case GUEST_IDTR_LIMIT:
4418 case GUEST_ES_AR_BYTES:
4419 case GUEST_DS_AR_BYTES:
4420 case GUEST_FS_AR_BYTES:
4421 case GUEST_GS_AR_BYTES:
4422 case GUEST_LDTR_AR_BYTES:
4423 case GUEST_TR_AR_BYTES:
4424 case GUEST_ES_BASE:
4425 case GUEST_CS_BASE:
4426 case GUEST_SS_BASE:
4427 case GUEST_DS_BASE:
4428 case GUEST_FS_BASE:
4429 case GUEST_GS_BASE:
4430 case GUEST_LDTR_BASE:
4431 case GUEST_TR_BASE:
4432 case GUEST_GDTR_BASE:
4433 case GUEST_IDTR_BASE:
4434 case GUEST_PENDING_DBG_EXCEPTIONS:
4435 case GUEST_BNDCFGS:
4436 return true;
4437 default:
4438 break;
4439 }
4440
4441 return false;
4442 }
4443
sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4444 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4445 struct vmcs12 *vmcs12)
4446 {
4447 struct vcpu_vmx *vmx = to_vmx(vcpu);
4448
4449 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4450 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4451 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4452 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4453 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4454 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4455 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4456 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4457 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4458 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4459 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4460 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4461 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4462 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4463 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4464 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4465 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4466 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4467 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4468 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4469 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4470 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4471 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4472 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4473 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4474 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4475 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4476 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4477 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4478 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4479 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4480 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4481 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4482 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4483 vmcs12->guest_pending_dbg_exceptions =
4484 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4485
4486 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4487 }
4488
copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4489 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4490 struct vmcs12 *vmcs12)
4491 {
4492 struct vcpu_vmx *vmx = to_vmx(vcpu);
4493 int cpu;
4494
4495 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4496 return;
4497
4498
4499 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4500
4501 cpu = get_cpu();
4502 vmx->loaded_vmcs = &vmx->nested.vmcs02;
4503 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4504
4505 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4506
4507 vmx->loaded_vmcs = &vmx->vmcs01;
4508 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4509 put_cpu();
4510 }
4511
4512 /*
4513 * Update the guest state fields of vmcs12 to reflect changes that
4514 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4515 * VM-entry controls is also updated, since this is really a guest
4516 * state bit.)
4517 */
sync_vmcs02_to_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4518 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4519 {
4520 struct vcpu_vmx *vmx = to_vmx(vcpu);
4521
4522 if (nested_vmx_is_evmptr12_valid(vmx))
4523 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4524
4525 vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4526 !nested_vmx_is_evmptr12_valid(vmx);
4527
4528 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4529 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4530
4531 vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4532 vmcs12->guest_rip = kvm_rip_read(vcpu);
4533 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4534
4535 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4536 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4537
4538 vmcs12->guest_interruptibility_info =
4539 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4540
4541 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4542 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4543 else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4544 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4545 else
4546 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4547
4548 if (nested_cpu_has_preemption_timer(vmcs12) &&
4549 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4550 !vmx->nested.nested_run_pending)
4551 vmcs12->vmx_preemption_timer_value =
4552 vmx_get_preemption_timer_value(vcpu);
4553
4554 /*
4555 * In some cases (usually, nested EPT), L2 is allowed to change its
4556 * own CR3 without exiting. If it has changed it, we must keep it.
4557 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4558 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4559 *
4560 * Additionally, restore L2's PDPTR to vmcs12.
4561 */
4562 if (enable_ept) {
4563 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4564 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4565 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4566 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4567 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4568 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4569 }
4570 }
4571
4572 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4573
4574 if (nested_cpu_has_vid(vmcs12))
4575 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4576
4577 vmcs12->vm_entry_controls =
4578 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4579 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4580
4581 /*
4582 * Note! Save DR7, but intentionally don't grab DEBUGCTL from vmcs02.
4583 * Writes to DEBUGCTL that aren't intercepted by L1 are immediately
4584 * propagated to vmcs12 (see vmx_set_msr()), as the value loaded into
4585 * vmcs02 doesn't strictly track vmcs12.
4586 */
4587 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4588 vmcs12->guest_dr7 = vcpu->arch.dr7;
4589
4590 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4591 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4592 }
4593
4594 /*
4595 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4596 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4597 * and this function updates it to reflect the changes to the guest state while
4598 * L2 was running (and perhaps made some exits which were handled directly by L0
4599 * without going back to L1), and to reflect the exit reason.
4600 * Note that we do not have to copy here all VMCS fields, just those that
4601 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4602 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4603 * which already writes to vmcs12 directly.
4604 */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4605 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4606 u32 vm_exit_reason, u32 exit_intr_info,
4607 unsigned long exit_qualification)
4608 {
4609 /* update exit information fields: */
4610 vmcs12->vm_exit_reason = vm_exit_reason;
4611 if (to_vmx(vcpu)->exit_reason.enclave_mode)
4612 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4613 vmcs12->exit_qualification = exit_qualification;
4614
4615 /*
4616 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4617 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4618 * exit info fields are unmodified.
4619 */
4620 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4621 vmcs12->launch_state = 1;
4622
4623 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4624 * instead of reading the real value. */
4625 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4626
4627 /*
4628 * Transfer the event that L0 or L1 may wanted to inject into
4629 * L2 to IDT_VECTORING_INFO_FIELD.
4630 */
4631 vmcs12_save_pending_event(vcpu, vmcs12,
4632 vm_exit_reason, exit_intr_info);
4633
4634 vmcs12->vm_exit_intr_info = exit_intr_info;
4635 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4636 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4637
4638 /*
4639 * According to spec, there's no need to store the guest's
4640 * MSRs if the exit is due to a VM-entry failure that occurs
4641 * during or after loading the guest state. Since this exit
4642 * does not fall in that category, we need to save the MSRs.
4643 */
4644 if (nested_vmx_store_msr(vcpu,
4645 vmcs12->vm_exit_msr_store_addr,
4646 vmcs12->vm_exit_msr_store_count))
4647 nested_vmx_abort(vcpu,
4648 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4649 }
4650 }
4651
4652 /*
4653 * A part of what we need to when the nested L2 guest exits and we want to
4654 * run its L1 parent, is to reset L1's guest state to the host state specified
4655 * in vmcs12.
4656 * This function is to be called not only on normal nested exit, but also on
4657 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4658 * Failures During or After Loading Guest State").
4659 * This function should be called when the active VMCS is L1's (vmcs01).
4660 */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4661 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4662 struct vmcs12 *vmcs12)
4663 {
4664 enum vm_entry_failure_code ignored;
4665 struct kvm_segment seg;
4666
4667 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4668 vcpu->arch.efer = vmcs12->host_ia32_efer;
4669 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4670 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4671 else
4672 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4673 vmx_set_efer(vcpu, vcpu->arch.efer);
4674
4675 kvm_rsp_write(vcpu, vmcs12->host_rsp);
4676 kvm_rip_write(vcpu, vmcs12->host_rip);
4677 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4678 vmx_set_interrupt_shadow(vcpu, 0);
4679
4680 /*
4681 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4682 * actually changed, because vmx_set_cr0 refers to efer set above.
4683 *
4684 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4685 * (KVM doesn't change it);
4686 */
4687 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4688 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4689
4690 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4691 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4692 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4693
4694 nested_ept_uninit_mmu_context(vcpu);
4695
4696 /*
4697 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4698 * couldn't have changed.
4699 */
4700 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4701 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4702
4703 nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4704
4705 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4706 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4707 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4708 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4709 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4710 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4711 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4712
4713 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
4714 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4715 vmcs_write64(GUEST_BNDCFGS, 0);
4716
4717 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4718 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4719 vcpu->arch.pat = vmcs12->host_ia32_pat;
4720 }
4721 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4722 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4723 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4724 vmcs12->host_ia32_perf_global_ctrl));
4725
4726 /* Set L1 segment info according to Intel SDM
4727 27.5.2 Loading Host Segment and Descriptor-Table Registers */
4728 seg = (struct kvm_segment) {
4729 .base = 0,
4730 .limit = 0xFFFFFFFF,
4731 .selector = vmcs12->host_cs_selector,
4732 .type = 11,
4733 .present = 1,
4734 .s = 1,
4735 .g = 1
4736 };
4737 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4738 seg.l = 1;
4739 else
4740 seg.db = 1;
4741 __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4742 seg = (struct kvm_segment) {
4743 .base = 0,
4744 .limit = 0xFFFFFFFF,
4745 .type = 3,
4746 .present = 1,
4747 .s = 1,
4748 .db = 1,
4749 .g = 1
4750 };
4751 seg.selector = vmcs12->host_ds_selector;
4752 __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4753 seg.selector = vmcs12->host_es_selector;
4754 __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4755 seg.selector = vmcs12->host_ss_selector;
4756 __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4757 seg.selector = vmcs12->host_fs_selector;
4758 seg.base = vmcs12->host_fs_base;
4759 __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4760 seg.selector = vmcs12->host_gs_selector;
4761 seg.base = vmcs12->host_gs_base;
4762 __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4763 seg = (struct kvm_segment) {
4764 .base = vmcs12->host_tr_base,
4765 .limit = 0x67,
4766 .selector = vmcs12->host_tr_selector,
4767 .type = 11,
4768 .present = 1
4769 };
4770 __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4771
4772 memset(&seg, 0, sizeof(seg));
4773 seg.unusable = 1;
4774 __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4775
4776 kvm_set_dr(vcpu, 7, 0x400);
4777 vmx_guest_debugctl_write(vcpu, 0);
4778
4779 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4780 vmcs12->vm_exit_msr_load_count))
4781 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4782
4783 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4784 }
4785
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)4786 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4787 {
4788 struct vmx_uret_msr *efer_msr;
4789 unsigned int i;
4790
4791 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4792 return vmcs_read64(GUEST_IA32_EFER);
4793
4794 if (cpu_has_load_ia32_efer())
4795 return kvm_host.efer;
4796
4797 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4798 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4799 return vmx->msr_autoload.guest.val[i].value;
4800 }
4801
4802 efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4803 if (efer_msr)
4804 return efer_msr->data;
4805
4806 return kvm_host.efer;
4807 }
4808
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)4809 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4810 {
4811 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4812 struct vcpu_vmx *vmx = to_vmx(vcpu);
4813 struct vmx_msr_entry g, h;
4814 gpa_t gpa;
4815 u32 i, j;
4816
4817 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4818
4819 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4820 /*
4821 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4822 * as vmcs01.GUEST_DR7 contains a userspace defined value
4823 * and vcpu->arch.dr7 is not squirreled away before the
4824 * nested VMENTER (not worth adding a variable in nested_vmx).
4825 */
4826 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4827 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4828 else
4829 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4830 }
4831
4832 /* Reload DEBUGCTL to ensure vmcs01 has a fresh FREEZE_IN_SMM value. */
4833 vmx_reload_guest_debugctl(vcpu);
4834
4835 /*
4836 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4837 * handle a variety of side effects to KVM's software model.
4838 */
4839 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4840
4841 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4842 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4843
4844 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4845 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4846
4847 nested_ept_uninit_mmu_context(vcpu);
4848 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4849 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4850
4851 /*
4852 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4853 * from vmcs01 (if necessary). The PDPTRs are not loaded on
4854 * VMFail, like everything else we just need to ensure our
4855 * software model is up-to-date.
4856 */
4857 if (enable_ept && is_pae_paging(vcpu))
4858 ept_save_pdptrs(vcpu);
4859
4860 kvm_mmu_reset_context(vcpu);
4861
4862 /*
4863 * This nasty bit of open coding is a compromise between blindly
4864 * loading L1's MSRs using the exit load lists (incorrect emulation
4865 * of VMFail), leaving the nested VM's MSRs in the software model
4866 * (incorrect behavior) and snapshotting the modified MSRs (too
4867 * expensive since the lists are unbound by hardware). For each
4868 * MSR that was (prematurely) loaded from the nested VMEntry load
4869 * list, reload it from the exit load list if it exists and differs
4870 * from the guest value. The intent is to stuff host state as
4871 * silently as possible, not to fully process the exit load list.
4872 */
4873 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4874 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4875 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4876 pr_debug_ratelimited(
4877 "%s read MSR index failed (%u, 0x%08llx)\n",
4878 __func__, i, gpa);
4879 goto vmabort;
4880 }
4881
4882 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4883 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4884 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4885 pr_debug_ratelimited(
4886 "%s read MSR failed (%u, 0x%08llx)\n",
4887 __func__, j, gpa);
4888 goto vmabort;
4889 }
4890 if (h.index != g.index)
4891 continue;
4892 if (h.value == g.value)
4893 break;
4894
4895 if (nested_vmx_load_msr_check(vcpu, &h)) {
4896 pr_debug_ratelimited(
4897 "%s check failed (%u, 0x%x, 0x%x)\n",
4898 __func__, j, h.index, h.reserved);
4899 goto vmabort;
4900 }
4901
4902 if (kvm_set_msr_with_filter(vcpu, h.index, h.value)) {
4903 pr_debug_ratelimited(
4904 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4905 __func__, j, h.index, h.value);
4906 goto vmabort;
4907 }
4908 }
4909 }
4910
4911 return;
4912
4913 vmabort:
4914 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4915 }
4916
4917 /*
4918 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4919 * and modify vmcs12 to make it see what it would expect to see there if
4920 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4921 */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4922 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4923 u32 exit_intr_info, unsigned long exit_qualification)
4924 {
4925 struct vcpu_vmx *vmx = to_vmx(vcpu);
4926 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4927
4928 /* Pending MTF traps are discarded on VM-Exit. */
4929 vmx->nested.mtf_pending = false;
4930
4931 /* trying to cancel vmlaunch/vmresume is a bug */
4932 WARN_ON_ONCE(vmx->nested.nested_run_pending);
4933
4934 #ifdef CONFIG_KVM_HYPERV
4935 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4936 /*
4937 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4938 * Enlightened VMCS after migration and we still need to
4939 * do that when something is forcing L2->L1 exit prior to
4940 * the first L2 run.
4941 */
4942 (void)nested_get_evmcs_page(vcpu);
4943 }
4944 #endif
4945
4946 /* Service pending TLB flush requests for L2 before switching to L1. */
4947 kvm_service_local_tlb_flush_requests(vcpu);
4948
4949 /*
4950 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4951 * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are
4952 * up-to-date before switching to L1.
4953 */
4954 if (enable_ept && is_pae_paging(vcpu))
4955 vmx_ept_load_pdptrs(vcpu);
4956
4957 leave_guest_mode(vcpu);
4958
4959 if (nested_cpu_has_preemption_timer(vmcs12))
4960 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4961
4962 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4963 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4964 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4965 vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4966 }
4967
4968 if (likely(!vmx->fail)) {
4969 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4970
4971 if (vm_exit_reason != -1)
4972 prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4973 exit_intr_info, exit_qualification);
4974
4975 /*
4976 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4977 * also be used to capture vmcs12 cache as part of
4978 * capturing nVMX state for snapshot (migration).
4979 *
4980 * Otherwise, this flush will dirty guest memory at a
4981 * point it is already assumed by user-space to be
4982 * immutable.
4983 */
4984 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4985 } else {
4986 /*
4987 * The only expected VM-instruction error is "VM entry with
4988 * invalid control field(s)." Anything else indicates a
4989 * problem with L0. And we should never get here with a
4990 * VMFail of any type if early consistency checks are enabled.
4991 */
4992 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4993 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4994 WARN_ON_ONCE(nested_early_check);
4995 }
4996
4997 /*
4998 * Drop events/exceptions that were queued for re-injection to L2
4999 * (picked up via vmx_complete_interrupts()), as well as exceptions
5000 * that were pending for L2. Note, this must NOT be hoisted above
5001 * prepare_vmcs12(), events/exceptions queued for re-injection need to
5002 * be captured in vmcs12 (see vmcs12_save_pending_event()).
5003 */
5004 vcpu->arch.nmi_injected = false;
5005 kvm_clear_exception_queue(vcpu);
5006 kvm_clear_interrupt_queue(vcpu);
5007
5008 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
5009
5010 /*
5011 * If IBRS is advertised to the vCPU, KVM must flush the indirect
5012 * branch predictors when transitioning from L2 to L1, as L1 expects
5013 * hardware (KVM in this case) to provide separate predictor modes.
5014 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
5015 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
5016 * separate modes for L2 vs L1.
5017 */
5018 if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
5019 indirect_branch_prediction_barrier();
5020
5021 /* Update any VMCS fields that might have changed while L2 ran */
5022 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
5023 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
5024 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
5025 if (kvm_caps.has_tsc_control)
5026 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
5027
5028 if (vmx->nested.l1_tpr_threshold != -1)
5029 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
5030
5031 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
5032 vmx->nested.change_vmcs01_virtual_apic_mode = false;
5033 vmx_set_virtual_apic_mode(vcpu);
5034 }
5035
5036 if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
5037 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
5038 vmx_update_cpu_dirty_logging(vcpu);
5039 }
5040
5041 /* Unpin physical memory we referred to in vmcs02 */
5042 kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
5043 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
5044 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
5045 vmx->nested.pi_desc = NULL;
5046
5047 if (vmx->nested.reload_vmcs01_apic_access_page) {
5048 vmx->nested.reload_vmcs01_apic_access_page = false;
5049 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5050 }
5051
5052 if (vmx->nested.update_vmcs01_apicv_status) {
5053 vmx->nested.update_vmcs01_apicv_status = false;
5054 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
5055 }
5056
5057 if (vmx->nested.update_vmcs01_hwapic_isr) {
5058 vmx->nested.update_vmcs01_hwapic_isr = false;
5059 kvm_apic_update_hwapic_isr(vcpu);
5060 }
5061
5062 if ((vm_exit_reason != -1) &&
5063 (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx)))
5064 vmx->nested.need_vmcs12_to_shadow_sync = true;
5065
5066 /* in case we halted in L2 */
5067 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5068
5069 if (likely(!vmx->fail)) {
5070 if (vm_exit_reason != -1)
5071 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
5072 vmcs12->exit_qualification,
5073 vmcs12->idt_vectoring_info_field,
5074 vmcs12->vm_exit_intr_info,
5075 vmcs12->vm_exit_intr_error_code,
5076 KVM_ISA_VMX);
5077
5078 load_vmcs12_host_state(vcpu, vmcs12);
5079
5080 return;
5081 }
5082
5083 /*
5084 * After an early L2 VM-entry failure, we're now back
5085 * in L1 which thinks it just finished a VMLAUNCH or
5086 * VMRESUME instruction, so we need to set the failure
5087 * flag and the VM-instruction error field of the VMCS
5088 * accordingly, and skip the emulated instruction.
5089 */
5090 (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5091
5092 /*
5093 * Restore L1's host state to KVM's software model. We're here
5094 * because a consistency check was caught by hardware, which
5095 * means some amount of guest state has been propagated to KVM's
5096 * model and needs to be unwound to the host's state.
5097 */
5098 nested_vmx_restore_host_state(vcpu);
5099
5100 vmx->fail = 0;
5101 }
5102
nested_vmx_triple_fault(struct kvm_vcpu * vcpu)5103 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
5104 {
5105 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5106 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
5107 }
5108
5109 /*
5110 * Decode the memory-address operand of a vmx instruction, as recorded on an
5111 * exit caused by such an instruction (run by a guest hypervisor).
5112 * On success, returns 0. When the operand is invalid, returns 1 and throws
5113 * #UD, #GP, or #SS.
5114 */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,int len,gva_t * ret)5115 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
5116 u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
5117 {
5118 gva_t off;
5119 bool exn;
5120 struct kvm_segment s;
5121
5122 /*
5123 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5124 * Execution", on an exit, vmx_instruction_info holds most of the
5125 * addressing components of the operand. Only the displacement part
5126 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5127 * For how an actual address is calculated from all these components,
5128 * refer to Vol. 1, "Operand Addressing".
5129 */
5130 int scaling = vmx_instruction_info & 3;
5131 int addr_size = (vmx_instruction_info >> 7) & 7;
5132 bool is_reg = vmx_instruction_info & (1u << 10);
5133 int seg_reg = (vmx_instruction_info >> 15) & 7;
5134 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5135 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5136 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5137 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5138
5139 if (is_reg) {
5140 kvm_queue_exception(vcpu, UD_VECTOR);
5141 return 1;
5142 }
5143
5144 /* Addr = segment_base + offset */
5145 /* offset = base + [index * scale] + displacement */
5146 off = exit_qualification; /* holds the displacement */
5147 if (addr_size == 1)
5148 off = (gva_t)sign_extend64(off, 31);
5149 else if (addr_size == 0)
5150 off = (gva_t)sign_extend64(off, 15);
5151 if (base_is_valid)
5152 off += kvm_register_read(vcpu, base_reg);
5153 if (index_is_valid)
5154 off += kvm_register_read(vcpu, index_reg) << scaling;
5155 vmx_get_segment(vcpu, &s, seg_reg);
5156
5157 /*
5158 * The effective address, i.e. @off, of a memory operand is truncated
5159 * based on the address size of the instruction. Note that this is
5160 * the *effective address*, i.e. the address prior to accounting for
5161 * the segment's base.
5162 */
5163 if (addr_size == 1) /* 32 bit */
5164 off &= 0xffffffff;
5165 else if (addr_size == 0) /* 16 bit */
5166 off &= 0xffff;
5167
5168 /* Checks for #GP/#SS exceptions. */
5169 exn = false;
5170 if (is_long_mode(vcpu)) {
5171 /*
5172 * The virtual/linear address is never truncated in 64-bit
5173 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
5174 * address when using FS/GS with a non-zero base.
5175 */
5176 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
5177 *ret = s.base + off;
5178 else
5179 *ret = off;
5180
5181 *ret = vmx_get_untagged_addr(vcpu, *ret, 0);
5182 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
5183 * non-canonical form. This is the only check on the memory
5184 * destination for long mode!
5185 */
5186 exn = is_noncanonical_address(*ret, vcpu, 0);
5187 } else {
5188 /*
5189 * When not in long mode, the virtual/linear address is
5190 * unconditionally truncated to 32 bits regardless of the
5191 * address size.
5192 */
5193 *ret = (s.base + off) & 0xffffffff;
5194
5195 /* Protected mode: apply checks for segment validity in the
5196 * following order:
5197 * - segment type check (#GP(0) may be thrown)
5198 * - usability check (#GP(0)/#SS(0))
5199 * - limit check (#GP(0)/#SS(0))
5200 */
5201 if (wr)
5202 /* #GP(0) if the destination operand is located in a
5203 * read-only data segment or any code segment.
5204 */
5205 exn = ((s.type & 0xa) == 0 || (s.type & 8));
5206 else
5207 /* #GP(0) if the source operand is located in an
5208 * execute-only code segment
5209 */
5210 exn = ((s.type & 0xa) == 8);
5211 if (exn) {
5212 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5213 return 1;
5214 }
5215 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5216 */
5217 exn = (s.unusable != 0);
5218
5219 /*
5220 * Protected mode: #GP(0)/#SS(0) if the memory operand is
5221 * outside the segment limit. All CPUs that support VMX ignore
5222 * limit checks for flat segments, i.e. segments with base==0,
5223 * limit==0xffffffff and of type expand-up data or code.
5224 */
5225 if (!(s.base == 0 && s.limit == 0xffffffff &&
5226 ((s.type & 8) || !(s.type & 4))))
5227 exn = exn || ((u64)off + len - 1 > s.limit);
5228 }
5229 if (exn) {
5230 kvm_queue_exception_e(vcpu,
5231 seg_reg == VCPU_SREG_SS ?
5232 SS_VECTOR : GP_VECTOR,
5233 0);
5234 return 1;
5235 }
5236
5237 return 0;
5238 }
5239
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer,int * ret)5240 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5241 int *ret)
5242 {
5243 gva_t gva;
5244 struct x86_exception e;
5245 int r;
5246
5247 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5248 vmcs_read32(VMX_INSTRUCTION_INFO), false,
5249 sizeof(*vmpointer), &gva)) {
5250 *ret = 1;
5251 return -EINVAL;
5252 }
5253
5254 r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5255 if (r != X86EMUL_CONTINUE) {
5256 *ret = kvm_handle_memory_failure(vcpu, r, &e);
5257 return -EINVAL;
5258 }
5259
5260 return 0;
5261 }
5262
5263 /*
5264 * Allocate a shadow VMCS and associate it with the currently loaded
5265 * VMCS, unless such a shadow VMCS already exists. The newly allocated
5266 * VMCS is also VMCLEARed, so that it is ready for use.
5267 */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)5268 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5269 {
5270 struct vcpu_vmx *vmx = to_vmx(vcpu);
5271 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5272
5273 /*
5274 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5275 * when L1 executes VMXOFF or the vCPU is forced out of nested
5276 * operation. VMXON faults if the CPU is already post-VMXON, so it
5277 * should be impossible to already have an allocated shadow VMCS. KVM
5278 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5279 * always be the loaded VMCS.
5280 */
5281 if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5282 return loaded_vmcs->shadow_vmcs;
5283
5284 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5285 if (loaded_vmcs->shadow_vmcs)
5286 vmcs_clear(loaded_vmcs->shadow_vmcs);
5287
5288 return loaded_vmcs->shadow_vmcs;
5289 }
5290
enter_vmx_operation(struct kvm_vcpu * vcpu)5291 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5292 {
5293 struct vcpu_vmx *vmx = to_vmx(vcpu);
5294 int r;
5295
5296 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5297 if (r < 0)
5298 goto out_vmcs02;
5299
5300 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5301 if (!vmx->nested.cached_vmcs12)
5302 goto out_cached_vmcs12;
5303
5304 vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5305 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5306 if (!vmx->nested.cached_shadow_vmcs12)
5307 goto out_cached_shadow_vmcs12;
5308
5309 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5310 goto out_shadow_vmcs;
5311
5312 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
5313 HRTIMER_MODE_ABS_PINNED);
5314 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
5315
5316 vmx->nested.vpid02 = allocate_vpid();
5317
5318 vmx->nested.vmcs02_initialized = false;
5319 vmx->nested.vmxon = true;
5320
5321 if (vmx_pt_mode_is_host_guest()) {
5322 vmx->pt_desc.guest.ctl = 0;
5323 pt_update_intercept_for_msr(vcpu);
5324 }
5325
5326 return 0;
5327
5328 out_shadow_vmcs:
5329 kfree(vmx->nested.cached_shadow_vmcs12);
5330
5331 out_cached_shadow_vmcs12:
5332 kfree(vmx->nested.cached_vmcs12);
5333
5334 out_cached_vmcs12:
5335 free_loaded_vmcs(&vmx->nested.vmcs02);
5336
5337 out_vmcs02:
5338 return -ENOMEM;
5339 }
5340
5341 /* Emulate the VMXON instruction. */
handle_vmxon(struct kvm_vcpu * vcpu)5342 static int handle_vmxon(struct kvm_vcpu *vcpu)
5343 {
5344 int ret;
5345 gpa_t vmptr;
5346 uint32_t revision;
5347 struct vcpu_vmx *vmx = to_vmx(vcpu);
5348 const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5349 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5350
5351 /*
5352 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5353 * the guest and so cannot rely on hardware to perform the check,
5354 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5355 * for VMXON).
5356 *
5357 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5358 * and !COMPATIBILITY modes. For an unrestricted guest, KVM doesn't
5359 * force any of the relevant guest state. For a restricted guest, KVM
5360 * does force CR0.PE=1, but only to also force VM86 in order to emulate
5361 * Real Mode, and so there's no need to check CR0.PE manually.
5362 */
5363 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
5364 kvm_queue_exception(vcpu, UD_VECTOR);
5365 return 1;
5366 }
5367
5368 /*
5369 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5370 * and has higher priority than the VM-Fail due to being post-VMXON,
5371 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0. In VMX non-root,
5372 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5373 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5374 * VMX non-root.
5375 *
5376 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5377 * #UD checks (see above), is functionally ok because KVM doesn't allow
5378 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5379 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5380 * missed by hardware due to shadowing CR0 and/or CR4.
5381 */
5382 if (vmx_get_cpl(vcpu)) {
5383 kvm_inject_gp(vcpu, 0);
5384 return 1;
5385 }
5386
5387 if (vmx->nested.vmxon)
5388 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5389
5390 /*
5391 * Invalid CR0/CR4 generates #GP. These checks are performed if and
5392 * only if the vCPU isn't already in VMX operation, i.e. effectively
5393 * have lower priority than the VM-Fail above.
5394 */
5395 if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5396 !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5397 kvm_inject_gp(vcpu, 0);
5398 return 1;
5399 }
5400
5401 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5402 != VMXON_NEEDED_FEATURES) {
5403 kvm_inject_gp(vcpu, 0);
5404 return 1;
5405 }
5406
5407 if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5408 return ret;
5409
5410 /*
5411 * SDM 3: 24.11.5
5412 * The first 4 bytes of VMXON region contain the supported
5413 * VMCS revision identifier
5414 *
5415 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5416 * which replaces physical address width with 32
5417 */
5418 if (!page_address_valid(vcpu, vmptr))
5419 return nested_vmx_failInvalid(vcpu);
5420
5421 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5422 revision != VMCS12_REVISION)
5423 return nested_vmx_failInvalid(vcpu);
5424
5425 vmx->nested.vmxon_ptr = vmptr;
5426 ret = enter_vmx_operation(vcpu);
5427 if (ret)
5428 return ret;
5429
5430 return nested_vmx_succeed(vcpu);
5431 }
5432
nested_release_vmcs12(struct kvm_vcpu * vcpu)5433 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5434 {
5435 struct vcpu_vmx *vmx = to_vmx(vcpu);
5436
5437 if (vmx->nested.current_vmptr == INVALID_GPA)
5438 return;
5439
5440 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5441
5442 if (enable_shadow_vmcs) {
5443 /* copy to memory all shadowed fields in case
5444 they were modified */
5445 copy_shadow_to_vmcs12(vmx);
5446 vmx_disable_shadow_vmcs(vmx);
5447 }
5448 vmx->nested.posted_intr_nv = -1;
5449
5450 /* Flush VMCS12 to guest memory */
5451 kvm_vcpu_write_guest_page(vcpu,
5452 vmx->nested.current_vmptr >> PAGE_SHIFT,
5453 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5454
5455 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5456
5457 vmx->nested.current_vmptr = INVALID_GPA;
5458 }
5459
5460 /* Emulate the VMXOFF instruction */
handle_vmxoff(struct kvm_vcpu * vcpu)5461 static int handle_vmxoff(struct kvm_vcpu *vcpu)
5462 {
5463 if (!nested_vmx_check_permission(vcpu))
5464 return 1;
5465
5466 free_nested(vcpu);
5467
5468 if (kvm_apic_has_pending_init_or_sipi(vcpu))
5469 kvm_make_request(KVM_REQ_EVENT, vcpu);
5470
5471 return nested_vmx_succeed(vcpu);
5472 }
5473
5474 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)5475 static int handle_vmclear(struct kvm_vcpu *vcpu)
5476 {
5477 struct vcpu_vmx *vmx = to_vmx(vcpu);
5478 u32 zero = 0;
5479 gpa_t vmptr;
5480 int r;
5481
5482 if (!nested_vmx_check_permission(vcpu))
5483 return 1;
5484
5485 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5486 return r;
5487
5488 if (!page_address_valid(vcpu, vmptr))
5489 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5490
5491 if (vmptr == vmx->nested.vmxon_ptr)
5492 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5493
5494 if (likely(!nested_evmcs_handle_vmclear(vcpu, vmptr))) {
5495 if (vmptr == vmx->nested.current_vmptr)
5496 nested_release_vmcs12(vcpu);
5497
5498 /*
5499 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5500 * for VMCLEAR includes a "ensure that data for VMCS referenced
5501 * by the operand is in memory" clause that guards writes to
5502 * memory, i.e. doing nothing for I/O is architecturally valid.
5503 *
5504 * FIXME: Suppress failures if and only if no memslot is found,
5505 * i.e. exit to userspace if __copy_to_user() fails.
5506 */
5507 (void)kvm_vcpu_write_guest(vcpu,
5508 vmptr + offsetof(struct vmcs12,
5509 launch_state),
5510 &zero, sizeof(zero));
5511 }
5512
5513 return nested_vmx_succeed(vcpu);
5514 }
5515
5516 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)5517 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5518 {
5519 return nested_vmx_run(vcpu, true);
5520 }
5521
5522 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)5523 static int handle_vmresume(struct kvm_vcpu *vcpu)
5524 {
5525
5526 return nested_vmx_run(vcpu, false);
5527 }
5528
handle_vmread(struct kvm_vcpu * vcpu)5529 static int handle_vmread(struct kvm_vcpu *vcpu)
5530 {
5531 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5532 : get_vmcs12(vcpu);
5533 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5534 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5535 struct vcpu_vmx *vmx = to_vmx(vcpu);
5536 struct x86_exception e;
5537 unsigned long field;
5538 u64 value;
5539 gva_t gva = 0;
5540 short offset;
5541 int len, r;
5542
5543 if (!nested_vmx_check_permission(vcpu))
5544 return 1;
5545
5546 /* Decode instruction info and find the field to read */
5547 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5548
5549 if (!nested_vmx_is_evmptr12_valid(vmx)) {
5550 /*
5551 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5552 * any VMREAD sets the ALU flags for VMfailInvalid.
5553 */
5554 if (vmx->nested.current_vmptr == INVALID_GPA ||
5555 (is_guest_mode(vcpu) &&
5556 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5557 return nested_vmx_failInvalid(vcpu);
5558
5559 offset = get_vmcs12_field_offset(field);
5560 if (offset < 0)
5561 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5562
5563 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5564 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5565
5566 /* Read the field, zero-extended to a u64 value */
5567 value = vmcs12_read_any(vmcs12, field, offset);
5568 } else {
5569 /*
5570 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5571 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5572 * unsupported. Unfortunately, certain versions of Windows 11
5573 * don't comply with this requirement which is not enforced in
5574 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5575 * workaround, as misbehaving guests will panic on VM-Fail.
5576 * Note, enlightened VMCS is incompatible with shadow VMCS so
5577 * all VMREADs from L2 should go to L1.
5578 */
5579 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5580 return nested_vmx_failInvalid(vcpu);
5581
5582 offset = evmcs_field_offset(field, NULL);
5583 if (offset < 0)
5584 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5585
5586 /* Read the field, zero-extended to a u64 value */
5587 value = evmcs_read_any(nested_vmx_evmcs(vmx), field, offset);
5588 }
5589
5590 /*
5591 * Now copy part of this value to register or memory, as requested.
5592 * Note that the number of bits actually copied is 32 or 64 depending
5593 * on the guest's mode (32 or 64 bit), not on the given field's length.
5594 */
5595 if (instr_info & BIT(10)) {
5596 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5597 } else {
5598 len = is_64_bit_mode(vcpu) ? 8 : 4;
5599 if (get_vmx_mem_address(vcpu, exit_qualification,
5600 instr_info, true, len, &gva))
5601 return 1;
5602 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5603 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5604 if (r != X86EMUL_CONTINUE)
5605 return kvm_handle_memory_failure(vcpu, r, &e);
5606 }
5607
5608 return nested_vmx_succeed(vcpu);
5609 }
5610
is_shadow_field_rw(unsigned long field)5611 static bool is_shadow_field_rw(unsigned long field)
5612 {
5613 switch (field) {
5614 #define SHADOW_FIELD_RW(x, y) case x:
5615 #include "vmcs_shadow_fields.h"
5616 return true;
5617 default:
5618 break;
5619 }
5620 return false;
5621 }
5622
is_shadow_field_ro(unsigned long field)5623 static bool is_shadow_field_ro(unsigned long field)
5624 {
5625 switch (field) {
5626 #define SHADOW_FIELD_RO(x, y) case x:
5627 #include "vmcs_shadow_fields.h"
5628 return true;
5629 default:
5630 break;
5631 }
5632 return false;
5633 }
5634
handle_vmwrite(struct kvm_vcpu * vcpu)5635 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5636 {
5637 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5638 : get_vmcs12(vcpu);
5639 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5640 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5641 struct vcpu_vmx *vmx = to_vmx(vcpu);
5642 struct x86_exception e;
5643 unsigned long field;
5644 short offset;
5645 gva_t gva;
5646 int len, r;
5647
5648 /*
5649 * The value to write might be 32 or 64 bits, depending on L1's long
5650 * mode, and eventually we need to write that into a field of several
5651 * possible lengths. The code below first zero-extends the value to 64
5652 * bit (value), and then copies only the appropriate number of
5653 * bits into the vmcs12 field.
5654 */
5655 u64 value = 0;
5656
5657 if (!nested_vmx_check_permission(vcpu))
5658 return 1;
5659
5660 /*
5661 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5662 * any VMWRITE sets the ALU flags for VMfailInvalid.
5663 */
5664 if (vmx->nested.current_vmptr == INVALID_GPA ||
5665 (is_guest_mode(vcpu) &&
5666 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5667 return nested_vmx_failInvalid(vcpu);
5668
5669 if (instr_info & BIT(10))
5670 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5671 else {
5672 len = is_64_bit_mode(vcpu) ? 8 : 4;
5673 if (get_vmx_mem_address(vcpu, exit_qualification,
5674 instr_info, false, len, &gva))
5675 return 1;
5676 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5677 if (r != X86EMUL_CONTINUE)
5678 return kvm_handle_memory_failure(vcpu, r, &e);
5679 }
5680
5681 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5682
5683 offset = get_vmcs12_field_offset(field);
5684 if (offset < 0)
5685 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5686
5687 /*
5688 * If the vCPU supports "VMWRITE to any supported field in the
5689 * VMCS," then the "read-only" fields are actually read/write.
5690 */
5691 if (vmcs_field_readonly(field) &&
5692 !nested_cpu_has_vmwrite_any_field(vcpu))
5693 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5694
5695 /*
5696 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5697 * vmcs12, else we may crush a field or consume a stale value.
5698 */
5699 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5700 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5701
5702 /*
5703 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5704 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
5705 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5706 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5707 * from L1 will return a different value than VMREAD from L2 (L1 sees
5708 * the stripped down value, L2 sees the full value as stored by KVM).
5709 */
5710 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5711 value &= 0x1f0ff;
5712
5713 vmcs12_write_any(vmcs12, field, offset, value);
5714
5715 /*
5716 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5717 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
5718 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5719 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5720 */
5721 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5722 /*
5723 * L1 can read these fields without exiting, ensure the
5724 * shadow VMCS is up-to-date.
5725 */
5726 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5727 preempt_disable();
5728 vmcs_load(vmx->vmcs01.shadow_vmcs);
5729
5730 __vmcs_writel(field, value);
5731
5732 vmcs_clear(vmx->vmcs01.shadow_vmcs);
5733 vmcs_load(vmx->loaded_vmcs->vmcs);
5734 preempt_enable();
5735 }
5736 vmx->nested.dirty_vmcs12 = true;
5737 }
5738
5739 return nested_vmx_succeed(vcpu);
5740 }
5741
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)5742 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5743 {
5744 vmx->nested.current_vmptr = vmptr;
5745 if (enable_shadow_vmcs) {
5746 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5747 vmcs_write64(VMCS_LINK_POINTER,
5748 __pa(vmx->vmcs01.shadow_vmcs));
5749 vmx->nested.need_vmcs12_to_shadow_sync = true;
5750 }
5751 vmx->nested.dirty_vmcs12 = true;
5752 vmx->nested.force_msr_bitmap_recalc = true;
5753 }
5754
5755 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)5756 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5757 {
5758 struct vcpu_vmx *vmx = to_vmx(vcpu);
5759 gpa_t vmptr;
5760 int r;
5761
5762 if (!nested_vmx_check_permission(vcpu))
5763 return 1;
5764
5765 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5766 return r;
5767
5768 if (!page_address_valid(vcpu, vmptr))
5769 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5770
5771 if (vmptr == vmx->nested.vmxon_ptr)
5772 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5773
5774 /* Forbid normal VMPTRLD if Enlightened version was used */
5775 if (nested_vmx_is_evmptr12_valid(vmx))
5776 return 1;
5777
5778 if (vmx->nested.current_vmptr != vmptr) {
5779 struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5780 struct vmcs_hdr hdr;
5781
5782 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5783 /*
5784 * Reads from an unbacked page return all 1s,
5785 * which means that the 32 bits located at the
5786 * given physical address won't match the required
5787 * VMCS12_REVISION identifier.
5788 */
5789 return nested_vmx_fail(vcpu,
5790 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5791 }
5792
5793 if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5794 offsetof(struct vmcs12, hdr),
5795 sizeof(hdr))) {
5796 return nested_vmx_fail(vcpu,
5797 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5798 }
5799
5800 if (hdr.revision_id != VMCS12_REVISION ||
5801 (hdr.shadow_vmcs &&
5802 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5803 return nested_vmx_fail(vcpu,
5804 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5805 }
5806
5807 nested_release_vmcs12(vcpu);
5808
5809 /*
5810 * Load VMCS12 from guest memory since it is not already
5811 * cached.
5812 */
5813 if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5814 VMCS12_SIZE)) {
5815 return nested_vmx_fail(vcpu,
5816 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5817 }
5818
5819 set_current_vmptr(vmx, vmptr);
5820 }
5821
5822 return nested_vmx_succeed(vcpu);
5823 }
5824
5825 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)5826 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5827 {
5828 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5829 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5830 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5831 struct x86_exception e;
5832 gva_t gva;
5833 int r;
5834
5835 if (!nested_vmx_check_permission(vcpu))
5836 return 1;
5837
5838 if (unlikely(nested_vmx_is_evmptr12_valid(to_vmx(vcpu))))
5839 return 1;
5840
5841 if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5842 true, sizeof(gpa_t), &gva))
5843 return 1;
5844 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5845 r = kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
5846 sizeof(gpa_t), &e);
5847 if (r != X86EMUL_CONTINUE)
5848 return kvm_handle_memory_failure(vcpu, r, &e);
5849
5850 return nested_vmx_succeed(vcpu);
5851 }
5852
5853 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)5854 static int handle_invept(struct kvm_vcpu *vcpu)
5855 {
5856 struct vcpu_vmx *vmx = to_vmx(vcpu);
5857 u32 vmx_instruction_info, types;
5858 unsigned long type, roots_to_free;
5859 struct kvm_mmu *mmu;
5860 gva_t gva;
5861 struct x86_exception e;
5862 struct {
5863 u64 eptp, gpa;
5864 } operand;
5865 int i, r, gpr_index;
5866
5867 if (!(vmx->nested.msrs.secondary_ctls_high &
5868 SECONDARY_EXEC_ENABLE_EPT) ||
5869 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5870 kvm_queue_exception(vcpu, UD_VECTOR);
5871 return 1;
5872 }
5873
5874 if (!nested_vmx_check_permission(vcpu))
5875 return 1;
5876
5877 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5878 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5879 type = kvm_register_read(vcpu, gpr_index);
5880
5881 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5882
5883 if (type >= 32 || !(types & (1 << type)))
5884 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5885
5886 /* According to the Intel VMX instruction reference, the memory
5887 * operand is read even if it isn't needed (e.g., for type==global)
5888 */
5889 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5890 vmx_instruction_info, false, sizeof(operand), &gva))
5891 return 1;
5892 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5893 if (r != X86EMUL_CONTINUE)
5894 return kvm_handle_memory_failure(vcpu, r, &e);
5895
5896 /*
5897 * Nested EPT roots are always held through guest_mmu,
5898 * not root_mmu.
5899 */
5900 mmu = &vcpu->arch.guest_mmu;
5901
5902 switch (type) {
5903 case VMX_EPT_EXTENT_CONTEXT:
5904 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5905 return nested_vmx_fail(vcpu,
5906 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5907
5908 roots_to_free = 0;
5909 if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5910 operand.eptp))
5911 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5912
5913 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5914 if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5915 mmu->prev_roots[i].pgd,
5916 operand.eptp))
5917 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5918 }
5919 break;
5920 case VMX_EPT_EXTENT_GLOBAL:
5921 roots_to_free = KVM_MMU_ROOTS_ALL;
5922 break;
5923 default:
5924 BUG();
5925 break;
5926 }
5927
5928 if (roots_to_free)
5929 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5930
5931 return nested_vmx_succeed(vcpu);
5932 }
5933
handle_invvpid(struct kvm_vcpu * vcpu)5934 static int handle_invvpid(struct kvm_vcpu *vcpu)
5935 {
5936 struct vcpu_vmx *vmx = to_vmx(vcpu);
5937 u32 vmx_instruction_info;
5938 unsigned long type, types;
5939 gva_t gva;
5940 struct x86_exception e;
5941 struct {
5942 u64 vpid;
5943 u64 gla;
5944 } operand;
5945 u16 vpid02;
5946 int r, gpr_index;
5947
5948 if (!(vmx->nested.msrs.secondary_ctls_high &
5949 SECONDARY_EXEC_ENABLE_VPID) ||
5950 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5951 kvm_queue_exception(vcpu, UD_VECTOR);
5952 return 1;
5953 }
5954
5955 if (!nested_vmx_check_permission(vcpu))
5956 return 1;
5957
5958 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5959 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5960 type = kvm_register_read(vcpu, gpr_index);
5961
5962 types = (vmx->nested.msrs.vpid_caps &
5963 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5964
5965 if (type >= 32 || !(types & (1 << type)))
5966 return nested_vmx_fail(vcpu,
5967 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5968
5969 /* according to the intel vmx instruction reference, the memory
5970 * operand is read even if it isn't needed (e.g., for type==global)
5971 */
5972 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5973 vmx_instruction_info, false, sizeof(operand), &gva))
5974 return 1;
5975 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5976 if (r != X86EMUL_CONTINUE)
5977 return kvm_handle_memory_failure(vcpu, r, &e);
5978
5979 if (operand.vpid >> 16)
5980 return nested_vmx_fail(vcpu,
5981 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5982
5983 /*
5984 * Always flush the effective vpid02, i.e. never flush the current VPID
5985 * and never explicitly flush vpid01. INVVPID targets a VPID, not a
5986 * VMCS, and so whether or not the current vmcs12 has VPID enabled is
5987 * irrelevant (and there may not be a loaded vmcs12).
5988 */
5989 vpid02 = nested_get_vpid02(vcpu);
5990 switch (type) {
5991 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5992 /*
5993 * LAM doesn't apply to addresses that are inputs to TLB
5994 * invalidation.
5995 */
5996 if (!operand.vpid ||
5997 is_noncanonical_invlpg_address(operand.gla, vcpu))
5998 return nested_vmx_fail(vcpu,
5999 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6000 vpid_sync_vcpu_addr(vpid02, operand.gla);
6001 break;
6002 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
6003 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
6004 if (!operand.vpid)
6005 return nested_vmx_fail(vcpu,
6006 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6007 vpid_sync_context(vpid02);
6008 break;
6009 case VMX_VPID_EXTENT_ALL_CONTEXT:
6010 vpid_sync_context(vpid02);
6011 break;
6012 default:
6013 WARN_ON_ONCE(1);
6014 return kvm_skip_emulated_instruction(vcpu);
6015 }
6016
6017 /*
6018 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
6019 * linear mappings for L2 (tagged with L2's VPID). Free all guest
6020 * roots as VPIDs are not tracked in the MMU role.
6021 *
6022 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
6023 * an MMU when EPT is disabled.
6024 *
6025 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
6026 */
6027 if (!enable_ept)
6028 kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
6029
6030 return nested_vmx_succeed(vcpu);
6031 }
6032
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6033 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
6034 struct vmcs12 *vmcs12)
6035 {
6036 u32 index = kvm_rcx_read(vcpu);
6037 u64 new_eptp;
6038
6039 if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
6040 return 1;
6041 if (index >= VMFUNC_EPTP_ENTRIES)
6042 return 1;
6043
6044 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
6045 &new_eptp, index * 8, 8))
6046 return 1;
6047
6048 /*
6049 * If the (L2) guest does a vmfunc to the currently
6050 * active ept pointer, we don't have to do anything else
6051 */
6052 if (vmcs12->ept_pointer != new_eptp) {
6053 if (!nested_vmx_check_eptp(vcpu, new_eptp))
6054 return 1;
6055
6056 vmcs12->ept_pointer = new_eptp;
6057 nested_ept_new_eptp(vcpu);
6058
6059 if (!nested_cpu_has_vpid(vmcs12))
6060 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
6061 }
6062
6063 return 0;
6064 }
6065
handle_vmfunc(struct kvm_vcpu * vcpu)6066 static int handle_vmfunc(struct kvm_vcpu *vcpu)
6067 {
6068 struct vcpu_vmx *vmx = to_vmx(vcpu);
6069 struct vmcs12 *vmcs12;
6070 u32 function = kvm_rax_read(vcpu);
6071
6072 /*
6073 * VMFUNC should never execute cleanly while L1 is active; KVM supports
6074 * VMFUNC for nested VMs, but not for L1.
6075 */
6076 if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
6077 kvm_queue_exception(vcpu, UD_VECTOR);
6078 return 1;
6079 }
6080
6081 vmcs12 = get_vmcs12(vcpu);
6082
6083 /*
6084 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
6085 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
6086 */
6087 if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
6088 kvm_queue_exception(vcpu, UD_VECTOR);
6089 return 1;
6090 }
6091
6092 if (!(vmcs12->vm_function_control & BIT_ULL(function)))
6093 goto fail;
6094
6095 switch (function) {
6096 case 0:
6097 if (nested_vmx_eptp_switching(vcpu, vmcs12))
6098 goto fail;
6099 break;
6100 default:
6101 goto fail;
6102 }
6103 return kvm_skip_emulated_instruction(vcpu);
6104
6105 fail:
6106 /*
6107 * This is effectively a reflected VM-Exit, as opposed to a synthesized
6108 * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode
6109 * EXIT_REASON_VMFUNC as the exit reason.
6110 */
6111 nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
6112 vmx_get_intr_info(vcpu),
6113 vmx_get_exit_qual(vcpu));
6114 return 1;
6115 }
6116
6117 /*
6118 * Return true if an IO instruction with the specified port and size should cause
6119 * a VM-exit into L1.
6120 */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)6121 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
6122 int size)
6123 {
6124 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6125 gpa_t bitmap, last_bitmap;
6126 u8 b;
6127
6128 last_bitmap = INVALID_GPA;
6129 b = -1;
6130
6131 while (size > 0) {
6132 if (port < 0x8000)
6133 bitmap = vmcs12->io_bitmap_a;
6134 else if (port < 0x10000)
6135 bitmap = vmcs12->io_bitmap_b;
6136 else
6137 return true;
6138 bitmap += (port & 0x7fff) / 8;
6139
6140 if (last_bitmap != bitmap)
6141 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
6142 return true;
6143 if (b & (1 << (port & 7)))
6144 return true;
6145
6146 port++;
6147 size--;
6148 last_bitmap = bitmap;
6149 }
6150
6151 return false;
6152 }
6153
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6154 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6155 struct vmcs12 *vmcs12)
6156 {
6157 unsigned long exit_qualification;
6158 unsigned short port;
6159 int size;
6160
6161 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6162 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6163
6164 exit_qualification = vmx_get_exit_qual(vcpu);
6165
6166 port = exit_qualification >> 16;
6167 size = (exit_qualification & 7) + 1;
6168
6169 return nested_vmx_check_io_bitmaps(vcpu, port, size);
6170 }
6171
6172 /*
6173 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
6174 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6175 * disinterest in the current event (read or write a specific MSR) by using an
6176 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6177 */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,union vmx_exit_reason exit_reason)6178 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6179 struct vmcs12 *vmcs12,
6180 union vmx_exit_reason exit_reason)
6181 {
6182 u32 msr_index = kvm_rcx_read(vcpu);
6183 gpa_t bitmap;
6184
6185 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6186 return true;
6187
6188 /*
6189 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6190 * for the four combinations of read/write and low/high MSR numbers.
6191 * First we need to figure out which of the four to use:
6192 */
6193 bitmap = vmcs12->msr_bitmap;
6194 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6195 bitmap += 2048;
6196 if (msr_index >= 0xc0000000) {
6197 msr_index -= 0xc0000000;
6198 bitmap += 1024;
6199 }
6200
6201 /* Then read the msr_index'th bit from this bitmap: */
6202 if (msr_index < 1024*8) {
6203 unsigned char b;
6204 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
6205 return true;
6206 return 1 & (b >> (msr_index & 7));
6207 } else
6208 return true; /* let L1 handle the wrong parameter */
6209 }
6210
6211 /*
6212 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6213 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6214 * intercept (via guest_host_mask etc.) the current event.
6215 */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6216 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6217 struct vmcs12 *vmcs12)
6218 {
6219 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6220 int cr = exit_qualification & 15;
6221 int reg;
6222 unsigned long val;
6223
6224 switch ((exit_qualification >> 4) & 3) {
6225 case 0: /* mov to cr */
6226 reg = (exit_qualification >> 8) & 15;
6227 val = kvm_register_read(vcpu, reg);
6228 switch (cr) {
6229 case 0:
6230 if (vmcs12->cr0_guest_host_mask &
6231 (val ^ vmcs12->cr0_read_shadow))
6232 return true;
6233 break;
6234 case 3:
6235 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6236 return true;
6237 break;
6238 case 4:
6239 if (vmcs12->cr4_guest_host_mask &
6240 (vmcs12->cr4_read_shadow ^ val))
6241 return true;
6242 break;
6243 case 8:
6244 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6245 return true;
6246 break;
6247 }
6248 break;
6249 case 2: /* clts */
6250 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6251 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6252 return true;
6253 break;
6254 case 1: /* mov from cr */
6255 switch (cr) {
6256 case 3:
6257 if (vmcs12->cpu_based_vm_exec_control &
6258 CPU_BASED_CR3_STORE_EXITING)
6259 return true;
6260 break;
6261 case 8:
6262 if (vmcs12->cpu_based_vm_exec_control &
6263 CPU_BASED_CR8_STORE_EXITING)
6264 return true;
6265 break;
6266 }
6267 break;
6268 case 3: /* lmsw */
6269 /*
6270 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6271 * cr0. Other attempted changes are ignored, with no exit.
6272 */
6273 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6274 if (vmcs12->cr0_guest_host_mask & 0xe &
6275 (val ^ vmcs12->cr0_read_shadow))
6276 return true;
6277 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6278 !(vmcs12->cr0_read_shadow & 0x1) &&
6279 (val & 0x1))
6280 return true;
6281 break;
6282 }
6283 return false;
6284 }
6285
nested_vmx_exit_handled_encls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6286 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6287 struct vmcs12 *vmcs12)
6288 {
6289 u32 encls_leaf;
6290
6291 if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
6292 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6293 return false;
6294
6295 encls_leaf = kvm_rax_read(vcpu);
6296 if (encls_leaf > 62)
6297 encls_leaf = 63;
6298 return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6299 }
6300
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)6301 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6302 struct vmcs12 *vmcs12, gpa_t bitmap)
6303 {
6304 u32 vmx_instruction_info;
6305 unsigned long field;
6306 u8 b;
6307
6308 if (!nested_cpu_has_shadow_vmcs(vmcs12))
6309 return true;
6310
6311 /* Decode instruction info and find the field to access */
6312 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6313 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6314
6315 /* Out-of-range fields always cause a VM exit from L2 to L1 */
6316 if (field >> 15)
6317 return true;
6318
6319 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6320 return true;
6321
6322 return 1 & (b >> (field & 7));
6323 }
6324
nested_vmx_exit_handled_mtf(struct vmcs12 * vmcs12)6325 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6326 {
6327 u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6328
6329 if (nested_cpu_has_mtf(vmcs12))
6330 return true;
6331
6332 /*
6333 * An MTF VM-exit may be injected into the guest by setting the
6334 * interruption-type to 7 (other event) and the vector field to 0. Such
6335 * is the case regardless of the 'monitor trap flag' VM-execution
6336 * control.
6337 */
6338 return entry_intr_info == (INTR_INFO_VALID_MASK
6339 | INTR_TYPE_OTHER_EVENT);
6340 }
6341
6342 /*
6343 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6344 * L1 wants the exit. Only call this when in is_guest_mode (L2).
6345 */
nested_vmx_l0_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6346 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6347 union vmx_exit_reason exit_reason)
6348 {
6349 u32 intr_info;
6350
6351 switch ((u16)exit_reason.basic) {
6352 case EXIT_REASON_EXCEPTION_NMI:
6353 intr_info = vmx_get_intr_info(vcpu);
6354 if (is_nmi(intr_info))
6355 return true;
6356 else if (is_page_fault(intr_info))
6357 return vcpu->arch.apf.host_apf_flags ||
6358 vmx_need_pf_intercept(vcpu);
6359 else if (is_debug(intr_info) &&
6360 vcpu->guest_debug &
6361 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6362 return true;
6363 else if (is_breakpoint(intr_info) &&
6364 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6365 return true;
6366 else if (is_alignment_check(intr_info) &&
6367 !vmx_guest_inject_ac(vcpu))
6368 return true;
6369 else if (is_ve_fault(intr_info))
6370 return true;
6371 return false;
6372 case EXIT_REASON_EXTERNAL_INTERRUPT:
6373 return true;
6374 case EXIT_REASON_MCE_DURING_VMENTRY:
6375 return true;
6376 case EXIT_REASON_EPT_VIOLATION:
6377 /*
6378 * L0 always deals with the EPT violation. If nested EPT is
6379 * used, and the nested mmu code discovers that the address is
6380 * missing in the guest EPT table (EPT12), the EPT violation
6381 * will be injected with nested_ept_inject_page_fault()
6382 */
6383 return true;
6384 case EXIT_REASON_EPT_MISCONFIG:
6385 /*
6386 * L2 never uses directly L1's EPT, but rather L0's own EPT
6387 * table (shadow on EPT) or a merged EPT table that L0 built
6388 * (EPT on EPT). So any problems with the structure of the
6389 * table is L0's fault.
6390 */
6391 return true;
6392 case EXIT_REASON_PREEMPTION_TIMER:
6393 return true;
6394 case EXIT_REASON_PML_FULL:
6395 /*
6396 * PML is emulated for an L1 VMM and should never be enabled in
6397 * vmcs02, always "handle" PML_FULL by exiting to userspace.
6398 */
6399 return true;
6400 case EXIT_REASON_VMFUNC:
6401 /* VM functions are emulated through L2->L0 vmexits. */
6402 return true;
6403 case EXIT_REASON_BUS_LOCK:
6404 /*
6405 * At present, bus lock VM exit is never exposed to L1.
6406 * Handle L2's bus locks in L0 directly.
6407 */
6408 return true;
6409 #ifdef CONFIG_KVM_HYPERV
6410 case EXIT_REASON_VMCALL:
6411 /* Hyper-V L2 TLB flush hypercall is handled by L0 */
6412 return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6413 nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6414 kvm_hv_is_tlb_flush_hcall(vcpu);
6415 #endif
6416 default:
6417 break;
6418 }
6419 return false;
6420 }
6421
6422 /*
6423 * Return 1 if L1 wants to intercept an exit from L2. Only call this when in
6424 * is_guest_mode (L2).
6425 */
nested_vmx_l1_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6426 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6427 union vmx_exit_reason exit_reason)
6428 {
6429 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6430 u32 intr_info;
6431
6432 switch ((u16)exit_reason.basic) {
6433 case EXIT_REASON_EXCEPTION_NMI:
6434 intr_info = vmx_get_intr_info(vcpu);
6435 if (is_nmi(intr_info))
6436 return true;
6437 else if (is_page_fault(intr_info))
6438 return true;
6439 return vmcs12->exception_bitmap &
6440 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6441 case EXIT_REASON_EXTERNAL_INTERRUPT:
6442 return nested_exit_on_intr(vcpu);
6443 case EXIT_REASON_TRIPLE_FAULT:
6444 return true;
6445 case EXIT_REASON_INTERRUPT_WINDOW:
6446 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6447 case EXIT_REASON_NMI_WINDOW:
6448 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6449 case EXIT_REASON_TASK_SWITCH:
6450 return true;
6451 case EXIT_REASON_CPUID:
6452 return true;
6453 case EXIT_REASON_HLT:
6454 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6455 case EXIT_REASON_INVD:
6456 return true;
6457 case EXIT_REASON_INVLPG:
6458 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6459 case EXIT_REASON_RDPMC:
6460 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6461 case EXIT_REASON_RDRAND:
6462 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6463 case EXIT_REASON_RDSEED:
6464 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6465 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6466 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6467 case EXIT_REASON_VMREAD:
6468 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6469 vmcs12->vmread_bitmap);
6470 case EXIT_REASON_VMWRITE:
6471 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6472 vmcs12->vmwrite_bitmap);
6473 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6474 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6475 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6476 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6477 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6478 /*
6479 * VMX instructions trap unconditionally. This allows L1 to
6480 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6481 */
6482 return true;
6483 case EXIT_REASON_CR_ACCESS:
6484 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6485 case EXIT_REASON_DR_ACCESS:
6486 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6487 case EXIT_REASON_IO_INSTRUCTION:
6488 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6489 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6490 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6491 case EXIT_REASON_MSR_READ:
6492 case EXIT_REASON_MSR_WRITE:
6493 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6494 case EXIT_REASON_INVALID_STATE:
6495 return true;
6496 case EXIT_REASON_MWAIT_INSTRUCTION:
6497 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6498 case EXIT_REASON_MONITOR_TRAP_FLAG:
6499 return nested_vmx_exit_handled_mtf(vmcs12);
6500 case EXIT_REASON_MONITOR_INSTRUCTION:
6501 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6502 case EXIT_REASON_PAUSE_INSTRUCTION:
6503 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6504 nested_cpu_has2(vmcs12,
6505 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6506 case EXIT_REASON_MCE_DURING_VMENTRY:
6507 return true;
6508 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6509 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6510 case EXIT_REASON_APIC_ACCESS:
6511 case EXIT_REASON_APIC_WRITE:
6512 case EXIT_REASON_EOI_INDUCED:
6513 /*
6514 * The controls for "virtualize APIC accesses," "APIC-
6515 * register virtualization," and "virtual-interrupt
6516 * delivery" only come from vmcs12.
6517 */
6518 return true;
6519 case EXIT_REASON_INVPCID:
6520 return
6521 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6522 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6523 case EXIT_REASON_WBINVD:
6524 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6525 case EXIT_REASON_XSETBV:
6526 return true;
6527 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6528 /*
6529 * This should never happen, since it is not possible to
6530 * set XSS to a non-zero value---neither in L1 nor in L2.
6531 * If if it were, XSS would have to be checked against
6532 * the XSS exit bitmap in vmcs12.
6533 */
6534 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES);
6535 case EXIT_REASON_UMWAIT:
6536 case EXIT_REASON_TPAUSE:
6537 return nested_cpu_has2(vmcs12,
6538 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6539 case EXIT_REASON_ENCLS:
6540 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6541 case EXIT_REASON_NOTIFY:
6542 /* Notify VM exit is not exposed to L1 */
6543 return false;
6544 default:
6545 return true;
6546 }
6547 }
6548
6549 /*
6550 * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was
6551 * reflected into L1.
6552 */
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu)6553 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6554 {
6555 struct vcpu_vmx *vmx = to_vmx(vcpu);
6556 union vmx_exit_reason exit_reason = vmx->exit_reason;
6557 unsigned long exit_qual;
6558 u32 exit_intr_info;
6559
6560 WARN_ON_ONCE(vmx->nested.nested_run_pending);
6561
6562 /*
6563 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6564 * has already loaded L2's state.
6565 */
6566 if (unlikely(vmx->fail)) {
6567 trace_kvm_nested_vmenter_failed(
6568 "hardware VM-instruction error: ",
6569 vmcs_read32(VM_INSTRUCTION_ERROR));
6570 exit_intr_info = 0;
6571 exit_qual = 0;
6572 goto reflect_vmexit;
6573 }
6574
6575 trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6576
6577 /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6578 if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6579 return false;
6580
6581 /* If L1 doesn't want the exit, handle it in L0. */
6582 if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6583 return false;
6584
6585 /*
6586 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For
6587 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6588 * need to be synthesized by querying the in-kernel LAPIC, but external
6589 * interrupts are never reflected to L1 so it's a non-issue.
6590 */
6591 exit_intr_info = vmx_get_intr_info(vcpu);
6592 if (is_exception_with_error_code(exit_intr_info)) {
6593 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6594
6595 vmcs12->vm_exit_intr_error_code =
6596 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6597 }
6598 exit_qual = vmx_get_exit_qual(vcpu);
6599
6600 reflect_vmexit:
6601 nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6602 return true;
6603 }
6604
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)6605 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6606 struct kvm_nested_state __user *user_kvm_nested_state,
6607 u32 user_data_size)
6608 {
6609 struct vcpu_vmx *vmx;
6610 struct vmcs12 *vmcs12;
6611 struct kvm_nested_state kvm_state = {
6612 .flags = 0,
6613 .format = KVM_STATE_NESTED_FORMAT_VMX,
6614 .size = sizeof(kvm_state),
6615 .hdr.vmx.flags = 0,
6616 .hdr.vmx.vmxon_pa = INVALID_GPA,
6617 .hdr.vmx.vmcs12_pa = INVALID_GPA,
6618 .hdr.vmx.preemption_timer_deadline = 0,
6619 };
6620 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6621 &user_kvm_nested_state->data.vmx[0];
6622
6623 if (!vcpu)
6624 return kvm_state.size + sizeof(*user_vmx_nested_state);
6625
6626 vmx = to_vmx(vcpu);
6627 vmcs12 = get_vmcs12(vcpu);
6628
6629 if (guest_can_use(vcpu, X86_FEATURE_VMX) &&
6630 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6631 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6632 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6633
6634 if (vmx_has_valid_vmcs12(vcpu)) {
6635 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6636
6637 /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6638 if (nested_vmx_is_evmptr12_set(vmx))
6639 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6640
6641 if (is_guest_mode(vcpu) &&
6642 nested_cpu_has_shadow_vmcs(vmcs12) &&
6643 vmcs12->vmcs_link_pointer != INVALID_GPA)
6644 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6645 }
6646
6647 if (vmx->nested.smm.vmxon)
6648 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6649
6650 if (vmx->nested.smm.guest_mode)
6651 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6652
6653 if (is_guest_mode(vcpu)) {
6654 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6655
6656 if (vmx->nested.nested_run_pending)
6657 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6658
6659 if (vmx->nested.mtf_pending)
6660 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6661
6662 if (nested_cpu_has_preemption_timer(vmcs12) &&
6663 vmx->nested.has_preemption_timer_deadline) {
6664 kvm_state.hdr.vmx.flags |=
6665 KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6666 kvm_state.hdr.vmx.preemption_timer_deadline =
6667 vmx->nested.preemption_timer_deadline;
6668 }
6669 }
6670 }
6671
6672 if (user_data_size < kvm_state.size)
6673 goto out;
6674
6675 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6676 return -EFAULT;
6677
6678 if (!vmx_has_valid_vmcs12(vcpu))
6679 goto out;
6680
6681 /*
6682 * When running L2, the authoritative vmcs12 state is in the
6683 * vmcs02. When running L1, the authoritative vmcs12 state is
6684 * in the shadow or enlightened vmcs linked to vmcs01, unless
6685 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6686 * vmcs12 state is in the vmcs12 already.
6687 */
6688 if (is_guest_mode(vcpu)) {
6689 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6690 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6691 } else {
6692 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6693 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6694 if (nested_vmx_is_evmptr12_valid(vmx))
6695 /*
6696 * L1 hypervisor is not obliged to keep eVMCS
6697 * clean fields data always up-to-date while
6698 * not in guest mode, 'hv_clean_fields' is only
6699 * supposed to be actual upon vmentry so we need
6700 * to ignore it here and do full copy.
6701 */
6702 copy_enlightened_to_vmcs12(vmx, 0);
6703 else if (enable_shadow_vmcs)
6704 copy_shadow_to_vmcs12(vmx);
6705 }
6706 }
6707
6708 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6709 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6710
6711 /*
6712 * Copy over the full allocated size of vmcs12 rather than just the size
6713 * of the struct.
6714 */
6715 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6716 return -EFAULT;
6717
6718 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6719 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6720 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6721 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6722 return -EFAULT;
6723 }
6724 out:
6725 return kvm_state.size;
6726 }
6727
vmx_leave_nested(struct kvm_vcpu * vcpu)6728 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6729 {
6730 if (is_guest_mode(vcpu)) {
6731 to_vmx(vcpu)->nested.nested_run_pending = 0;
6732 nested_vmx_vmexit(vcpu, -1, 0, 0);
6733 }
6734 free_nested(vcpu);
6735 }
6736
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)6737 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6738 struct kvm_nested_state __user *user_kvm_nested_state,
6739 struct kvm_nested_state *kvm_state)
6740 {
6741 struct vcpu_vmx *vmx = to_vmx(vcpu);
6742 struct vmcs12 *vmcs12;
6743 enum vm_entry_failure_code ignored;
6744 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6745 &user_kvm_nested_state->data.vmx[0];
6746 int ret;
6747
6748 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6749 return -EINVAL;
6750
6751 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6752 if (kvm_state->hdr.vmx.smm.flags)
6753 return -EINVAL;
6754
6755 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6756 return -EINVAL;
6757
6758 /*
6759 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6760 * enable eVMCS capability on vCPU. However, since then
6761 * code was changed such that flag signals vmcs12 should
6762 * be copied into eVMCS in guest memory.
6763 *
6764 * To preserve backwards compatibility, allow user
6765 * to set this flag even when there is no VMXON region.
6766 */
6767 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6768 return -EINVAL;
6769 } else {
6770 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
6771 return -EINVAL;
6772
6773 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6774 return -EINVAL;
6775 }
6776
6777 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6778 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6779 return -EINVAL;
6780
6781 if (kvm_state->hdr.vmx.smm.flags &
6782 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6783 return -EINVAL;
6784
6785 if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6786 return -EINVAL;
6787
6788 /*
6789 * SMM temporarily disables VMX, so we cannot be in guest mode,
6790 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
6791 * must be zero.
6792 */
6793 if (is_smm(vcpu) ?
6794 (kvm_state->flags &
6795 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6796 : kvm_state->hdr.vmx.smm.flags)
6797 return -EINVAL;
6798
6799 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6800 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6801 return -EINVAL;
6802
6803 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6804 (!guest_can_use(vcpu, X86_FEATURE_VMX) ||
6805 !vmx->nested.enlightened_vmcs_enabled))
6806 return -EINVAL;
6807
6808 vmx_leave_nested(vcpu);
6809
6810 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6811 return 0;
6812
6813 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6814 ret = enter_vmx_operation(vcpu);
6815 if (ret)
6816 return ret;
6817
6818 /* Empty 'VMXON' state is permitted if no VMCS loaded */
6819 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6820 /* See vmx_has_valid_vmcs12. */
6821 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6822 (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6823 (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6824 return -EINVAL;
6825 else
6826 return 0;
6827 }
6828
6829 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6830 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6831 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6832 return -EINVAL;
6833
6834 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6835 #ifdef CONFIG_KVM_HYPERV
6836 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6837 /*
6838 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6839 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6840 * restored yet. EVMCS will be mapped from
6841 * nested_get_vmcs12_pages().
6842 */
6843 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6844 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6845 #endif
6846 } else {
6847 return -EINVAL;
6848 }
6849
6850 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6851 vmx->nested.smm.vmxon = true;
6852 vmx->nested.vmxon = false;
6853
6854 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6855 vmx->nested.smm.guest_mode = true;
6856 }
6857
6858 vmcs12 = get_vmcs12(vcpu);
6859 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6860 return -EFAULT;
6861
6862 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6863 return -EINVAL;
6864
6865 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6866 return 0;
6867
6868 vmx->nested.nested_run_pending =
6869 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6870
6871 vmx->nested.mtf_pending =
6872 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6873
6874 ret = -EINVAL;
6875 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6876 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6877 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6878
6879 if (kvm_state->size <
6880 sizeof(*kvm_state) +
6881 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6882 goto error_guest_mode;
6883
6884 if (copy_from_user(shadow_vmcs12,
6885 user_vmx_nested_state->shadow_vmcs12,
6886 sizeof(*shadow_vmcs12))) {
6887 ret = -EFAULT;
6888 goto error_guest_mode;
6889 }
6890
6891 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6892 !shadow_vmcs12->hdr.shadow_vmcs)
6893 goto error_guest_mode;
6894 }
6895
6896 vmx->nested.has_preemption_timer_deadline = false;
6897 if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6898 vmx->nested.has_preemption_timer_deadline = true;
6899 vmx->nested.preemption_timer_deadline =
6900 kvm_state->hdr.vmx.preemption_timer_deadline;
6901 }
6902
6903 if (nested_vmx_check_controls(vcpu, vmcs12) ||
6904 nested_vmx_check_host_state(vcpu, vmcs12) ||
6905 nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6906 goto error_guest_mode;
6907
6908 vmx->nested.dirty_vmcs12 = true;
6909 vmx->nested.force_msr_bitmap_recalc = true;
6910 ret = nested_vmx_enter_non_root_mode(vcpu, false);
6911 if (ret)
6912 goto error_guest_mode;
6913
6914 if (vmx->nested.mtf_pending)
6915 kvm_make_request(KVM_REQ_EVENT, vcpu);
6916
6917 return 0;
6918
6919 error_guest_mode:
6920 vmx->nested.nested_run_pending = 0;
6921 return ret;
6922 }
6923
nested_vmx_set_vmcs_shadowing_bitmap(void)6924 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6925 {
6926 if (enable_shadow_vmcs) {
6927 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6928 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6929 }
6930 }
6931
6932 /*
6933 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6. Undo
6934 * that madness to get the encoding for comparison.
6935 */
6936 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6937
nested_vmx_calc_vmcs_enum_msr(void)6938 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6939 {
6940 /*
6941 * Note these are the so called "index" of the VMCS field encoding, not
6942 * the index into vmcs12.
6943 */
6944 unsigned int max_idx, idx;
6945 int i;
6946
6947 /*
6948 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6949 * vmcs12, regardless of whether or not the associated feature is
6950 * exposed to L1. Simply find the field with the highest index.
6951 */
6952 max_idx = 0;
6953 for (i = 0; i < nr_vmcs12_fields; i++) {
6954 /* The vmcs12 table is very, very sparsely populated. */
6955 if (!vmcs12_field_offsets[i])
6956 continue;
6957
6958 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6959 if (idx > max_idx)
6960 max_idx = idx;
6961 }
6962
6963 return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6964 }
6965
nested_vmx_setup_pinbased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6966 static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf,
6967 struct nested_vmx_msrs *msrs)
6968 {
6969 msrs->pinbased_ctls_low =
6970 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6971
6972 msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
6973 msrs->pinbased_ctls_high &=
6974 PIN_BASED_EXT_INTR_MASK |
6975 PIN_BASED_NMI_EXITING |
6976 PIN_BASED_VIRTUAL_NMIS |
6977 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6978 msrs->pinbased_ctls_high |=
6979 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6980 PIN_BASED_VMX_PREEMPTION_TIMER;
6981 }
6982
nested_vmx_setup_exit_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6983 static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf,
6984 struct nested_vmx_msrs *msrs)
6985 {
6986 msrs->exit_ctls_low =
6987 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6988
6989 msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
6990 msrs->exit_ctls_high &=
6991 #ifdef CONFIG_X86_64
6992 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6993 #endif
6994 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6995 VM_EXIT_CLEAR_BNDCFGS;
6996 msrs->exit_ctls_high |=
6997 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6998 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6999 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
7000 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
7001
7002 /* We support free control of debug control saving. */
7003 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
7004 }
7005
nested_vmx_setup_entry_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7006 static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf,
7007 struct nested_vmx_msrs *msrs)
7008 {
7009 msrs->entry_ctls_low =
7010 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
7011
7012 msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
7013 msrs->entry_ctls_high &=
7014 #ifdef CONFIG_X86_64
7015 VM_ENTRY_IA32E_MODE |
7016 #endif
7017 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
7018 msrs->entry_ctls_high |=
7019 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
7020 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
7021
7022 /* We support free control of debug control loading. */
7023 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
7024 }
7025
nested_vmx_setup_cpubased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7026 static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf,
7027 struct nested_vmx_msrs *msrs)
7028 {
7029 msrs->procbased_ctls_low =
7030 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
7031
7032 msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
7033 msrs->procbased_ctls_high &=
7034 CPU_BASED_INTR_WINDOW_EXITING |
7035 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
7036 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
7037 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
7038 CPU_BASED_CR3_STORE_EXITING |
7039 #ifdef CONFIG_X86_64
7040 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
7041 #endif
7042 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
7043 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
7044 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
7045 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
7046 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
7047 /*
7048 * We can allow some features even when not supported by the
7049 * hardware. For example, L1 can specify an MSR bitmap - and we
7050 * can use it to avoid exits to L1 - even when L0 runs L2
7051 * without MSR bitmaps.
7052 */
7053 msrs->procbased_ctls_high |=
7054 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
7055 CPU_BASED_USE_MSR_BITMAPS;
7056
7057 /* We support free control of CR3 access interception. */
7058 msrs->procbased_ctls_low &=
7059 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
7060 }
7061
nested_vmx_setup_secondary_ctls(u32 ept_caps,struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7062 static void nested_vmx_setup_secondary_ctls(u32 ept_caps,
7063 struct vmcs_config *vmcs_conf,
7064 struct nested_vmx_msrs *msrs)
7065 {
7066 msrs->secondary_ctls_low = 0;
7067
7068 msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
7069 msrs->secondary_ctls_high &=
7070 SECONDARY_EXEC_DESC |
7071 SECONDARY_EXEC_ENABLE_RDTSCP |
7072 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7073 SECONDARY_EXEC_WBINVD_EXITING |
7074 SECONDARY_EXEC_APIC_REGISTER_VIRT |
7075 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
7076 SECONDARY_EXEC_RDRAND_EXITING |
7077 SECONDARY_EXEC_ENABLE_INVPCID |
7078 SECONDARY_EXEC_ENABLE_VMFUNC |
7079 SECONDARY_EXEC_RDSEED_EXITING |
7080 SECONDARY_EXEC_ENABLE_XSAVES |
7081 SECONDARY_EXEC_TSC_SCALING |
7082 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
7083
7084 /*
7085 * We can emulate "VMCS shadowing," even if the hardware
7086 * doesn't support it.
7087 */
7088 msrs->secondary_ctls_high |=
7089 SECONDARY_EXEC_SHADOW_VMCS;
7090
7091 if (enable_ept) {
7092 /* nested EPT: emulate EPT also to L1 */
7093 msrs->secondary_ctls_high |=
7094 SECONDARY_EXEC_ENABLE_EPT;
7095 msrs->ept_caps =
7096 VMX_EPT_PAGE_WALK_4_BIT |
7097 VMX_EPT_PAGE_WALK_5_BIT |
7098 VMX_EPTP_WB_BIT |
7099 VMX_EPT_INVEPT_BIT |
7100 VMX_EPT_EXECUTE_ONLY_BIT;
7101
7102 msrs->ept_caps &= ept_caps;
7103 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7104 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
7105 VMX_EPT_1GB_PAGE_BIT;
7106 if (enable_ept_ad_bits) {
7107 msrs->secondary_ctls_high |=
7108 SECONDARY_EXEC_ENABLE_PML;
7109 msrs->ept_caps |= VMX_EPT_AD_BIT;
7110 }
7111
7112 /*
7113 * Advertise EPTP switching irrespective of hardware support,
7114 * KVM emulates it in software so long as VMFUNC is supported.
7115 */
7116 if (cpu_has_vmx_vmfunc())
7117 msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
7118 }
7119
7120 /*
7121 * Old versions of KVM use the single-context version without
7122 * checking for support, so declare that it is supported even
7123 * though it is treated as global context. The alternative is
7124 * not failing the single-context invvpid, and it is worse.
7125 */
7126 if (enable_vpid) {
7127 msrs->secondary_ctls_high |=
7128 SECONDARY_EXEC_ENABLE_VPID;
7129 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
7130 VMX_VPID_EXTENT_SUPPORTED_MASK;
7131 }
7132
7133 if (enable_unrestricted_guest)
7134 msrs->secondary_ctls_high |=
7135 SECONDARY_EXEC_UNRESTRICTED_GUEST;
7136
7137 if (flexpriority_enabled)
7138 msrs->secondary_ctls_high |=
7139 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7140
7141 if (enable_sgx)
7142 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
7143 }
7144
nested_vmx_setup_misc_data(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7145 static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf,
7146 struct nested_vmx_msrs *msrs)
7147 {
7148 msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
7149 msrs->misc_low |=
7150 VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
7151 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
7152 VMX_MISC_ACTIVITY_HLT |
7153 VMX_MISC_ACTIVITY_WAIT_SIPI;
7154 msrs->misc_high = 0;
7155 }
7156
nested_vmx_setup_basic(struct nested_vmx_msrs * msrs)7157 static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs)
7158 {
7159 /*
7160 * This MSR reports some information about VMX support. We
7161 * should return information about the VMX we emulate for the
7162 * guest, and the VMCS structure we give it - not about the
7163 * VMX support of the underlying hardware.
7164 */
7165 msrs->basic = vmx_basic_encode_vmcs_info(VMCS12_REVISION, VMCS12_SIZE,
7166 X86_MEMTYPE_WB);
7167
7168 msrs->basic |= VMX_BASIC_TRUE_CTLS;
7169 if (cpu_has_vmx_basic_inout())
7170 msrs->basic |= VMX_BASIC_INOUT;
7171 }
7172
nested_vmx_setup_cr_fixed(struct nested_vmx_msrs * msrs)7173 static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs)
7174 {
7175 /*
7176 * These MSRs specify bits which the guest must keep fixed on
7177 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
7178 * We picked the standard core2 setting.
7179 */
7180 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
7181 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
7182 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
7183 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
7184
7185 /* These MSRs specify bits which the guest must keep fixed off. */
7186 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
7187 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
7188
7189 if (vmx_umip_emulated())
7190 msrs->cr4_fixed1 |= X86_CR4_UMIP;
7191 }
7192
7193 /*
7194 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
7195 * returned for the various VMX controls MSRs when nested VMX is enabled.
7196 * The same values should also be used to verify that vmcs12 control fields are
7197 * valid during nested entry from L1 to L2.
7198 * Each of these control msrs has a low and high 32-bit half: A low bit is on
7199 * if the corresponding bit in the (32-bit) control field *must* be on, and a
7200 * bit in the high half is on if the corresponding bit in the control field
7201 * may be on. See also vmx_control_verify().
7202 */
nested_vmx_setup_ctls_msrs(struct vmcs_config * vmcs_conf,u32 ept_caps)7203 void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
7204 {
7205 struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
7206
7207 /*
7208 * Note that as a general rule, the high half of the MSRs (bits in
7209 * the control fields which may be 1) should be initialized by the
7210 * intersection of the underlying hardware's MSR (i.e., features which
7211 * can be supported) and the list of features we want to expose -
7212 * because they are known to be properly supported in our code.
7213 * Also, usually, the low half of the MSRs (bits which must be 1) can
7214 * be set to 0, meaning that L1 may turn off any of these bits. The
7215 * reason is that if one of these bits is necessary, it will appear
7216 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
7217 * fields of vmcs01 and vmcs02, will turn these bits off - and
7218 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
7219 * These rules have exceptions below.
7220 */
7221 nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs);
7222
7223 nested_vmx_setup_exit_ctls(vmcs_conf, msrs);
7224
7225 nested_vmx_setup_entry_ctls(vmcs_conf, msrs);
7226
7227 nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs);
7228
7229 nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs);
7230
7231 nested_vmx_setup_misc_data(vmcs_conf, msrs);
7232
7233 nested_vmx_setup_basic(msrs);
7234
7235 nested_vmx_setup_cr_fixed(msrs);
7236
7237 msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
7238 }
7239
nested_vmx_hardware_unsetup(void)7240 void nested_vmx_hardware_unsetup(void)
7241 {
7242 int i;
7243
7244 if (enable_shadow_vmcs) {
7245 for (i = 0; i < VMX_BITMAP_NR; i++)
7246 free_page((unsigned long)vmx_bitmap[i]);
7247 }
7248 }
7249
nested_vmx_hardware_setup(int (* exit_handlers[])(struct kvm_vcpu *))7250 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7251 {
7252 int i;
7253
7254 if (!cpu_has_vmx_shadow_vmcs())
7255 enable_shadow_vmcs = 0;
7256 if (enable_shadow_vmcs) {
7257 for (i = 0; i < VMX_BITMAP_NR; i++) {
7258 /*
7259 * The vmx_bitmap is not tied to a VM and so should
7260 * not be charged to a memcg.
7261 */
7262 vmx_bitmap[i] = (unsigned long *)
7263 __get_free_page(GFP_KERNEL);
7264 if (!vmx_bitmap[i]) {
7265 nested_vmx_hardware_unsetup();
7266 return -ENOMEM;
7267 }
7268 }
7269
7270 init_vmcs_shadow_fields();
7271 }
7272
7273 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear;
7274 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch;
7275 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld;
7276 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst;
7277 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
7278 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
7279 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
7280 exit_handlers[EXIT_REASON_VMOFF] = handle_vmxoff;
7281 exit_handlers[EXIT_REASON_VMON] = handle_vmxon;
7282 exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
7283 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
7284 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
7285
7286 return 0;
7287 }
7288
7289 struct kvm_x86_nested_ops vmx_nested_ops = {
7290 .leave_nested = vmx_leave_nested,
7291 .is_exception_vmexit = nested_vmx_is_exception_vmexit,
7292 .check_events = vmx_check_nested_events,
7293 .has_events = vmx_has_nested_events,
7294 .triple_fault = nested_vmx_triple_fault,
7295 .get_state = vmx_get_nested_state,
7296 .set_state = vmx_set_nested_state,
7297 .get_nested_state_pages = vmx_get_nested_state_pages,
7298 .write_log_dirty = nested_vmx_write_pml_buffer,
7299 #ifdef CONFIG_KVM_HYPERV
7300 .enable_evmcs = nested_enable_evmcs,
7301 .get_evmcs_version = nested_get_evmcs_version,
7302 .hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
7303 #endif
7304 };
7305