1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/skbuff.h>
96 #include <linux/kthread.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dsa.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/gro.h>
108 #include <net/pkt_sched.h>
109 #include <net/pkt_cls.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <net/tcx.h>
113 #include <linux/highmem.h>
114 #include <linux/init.h>
115 #include <linux/module.h>
116 #include <linux/netpoll.h>
117 #include <linux/rcupdate.h>
118 #include <linux/delay.h>
119 #include <net/iw_handler.h>
120 #include <asm/current.h>
121 #include <linux/audit.h>
122 #include <linux/dmaengine.h>
123 #include <linux/err.h>
124 #include <linux/ctype.h>
125 #include <linux/if_arp.h>
126 #include <linux/if_vlan.h>
127 #include <linux/ip.h>
128 #include <net/ip.h>
129 #include <net/mpls.h>
130 #include <linux/ipv6.h>
131 #include <linux/in.h>
132 #include <linux/jhash.h>
133 #include <linux/random.h>
134 #include <trace/events/napi.h>
135 #include <trace/events/net.h>
136 #include <trace/events/skb.h>
137 #include <trace/events/qdisc.h>
138 #include <trace/events/xdp.h>
139 #include <linux/inetdevice.h>
140 #include <linux/cpu_rmap.h>
141 #include <linux/static_key.h>
142 #include <linux/hashtable.h>
143 #include <linux/vmalloc.h>
144 #include <linux/if_macvlan.h>
145 #include <linux/errqueue.h>
146 #include <linux/hrtimer.h>
147 #include <linux/netfilter_netdev.h>
148 #include <linux/crash_dump.h>
149 #include <linux/sctp.h>
150 #include <net/udp_tunnel.h>
151 #include <linux/net_namespace.h>
152 #include <linux/indirect_call_wrapper.h>
153 #include <net/devlink.h>
154 #include <linux/pm_runtime.h>
155 #include <linux/prandom.h>
156 #include <linux/once_lite.h>
157 #include <net/netdev_rx_queue.h>
158 #include <net/page_pool/types.h>
159 #include <net/page_pool/helpers.h>
160 #include <net/rps.h>
161 #include <linux/phy_link_topology.h>
162 #include <trace/hooks/net.h>
163 
164 #include "dev.h"
165 #include "devmem.h"
166 #include "net-sysfs.h"
167 
168 static DEFINE_SPINLOCK(ptype_lock);
169 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
170 
171 static int netif_rx_internal(struct sk_buff *skb);
172 static int call_netdevice_notifiers_extack(unsigned long val,
173 					   struct net_device *dev,
174 					   struct netlink_ext_ack *extack);
175 
176 static DEFINE_MUTEX(ifalias_mutex);
177 
178 /* protects napi_hash addition/deletion and napi_gen_id */
179 static DEFINE_SPINLOCK(napi_hash_lock);
180 
181 static unsigned int napi_gen_id = NR_CPUS;
182 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
183 
184 static DECLARE_RWSEM(devnet_rename_sem);
185 
dev_base_seq_inc(struct net * net)186 static inline void dev_base_seq_inc(struct net *net)
187 {
188 	unsigned int val = net->dev_base_seq + 1;
189 
190 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
191 }
192 
dev_name_hash(struct net * net,const char * name)193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
196 
197 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199 
dev_index_hash(struct net * net,int ifindex)200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204 
205 #ifndef CONFIG_PREEMPT_RT
206 
207 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
208 
setup_backlog_napi_threads(char * arg)209 static int __init setup_backlog_napi_threads(char *arg)
210 {
211 	static_branch_enable(&use_backlog_threads_key);
212 	return 0;
213 }
214 early_param("thread_backlog_napi", setup_backlog_napi_threads);
215 
use_backlog_threads(void)216 static bool use_backlog_threads(void)
217 {
218 	return static_branch_unlikely(&use_backlog_threads_key);
219 }
220 
221 #else
222 
use_backlog_threads(void)223 static bool use_backlog_threads(void)
224 {
225 	return true;
226 }
227 
228 #endif
229 
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)230 static inline void backlog_lock_irq_save(struct softnet_data *sd,
231 					 unsigned long *flags)
232 {
233 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
234 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
235 	else
236 		local_irq_save(*flags);
237 }
238 
backlog_lock_irq_disable(struct softnet_data * sd)239 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
240 {
241 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
242 		spin_lock_irq(&sd->input_pkt_queue.lock);
243 	else
244 		local_irq_disable();
245 }
246 
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)247 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
248 					      unsigned long *flags)
249 {
250 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
251 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
252 	else
253 		local_irq_restore(*flags);
254 }
255 
backlog_unlock_irq_enable(struct softnet_data * sd)256 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
257 {
258 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
259 		spin_unlock_irq(&sd->input_pkt_queue.lock);
260 	else
261 		local_irq_enable();
262 }
263 
netdev_name_node_alloc(struct net_device * dev,const char * name)264 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
265 						       const char *name)
266 {
267 	struct netdev_name_node *name_node;
268 
269 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
270 	if (!name_node)
271 		return NULL;
272 	INIT_HLIST_NODE(&name_node->hlist);
273 	name_node->dev = dev;
274 	name_node->name = name;
275 	return name_node;
276 }
277 
278 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)279 netdev_name_node_head_alloc(struct net_device *dev)
280 {
281 	struct netdev_name_node *name_node;
282 
283 	name_node = netdev_name_node_alloc(dev, dev->name);
284 	if (!name_node)
285 		return NULL;
286 	INIT_LIST_HEAD(&name_node->list);
287 	return name_node;
288 }
289 
netdev_name_node_free(struct netdev_name_node * name_node)290 static void netdev_name_node_free(struct netdev_name_node *name_node)
291 {
292 	kfree(name_node);
293 }
294 
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)295 static void netdev_name_node_add(struct net *net,
296 				 struct netdev_name_node *name_node)
297 {
298 	hlist_add_head_rcu(&name_node->hlist,
299 			   dev_name_hash(net, name_node->name));
300 }
301 
netdev_name_node_del(struct netdev_name_node * name_node)302 static void netdev_name_node_del(struct netdev_name_node *name_node)
303 {
304 	hlist_del_rcu(&name_node->hlist);
305 }
306 
netdev_name_node_lookup(struct net * net,const char * name)307 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
308 							const char *name)
309 {
310 	struct hlist_head *head = dev_name_hash(net, name);
311 	struct netdev_name_node *name_node;
312 
313 	hlist_for_each_entry(name_node, head, hlist)
314 		if (!strcmp(name_node->name, name))
315 			return name_node;
316 	return NULL;
317 }
318 
netdev_name_node_lookup_rcu(struct net * net,const char * name)319 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
320 							    const char *name)
321 {
322 	struct hlist_head *head = dev_name_hash(net, name);
323 	struct netdev_name_node *name_node;
324 
325 	hlist_for_each_entry_rcu(name_node, head, hlist)
326 		if (!strcmp(name_node->name, name))
327 			return name_node;
328 	return NULL;
329 }
330 
netdev_name_in_use(struct net * net,const char * name)331 bool netdev_name_in_use(struct net *net, const char *name)
332 {
333 	return netdev_name_node_lookup(net, name);
334 }
335 EXPORT_SYMBOL(netdev_name_in_use);
336 
netdev_name_node_alt_create(struct net_device * dev,const char * name)337 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
338 {
339 	struct netdev_name_node *name_node;
340 	struct net *net = dev_net(dev);
341 
342 	name_node = netdev_name_node_lookup(net, name);
343 	if (name_node)
344 		return -EEXIST;
345 	name_node = netdev_name_node_alloc(dev, name);
346 	if (!name_node)
347 		return -ENOMEM;
348 	netdev_name_node_add(net, name_node);
349 	/* The node that holds dev->name acts as a head of per-device list. */
350 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
351 
352 	return 0;
353 }
354 
netdev_name_node_alt_free(struct rcu_head * head)355 static void netdev_name_node_alt_free(struct rcu_head *head)
356 {
357 	struct netdev_name_node *name_node =
358 		container_of(head, struct netdev_name_node, rcu);
359 
360 	kfree(name_node->name);
361 	netdev_name_node_free(name_node);
362 }
363 
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)364 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
365 {
366 	netdev_name_node_del(name_node);
367 	list_del(&name_node->list);
368 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
369 }
370 
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)371 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
372 {
373 	struct netdev_name_node *name_node;
374 	struct net *net = dev_net(dev);
375 
376 	name_node = netdev_name_node_lookup(net, name);
377 	if (!name_node)
378 		return -ENOENT;
379 	/* lookup might have found our primary name or a name belonging
380 	 * to another device.
381 	 */
382 	if (name_node == dev->name_node || name_node->dev != dev)
383 		return -EINVAL;
384 
385 	__netdev_name_node_alt_destroy(name_node);
386 	return 0;
387 }
388 
netdev_name_node_alt_flush(struct net_device * dev)389 static void netdev_name_node_alt_flush(struct net_device *dev)
390 {
391 	struct netdev_name_node *name_node, *tmp;
392 
393 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
394 		list_del(&name_node->list);
395 		netdev_name_node_alt_free(&name_node->rcu);
396 	}
397 }
398 
399 /* Device list insertion */
list_netdevice(struct net_device * dev)400 static void list_netdevice(struct net_device *dev)
401 {
402 	struct netdev_name_node *name_node;
403 	struct net *net = dev_net(dev);
404 
405 	ASSERT_RTNL();
406 
407 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
408 	netdev_name_node_add(net, dev->name_node);
409 	hlist_add_head_rcu(&dev->index_hlist,
410 			   dev_index_hash(net, dev->ifindex));
411 
412 	netdev_for_each_altname(dev, name_node)
413 		netdev_name_node_add(net, name_node);
414 
415 	/* We reserved the ifindex, this can't fail */
416 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
417 
418 	dev_base_seq_inc(net);
419 }
420 
421 /* Device list removal
422  * caller must respect a RCU grace period before freeing/reusing dev
423  */
unlist_netdevice(struct net_device * dev)424 static void unlist_netdevice(struct net_device *dev)
425 {
426 	struct netdev_name_node *name_node;
427 	struct net *net = dev_net(dev);
428 
429 	ASSERT_RTNL();
430 
431 	xa_erase(&net->dev_by_index, dev->ifindex);
432 
433 	netdev_for_each_altname(dev, name_node)
434 		netdev_name_node_del(name_node);
435 
436 	/* Unlink dev from the device chain */
437 	list_del_rcu(&dev->dev_list);
438 	netdev_name_node_del(dev->name_node);
439 	hlist_del_rcu(&dev->index_hlist);
440 
441 	dev_base_seq_inc(dev_net(dev));
442 }
443 
444 /*
445  *	Our notifier list
446  */
447 
448 static RAW_NOTIFIER_HEAD(netdev_chain);
449 
450 /*
451  *	Device drivers call our routines to queue packets here. We empty the
452  *	queue in the local softnet handler.
453  */
454 
455 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
456 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
457 };
458 EXPORT_PER_CPU_SYMBOL(softnet_data);
459 
460 /* Page_pool has a lockless array/stack to alloc/recycle pages.
461  * PP consumers must pay attention to run APIs in the appropriate context
462  * (e.g. NAPI context).
463  */
464 static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
465 
466 #ifdef CONFIG_LOCKDEP
467 /*
468  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
469  * according to dev->type
470  */
471 static const unsigned short netdev_lock_type[] = {
472 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
473 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
474 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
475 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
476 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
477 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
478 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
479 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
480 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
481 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
482 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
483 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
484 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
485 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
486 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
487 
488 static const char *const netdev_lock_name[] = {
489 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
490 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
491 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
492 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
493 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
494 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
495 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
496 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
497 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
498 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
499 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
500 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
501 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
502 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
503 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
504 
505 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
506 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
507 
netdev_lock_pos(unsigned short dev_type)508 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
509 {
510 	int i;
511 
512 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
513 		if (netdev_lock_type[i] == dev_type)
514 			return i;
515 	/* the last key is used by default */
516 	return ARRAY_SIZE(netdev_lock_type) - 1;
517 }
518 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520 						 unsigned short dev_type)
521 {
522 	int i;
523 
524 	i = netdev_lock_pos(dev_type);
525 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
526 				   netdev_lock_name[i]);
527 }
528 
netdev_set_addr_lockdep_class(struct net_device * dev)529 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
530 {
531 	int i;
532 
533 	i = netdev_lock_pos(dev->type);
534 	lockdep_set_class_and_name(&dev->addr_list_lock,
535 				   &netdev_addr_lock_key[i],
536 				   netdev_lock_name[i]);
537 }
538 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)539 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
540 						 unsigned short dev_type)
541 {
542 }
543 
netdev_set_addr_lockdep_class(struct net_device * dev)544 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
545 {
546 }
547 #endif
548 
549 /*******************************************************************************
550  *
551  *		Protocol management and registration routines
552  *
553  *******************************************************************************/
554 
555 
556 /*
557  *	Add a protocol ID to the list. Now that the input handler is
558  *	smarter we can dispense with all the messy stuff that used to be
559  *	here.
560  *
561  *	BEWARE!!! Protocol handlers, mangling input packets,
562  *	MUST BE last in hash buckets and checking protocol handlers
563  *	MUST start from promiscuous ptype_all chain in net_bh.
564  *	It is true now, do not change it.
565  *	Explanation follows: if protocol handler, mangling packet, will
566  *	be the first on list, it is not able to sense, that packet
567  *	is cloned and should be copied-on-write, so that it will
568  *	change it and subsequent readers will get broken packet.
569  *							--ANK (980803)
570  */
571 
ptype_head(const struct packet_type * pt)572 static inline struct list_head *ptype_head(const struct packet_type *pt)
573 {
574 	struct list_head vendor_pt = { .next  = NULL, };
575 
576 	trace_android_vh_ptype_head(pt, &vendor_pt);
577 	if (vendor_pt.next)
578 		return vendor_pt.next;
579 
580 	if (pt->type == htons(ETH_P_ALL))
581 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
582 	else
583 		return pt->dev ? &pt->dev->ptype_specific :
584 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
585 }
586 
587 /**
588  *	dev_add_pack - add packet handler
589  *	@pt: packet type declaration
590  *
591  *	Add a protocol handler to the networking stack. The passed &packet_type
592  *	is linked into kernel lists and may not be freed until it has been
593  *	removed from the kernel lists.
594  *
595  *	This call does not sleep therefore it can not
596  *	guarantee all CPU's that are in middle of receiving packets
597  *	will see the new packet type (until the next received packet).
598  */
599 
dev_add_pack(struct packet_type * pt)600 void dev_add_pack(struct packet_type *pt)
601 {
602 	struct list_head *head = ptype_head(pt);
603 
604 	spin_lock(&ptype_lock);
605 	list_add_rcu(&pt->list, head);
606 	spin_unlock(&ptype_lock);
607 }
608 EXPORT_SYMBOL(dev_add_pack);
609 
610 /**
611  *	__dev_remove_pack	 - remove packet handler
612  *	@pt: packet type declaration
613  *
614  *	Remove a protocol handler that was previously added to the kernel
615  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
616  *	from the kernel lists and can be freed or reused once this function
617  *	returns.
618  *
619  *      The packet type might still be in use by receivers
620  *	and must not be freed until after all the CPU's have gone
621  *	through a quiescent state.
622  */
__dev_remove_pack(struct packet_type * pt)623 void __dev_remove_pack(struct packet_type *pt)
624 {
625 	struct list_head *head = ptype_head(pt);
626 	struct packet_type *pt1;
627 
628 	spin_lock(&ptype_lock);
629 
630 	list_for_each_entry(pt1, head, list) {
631 		if (pt == pt1) {
632 			list_del_rcu(&pt->list);
633 			goto out;
634 		}
635 	}
636 
637 	pr_warn("dev_remove_pack: %p not found\n", pt);
638 out:
639 	spin_unlock(&ptype_lock);
640 }
641 EXPORT_SYMBOL(__dev_remove_pack);
642 
643 /**
644  *	dev_remove_pack	 - remove packet handler
645  *	@pt: packet type declaration
646  *
647  *	Remove a protocol handler that was previously added to the kernel
648  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
649  *	from the kernel lists and can be freed or reused once this function
650  *	returns.
651  *
652  *	This call sleeps to guarantee that no CPU is looking at the packet
653  *	type after return.
654  */
dev_remove_pack(struct packet_type * pt)655 void dev_remove_pack(struct packet_type *pt)
656 {
657 	__dev_remove_pack(pt);
658 
659 	synchronize_net();
660 }
661 EXPORT_SYMBOL(dev_remove_pack);
662 
663 
664 /*******************************************************************************
665  *
666  *			    Device Interface Subroutines
667  *
668  *******************************************************************************/
669 
670 /**
671  *	dev_get_iflink	- get 'iflink' value of a interface
672  *	@dev: targeted interface
673  *
674  *	Indicates the ifindex the interface is linked to.
675  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
676  */
677 
dev_get_iflink(const struct net_device * dev)678 int dev_get_iflink(const struct net_device *dev)
679 {
680 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681 		return dev->netdev_ops->ndo_get_iflink(dev);
682 
683 	return READ_ONCE(dev->ifindex);
684 }
685 EXPORT_SYMBOL(dev_get_iflink);
686 
687 /**
688  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
689  *	@dev: targeted interface
690  *	@skb: The packet.
691  *
692  *	For better visibility of tunnel traffic OVS needs to retrieve
693  *	egress tunnel information for a packet. Following API allows
694  *	user to get this info.
695  */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)696 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
697 {
698 	struct ip_tunnel_info *info;
699 
700 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
701 		return -EINVAL;
702 
703 	info = skb_tunnel_info_unclone(skb);
704 	if (!info)
705 		return -ENOMEM;
706 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
707 		return -EINVAL;
708 
709 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
710 }
711 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
712 
dev_fwd_path(struct net_device_path_stack * stack)713 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
714 {
715 	int k = stack->num_paths++;
716 
717 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
718 		return NULL;
719 
720 	return &stack->path[k];
721 }
722 
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)723 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
724 			  struct net_device_path_stack *stack)
725 {
726 	const struct net_device *last_dev;
727 	struct net_device_path_ctx ctx = {
728 		.dev	= dev,
729 	};
730 	struct net_device_path *path;
731 	int ret = 0;
732 
733 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
734 	stack->num_paths = 0;
735 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
736 		last_dev = ctx.dev;
737 		path = dev_fwd_path(stack);
738 		if (!path)
739 			return -1;
740 
741 		memset(path, 0, sizeof(struct net_device_path));
742 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
743 		if (ret < 0)
744 			return -1;
745 
746 		if (WARN_ON_ONCE(last_dev == ctx.dev))
747 			return -1;
748 	}
749 
750 	if (!ctx.dev)
751 		return ret;
752 
753 	path = dev_fwd_path(stack);
754 	if (!path)
755 		return -1;
756 	path->type = DEV_PATH_ETHERNET;
757 	path->dev = ctx.dev;
758 
759 	return ret;
760 }
761 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
762 
763 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)764 static struct napi_struct *napi_by_id(unsigned int napi_id)
765 {
766 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
767 	struct napi_struct *napi;
768 
769 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
770 		if (napi->napi_id == napi_id)
771 			return napi;
772 
773 	return NULL;
774 }
775 
776 /* must be called under rcu_read_lock(), as we dont take a reference */
netdev_napi_by_id(struct net * net,unsigned int napi_id)777 struct napi_struct *netdev_napi_by_id(struct net *net, unsigned int napi_id)
778 {
779 	struct napi_struct *napi;
780 
781 	napi = napi_by_id(napi_id);
782 	if (!napi)
783 		return NULL;
784 
785 	if (WARN_ON_ONCE(!napi->dev))
786 		return NULL;
787 	if (!net_eq(net, dev_net(napi->dev)))
788 		return NULL;
789 
790 	return napi;
791 }
792 
793 /**
794  *	__dev_get_by_name	- find a device by its name
795  *	@net: the applicable net namespace
796  *	@name: name to find
797  *
798  *	Find an interface by name. Must be called under RTNL semaphore.
799  *	If the name is found a pointer to the device is returned.
800  *	If the name is not found then %NULL is returned. The
801  *	reference counters are not incremented so the caller must be
802  *	careful with locks.
803  */
804 
__dev_get_by_name(struct net * net,const char * name)805 struct net_device *__dev_get_by_name(struct net *net, const char *name)
806 {
807 	struct netdev_name_node *node_name;
808 
809 	node_name = netdev_name_node_lookup(net, name);
810 	return node_name ? node_name->dev : NULL;
811 }
812 EXPORT_SYMBOL(__dev_get_by_name);
813 
814 /**
815  * dev_get_by_name_rcu	- find a device by its name
816  * @net: the applicable net namespace
817  * @name: name to find
818  *
819  * Find an interface by name.
820  * If the name is found a pointer to the device is returned.
821  * If the name is not found then %NULL is returned.
822  * The reference counters are not incremented so the caller must be
823  * careful with locks. The caller must hold RCU lock.
824  */
825 
dev_get_by_name_rcu(struct net * net,const char * name)826 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
827 {
828 	struct netdev_name_node *node_name;
829 
830 	node_name = netdev_name_node_lookup_rcu(net, name);
831 	return node_name ? node_name->dev : NULL;
832 }
833 EXPORT_SYMBOL(dev_get_by_name_rcu);
834 
835 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)836 struct net_device *dev_get_by_name(struct net *net, const char *name)
837 {
838 	struct net_device *dev;
839 
840 	rcu_read_lock();
841 	dev = dev_get_by_name_rcu(net, name);
842 	dev_hold(dev);
843 	rcu_read_unlock();
844 	return dev;
845 }
846 EXPORT_SYMBOL(dev_get_by_name);
847 
848 /**
849  *	netdev_get_by_name() - find a device by its name
850  *	@net: the applicable net namespace
851  *	@name: name to find
852  *	@tracker: tracking object for the acquired reference
853  *	@gfp: allocation flags for the tracker
854  *
855  *	Find an interface by name. This can be called from any
856  *	context and does its own locking. The returned handle has
857  *	the usage count incremented and the caller must use netdev_put() to
858  *	release it when it is no longer needed. %NULL is returned if no
859  *	matching device is found.
860  */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)861 struct net_device *netdev_get_by_name(struct net *net, const char *name,
862 				      netdevice_tracker *tracker, gfp_t gfp)
863 {
864 	struct net_device *dev;
865 
866 	dev = dev_get_by_name(net, name);
867 	if (dev)
868 		netdev_tracker_alloc(dev, tracker, gfp);
869 	return dev;
870 }
871 EXPORT_SYMBOL(netdev_get_by_name);
872 
873 /**
874  *	__dev_get_by_index - find a device by its ifindex
875  *	@net: the applicable net namespace
876  *	@ifindex: index of device
877  *
878  *	Search for an interface by index. Returns %NULL if the device
879  *	is not found or a pointer to the device. The device has not
880  *	had its reference counter increased so the caller must be careful
881  *	about locking. The caller must hold the RTNL semaphore.
882  */
883 
__dev_get_by_index(struct net * net,int ifindex)884 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
885 {
886 	struct net_device *dev;
887 	struct hlist_head *head = dev_index_hash(net, ifindex);
888 
889 	hlist_for_each_entry(dev, head, index_hlist)
890 		if (dev->ifindex == ifindex)
891 			return dev;
892 
893 	return NULL;
894 }
895 EXPORT_SYMBOL(__dev_get_by_index);
896 
897 /**
898  *	dev_get_by_index_rcu - find a device by its ifindex
899  *	@net: the applicable net namespace
900  *	@ifindex: index of device
901  *
902  *	Search for an interface by index. Returns %NULL if the device
903  *	is not found or a pointer to the device. The device has not
904  *	had its reference counter increased so the caller must be careful
905  *	about locking. The caller must hold RCU lock.
906  */
907 
dev_get_by_index_rcu(struct net * net,int ifindex)908 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
909 {
910 	struct net_device *dev;
911 	struct hlist_head *head = dev_index_hash(net, ifindex);
912 
913 	hlist_for_each_entry_rcu(dev, head, index_hlist)
914 		if (dev->ifindex == ifindex)
915 			return dev;
916 
917 	return NULL;
918 }
919 EXPORT_SYMBOL(dev_get_by_index_rcu);
920 
921 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)922 struct net_device *dev_get_by_index(struct net *net, int ifindex)
923 {
924 	struct net_device *dev;
925 
926 	rcu_read_lock();
927 	dev = dev_get_by_index_rcu(net, ifindex);
928 	dev_hold(dev);
929 	rcu_read_unlock();
930 	return dev;
931 }
932 EXPORT_SYMBOL(dev_get_by_index);
933 
934 /**
935  *	netdev_get_by_index() - find a device by its ifindex
936  *	@net: the applicable net namespace
937  *	@ifindex: index of device
938  *	@tracker: tracking object for the acquired reference
939  *	@gfp: allocation flags for the tracker
940  *
941  *	Search for an interface by index. Returns NULL if the device
942  *	is not found or a pointer to the device. The device returned has
943  *	had a reference added and the pointer is safe until the user calls
944  *	netdev_put() to indicate they have finished with it.
945  */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)946 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
947 				       netdevice_tracker *tracker, gfp_t gfp)
948 {
949 	struct net_device *dev;
950 
951 	dev = dev_get_by_index(net, ifindex);
952 	if (dev)
953 		netdev_tracker_alloc(dev, tracker, gfp);
954 	return dev;
955 }
956 EXPORT_SYMBOL(netdev_get_by_index);
957 
958 /**
959  *	dev_get_by_napi_id - find a device by napi_id
960  *	@napi_id: ID of the NAPI struct
961  *
962  *	Search for an interface by NAPI ID. Returns %NULL if the device
963  *	is not found or a pointer to the device. The device has not had
964  *	its reference counter increased so the caller must be careful
965  *	about locking. The caller must hold RCU lock.
966  */
967 
dev_get_by_napi_id(unsigned int napi_id)968 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
969 {
970 	struct napi_struct *napi;
971 
972 	WARN_ON_ONCE(!rcu_read_lock_held());
973 
974 	if (napi_id < MIN_NAPI_ID)
975 		return NULL;
976 
977 	napi = napi_by_id(napi_id);
978 
979 	return napi ? napi->dev : NULL;
980 }
981 EXPORT_SYMBOL(dev_get_by_napi_id);
982 
983 static DEFINE_SEQLOCK(netdev_rename_lock);
984 
netdev_copy_name(struct net_device * dev,char * name)985 void netdev_copy_name(struct net_device *dev, char *name)
986 {
987 	unsigned int seq;
988 
989 	do {
990 		seq = read_seqbegin(&netdev_rename_lock);
991 		strscpy(name, dev->name, IFNAMSIZ);
992 	} while (read_seqretry(&netdev_rename_lock, seq));
993 }
994 
995 /**
996  *	netdev_get_name - get a netdevice name, knowing its ifindex.
997  *	@net: network namespace
998  *	@name: a pointer to the buffer where the name will be stored.
999  *	@ifindex: the ifindex of the interface to get the name from.
1000  */
netdev_get_name(struct net * net,char * name,int ifindex)1001 int netdev_get_name(struct net *net, char *name, int ifindex)
1002 {
1003 	struct net_device *dev;
1004 	int ret;
1005 
1006 	rcu_read_lock();
1007 
1008 	dev = dev_get_by_index_rcu(net, ifindex);
1009 	if (!dev) {
1010 		ret = -ENODEV;
1011 		goto out;
1012 	}
1013 
1014 	netdev_copy_name(dev, name);
1015 
1016 	ret = 0;
1017 out:
1018 	rcu_read_unlock();
1019 	return ret;
1020 }
1021 EXPORT_SYMBOL_GPL(netdev_get_name);
1022 
dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)1023 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1024 			 const char *ha)
1025 {
1026 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1027 }
1028 
1029 /**
1030  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1031  *	@net: the applicable net namespace
1032  *	@type: media type of device
1033  *	@ha: hardware address
1034  *
1035  *	Search for an interface by MAC address. Returns NULL if the device
1036  *	is not found or a pointer to the device.
1037  *	The caller must hold RCU.
1038  *	The returned device has not had its ref count increased
1039  *	and the caller must therefore be careful about locking
1040  *
1041  */
1042 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1043 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1044 				       const char *ha)
1045 {
1046 	struct net_device *dev;
1047 
1048 	for_each_netdev_rcu(net, dev)
1049 		if (dev_addr_cmp(dev, type, ha))
1050 			return dev;
1051 
1052 	return NULL;
1053 }
1054 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1055 
1056 /**
1057  * dev_getbyhwaddr() - find a device by its hardware address
1058  * @net: the applicable net namespace
1059  * @type: media type of device
1060  * @ha: hardware address
1061  *
1062  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1063  * rtnl_lock.
1064  *
1065  * Context: rtnl_lock() must be held.
1066  * Return: pointer to the net_device, or NULL if not found
1067  */
dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1068 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1069 				   const char *ha)
1070 {
1071 	struct net_device *dev;
1072 
1073 	ASSERT_RTNL();
1074 	for_each_netdev(net, dev)
1075 		if (dev_addr_cmp(dev, type, ha))
1076 			return dev;
1077 
1078 	return NULL;
1079 }
1080 EXPORT_SYMBOL(dev_getbyhwaddr);
1081 
dev_getfirstbyhwtype(struct net * net,unsigned short type)1082 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1083 {
1084 	struct net_device *dev, *ret = NULL;
1085 
1086 	rcu_read_lock();
1087 	for_each_netdev_rcu(net, dev)
1088 		if (dev->type == type) {
1089 			dev_hold(dev);
1090 			ret = dev;
1091 			break;
1092 		}
1093 	rcu_read_unlock();
1094 	return ret;
1095 }
1096 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1097 
1098 /**
1099  *	__dev_get_by_flags - find any device with given flags
1100  *	@net: the applicable net namespace
1101  *	@if_flags: IFF_* values
1102  *	@mask: bitmask of bits in if_flags to check
1103  *
1104  *	Search for any interface with the given flags. Returns NULL if a device
1105  *	is not found or a pointer to the device. Must be called inside
1106  *	rtnl_lock(), and result refcount is unchanged.
1107  */
1108 
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1109 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1110 				      unsigned short mask)
1111 {
1112 	struct net_device *dev, *ret;
1113 
1114 	ASSERT_RTNL();
1115 
1116 	ret = NULL;
1117 	for_each_netdev(net, dev) {
1118 		if (((dev->flags ^ if_flags) & mask) == 0) {
1119 			ret = dev;
1120 			break;
1121 		}
1122 	}
1123 	return ret;
1124 }
1125 EXPORT_SYMBOL(__dev_get_by_flags);
1126 
1127 /**
1128  *	dev_valid_name - check if name is okay for network device
1129  *	@name: name string
1130  *
1131  *	Network device names need to be valid file names to
1132  *	allow sysfs to work.  We also disallow any kind of
1133  *	whitespace.
1134  */
dev_valid_name(const char * name)1135 bool dev_valid_name(const char *name)
1136 {
1137 	if (*name == '\0')
1138 		return false;
1139 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1140 		return false;
1141 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1142 		return false;
1143 
1144 	while (*name) {
1145 		if (*name == '/' || *name == ':' || isspace(*name))
1146 			return false;
1147 		name++;
1148 	}
1149 	return true;
1150 }
1151 EXPORT_SYMBOL(dev_valid_name);
1152 
1153 /**
1154  *	__dev_alloc_name - allocate a name for a device
1155  *	@net: network namespace to allocate the device name in
1156  *	@name: name format string
1157  *	@res: result name string
1158  *
1159  *	Passed a format string - eg "lt%d" it will try and find a suitable
1160  *	id. It scans list of devices to build up a free map, then chooses
1161  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1162  *	while allocating the name and adding the device in order to avoid
1163  *	duplicates.
1164  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1165  *	Returns the number of the unit assigned or a negative errno code.
1166  */
1167 
__dev_alloc_name(struct net * net,const char * name,char * res)1168 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1169 {
1170 	int i = 0;
1171 	const char *p;
1172 	const int max_netdevices = 8*PAGE_SIZE;
1173 	unsigned long *inuse;
1174 	struct net_device *d;
1175 	char buf[IFNAMSIZ];
1176 
1177 	/* Verify the string as this thing may have come from the user.
1178 	 * There must be one "%d" and no other "%" characters.
1179 	 */
1180 	p = strchr(name, '%');
1181 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1182 		return -EINVAL;
1183 
1184 	/* Use one page as a bit array of possible slots */
1185 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1186 	if (!inuse)
1187 		return -ENOMEM;
1188 
1189 	for_each_netdev(net, d) {
1190 		struct netdev_name_node *name_node;
1191 
1192 		netdev_for_each_altname(d, name_node) {
1193 			if (!sscanf(name_node->name, name, &i))
1194 				continue;
1195 			if (i < 0 || i >= max_netdevices)
1196 				continue;
1197 
1198 			/* avoid cases where sscanf is not exact inverse of printf */
1199 			snprintf(buf, IFNAMSIZ, name, i);
1200 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1201 				__set_bit(i, inuse);
1202 		}
1203 		if (!sscanf(d->name, name, &i))
1204 			continue;
1205 		if (i < 0 || i >= max_netdevices)
1206 			continue;
1207 
1208 		/* avoid cases where sscanf is not exact inverse of printf */
1209 		snprintf(buf, IFNAMSIZ, name, i);
1210 		if (!strncmp(buf, d->name, IFNAMSIZ))
1211 			__set_bit(i, inuse);
1212 	}
1213 
1214 	i = find_first_zero_bit(inuse, max_netdevices);
1215 	bitmap_free(inuse);
1216 	if (i == max_netdevices)
1217 		return -ENFILE;
1218 
1219 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1220 	strscpy(buf, name, IFNAMSIZ);
1221 	snprintf(res, IFNAMSIZ, buf, i);
1222 	return i;
1223 }
1224 
1225 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1226 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1227 			       const char *want_name, char *out_name,
1228 			       int dup_errno)
1229 {
1230 	if (!dev_valid_name(want_name))
1231 		return -EINVAL;
1232 
1233 	if (strchr(want_name, '%'))
1234 		return __dev_alloc_name(net, want_name, out_name);
1235 
1236 	if (netdev_name_in_use(net, want_name))
1237 		return -dup_errno;
1238 	if (out_name != want_name)
1239 		strscpy(out_name, want_name, IFNAMSIZ);
1240 	return 0;
1241 }
1242 
1243 /**
1244  *	dev_alloc_name - allocate a name for a device
1245  *	@dev: device
1246  *	@name: name format string
1247  *
1248  *	Passed a format string - eg "lt%d" it will try and find a suitable
1249  *	id. It scans list of devices to build up a free map, then chooses
1250  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1251  *	while allocating the name and adding the device in order to avoid
1252  *	duplicates.
1253  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1254  *	Returns the number of the unit assigned or a negative errno code.
1255  */
1256 
dev_alloc_name(struct net_device * dev,const char * name)1257 int dev_alloc_name(struct net_device *dev, const char *name)
1258 {
1259 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1260 }
1261 EXPORT_SYMBOL(dev_alloc_name);
1262 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1263 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1264 			      const char *name)
1265 {
1266 	int ret;
1267 
1268 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1269 	return ret < 0 ? ret : 0;
1270 }
1271 
1272 /**
1273  *	dev_change_name - change name of a device
1274  *	@dev: device
1275  *	@newname: name (or format string) must be at least IFNAMSIZ
1276  *
1277  *	Change name of a device, can pass format strings "eth%d".
1278  *	for wildcarding.
1279  */
dev_change_name(struct net_device * dev,const char * newname)1280 int dev_change_name(struct net_device *dev, const char *newname)
1281 {
1282 	unsigned char old_assign_type;
1283 	char oldname[IFNAMSIZ];
1284 	int err = 0;
1285 	int ret;
1286 	struct net *net;
1287 
1288 	ASSERT_RTNL();
1289 	BUG_ON(!dev_net(dev));
1290 
1291 	net = dev_net(dev);
1292 
1293 	down_write(&devnet_rename_sem);
1294 
1295 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1296 		up_write(&devnet_rename_sem);
1297 		return 0;
1298 	}
1299 
1300 	memcpy(oldname, dev->name, IFNAMSIZ);
1301 
1302 	write_seqlock_bh(&netdev_rename_lock);
1303 	err = dev_get_valid_name(net, dev, newname);
1304 	write_sequnlock_bh(&netdev_rename_lock);
1305 
1306 	if (err < 0) {
1307 		up_write(&devnet_rename_sem);
1308 		return err;
1309 	}
1310 
1311 	if (oldname[0] && !strchr(oldname, '%'))
1312 		netdev_info(dev, "renamed from %s%s\n", oldname,
1313 			    dev->flags & IFF_UP ? " (while UP)" : "");
1314 
1315 	old_assign_type = dev->name_assign_type;
1316 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1317 
1318 rollback:
1319 	ret = device_rename(&dev->dev, dev->name);
1320 	if (ret) {
1321 		write_seqlock_bh(&netdev_rename_lock);
1322 		memcpy(dev->name, oldname, IFNAMSIZ);
1323 		write_sequnlock_bh(&netdev_rename_lock);
1324 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1325 		up_write(&devnet_rename_sem);
1326 		return ret;
1327 	}
1328 
1329 	up_write(&devnet_rename_sem);
1330 
1331 	netdev_adjacent_rename_links(dev, oldname);
1332 
1333 	netdev_name_node_del(dev->name_node);
1334 
1335 	synchronize_net();
1336 
1337 	netdev_name_node_add(net, dev->name_node);
1338 
1339 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1340 	ret = notifier_to_errno(ret);
1341 
1342 	if (ret) {
1343 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1344 		if (err >= 0) {
1345 			err = ret;
1346 			down_write(&devnet_rename_sem);
1347 			write_seqlock_bh(&netdev_rename_lock);
1348 			memcpy(dev->name, oldname, IFNAMSIZ);
1349 			write_sequnlock_bh(&netdev_rename_lock);
1350 			memcpy(oldname, newname, IFNAMSIZ);
1351 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1352 			old_assign_type = NET_NAME_RENAMED;
1353 			goto rollback;
1354 		} else {
1355 			netdev_err(dev, "name change rollback failed: %d\n",
1356 				   ret);
1357 		}
1358 	}
1359 
1360 	return err;
1361 }
1362 
1363 /**
1364  *	dev_set_alias - change ifalias of a device
1365  *	@dev: device
1366  *	@alias: name up to IFALIASZ
1367  *	@len: limit of bytes to copy from info
1368  *
1369  *	Set ifalias for a device,
1370  */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1371 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1372 {
1373 	struct dev_ifalias *new_alias = NULL;
1374 
1375 	if (len >= IFALIASZ)
1376 		return -EINVAL;
1377 
1378 	if (len) {
1379 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1380 		if (!new_alias)
1381 			return -ENOMEM;
1382 
1383 		memcpy(new_alias->ifalias, alias, len);
1384 		new_alias->ifalias[len] = 0;
1385 	}
1386 
1387 	mutex_lock(&ifalias_mutex);
1388 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1389 					mutex_is_locked(&ifalias_mutex));
1390 	mutex_unlock(&ifalias_mutex);
1391 
1392 	if (new_alias)
1393 		kfree_rcu(new_alias, rcuhead);
1394 
1395 	return len;
1396 }
1397 EXPORT_SYMBOL(dev_set_alias);
1398 
1399 /**
1400  *	dev_get_alias - get ifalias of a device
1401  *	@dev: device
1402  *	@name: buffer to store name of ifalias
1403  *	@len: size of buffer
1404  *
1405  *	get ifalias for a device.  Caller must make sure dev cannot go
1406  *	away,  e.g. rcu read lock or own a reference count to device.
1407  */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1408 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1409 {
1410 	const struct dev_ifalias *alias;
1411 	int ret = 0;
1412 
1413 	rcu_read_lock();
1414 	alias = rcu_dereference(dev->ifalias);
1415 	if (alias)
1416 		ret = snprintf(name, len, "%s", alias->ifalias);
1417 	rcu_read_unlock();
1418 
1419 	return ret;
1420 }
1421 
1422 /**
1423  *	netdev_features_change - device changes features
1424  *	@dev: device to cause notification
1425  *
1426  *	Called to indicate a device has changed features.
1427  */
netdev_features_change(struct net_device * dev)1428 void netdev_features_change(struct net_device *dev)
1429 {
1430 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1431 }
1432 EXPORT_SYMBOL(netdev_features_change);
1433 
1434 /**
1435  *	netdev_state_change - device changes state
1436  *	@dev: device to cause notification
1437  *
1438  *	Called to indicate a device has changed state. This function calls
1439  *	the notifier chains for netdev_chain and sends a NEWLINK message
1440  *	to the routing socket.
1441  */
netdev_state_change(struct net_device * dev)1442 void netdev_state_change(struct net_device *dev)
1443 {
1444 	if (dev->flags & IFF_UP) {
1445 		struct netdev_notifier_change_info change_info = {
1446 			.info.dev = dev,
1447 		};
1448 
1449 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1450 					      &change_info.info);
1451 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1452 	}
1453 }
1454 EXPORT_SYMBOL(netdev_state_change);
1455 
1456 /**
1457  * __netdev_notify_peers - notify network peers about existence of @dev,
1458  * to be called when rtnl lock is already held.
1459  * @dev: network device
1460  *
1461  * Generate traffic such that interested network peers are aware of
1462  * @dev, such as by generating a gratuitous ARP. This may be used when
1463  * a device wants to inform the rest of the network about some sort of
1464  * reconfiguration such as a failover event or virtual machine
1465  * migration.
1466  */
__netdev_notify_peers(struct net_device * dev)1467 void __netdev_notify_peers(struct net_device *dev)
1468 {
1469 	ASSERT_RTNL();
1470 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1471 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1472 }
1473 EXPORT_SYMBOL(__netdev_notify_peers);
1474 
1475 /**
1476  * netdev_notify_peers - notify network peers about existence of @dev
1477  * @dev: network device
1478  *
1479  * Generate traffic such that interested network peers are aware of
1480  * @dev, such as by generating a gratuitous ARP. This may be used when
1481  * a device wants to inform the rest of the network about some sort of
1482  * reconfiguration such as a failover event or virtual machine
1483  * migration.
1484  */
netdev_notify_peers(struct net_device * dev)1485 void netdev_notify_peers(struct net_device *dev)
1486 {
1487 	rtnl_lock();
1488 	__netdev_notify_peers(dev);
1489 	rtnl_unlock();
1490 }
1491 EXPORT_SYMBOL(netdev_notify_peers);
1492 
1493 static int napi_threaded_poll(void *data);
1494 
napi_kthread_create(struct napi_struct * n)1495 static int napi_kthread_create(struct napi_struct *n)
1496 {
1497 	int err = 0;
1498 
1499 	/* Create and wake up the kthread once to put it in
1500 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1501 	 * warning and work with loadavg.
1502 	 */
1503 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1504 				n->dev->name, n->napi_id);
1505 	if (IS_ERR(n->thread)) {
1506 		err = PTR_ERR(n->thread);
1507 		pr_err("kthread_run failed with err %d\n", err);
1508 		n->thread = NULL;
1509 	}
1510 
1511 	return err;
1512 }
1513 
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1514 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1515 {
1516 	const struct net_device_ops *ops = dev->netdev_ops;
1517 	int ret;
1518 
1519 	ASSERT_RTNL();
1520 	dev_addr_check(dev);
1521 
1522 	if (!netif_device_present(dev)) {
1523 		/* may be detached because parent is runtime-suspended */
1524 		if (dev->dev.parent)
1525 			pm_runtime_resume(dev->dev.parent);
1526 		if (!netif_device_present(dev))
1527 			return -ENODEV;
1528 	}
1529 
1530 	/* Block netpoll from trying to do any rx path servicing.
1531 	 * If we don't do this there is a chance ndo_poll_controller
1532 	 * or ndo_poll may be running while we open the device
1533 	 */
1534 	netpoll_poll_disable(dev);
1535 
1536 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1537 	ret = notifier_to_errno(ret);
1538 	if (ret)
1539 		return ret;
1540 
1541 	set_bit(__LINK_STATE_START, &dev->state);
1542 
1543 	if (ops->ndo_validate_addr)
1544 		ret = ops->ndo_validate_addr(dev);
1545 
1546 	if (!ret && ops->ndo_open)
1547 		ret = ops->ndo_open(dev);
1548 
1549 	netpoll_poll_enable(dev);
1550 
1551 	if (ret)
1552 		clear_bit(__LINK_STATE_START, &dev->state);
1553 	else {
1554 		dev->flags |= IFF_UP;
1555 		dev_set_rx_mode(dev);
1556 		dev_activate(dev);
1557 		add_device_randomness(dev->dev_addr, dev->addr_len);
1558 	}
1559 
1560 	return ret;
1561 }
1562 
1563 /**
1564  *	dev_open	- prepare an interface for use.
1565  *	@dev: device to open
1566  *	@extack: netlink extended ack
1567  *
1568  *	Takes a device from down to up state. The device's private open
1569  *	function is invoked and then the multicast lists are loaded. Finally
1570  *	the device is moved into the up state and a %NETDEV_UP message is
1571  *	sent to the netdev notifier chain.
1572  *
1573  *	Calling this function on an active interface is a nop. On a failure
1574  *	a negative errno code is returned.
1575  */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1576 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1577 {
1578 	int ret;
1579 
1580 	if (dev->flags & IFF_UP)
1581 		return 0;
1582 
1583 	ret = __dev_open(dev, extack);
1584 	if (ret < 0)
1585 		return ret;
1586 
1587 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1588 	call_netdevice_notifiers(NETDEV_UP, dev);
1589 
1590 	return ret;
1591 }
1592 EXPORT_SYMBOL(dev_open);
1593 
__dev_close_many(struct list_head * head)1594 static void __dev_close_many(struct list_head *head)
1595 {
1596 	struct net_device *dev;
1597 
1598 	ASSERT_RTNL();
1599 	might_sleep();
1600 
1601 	list_for_each_entry(dev, head, close_list) {
1602 		/* Temporarily disable netpoll until the interface is down */
1603 		netpoll_poll_disable(dev);
1604 
1605 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1606 
1607 		clear_bit(__LINK_STATE_START, &dev->state);
1608 
1609 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1610 		 * can be even on different cpu. So just clear netif_running().
1611 		 *
1612 		 * dev->stop() will invoke napi_disable() on all of it's
1613 		 * napi_struct instances on this device.
1614 		 */
1615 		smp_mb__after_atomic(); /* Commit netif_running(). */
1616 	}
1617 
1618 	dev_deactivate_many(head);
1619 
1620 	list_for_each_entry(dev, head, close_list) {
1621 		const struct net_device_ops *ops = dev->netdev_ops;
1622 
1623 		/*
1624 		 *	Call the device specific close. This cannot fail.
1625 		 *	Only if device is UP
1626 		 *
1627 		 *	We allow it to be called even after a DETACH hot-plug
1628 		 *	event.
1629 		 */
1630 		if (ops->ndo_stop)
1631 			ops->ndo_stop(dev);
1632 
1633 		dev->flags &= ~IFF_UP;
1634 		netpoll_poll_enable(dev);
1635 	}
1636 }
1637 
__dev_close(struct net_device * dev)1638 static void __dev_close(struct net_device *dev)
1639 {
1640 	LIST_HEAD(single);
1641 
1642 	list_add(&dev->close_list, &single);
1643 	__dev_close_many(&single);
1644 	list_del(&single);
1645 }
1646 
dev_close_many(struct list_head * head,bool unlink)1647 void dev_close_many(struct list_head *head, bool unlink)
1648 {
1649 	struct net_device *dev, *tmp;
1650 
1651 	/* Remove the devices that don't need to be closed */
1652 	list_for_each_entry_safe(dev, tmp, head, close_list)
1653 		if (!(dev->flags & IFF_UP))
1654 			list_del_init(&dev->close_list);
1655 
1656 	__dev_close_many(head);
1657 
1658 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1659 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1660 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1661 		if (unlink)
1662 			list_del_init(&dev->close_list);
1663 	}
1664 }
1665 EXPORT_SYMBOL(dev_close_many);
1666 
1667 /**
1668  *	dev_close - shutdown an interface.
1669  *	@dev: device to shutdown
1670  *
1671  *	This function moves an active device into down state. A
1672  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1673  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1674  *	chain.
1675  */
dev_close(struct net_device * dev)1676 void dev_close(struct net_device *dev)
1677 {
1678 	if (dev->flags & IFF_UP) {
1679 		LIST_HEAD(single);
1680 
1681 		list_add(&dev->close_list, &single);
1682 		dev_close_many(&single, true);
1683 		list_del(&single);
1684 	}
1685 }
1686 EXPORT_SYMBOL(dev_close);
1687 
1688 
1689 /**
1690  *	dev_disable_lro - disable Large Receive Offload on a device
1691  *	@dev: device
1692  *
1693  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1694  *	called under RTNL.  This is needed if received packets may be
1695  *	forwarded to another interface.
1696  */
dev_disable_lro(struct net_device * dev)1697 void dev_disable_lro(struct net_device *dev)
1698 {
1699 	struct net_device *lower_dev;
1700 	struct list_head *iter;
1701 
1702 	dev->wanted_features &= ~NETIF_F_LRO;
1703 	netdev_update_features(dev);
1704 
1705 	if (unlikely(dev->features & NETIF_F_LRO))
1706 		netdev_WARN(dev, "failed to disable LRO!\n");
1707 
1708 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1709 		dev_disable_lro(lower_dev);
1710 }
1711 EXPORT_SYMBOL(dev_disable_lro);
1712 
1713 /**
1714  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1715  *	@dev: device
1716  *
1717  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1718  *	called under RTNL.  This is needed if Generic XDP is installed on
1719  *	the device.
1720  */
dev_disable_gro_hw(struct net_device * dev)1721 static void dev_disable_gro_hw(struct net_device *dev)
1722 {
1723 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1724 	netdev_update_features(dev);
1725 
1726 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1727 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1728 }
1729 
netdev_cmd_to_name(enum netdev_cmd cmd)1730 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1731 {
1732 #define N(val) 						\
1733 	case NETDEV_##val:				\
1734 		return "NETDEV_" __stringify(val);
1735 	switch (cmd) {
1736 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1737 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1738 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1739 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1740 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1741 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1742 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1743 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1744 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1745 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1746 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1747 	N(XDP_FEAT_CHANGE)
1748 	}
1749 #undef N
1750 	return "UNKNOWN_NETDEV_EVENT";
1751 }
1752 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1753 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1754 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1755 				   struct net_device *dev)
1756 {
1757 	struct netdev_notifier_info info = {
1758 		.dev = dev,
1759 	};
1760 
1761 	return nb->notifier_call(nb, val, &info);
1762 }
1763 
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1764 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1765 					     struct net_device *dev)
1766 {
1767 	int err;
1768 
1769 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1770 	err = notifier_to_errno(err);
1771 	if (err)
1772 		return err;
1773 
1774 	if (!(dev->flags & IFF_UP))
1775 		return 0;
1776 
1777 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1778 	return 0;
1779 }
1780 
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1781 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1782 						struct net_device *dev)
1783 {
1784 	if (dev->flags & IFF_UP) {
1785 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1786 					dev);
1787 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1788 	}
1789 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1790 }
1791 
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1792 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1793 						 struct net *net)
1794 {
1795 	struct net_device *dev;
1796 	int err;
1797 
1798 	for_each_netdev(net, dev) {
1799 		err = call_netdevice_register_notifiers(nb, dev);
1800 		if (err)
1801 			goto rollback;
1802 	}
1803 	return 0;
1804 
1805 rollback:
1806 	for_each_netdev_continue_reverse(net, dev)
1807 		call_netdevice_unregister_notifiers(nb, dev);
1808 	return err;
1809 }
1810 
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1811 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1812 						    struct net *net)
1813 {
1814 	struct net_device *dev;
1815 
1816 	for_each_netdev(net, dev)
1817 		call_netdevice_unregister_notifiers(nb, dev);
1818 }
1819 
1820 static int dev_boot_phase = 1;
1821 
1822 /**
1823  * register_netdevice_notifier - register a network notifier block
1824  * @nb: notifier
1825  *
1826  * Register a notifier to be called when network device events occur.
1827  * The notifier passed is linked into the kernel structures and must
1828  * not be reused until it has been unregistered. A negative errno code
1829  * is returned on a failure.
1830  *
1831  * When registered all registration and up events are replayed
1832  * to the new notifier to allow device to have a race free
1833  * view of the network device list.
1834  */
1835 
register_netdevice_notifier(struct notifier_block * nb)1836 int register_netdevice_notifier(struct notifier_block *nb)
1837 {
1838 	struct net *net;
1839 	int err;
1840 
1841 	/* Close race with setup_net() and cleanup_net() */
1842 	down_write(&pernet_ops_rwsem);
1843 	rtnl_lock();
1844 	err = raw_notifier_chain_register(&netdev_chain, nb);
1845 	if (err)
1846 		goto unlock;
1847 	if (dev_boot_phase)
1848 		goto unlock;
1849 	for_each_net(net) {
1850 		err = call_netdevice_register_net_notifiers(nb, net);
1851 		if (err)
1852 			goto rollback;
1853 	}
1854 
1855 unlock:
1856 	rtnl_unlock();
1857 	up_write(&pernet_ops_rwsem);
1858 	return err;
1859 
1860 rollback:
1861 	for_each_net_continue_reverse(net)
1862 		call_netdevice_unregister_net_notifiers(nb, net);
1863 
1864 	raw_notifier_chain_unregister(&netdev_chain, nb);
1865 	goto unlock;
1866 }
1867 EXPORT_SYMBOL(register_netdevice_notifier);
1868 
1869 /**
1870  * unregister_netdevice_notifier - unregister a network notifier block
1871  * @nb: notifier
1872  *
1873  * Unregister a notifier previously registered by
1874  * register_netdevice_notifier(). The notifier is unlinked into the
1875  * kernel structures and may then be reused. A negative errno code
1876  * is returned on a failure.
1877  *
1878  * After unregistering unregister and down device events are synthesized
1879  * for all devices on the device list to the removed notifier to remove
1880  * the need for special case cleanup code.
1881  */
1882 
unregister_netdevice_notifier(struct notifier_block * nb)1883 int unregister_netdevice_notifier(struct notifier_block *nb)
1884 {
1885 	struct net *net;
1886 	int err;
1887 
1888 	/* Close race with setup_net() and cleanup_net() */
1889 	down_write(&pernet_ops_rwsem);
1890 	rtnl_lock();
1891 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1892 	if (err)
1893 		goto unlock;
1894 
1895 	for_each_net(net)
1896 		call_netdevice_unregister_net_notifiers(nb, net);
1897 
1898 unlock:
1899 	rtnl_unlock();
1900 	up_write(&pernet_ops_rwsem);
1901 	return err;
1902 }
1903 EXPORT_SYMBOL(unregister_netdevice_notifier);
1904 
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1905 static int __register_netdevice_notifier_net(struct net *net,
1906 					     struct notifier_block *nb,
1907 					     bool ignore_call_fail)
1908 {
1909 	int err;
1910 
1911 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1912 	if (err)
1913 		return err;
1914 	if (dev_boot_phase)
1915 		return 0;
1916 
1917 	err = call_netdevice_register_net_notifiers(nb, net);
1918 	if (err && !ignore_call_fail)
1919 		goto chain_unregister;
1920 
1921 	return 0;
1922 
1923 chain_unregister:
1924 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1925 	return err;
1926 }
1927 
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1928 static int __unregister_netdevice_notifier_net(struct net *net,
1929 					       struct notifier_block *nb)
1930 {
1931 	int err;
1932 
1933 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1934 	if (err)
1935 		return err;
1936 
1937 	call_netdevice_unregister_net_notifiers(nb, net);
1938 	return 0;
1939 }
1940 
1941 /**
1942  * register_netdevice_notifier_net - register a per-netns network notifier block
1943  * @net: network namespace
1944  * @nb: notifier
1945  *
1946  * Register a notifier to be called when network device events occur.
1947  * The notifier passed is linked into the kernel structures and must
1948  * not be reused until it has been unregistered. A negative errno code
1949  * is returned on a failure.
1950  *
1951  * When registered all registration and up events are replayed
1952  * to the new notifier to allow device to have a race free
1953  * view of the network device list.
1954  */
1955 
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1956 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1957 {
1958 	int err;
1959 
1960 	rtnl_lock();
1961 	err = __register_netdevice_notifier_net(net, nb, false);
1962 	rtnl_unlock();
1963 	return err;
1964 }
1965 EXPORT_SYMBOL(register_netdevice_notifier_net);
1966 
1967 /**
1968  * unregister_netdevice_notifier_net - unregister a per-netns
1969  *                                     network notifier block
1970  * @net: network namespace
1971  * @nb: notifier
1972  *
1973  * Unregister a notifier previously registered by
1974  * register_netdevice_notifier_net(). The notifier is unlinked from the
1975  * kernel structures and may then be reused. A negative errno code
1976  * is returned on a failure.
1977  *
1978  * After unregistering unregister and down device events are synthesized
1979  * for all devices on the device list to the removed notifier to remove
1980  * the need for special case cleanup code.
1981  */
1982 
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1983 int unregister_netdevice_notifier_net(struct net *net,
1984 				      struct notifier_block *nb)
1985 {
1986 	int err;
1987 
1988 	rtnl_lock();
1989 	err = __unregister_netdevice_notifier_net(net, nb);
1990 	rtnl_unlock();
1991 	return err;
1992 }
1993 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1994 
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)1995 static void __move_netdevice_notifier_net(struct net *src_net,
1996 					  struct net *dst_net,
1997 					  struct notifier_block *nb)
1998 {
1999 	__unregister_netdevice_notifier_net(src_net, nb);
2000 	__register_netdevice_notifier_net(dst_net, nb, true);
2001 }
2002 
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2003 int register_netdevice_notifier_dev_net(struct net_device *dev,
2004 					struct notifier_block *nb,
2005 					struct netdev_net_notifier *nn)
2006 {
2007 	int err;
2008 
2009 	rtnl_lock();
2010 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2011 	if (!err) {
2012 		nn->nb = nb;
2013 		list_add(&nn->list, &dev->net_notifier_list);
2014 	}
2015 	rtnl_unlock();
2016 	return err;
2017 }
2018 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2019 
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2020 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2021 					  struct notifier_block *nb,
2022 					  struct netdev_net_notifier *nn)
2023 {
2024 	int err;
2025 
2026 	rtnl_lock();
2027 	list_del(&nn->list);
2028 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2029 	rtnl_unlock();
2030 	return err;
2031 }
2032 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2033 
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2034 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2035 					     struct net *net)
2036 {
2037 	struct netdev_net_notifier *nn;
2038 
2039 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2040 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2041 }
2042 
2043 /**
2044  *	call_netdevice_notifiers_info - call all network notifier blocks
2045  *	@val: value passed unmodified to notifier function
2046  *	@info: notifier information data
2047  *
2048  *	Call all network notifier blocks.  Parameters and return value
2049  *	are as for raw_notifier_call_chain().
2050  */
2051 
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2052 int call_netdevice_notifiers_info(unsigned long val,
2053 				  struct netdev_notifier_info *info)
2054 {
2055 	struct net *net = dev_net(info->dev);
2056 	int ret;
2057 
2058 	ASSERT_RTNL();
2059 
2060 	/* Run per-netns notifier block chain first, then run the global one.
2061 	 * Hopefully, one day, the global one is going to be removed after
2062 	 * all notifier block registrators get converted to be per-netns.
2063 	 */
2064 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2065 	if (ret & NOTIFY_STOP_MASK)
2066 		return ret;
2067 	return raw_notifier_call_chain(&netdev_chain, val, info);
2068 }
2069 
2070 /**
2071  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2072  *	                                       for and rollback on error
2073  *	@val_up: value passed unmodified to notifier function
2074  *	@val_down: value passed unmodified to the notifier function when
2075  *	           recovering from an error on @val_up
2076  *	@info: notifier information data
2077  *
2078  *	Call all per-netns network notifier blocks, but not notifier blocks on
2079  *	the global notifier chain. Parameters and return value are as for
2080  *	raw_notifier_call_chain_robust().
2081  */
2082 
2083 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2084 call_netdevice_notifiers_info_robust(unsigned long val_up,
2085 				     unsigned long val_down,
2086 				     struct netdev_notifier_info *info)
2087 {
2088 	struct net *net = dev_net(info->dev);
2089 
2090 	ASSERT_RTNL();
2091 
2092 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2093 					      val_up, val_down, info);
2094 }
2095 
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2096 static int call_netdevice_notifiers_extack(unsigned long val,
2097 					   struct net_device *dev,
2098 					   struct netlink_ext_ack *extack)
2099 {
2100 	struct netdev_notifier_info info = {
2101 		.dev = dev,
2102 		.extack = extack,
2103 	};
2104 
2105 	return call_netdevice_notifiers_info(val, &info);
2106 }
2107 
2108 /**
2109  *	call_netdevice_notifiers - call all network notifier blocks
2110  *      @val: value passed unmodified to notifier function
2111  *      @dev: net_device pointer passed unmodified to notifier function
2112  *
2113  *	Call all network notifier blocks.  Parameters and return value
2114  *	are as for raw_notifier_call_chain().
2115  */
2116 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2117 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2118 {
2119 	return call_netdevice_notifiers_extack(val, dev, NULL);
2120 }
2121 EXPORT_SYMBOL(call_netdevice_notifiers);
2122 
2123 /**
2124  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2125  *	@val: value passed unmodified to notifier function
2126  *	@dev: net_device pointer passed unmodified to notifier function
2127  *	@arg: additional u32 argument passed to the notifier function
2128  *
2129  *	Call all network notifier blocks.  Parameters and return value
2130  *	are as for raw_notifier_call_chain().
2131  */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2132 static int call_netdevice_notifiers_mtu(unsigned long val,
2133 					struct net_device *dev, u32 arg)
2134 {
2135 	struct netdev_notifier_info_ext info = {
2136 		.info.dev = dev,
2137 		.ext.mtu = arg,
2138 	};
2139 
2140 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2141 
2142 	return call_netdevice_notifiers_info(val, &info.info);
2143 }
2144 
2145 #ifdef CONFIG_NET_INGRESS
2146 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2147 
net_inc_ingress_queue(void)2148 void net_inc_ingress_queue(void)
2149 {
2150 	static_branch_inc(&ingress_needed_key);
2151 }
2152 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2153 
net_dec_ingress_queue(void)2154 void net_dec_ingress_queue(void)
2155 {
2156 	static_branch_dec(&ingress_needed_key);
2157 }
2158 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2159 #endif
2160 
2161 #ifdef CONFIG_NET_EGRESS
2162 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2163 
net_inc_egress_queue(void)2164 void net_inc_egress_queue(void)
2165 {
2166 	static_branch_inc(&egress_needed_key);
2167 }
2168 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2169 
net_dec_egress_queue(void)2170 void net_dec_egress_queue(void)
2171 {
2172 	static_branch_dec(&egress_needed_key);
2173 }
2174 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2175 #endif
2176 
2177 #ifdef CONFIG_NET_CLS_ACT
2178 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2179 EXPORT_SYMBOL(tcf_sw_enabled_key);
2180 #endif
2181 
2182 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2183 EXPORT_SYMBOL(netstamp_needed_key);
2184 #ifdef CONFIG_JUMP_LABEL
2185 static atomic_t netstamp_needed_deferred;
2186 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2187 static void netstamp_clear(struct work_struct *work)
2188 {
2189 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2190 	int wanted;
2191 
2192 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2193 	if (wanted > 0)
2194 		static_branch_enable(&netstamp_needed_key);
2195 	else
2196 		static_branch_disable(&netstamp_needed_key);
2197 }
2198 static DECLARE_WORK(netstamp_work, netstamp_clear);
2199 #endif
2200 
net_enable_timestamp(void)2201 void net_enable_timestamp(void)
2202 {
2203 #ifdef CONFIG_JUMP_LABEL
2204 	int wanted = atomic_read(&netstamp_wanted);
2205 
2206 	while (wanted > 0) {
2207 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2208 			return;
2209 	}
2210 	atomic_inc(&netstamp_needed_deferred);
2211 	schedule_work(&netstamp_work);
2212 #else
2213 	static_branch_inc(&netstamp_needed_key);
2214 #endif
2215 }
2216 EXPORT_SYMBOL(net_enable_timestamp);
2217 
net_disable_timestamp(void)2218 void net_disable_timestamp(void)
2219 {
2220 #ifdef CONFIG_JUMP_LABEL
2221 	int wanted = atomic_read(&netstamp_wanted);
2222 
2223 	while (wanted > 1) {
2224 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2225 			return;
2226 	}
2227 	atomic_dec(&netstamp_needed_deferred);
2228 	schedule_work(&netstamp_work);
2229 #else
2230 	static_branch_dec(&netstamp_needed_key);
2231 #endif
2232 }
2233 EXPORT_SYMBOL(net_disable_timestamp);
2234 
net_timestamp_set(struct sk_buff * skb)2235 static inline void net_timestamp_set(struct sk_buff *skb)
2236 {
2237 	skb->tstamp = 0;
2238 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2239 	if (static_branch_unlikely(&netstamp_needed_key))
2240 		skb->tstamp = ktime_get_real();
2241 }
2242 
2243 #define net_timestamp_check(COND, SKB)				\
2244 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2245 		if ((COND) && !(SKB)->tstamp)			\
2246 			(SKB)->tstamp = ktime_get_real();	\
2247 	}							\
2248 
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2249 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2250 {
2251 	return __is_skb_forwardable(dev, skb, true);
2252 }
2253 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2254 
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2255 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2256 			      bool check_mtu)
2257 {
2258 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2259 
2260 	if (likely(!ret)) {
2261 		skb->protocol = eth_type_trans(skb, dev);
2262 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2263 	}
2264 
2265 	return ret;
2266 }
2267 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2268 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2269 {
2270 	return __dev_forward_skb2(dev, skb, true);
2271 }
2272 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2273 
2274 /**
2275  * dev_forward_skb - loopback an skb to another netif
2276  *
2277  * @dev: destination network device
2278  * @skb: buffer to forward
2279  *
2280  * return values:
2281  *	NET_RX_SUCCESS	(no congestion)
2282  *	NET_RX_DROP     (packet was dropped, but freed)
2283  *
2284  * dev_forward_skb can be used for injecting an skb from the
2285  * start_xmit function of one device into the receive queue
2286  * of another device.
2287  *
2288  * The receiving device may be in another namespace, so
2289  * we have to clear all information in the skb that could
2290  * impact namespace isolation.
2291  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2292 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2293 {
2294 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2295 }
2296 EXPORT_SYMBOL_GPL(dev_forward_skb);
2297 
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2298 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2299 {
2300 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2301 }
2302 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2303 static inline int deliver_skb(struct sk_buff *skb,
2304 			      struct packet_type *pt_prev,
2305 			      struct net_device *orig_dev)
2306 {
2307 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2308 		return -ENOMEM;
2309 	refcount_inc(&skb->users);
2310 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2311 }
2312 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2313 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2314 					  struct packet_type **pt,
2315 					  struct net_device *orig_dev,
2316 					  __be16 type,
2317 					  struct list_head *ptype_list)
2318 {
2319 	struct packet_type *ptype, *pt_prev = *pt;
2320 
2321 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2322 		if (ptype->type != type)
2323 			continue;
2324 		if (pt_prev)
2325 			deliver_skb(skb, pt_prev, orig_dev);
2326 		pt_prev = ptype;
2327 	}
2328 	*pt = pt_prev;
2329 }
2330 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2331 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2332 {
2333 	if (!ptype->af_packet_priv || !skb->sk)
2334 		return false;
2335 
2336 	if (ptype->id_match)
2337 		return ptype->id_match(ptype, skb->sk);
2338 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2339 		return true;
2340 
2341 	return false;
2342 }
2343 
2344 /**
2345  * dev_nit_active - return true if any network interface taps are in use
2346  *
2347  * @dev: network device to check for the presence of taps
2348  */
dev_nit_active(struct net_device * dev)2349 bool dev_nit_active(struct net_device *dev)
2350 {
2351 	return !list_empty(&net_hotdata.ptype_all) ||
2352 	       !list_empty(&dev->ptype_all);
2353 }
2354 EXPORT_SYMBOL_GPL(dev_nit_active);
2355 
2356 /*
2357  *	Support routine. Sends outgoing frames to any network
2358  *	taps currently in use.
2359  */
2360 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2361 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2362 {
2363 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2364 	struct packet_type *ptype, *pt_prev = NULL;
2365 	struct sk_buff *skb2 = NULL;
2366 
2367 	rcu_read_lock();
2368 again:
2369 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2370 		if (READ_ONCE(ptype->ignore_outgoing))
2371 			continue;
2372 
2373 		/* Never send packets back to the socket
2374 		 * they originated from - MvS (miquels@drinkel.ow.org)
2375 		 */
2376 		if (skb_loop_sk(ptype, skb))
2377 			continue;
2378 
2379 		if (pt_prev) {
2380 			deliver_skb(skb2, pt_prev, skb->dev);
2381 			pt_prev = ptype;
2382 			continue;
2383 		}
2384 
2385 		/* need to clone skb, done only once */
2386 		skb2 = skb_clone(skb, GFP_ATOMIC);
2387 		if (!skb2)
2388 			goto out_unlock;
2389 
2390 		net_timestamp_set(skb2);
2391 
2392 		/* skb->nh should be correctly
2393 		 * set by sender, so that the second statement is
2394 		 * just protection against buggy protocols.
2395 		 */
2396 		skb_reset_mac_header(skb2);
2397 
2398 		if (skb_network_header(skb2) < skb2->data ||
2399 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2400 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2401 					     ntohs(skb2->protocol),
2402 					     dev->name);
2403 			skb_reset_network_header(skb2);
2404 		}
2405 
2406 		skb2->transport_header = skb2->network_header;
2407 		skb2->pkt_type = PACKET_OUTGOING;
2408 		pt_prev = ptype;
2409 	}
2410 
2411 	if (ptype_list == &net_hotdata.ptype_all) {
2412 		ptype_list = &dev->ptype_all;
2413 		goto again;
2414 	}
2415 out_unlock:
2416 	if (pt_prev) {
2417 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2418 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2419 		else
2420 			kfree_skb(skb2);
2421 	}
2422 	rcu_read_unlock();
2423 }
2424 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2425 
2426 /**
2427  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2428  * @dev: Network device
2429  * @txq: number of queues available
2430  *
2431  * If real_num_tx_queues is changed the tc mappings may no longer be
2432  * valid. To resolve this verify the tc mapping remains valid and if
2433  * not NULL the mapping. With no priorities mapping to this
2434  * offset/count pair it will no longer be used. In the worst case TC0
2435  * is invalid nothing can be done so disable priority mappings. If is
2436  * expected that drivers will fix this mapping if they can before
2437  * calling netif_set_real_num_tx_queues.
2438  */
netif_setup_tc(struct net_device * dev,unsigned int txq)2439 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2440 {
2441 	int i;
2442 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2443 
2444 	/* If TC0 is invalidated disable TC mapping */
2445 	if (tc->offset + tc->count > txq) {
2446 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2447 		dev->num_tc = 0;
2448 		return;
2449 	}
2450 
2451 	/* Invalidated prio to tc mappings set to TC0 */
2452 	for (i = 1; i < TC_BITMASK + 1; i++) {
2453 		int q = netdev_get_prio_tc_map(dev, i);
2454 
2455 		tc = &dev->tc_to_txq[q];
2456 		if (tc->offset + tc->count > txq) {
2457 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2458 				    i, q);
2459 			netdev_set_prio_tc_map(dev, i, 0);
2460 		}
2461 	}
2462 }
2463 
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2464 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2465 {
2466 	if (dev->num_tc) {
2467 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2468 		int i;
2469 
2470 		/* walk through the TCs and see if it falls into any of them */
2471 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2472 			if ((txq - tc->offset) < tc->count)
2473 				return i;
2474 		}
2475 
2476 		/* didn't find it, just return -1 to indicate no match */
2477 		return -1;
2478 	}
2479 
2480 	return 0;
2481 }
2482 EXPORT_SYMBOL(netdev_txq_to_tc);
2483 
2484 #ifdef CONFIG_XPS
2485 static struct static_key xps_needed __read_mostly;
2486 static struct static_key xps_rxqs_needed __read_mostly;
2487 static DEFINE_MUTEX(xps_map_mutex);
2488 #define xmap_dereference(P)		\
2489 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2490 
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2491 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2492 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2493 {
2494 	struct xps_map *map = NULL;
2495 	int pos;
2496 
2497 	map = xmap_dereference(dev_maps->attr_map[tci]);
2498 	if (!map)
2499 		return false;
2500 
2501 	for (pos = map->len; pos--;) {
2502 		if (map->queues[pos] != index)
2503 			continue;
2504 
2505 		if (map->len > 1) {
2506 			map->queues[pos] = map->queues[--map->len];
2507 			break;
2508 		}
2509 
2510 		if (old_maps)
2511 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2512 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2513 		kfree_rcu(map, rcu);
2514 		return false;
2515 	}
2516 
2517 	return true;
2518 }
2519 
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2520 static bool remove_xps_queue_cpu(struct net_device *dev,
2521 				 struct xps_dev_maps *dev_maps,
2522 				 int cpu, u16 offset, u16 count)
2523 {
2524 	int num_tc = dev_maps->num_tc;
2525 	bool active = false;
2526 	int tci;
2527 
2528 	for (tci = cpu * num_tc; num_tc--; tci++) {
2529 		int i, j;
2530 
2531 		for (i = count, j = offset; i--; j++) {
2532 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2533 				break;
2534 		}
2535 
2536 		active |= i < 0;
2537 	}
2538 
2539 	return active;
2540 }
2541 
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2542 static void reset_xps_maps(struct net_device *dev,
2543 			   struct xps_dev_maps *dev_maps,
2544 			   enum xps_map_type type)
2545 {
2546 	static_key_slow_dec_cpuslocked(&xps_needed);
2547 	if (type == XPS_RXQS)
2548 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2549 
2550 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2551 
2552 	kfree_rcu(dev_maps, rcu);
2553 }
2554 
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2555 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2556 			   u16 offset, u16 count)
2557 {
2558 	struct xps_dev_maps *dev_maps;
2559 	bool active = false;
2560 	int i, j;
2561 
2562 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2563 	if (!dev_maps)
2564 		return;
2565 
2566 	for (j = 0; j < dev_maps->nr_ids; j++)
2567 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2568 	if (!active)
2569 		reset_xps_maps(dev, dev_maps, type);
2570 
2571 	if (type == XPS_CPUS) {
2572 		for (i = offset + (count - 1); count--; i--)
2573 			netdev_queue_numa_node_write(
2574 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2575 	}
2576 }
2577 
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2578 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2579 				   u16 count)
2580 {
2581 	if (!static_key_false(&xps_needed))
2582 		return;
2583 
2584 	cpus_read_lock();
2585 	mutex_lock(&xps_map_mutex);
2586 
2587 	if (static_key_false(&xps_rxqs_needed))
2588 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2589 
2590 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2591 
2592 	mutex_unlock(&xps_map_mutex);
2593 	cpus_read_unlock();
2594 }
2595 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2596 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2597 {
2598 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2599 }
2600 
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2601 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2602 				      u16 index, bool is_rxqs_map)
2603 {
2604 	struct xps_map *new_map;
2605 	int alloc_len = XPS_MIN_MAP_ALLOC;
2606 	int i, pos;
2607 
2608 	for (pos = 0; map && pos < map->len; pos++) {
2609 		if (map->queues[pos] != index)
2610 			continue;
2611 		return map;
2612 	}
2613 
2614 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2615 	if (map) {
2616 		if (pos < map->alloc_len)
2617 			return map;
2618 
2619 		alloc_len = map->alloc_len * 2;
2620 	}
2621 
2622 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2623 	 *  map
2624 	 */
2625 	if (is_rxqs_map)
2626 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2627 	else
2628 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2629 				       cpu_to_node(attr_index));
2630 	if (!new_map)
2631 		return NULL;
2632 
2633 	for (i = 0; i < pos; i++)
2634 		new_map->queues[i] = map->queues[i];
2635 	new_map->alloc_len = alloc_len;
2636 	new_map->len = pos;
2637 
2638 	return new_map;
2639 }
2640 
2641 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2642 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2643 			      struct xps_dev_maps *new_dev_maps, int index,
2644 			      int tc, bool skip_tc)
2645 {
2646 	int i, tci = index * dev_maps->num_tc;
2647 	struct xps_map *map;
2648 
2649 	/* copy maps belonging to foreign traffic classes */
2650 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2651 		if (i == tc && skip_tc)
2652 			continue;
2653 
2654 		/* fill in the new device map from the old device map */
2655 		map = xmap_dereference(dev_maps->attr_map[tci]);
2656 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2657 	}
2658 }
2659 
2660 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2661 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2662 			  u16 index, enum xps_map_type type)
2663 {
2664 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2665 	const unsigned long *online_mask = NULL;
2666 	bool active = false, copy = false;
2667 	int i, j, tci, numa_node_id = -2;
2668 	int maps_sz, num_tc = 1, tc = 0;
2669 	struct xps_map *map, *new_map;
2670 	unsigned int nr_ids;
2671 
2672 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2673 
2674 	if (dev->num_tc) {
2675 		/* Do not allow XPS on subordinate device directly */
2676 		num_tc = dev->num_tc;
2677 		if (num_tc < 0)
2678 			return -EINVAL;
2679 
2680 		/* If queue belongs to subordinate dev use its map */
2681 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2682 
2683 		tc = netdev_txq_to_tc(dev, index);
2684 		if (tc < 0)
2685 			return -EINVAL;
2686 	}
2687 
2688 	mutex_lock(&xps_map_mutex);
2689 
2690 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2691 	if (type == XPS_RXQS) {
2692 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2693 		nr_ids = dev->num_rx_queues;
2694 	} else {
2695 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2696 		if (num_possible_cpus() > 1)
2697 			online_mask = cpumask_bits(cpu_online_mask);
2698 		nr_ids = nr_cpu_ids;
2699 	}
2700 
2701 	if (maps_sz < L1_CACHE_BYTES)
2702 		maps_sz = L1_CACHE_BYTES;
2703 
2704 	/* The old dev_maps could be larger or smaller than the one we're
2705 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2706 	 * between. We could try to be smart, but let's be safe instead and only
2707 	 * copy foreign traffic classes if the two map sizes match.
2708 	 */
2709 	if (dev_maps &&
2710 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2711 		copy = true;
2712 
2713 	/* allocate memory for queue storage */
2714 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2715 	     j < nr_ids;) {
2716 		if (!new_dev_maps) {
2717 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2718 			if (!new_dev_maps) {
2719 				mutex_unlock(&xps_map_mutex);
2720 				return -ENOMEM;
2721 			}
2722 
2723 			new_dev_maps->nr_ids = nr_ids;
2724 			new_dev_maps->num_tc = num_tc;
2725 		}
2726 
2727 		tci = j * num_tc + tc;
2728 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2729 
2730 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2731 		if (!map)
2732 			goto error;
2733 
2734 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2735 	}
2736 
2737 	if (!new_dev_maps)
2738 		goto out_no_new_maps;
2739 
2740 	if (!dev_maps) {
2741 		/* Increment static keys at most once per type */
2742 		static_key_slow_inc_cpuslocked(&xps_needed);
2743 		if (type == XPS_RXQS)
2744 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2745 	}
2746 
2747 	for (j = 0; j < nr_ids; j++) {
2748 		bool skip_tc = false;
2749 
2750 		tci = j * num_tc + tc;
2751 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2752 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2753 			/* add tx-queue to CPU/rx-queue maps */
2754 			int pos = 0;
2755 
2756 			skip_tc = true;
2757 
2758 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2759 			while ((pos < map->len) && (map->queues[pos] != index))
2760 				pos++;
2761 
2762 			if (pos == map->len)
2763 				map->queues[map->len++] = index;
2764 #ifdef CONFIG_NUMA
2765 			if (type == XPS_CPUS) {
2766 				if (numa_node_id == -2)
2767 					numa_node_id = cpu_to_node(j);
2768 				else if (numa_node_id != cpu_to_node(j))
2769 					numa_node_id = -1;
2770 			}
2771 #endif
2772 		}
2773 
2774 		if (copy)
2775 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2776 					  skip_tc);
2777 	}
2778 
2779 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2780 
2781 	/* Cleanup old maps */
2782 	if (!dev_maps)
2783 		goto out_no_old_maps;
2784 
2785 	for (j = 0; j < dev_maps->nr_ids; j++) {
2786 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2787 			map = xmap_dereference(dev_maps->attr_map[tci]);
2788 			if (!map)
2789 				continue;
2790 
2791 			if (copy) {
2792 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2793 				if (map == new_map)
2794 					continue;
2795 			}
2796 
2797 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2798 			kfree_rcu(map, rcu);
2799 		}
2800 	}
2801 
2802 	old_dev_maps = dev_maps;
2803 
2804 out_no_old_maps:
2805 	dev_maps = new_dev_maps;
2806 	active = true;
2807 
2808 out_no_new_maps:
2809 	if (type == XPS_CPUS)
2810 		/* update Tx queue numa node */
2811 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2812 					     (numa_node_id >= 0) ?
2813 					     numa_node_id : NUMA_NO_NODE);
2814 
2815 	if (!dev_maps)
2816 		goto out_no_maps;
2817 
2818 	/* removes tx-queue from unused CPUs/rx-queues */
2819 	for (j = 0; j < dev_maps->nr_ids; j++) {
2820 		tci = j * dev_maps->num_tc;
2821 
2822 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2823 			if (i == tc &&
2824 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2825 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2826 				continue;
2827 
2828 			active |= remove_xps_queue(dev_maps,
2829 						   copy ? old_dev_maps : NULL,
2830 						   tci, index);
2831 		}
2832 	}
2833 
2834 	if (old_dev_maps)
2835 		kfree_rcu(old_dev_maps, rcu);
2836 
2837 	/* free map if not active */
2838 	if (!active)
2839 		reset_xps_maps(dev, dev_maps, type);
2840 
2841 out_no_maps:
2842 	mutex_unlock(&xps_map_mutex);
2843 
2844 	return 0;
2845 error:
2846 	/* remove any maps that we added */
2847 	for (j = 0; j < nr_ids; j++) {
2848 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2849 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2850 			map = copy ?
2851 			      xmap_dereference(dev_maps->attr_map[tci]) :
2852 			      NULL;
2853 			if (new_map && new_map != map)
2854 				kfree(new_map);
2855 		}
2856 	}
2857 
2858 	mutex_unlock(&xps_map_mutex);
2859 
2860 	kfree(new_dev_maps);
2861 	return -ENOMEM;
2862 }
2863 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2864 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2865 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2866 			u16 index)
2867 {
2868 	int ret;
2869 
2870 	cpus_read_lock();
2871 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2872 	cpus_read_unlock();
2873 
2874 	return ret;
2875 }
2876 EXPORT_SYMBOL(netif_set_xps_queue);
2877 
2878 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2879 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2880 {
2881 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2882 
2883 	/* Unbind any subordinate channels */
2884 	while (txq-- != &dev->_tx[0]) {
2885 		if (txq->sb_dev)
2886 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2887 	}
2888 }
2889 
netdev_reset_tc(struct net_device * dev)2890 void netdev_reset_tc(struct net_device *dev)
2891 {
2892 #ifdef CONFIG_XPS
2893 	netif_reset_xps_queues_gt(dev, 0);
2894 #endif
2895 	netdev_unbind_all_sb_channels(dev);
2896 
2897 	/* Reset TC configuration of device */
2898 	dev->num_tc = 0;
2899 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2900 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2901 }
2902 EXPORT_SYMBOL(netdev_reset_tc);
2903 
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2904 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2905 {
2906 	if (tc >= dev->num_tc)
2907 		return -EINVAL;
2908 
2909 #ifdef CONFIG_XPS
2910 	netif_reset_xps_queues(dev, offset, count);
2911 #endif
2912 	dev->tc_to_txq[tc].count = count;
2913 	dev->tc_to_txq[tc].offset = offset;
2914 	return 0;
2915 }
2916 EXPORT_SYMBOL(netdev_set_tc_queue);
2917 
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2918 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2919 {
2920 	if (num_tc > TC_MAX_QUEUE)
2921 		return -EINVAL;
2922 
2923 #ifdef CONFIG_XPS
2924 	netif_reset_xps_queues_gt(dev, 0);
2925 #endif
2926 	netdev_unbind_all_sb_channels(dev);
2927 
2928 	dev->num_tc = num_tc;
2929 	return 0;
2930 }
2931 EXPORT_SYMBOL(netdev_set_num_tc);
2932 
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2933 void netdev_unbind_sb_channel(struct net_device *dev,
2934 			      struct net_device *sb_dev)
2935 {
2936 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2937 
2938 #ifdef CONFIG_XPS
2939 	netif_reset_xps_queues_gt(sb_dev, 0);
2940 #endif
2941 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2942 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2943 
2944 	while (txq-- != &dev->_tx[0]) {
2945 		if (txq->sb_dev == sb_dev)
2946 			txq->sb_dev = NULL;
2947 	}
2948 }
2949 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2950 
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2951 int netdev_bind_sb_channel_queue(struct net_device *dev,
2952 				 struct net_device *sb_dev,
2953 				 u8 tc, u16 count, u16 offset)
2954 {
2955 	/* Make certain the sb_dev and dev are already configured */
2956 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2957 		return -EINVAL;
2958 
2959 	/* We cannot hand out queues we don't have */
2960 	if ((offset + count) > dev->real_num_tx_queues)
2961 		return -EINVAL;
2962 
2963 	/* Record the mapping */
2964 	sb_dev->tc_to_txq[tc].count = count;
2965 	sb_dev->tc_to_txq[tc].offset = offset;
2966 
2967 	/* Provide a way for Tx queue to find the tc_to_txq map or
2968 	 * XPS map for itself.
2969 	 */
2970 	while (count--)
2971 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2972 
2973 	return 0;
2974 }
2975 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2976 
netdev_set_sb_channel(struct net_device * dev,u16 channel)2977 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2978 {
2979 	/* Do not use a multiqueue device to represent a subordinate channel */
2980 	if (netif_is_multiqueue(dev))
2981 		return -ENODEV;
2982 
2983 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2984 	 * Channel 0 is meant to be "native" mode and used only to represent
2985 	 * the main root device. We allow writing 0 to reset the device back
2986 	 * to normal mode after being used as a subordinate channel.
2987 	 */
2988 	if (channel > S16_MAX)
2989 		return -EINVAL;
2990 
2991 	dev->num_tc = -channel;
2992 
2993 	return 0;
2994 }
2995 EXPORT_SYMBOL(netdev_set_sb_channel);
2996 
2997 /*
2998  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2999  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3000  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)3001 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3002 {
3003 	bool disabling;
3004 	int rc;
3005 
3006 	disabling = txq < dev->real_num_tx_queues;
3007 
3008 	if (txq < 1 || txq > dev->num_tx_queues)
3009 		return -EINVAL;
3010 
3011 	if (dev->reg_state == NETREG_REGISTERED ||
3012 	    dev->reg_state == NETREG_UNREGISTERING) {
3013 		ASSERT_RTNL();
3014 
3015 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3016 						  txq);
3017 		if (rc)
3018 			return rc;
3019 
3020 		if (dev->num_tc)
3021 			netif_setup_tc(dev, txq);
3022 
3023 		dev_qdisc_change_real_num_tx(dev, txq);
3024 
3025 		dev->real_num_tx_queues = txq;
3026 
3027 		if (disabling) {
3028 			synchronize_net();
3029 			qdisc_reset_all_tx_gt(dev, txq);
3030 #ifdef CONFIG_XPS
3031 			netif_reset_xps_queues_gt(dev, txq);
3032 #endif
3033 		}
3034 	} else {
3035 		dev->real_num_tx_queues = txq;
3036 	}
3037 
3038 	return 0;
3039 }
3040 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3041 
3042 #ifdef CONFIG_SYSFS
3043 /**
3044  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3045  *	@dev: Network device
3046  *	@rxq: Actual number of RX queues
3047  *
3048  *	This must be called either with the rtnl_lock held or before
3049  *	registration of the net device.  Returns 0 on success, or a
3050  *	negative error code.  If called before registration, it always
3051  *	succeeds.
3052  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3053 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3054 {
3055 	int rc;
3056 
3057 	if (rxq < 1 || rxq > dev->num_rx_queues)
3058 		return -EINVAL;
3059 
3060 	if (dev->reg_state == NETREG_REGISTERED) {
3061 		ASSERT_RTNL();
3062 
3063 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3064 						  rxq);
3065 		if (rc)
3066 			return rc;
3067 	}
3068 
3069 	dev->real_num_rx_queues = rxq;
3070 	return 0;
3071 }
3072 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3073 #endif
3074 
3075 /**
3076  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3077  *	@dev: Network device
3078  *	@txq: Actual number of TX queues
3079  *	@rxq: Actual number of RX queues
3080  *
3081  *	Set the real number of both TX and RX queues.
3082  *	Does nothing if the number of queues is already correct.
3083  */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3084 int netif_set_real_num_queues(struct net_device *dev,
3085 			      unsigned int txq, unsigned int rxq)
3086 {
3087 	unsigned int old_rxq = dev->real_num_rx_queues;
3088 	int err;
3089 
3090 	if (txq < 1 || txq > dev->num_tx_queues ||
3091 	    rxq < 1 || rxq > dev->num_rx_queues)
3092 		return -EINVAL;
3093 
3094 	/* Start from increases, so the error path only does decreases -
3095 	 * decreases can't fail.
3096 	 */
3097 	if (rxq > dev->real_num_rx_queues) {
3098 		err = netif_set_real_num_rx_queues(dev, rxq);
3099 		if (err)
3100 			return err;
3101 	}
3102 	if (txq > dev->real_num_tx_queues) {
3103 		err = netif_set_real_num_tx_queues(dev, txq);
3104 		if (err)
3105 			goto undo_rx;
3106 	}
3107 	if (rxq < dev->real_num_rx_queues)
3108 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3109 	if (txq < dev->real_num_tx_queues)
3110 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3111 
3112 	return 0;
3113 undo_rx:
3114 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3115 	return err;
3116 }
3117 EXPORT_SYMBOL(netif_set_real_num_queues);
3118 
3119 /**
3120  * netif_set_tso_max_size() - set the max size of TSO frames supported
3121  * @dev:	netdev to update
3122  * @size:	max skb->len of a TSO frame
3123  *
3124  * Set the limit on the size of TSO super-frames the device can handle.
3125  * Unless explicitly set the stack will assume the value of
3126  * %GSO_LEGACY_MAX_SIZE.
3127  */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3128 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3129 {
3130 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3131 	if (size < READ_ONCE(dev->gso_max_size))
3132 		netif_set_gso_max_size(dev, size);
3133 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3134 		netif_set_gso_ipv4_max_size(dev, size);
3135 }
3136 EXPORT_SYMBOL(netif_set_tso_max_size);
3137 
3138 /**
3139  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3140  * @dev:	netdev to update
3141  * @segs:	max number of TCP segments
3142  *
3143  * Set the limit on the number of TCP segments the device can generate from
3144  * a single TSO super-frame.
3145  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3146  */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3147 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3148 {
3149 	dev->tso_max_segs = segs;
3150 	if (segs < READ_ONCE(dev->gso_max_segs))
3151 		netif_set_gso_max_segs(dev, segs);
3152 }
3153 EXPORT_SYMBOL(netif_set_tso_max_segs);
3154 
3155 /**
3156  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3157  * @to:		netdev to update
3158  * @from:	netdev from which to copy the limits
3159  */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3160 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3161 {
3162 	netif_set_tso_max_size(to, from->tso_max_size);
3163 	netif_set_tso_max_segs(to, from->tso_max_segs);
3164 }
3165 EXPORT_SYMBOL(netif_inherit_tso_max);
3166 
3167 /**
3168  * netif_get_num_default_rss_queues - default number of RSS queues
3169  *
3170  * Default value is the number of physical cores if there are only 1 or 2, or
3171  * divided by 2 if there are more.
3172  */
netif_get_num_default_rss_queues(void)3173 int netif_get_num_default_rss_queues(void)
3174 {
3175 	cpumask_var_t cpus;
3176 	int cpu, count = 0;
3177 
3178 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3179 		return 1;
3180 
3181 	cpumask_copy(cpus, cpu_online_mask);
3182 	for_each_cpu(cpu, cpus) {
3183 		++count;
3184 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3185 	}
3186 	free_cpumask_var(cpus);
3187 
3188 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3189 }
3190 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3191 
__netif_reschedule(struct Qdisc * q)3192 static void __netif_reschedule(struct Qdisc *q)
3193 {
3194 	struct softnet_data *sd;
3195 	unsigned long flags;
3196 
3197 	local_irq_save(flags);
3198 	sd = this_cpu_ptr(&softnet_data);
3199 	q->next_sched = NULL;
3200 	*sd->output_queue_tailp = q;
3201 	sd->output_queue_tailp = &q->next_sched;
3202 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3203 	local_irq_restore(flags);
3204 }
3205 
__netif_schedule(struct Qdisc * q)3206 void __netif_schedule(struct Qdisc *q)
3207 {
3208 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3209 		__netif_reschedule(q);
3210 }
3211 EXPORT_SYMBOL(__netif_schedule);
3212 
3213 struct dev_kfree_skb_cb {
3214 	enum skb_drop_reason reason;
3215 };
3216 
get_kfree_skb_cb(const struct sk_buff * skb)3217 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3218 {
3219 	return (struct dev_kfree_skb_cb *)skb->cb;
3220 }
3221 
netif_schedule_queue(struct netdev_queue * txq)3222 void netif_schedule_queue(struct netdev_queue *txq)
3223 {
3224 	rcu_read_lock();
3225 	if (!netif_xmit_stopped(txq)) {
3226 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3227 
3228 		__netif_schedule(q);
3229 	}
3230 	rcu_read_unlock();
3231 }
3232 EXPORT_SYMBOL(netif_schedule_queue);
3233 
netif_tx_wake_queue(struct netdev_queue * dev_queue)3234 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3235 {
3236 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3237 		struct Qdisc *q;
3238 
3239 		rcu_read_lock();
3240 		q = rcu_dereference(dev_queue->qdisc);
3241 		__netif_schedule(q);
3242 		rcu_read_unlock();
3243 	}
3244 }
3245 EXPORT_SYMBOL(netif_tx_wake_queue);
3246 
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3247 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3248 {
3249 	unsigned long flags;
3250 
3251 	if (unlikely(!skb))
3252 		return;
3253 
3254 	if (likely(refcount_read(&skb->users) == 1)) {
3255 		smp_rmb();
3256 		refcount_set(&skb->users, 0);
3257 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3258 		return;
3259 	}
3260 	get_kfree_skb_cb(skb)->reason = reason;
3261 	local_irq_save(flags);
3262 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3263 	__this_cpu_write(softnet_data.completion_queue, skb);
3264 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3265 	local_irq_restore(flags);
3266 }
3267 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3268 
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3269 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3270 {
3271 	if (in_hardirq() || irqs_disabled())
3272 		dev_kfree_skb_irq_reason(skb, reason);
3273 	else
3274 		kfree_skb_reason(skb, reason);
3275 }
3276 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3277 
3278 
3279 /**
3280  * netif_device_detach - mark device as removed
3281  * @dev: network device
3282  *
3283  * Mark device as removed from system and therefore no longer available.
3284  */
netif_device_detach(struct net_device * dev)3285 void netif_device_detach(struct net_device *dev)
3286 {
3287 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3288 	    netif_running(dev)) {
3289 		netif_tx_stop_all_queues(dev);
3290 	}
3291 }
3292 EXPORT_SYMBOL(netif_device_detach);
3293 
3294 /**
3295  * netif_device_attach - mark device as attached
3296  * @dev: network device
3297  *
3298  * Mark device as attached from system and restart if needed.
3299  */
netif_device_attach(struct net_device * dev)3300 void netif_device_attach(struct net_device *dev)
3301 {
3302 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3303 	    netif_running(dev)) {
3304 		netif_tx_wake_all_queues(dev);
3305 		__netdev_watchdog_up(dev);
3306 	}
3307 }
3308 EXPORT_SYMBOL(netif_device_attach);
3309 
3310 /*
3311  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3312  * to be used as a distribution range.
3313  */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3314 static u16 skb_tx_hash(const struct net_device *dev,
3315 		       const struct net_device *sb_dev,
3316 		       struct sk_buff *skb)
3317 {
3318 	u32 hash;
3319 	u16 qoffset = 0;
3320 	u16 qcount = dev->real_num_tx_queues;
3321 
3322 	if (dev->num_tc) {
3323 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3324 
3325 		qoffset = sb_dev->tc_to_txq[tc].offset;
3326 		qcount = sb_dev->tc_to_txq[tc].count;
3327 		if (unlikely(!qcount)) {
3328 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3329 					     sb_dev->name, qoffset, tc);
3330 			qoffset = 0;
3331 			qcount = dev->real_num_tx_queues;
3332 		}
3333 	}
3334 
3335 	if (skb_rx_queue_recorded(skb)) {
3336 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3337 		hash = skb_get_rx_queue(skb);
3338 		if (hash >= qoffset)
3339 			hash -= qoffset;
3340 		while (unlikely(hash >= qcount))
3341 			hash -= qcount;
3342 		return hash + qoffset;
3343 	}
3344 
3345 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3346 }
3347 
skb_warn_bad_offload(const struct sk_buff * skb)3348 void skb_warn_bad_offload(const struct sk_buff *skb)
3349 {
3350 	static const netdev_features_t null_features;
3351 	struct net_device *dev = skb->dev;
3352 	const char *name = "";
3353 
3354 	if (!net_ratelimit())
3355 		return;
3356 
3357 	if (dev) {
3358 		if (dev->dev.parent)
3359 			name = dev_driver_string(dev->dev.parent);
3360 		else
3361 			name = netdev_name(dev);
3362 	}
3363 	skb_dump(KERN_WARNING, skb, false);
3364 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3365 	     name, dev ? &dev->features : &null_features,
3366 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3367 }
3368 
3369 /*
3370  * Invalidate hardware checksum when packet is to be mangled, and
3371  * complete checksum manually on outgoing path.
3372  */
skb_checksum_help(struct sk_buff * skb)3373 int skb_checksum_help(struct sk_buff *skb)
3374 {
3375 	__wsum csum;
3376 	int ret = 0, offset;
3377 
3378 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3379 		goto out_set_summed;
3380 
3381 	if (unlikely(skb_is_gso(skb))) {
3382 		skb_warn_bad_offload(skb);
3383 		return -EINVAL;
3384 	}
3385 
3386 	if (!skb_frags_readable(skb)) {
3387 		return -EFAULT;
3388 	}
3389 
3390 	/* Before computing a checksum, we should make sure no frag could
3391 	 * be modified by an external entity : checksum could be wrong.
3392 	 */
3393 	if (skb_has_shared_frag(skb)) {
3394 		ret = __skb_linearize(skb);
3395 		if (ret)
3396 			goto out;
3397 	}
3398 
3399 	offset = skb_checksum_start_offset(skb);
3400 	ret = -EINVAL;
3401 	if (unlikely(offset >= skb_headlen(skb))) {
3402 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3403 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3404 			  offset, skb_headlen(skb));
3405 		goto out;
3406 	}
3407 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3408 
3409 	offset += skb->csum_offset;
3410 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3411 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3412 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3413 			  offset + sizeof(__sum16), skb_headlen(skb));
3414 		goto out;
3415 	}
3416 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3417 	if (ret)
3418 		goto out;
3419 
3420 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3421 out_set_summed:
3422 	skb->ip_summed = CHECKSUM_NONE;
3423 out:
3424 	return ret;
3425 }
3426 EXPORT_SYMBOL(skb_checksum_help);
3427 
skb_crc32c_csum_help(struct sk_buff * skb)3428 int skb_crc32c_csum_help(struct sk_buff *skb)
3429 {
3430 	__le32 crc32c_csum;
3431 	int ret = 0, offset, start;
3432 
3433 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3434 		goto out;
3435 
3436 	if (unlikely(skb_is_gso(skb)))
3437 		goto out;
3438 
3439 	/* Before computing a checksum, we should make sure no frag could
3440 	 * be modified by an external entity : checksum could be wrong.
3441 	 */
3442 	if (unlikely(skb_has_shared_frag(skb))) {
3443 		ret = __skb_linearize(skb);
3444 		if (ret)
3445 			goto out;
3446 	}
3447 	start = skb_checksum_start_offset(skb);
3448 	offset = start + offsetof(struct sctphdr, checksum);
3449 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3450 		ret = -EINVAL;
3451 		goto out;
3452 	}
3453 
3454 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3455 	if (ret)
3456 		goto out;
3457 
3458 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3459 						  skb->len - start, ~(__u32)0,
3460 						  crc32c_csum_stub));
3461 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3462 	skb_reset_csum_not_inet(skb);
3463 out:
3464 	return ret;
3465 }
3466 EXPORT_SYMBOL(skb_crc32c_csum_help);
3467 
skb_network_protocol(struct sk_buff * skb,int * depth)3468 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3469 {
3470 	__be16 type = skb->protocol;
3471 
3472 	/* Tunnel gso handlers can set protocol to ethernet. */
3473 	if (type == htons(ETH_P_TEB)) {
3474 		struct ethhdr *eth;
3475 
3476 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3477 			return 0;
3478 
3479 		eth = (struct ethhdr *)skb->data;
3480 		type = eth->h_proto;
3481 	}
3482 
3483 	return vlan_get_protocol_and_depth(skb, type, depth);
3484 }
3485 
3486 
3487 /* Take action when hardware reception checksum errors are detected. */
3488 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3489 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3490 {
3491 	netdev_err(dev, "hw csum failure\n");
3492 	skb_dump(KERN_ERR, skb, true);
3493 	dump_stack();
3494 }
3495 
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3496 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3497 {
3498 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3499 }
3500 EXPORT_SYMBOL(netdev_rx_csum_fault);
3501 #endif
3502 
3503 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3504 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3505 {
3506 #ifdef CONFIG_HIGHMEM
3507 	int i;
3508 
3509 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3510 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3511 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3512 			struct page *page = skb_frag_page(frag);
3513 
3514 			if (page && PageHighMem(page))
3515 				return 1;
3516 		}
3517 	}
3518 #endif
3519 	return 0;
3520 }
3521 
3522 /* If MPLS offload request, verify we are testing hardware MPLS features
3523  * instead of standard features for the netdev.
3524  */
3525 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3526 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3527 					   netdev_features_t features,
3528 					   __be16 type)
3529 {
3530 	if (eth_p_mpls(type))
3531 		features &= skb->dev->mpls_features;
3532 
3533 	return features;
3534 }
3535 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3536 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3537 					   netdev_features_t features,
3538 					   __be16 type)
3539 {
3540 	return features;
3541 }
3542 #endif
3543 
harmonize_features(struct sk_buff * skb,netdev_features_t features)3544 static netdev_features_t harmonize_features(struct sk_buff *skb,
3545 	netdev_features_t features)
3546 {
3547 	__be16 type;
3548 
3549 	type = skb_network_protocol(skb, NULL);
3550 	features = net_mpls_features(skb, features, type);
3551 
3552 	if (skb->ip_summed != CHECKSUM_NONE &&
3553 	    !can_checksum_protocol(features, type)) {
3554 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3555 	}
3556 	if (illegal_highdma(skb->dev, skb))
3557 		features &= ~NETIF_F_SG;
3558 
3559 	return features;
3560 }
3561 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3562 netdev_features_t passthru_features_check(struct sk_buff *skb,
3563 					  struct net_device *dev,
3564 					  netdev_features_t features)
3565 {
3566 	return features;
3567 }
3568 EXPORT_SYMBOL(passthru_features_check);
3569 
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3570 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3571 					     struct net_device *dev,
3572 					     netdev_features_t features)
3573 {
3574 	return vlan_features_check(skb, features);
3575 }
3576 
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3577 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3578 					    struct net_device *dev,
3579 					    netdev_features_t features)
3580 {
3581 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3582 
3583 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3584 		return features & ~NETIF_F_GSO_MASK;
3585 
3586 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3587 		return features & ~NETIF_F_GSO_MASK;
3588 
3589 	if (!skb_shinfo(skb)->gso_type) {
3590 		skb_warn_bad_offload(skb);
3591 		return features & ~NETIF_F_GSO_MASK;
3592 	}
3593 
3594 	/* Support for GSO partial features requires software
3595 	 * intervention before we can actually process the packets
3596 	 * so we need to strip support for any partial features now
3597 	 * and we can pull them back in after we have partially
3598 	 * segmented the frame.
3599 	 */
3600 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3601 		features &= ~dev->gso_partial_features;
3602 
3603 	/* Make sure to clear the IPv4 ID mangling feature if the
3604 	 * IPv4 header has the potential to be fragmented.
3605 	 */
3606 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3607 		struct iphdr *iph = skb->encapsulation ?
3608 				    inner_ip_hdr(skb) : ip_hdr(skb);
3609 
3610 		if (!(iph->frag_off & htons(IP_DF)))
3611 			features &= ~NETIF_F_TSO_MANGLEID;
3612 	}
3613 
3614 	/* NETIF_F_IPV6_CSUM does not support IPv6 extension headers,
3615 	 * so neither does TSO that depends on it.
3616 	 */
3617 	if (features & NETIF_F_IPV6_CSUM &&
3618 	    (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 ||
3619 	     (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 &&
3620 	      vlan_get_protocol(skb) == htons(ETH_P_IPV6))) &&
3621 	    skb_transport_header_was_set(skb) &&
3622 	    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3623 	    !ipv6_has_hopopt_jumbo(skb))
3624 		features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4);
3625 
3626 	return features;
3627 }
3628 
netif_skb_features(struct sk_buff * skb)3629 netdev_features_t netif_skb_features(struct sk_buff *skb)
3630 {
3631 	struct net_device *dev = skb->dev;
3632 	netdev_features_t features = dev->features;
3633 
3634 	if (skb_is_gso(skb))
3635 		features = gso_features_check(skb, dev, features);
3636 
3637 	/* If encapsulation offload request, verify we are testing
3638 	 * hardware encapsulation features instead of standard
3639 	 * features for the netdev
3640 	 */
3641 	if (skb->encapsulation)
3642 		features &= dev->hw_enc_features;
3643 
3644 	if (skb_vlan_tagged(skb))
3645 		features = netdev_intersect_features(features,
3646 						     dev->vlan_features |
3647 						     NETIF_F_HW_VLAN_CTAG_TX |
3648 						     NETIF_F_HW_VLAN_STAG_TX);
3649 
3650 	if (dev->netdev_ops->ndo_features_check)
3651 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3652 								features);
3653 	else
3654 		features &= dflt_features_check(skb, dev, features);
3655 
3656 	return harmonize_features(skb, features);
3657 }
3658 EXPORT_SYMBOL(netif_skb_features);
3659 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3660 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3661 		    struct netdev_queue *txq, bool more)
3662 {
3663 	unsigned int len;
3664 	int rc;
3665 
3666 	if (dev_nit_active(dev))
3667 		dev_queue_xmit_nit(skb, dev);
3668 
3669 	len = skb->len;
3670 	trace_net_dev_start_xmit(skb, dev);
3671 
3672 	trace_android_vh_dc_send_copy(skb, dev);
3673 
3674 	rc = netdev_start_xmit(skb, dev, txq, more);
3675 	trace_net_dev_xmit(skb, rc, dev, len);
3676 
3677 	return rc;
3678 }
3679 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3680 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3681 				    struct netdev_queue *txq, int *ret)
3682 {
3683 	struct sk_buff *skb = first;
3684 	int rc = NETDEV_TX_OK;
3685 
3686 	while (skb) {
3687 		struct sk_buff *next = skb->next;
3688 
3689 		skb_mark_not_on_list(skb);
3690 		rc = xmit_one(skb, dev, txq, next != NULL);
3691 		if (unlikely(!dev_xmit_complete(rc))) {
3692 			skb->next = next;
3693 			goto out;
3694 		}
3695 
3696 		skb = next;
3697 		if (netif_tx_queue_stopped(txq) && skb) {
3698 			rc = NETDEV_TX_BUSY;
3699 			break;
3700 		}
3701 	}
3702 
3703 out:
3704 	*ret = rc;
3705 	return skb;
3706 }
3707 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3708 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3709 					  netdev_features_t features)
3710 {
3711 	if (skb_vlan_tag_present(skb) &&
3712 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3713 		skb = __vlan_hwaccel_push_inside(skb);
3714 	return skb;
3715 }
3716 
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3717 int skb_csum_hwoffload_help(struct sk_buff *skb,
3718 			    const netdev_features_t features)
3719 {
3720 	if (unlikely(skb_csum_is_sctp(skb)))
3721 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3722 			skb_crc32c_csum_help(skb);
3723 
3724 	if (features & NETIF_F_HW_CSUM)
3725 		return 0;
3726 
3727 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3728 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3729 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3730 		    !ipv6_has_hopopt_jumbo(skb))
3731 			goto sw_checksum;
3732 
3733 		switch (skb->csum_offset) {
3734 		case offsetof(struct tcphdr, check):
3735 		case offsetof(struct udphdr, check):
3736 			return 0;
3737 		}
3738 	}
3739 
3740 sw_checksum:
3741 	return skb_checksum_help(skb);
3742 }
3743 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3744 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3745 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3746 {
3747 	netdev_features_t features;
3748 
3749 	if (!skb_frags_readable(skb))
3750 		goto out_kfree_skb;
3751 
3752 	features = netif_skb_features(skb);
3753 	skb = validate_xmit_vlan(skb, features);
3754 	if (unlikely(!skb))
3755 		goto out_null;
3756 
3757 	skb = sk_validate_xmit_skb(skb, dev);
3758 	if (unlikely(!skb))
3759 		goto out_null;
3760 
3761 	if (netif_needs_gso(skb, features)) {
3762 		struct sk_buff *segs;
3763 
3764 		segs = skb_gso_segment(skb, features);
3765 		if (IS_ERR(segs)) {
3766 			goto out_kfree_skb;
3767 		} else if (segs) {
3768 			consume_skb(skb);
3769 			skb = segs;
3770 		}
3771 	} else {
3772 		if (skb_needs_linearize(skb, features) &&
3773 		    __skb_linearize(skb))
3774 			goto out_kfree_skb;
3775 
3776 		/* If packet is not checksummed and device does not
3777 		 * support checksumming for this protocol, complete
3778 		 * checksumming here.
3779 		 */
3780 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3781 			if (skb->encapsulation)
3782 				skb_set_inner_transport_header(skb,
3783 							       skb_checksum_start_offset(skb));
3784 			else
3785 				skb_set_transport_header(skb,
3786 							 skb_checksum_start_offset(skb));
3787 			if (skb_csum_hwoffload_help(skb, features))
3788 				goto out_kfree_skb;
3789 		}
3790 	}
3791 
3792 	skb = validate_xmit_xfrm(skb, features, again);
3793 
3794 	return skb;
3795 
3796 out_kfree_skb:
3797 	kfree_skb(skb);
3798 out_null:
3799 	dev_core_stats_tx_dropped_inc(dev);
3800 	return NULL;
3801 }
3802 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3803 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3804 {
3805 	struct sk_buff *next, *head = NULL, *tail;
3806 
3807 	for (; skb != NULL; skb = next) {
3808 		next = skb->next;
3809 		skb_mark_not_on_list(skb);
3810 
3811 		/* in case skb won't be segmented, point to itself */
3812 		skb->prev = skb;
3813 
3814 		skb = validate_xmit_skb(skb, dev, again);
3815 		if (!skb)
3816 			continue;
3817 
3818 		if (!head)
3819 			head = skb;
3820 		else
3821 			tail->next = skb;
3822 		/* If skb was segmented, skb->prev points to
3823 		 * the last segment. If not, it still contains skb.
3824 		 */
3825 		tail = skb->prev;
3826 	}
3827 	return head;
3828 }
3829 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3830 
qdisc_pkt_len_init(struct sk_buff * skb)3831 static void qdisc_pkt_len_init(struct sk_buff *skb)
3832 {
3833 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3834 
3835 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3836 
3837 	/* To get more precise estimation of bytes sent on wire,
3838 	 * we add to pkt_len the headers size of all segments
3839 	 */
3840 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3841 		u16 gso_segs = shinfo->gso_segs;
3842 		unsigned int hdr_len;
3843 
3844 		/* mac layer + network layer */
3845 		hdr_len = skb_transport_offset(skb);
3846 
3847 		/* + transport layer */
3848 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3849 			const struct tcphdr *th;
3850 			struct tcphdr _tcphdr;
3851 
3852 			th = skb_header_pointer(skb, hdr_len,
3853 						sizeof(_tcphdr), &_tcphdr);
3854 			if (likely(th))
3855 				hdr_len += __tcp_hdrlen(th);
3856 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3857 			struct udphdr _udphdr;
3858 
3859 			if (skb_header_pointer(skb, hdr_len,
3860 					       sizeof(_udphdr), &_udphdr))
3861 				hdr_len += sizeof(struct udphdr);
3862 		}
3863 
3864 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3865 			int payload = skb->len - hdr_len;
3866 
3867 			/* Malicious packet. */
3868 			if (payload <= 0)
3869 				return;
3870 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3871 		}
3872 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3873 	}
3874 }
3875 
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)3876 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3877 			     struct sk_buff **to_free,
3878 			     struct netdev_queue *txq)
3879 {
3880 	int rc;
3881 
3882 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3883 	if (rc == NET_XMIT_SUCCESS)
3884 		trace_qdisc_enqueue(q, txq, skb);
3885 	return rc;
3886 }
3887 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3888 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3889 				 struct net_device *dev,
3890 				 struct netdev_queue *txq)
3891 {
3892 	spinlock_t *root_lock = qdisc_lock(q);
3893 	struct sk_buff *to_free = NULL;
3894 	bool contended;
3895 	int rc;
3896 
3897 	qdisc_calculate_pkt_len(skb, q);
3898 
3899 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3900 
3901 	if (q->flags & TCQ_F_NOLOCK) {
3902 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3903 		    qdisc_run_begin(q)) {
3904 			/* Retest nolock_qdisc_is_empty() within the protection
3905 			 * of q->seqlock to protect from racing with requeuing.
3906 			 */
3907 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3908 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3909 				__qdisc_run(q);
3910 				qdisc_run_end(q);
3911 
3912 				goto no_lock_out;
3913 			}
3914 
3915 			qdisc_bstats_cpu_update(q, skb);
3916 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3917 			    !nolock_qdisc_is_empty(q))
3918 				__qdisc_run(q);
3919 
3920 			qdisc_run_end(q);
3921 			return NET_XMIT_SUCCESS;
3922 		}
3923 
3924 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3925 		qdisc_run(q);
3926 
3927 no_lock_out:
3928 		if (unlikely(to_free))
3929 			kfree_skb_list_reason(to_free,
3930 					      tcf_get_drop_reason(to_free));
3931 		return rc;
3932 	}
3933 
3934 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3935 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3936 		return NET_XMIT_DROP;
3937 	}
3938 	/*
3939 	 * Heuristic to force contended enqueues to serialize on a
3940 	 * separate lock before trying to get qdisc main lock.
3941 	 * This permits qdisc->running owner to get the lock more
3942 	 * often and dequeue packets faster.
3943 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3944 	 * and then other tasks will only enqueue packets. The packets will be
3945 	 * sent after the qdisc owner is scheduled again. To prevent this
3946 	 * scenario the task always serialize on the lock.
3947 	 */
3948 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3949 	if (unlikely(contended))
3950 		spin_lock(&q->busylock);
3951 
3952 	spin_lock(root_lock);
3953 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3954 		__qdisc_drop(skb, &to_free);
3955 		rc = NET_XMIT_DROP;
3956 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3957 		   qdisc_run_begin(q)) {
3958 		/*
3959 		 * This is a work-conserving queue; there are no old skbs
3960 		 * waiting to be sent out; and the qdisc is not running -
3961 		 * xmit the skb directly.
3962 		 */
3963 
3964 		qdisc_bstats_update(q, skb);
3965 
3966 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3967 			if (unlikely(contended)) {
3968 				spin_unlock(&q->busylock);
3969 				contended = false;
3970 			}
3971 			__qdisc_run(q);
3972 		}
3973 
3974 		qdisc_run_end(q);
3975 		rc = NET_XMIT_SUCCESS;
3976 	} else {
3977 		WRITE_ONCE(q->owner, smp_processor_id());
3978 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3979 		WRITE_ONCE(q->owner, -1);
3980 		if (qdisc_run_begin(q)) {
3981 			if (unlikely(contended)) {
3982 				spin_unlock(&q->busylock);
3983 				contended = false;
3984 			}
3985 			__qdisc_run(q);
3986 			qdisc_run_end(q);
3987 		}
3988 	}
3989 	spin_unlock(root_lock);
3990 	if (unlikely(to_free))
3991 		kfree_skb_list_reason(to_free,
3992 				      tcf_get_drop_reason(to_free));
3993 	if (unlikely(contended))
3994 		spin_unlock(&q->busylock);
3995 	return rc;
3996 }
3997 
3998 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3999 static void skb_update_prio(struct sk_buff *skb)
4000 {
4001 	const struct netprio_map *map;
4002 	const struct sock *sk;
4003 	unsigned int prioidx;
4004 
4005 	if (skb->priority)
4006 		return;
4007 	map = rcu_dereference_bh(skb->dev->priomap);
4008 	if (!map)
4009 		return;
4010 	sk = skb_to_full_sk(skb);
4011 	if (!sk)
4012 		return;
4013 
4014 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4015 
4016 	if (prioidx < map->priomap_len)
4017 		skb->priority = map->priomap[prioidx];
4018 }
4019 #else
4020 #define skb_update_prio(skb)
4021 #endif
4022 
4023 /**
4024  *	dev_loopback_xmit - loop back @skb
4025  *	@net: network namespace this loopback is happening in
4026  *	@sk:  sk needed to be a netfilter okfn
4027  *	@skb: buffer to transmit
4028  */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)4029 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4030 {
4031 	skb_reset_mac_header(skb);
4032 	__skb_pull(skb, skb_network_offset(skb));
4033 	skb->pkt_type = PACKET_LOOPBACK;
4034 	if (skb->ip_summed == CHECKSUM_NONE)
4035 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4036 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4037 	skb_dst_force(skb);
4038 	netif_rx(skb);
4039 	return 0;
4040 }
4041 EXPORT_SYMBOL(dev_loopback_xmit);
4042 
4043 #ifdef CONFIG_NET_EGRESS
4044 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)4045 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4046 {
4047 	int qm = skb_get_queue_mapping(skb);
4048 
4049 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4050 }
4051 
4052 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)4053 static bool netdev_xmit_txqueue_skipped(void)
4054 {
4055 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4056 }
4057 
netdev_xmit_skip_txqueue(bool skip)4058 void netdev_xmit_skip_txqueue(bool skip)
4059 {
4060 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4061 }
4062 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4063 
4064 #else
netdev_xmit_txqueue_skipped(void)4065 static bool netdev_xmit_txqueue_skipped(void)
4066 {
4067 	return current->net_xmit.skip_txqueue;
4068 }
4069 
netdev_xmit_skip_txqueue(bool skip)4070 void netdev_xmit_skip_txqueue(bool skip)
4071 {
4072 	current->net_xmit.skip_txqueue = skip;
4073 }
4074 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4075 #endif
4076 #endif /* CONFIG_NET_EGRESS */
4077 
4078 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)4079 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4080 		  enum skb_drop_reason *drop_reason)
4081 {
4082 	int ret = TC_ACT_UNSPEC;
4083 #ifdef CONFIG_NET_CLS_ACT
4084 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4085 	struct tcf_result res;
4086 
4087 	if (!miniq)
4088 		return ret;
4089 
4090 	/* Global bypass */
4091 	if (!static_branch_likely(&tcf_sw_enabled_key))
4092 		return ret;
4093 
4094 	/* Block-wise bypass */
4095 	if (tcf_block_bypass_sw(miniq->block))
4096 		return ret;
4097 
4098 	tc_skb_cb(skb)->mru = 0;
4099 	tc_skb_cb(skb)->post_ct = false;
4100 	tcf_set_drop_reason(skb, *drop_reason);
4101 
4102 	mini_qdisc_bstats_cpu_update(miniq, skb);
4103 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4104 	/* Only tcf related quirks below. */
4105 	switch (ret) {
4106 	case TC_ACT_SHOT:
4107 		*drop_reason = tcf_get_drop_reason(skb);
4108 		mini_qdisc_qstats_cpu_drop(miniq);
4109 		break;
4110 	case TC_ACT_OK:
4111 	case TC_ACT_RECLASSIFY:
4112 		skb->tc_index = TC_H_MIN(res.classid);
4113 		break;
4114 	}
4115 #endif /* CONFIG_NET_CLS_ACT */
4116 	return ret;
4117 }
4118 
4119 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4120 
tcx_inc(void)4121 void tcx_inc(void)
4122 {
4123 	static_branch_inc(&tcx_needed_key);
4124 }
4125 
tcx_dec(void)4126 void tcx_dec(void)
4127 {
4128 	static_branch_dec(&tcx_needed_key);
4129 }
4130 
4131 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4132 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4133 	const bool needs_mac)
4134 {
4135 	const struct bpf_mprog_fp *fp;
4136 	const struct bpf_prog *prog;
4137 	int ret = TCX_NEXT;
4138 
4139 	if (needs_mac)
4140 		__skb_push(skb, skb->mac_len);
4141 	bpf_mprog_foreach_prog(entry, fp, prog) {
4142 		bpf_compute_data_pointers(skb);
4143 		ret = bpf_prog_run(prog, skb);
4144 		if (ret != TCX_NEXT)
4145 			break;
4146 	}
4147 	if (needs_mac)
4148 		__skb_pull(skb, skb->mac_len);
4149 	return tcx_action_code(skb, ret);
4150 }
4151 
4152 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4153 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4154 		   struct net_device *orig_dev, bool *another)
4155 {
4156 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4157 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4158 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4159 	int sch_ret;
4160 
4161 	if (!entry)
4162 		return skb;
4163 
4164 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4165 	if (*pt_prev) {
4166 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4167 		*pt_prev = NULL;
4168 	}
4169 
4170 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4171 	tcx_set_ingress(skb, true);
4172 
4173 	if (static_branch_unlikely(&tcx_needed_key)) {
4174 		sch_ret = tcx_run(entry, skb, true);
4175 		if (sch_ret != TC_ACT_UNSPEC)
4176 			goto ingress_verdict;
4177 	}
4178 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4179 ingress_verdict:
4180 	switch (sch_ret) {
4181 	case TC_ACT_REDIRECT:
4182 		/* skb_mac_header check was done by BPF, so we can safely
4183 		 * push the L2 header back before redirecting to another
4184 		 * netdev.
4185 		 */
4186 		__skb_push(skb, skb->mac_len);
4187 		if (skb_do_redirect(skb) == -EAGAIN) {
4188 			__skb_pull(skb, skb->mac_len);
4189 			*another = true;
4190 			break;
4191 		}
4192 		*ret = NET_RX_SUCCESS;
4193 		bpf_net_ctx_clear(bpf_net_ctx);
4194 		return NULL;
4195 	case TC_ACT_SHOT:
4196 		kfree_skb_reason(skb, drop_reason);
4197 		*ret = NET_RX_DROP;
4198 		bpf_net_ctx_clear(bpf_net_ctx);
4199 		return NULL;
4200 	/* used by tc_run */
4201 	case TC_ACT_STOLEN:
4202 	case TC_ACT_QUEUED:
4203 	case TC_ACT_TRAP:
4204 		consume_skb(skb);
4205 		fallthrough;
4206 	case TC_ACT_CONSUMED:
4207 		*ret = NET_RX_SUCCESS;
4208 		bpf_net_ctx_clear(bpf_net_ctx);
4209 		return NULL;
4210 	}
4211 	bpf_net_ctx_clear(bpf_net_ctx);
4212 
4213 	return skb;
4214 }
4215 
4216 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4217 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4218 {
4219 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4220 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4221 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4222 	int sch_ret;
4223 
4224 	if (!entry)
4225 		return skb;
4226 
4227 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4228 
4229 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4230 	 * already set by the caller.
4231 	 */
4232 	if (static_branch_unlikely(&tcx_needed_key)) {
4233 		sch_ret = tcx_run(entry, skb, false);
4234 		if (sch_ret != TC_ACT_UNSPEC)
4235 			goto egress_verdict;
4236 	}
4237 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4238 egress_verdict:
4239 	switch (sch_ret) {
4240 	case TC_ACT_REDIRECT:
4241 		/* No need to push/pop skb's mac_header here on egress! */
4242 		skb_do_redirect(skb);
4243 		*ret = NET_XMIT_SUCCESS;
4244 		bpf_net_ctx_clear(bpf_net_ctx);
4245 		return NULL;
4246 	case TC_ACT_SHOT:
4247 		kfree_skb_reason(skb, drop_reason);
4248 		*ret = NET_XMIT_DROP;
4249 		bpf_net_ctx_clear(bpf_net_ctx);
4250 		return NULL;
4251 	/* used by tc_run */
4252 	case TC_ACT_STOLEN:
4253 	case TC_ACT_QUEUED:
4254 	case TC_ACT_TRAP:
4255 		consume_skb(skb);
4256 		fallthrough;
4257 	case TC_ACT_CONSUMED:
4258 		*ret = NET_XMIT_SUCCESS;
4259 		bpf_net_ctx_clear(bpf_net_ctx);
4260 		return NULL;
4261 	}
4262 	bpf_net_ctx_clear(bpf_net_ctx);
4263 
4264 	return skb;
4265 }
4266 #else
4267 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4268 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4269 		   struct net_device *orig_dev, bool *another)
4270 {
4271 	return skb;
4272 }
4273 
4274 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4275 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4276 {
4277 	return skb;
4278 }
4279 #endif /* CONFIG_NET_XGRESS */
4280 
4281 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4282 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4283 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4284 {
4285 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4286 	struct xps_map *map;
4287 	int queue_index = -1;
4288 
4289 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4290 		return queue_index;
4291 
4292 	tci *= dev_maps->num_tc;
4293 	tci += tc;
4294 
4295 	map = rcu_dereference(dev_maps->attr_map[tci]);
4296 	if (map) {
4297 		if (map->len == 1)
4298 			queue_index = map->queues[0];
4299 		else
4300 			queue_index = map->queues[reciprocal_scale(
4301 						skb_get_hash(skb), map->len)];
4302 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4303 			queue_index = -1;
4304 	}
4305 	return queue_index;
4306 }
4307 #endif
4308 
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4309 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4310 			 struct sk_buff *skb)
4311 {
4312 #ifdef CONFIG_XPS
4313 	struct xps_dev_maps *dev_maps;
4314 	struct sock *sk = skb->sk;
4315 	int queue_index = -1;
4316 
4317 	if (!static_key_false(&xps_needed))
4318 		return -1;
4319 
4320 	rcu_read_lock();
4321 	if (!static_key_false(&xps_rxqs_needed))
4322 		goto get_cpus_map;
4323 
4324 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4325 	if (dev_maps) {
4326 		int tci = sk_rx_queue_get(sk);
4327 
4328 		if (tci >= 0)
4329 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4330 							  tci);
4331 	}
4332 
4333 get_cpus_map:
4334 	if (queue_index < 0) {
4335 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4336 		if (dev_maps) {
4337 			unsigned int tci = skb->sender_cpu - 1;
4338 
4339 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4340 							  tci);
4341 		}
4342 	}
4343 	rcu_read_unlock();
4344 
4345 	return queue_index;
4346 #else
4347 	return -1;
4348 #endif
4349 }
4350 
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4351 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4352 		     struct net_device *sb_dev)
4353 {
4354 	return 0;
4355 }
4356 EXPORT_SYMBOL(dev_pick_tx_zero);
4357 
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4358 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4359 		     struct net_device *sb_dev)
4360 {
4361 	struct sock *sk = skb->sk;
4362 	int queue_index = sk_tx_queue_get(sk);
4363 
4364 	sb_dev = sb_dev ? : dev;
4365 
4366 	if (queue_index < 0 || skb->ooo_okay ||
4367 	    queue_index >= dev->real_num_tx_queues) {
4368 		int new_index = get_xps_queue(dev, sb_dev, skb);
4369 
4370 		if (new_index < 0)
4371 			new_index = skb_tx_hash(dev, sb_dev, skb);
4372 
4373 		if (queue_index != new_index && sk &&
4374 		    sk_fullsock(sk) &&
4375 		    rcu_access_pointer(sk->sk_dst_cache))
4376 			sk_tx_queue_set(sk, new_index);
4377 
4378 		queue_index = new_index;
4379 	}
4380 
4381 	return queue_index;
4382 }
4383 EXPORT_SYMBOL(netdev_pick_tx);
4384 
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4385 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4386 					 struct sk_buff *skb,
4387 					 struct net_device *sb_dev)
4388 {
4389 	int queue_index = 0;
4390 
4391 #ifdef CONFIG_XPS
4392 	u32 sender_cpu = skb->sender_cpu - 1;
4393 
4394 	if (sender_cpu >= (u32)NR_CPUS)
4395 		skb->sender_cpu = raw_smp_processor_id() + 1;
4396 #endif
4397 
4398 	if (dev->real_num_tx_queues != 1) {
4399 		const struct net_device_ops *ops = dev->netdev_ops;
4400 
4401 		if (ops->ndo_select_queue)
4402 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4403 		else
4404 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4405 
4406 		queue_index = netdev_cap_txqueue(dev, queue_index);
4407 	}
4408 
4409 	skb_set_queue_mapping(skb, queue_index);
4410 	return netdev_get_tx_queue(dev, queue_index);
4411 }
4412 
4413 /**
4414  * __dev_queue_xmit() - transmit a buffer
4415  * @skb:	buffer to transmit
4416  * @sb_dev:	suboordinate device used for L2 forwarding offload
4417  *
4418  * Queue a buffer for transmission to a network device. The caller must
4419  * have set the device and priority and built the buffer before calling
4420  * this function. The function can be called from an interrupt.
4421  *
4422  * When calling this method, interrupts MUST be enabled. This is because
4423  * the BH enable code must have IRQs enabled so that it will not deadlock.
4424  *
4425  * Regardless of the return value, the skb is consumed, so it is currently
4426  * difficult to retry a send to this method. (You can bump the ref count
4427  * before sending to hold a reference for retry if you are careful.)
4428  *
4429  * Return:
4430  * * 0				- buffer successfully transmitted
4431  * * positive qdisc return code	- NET_XMIT_DROP etc.
4432  * * negative errno		- other errors
4433  */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4434 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4435 {
4436 	struct net_device *dev = skb->dev;
4437 	struct netdev_queue *txq = NULL;
4438 	struct Qdisc *q;
4439 	int rc = -ENOMEM;
4440 	bool again = false;
4441 
4442 	skb_reset_mac_header(skb);
4443 	skb_assert_len(skb);
4444 
4445 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4446 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4447 
4448 	/* Disable soft irqs for various locks below. Also
4449 	 * stops preemption for RCU.
4450 	 */
4451 	rcu_read_lock_bh();
4452 
4453 	skb_update_prio(skb);
4454 
4455 	qdisc_pkt_len_init(skb);
4456 	tcx_set_ingress(skb, false);
4457 #ifdef CONFIG_NET_EGRESS
4458 	if (static_branch_unlikely(&egress_needed_key)) {
4459 		if (nf_hook_egress_active()) {
4460 			skb = nf_hook_egress(skb, &rc, dev);
4461 			if (!skb)
4462 				goto out;
4463 		}
4464 
4465 		netdev_xmit_skip_txqueue(false);
4466 
4467 		nf_skip_egress(skb, true);
4468 		skb = sch_handle_egress(skb, &rc, dev);
4469 		if (!skb)
4470 			goto out;
4471 		nf_skip_egress(skb, false);
4472 
4473 		if (netdev_xmit_txqueue_skipped())
4474 			txq = netdev_tx_queue_mapping(dev, skb);
4475 	}
4476 #endif
4477 	/* If device/qdisc don't need skb->dst, release it right now while
4478 	 * its hot in this cpu cache.
4479 	 */
4480 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4481 		skb_dst_drop(skb);
4482 	else
4483 		skb_dst_force(skb);
4484 
4485 	if (!txq)
4486 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4487 
4488 	q = rcu_dereference_bh(txq->qdisc);
4489 
4490 	trace_net_dev_queue(skb);
4491 	if (q->enqueue) {
4492 		rc = __dev_xmit_skb(skb, q, dev, txq);
4493 		goto out;
4494 	}
4495 
4496 	/* The device has no queue. Common case for software devices:
4497 	 * loopback, all the sorts of tunnels...
4498 
4499 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4500 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4501 	 * counters.)
4502 	 * However, it is possible, that they rely on protection
4503 	 * made by us here.
4504 
4505 	 * Check this and shot the lock. It is not prone from deadlocks.
4506 	 *Either shot noqueue qdisc, it is even simpler 8)
4507 	 */
4508 	if (dev->flags & IFF_UP) {
4509 		int cpu = smp_processor_id(); /* ok because BHs are off */
4510 
4511 		/* Other cpus might concurrently change txq->xmit_lock_owner
4512 		 * to -1 or to their cpu id, but not to our id.
4513 		 */
4514 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4515 			if (dev_xmit_recursion())
4516 				goto recursion_alert;
4517 
4518 			skb = validate_xmit_skb(skb, dev, &again);
4519 			if (!skb)
4520 				goto out;
4521 
4522 			HARD_TX_LOCK(dev, txq, cpu);
4523 
4524 			if (!netif_xmit_stopped(txq)) {
4525 				dev_xmit_recursion_inc();
4526 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4527 				dev_xmit_recursion_dec();
4528 				if (dev_xmit_complete(rc)) {
4529 					HARD_TX_UNLOCK(dev, txq);
4530 					goto out;
4531 				}
4532 			}
4533 			HARD_TX_UNLOCK(dev, txq);
4534 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4535 					     dev->name);
4536 		} else {
4537 			/* Recursion is detected! It is possible,
4538 			 * unfortunately
4539 			 */
4540 recursion_alert:
4541 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4542 					     dev->name);
4543 		}
4544 	}
4545 
4546 	rc = -ENETDOWN;
4547 	rcu_read_unlock_bh();
4548 
4549 	dev_core_stats_tx_dropped_inc(dev);
4550 	kfree_skb_list(skb);
4551 	return rc;
4552 out:
4553 	rcu_read_unlock_bh();
4554 	return rc;
4555 }
4556 EXPORT_SYMBOL(__dev_queue_xmit);
4557 
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4558 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4559 {
4560 	struct net_device *dev = skb->dev;
4561 	struct sk_buff *orig_skb = skb;
4562 	struct netdev_queue *txq;
4563 	int ret = NETDEV_TX_BUSY;
4564 	bool again = false;
4565 
4566 	if (unlikely(!netif_running(dev) ||
4567 		     !netif_carrier_ok(dev)))
4568 		goto drop;
4569 
4570 	skb = validate_xmit_skb_list(skb, dev, &again);
4571 	if (skb != orig_skb)
4572 		goto drop;
4573 
4574 	skb_set_queue_mapping(skb, queue_id);
4575 	txq = skb_get_tx_queue(dev, skb);
4576 
4577 	local_bh_disable();
4578 
4579 	dev_xmit_recursion_inc();
4580 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4581 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4582 		ret = netdev_start_xmit(skb, dev, txq, false);
4583 	HARD_TX_UNLOCK(dev, txq);
4584 	dev_xmit_recursion_dec();
4585 
4586 	local_bh_enable();
4587 	return ret;
4588 drop:
4589 	dev_core_stats_tx_dropped_inc(dev);
4590 	kfree_skb_list(skb);
4591 	return NET_XMIT_DROP;
4592 }
4593 EXPORT_SYMBOL(__dev_direct_xmit);
4594 
4595 /*************************************************************************
4596  *			Receiver routines
4597  *************************************************************************/
4598 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4599 
4600 int weight_p __read_mostly = 64;           /* old backlog weight */
4601 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4602 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4603 
4604 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4605 static inline void ____napi_schedule(struct softnet_data *sd,
4606 				     struct napi_struct *napi)
4607 {
4608 	struct task_struct *thread;
4609 
4610 	lockdep_assert_irqs_disabled();
4611 
4612 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4613 		/* Paired with smp_mb__before_atomic() in
4614 		 * napi_enable()/dev_set_threaded().
4615 		 * Use READ_ONCE() to guarantee a complete
4616 		 * read on napi->thread. Only call
4617 		 * wake_up_process() when it's not NULL.
4618 		 */
4619 		thread = READ_ONCE(napi->thread);
4620 		if (thread) {
4621 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4622 				goto use_local_napi;
4623 
4624 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4625 			wake_up_process(thread);
4626 			return;
4627 		}
4628 	}
4629 
4630 use_local_napi:
4631 	list_add_tail(&napi->poll_list, &sd->poll_list);
4632 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4633 	/* If not called from net_rx_action()
4634 	 * we have to raise NET_RX_SOFTIRQ.
4635 	 */
4636 	if (!sd->in_net_rx_action)
4637 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4638 }
4639 
4640 #ifdef CONFIG_RPS
4641 
4642 struct static_key_false rps_needed __read_mostly;
4643 EXPORT_SYMBOL(rps_needed);
4644 struct static_key_false rfs_needed __read_mostly;
4645 EXPORT_SYMBOL(rfs_needed);
4646 
4647 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4648 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4649 	    struct rps_dev_flow *rflow, u16 next_cpu)
4650 {
4651 	if (next_cpu < nr_cpu_ids) {
4652 		u32 head;
4653 #ifdef CONFIG_RFS_ACCEL
4654 		struct netdev_rx_queue *rxqueue;
4655 		struct rps_dev_flow_table *flow_table;
4656 		struct rps_dev_flow *old_rflow;
4657 		u16 rxq_index;
4658 		u32 flow_id;
4659 		int rc;
4660 
4661 		/* Should we steer this flow to a different hardware queue? */
4662 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4663 		    !(dev->features & NETIF_F_NTUPLE))
4664 			goto out;
4665 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4666 		if (rxq_index == skb_get_rx_queue(skb))
4667 			goto out;
4668 
4669 		rxqueue = dev->_rx + rxq_index;
4670 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4671 		if (!flow_table)
4672 			goto out;
4673 		flow_id = skb_get_hash(skb) & flow_table->mask;
4674 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4675 							rxq_index, flow_id);
4676 		if (rc < 0)
4677 			goto out;
4678 		old_rflow = rflow;
4679 		rflow = &flow_table->flows[flow_id];
4680 		WRITE_ONCE(rflow->filter, rc);
4681 		if (old_rflow->filter == rc)
4682 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4683 	out:
4684 #endif
4685 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4686 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4687 	}
4688 
4689 	WRITE_ONCE(rflow->cpu, next_cpu);
4690 	return rflow;
4691 }
4692 
4693 /*
4694  * get_rps_cpu is called from netif_receive_skb and returns the target
4695  * CPU from the RPS map of the receiving queue for a given skb.
4696  * rcu_read_lock must be held on entry.
4697  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4698 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4699 		       struct rps_dev_flow **rflowp)
4700 {
4701 	const struct rps_sock_flow_table *sock_flow_table;
4702 	struct netdev_rx_queue *rxqueue = dev->_rx;
4703 	struct rps_dev_flow_table *flow_table;
4704 	struct rps_map *map;
4705 	int cpu = -1;
4706 	u32 tcpu;
4707 	u32 hash;
4708 
4709 	if (skb_rx_queue_recorded(skb)) {
4710 		u16 index = skb_get_rx_queue(skb);
4711 
4712 		if (unlikely(index >= dev->real_num_rx_queues)) {
4713 			WARN_ONCE(dev->real_num_rx_queues > 1,
4714 				  "%s received packet on queue %u, but number "
4715 				  "of RX queues is %u\n",
4716 				  dev->name, index, dev->real_num_rx_queues);
4717 			goto done;
4718 		}
4719 		rxqueue += index;
4720 	}
4721 
4722 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4723 
4724 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4725 	map = rcu_dereference(rxqueue->rps_map);
4726 	if (!flow_table && !map)
4727 		goto done;
4728 
4729 	skb_reset_network_header(skb);
4730 	hash = skb_get_hash(skb);
4731 	if (!hash)
4732 		goto done;
4733 
4734 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4735 	if (flow_table && sock_flow_table) {
4736 		struct rps_dev_flow *rflow;
4737 		u32 next_cpu;
4738 		u32 ident;
4739 
4740 		/* First check into global flow table if there is a match.
4741 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4742 		 */
4743 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4744 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4745 			goto try_rps;
4746 
4747 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4748 
4749 		/* OK, now we know there is a match,
4750 		 * we can look at the local (per receive queue) flow table
4751 		 */
4752 		rflow = &flow_table->flows[hash & flow_table->mask];
4753 		tcpu = rflow->cpu;
4754 
4755 		/*
4756 		 * If the desired CPU (where last recvmsg was done) is
4757 		 * different from current CPU (one in the rx-queue flow
4758 		 * table entry), switch if one of the following holds:
4759 		 *   - Current CPU is unset (>= nr_cpu_ids).
4760 		 *   - Current CPU is offline.
4761 		 *   - The current CPU's queue tail has advanced beyond the
4762 		 *     last packet that was enqueued using this table entry.
4763 		 *     This guarantees that all previous packets for the flow
4764 		 *     have been dequeued, thus preserving in order delivery.
4765 		 */
4766 		if (unlikely(tcpu != next_cpu) &&
4767 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4768 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4769 		      rflow->last_qtail)) >= 0)) {
4770 			tcpu = next_cpu;
4771 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4772 		}
4773 
4774 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4775 			*rflowp = rflow;
4776 			cpu = tcpu;
4777 			goto done;
4778 		}
4779 	}
4780 
4781 try_rps:
4782 
4783 	if (map) {
4784 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4785 		if (cpu_online(tcpu)) {
4786 			cpu = tcpu;
4787 			goto done;
4788 		}
4789 	}
4790 
4791 done:
4792 	return cpu;
4793 }
4794 
4795 #ifdef CONFIG_RFS_ACCEL
4796 
4797 /**
4798  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4799  * @dev: Device on which the filter was set
4800  * @rxq_index: RX queue index
4801  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4802  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4803  *
4804  * Drivers that implement ndo_rx_flow_steer() should periodically call
4805  * this function for each installed filter and remove the filters for
4806  * which it returns %true.
4807  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4808 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4809 			 u32 flow_id, u16 filter_id)
4810 {
4811 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4812 	struct rps_dev_flow_table *flow_table;
4813 	struct rps_dev_flow *rflow;
4814 	bool expire = true;
4815 	unsigned int cpu;
4816 
4817 	rcu_read_lock();
4818 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4819 	if (flow_table && flow_id <= flow_table->mask) {
4820 		rflow = &flow_table->flows[flow_id];
4821 		cpu = READ_ONCE(rflow->cpu);
4822 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4823 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4824 			   READ_ONCE(rflow->last_qtail)) <
4825 		     (int)(10 * flow_table->mask)))
4826 			expire = false;
4827 	}
4828 	rcu_read_unlock();
4829 	return expire;
4830 }
4831 EXPORT_SYMBOL(rps_may_expire_flow);
4832 
4833 #endif /* CONFIG_RFS_ACCEL */
4834 
4835 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4836 static void rps_trigger_softirq(void *data)
4837 {
4838 	struct softnet_data *sd = data;
4839 
4840 	____napi_schedule(sd, &sd->backlog);
4841 	sd->received_rps++;
4842 }
4843 
4844 #endif /* CONFIG_RPS */
4845 
4846 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)4847 static void trigger_rx_softirq(void *data)
4848 {
4849 	struct softnet_data *sd = data;
4850 
4851 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4852 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4853 }
4854 
4855 /*
4856  * After we queued a packet into sd->input_pkt_queue,
4857  * we need to make sure this queue is serviced soon.
4858  *
4859  * - If this is another cpu queue, link it to our rps_ipi_list,
4860  *   and make sure we will process rps_ipi_list from net_rx_action().
4861  *
4862  * - If this is our own queue, NAPI schedule our backlog.
4863  *   Note that this also raises NET_RX_SOFTIRQ.
4864  */
napi_schedule_rps(struct softnet_data * sd)4865 static void napi_schedule_rps(struct softnet_data *sd)
4866 {
4867 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4868 
4869 #ifdef CONFIG_RPS
4870 	if (sd != mysd) {
4871 		if (use_backlog_threads()) {
4872 			__napi_schedule_irqoff(&sd->backlog);
4873 			return;
4874 		}
4875 
4876 		sd->rps_ipi_next = mysd->rps_ipi_list;
4877 		mysd->rps_ipi_list = sd;
4878 
4879 		/* If not called from net_rx_action() or napi_threaded_poll()
4880 		 * we have to raise NET_RX_SOFTIRQ.
4881 		 */
4882 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4883 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4884 		return;
4885 	}
4886 #endif /* CONFIG_RPS */
4887 	__napi_schedule_irqoff(&mysd->backlog);
4888 }
4889 
kick_defer_list_purge(struct softnet_data * sd,unsigned int cpu)4890 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4891 {
4892 	unsigned long flags;
4893 
4894 	if (use_backlog_threads()) {
4895 		backlog_lock_irq_save(sd, &flags);
4896 
4897 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4898 			__napi_schedule_irqoff(&sd->backlog);
4899 
4900 		backlog_unlock_irq_restore(sd, &flags);
4901 
4902 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4903 		smp_call_function_single_async(cpu, &sd->defer_csd);
4904 	}
4905 }
4906 
4907 #ifdef CONFIG_NET_FLOW_LIMIT
4908 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4909 #endif
4910 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4911 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4912 {
4913 #ifdef CONFIG_NET_FLOW_LIMIT
4914 	struct sd_flow_limit *fl;
4915 	struct softnet_data *sd;
4916 	unsigned int old_flow, new_flow;
4917 
4918 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4919 		return false;
4920 
4921 	sd = this_cpu_ptr(&softnet_data);
4922 
4923 	rcu_read_lock();
4924 	fl = rcu_dereference(sd->flow_limit);
4925 	if (fl) {
4926 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4927 		old_flow = fl->history[fl->history_head];
4928 		fl->history[fl->history_head] = new_flow;
4929 
4930 		fl->history_head++;
4931 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4932 
4933 		if (likely(fl->buckets[old_flow]))
4934 			fl->buckets[old_flow]--;
4935 
4936 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4937 			fl->count++;
4938 			rcu_read_unlock();
4939 			return true;
4940 		}
4941 	}
4942 	rcu_read_unlock();
4943 #endif
4944 	return false;
4945 }
4946 
4947 /*
4948  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4949  * queue (may be a remote CPU queue).
4950  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4951 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4952 			      unsigned int *qtail)
4953 {
4954 	enum skb_drop_reason reason;
4955 	struct softnet_data *sd;
4956 	unsigned long flags;
4957 	unsigned int qlen;
4958 	int max_backlog;
4959 	u32 tail;
4960 
4961 	reason = SKB_DROP_REASON_DEV_READY;
4962 	if (!netif_running(skb->dev))
4963 		goto bad_dev;
4964 
4965 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4966 	sd = &per_cpu(softnet_data, cpu);
4967 
4968 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
4969 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
4970 	if (unlikely(qlen > max_backlog))
4971 		goto cpu_backlog_drop;
4972 	backlog_lock_irq_save(sd, &flags);
4973 	qlen = skb_queue_len(&sd->input_pkt_queue);
4974 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
4975 		if (!qlen) {
4976 			/* Schedule NAPI for backlog device. We can use
4977 			 * non atomic operation as we own the queue lock.
4978 			 */
4979 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
4980 						&sd->backlog.state))
4981 				napi_schedule_rps(sd);
4982 		}
4983 		__skb_queue_tail(&sd->input_pkt_queue, skb);
4984 		tail = rps_input_queue_tail_incr(sd);
4985 		backlog_unlock_irq_restore(sd, &flags);
4986 
4987 		/* save the tail outside of the critical section */
4988 		rps_input_queue_tail_save(qtail, tail);
4989 		return NET_RX_SUCCESS;
4990 	}
4991 
4992 	backlog_unlock_irq_restore(sd, &flags);
4993 
4994 cpu_backlog_drop:
4995 	atomic_inc(&sd->dropped);
4996 bad_dev:
4997 	dev_core_stats_rx_dropped_inc(skb->dev);
4998 	kfree_skb_reason(skb, reason);
4999 	return NET_RX_DROP;
5000 }
5001 
netif_get_rxqueue(struct sk_buff * skb)5002 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5003 {
5004 	struct net_device *dev = skb->dev;
5005 	struct netdev_rx_queue *rxqueue;
5006 
5007 	rxqueue = dev->_rx;
5008 
5009 	if (skb_rx_queue_recorded(skb)) {
5010 		u16 index = skb_get_rx_queue(skb);
5011 
5012 		if (unlikely(index >= dev->real_num_rx_queues)) {
5013 			WARN_ONCE(dev->real_num_rx_queues > 1,
5014 				  "%s received packet on queue %u, but number "
5015 				  "of RX queues is %u\n",
5016 				  dev->name, index, dev->real_num_rx_queues);
5017 
5018 			return rxqueue; /* Return first rxqueue */
5019 		}
5020 		rxqueue += index;
5021 	}
5022 	return rxqueue;
5023 }
5024 
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)5025 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5026 			     struct bpf_prog *xdp_prog)
5027 {
5028 	void *orig_data, *orig_data_end, *hard_start;
5029 	struct netdev_rx_queue *rxqueue;
5030 	bool orig_bcast, orig_host;
5031 	u32 mac_len, frame_sz;
5032 	__be16 orig_eth_type;
5033 	struct ethhdr *eth;
5034 	u32 metalen, act;
5035 	int off;
5036 
5037 	/* The XDP program wants to see the packet starting at the MAC
5038 	 * header.
5039 	 */
5040 	mac_len = skb->data - skb_mac_header(skb);
5041 	hard_start = skb->data - skb_headroom(skb);
5042 
5043 	/* SKB "head" area always have tailroom for skb_shared_info */
5044 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5045 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5046 
5047 	rxqueue = netif_get_rxqueue(skb);
5048 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5049 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5050 			 skb_headlen(skb) + mac_len, true);
5051 	if (skb_is_nonlinear(skb)) {
5052 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5053 		xdp_buff_set_frags_flag(xdp);
5054 	} else {
5055 		xdp_buff_clear_frags_flag(xdp);
5056 	}
5057 
5058 	orig_data_end = xdp->data_end;
5059 	orig_data = xdp->data;
5060 	eth = (struct ethhdr *)xdp->data;
5061 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5062 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5063 	orig_eth_type = eth->h_proto;
5064 
5065 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5066 
5067 	/* check if bpf_xdp_adjust_head was used */
5068 	off = xdp->data - orig_data;
5069 	if (off) {
5070 		if (off > 0)
5071 			__skb_pull(skb, off);
5072 		else if (off < 0)
5073 			__skb_push(skb, -off);
5074 
5075 		skb->mac_header += off;
5076 		skb_reset_network_header(skb);
5077 	}
5078 
5079 	/* check if bpf_xdp_adjust_tail was used */
5080 	off = xdp->data_end - orig_data_end;
5081 	if (off != 0) {
5082 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5083 		skb->len += off; /* positive on grow, negative on shrink */
5084 	}
5085 
5086 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5087 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5088 	 */
5089 	if (xdp_buff_has_frags(xdp))
5090 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5091 	else
5092 		skb->data_len = 0;
5093 
5094 	/* check if XDP changed eth hdr such SKB needs update */
5095 	eth = (struct ethhdr *)xdp->data;
5096 	if ((orig_eth_type != eth->h_proto) ||
5097 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5098 						  skb->dev->dev_addr)) ||
5099 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5100 		__skb_push(skb, ETH_HLEN);
5101 		skb->pkt_type = PACKET_HOST;
5102 		skb->protocol = eth_type_trans(skb, skb->dev);
5103 	}
5104 
5105 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5106 	 * before calling us again on redirect path. We do not call do_redirect
5107 	 * as we leave that up to the caller.
5108 	 *
5109 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5110 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5111 	 */
5112 	switch (act) {
5113 	case XDP_REDIRECT:
5114 	case XDP_TX:
5115 		__skb_push(skb, mac_len);
5116 		break;
5117 	case XDP_PASS:
5118 		metalen = xdp->data - xdp->data_meta;
5119 		if (metalen)
5120 			skb_metadata_set(skb, metalen);
5121 		break;
5122 	}
5123 
5124 	return act;
5125 }
5126 
5127 static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,struct bpf_prog * prog)5128 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
5129 {
5130 	struct sk_buff *skb = *pskb;
5131 	int err, hroom, troom;
5132 
5133 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5134 		return 0;
5135 
5136 	/* In case we have to go down the path and also linearize,
5137 	 * then lets do the pskb_expand_head() work just once here.
5138 	 */
5139 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5140 	troom = skb->tail + skb->data_len - skb->end;
5141 	err = pskb_expand_head(skb,
5142 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5143 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5144 	if (err)
5145 		return err;
5146 
5147 	return skb_linearize(skb);
5148 }
5149 
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)5150 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5151 				     struct xdp_buff *xdp,
5152 				     struct bpf_prog *xdp_prog)
5153 {
5154 	struct sk_buff *skb = *pskb;
5155 	u32 mac_len, act = XDP_DROP;
5156 
5157 	/* Reinjected packets coming from act_mirred or similar should
5158 	 * not get XDP generic processing.
5159 	 */
5160 	if (skb_is_redirected(skb))
5161 		return XDP_PASS;
5162 
5163 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5164 	 * bytes. This is the guarantee that also native XDP provides,
5165 	 * thus we need to do it here as well.
5166 	 */
5167 	mac_len = skb->data - skb_mac_header(skb);
5168 	__skb_push(skb, mac_len);
5169 
5170 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5171 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5172 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5173 			goto do_drop;
5174 	}
5175 
5176 	__skb_pull(*pskb, mac_len);
5177 
5178 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5179 	switch (act) {
5180 	case XDP_REDIRECT:
5181 	case XDP_TX:
5182 	case XDP_PASS:
5183 		break;
5184 	default:
5185 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5186 		fallthrough;
5187 	case XDP_ABORTED:
5188 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5189 		fallthrough;
5190 	case XDP_DROP:
5191 	do_drop:
5192 		kfree_skb(*pskb);
5193 		break;
5194 	}
5195 
5196 	return act;
5197 }
5198 
5199 /* When doing generic XDP we have to bypass the qdisc layer and the
5200  * network taps in order to match in-driver-XDP behavior. This also means
5201  * that XDP packets are able to starve other packets going through a qdisc,
5202  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5203  * queues, so they do not have this starvation issue.
5204  */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)5205 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5206 {
5207 	struct net_device *dev = skb->dev;
5208 	struct netdev_queue *txq;
5209 	bool free_skb = true;
5210 	int cpu, rc;
5211 
5212 	txq = netdev_core_pick_tx(dev, skb, NULL);
5213 	cpu = smp_processor_id();
5214 	HARD_TX_LOCK(dev, txq, cpu);
5215 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5216 		rc = netdev_start_xmit(skb, dev, txq, 0);
5217 		if (dev_xmit_complete(rc))
5218 			free_skb = false;
5219 	}
5220 	HARD_TX_UNLOCK(dev, txq);
5221 	if (free_skb) {
5222 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5223 		dev_core_stats_tx_dropped_inc(dev);
5224 		kfree_skb(skb);
5225 	}
5226 }
5227 
5228 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5229 
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5230 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5231 {
5232 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5233 
5234 	if (xdp_prog) {
5235 		struct xdp_buff xdp;
5236 		u32 act;
5237 		int err;
5238 
5239 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5240 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5241 		if (act != XDP_PASS) {
5242 			switch (act) {
5243 			case XDP_REDIRECT:
5244 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5245 							      &xdp, xdp_prog);
5246 				if (err)
5247 					goto out_redir;
5248 				break;
5249 			case XDP_TX:
5250 				generic_xdp_tx(*pskb, xdp_prog);
5251 				break;
5252 			}
5253 			bpf_net_ctx_clear(bpf_net_ctx);
5254 			return XDP_DROP;
5255 		}
5256 		bpf_net_ctx_clear(bpf_net_ctx);
5257 	}
5258 	return XDP_PASS;
5259 out_redir:
5260 	bpf_net_ctx_clear(bpf_net_ctx);
5261 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5262 	return XDP_DROP;
5263 }
5264 EXPORT_SYMBOL_GPL(do_xdp_generic);
5265 
netif_rx_internal(struct sk_buff * skb)5266 static int netif_rx_internal(struct sk_buff *skb)
5267 {
5268 	int ret;
5269 
5270 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5271 
5272 	trace_netif_rx(skb);
5273 
5274 #ifdef CONFIG_RPS
5275 	if (static_branch_unlikely(&rps_needed)) {
5276 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5277 		int cpu;
5278 
5279 		rcu_read_lock();
5280 
5281 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5282 		if (cpu < 0)
5283 			cpu = smp_processor_id();
5284 
5285 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5286 
5287 		rcu_read_unlock();
5288 	} else
5289 #endif
5290 	{
5291 		unsigned int qtail;
5292 
5293 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5294 	}
5295 	return ret;
5296 }
5297 
5298 /**
5299  *	__netif_rx	-	Slightly optimized version of netif_rx
5300  *	@skb: buffer to post
5301  *
5302  *	This behaves as netif_rx except that it does not disable bottom halves.
5303  *	As a result this function may only be invoked from the interrupt context
5304  *	(either hard or soft interrupt).
5305  */
__netif_rx(struct sk_buff * skb)5306 int __netif_rx(struct sk_buff *skb)
5307 {
5308 	int ret;
5309 
5310 	lockdep_assert_once(hardirq_count() | softirq_count());
5311 
5312 	trace_netif_rx_entry(skb);
5313 	ret = netif_rx_internal(skb);
5314 	trace_netif_rx_exit(ret);
5315 	return ret;
5316 }
5317 EXPORT_SYMBOL(__netif_rx);
5318 
5319 /**
5320  *	netif_rx	-	post buffer to the network code
5321  *	@skb: buffer to post
5322  *
5323  *	This function receives a packet from a device driver and queues it for
5324  *	the upper (protocol) levels to process via the backlog NAPI device. It
5325  *	always succeeds. The buffer may be dropped during processing for
5326  *	congestion control or by the protocol layers.
5327  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5328  *	driver should use NAPI and GRO.
5329  *	This function can used from interrupt and from process context. The
5330  *	caller from process context must not disable interrupts before invoking
5331  *	this function.
5332  *
5333  *	return values:
5334  *	NET_RX_SUCCESS	(no congestion)
5335  *	NET_RX_DROP     (packet was dropped)
5336  *
5337  */
netif_rx(struct sk_buff * skb)5338 int netif_rx(struct sk_buff *skb)
5339 {
5340 	bool need_bh_off = !(hardirq_count() | softirq_count());
5341 	int ret;
5342 
5343 	if (need_bh_off)
5344 		local_bh_disable();
5345 	trace_netif_rx_entry(skb);
5346 	ret = netif_rx_internal(skb);
5347 	trace_netif_rx_exit(ret);
5348 	if (need_bh_off)
5349 		local_bh_enable();
5350 	return ret;
5351 }
5352 EXPORT_SYMBOL(netif_rx);
5353 
net_tx_action(void)5354 static __latent_entropy void net_tx_action(void)
5355 {
5356 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5357 
5358 	if (sd->completion_queue) {
5359 		struct sk_buff *clist;
5360 
5361 		local_irq_disable();
5362 		clist = sd->completion_queue;
5363 		sd->completion_queue = NULL;
5364 		local_irq_enable();
5365 
5366 		while (clist) {
5367 			struct sk_buff *skb = clist;
5368 
5369 			clist = clist->next;
5370 
5371 			WARN_ON(refcount_read(&skb->users));
5372 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5373 				trace_consume_skb(skb, net_tx_action);
5374 			else
5375 				trace_kfree_skb(skb, net_tx_action,
5376 						get_kfree_skb_cb(skb)->reason, NULL);
5377 
5378 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5379 				__kfree_skb(skb);
5380 			else
5381 				__napi_kfree_skb(skb,
5382 						 get_kfree_skb_cb(skb)->reason);
5383 		}
5384 	}
5385 
5386 	if (sd->output_queue) {
5387 		struct Qdisc *head;
5388 
5389 		local_irq_disable();
5390 		head = sd->output_queue;
5391 		sd->output_queue = NULL;
5392 		sd->output_queue_tailp = &sd->output_queue;
5393 		local_irq_enable();
5394 
5395 		rcu_read_lock();
5396 
5397 		while (head) {
5398 			struct Qdisc *q = head;
5399 			spinlock_t *root_lock = NULL;
5400 
5401 			head = head->next_sched;
5402 
5403 			/* We need to make sure head->next_sched is read
5404 			 * before clearing __QDISC_STATE_SCHED
5405 			 */
5406 			smp_mb__before_atomic();
5407 
5408 			if (!(q->flags & TCQ_F_NOLOCK)) {
5409 				root_lock = qdisc_lock(q);
5410 				spin_lock(root_lock);
5411 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5412 						     &q->state))) {
5413 				/* There is a synchronize_net() between
5414 				 * STATE_DEACTIVATED flag being set and
5415 				 * qdisc_reset()/some_qdisc_is_busy() in
5416 				 * dev_deactivate(), so we can safely bail out
5417 				 * early here to avoid data race between
5418 				 * qdisc_deactivate() and some_qdisc_is_busy()
5419 				 * for lockless qdisc.
5420 				 */
5421 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5422 				continue;
5423 			}
5424 
5425 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5426 			qdisc_run(q);
5427 			if (root_lock)
5428 				spin_unlock(root_lock);
5429 		}
5430 
5431 		rcu_read_unlock();
5432 	}
5433 
5434 	xfrm_dev_backlog(sd);
5435 }
5436 
5437 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5438 /* This hook is defined here for ATM LANE */
5439 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5440 			     unsigned char *addr) __read_mostly;
5441 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5442 #endif
5443 
5444 /**
5445  *	netdev_is_rx_handler_busy - check if receive handler is registered
5446  *	@dev: device to check
5447  *
5448  *	Check if a receive handler is already registered for a given device.
5449  *	Return true if there one.
5450  *
5451  *	The caller must hold the rtnl_mutex.
5452  */
netdev_is_rx_handler_busy(struct net_device * dev)5453 bool netdev_is_rx_handler_busy(struct net_device *dev)
5454 {
5455 	ASSERT_RTNL();
5456 	return dev && rtnl_dereference(dev->rx_handler);
5457 }
5458 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5459 
5460 /**
5461  *	netdev_rx_handler_register - register receive handler
5462  *	@dev: device to register a handler for
5463  *	@rx_handler: receive handler to register
5464  *	@rx_handler_data: data pointer that is used by rx handler
5465  *
5466  *	Register a receive handler for a device. This handler will then be
5467  *	called from __netif_receive_skb. A negative errno code is returned
5468  *	on a failure.
5469  *
5470  *	The caller must hold the rtnl_mutex.
5471  *
5472  *	For a general description of rx_handler, see enum rx_handler_result.
5473  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5474 int netdev_rx_handler_register(struct net_device *dev,
5475 			       rx_handler_func_t *rx_handler,
5476 			       void *rx_handler_data)
5477 {
5478 	if (netdev_is_rx_handler_busy(dev))
5479 		return -EBUSY;
5480 
5481 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5482 		return -EINVAL;
5483 
5484 	/* Note: rx_handler_data must be set before rx_handler */
5485 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5486 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5487 
5488 	return 0;
5489 }
5490 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5491 
5492 /**
5493  *	netdev_rx_handler_unregister - unregister receive handler
5494  *	@dev: device to unregister a handler from
5495  *
5496  *	Unregister a receive handler from a device.
5497  *
5498  *	The caller must hold the rtnl_mutex.
5499  */
netdev_rx_handler_unregister(struct net_device * dev)5500 void netdev_rx_handler_unregister(struct net_device *dev)
5501 {
5502 
5503 	ASSERT_RTNL();
5504 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5505 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5506 	 * section has a guarantee to see a non NULL rx_handler_data
5507 	 * as well.
5508 	 */
5509 	synchronize_net();
5510 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5511 }
5512 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5513 
5514 /*
5515  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5516  * the special handling of PFMEMALLOC skbs.
5517  */
skb_pfmemalloc_protocol(struct sk_buff * skb)5518 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5519 {
5520 	switch (skb->protocol) {
5521 	case htons(ETH_P_ARP):
5522 	case htons(ETH_P_IP):
5523 	case htons(ETH_P_IPV6):
5524 	case htons(ETH_P_8021Q):
5525 	case htons(ETH_P_8021AD):
5526 		return true;
5527 	default:
5528 		return false;
5529 	}
5530 }
5531 
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5532 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5533 			     int *ret, struct net_device *orig_dev)
5534 {
5535 	if (nf_hook_ingress_active(skb)) {
5536 		int ingress_retval;
5537 
5538 		if (*pt_prev) {
5539 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5540 			*pt_prev = NULL;
5541 		}
5542 
5543 		rcu_read_lock();
5544 		ingress_retval = nf_hook_ingress(skb);
5545 		rcu_read_unlock();
5546 		return ingress_retval;
5547 	}
5548 	return 0;
5549 }
5550 
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5551 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5552 				    struct packet_type **ppt_prev)
5553 {
5554 	struct packet_type *ptype, *pt_prev;
5555 	rx_handler_func_t *rx_handler;
5556 	struct sk_buff *skb = *pskb;
5557 	struct net_device *orig_dev;
5558 	bool deliver_exact = false;
5559 	int ret = NET_RX_DROP;
5560 	__be16 type;
5561 	int flag = 0;
5562 
5563 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5564 
5565 	trace_netif_receive_skb(skb);
5566 
5567 	orig_dev = skb->dev;
5568 
5569 	skb_reset_network_header(skb);
5570 	if (!skb_transport_header_was_set(skb))
5571 		skb_reset_transport_header(skb);
5572 	skb_reset_mac_len(skb);
5573 
5574 	pt_prev = NULL;
5575 
5576 another_round:
5577 	skb->skb_iif = skb->dev->ifindex;
5578 
5579 	__this_cpu_inc(softnet_data.processed);
5580 
5581 	trace_android_vh_dc_receive(skb, &flag);
5582 	if (flag != 0)
5583 		return NET_RX_DROP;
5584 
5585 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5586 		int ret2;
5587 
5588 		migrate_disable();
5589 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5590 				      &skb);
5591 		migrate_enable();
5592 
5593 		if (ret2 != XDP_PASS) {
5594 			ret = NET_RX_DROP;
5595 			goto out;
5596 		}
5597 	}
5598 
5599 	if (eth_type_vlan(skb->protocol)) {
5600 		skb = skb_vlan_untag(skb);
5601 		if (unlikely(!skb))
5602 			goto out;
5603 	}
5604 
5605 	if (skb_skip_tc_classify(skb))
5606 		goto skip_classify;
5607 
5608 	if (pfmemalloc)
5609 		goto skip_taps;
5610 
5611 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5612 		if (pt_prev)
5613 			ret = deliver_skb(skb, pt_prev, orig_dev);
5614 		pt_prev = ptype;
5615 	}
5616 
5617 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5618 		if (pt_prev)
5619 			ret = deliver_skb(skb, pt_prev, orig_dev);
5620 		pt_prev = ptype;
5621 	}
5622 
5623 skip_taps:
5624 #ifdef CONFIG_NET_INGRESS
5625 	if (static_branch_unlikely(&ingress_needed_key)) {
5626 		bool another = false;
5627 
5628 		nf_skip_egress(skb, true);
5629 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5630 					 &another);
5631 		if (another)
5632 			goto another_round;
5633 		if (!skb)
5634 			goto out;
5635 
5636 		nf_skip_egress(skb, false);
5637 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5638 			goto out;
5639 	}
5640 #endif
5641 	skb_reset_redirect(skb);
5642 skip_classify:
5643 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5644 		goto drop;
5645 
5646 	if (skb_vlan_tag_present(skb)) {
5647 		if (pt_prev) {
5648 			ret = deliver_skb(skb, pt_prev, orig_dev);
5649 			pt_prev = NULL;
5650 		}
5651 		if (vlan_do_receive(&skb))
5652 			goto another_round;
5653 		else if (unlikely(!skb))
5654 			goto out;
5655 	}
5656 
5657 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5658 	if (rx_handler) {
5659 		if (pt_prev) {
5660 			ret = deliver_skb(skb, pt_prev, orig_dev);
5661 			pt_prev = NULL;
5662 		}
5663 		switch (rx_handler(&skb)) {
5664 		case RX_HANDLER_CONSUMED:
5665 			ret = NET_RX_SUCCESS;
5666 			goto out;
5667 		case RX_HANDLER_ANOTHER:
5668 			goto another_round;
5669 		case RX_HANDLER_EXACT:
5670 			deliver_exact = true;
5671 			break;
5672 		case RX_HANDLER_PASS:
5673 			break;
5674 		default:
5675 			BUG();
5676 		}
5677 	}
5678 
5679 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5680 check_vlan_id:
5681 		if (skb_vlan_tag_get_id(skb)) {
5682 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5683 			 * find vlan device.
5684 			 */
5685 			skb->pkt_type = PACKET_OTHERHOST;
5686 		} else if (eth_type_vlan(skb->protocol)) {
5687 			/* Outer header is 802.1P with vlan 0, inner header is
5688 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5689 			 * not find vlan dev for vlan id 0.
5690 			 */
5691 			__vlan_hwaccel_clear_tag(skb);
5692 			skb = skb_vlan_untag(skb);
5693 			if (unlikely(!skb))
5694 				goto out;
5695 			if (vlan_do_receive(&skb))
5696 				/* After stripping off 802.1P header with vlan 0
5697 				 * vlan dev is found for inner header.
5698 				 */
5699 				goto another_round;
5700 			else if (unlikely(!skb))
5701 				goto out;
5702 			else
5703 				/* We have stripped outer 802.1P vlan 0 header.
5704 				 * But could not find vlan dev.
5705 				 * check again for vlan id to set OTHERHOST.
5706 				 */
5707 				goto check_vlan_id;
5708 		}
5709 		/* Note: we might in the future use prio bits
5710 		 * and set skb->priority like in vlan_do_receive()
5711 		 * For the time being, just ignore Priority Code Point
5712 		 */
5713 		__vlan_hwaccel_clear_tag(skb);
5714 	}
5715 
5716 	type = skb->protocol;
5717 
5718 	/* deliver only exact match when indicated */
5719 	if (likely(!deliver_exact)) {
5720 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5721 				       &ptype_base[ntohs(type) &
5722 						   PTYPE_HASH_MASK]);
5723 	}
5724 
5725 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5726 			       &orig_dev->ptype_specific);
5727 
5728 	if (unlikely(skb->dev != orig_dev)) {
5729 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5730 				       &skb->dev->ptype_specific);
5731 	}
5732 
5733 	if (pt_prev) {
5734 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5735 			goto drop;
5736 		*ppt_prev = pt_prev;
5737 	} else {
5738 drop:
5739 		if (!deliver_exact)
5740 			dev_core_stats_rx_dropped_inc(skb->dev);
5741 		else
5742 			dev_core_stats_rx_nohandler_inc(skb->dev);
5743 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5744 		/* Jamal, now you will not able to escape explaining
5745 		 * me how you were going to use this. :-)
5746 		 */
5747 		ret = NET_RX_DROP;
5748 	}
5749 
5750 out:
5751 	/* The invariant here is that if *ppt_prev is not NULL
5752 	 * then skb should also be non-NULL.
5753 	 *
5754 	 * Apparently *ppt_prev assignment above holds this invariant due to
5755 	 * skb dereferencing near it.
5756 	 */
5757 	*pskb = skb;
5758 	return ret;
5759 }
5760 
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5761 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5762 {
5763 	struct net_device *orig_dev = skb->dev;
5764 	struct packet_type *pt_prev = NULL;
5765 	int ret;
5766 
5767 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5768 	if (pt_prev)
5769 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5770 					 skb->dev, pt_prev, orig_dev);
5771 	return ret;
5772 }
5773 
5774 /**
5775  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5776  *	@skb: buffer to process
5777  *
5778  *	More direct receive version of netif_receive_skb().  It should
5779  *	only be used by callers that have a need to skip RPS and Generic XDP.
5780  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5781  *
5782  *	This function may only be called from softirq context and interrupts
5783  *	should be enabled.
5784  *
5785  *	Return values (usually ignored):
5786  *	NET_RX_SUCCESS: no congestion
5787  *	NET_RX_DROP: packet was dropped
5788  */
netif_receive_skb_core(struct sk_buff * skb)5789 int netif_receive_skb_core(struct sk_buff *skb)
5790 {
5791 	int ret;
5792 
5793 	rcu_read_lock();
5794 	ret = __netif_receive_skb_one_core(skb, false);
5795 	rcu_read_unlock();
5796 
5797 	return ret;
5798 }
5799 EXPORT_SYMBOL(netif_receive_skb_core);
5800 
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5801 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5802 						  struct packet_type *pt_prev,
5803 						  struct net_device *orig_dev)
5804 {
5805 	struct sk_buff *skb, *next;
5806 
5807 	if (!pt_prev)
5808 		return;
5809 	if (list_empty(head))
5810 		return;
5811 	if (pt_prev->list_func != NULL)
5812 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5813 				   ip_list_rcv, head, pt_prev, orig_dev);
5814 	else
5815 		list_for_each_entry_safe(skb, next, head, list) {
5816 			skb_list_del_init(skb);
5817 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5818 		}
5819 }
5820 
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5821 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5822 {
5823 	/* Fast-path assumptions:
5824 	 * - There is no RX handler.
5825 	 * - Only one packet_type matches.
5826 	 * If either of these fails, we will end up doing some per-packet
5827 	 * processing in-line, then handling the 'last ptype' for the whole
5828 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5829 	 * because the 'last ptype' must be constant across the sublist, and all
5830 	 * other ptypes are handled per-packet.
5831 	 */
5832 	/* Current (common) ptype of sublist */
5833 	struct packet_type *pt_curr = NULL;
5834 	/* Current (common) orig_dev of sublist */
5835 	struct net_device *od_curr = NULL;
5836 	struct sk_buff *skb, *next;
5837 	LIST_HEAD(sublist);
5838 
5839 	list_for_each_entry_safe(skb, next, head, list) {
5840 		struct net_device *orig_dev = skb->dev;
5841 		struct packet_type *pt_prev = NULL;
5842 
5843 		skb_list_del_init(skb);
5844 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5845 		if (!pt_prev)
5846 			continue;
5847 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5848 			/* dispatch old sublist */
5849 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5850 			/* start new sublist */
5851 			INIT_LIST_HEAD(&sublist);
5852 			pt_curr = pt_prev;
5853 			od_curr = orig_dev;
5854 		}
5855 		list_add_tail(&skb->list, &sublist);
5856 	}
5857 
5858 	/* dispatch final sublist */
5859 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5860 }
5861 
__netif_receive_skb(struct sk_buff * skb)5862 static int __netif_receive_skb(struct sk_buff *skb)
5863 {
5864 	int ret;
5865 
5866 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5867 		unsigned int noreclaim_flag;
5868 
5869 		/*
5870 		 * PFMEMALLOC skbs are special, they should
5871 		 * - be delivered to SOCK_MEMALLOC sockets only
5872 		 * - stay away from userspace
5873 		 * - have bounded memory usage
5874 		 *
5875 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5876 		 * context down to all allocation sites.
5877 		 */
5878 		noreclaim_flag = memalloc_noreclaim_save();
5879 		ret = __netif_receive_skb_one_core(skb, true);
5880 		memalloc_noreclaim_restore(noreclaim_flag);
5881 	} else
5882 		ret = __netif_receive_skb_one_core(skb, false);
5883 
5884 	return ret;
5885 }
5886 
__netif_receive_skb_list(struct list_head * head)5887 static void __netif_receive_skb_list(struct list_head *head)
5888 {
5889 	unsigned long noreclaim_flag = 0;
5890 	struct sk_buff *skb, *next;
5891 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5892 
5893 	list_for_each_entry_safe(skb, next, head, list) {
5894 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5895 			struct list_head sublist;
5896 
5897 			/* Handle the previous sublist */
5898 			list_cut_before(&sublist, head, &skb->list);
5899 			if (!list_empty(&sublist))
5900 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5901 			pfmemalloc = !pfmemalloc;
5902 			/* See comments in __netif_receive_skb */
5903 			if (pfmemalloc)
5904 				noreclaim_flag = memalloc_noreclaim_save();
5905 			else
5906 				memalloc_noreclaim_restore(noreclaim_flag);
5907 		}
5908 	}
5909 	/* Handle the remaining sublist */
5910 	if (!list_empty(head))
5911 		__netif_receive_skb_list_core(head, pfmemalloc);
5912 	/* Restore pflags */
5913 	if (pfmemalloc)
5914 		memalloc_noreclaim_restore(noreclaim_flag);
5915 }
5916 
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5917 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5918 {
5919 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5920 	struct bpf_prog *new = xdp->prog;
5921 	int ret = 0;
5922 
5923 	switch (xdp->command) {
5924 	case XDP_SETUP_PROG:
5925 		rcu_assign_pointer(dev->xdp_prog, new);
5926 		if (old)
5927 			bpf_prog_put(old);
5928 
5929 		if (old && !new) {
5930 			static_branch_dec(&generic_xdp_needed_key);
5931 		} else if (new && !old) {
5932 			static_branch_inc(&generic_xdp_needed_key);
5933 			dev_disable_lro(dev);
5934 			dev_disable_gro_hw(dev);
5935 		}
5936 		break;
5937 
5938 	default:
5939 		ret = -EINVAL;
5940 		break;
5941 	}
5942 
5943 	return ret;
5944 }
5945 
netif_receive_skb_internal(struct sk_buff * skb)5946 static int netif_receive_skb_internal(struct sk_buff *skb)
5947 {
5948 	int ret;
5949 
5950 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5951 
5952 	if (skb_defer_rx_timestamp(skb))
5953 		return NET_RX_SUCCESS;
5954 
5955 	rcu_read_lock();
5956 #ifdef CONFIG_RPS
5957 	if (static_branch_unlikely(&rps_needed)) {
5958 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5959 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5960 
5961 		if (cpu >= 0) {
5962 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5963 			rcu_read_unlock();
5964 			return ret;
5965 		}
5966 	}
5967 #endif
5968 	ret = __netif_receive_skb(skb);
5969 	rcu_read_unlock();
5970 	return ret;
5971 }
5972 
netif_receive_skb_list_internal(struct list_head * head)5973 void netif_receive_skb_list_internal(struct list_head *head)
5974 {
5975 	struct sk_buff *skb, *next;
5976 	LIST_HEAD(sublist);
5977 
5978 	list_for_each_entry_safe(skb, next, head, list) {
5979 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5980 				    skb);
5981 		skb_list_del_init(skb);
5982 		if (!skb_defer_rx_timestamp(skb))
5983 			list_add_tail(&skb->list, &sublist);
5984 	}
5985 	list_splice_init(&sublist, head);
5986 
5987 	rcu_read_lock();
5988 #ifdef CONFIG_RPS
5989 	if (static_branch_unlikely(&rps_needed)) {
5990 		list_for_each_entry_safe(skb, next, head, list) {
5991 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5992 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5993 
5994 			if (cpu >= 0) {
5995 				/* Will be handled, remove from list */
5996 				skb_list_del_init(skb);
5997 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5998 			}
5999 		}
6000 	}
6001 #endif
6002 	__netif_receive_skb_list(head);
6003 	rcu_read_unlock();
6004 }
6005 
6006 /**
6007  *	netif_receive_skb - process receive buffer from network
6008  *	@skb: buffer to process
6009  *
6010  *	netif_receive_skb() is the main receive data processing function.
6011  *	It always succeeds. The buffer may be dropped during processing
6012  *	for congestion control or by the protocol layers.
6013  *
6014  *	This function may only be called from softirq context and interrupts
6015  *	should be enabled.
6016  *
6017  *	Return values (usually ignored):
6018  *	NET_RX_SUCCESS: no congestion
6019  *	NET_RX_DROP: packet was dropped
6020  */
netif_receive_skb(struct sk_buff * skb)6021 int netif_receive_skb(struct sk_buff *skb)
6022 {
6023 	int ret;
6024 
6025 	trace_netif_receive_skb_entry(skb);
6026 
6027 	ret = netif_receive_skb_internal(skb);
6028 	trace_netif_receive_skb_exit(ret);
6029 
6030 	return ret;
6031 }
6032 EXPORT_SYMBOL(netif_receive_skb);
6033 
6034 /**
6035  *	netif_receive_skb_list - process many receive buffers from network
6036  *	@head: list of skbs to process.
6037  *
6038  *	Since return value of netif_receive_skb() is normally ignored, and
6039  *	wouldn't be meaningful for a list, this function returns void.
6040  *
6041  *	This function may only be called from softirq context and interrupts
6042  *	should be enabled.
6043  */
netif_receive_skb_list(struct list_head * head)6044 void netif_receive_skb_list(struct list_head *head)
6045 {
6046 	struct sk_buff *skb;
6047 
6048 	if (list_empty(head))
6049 		return;
6050 	if (trace_netif_receive_skb_list_entry_enabled()) {
6051 		list_for_each_entry(skb, head, list)
6052 			trace_netif_receive_skb_list_entry(skb);
6053 	}
6054 	netif_receive_skb_list_internal(head);
6055 	trace_netif_receive_skb_list_exit(0);
6056 }
6057 EXPORT_SYMBOL(netif_receive_skb_list);
6058 
6059 static DEFINE_PER_CPU(struct work_struct, flush_works);
6060 
6061 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)6062 static void flush_backlog(struct work_struct *work)
6063 {
6064 	struct sk_buff *skb, *tmp;
6065 	struct sk_buff_head list;
6066 	struct softnet_data *sd;
6067 
6068 	__skb_queue_head_init(&list);
6069 	local_bh_disable();
6070 	sd = this_cpu_ptr(&softnet_data);
6071 
6072 	backlog_lock_irq_disable(sd);
6073 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6074 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6075 			__skb_unlink(skb, &sd->input_pkt_queue);
6076 			__skb_queue_tail(&list, skb);
6077 			rps_input_queue_head_incr(sd);
6078 		}
6079 	}
6080 	backlog_unlock_irq_enable(sd);
6081 
6082 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6083 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6084 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6085 			__skb_unlink(skb, &sd->process_queue);
6086 			__skb_queue_tail(&list, skb);
6087 			rps_input_queue_head_incr(sd);
6088 		}
6089 	}
6090 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6091 	local_bh_enable();
6092 
6093 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6094 }
6095 
flush_required(int cpu)6096 static bool flush_required(int cpu)
6097 {
6098 #if IS_ENABLED(CONFIG_RPS)
6099 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6100 	bool do_flush;
6101 
6102 	backlog_lock_irq_disable(sd);
6103 
6104 	/* as insertion into process_queue happens with the rps lock held,
6105 	 * process_queue access may race only with dequeue
6106 	 */
6107 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6108 		   !skb_queue_empty_lockless(&sd->process_queue);
6109 	backlog_unlock_irq_enable(sd);
6110 
6111 	return do_flush;
6112 #endif
6113 	/* without RPS we can't safely check input_pkt_queue: during a
6114 	 * concurrent remote skb_queue_splice() we can detect as empty both
6115 	 * input_pkt_queue and process_queue even if the latter could end-up
6116 	 * containing a lot of packets.
6117 	 */
6118 	return true;
6119 }
6120 
flush_all_backlogs(void)6121 static void flush_all_backlogs(void)
6122 {
6123 	static cpumask_t flush_cpus;
6124 	unsigned int cpu;
6125 
6126 	/* since we are under rtnl lock protection we can use static data
6127 	 * for the cpumask and avoid allocating on stack the possibly
6128 	 * large mask
6129 	 */
6130 	ASSERT_RTNL();
6131 
6132 	cpus_read_lock();
6133 
6134 	cpumask_clear(&flush_cpus);
6135 	for_each_online_cpu(cpu) {
6136 		if (flush_required(cpu)) {
6137 			queue_work_on(cpu, system_highpri_wq,
6138 				      per_cpu_ptr(&flush_works, cpu));
6139 			cpumask_set_cpu(cpu, &flush_cpus);
6140 		}
6141 	}
6142 
6143 	/* we can have in flight packet[s] on the cpus we are not flushing,
6144 	 * synchronize_net() in unregister_netdevice_many() will take care of
6145 	 * them
6146 	 */
6147 	for_each_cpu(cpu, &flush_cpus)
6148 		flush_work(per_cpu_ptr(&flush_works, cpu));
6149 
6150 	cpus_read_unlock();
6151 }
6152 
net_rps_send_ipi(struct softnet_data * remsd)6153 static void net_rps_send_ipi(struct softnet_data *remsd)
6154 {
6155 #ifdef CONFIG_RPS
6156 	while (remsd) {
6157 		struct softnet_data *next = remsd->rps_ipi_next;
6158 
6159 		if (cpu_online(remsd->cpu))
6160 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6161 		remsd = next;
6162 	}
6163 #endif
6164 }
6165 
6166 /*
6167  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6168  * Note: called with local irq disabled, but exits with local irq enabled.
6169  */
net_rps_action_and_irq_enable(struct softnet_data * sd)6170 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6171 {
6172 #ifdef CONFIG_RPS
6173 	struct softnet_data *remsd = sd->rps_ipi_list;
6174 
6175 	if (!use_backlog_threads() && remsd) {
6176 		sd->rps_ipi_list = NULL;
6177 
6178 		local_irq_enable();
6179 
6180 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6181 		net_rps_send_ipi(remsd);
6182 	} else
6183 #endif
6184 		local_irq_enable();
6185 }
6186 
sd_has_rps_ipi_waiting(struct softnet_data * sd)6187 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6188 {
6189 #ifdef CONFIG_RPS
6190 	return !use_backlog_threads() && sd->rps_ipi_list;
6191 #else
6192 	return false;
6193 #endif
6194 }
6195 
process_backlog(struct napi_struct * napi,int quota)6196 static int process_backlog(struct napi_struct *napi, int quota)
6197 {
6198 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6199 	bool again = true;
6200 	int work = 0;
6201 
6202 	/* Check if we have pending ipi, its better to send them now,
6203 	 * not waiting net_rx_action() end.
6204 	 */
6205 	if (sd_has_rps_ipi_waiting(sd)) {
6206 		local_irq_disable();
6207 		net_rps_action_and_irq_enable(sd);
6208 	}
6209 
6210 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6211 	while (again) {
6212 		struct sk_buff *skb;
6213 
6214 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6215 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6216 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6217 			rcu_read_lock();
6218 			__netif_receive_skb(skb);
6219 			rcu_read_unlock();
6220 			if (++work >= quota) {
6221 				rps_input_queue_head_add(sd, work);
6222 				return work;
6223 			}
6224 
6225 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6226 		}
6227 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6228 
6229 		backlog_lock_irq_disable(sd);
6230 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6231 			/*
6232 			 * Inline a custom version of __napi_complete().
6233 			 * only current cpu owns and manipulates this napi,
6234 			 * and NAPI_STATE_SCHED is the only possible flag set
6235 			 * on backlog.
6236 			 * We can use a plain write instead of clear_bit(),
6237 			 * and we dont need an smp_mb() memory barrier.
6238 			 */
6239 			napi->state &= NAPIF_STATE_THREADED;
6240 			again = false;
6241 		} else {
6242 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6243 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6244 						   &sd->process_queue);
6245 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6246 		}
6247 		backlog_unlock_irq_enable(sd);
6248 	}
6249 
6250 	if (work)
6251 		rps_input_queue_head_add(sd, work);
6252 	return work;
6253 }
6254 
6255 /**
6256  * __napi_schedule - schedule for receive
6257  * @n: entry to schedule
6258  *
6259  * The entry's receive function will be scheduled to run.
6260  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6261  */
__napi_schedule(struct napi_struct * n)6262 void __napi_schedule(struct napi_struct *n)
6263 {
6264 	unsigned long flags;
6265 
6266 	local_irq_save(flags);
6267 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6268 	local_irq_restore(flags);
6269 }
6270 EXPORT_SYMBOL(__napi_schedule);
6271 
6272 /**
6273  *	napi_schedule_prep - check if napi can be scheduled
6274  *	@n: napi context
6275  *
6276  * Test if NAPI routine is already running, and if not mark
6277  * it as running.  This is used as a condition variable to
6278  * insure only one NAPI poll instance runs.  We also make
6279  * sure there is no pending NAPI disable.
6280  */
napi_schedule_prep(struct napi_struct * n)6281 bool napi_schedule_prep(struct napi_struct *n)
6282 {
6283 	unsigned long new, val = READ_ONCE(n->state);
6284 
6285 	do {
6286 		if (unlikely(val & NAPIF_STATE_DISABLE))
6287 			return false;
6288 		new = val | NAPIF_STATE_SCHED;
6289 
6290 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6291 		 * This was suggested by Alexander Duyck, as compiler
6292 		 * emits better code than :
6293 		 * if (val & NAPIF_STATE_SCHED)
6294 		 *     new |= NAPIF_STATE_MISSED;
6295 		 */
6296 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6297 						   NAPIF_STATE_MISSED;
6298 	} while (!try_cmpxchg(&n->state, &val, new));
6299 
6300 	return !(val & NAPIF_STATE_SCHED);
6301 }
6302 EXPORT_SYMBOL(napi_schedule_prep);
6303 
6304 /**
6305  * __napi_schedule_irqoff - schedule for receive
6306  * @n: entry to schedule
6307  *
6308  * Variant of __napi_schedule() assuming hard irqs are masked.
6309  *
6310  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6311  * because the interrupt disabled assumption might not be true
6312  * due to force-threaded interrupts and spinlock substitution.
6313  */
__napi_schedule_irqoff(struct napi_struct * n)6314 void __napi_schedule_irqoff(struct napi_struct *n)
6315 {
6316 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6317 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6318 	else
6319 		__napi_schedule(n);
6320 }
6321 EXPORT_SYMBOL(__napi_schedule_irqoff);
6322 
napi_complete_done(struct napi_struct * n,int work_done)6323 bool napi_complete_done(struct napi_struct *n, int work_done)
6324 {
6325 	unsigned long flags, val, new, timeout = 0;
6326 	bool ret = true;
6327 
6328 	/*
6329 	 * 1) Don't let napi dequeue from the cpu poll list
6330 	 *    just in case its running on a different cpu.
6331 	 * 2) If we are busy polling, do nothing here, we have
6332 	 *    the guarantee we will be called later.
6333 	 */
6334 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6335 				 NAPIF_STATE_IN_BUSY_POLL)))
6336 		return false;
6337 
6338 	if (work_done) {
6339 		if (n->gro_bitmask)
6340 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6341 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6342 	}
6343 	if (n->defer_hard_irqs_count > 0) {
6344 		n->defer_hard_irqs_count--;
6345 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6346 		if (timeout)
6347 			ret = false;
6348 	}
6349 	if (n->gro_bitmask) {
6350 		/* When the NAPI instance uses a timeout and keeps postponing
6351 		 * it, we need to bound somehow the time packets are kept in
6352 		 * the GRO layer
6353 		 */
6354 		napi_gro_flush(n, !!timeout);
6355 	}
6356 
6357 	gro_normal_list(n);
6358 
6359 	if (unlikely(!list_empty(&n->poll_list))) {
6360 		/* If n->poll_list is not empty, we need to mask irqs */
6361 		local_irq_save(flags);
6362 		list_del_init(&n->poll_list);
6363 		local_irq_restore(flags);
6364 	}
6365 	WRITE_ONCE(n->list_owner, -1);
6366 
6367 	val = READ_ONCE(n->state);
6368 	do {
6369 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6370 
6371 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6372 			      NAPIF_STATE_SCHED_THREADED |
6373 			      NAPIF_STATE_PREFER_BUSY_POLL);
6374 
6375 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6376 		 * because we will call napi->poll() one more time.
6377 		 * This C code was suggested by Alexander Duyck to help gcc.
6378 		 */
6379 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6380 						    NAPIF_STATE_SCHED;
6381 	} while (!try_cmpxchg(&n->state, &val, new));
6382 
6383 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6384 		__napi_schedule(n);
6385 		return false;
6386 	}
6387 
6388 	if (timeout)
6389 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6390 			      HRTIMER_MODE_REL_PINNED);
6391 	return ret;
6392 }
6393 EXPORT_SYMBOL(napi_complete_done);
6394 
skb_defer_free_flush(struct softnet_data * sd)6395 static void skb_defer_free_flush(struct softnet_data *sd)
6396 {
6397 	struct sk_buff *skb, *next;
6398 
6399 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6400 	if (!READ_ONCE(sd->defer_list))
6401 		return;
6402 
6403 	spin_lock(&sd->defer_lock);
6404 	skb = sd->defer_list;
6405 	sd->defer_list = NULL;
6406 	sd->defer_count = 0;
6407 	spin_unlock(&sd->defer_lock);
6408 
6409 	while (skb != NULL) {
6410 		next = skb->next;
6411 		napi_consume_skb(skb, 1);
6412 		skb = next;
6413 	}
6414 }
6415 
6416 #if defined(CONFIG_NET_RX_BUSY_POLL)
6417 
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6418 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6419 {
6420 	if (!skip_schedule) {
6421 		gro_normal_list(napi);
6422 		__napi_schedule(napi);
6423 		return;
6424 	}
6425 
6426 	if (napi->gro_bitmask) {
6427 		/* flush too old packets
6428 		 * If HZ < 1000, flush all packets.
6429 		 */
6430 		napi_gro_flush(napi, HZ >= 1000);
6431 	}
6432 
6433 	gro_normal_list(napi);
6434 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6435 }
6436 
6437 enum {
6438 	NAPI_F_PREFER_BUSY_POLL	= 1,
6439 	NAPI_F_END_ON_RESCHED	= 2,
6440 };
6441 
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6442 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6443 			   unsigned flags, u16 budget)
6444 {
6445 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6446 	bool skip_schedule = false;
6447 	unsigned long timeout;
6448 	int rc;
6449 
6450 	/* Busy polling means there is a high chance device driver hard irq
6451 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6452 	 * set in napi_schedule_prep().
6453 	 * Since we are about to call napi->poll() once more, we can safely
6454 	 * clear NAPI_STATE_MISSED.
6455 	 *
6456 	 * Note: x86 could use a single "lock and ..." instruction
6457 	 * to perform these two clear_bit()
6458 	 */
6459 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6460 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6461 
6462 	local_bh_disable();
6463 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6464 
6465 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6466 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6467 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6468 		if (napi->defer_hard_irqs_count && timeout) {
6469 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6470 			skip_schedule = true;
6471 		}
6472 	}
6473 
6474 	/* All we really want here is to re-enable device interrupts.
6475 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6476 	 */
6477 	rc = napi->poll(napi, budget);
6478 	/* We can't gro_normal_list() here, because napi->poll() might have
6479 	 * rearmed the napi (napi_complete_done()) in which case it could
6480 	 * already be running on another CPU.
6481 	 */
6482 	trace_napi_poll(napi, rc, budget);
6483 	netpoll_poll_unlock(have_poll_lock);
6484 	if (rc == budget)
6485 		__busy_poll_stop(napi, skip_schedule);
6486 	bpf_net_ctx_clear(bpf_net_ctx);
6487 	local_bh_enable();
6488 }
6489 
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6490 static void __napi_busy_loop(unsigned int napi_id,
6491 		      bool (*loop_end)(void *, unsigned long),
6492 		      void *loop_end_arg, unsigned flags, u16 budget)
6493 {
6494 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6495 	int (*napi_poll)(struct napi_struct *napi, int budget);
6496 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6497 	void *have_poll_lock = NULL;
6498 	struct napi_struct *napi;
6499 
6500 	WARN_ON_ONCE(!rcu_read_lock_held());
6501 
6502 restart:
6503 	napi_poll = NULL;
6504 
6505 	napi = napi_by_id(napi_id);
6506 	if (!napi)
6507 		return;
6508 
6509 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6510 		preempt_disable();
6511 	for (;;) {
6512 		int work = 0;
6513 
6514 		local_bh_disable();
6515 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6516 		if (!napi_poll) {
6517 			unsigned long val = READ_ONCE(napi->state);
6518 
6519 			/* If multiple threads are competing for this napi,
6520 			 * we avoid dirtying napi->state as much as we can.
6521 			 */
6522 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6523 				   NAPIF_STATE_IN_BUSY_POLL)) {
6524 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6525 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6526 				goto count;
6527 			}
6528 			if (cmpxchg(&napi->state, val,
6529 				    val | NAPIF_STATE_IN_BUSY_POLL |
6530 					  NAPIF_STATE_SCHED) != val) {
6531 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6532 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6533 				goto count;
6534 			}
6535 			have_poll_lock = netpoll_poll_lock(napi);
6536 			napi_poll = napi->poll;
6537 		}
6538 		work = napi_poll(napi, budget);
6539 		trace_napi_poll(napi, work, budget);
6540 		gro_normal_list(napi);
6541 count:
6542 		if (work > 0)
6543 			__NET_ADD_STATS(dev_net(napi->dev),
6544 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6545 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6546 		bpf_net_ctx_clear(bpf_net_ctx);
6547 		local_bh_enable();
6548 
6549 		if (!loop_end || loop_end(loop_end_arg, start_time))
6550 			break;
6551 
6552 		if (unlikely(need_resched())) {
6553 			if (flags & NAPI_F_END_ON_RESCHED)
6554 				break;
6555 			if (napi_poll)
6556 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6557 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6558 				preempt_enable();
6559 			rcu_read_unlock();
6560 			cond_resched();
6561 			rcu_read_lock();
6562 			if (loop_end(loop_end_arg, start_time))
6563 				return;
6564 			goto restart;
6565 		}
6566 		cpu_relax();
6567 	}
6568 	if (napi_poll)
6569 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6570 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6571 		preempt_enable();
6572 }
6573 
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6574 void napi_busy_loop_rcu(unsigned int napi_id,
6575 			bool (*loop_end)(void *, unsigned long),
6576 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6577 {
6578 	unsigned flags = NAPI_F_END_ON_RESCHED;
6579 
6580 	if (prefer_busy_poll)
6581 		flags |= NAPI_F_PREFER_BUSY_POLL;
6582 
6583 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6584 }
6585 
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6586 void napi_busy_loop(unsigned int napi_id,
6587 		    bool (*loop_end)(void *, unsigned long),
6588 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6589 {
6590 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6591 
6592 	rcu_read_lock();
6593 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6594 	rcu_read_unlock();
6595 }
6596 EXPORT_SYMBOL(napi_busy_loop);
6597 
6598 #endif /* CONFIG_NET_RX_BUSY_POLL */
6599 
napi_hash_add(struct napi_struct * napi)6600 static void napi_hash_add(struct napi_struct *napi)
6601 {
6602 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6603 		return;
6604 
6605 	spin_lock(&napi_hash_lock);
6606 
6607 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6608 	do {
6609 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6610 			napi_gen_id = MIN_NAPI_ID;
6611 	} while (napi_by_id(napi_gen_id));
6612 	napi->napi_id = napi_gen_id;
6613 
6614 	hlist_add_head_rcu(&napi->napi_hash_node,
6615 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6616 
6617 	spin_unlock(&napi_hash_lock);
6618 }
6619 
6620 /* Warning : caller is responsible to make sure rcu grace period
6621  * is respected before freeing memory containing @napi
6622  */
napi_hash_del(struct napi_struct * napi)6623 static void napi_hash_del(struct napi_struct *napi)
6624 {
6625 	spin_lock(&napi_hash_lock);
6626 
6627 	hlist_del_init_rcu(&napi->napi_hash_node);
6628 
6629 	spin_unlock(&napi_hash_lock);
6630 }
6631 
napi_watchdog(struct hrtimer * timer)6632 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6633 {
6634 	struct napi_struct *napi;
6635 
6636 	napi = container_of(timer, struct napi_struct, timer);
6637 
6638 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6639 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6640 	 */
6641 	if (!napi_disable_pending(napi) &&
6642 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6643 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6644 		__napi_schedule_irqoff(napi);
6645 	}
6646 
6647 	return HRTIMER_NORESTART;
6648 }
6649 
init_gro_hash(struct napi_struct * napi)6650 static void init_gro_hash(struct napi_struct *napi)
6651 {
6652 	int i;
6653 
6654 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6655 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6656 		napi->gro_hash[i].count = 0;
6657 	}
6658 	napi->gro_bitmask = 0;
6659 }
6660 
dev_set_threaded(struct net_device * dev,bool threaded)6661 int dev_set_threaded(struct net_device *dev, bool threaded)
6662 {
6663 	struct napi_struct *napi;
6664 	int err = 0;
6665 
6666 	if (dev->threaded == threaded)
6667 		return 0;
6668 
6669 	if (threaded) {
6670 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6671 			if (!napi->thread) {
6672 				err = napi_kthread_create(napi);
6673 				if (err) {
6674 					threaded = false;
6675 					break;
6676 				}
6677 			}
6678 		}
6679 	}
6680 
6681 	WRITE_ONCE(dev->threaded, threaded);
6682 
6683 	/* Make sure kthread is created before THREADED bit
6684 	 * is set.
6685 	 */
6686 	smp_mb__before_atomic();
6687 
6688 	/* Setting/unsetting threaded mode on a napi might not immediately
6689 	 * take effect, if the current napi instance is actively being
6690 	 * polled. In this case, the switch between threaded mode and
6691 	 * softirq mode will happen in the next round of napi_schedule().
6692 	 * This should not cause hiccups/stalls to the live traffic.
6693 	 */
6694 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6695 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6696 
6697 	return err;
6698 }
6699 EXPORT_SYMBOL(dev_set_threaded);
6700 
6701 /**
6702  * netif_queue_set_napi - Associate queue with the napi
6703  * @dev: device to which NAPI and queue belong
6704  * @queue_index: Index of queue
6705  * @type: queue type as RX or TX
6706  * @napi: NAPI context, pass NULL to clear previously set NAPI
6707  *
6708  * Set queue with its corresponding napi context. This should be done after
6709  * registering the NAPI handler for the queue-vector and the queues have been
6710  * mapped to the corresponding interrupt vector.
6711  */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)6712 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6713 			  enum netdev_queue_type type, struct napi_struct *napi)
6714 {
6715 	struct netdev_rx_queue *rxq;
6716 	struct netdev_queue *txq;
6717 
6718 	if (WARN_ON_ONCE(napi && !napi->dev))
6719 		return;
6720 	if (dev->reg_state >= NETREG_REGISTERED)
6721 		ASSERT_RTNL();
6722 
6723 	switch (type) {
6724 	case NETDEV_QUEUE_TYPE_RX:
6725 		rxq = __netif_get_rx_queue(dev, queue_index);
6726 		rxq->napi = napi;
6727 		return;
6728 	case NETDEV_QUEUE_TYPE_TX:
6729 		txq = netdev_get_tx_queue(dev, queue_index);
6730 		txq->napi = napi;
6731 		return;
6732 	default:
6733 		return;
6734 	}
6735 }
6736 EXPORT_SYMBOL(netif_queue_set_napi);
6737 
netif_napi_add_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6738 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6739 			   int (*poll)(struct napi_struct *, int), int weight)
6740 {
6741 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6742 		return;
6743 
6744 	INIT_LIST_HEAD(&napi->poll_list);
6745 	INIT_HLIST_NODE(&napi->napi_hash_node);
6746 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6747 	napi->timer.function = napi_watchdog;
6748 	init_gro_hash(napi);
6749 	napi->skb = NULL;
6750 	INIT_LIST_HEAD(&napi->rx_list);
6751 	napi->rx_count = 0;
6752 	napi->poll = poll;
6753 	if (weight > NAPI_POLL_WEIGHT)
6754 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6755 				weight);
6756 	napi->weight = weight;
6757 	napi->dev = dev;
6758 #ifdef CONFIG_NETPOLL
6759 	napi->poll_owner = -1;
6760 #endif
6761 	napi->list_owner = -1;
6762 	set_bit(NAPI_STATE_SCHED, &napi->state);
6763 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6764 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6765 	napi_hash_add(napi);
6766 	napi_get_frags_check(napi);
6767 	/* Create kthread for this napi if dev->threaded is set.
6768 	 * Clear dev->threaded if kthread creation failed so that
6769 	 * threaded mode will not be enabled in napi_enable().
6770 	 */
6771 	if (dev->threaded && napi_kthread_create(napi))
6772 		dev->threaded = false;
6773 	netif_napi_set_irq(napi, -1);
6774 }
6775 EXPORT_SYMBOL(netif_napi_add_weight);
6776 
napi_disable(struct napi_struct * n)6777 void napi_disable(struct napi_struct *n)
6778 {
6779 	unsigned long val, new;
6780 
6781 	might_sleep();
6782 	set_bit(NAPI_STATE_DISABLE, &n->state);
6783 
6784 	val = READ_ONCE(n->state);
6785 	do {
6786 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6787 			usleep_range(20, 200);
6788 			val = READ_ONCE(n->state);
6789 		}
6790 
6791 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6792 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6793 	} while (!try_cmpxchg(&n->state, &val, new));
6794 
6795 	hrtimer_cancel(&n->timer);
6796 
6797 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6798 }
6799 EXPORT_SYMBOL(napi_disable);
6800 
6801 /**
6802  *	napi_enable - enable NAPI scheduling
6803  *	@n: NAPI context
6804  *
6805  * Resume NAPI from being scheduled on this context.
6806  * Must be paired with napi_disable.
6807  */
napi_enable(struct napi_struct * n)6808 void napi_enable(struct napi_struct *n)
6809 {
6810 	unsigned long new, val = READ_ONCE(n->state);
6811 
6812 	do {
6813 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6814 
6815 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6816 		if (n->dev->threaded && n->thread)
6817 			new |= NAPIF_STATE_THREADED;
6818 	} while (!try_cmpxchg(&n->state, &val, new));
6819 }
6820 EXPORT_SYMBOL(napi_enable);
6821 
flush_gro_hash(struct napi_struct * napi)6822 static void flush_gro_hash(struct napi_struct *napi)
6823 {
6824 	int i;
6825 
6826 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6827 		struct sk_buff *skb, *n;
6828 
6829 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6830 			kfree_skb(skb);
6831 		napi->gro_hash[i].count = 0;
6832 	}
6833 }
6834 
6835 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6836 void __netif_napi_del(struct napi_struct *napi)
6837 {
6838 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6839 		return;
6840 
6841 	napi_hash_del(napi);
6842 	list_del_rcu(&napi->dev_list);
6843 	napi_free_frags(napi);
6844 
6845 	flush_gro_hash(napi);
6846 	napi->gro_bitmask = 0;
6847 
6848 	if (napi->thread) {
6849 		kthread_stop(napi->thread);
6850 		napi->thread = NULL;
6851 	}
6852 }
6853 EXPORT_SYMBOL(__netif_napi_del);
6854 
__napi_poll(struct napi_struct * n,bool * repoll)6855 static int __napi_poll(struct napi_struct *n, bool *repoll)
6856 {
6857 	int work, weight;
6858 
6859 	weight = n->weight;
6860 
6861 	/* This NAPI_STATE_SCHED test is for avoiding a race
6862 	 * with netpoll's poll_napi().  Only the entity which
6863 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6864 	 * actually make the ->poll() call.  Therefore we avoid
6865 	 * accidentally calling ->poll() when NAPI is not scheduled.
6866 	 */
6867 	work = 0;
6868 	if (napi_is_scheduled(n)) {
6869 		work = n->poll(n, weight);
6870 		trace_napi_poll(n, work, weight);
6871 
6872 		xdp_do_check_flushed(n);
6873 	}
6874 
6875 	if (unlikely(work > weight))
6876 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6877 				n->poll, work, weight);
6878 
6879 	if (likely(work < weight))
6880 		return work;
6881 
6882 	/* Drivers must not modify the NAPI state if they
6883 	 * consume the entire weight.  In such cases this code
6884 	 * still "owns" the NAPI instance and therefore can
6885 	 * move the instance around on the list at-will.
6886 	 */
6887 	if (unlikely(napi_disable_pending(n))) {
6888 		napi_complete(n);
6889 		return work;
6890 	}
6891 
6892 	/* The NAPI context has more processing work, but busy-polling
6893 	 * is preferred. Exit early.
6894 	 */
6895 	if (napi_prefer_busy_poll(n)) {
6896 		if (napi_complete_done(n, work)) {
6897 			/* If timeout is not set, we need to make sure
6898 			 * that the NAPI is re-scheduled.
6899 			 */
6900 			napi_schedule(n);
6901 		}
6902 		return work;
6903 	}
6904 
6905 	if (n->gro_bitmask) {
6906 		/* flush too old packets
6907 		 * If HZ < 1000, flush all packets.
6908 		 */
6909 		napi_gro_flush(n, HZ >= 1000);
6910 	}
6911 
6912 	gro_normal_list(n);
6913 
6914 	/* Some drivers may have called napi_schedule
6915 	 * prior to exhausting their budget.
6916 	 */
6917 	if (unlikely(!list_empty(&n->poll_list))) {
6918 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6919 			     n->dev ? n->dev->name : "backlog");
6920 		return work;
6921 	}
6922 
6923 	*repoll = true;
6924 
6925 	return work;
6926 }
6927 
napi_poll(struct napi_struct * n,struct list_head * repoll)6928 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6929 {
6930 	bool do_repoll = false;
6931 	void *have;
6932 	int work;
6933 
6934 	list_del_init(&n->poll_list);
6935 
6936 	have = netpoll_poll_lock(n);
6937 
6938 	work = __napi_poll(n, &do_repoll);
6939 
6940 	if (do_repoll)
6941 		list_add_tail(&n->poll_list, repoll);
6942 
6943 	netpoll_poll_unlock(have);
6944 
6945 	return work;
6946 }
6947 
napi_thread_wait(struct napi_struct * napi)6948 static int napi_thread_wait(struct napi_struct *napi)
6949 {
6950 	set_current_state(TASK_INTERRUPTIBLE);
6951 
6952 	while (!kthread_should_stop()) {
6953 		/* Testing SCHED_THREADED bit here to make sure the current
6954 		 * kthread owns this napi and could poll on this napi.
6955 		 * Testing SCHED bit is not enough because SCHED bit might be
6956 		 * set by some other busy poll thread or by napi_disable().
6957 		 */
6958 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
6959 			WARN_ON(!list_empty(&napi->poll_list));
6960 			__set_current_state(TASK_RUNNING);
6961 			return 0;
6962 		}
6963 
6964 		schedule();
6965 		set_current_state(TASK_INTERRUPTIBLE);
6966 	}
6967 	__set_current_state(TASK_RUNNING);
6968 
6969 	return -1;
6970 }
6971 
napi_threaded_poll_loop(struct napi_struct * napi)6972 static void napi_threaded_poll_loop(struct napi_struct *napi)
6973 {
6974 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6975 	struct softnet_data *sd;
6976 	unsigned long last_qs = jiffies;
6977 
6978 	for (;;) {
6979 		bool repoll = false;
6980 		void *have;
6981 
6982 		local_bh_disable();
6983 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6984 
6985 		sd = this_cpu_ptr(&softnet_data);
6986 		sd->in_napi_threaded_poll = true;
6987 
6988 		have = netpoll_poll_lock(napi);
6989 		__napi_poll(napi, &repoll);
6990 		netpoll_poll_unlock(have);
6991 
6992 		sd->in_napi_threaded_poll = false;
6993 		barrier();
6994 
6995 		if (sd_has_rps_ipi_waiting(sd)) {
6996 			local_irq_disable();
6997 			net_rps_action_and_irq_enable(sd);
6998 		}
6999 		skb_defer_free_flush(sd);
7000 		bpf_net_ctx_clear(bpf_net_ctx);
7001 		local_bh_enable();
7002 
7003 		if (!repoll)
7004 			break;
7005 
7006 		rcu_softirq_qs_periodic(last_qs);
7007 		cond_resched();
7008 	}
7009 }
7010 
napi_threaded_poll(void * data)7011 static int napi_threaded_poll(void *data)
7012 {
7013 	struct napi_struct *napi = data;
7014 
7015 	while (!napi_thread_wait(napi))
7016 		napi_threaded_poll_loop(napi);
7017 
7018 	return 0;
7019 }
7020 
net_rx_action(void)7021 static __latent_entropy void net_rx_action(void)
7022 {
7023 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7024 	unsigned long time_limit = jiffies +
7025 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7026 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7027 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7028 	LIST_HEAD(list);
7029 	LIST_HEAD(repoll);
7030 
7031 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7032 start:
7033 	sd->in_net_rx_action = true;
7034 	local_irq_disable();
7035 	list_splice_init(&sd->poll_list, &list);
7036 	local_irq_enable();
7037 
7038 	for (;;) {
7039 		struct napi_struct *n;
7040 
7041 		skb_defer_free_flush(sd);
7042 
7043 		if (list_empty(&list)) {
7044 			if (list_empty(&repoll)) {
7045 				sd->in_net_rx_action = false;
7046 				barrier();
7047 				/* We need to check if ____napi_schedule()
7048 				 * had refilled poll_list while
7049 				 * sd->in_net_rx_action was true.
7050 				 */
7051 				if (!list_empty(&sd->poll_list))
7052 					goto start;
7053 				if (!sd_has_rps_ipi_waiting(sd))
7054 					goto end;
7055 			}
7056 			break;
7057 		}
7058 
7059 		n = list_first_entry(&list, struct napi_struct, poll_list);
7060 		budget -= napi_poll(n, &repoll);
7061 
7062 		/* If softirq window is exhausted then punt.
7063 		 * Allow this to run for 2 jiffies since which will allow
7064 		 * an average latency of 1.5/HZ.
7065 		 */
7066 		if (unlikely(budget <= 0 ||
7067 			     time_after_eq(jiffies, time_limit))) {
7068 			sd->time_squeeze++;
7069 			break;
7070 		}
7071 	}
7072 
7073 	local_irq_disable();
7074 
7075 	list_splice_tail_init(&sd->poll_list, &list);
7076 	list_splice_tail(&repoll, &list);
7077 	list_splice(&list, &sd->poll_list);
7078 	if (!list_empty(&sd->poll_list))
7079 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7080 	else
7081 		sd->in_net_rx_action = false;
7082 
7083 	net_rps_action_and_irq_enable(sd);
7084 end:
7085 	bpf_net_ctx_clear(bpf_net_ctx);
7086 }
7087 
7088 struct netdev_adjacent {
7089 	struct net_device *dev;
7090 	netdevice_tracker dev_tracker;
7091 
7092 	/* upper master flag, there can only be one master device per list */
7093 	bool master;
7094 
7095 	/* lookup ignore flag */
7096 	bool ignore;
7097 
7098 	/* counter for the number of times this device was added to us */
7099 	u16 ref_nr;
7100 
7101 	/* private field for the users */
7102 	void *private;
7103 
7104 	struct list_head list;
7105 	struct rcu_head rcu;
7106 };
7107 
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7108 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7109 						 struct list_head *adj_list)
7110 {
7111 	struct netdev_adjacent *adj;
7112 
7113 	list_for_each_entry(adj, adj_list, list) {
7114 		if (adj->dev == adj_dev)
7115 			return adj;
7116 	}
7117 	return NULL;
7118 }
7119 
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7120 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7121 				    struct netdev_nested_priv *priv)
7122 {
7123 	struct net_device *dev = (struct net_device *)priv->data;
7124 
7125 	return upper_dev == dev;
7126 }
7127 
7128 /**
7129  * netdev_has_upper_dev - Check if device is linked to an upper device
7130  * @dev: device
7131  * @upper_dev: upper device to check
7132  *
7133  * Find out if a device is linked to specified upper device and return true
7134  * in case it is. Note that this checks only immediate upper device,
7135  * not through a complete stack of devices. The caller must hold the RTNL lock.
7136  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7137 bool netdev_has_upper_dev(struct net_device *dev,
7138 			  struct net_device *upper_dev)
7139 {
7140 	struct netdev_nested_priv priv = {
7141 		.data = (void *)upper_dev,
7142 	};
7143 
7144 	ASSERT_RTNL();
7145 
7146 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7147 					     &priv);
7148 }
7149 EXPORT_SYMBOL(netdev_has_upper_dev);
7150 
7151 /**
7152  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7153  * @dev: device
7154  * @upper_dev: upper device to check
7155  *
7156  * Find out if a device is linked to specified upper device and return true
7157  * in case it is. Note that this checks the entire upper device chain.
7158  * The caller must hold rcu lock.
7159  */
7160 
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7161 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7162 				  struct net_device *upper_dev)
7163 {
7164 	struct netdev_nested_priv priv = {
7165 		.data = (void *)upper_dev,
7166 	};
7167 
7168 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7169 					       &priv);
7170 }
7171 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7172 
7173 /**
7174  * netdev_has_any_upper_dev - Check if device is linked to some device
7175  * @dev: device
7176  *
7177  * Find out if a device is linked to an upper device and return true in case
7178  * it is. The caller must hold the RTNL lock.
7179  */
netdev_has_any_upper_dev(struct net_device * dev)7180 bool netdev_has_any_upper_dev(struct net_device *dev)
7181 {
7182 	ASSERT_RTNL();
7183 
7184 	return !list_empty(&dev->adj_list.upper);
7185 }
7186 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7187 
7188 /**
7189  * netdev_master_upper_dev_get - Get master upper device
7190  * @dev: device
7191  *
7192  * Find a master upper device and return pointer to it or NULL in case
7193  * it's not there. The caller must hold the RTNL lock.
7194  */
netdev_master_upper_dev_get(struct net_device * dev)7195 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7196 {
7197 	struct netdev_adjacent *upper;
7198 
7199 	ASSERT_RTNL();
7200 
7201 	if (list_empty(&dev->adj_list.upper))
7202 		return NULL;
7203 
7204 	upper = list_first_entry(&dev->adj_list.upper,
7205 				 struct netdev_adjacent, list);
7206 	if (likely(upper->master))
7207 		return upper->dev;
7208 	return NULL;
7209 }
7210 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7211 
__netdev_master_upper_dev_get(struct net_device * dev)7212 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7213 {
7214 	struct netdev_adjacent *upper;
7215 
7216 	ASSERT_RTNL();
7217 
7218 	if (list_empty(&dev->adj_list.upper))
7219 		return NULL;
7220 
7221 	upper = list_first_entry(&dev->adj_list.upper,
7222 				 struct netdev_adjacent, list);
7223 	if (likely(upper->master) && !upper->ignore)
7224 		return upper->dev;
7225 	return NULL;
7226 }
7227 
7228 /**
7229  * netdev_has_any_lower_dev - Check if device is linked to some device
7230  * @dev: device
7231  *
7232  * Find out if a device is linked to a lower device and return true in case
7233  * it is. The caller must hold the RTNL lock.
7234  */
netdev_has_any_lower_dev(struct net_device * dev)7235 static bool netdev_has_any_lower_dev(struct net_device *dev)
7236 {
7237 	ASSERT_RTNL();
7238 
7239 	return !list_empty(&dev->adj_list.lower);
7240 }
7241 
netdev_adjacent_get_private(struct list_head * adj_list)7242 void *netdev_adjacent_get_private(struct list_head *adj_list)
7243 {
7244 	struct netdev_adjacent *adj;
7245 
7246 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7247 
7248 	return adj->private;
7249 }
7250 EXPORT_SYMBOL(netdev_adjacent_get_private);
7251 
7252 /**
7253  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7254  * @dev: device
7255  * @iter: list_head ** of the current position
7256  *
7257  * Gets the next device from the dev's upper list, starting from iter
7258  * position. The caller must hold RCU read lock.
7259  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7260 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7261 						 struct list_head **iter)
7262 {
7263 	struct netdev_adjacent *upper;
7264 
7265 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7266 
7267 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7268 
7269 	if (&upper->list == &dev->adj_list.upper)
7270 		return NULL;
7271 
7272 	*iter = &upper->list;
7273 
7274 	return upper->dev;
7275 }
7276 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7277 
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7278 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7279 						  struct list_head **iter,
7280 						  bool *ignore)
7281 {
7282 	struct netdev_adjacent *upper;
7283 
7284 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7285 
7286 	if (&upper->list == &dev->adj_list.upper)
7287 		return NULL;
7288 
7289 	*iter = &upper->list;
7290 	*ignore = upper->ignore;
7291 
7292 	return upper->dev;
7293 }
7294 
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7295 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7296 						    struct list_head **iter)
7297 {
7298 	struct netdev_adjacent *upper;
7299 
7300 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7301 
7302 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7303 
7304 	if (&upper->list == &dev->adj_list.upper)
7305 		return NULL;
7306 
7307 	*iter = &upper->list;
7308 
7309 	return upper->dev;
7310 }
7311 
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7312 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7313 				       int (*fn)(struct net_device *dev,
7314 					 struct netdev_nested_priv *priv),
7315 				       struct netdev_nested_priv *priv)
7316 {
7317 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7318 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7319 	int ret, cur = 0;
7320 	bool ignore;
7321 
7322 	now = dev;
7323 	iter = &dev->adj_list.upper;
7324 
7325 	while (1) {
7326 		if (now != dev) {
7327 			ret = fn(now, priv);
7328 			if (ret)
7329 				return ret;
7330 		}
7331 
7332 		next = NULL;
7333 		while (1) {
7334 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7335 			if (!udev)
7336 				break;
7337 			if (ignore)
7338 				continue;
7339 
7340 			next = udev;
7341 			niter = &udev->adj_list.upper;
7342 			dev_stack[cur] = now;
7343 			iter_stack[cur++] = iter;
7344 			break;
7345 		}
7346 
7347 		if (!next) {
7348 			if (!cur)
7349 				return 0;
7350 			next = dev_stack[--cur];
7351 			niter = iter_stack[cur];
7352 		}
7353 
7354 		now = next;
7355 		iter = niter;
7356 	}
7357 
7358 	return 0;
7359 }
7360 
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7361 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7362 				  int (*fn)(struct net_device *dev,
7363 					    struct netdev_nested_priv *priv),
7364 				  struct netdev_nested_priv *priv)
7365 {
7366 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7367 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7368 	int ret, cur = 0;
7369 
7370 	now = dev;
7371 	iter = &dev->adj_list.upper;
7372 
7373 	while (1) {
7374 		if (now != dev) {
7375 			ret = fn(now, priv);
7376 			if (ret)
7377 				return ret;
7378 		}
7379 
7380 		next = NULL;
7381 		while (1) {
7382 			udev = netdev_next_upper_dev_rcu(now, &iter);
7383 			if (!udev)
7384 				break;
7385 
7386 			next = udev;
7387 			niter = &udev->adj_list.upper;
7388 			dev_stack[cur] = now;
7389 			iter_stack[cur++] = iter;
7390 			break;
7391 		}
7392 
7393 		if (!next) {
7394 			if (!cur)
7395 				return 0;
7396 			next = dev_stack[--cur];
7397 			niter = iter_stack[cur];
7398 		}
7399 
7400 		now = next;
7401 		iter = niter;
7402 	}
7403 
7404 	return 0;
7405 }
7406 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7407 
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7408 static bool __netdev_has_upper_dev(struct net_device *dev,
7409 				   struct net_device *upper_dev)
7410 {
7411 	struct netdev_nested_priv priv = {
7412 		.flags = 0,
7413 		.data = (void *)upper_dev,
7414 	};
7415 
7416 	ASSERT_RTNL();
7417 
7418 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7419 					   &priv);
7420 }
7421 
7422 /**
7423  * netdev_lower_get_next_private - Get the next ->private from the
7424  *				   lower neighbour list
7425  * @dev: device
7426  * @iter: list_head ** of the current position
7427  *
7428  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7429  * list, starting from iter position. The caller must hold either hold the
7430  * RTNL lock or its own locking that guarantees that the neighbour lower
7431  * list will remain unchanged.
7432  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7433 void *netdev_lower_get_next_private(struct net_device *dev,
7434 				    struct list_head **iter)
7435 {
7436 	struct netdev_adjacent *lower;
7437 
7438 	lower = list_entry(*iter, struct netdev_adjacent, list);
7439 
7440 	if (&lower->list == &dev->adj_list.lower)
7441 		return NULL;
7442 
7443 	*iter = lower->list.next;
7444 
7445 	return lower->private;
7446 }
7447 EXPORT_SYMBOL(netdev_lower_get_next_private);
7448 
7449 /**
7450  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7451  *				       lower neighbour list, RCU
7452  *				       variant
7453  * @dev: device
7454  * @iter: list_head ** of the current position
7455  *
7456  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7457  * list, starting from iter position. The caller must hold RCU read lock.
7458  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7459 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7460 					struct list_head **iter)
7461 {
7462 	struct netdev_adjacent *lower;
7463 
7464 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7465 
7466 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7467 
7468 	if (&lower->list == &dev->adj_list.lower)
7469 		return NULL;
7470 
7471 	*iter = &lower->list;
7472 
7473 	return lower->private;
7474 }
7475 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7476 
7477 /**
7478  * netdev_lower_get_next - Get the next device from the lower neighbour
7479  *                         list
7480  * @dev: device
7481  * @iter: list_head ** of the current position
7482  *
7483  * Gets the next netdev_adjacent from the dev's lower neighbour
7484  * list, starting from iter position. The caller must hold RTNL lock or
7485  * its own locking that guarantees that the neighbour lower
7486  * list will remain unchanged.
7487  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7488 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7489 {
7490 	struct netdev_adjacent *lower;
7491 
7492 	lower = list_entry(*iter, struct netdev_adjacent, list);
7493 
7494 	if (&lower->list == &dev->adj_list.lower)
7495 		return NULL;
7496 
7497 	*iter = lower->list.next;
7498 
7499 	return lower->dev;
7500 }
7501 EXPORT_SYMBOL(netdev_lower_get_next);
7502 
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7503 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7504 						struct list_head **iter)
7505 {
7506 	struct netdev_adjacent *lower;
7507 
7508 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7509 
7510 	if (&lower->list == &dev->adj_list.lower)
7511 		return NULL;
7512 
7513 	*iter = &lower->list;
7514 
7515 	return lower->dev;
7516 }
7517 
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7518 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7519 						  struct list_head **iter,
7520 						  bool *ignore)
7521 {
7522 	struct netdev_adjacent *lower;
7523 
7524 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7525 
7526 	if (&lower->list == &dev->adj_list.lower)
7527 		return NULL;
7528 
7529 	*iter = &lower->list;
7530 	*ignore = lower->ignore;
7531 
7532 	return lower->dev;
7533 }
7534 
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7535 int netdev_walk_all_lower_dev(struct net_device *dev,
7536 			      int (*fn)(struct net_device *dev,
7537 					struct netdev_nested_priv *priv),
7538 			      struct netdev_nested_priv *priv)
7539 {
7540 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7541 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7542 	int ret, cur = 0;
7543 
7544 	now = dev;
7545 	iter = &dev->adj_list.lower;
7546 
7547 	while (1) {
7548 		if (now != dev) {
7549 			ret = fn(now, priv);
7550 			if (ret)
7551 				return ret;
7552 		}
7553 
7554 		next = NULL;
7555 		while (1) {
7556 			ldev = netdev_next_lower_dev(now, &iter);
7557 			if (!ldev)
7558 				break;
7559 
7560 			next = ldev;
7561 			niter = &ldev->adj_list.lower;
7562 			dev_stack[cur] = now;
7563 			iter_stack[cur++] = iter;
7564 			break;
7565 		}
7566 
7567 		if (!next) {
7568 			if (!cur)
7569 				return 0;
7570 			next = dev_stack[--cur];
7571 			niter = iter_stack[cur];
7572 		}
7573 
7574 		now = next;
7575 		iter = niter;
7576 	}
7577 
7578 	return 0;
7579 }
7580 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7581 
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7582 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7583 				       int (*fn)(struct net_device *dev,
7584 					 struct netdev_nested_priv *priv),
7585 				       struct netdev_nested_priv *priv)
7586 {
7587 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7588 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7589 	int ret, cur = 0;
7590 	bool ignore;
7591 
7592 	now = dev;
7593 	iter = &dev->adj_list.lower;
7594 
7595 	while (1) {
7596 		if (now != dev) {
7597 			ret = fn(now, priv);
7598 			if (ret)
7599 				return ret;
7600 		}
7601 
7602 		next = NULL;
7603 		while (1) {
7604 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7605 			if (!ldev)
7606 				break;
7607 			if (ignore)
7608 				continue;
7609 
7610 			next = ldev;
7611 			niter = &ldev->adj_list.lower;
7612 			dev_stack[cur] = now;
7613 			iter_stack[cur++] = iter;
7614 			break;
7615 		}
7616 
7617 		if (!next) {
7618 			if (!cur)
7619 				return 0;
7620 			next = dev_stack[--cur];
7621 			niter = iter_stack[cur];
7622 		}
7623 
7624 		now = next;
7625 		iter = niter;
7626 	}
7627 
7628 	return 0;
7629 }
7630 
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7631 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7632 					     struct list_head **iter)
7633 {
7634 	struct netdev_adjacent *lower;
7635 
7636 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7637 	if (&lower->list == &dev->adj_list.lower)
7638 		return NULL;
7639 
7640 	*iter = &lower->list;
7641 
7642 	return lower->dev;
7643 }
7644 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7645 
__netdev_upper_depth(struct net_device * dev)7646 static u8 __netdev_upper_depth(struct net_device *dev)
7647 {
7648 	struct net_device *udev;
7649 	struct list_head *iter;
7650 	u8 max_depth = 0;
7651 	bool ignore;
7652 
7653 	for (iter = &dev->adj_list.upper,
7654 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7655 	     udev;
7656 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7657 		if (ignore)
7658 			continue;
7659 		if (max_depth < udev->upper_level)
7660 			max_depth = udev->upper_level;
7661 	}
7662 
7663 	return max_depth;
7664 }
7665 
__netdev_lower_depth(struct net_device * dev)7666 static u8 __netdev_lower_depth(struct net_device *dev)
7667 {
7668 	struct net_device *ldev;
7669 	struct list_head *iter;
7670 	u8 max_depth = 0;
7671 	bool ignore;
7672 
7673 	for (iter = &dev->adj_list.lower,
7674 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7675 	     ldev;
7676 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7677 		if (ignore)
7678 			continue;
7679 		if (max_depth < ldev->lower_level)
7680 			max_depth = ldev->lower_level;
7681 	}
7682 
7683 	return max_depth;
7684 }
7685 
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7686 static int __netdev_update_upper_level(struct net_device *dev,
7687 				       struct netdev_nested_priv *__unused)
7688 {
7689 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7690 	return 0;
7691 }
7692 
7693 #ifdef CONFIG_LOCKDEP
7694 static LIST_HEAD(net_unlink_list);
7695 
net_unlink_todo(struct net_device * dev)7696 static void net_unlink_todo(struct net_device *dev)
7697 {
7698 	if (list_empty(&dev->unlink_list))
7699 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7700 }
7701 #endif
7702 
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7703 static int __netdev_update_lower_level(struct net_device *dev,
7704 				       struct netdev_nested_priv *priv)
7705 {
7706 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7707 
7708 #ifdef CONFIG_LOCKDEP
7709 	if (!priv)
7710 		return 0;
7711 
7712 	if (priv->flags & NESTED_SYNC_IMM)
7713 		dev->nested_level = dev->lower_level - 1;
7714 	if (priv->flags & NESTED_SYNC_TODO)
7715 		net_unlink_todo(dev);
7716 #endif
7717 	return 0;
7718 }
7719 
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7720 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7721 				  int (*fn)(struct net_device *dev,
7722 					    struct netdev_nested_priv *priv),
7723 				  struct netdev_nested_priv *priv)
7724 {
7725 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7726 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7727 	int ret, cur = 0;
7728 
7729 	now = dev;
7730 	iter = &dev->adj_list.lower;
7731 
7732 	while (1) {
7733 		if (now != dev) {
7734 			ret = fn(now, priv);
7735 			if (ret)
7736 				return ret;
7737 		}
7738 
7739 		next = NULL;
7740 		while (1) {
7741 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7742 			if (!ldev)
7743 				break;
7744 
7745 			next = ldev;
7746 			niter = &ldev->adj_list.lower;
7747 			dev_stack[cur] = now;
7748 			iter_stack[cur++] = iter;
7749 			break;
7750 		}
7751 
7752 		if (!next) {
7753 			if (!cur)
7754 				return 0;
7755 			next = dev_stack[--cur];
7756 			niter = iter_stack[cur];
7757 		}
7758 
7759 		now = next;
7760 		iter = niter;
7761 	}
7762 
7763 	return 0;
7764 }
7765 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7766 
7767 /**
7768  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7769  *				       lower neighbour list, RCU
7770  *				       variant
7771  * @dev: device
7772  *
7773  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7774  * list. The caller must hold RCU read lock.
7775  */
netdev_lower_get_first_private_rcu(struct net_device * dev)7776 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7777 {
7778 	struct netdev_adjacent *lower;
7779 
7780 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7781 			struct netdev_adjacent, list);
7782 	if (lower)
7783 		return lower->private;
7784 	return NULL;
7785 }
7786 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7787 
7788 /**
7789  * netdev_master_upper_dev_get_rcu - Get master upper device
7790  * @dev: device
7791  *
7792  * Find a master upper device and return pointer to it or NULL in case
7793  * it's not there. The caller must hold the RCU read lock.
7794  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7795 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7796 {
7797 	struct netdev_adjacent *upper;
7798 
7799 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7800 				       struct netdev_adjacent, list);
7801 	if (upper && likely(upper->master))
7802 		return upper->dev;
7803 	return NULL;
7804 }
7805 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7806 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7807 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7808 			      struct net_device *adj_dev,
7809 			      struct list_head *dev_list)
7810 {
7811 	char linkname[IFNAMSIZ+7];
7812 
7813 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7814 		"upper_%s" : "lower_%s", adj_dev->name);
7815 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7816 				 linkname);
7817 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7818 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7819 			       char *name,
7820 			       struct list_head *dev_list)
7821 {
7822 	char linkname[IFNAMSIZ+7];
7823 
7824 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7825 		"upper_%s" : "lower_%s", name);
7826 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7827 }
7828 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7829 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7830 						 struct net_device *adj_dev,
7831 						 struct list_head *dev_list)
7832 {
7833 	return (dev_list == &dev->adj_list.upper ||
7834 		dev_list == &dev->adj_list.lower) &&
7835 		net_eq(dev_net(dev), dev_net(adj_dev));
7836 }
7837 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7838 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7839 					struct net_device *adj_dev,
7840 					struct list_head *dev_list,
7841 					void *private, bool master)
7842 {
7843 	struct netdev_adjacent *adj;
7844 	int ret;
7845 
7846 	adj = __netdev_find_adj(adj_dev, dev_list);
7847 
7848 	if (adj) {
7849 		adj->ref_nr += 1;
7850 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7851 			 dev->name, adj_dev->name, adj->ref_nr);
7852 
7853 		return 0;
7854 	}
7855 
7856 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7857 	if (!adj)
7858 		return -ENOMEM;
7859 
7860 	adj->dev = adj_dev;
7861 	adj->master = master;
7862 	adj->ref_nr = 1;
7863 	adj->private = private;
7864 	adj->ignore = false;
7865 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7866 
7867 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7868 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7869 
7870 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7871 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7872 		if (ret)
7873 			goto free_adj;
7874 	}
7875 
7876 	/* Ensure that master link is always the first item in list. */
7877 	if (master) {
7878 		ret = sysfs_create_link(&(dev->dev.kobj),
7879 					&(adj_dev->dev.kobj), "master");
7880 		if (ret)
7881 			goto remove_symlinks;
7882 
7883 		list_add_rcu(&adj->list, dev_list);
7884 	} else {
7885 		list_add_tail_rcu(&adj->list, dev_list);
7886 	}
7887 
7888 	return 0;
7889 
7890 remove_symlinks:
7891 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7892 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7893 free_adj:
7894 	netdev_put(adj_dev, &adj->dev_tracker);
7895 	kfree(adj);
7896 
7897 	return ret;
7898 }
7899 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7900 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7901 					 struct net_device *adj_dev,
7902 					 u16 ref_nr,
7903 					 struct list_head *dev_list)
7904 {
7905 	struct netdev_adjacent *adj;
7906 
7907 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7908 		 dev->name, adj_dev->name, ref_nr);
7909 
7910 	adj = __netdev_find_adj(adj_dev, dev_list);
7911 
7912 	if (!adj) {
7913 		pr_err("Adjacency does not exist for device %s from %s\n",
7914 		       dev->name, adj_dev->name);
7915 		WARN_ON(1);
7916 		return;
7917 	}
7918 
7919 	if (adj->ref_nr > ref_nr) {
7920 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7921 			 dev->name, adj_dev->name, ref_nr,
7922 			 adj->ref_nr - ref_nr);
7923 		adj->ref_nr -= ref_nr;
7924 		return;
7925 	}
7926 
7927 	if (adj->master)
7928 		sysfs_remove_link(&(dev->dev.kobj), "master");
7929 
7930 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7931 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7932 
7933 	list_del_rcu(&adj->list);
7934 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7935 		 adj_dev->name, dev->name, adj_dev->name);
7936 	netdev_put(adj_dev, &adj->dev_tracker);
7937 	kfree_rcu(adj, rcu);
7938 }
7939 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7940 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7941 					    struct net_device *upper_dev,
7942 					    struct list_head *up_list,
7943 					    struct list_head *down_list,
7944 					    void *private, bool master)
7945 {
7946 	int ret;
7947 
7948 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7949 					   private, master);
7950 	if (ret)
7951 		return ret;
7952 
7953 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7954 					   private, false);
7955 	if (ret) {
7956 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7957 		return ret;
7958 	}
7959 
7960 	return 0;
7961 }
7962 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7963 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7964 					       struct net_device *upper_dev,
7965 					       u16 ref_nr,
7966 					       struct list_head *up_list,
7967 					       struct list_head *down_list)
7968 {
7969 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7970 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7971 }
7972 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7973 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7974 						struct net_device *upper_dev,
7975 						void *private, bool master)
7976 {
7977 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7978 						&dev->adj_list.upper,
7979 						&upper_dev->adj_list.lower,
7980 						private, master);
7981 }
7982 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7983 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7984 						   struct net_device *upper_dev)
7985 {
7986 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7987 					   &dev->adj_list.upper,
7988 					   &upper_dev->adj_list.lower);
7989 }
7990 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)7991 static int __netdev_upper_dev_link(struct net_device *dev,
7992 				   struct net_device *upper_dev, bool master,
7993 				   void *upper_priv, void *upper_info,
7994 				   struct netdev_nested_priv *priv,
7995 				   struct netlink_ext_ack *extack)
7996 {
7997 	struct netdev_notifier_changeupper_info changeupper_info = {
7998 		.info = {
7999 			.dev = dev,
8000 			.extack = extack,
8001 		},
8002 		.upper_dev = upper_dev,
8003 		.master = master,
8004 		.linking = true,
8005 		.upper_info = upper_info,
8006 	};
8007 	struct net_device *master_dev;
8008 	int ret = 0;
8009 
8010 	ASSERT_RTNL();
8011 
8012 	if (dev == upper_dev)
8013 		return -EBUSY;
8014 
8015 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8016 	if (__netdev_has_upper_dev(upper_dev, dev))
8017 		return -EBUSY;
8018 
8019 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8020 		return -EMLINK;
8021 
8022 	if (!master) {
8023 		if (__netdev_has_upper_dev(dev, upper_dev))
8024 			return -EEXIST;
8025 	} else {
8026 		master_dev = __netdev_master_upper_dev_get(dev);
8027 		if (master_dev)
8028 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8029 	}
8030 
8031 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8032 					    &changeupper_info.info);
8033 	ret = notifier_to_errno(ret);
8034 	if (ret)
8035 		return ret;
8036 
8037 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8038 						   master);
8039 	if (ret)
8040 		return ret;
8041 
8042 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8043 					    &changeupper_info.info);
8044 	ret = notifier_to_errno(ret);
8045 	if (ret)
8046 		goto rollback;
8047 
8048 	__netdev_update_upper_level(dev, NULL);
8049 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8050 
8051 	__netdev_update_lower_level(upper_dev, priv);
8052 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8053 				    priv);
8054 
8055 	return 0;
8056 
8057 rollback:
8058 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8059 
8060 	return ret;
8061 }
8062 
8063 /**
8064  * netdev_upper_dev_link - Add a link to the upper device
8065  * @dev: device
8066  * @upper_dev: new upper device
8067  * @extack: netlink extended ack
8068  *
8069  * Adds a link to device which is upper to this one. The caller must hold
8070  * the RTNL lock. On a failure a negative errno code is returned.
8071  * On success the reference counts are adjusted and the function
8072  * returns zero.
8073  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8074 int netdev_upper_dev_link(struct net_device *dev,
8075 			  struct net_device *upper_dev,
8076 			  struct netlink_ext_ack *extack)
8077 {
8078 	struct netdev_nested_priv priv = {
8079 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8080 		.data = NULL,
8081 	};
8082 
8083 	return __netdev_upper_dev_link(dev, upper_dev, false,
8084 				       NULL, NULL, &priv, extack);
8085 }
8086 EXPORT_SYMBOL(netdev_upper_dev_link);
8087 
8088 /**
8089  * netdev_master_upper_dev_link - Add a master link to the upper device
8090  * @dev: device
8091  * @upper_dev: new upper device
8092  * @upper_priv: upper device private
8093  * @upper_info: upper info to be passed down via notifier
8094  * @extack: netlink extended ack
8095  *
8096  * Adds a link to device which is upper to this one. In this case, only
8097  * one master upper device can be linked, although other non-master devices
8098  * might be linked as well. The caller must hold the RTNL lock.
8099  * On a failure a negative errno code is returned. On success the reference
8100  * counts are adjusted and the function returns zero.
8101  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8102 int netdev_master_upper_dev_link(struct net_device *dev,
8103 				 struct net_device *upper_dev,
8104 				 void *upper_priv, void *upper_info,
8105 				 struct netlink_ext_ack *extack)
8106 {
8107 	struct netdev_nested_priv priv = {
8108 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8109 		.data = NULL,
8110 	};
8111 
8112 	return __netdev_upper_dev_link(dev, upper_dev, true,
8113 				       upper_priv, upper_info, &priv, extack);
8114 }
8115 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8116 
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8117 static void __netdev_upper_dev_unlink(struct net_device *dev,
8118 				      struct net_device *upper_dev,
8119 				      struct netdev_nested_priv *priv)
8120 {
8121 	struct netdev_notifier_changeupper_info changeupper_info = {
8122 		.info = {
8123 			.dev = dev,
8124 		},
8125 		.upper_dev = upper_dev,
8126 		.linking = false,
8127 	};
8128 
8129 	ASSERT_RTNL();
8130 
8131 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8132 
8133 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8134 				      &changeupper_info.info);
8135 
8136 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8137 
8138 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8139 				      &changeupper_info.info);
8140 
8141 	__netdev_update_upper_level(dev, NULL);
8142 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8143 
8144 	__netdev_update_lower_level(upper_dev, priv);
8145 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8146 				    priv);
8147 }
8148 
8149 /**
8150  * netdev_upper_dev_unlink - Removes a link to upper device
8151  * @dev: device
8152  * @upper_dev: new upper device
8153  *
8154  * Removes a link to device which is upper to this one. The caller must hold
8155  * the RTNL lock.
8156  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8157 void netdev_upper_dev_unlink(struct net_device *dev,
8158 			     struct net_device *upper_dev)
8159 {
8160 	struct netdev_nested_priv priv = {
8161 		.flags = NESTED_SYNC_TODO,
8162 		.data = NULL,
8163 	};
8164 
8165 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8166 }
8167 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8168 
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8169 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8170 				      struct net_device *lower_dev,
8171 				      bool val)
8172 {
8173 	struct netdev_adjacent *adj;
8174 
8175 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8176 	if (adj)
8177 		adj->ignore = val;
8178 
8179 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8180 	if (adj)
8181 		adj->ignore = val;
8182 }
8183 
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8184 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8185 					struct net_device *lower_dev)
8186 {
8187 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8188 }
8189 
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8190 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8191 				       struct net_device *lower_dev)
8192 {
8193 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8194 }
8195 
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8196 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8197 				   struct net_device *new_dev,
8198 				   struct net_device *dev,
8199 				   struct netlink_ext_ack *extack)
8200 {
8201 	struct netdev_nested_priv priv = {
8202 		.flags = 0,
8203 		.data = NULL,
8204 	};
8205 	int err;
8206 
8207 	if (!new_dev)
8208 		return 0;
8209 
8210 	if (old_dev && new_dev != old_dev)
8211 		netdev_adjacent_dev_disable(dev, old_dev);
8212 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8213 				      extack);
8214 	if (err) {
8215 		if (old_dev && new_dev != old_dev)
8216 			netdev_adjacent_dev_enable(dev, old_dev);
8217 		return err;
8218 	}
8219 
8220 	return 0;
8221 }
8222 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8223 
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8224 void netdev_adjacent_change_commit(struct net_device *old_dev,
8225 				   struct net_device *new_dev,
8226 				   struct net_device *dev)
8227 {
8228 	struct netdev_nested_priv priv = {
8229 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8230 		.data = NULL,
8231 	};
8232 
8233 	if (!new_dev || !old_dev)
8234 		return;
8235 
8236 	if (new_dev == old_dev)
8237 		return;
8238 
8239 	netdev_adjacent_dev_enable(dev, old_dev);
8240 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8241 }
8242 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8243 
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8244 void netdev_adjacent_change_abort(struct net_device *old_dev,
8245 				  struct net_device *new_dev,
8246 				  struct net_device *dev)
8247 {
8248 	struct netdev_nested_priv priv = {
8249 		.flags = 0,
8250 		.data = NULL,
8251 	};
8252 
8253 	if (!new_dev)
8254 		return;
8255 
8256 	if (old_dev && new_dev != old_dev)
8257 		netdev_adjacent_dev_enable(dev, old_dev);
8258 
8259 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8260 }
8261 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8262 
8263 /**
8264  * netdev_bonding_info_change - Dispatch event about slave change
8265  * @dev: device
8266  * @bonding_info: info to dispatch
8267  *
8268  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8269  * The caller must hold the RTNL lock.
8270  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8271 void netdev_bonding_info_change(struct net_device *dev,
8272 				struct netdev_bonding_info *bonding_info)
8273 {
8274 	struct netdev_notifier_bonding_info info = {
8275 		.info.dev = dev,
8276 	};
8277 
8278 	memcpy(&info.bonding_info, bonding_info,
8279 	       sizeof(struct netdev_bonding_info));
8280 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8281 				      &info.info);
8282 }
8283 EXPORT_SYMBOL(netdev_bonding_info_change);
8284 
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)8285 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8286 					   struct netlink_ext_ack *extack)
8287 {
8288 	struct netdev_notifier_offload_xstats_info info = {
8289 		.info.dev = dev,
8290 		.info.extack = extack,
8291 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8292 	};
8293 	int err;
8294 	int rc;
8295 
8296 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8297 					 GFP_KERNEL);
8298 	if (!dev->offload_xstats_l3)
8299 		return -ENOMEM;
8300 
8301 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8302 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8303 						  &info.info);
8304 	err = notifier_to_errno(rc);
8305 	if (err)
8306 		goto free_stats;
8307 
8308 	return 0;
8309 
8310 free_stats:
8311 	kfree(dev->offload_xstats_l3);
8312 	dev->offload_xstats_l3 = NULL;
8313 	return err;
8314 }
8315 
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)8316 int netdev_offload_xstats_enable(struct net_device *dev,
8317 				 enum netdev_offload_xstats_type type,
8318 				 struct netlink_ext_ack *extack)
8319 {
8320 	ASSERT_RTNL();
8321 
8322 	if (netdev_offload_xstats_enabled(dev, type))
8323 		return -EALREADY;
8324 
8325 	switch (type) {
8326 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8327 		return netdev_offload_xstats_enable_l3(dev, extack);
8328 	}
8329 
8330 	WARN_ON(1);
8331 	return -EINVAL;
8332 }
8333 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8334 
netdev_offload_xstats_disable_l3(struct net_device * dev)8335 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8336 {
8337 	struct netdev_notifier_offload_xstats_info info = {
8338 		.info.dev = dev,
8339 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8340 	};
8341 
8342 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8343 				      &info.info);
8344 	kfree(dev->offload_xstats_l3);
8345 	dev->offload_xstats_l3 = NULL;
8346 }
8347 
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8348 int netdev_offload_xstats_disable(struct net_device *dev,
8349 				  enum netdev_offload_xstats_type type)
8350 {
8351 	ASSERT_RTNL();
8352 
8353 	if (!netdev_offload_xstats_enabled(dev, type))
8354 		return -EALREADY;
8355 
8356 	switch (type) {
8357 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8358 		netdev_offload_xstats_disable_l3(dev);
8359 		return 0;
8360 	}
8361 
8362 	WARN_ON(1);
8363 	return -EINVAL;
8364 }
8365 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8366 
netdev_offload_xstats_disable_all(struct net_device * dev)8367 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8368 {
8369 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8370 }
8371 
8372 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)8373 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8374 			      enum netdev_offload_xstats_type type)
8375 {
8376 	switch (type) {
8377 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8378 		return dev->offload_xstats_l3;
8379 	}
8380 
8381 	WARN_ON(1);
8382 	return NULL;
8383 }
8384 
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)8385 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8386 				   enum netdev_offload_xstats_type type)
8387 {
8388 	ASSERT_RTNL();
8389 
8390 	return netdev_offload_xstats_get_ptr(dev, type);
8391 }
8392 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8393 
8394 struct netdev_notifier_offload_xstats_ru {
8395 	bool used;
8396 };
8397 
8398 struct netdev_notifier_offload_xstats_rd {
8399 	struct rtnl_hw_stats64 stats;
8400 	bool used;
8401 };
8402 
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)8403 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8404 				  const struct rtnl_hw_stats64 *src)
8405 {
8406 	dest->rx_packets	  += src->rx_packets;
8407 	dest->tx_packets	  += src->tx_packets;
8408 	dest->rx_bytes		  += src->rx_bytes;
8409 	dest->tx_bytes		  += src->tx_bytes;
8410 	dest->rx_errors		  += src->rx_errors;
8411 	dest->tx_errors		  += src->tx_errors;
8412 	dest->rx_dropped	  += src->rx_dropped;
8413 	dest->tx_dropped	  += src->tx_dropped;
8414 	dest->multicast		  += src->multicast;
8415 }
8416 
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)8417 static int netdev_offload_xstats_get_used(struct net_device *dev,
8418 					  enum netdev_offload_xstats_type type,
8419 					  bool *p_used,
8420 					  struct netlink_ext_ack *extack)
8421 {
8422 	struct netdev_notifier_offload_xstats_ru report_used = {};
8423 	struct netdev_notifier_offload_xstats_info info = {
8424 		.info.dev = dev,
8425 		.info.extack = extack,
8426 		.type = type,
8427 		.report_used = &report_used,
8428 	};
8429 	int rc;
8430 
8431 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8432 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8433 					   &info.info);
8434 	*p_used = report_used.used;
8435 	return notifier_to_errno(rc);
8436 }
8437 
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8438 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8439 					   enum netdev_offload_xstats_type type,
8440 					   struct rtnl_hw_stats64 *p_stats,
8441 					   bool *p_used,
8442 					   struct netlink_ext_ack *extack)
8443 {
8444 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8445 	struct netdev_notifier_offload_xstats_info info = {
8446 		.info.dev = dev,
8447 		.info.extack = extack,
8448 		.type = type,
8449 		.report_delta = &report_delta,
8450 	};
8451 	struct rtnl_hw_stats64 *stats;
8452 	int rc;
8453 
8454 	stats = netdev_offload_xstats_get_ptr(dev, type);
8455 	if (WARN_ON(!stats))
8456 		return -EINVAL;
8457 
8458 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8459 					   &info.info);
8460 
8461 	/* Cache whatever we got, even if there was an error, otherwise the
8462 	 * successful stats retrievals would get lost.
8463 	 */
8464 	netdev_hw_stats64_add(stats, &report_delta.stats);
8465 
8466 	if (p_stats)
8467 		*p_stats = *stats;
8468 	*p_used = report_delta.used;
8469 
8470 	return notifier_to_errno(rc);
8471 }
8472 
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8473 int netdev_offload_xstats_get(struct net_device *dev,
8474 			      enum netdev_offload_xstats_type type,
8475 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8476 			      struct netlink_ext_ack *extack)
8477 {
8478 	ASSERT_RTNL();
8479 
8480 	if (p_stats)
8481 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8482 						       p_used, extack);
8483 	else
8484 		return netdev_offload_xstats_get_used(dev, type, p_used,
8485 						      extack);
8486 }
8487 EXPORT_SYMBOL(netdev_offload_xstats_get);
8488 
8489 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)8490 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8491 				   const struct rtnl_hw_stats64 *stats)
8492 {
8493 	report_delta->used = true;
8494 	netdev_hw_stats64_add(&report_delta->stats, stats);
8495 }
8496 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8497 
8498 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)8499 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8500 {
8501 	report_used->used = true;
8502 }
8503 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8504 
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)8505 void netdev_offload_xstats_push_delta(struct net_device *dev,
8506 				      enum netdev_offload_xstats_type type,
8507 				      const struct rtnl_hw_stats64 *p_stats)
8508 {
8509 	struct rtnl_hw_stats64 *stats;
8510 
8511 	ASSERT_RTNL();
8512 
8513 	stats = netdev_offload_xstats_get_ptr(dev, type);
8514 	if (WARN_ON(!stats))
8515 		return;
8516 
8517 	netdev_hw_stats64_add(stats, p_stats);
8518 }
8519 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8520 
8521 /**
8522  * netdev_get_xmit_slave - Get the xmit slave of master device
8523  * @dev: device
8524  * @skb: The packet
8525  * @all_slaves: assume all the slaves are active
8526  *
8527  * The reference counters are not incremented so the caller must be
8528  * careful with locks. The caller must hold RCU lock.
8529  * %NULL is returned if no slave is found.
8530  */
8531 
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8532 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8533 					 struct sk_buff *skb,
8534 					 bool all_slaves)
8535 {
8536 	const struct net_device_ops *ops = dev->netdev_ops;
8537 
8538 	if (!ops->ndo_get_xmit_slave)
8539 		return NULL;
8540 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8541 }
8542 EXPORT_SYMBOL(netdev_get_xmit_slave);
8543 
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)8544 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8545 						  struct sock *sk)
8546 {
8547 	const struct net_device_ops *ops = dev->netdev_ops;
8548 
8549 	if (!ops->ndo_sk_get_lower_dev)
8550 		return NULL;
8551 	return ops->ndo_sk_get_lower_dev(dev, sk);
8552 }
8553 
8554 /**
8555  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8556  * @dev: device
8557  * @sk: the socket
8558  *
8559  * %NULL is returned if no lower device is found.
8560  */
8561 
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)8562 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8563 					    struct sock *sk)
8564 {
8565 	struct net_device *lower;
8566 
8567 	lower = netdev_sk_get_lower_dev(dev, sk);
8568 	while (lower) {
8569 		dev = lower;
8570 		lower = netdev_sk_get_lower_dev(dev, sk);
8571 	}
8572 
8573 	return dev;
8574 }
8575 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8576 
netdev_adjacent_add_links(struct net_device * dev)8577 static void netdev_adjacent_add_links(struct net_device *dev)
8578 {
8579 	struct netdev_adjacent *iter;
8580 
8581 	struct net *net = dev_net(dev);
8582 
8583 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8584 		if (!net_eq(net, dev_net(iter->dev)))
8585 			continue;
8586 		netdev_adjacent_sysfs_add(iter->dev, dev,
8587 					  &iter->dev->adj_list.lower);
8588 		netdev_adjacent_sysfs_add(dev, iter->dev,
8589 					  &dev->adj_list.upper);
8590 	}
8591 
8592 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8593 		if (!net_eq(net, dev_net(iter->dev)))
8594 			continue;
8595 		netdev_adjacent_sysfs_add(iter->dev, dev,
8596 					  &iter->dev->adj_list.upper);
8597 		netdev_adjacent_sysfs_add(dev, iter->dev,
8598 					  &dev->adj_list.lower);
8599 	}
8600 }
8601 
netdev_adjacent_del_links(struct net_device * dev)8602 static void netdev_adjacent_del_links(struct net_device *dev)
8603 {
8604 	struct netdev_adjacent *iter;
8605 
8606 	struct net *net = dev_net(dev);
8607 
8608 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8609 		if (!net_eq(net, dev_net(iter->dev)))
8610 			continue;
8611 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8612 					  &iter->dev->adj_list.lower);
8613 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8614 					  &dev->adj_list.upper);
8615 	}
8616 
8617 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8618 		if (!net_eq(net, dev_net(iter->dev)))
8619 			continue;
8620 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8621 					  &iter->dev->adj_list.upper);
8622 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8623 					  &dev->adj_list.lower);
8624 	}
8625 }
8626 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8627 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8628 {
8629 	struct netdev_adjacent *iter;
8630 
8631 	struct net *net = dev_net(dev);
8632 
8633 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8634 		if (!net_eq(net, dev_net(iter->dev)))
8635 			continue;
8636 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8637 					  &iter->dev->adj_list.lower);
8638 		netdev_adjacent_sysfs_add(iter->dev, dev,
8639 					  &iter->dev->adj_list.lower);
8640 	}
8641 
8642 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8643 		if (!net_eq(net, dev_net(iter->dev)))
8644 			continue;
8645 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8646 					  &iter->dev->adj_list.upper);
8647 		netdev_adjacent_sysfs_add(iter->dev, dev,
8648 					  &iter->dev->adj_list.upper);
8649 	}
8650 }
8651 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8652 void *netdev_lower_dev_get_private(struct net_device *dev,
8653 				   struct net_device *lower_dev)
8654 {
8655 	struct netdev_adjacent *lower;
8656 
8657 	if (!lower_dev)
8658 		return NULL;
8659 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8660 	if (!lower)
8661 		return NULL;
8662 
8663 	return lower->private;
8664 }
8665 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8666 
8667 
8668 /**
8669  * netdev_lower_state_changed - Dispatch event about lower device state change
8670  * @lower_dev: device
8671  * @lower_state_info: state to dispatch
8672  *
8673  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8674  * The caller must hold the RTNL lock.
8675  */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8676 void netdev_lower_state_changed(struct net_device *lower_dev,
8677 				void *lower_state_info)
8678 {
8679 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8680 		.info.dev = lower_dev,
8681 	};
8682 
8683 	ASSERT_RTNL();
8684 	changelowerstate_info.lower_state_info = lower_state_info;
8685 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8686 				      &changelowerstate_info.info);
8687 }
8688 EXPORT_SYMBOL(netdev_lower_state_changed);
8689 
dev_change_rx_flags(struct net_device * dev,int flags)8690 static void dev_change_rx_flags(struct net_device *dev, int flags)
8691 {
8692 	const struct net_device_ops *ops = dev->netdev_ops;
8693 
8694 	if (ops->ndo_change_rx_flags)
8695 		ops->ndo_change_rx_flags(dev, flags);
8696 }
8697 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8698 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8699 {
8700 	unsigned int old_flags = dev->flags;
8701 	unsigned int promiscuity, flags;
8702 	kuid_t uid;
8703 	kgid_t gid;
8704 
8705 	ASSERT_RTNL();
8706 
8707 	promiscuity = dev->promiscuity + inc;
8708 	if (promiscuity == 0) {
8709 		/*
8710 		 * Avoid overflow.
8711 		 * If inc causes overflow, untouch promisc and return error.
8712 		 */
8713 		if (unlikely(inc > 0)) {
8714 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8715 			return -EOVERFLOW;
8716 		}
8717 		flags = old_flags & ~IFF_PROMISC;
8718 	} else {
8719 		flags = old_flags | IFF_PROMISC;
8720 	}
8721 	WRITE_ONCE(dev->promiscuity, promiscuity);
8722 	if (flags != old_flags) {
8723 		WRITE_ONCE(dev->flags, flags);
8724 		netdev_info(dev, "%s promiscuous mode\n",
8725 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8726 		if (audit_enabled) {
8727 			current_uid_gid(&uid, &gid);
8728 			audit_log(audit_context(), GFP_ATOMIC,
8729 				  AUDIT_ANOM_PROMISCUOUS,
8730 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8731 				  dev->name, (dev->flags & IFF_PROMISC),
8732 				  (old_flags & IFF_PROMISC),
8733 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8734 				  from_kuid(&init_user_ns, uid),
8735 				  from_kgid(&init_user_ns, gid),
8736 				  audit_get_sessionid(current));
8737 		}
8738 
8739 		dev_change_rx_flags(dev, IFF_PROMISC);
8740 	}
8741 	if (notify)
8742 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8743 	return 0;
8744 }
8745 
8746 /**
8747  *	dev_set_promiscuity	- update promiscuity count on a device
8748  *	@dev: device
8749  *	@inc: modifier
8750  *
8751  *	Add or remove promiscuity from a device. While the count in the device
8752  *	remains above zero the interface remains promiscuous. Once it hits zero
8753  *	the device reverts back to normal filtering operation. A negative inc
8754  *	value is used to drop promiscuity on the device.
8755  *	Return 0 if successful or a negative errno code on error.
8756  */
dev_set_promiscuity(struct net_device * dev,int inc)8757 int dev_set_promiscuity(struct net_device *dev, int inc)
8758 {
8759 	unsigned int old_flags = dev->flags;
8760 	int err;
8761 
8762 	err = __dev_set_promiscuity(dev, inc, true);
8763 	if (err < 0)
8764 		return err;
8765 	if (dev->flags != old_flags)
8766 		dev_set_rx_mode(dev);
8767 	return err;
8768 }
8769 EXPORT_SYMBOL(dev_set_promiscuity);
8770 
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8771 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8772 {
8773 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8774 	unsigned int allmulti, flags;
8775 
8776 	ASSERT_RTNL();
8777 
8778 	allmulti = dev->allmulti + inc;
8779 	if (allmulti == 0) {
8780 		/*
8781 		 * Avoid overflow.
8782 		 * If inc causes overflow, untouch allmulti and return error.
8783 		 */
8784 		if (unlikely(inc > 0)) {
8785 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8786 			return -EOVERFLOW;
8787 		}
8788 		flags = old_flags & ~IFF_ALLMULTI;
8789 	} else {
8790 		flags = old_flags | IFF_ALLMULTI;
8791 	}
8792 	WRITE_ONCE(dev->allmulti, allmulti);
8793 	if (flags != old_flags) {
8794 		WRITE_ONCE(dev->flags, flags);
8795 		netdev_info(dev, "%s allmulticast mode\n",
8796 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8797 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8798 		dev_set_rx_mode(dev);
8799 		if (notify)
8800 			__dev_notify_flags(dev, old_flags,
8801 					   dev->gflags ^ old_gflags, 0, NULL);
8802 	}
8803 	return 0;
8804 }
8805 
8806 /**
8807  *	dev_set_allmulti	- update allmulti count on a device
8808  *	@dev: device
8809  *	@inc: modifier
8810  *
8811  *	Add or remove reception of all multicast frames to a device. While the
8812  *	count in the device remains above zero the interface remains listening
8813  *	to all interfaces. Once it hits zero the device reverts back to normal
8814  *	filtering operation. A negative @inc value is used to drop the counter
8815  *	when releasing a resource needing all multicasts.
8816  *	Return 0 if successful or a negative errno code on error.
8817  */
8818 
dev_set_allmulti(struct net_device * dev,int inc)8819 int dev_set_allmulti(struct net_device *dev, int inc)
8820 {
8821 	return __dev_set_allmulti(dev, inc, true);
8822 }
8823 EXPORT_SYMBOL(dev_set_allmulti);
8824 
8825 /*
8826  *	Upload unicast and multicast address lists to device and
8827  *	configure RX filtering. When the device doesn't support unicast
8828  *	filtering it is put in promiscuous mode while unicast addresses
8829  *	are present.
8830  */
__dev_set_rx_mode(struct net_device * dev)8831 void __dev_set_rx_mode(struct net_device *dev)
8832 {
8833 	const struct net_device_ops *ops = dev->netdev_ops;
8834 
8835 	/* dev_open will call this function so the list will stay sane. */
8836 	if (!(dev->flags&IFF_UP))
8837 		return;
8838 
8839 	if (!netif_device_present(dev))
8840 		return;
8841 
8842 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8843 		/* Unicast addresses changes may only happen under the rtnl,
8844 		 * therefore calling __dev_set_promiscuity here is safe.
8845 		 */
8846 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8847 			__dev_set_promiscuity(dev, 1, false);
8848 			dev->uc_promisc = true;
8849 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8850 			__dev_set_promiscuity(dev, -1, false);
8851 			dev->uc_promisc = false;
8852 		}
8853 	}
8854 
8855 	if (ops->ndo_set_rx_mode)
8856 		ops->ndo_set_rx_mode(dev);
8857 }
8858 
dev_set_rx_mode(struct net_device * dev)8859 void dev_set_rx_mode(struct net_device *dev)
8860 {
8861 	netif_addr_lock_bh(dev);
8862 	__dev_set_rx_mode(dev);
8863 	netif_addr_unlock_bh(dev);
8864 }
8865 
8866 /**
8867  *	dev_get_flags - get flags reported to userspace
8868  *	@dev: device
8869  *
8870  *	Get the combination of flag bits exported through APIs to userspace.
8871  */
dev_get_flags(const struct net_device * dev)8872 unsigned int dev_get_flags(const struct net_device *dev)
8873 {
8874 	unsigned int flags;
8875 
8876 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8877 				IFF_ALLMULTI |
8878 				IFF_RUNNING |
8879 				IFF_LOWER_UP |
8880 				IFF_DORMANT)) |
8881 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
8882 				IFF_ALLMULTI));
8883 
8884 	if (netif_running(dev)) {
8885 		if (netif_oper_up(dev))
8886 			flags |= IFF_RUNNING;
8887 		if (netif_carrier_ok(dev))
8888 			flags |= IFF_LOWER_UP;
8889 		if (netif_dormant(dev))
8890 			flags |= IFF_DORMANT;
8891 	}
8892 
8893 	return flags;
8894 }
8895 EXPORT_SYMBOL(dev_get_flags);
8896 
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8897 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8898 		       struct netlink_ext_ack *extack)
8899 {
8900 	unsigned int old_flags = dev->flags;
8901 	int ret;
8902 
8903 	ASSERT_RTNL();
8904 
8905 	/*
8906 	 *	Set the flags on our device.
8907 	 */
8908 
8909 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8910 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8911 			       IFF_AUTOMEDIA)) |
8912 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8913 				    IFF_ALLMULTI));
8914 
8915 	/*
8916 	 *	Load in the correct multicast list now the flags have changed.
8917 	 */
8918 
8919 	if ((old_flags ^ flags) & IFF_MULTICAST)
8920 		dev_change_rx_flags(dev, IFF_MULTICAST);
8921 
8922 	dev_set_rx_mode(dev);
8923 
8924 	/*
8925 	 *	Have we downed the interface. We handle IFF_UP ourselves
8926 	 *	according to user attempts to set it, rather than blindly
8927 	 *	setting it.
8928 	 */
8929 
8930 	ret = 0;
8931 	if ((old_flags ^ flags) & IFF_UP) {
8932 		if (old_flags & IFF_UP)
8933 			__dev_close(dev);
8934 		else
8935 			ret = __dev_open(dev, extack);
8936 	}
8937 
8938 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8939 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8940 		unsigned int old_flags = dev->flags;
8941 
8942 		dev->gflags ^= IFF_PROMISC;
8943 
8944 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8945 			if (dev->flags != old_flags)
8946 				dev_set_rx_mode(dev);
8947 	}
8948 
8949 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8950 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8951 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8952 	 */
8953 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8954 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8955 
8956 		dev->gflags ^= IFF_ALLMULTI;
8957 		__dev_set_allmulti(dev, inc, false);
8958 	}
8959 
8960 	return ret;
8961 }
8962 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)8963 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8964 			unsigned int gchanges, u32 portid,
8965 			const struct nlmsghdr *nlh)
8966 {
8967 	unsigned int changes = dev->flags ^ old_flags;
8968 
8969 	if (gchanges)
8970 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8971 
8972 	if (changes & IFF_UP) {
8973 		if (dev->flags & IFF_UP)
8974 			call_netdevice_notifiers(NETDEV_UP, dev);
8975 		else
8976 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8977 	}
8978 
8979 	if (dev->flags & IFF_UP &&
8980 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8981 		struct netdev_notifier_change_info change_info = {
8982 			.info = {
8983 				.dev = dev,
8984 			},
8985 			.flags_changed = changes,
8986 		};
8987 
8988 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8989 	}
8990 }
8991 
8992 /**
8993  *	dev_change_flags - change device settings
8994  *	@dev: device
8995  *	@flags: device state flags
8996  *	@extack: netlink extended ack
8997  *
8998  *	Change settings on device based state flags. The flags are
8999  *	in the userspace exported format.
9000  */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9001 int dev_change_flags(struct net_device *dev, unsigned int flags,
9002 		     struct netlink_ext_ack *extack)
9003 {
9004 	int ret;
9005 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9006 
9007 	ret = __dev_change_flags(dev, flags, extack);
9008 	if (ret < 0)
9009 		return ret;
9010 
9011 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9012 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9013 	return ret;
9014 }
9015 EXPORT_SYMBOL(dev_change_flags);
9016 
__dev_set_mtu(struct net_device * dev,int new_mtu)9017 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9018 {
9019 	const struct net_device_ops *ops = dev->netdev_ops;
9020 
9021 	if (ops->ndo_change_mtu)
9022 		return ops->ndo_change_mtu(dev, new_mtu);
9023 
9024 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9025 	WRITE_ONCE(dev->mtu, new_mtu);
9026 	return 0;
9027 }
9028 EXPORT_SYMBOL(__dev_set_mtu);
9029 
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9030 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9031 		     struct netlink_ext_ack *extack)
9032 {
9033 	/* MTU must be positive, and in range */
9034 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9035 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9036 		return -EINVAL;
9037 	}
9038 
9039 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9040 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9041 		return -EINVAL;
9042 	}
9043 	return 0;
9044 }
9045 
9046 /**
9047  *	dev_set_mtu_ext - Change maximum transfer unit
9048  *	@dev: device
9049  *	@new_mtu: new transfer unit
9050  *	@extack: netlink extended ack
9051  *
9052  *	Change the maximum transfer size of the network device.
9053  */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9054 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
9055 		    struct netlink_ext_ack *extack)
9056 {
9057 	int err, orig_mtu;
9058 
9059 	if (new_mtu == dev->mtu)
9060 		return 0;
9061 
9062 	err = dev_validate_mtu(dev, new_mtu, extack);
9063 	if (err)
9064 		return err;
9065 
9066 	if (!netif_device_present(dev))
9067 		return -ENODEV;
9068 
9069 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9070 	err = notifier_to_errno(err);
9071 	if (err)
9072 		return err;
9073 
9074 	orig_mtu = dev->mtu;
9075 	err = __dev_set_mtu(dev, new_mtu);
9076 
9077 	if (!err) {
9078 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9079 						   orig_mtu);
9080 		err = notifier_to_errno(err);
9081 		if (err) {
9082 			/* setting mtu back and notifying everyone again,
9083 			 * so that they have a chance to revert changes.
9084 			 */
9085 			__dev_set_mtu(dev, orig_mtu);
9086 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9087 						     new_mtu);
9088 		}
9089 	}
9090 	return err;
9091 }
9092 
dev_set_mtu(struct net_device * dev,int new_mtu)9093 int dev_set_mtu(struct net_device *dev, int new_mtu)
9094 {
9095 	struct netlink_ext_ack extack;
9096 	int err;
9097 
9098 	memset(&extack, 0, sizeof(extack));
9099 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
9100 	if (err && extack._msg)
9101 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9102 	return err;
9103 }
9104 EXPORT_SYMBOL(dev_set_mtu);
9105 
9106 /**
9107  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
9108  *	@dev: device
9109  *	@new_len: new tx queue length
9110  */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9111 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9112 {
9113 	unsigned int orig_len = dev->tx_queue_len;
9114 	int res;
9115 
9116 	if (new_len != (unsigned int)new_len)
9117 		return -ERANGE;
9118 
9119 	if (new_len != orig_len) {
9120 		WRITE_ONCE(dev->tx_queue_len, new_len);
9121 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9122 		res = notifier_to_errno(res);
9123 		if (res)
9124 			goto err_rollback;
9125 		res = dev_qdisc_change_tx_queue_len(dev);
9126 		if (res)
9127 			goto err_rollback;
9128 	}
9129 
9130 	return 0;
9131 
9132 err_rollback:
9133 	netdev_err(dev, "refused to change device tx_queue_len\n");
9134 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9135 	return res;
9136 }
9137 
9138 /**
9139  *	dev_set_group - Change group this device belongs to
9140  *	@dev: device
9141  *	@new_group: group this device should belong to
9142  */
dev_set_group(struct net_device * dev,int new_group)9143 void dev_set_group(struct net_device *dev, int new_group)
9144 {
9145 	dev->group = new_group;
9146 }
9147 
9148 /**
9149  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9150  *	@dev: device
9151  *	@addr: new address
9152  *	@extack: netlink extended ack
9153  */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9154 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9155 			      struct netlink_ext_ack *extack)
9156 {
9157 	struct netdev_notifier_pre_changeaddr_info info = {
9158 		.info.dev = dev,
9159 		.info.extack = extack,
9160 		.dev_addr = addr,
9161 	};
9162 	int rc;
9163 
9164 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9165 	return notifier_to_errno(rc);
9166 }
9167 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9168 
9169 /**
9170  *	dev_set_mac_address - Change Media Access Control Address
9171  *	@dev: device
9172  *	@sa: new address
9173  *	@extack: netlink extended ack
9174  *
9175  *	Change the hardware (MAC) address of the device
9176  */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)9177 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9178 			struct netlink_ext_ack *extack)
9179 {
9180 	const struct net_device_ops *ops = dev->netdev_ops;
9181 	int err;
9182 
9183 	if (!ops->ndo_set_mac_address)
9184 		return -EOPNOTSUPP;
9185 	if (sa->sa_family != dev->type)
9186 		return -EINVAL;
9187 	if (!netif_device_present(dev))
9188 		return -ENODEV;
9189 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9190 	if (err)
9191 		return err;
9192 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9193 		err = ops->ndo_set_mac_address(dev, sa);
9194 		if (err)
9195 			return err;
9196 	}
9197 	dev->addr_assign_type = NET_ADDR_SET;
9198 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9199 	add_device_randomness(dev->dev_addr, dev->addr_len);
9200 	return 0;
9201 }
9202 EXPORT_SYMBOL(dev_set_mac_address);
9203 
9204 DECLARE_RWSEM(dev_addr_sem);
9205 
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)9206 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9207 			     struct netlink_ext_ack *extack)
9208 {
9209 	int ret;
9210 
9211 	down_write(&dev_addr_sem);
9212 	ret = dev_set_mac_address(dev, sa, extack);
9213 	up_write(&dev_addr_sem);
9214 	return ret;
9215 }
9216 EXPORT_SYMBOL(dev_set_mac_address_user);
9217 
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)9218 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9219 {
9220 	size_t size = sizeof(sa->sa_data_min);
9221 	struct net_device *dev;
9222 	int ret = 0;
9223 
9224 	down_read(&dev_addr_sem);
9225 	rcu_read_lock();
9226 
9227 	dev = dev_get_by_name_rcu(net, dev_name);
9228 	if (!dev) {
9229 		ret = -ENODEV;
9230 		goto unlock;
9231 	}
9232 	if (!dev->addr_len)
9233 		memset(sa->sa_data, 0, size);
9234 	else
9235 		memcpy(sa->sa_data, dev->dev_addr,
9236 		       min_t(size_t, size, dev->addr_len));
9237 	sa->sa_family = dev->type;
9238 
9239 unlock:
9240 	rcu_read_unlock();
9241 	up_read(&dev_addr_sem);
9242 	return ret;
9243 }
9244 EXPORT_SYMBOL(dev_get_mac_address);
9245 
9246 /**
9247  *	dev_change_carrier - Change device carrier
9248  *	@dev: device
9249  *	@new_carrier: new value
9250  *
9251  *	Change device carrier
9252  */
dev_change_carrier(struct net_device * dev,bool new_carrier)9253 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9254 {
9255 	const struct net_device_ops *ops = dev->netdev_ops;
9256 
9257 	if (!ops->ndo_change_carrier)
9258 		return -EOPNOTSUPP;
9259 	if (!netif_device_present(dev))
9260 		return -ENODEV;
9261 	return ops->ndo_change_carrier(dev, new_carrier);
9262 }
9263 
9264 /**
9265  *	dev_get_phys_port_id - Get device physical port ID
9266  *	@dev: device
9267  *	@ppid: port ID
9268  *
9269  *	Get device physical port ID
9270  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)9271 int dev_get_phys_port_id(struct net_device *dev,
9272 			 struct netdev_phys_item_id *ppid)
9273 {
9274 	const struct net_device_ops *ops = dev->netdev_ops;
9275 
9276 	if (!ops->ndo_get_phys_port_id)
9277 		return -EOPNOTSUPP;
9278 	return ops->ndo_get_phys_port_id(dev, ppid);
9279 }
9280 
9281 /**
9282  *	dev_get_phys_port_name - Get device physical port name
9283  *	@dev: device
9284  *	@name: port name
9285  *	@len: limit of bytes to copy to name
9286  *
9287  *	Get device physical port name
9288  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)9289 int dev_get_phys_port_name(struct net_device *dev,
9290 			   char *name, size_t len)
9291 {
9292 	const struct net_device_ops *ops = dev->netdev_ops;
9293 	int err;
9294 
9295 	if (ops->ndo_get_phys_port_name) {
9296 		err = ops->ndo_get_phys_port_name(dev, name, len);
9297 		if (err != -EOPNOTSUPP)
9298 			return err;
9299 	}
9300 	return devlink_compat_phys_port_name_get(dev, name, len);
9301 }
9302 
9303 /**
9304  *	dev_get_port_parent_id - Get the device's port parent identifier
9305  *	@dev: network device
9306  *	@ppid: pointer to a storage for the port's parent identifier
9307  *	@recurse: allow/disallow recursion to lower devices
9308  *
9309  *	Get the devices's port parent identifier
9310  */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9311 int dev_get_port_parent_id(struct net_device *dev,
9312 			   struct netdev_phys_item_id *ppid,
9313 			   bool recurse)
9314 {
9315 	const struct net_device_ops *ops = dev->netdev_ops;
9316 	struct netdev_phys_item_id first = { };
9317 	struct net_device *lower_dev;
9318 	struct list_head *iter;
9319 	int err;
9320 
9321 	if (ops->ndo_get_port_parent_id) {
9322 		err = ops->ndo_get_port_parent_id(dev, ppid);
9323 		if (err != -EOPNOTSUPP)
9324 			return err;
9325 	}
9326 
9327 	err = devlink_compat_switch_id_get(dev, ppid);
9328 	if (!recurse || err != -EOPNOTSUPP)
9329 		return err;
9330 
9331 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9332 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9333 		if (err)
9334 			break;
9335 		if (!first.id_len)
9336 			first = *ppid;
9337 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9338 			return -EOPNOTSUPP;
9339 	}
9340 
9341 	return err;
9342 }
9343 EXPORT_SYMBOL(dev_get_port_parent_id);
9344 
9345 /**
9346  *	netdev_port_same_parent_id - Indicate if two network devices have
9347  *	the same port parent identifier
9348  *	@a: first network device
9349  *	@b: second network device
9350  */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9351 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9352 {
9353 	struct netdev_phys_item_id a_id = { };
9354 	struct netdev_phys_item_id b_id = { };
9355 
9356 	if (dev_get_port_parent_id(a, &a_id, true) ||
9357 	    dev_get_port_parent_id(b, &b_id, true))
9358 		return false;
9359 
9360 	return netdev_phys_item_id_same(&a_id, &b_id);
9361 }
9362 EXPORT_SYMBOL(netdev_port_same_parent_id);
9363 
9364 /**
9365  *	dev_change_proto_down - set carrier according to proto_down.
9366  *
9367  *	@dev: device
9368  *	@proto_down: new value
9369  */
dev_change_proto_down(struct net_device * dev,bool proto_down)9370 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9371 {
9372 	if (!dev->change_proto_down)
9373 		return -EOPNOTSUPP;
9374 	if (!netif_device_present(dev))
9375 		return -ENODEV;
9376 	if (proto_down)
9377 		netif_carrier_off(dev);
9378 	else
9379 		netif_carrier_on(dev);
9380 	WRITE_ONCE(dev->proto_down, proto_down);
9381 	return 0;
9382 }
9383 
9384 /**
9385  *	dev_change_proto_down_reason - proto down reason
9386  *
9387  *	@dev: device
9388  *	@mask: proto down mask
9389  *	@value: proto down value
9390  */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)9391 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9392 				  u32 value)
9393 {
9394 	u32 proto_down_reason;
9395 	int b;
9396 
9397 	if (!mask) {
9398 		proto_down_reason = value;
9399 	} else {
9400 		proto_down_reason = dev->proto_down_reason;
9401 		for_each_set_bit(b, &mask, 32) {
9402 			if (value & (1 << b))
9403 				proto_down_reason |= BIT(b);
9404 			else
9405 				proto_down_reason &= ~BIT(b);
9406 		}
9407 	}
9408 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9409 }
9410 
9411 struct bpf_xdp_link {
9412 	struct bpf_link link;
9413 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9414 	int flags;
9415 };
9416 
dev_xdp_mode(struct net_device * dev,u32 flags)9417 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9418 {
9419 	if (flags & XDP_FLAGS_HW_MODE)
9420 		return XDP_MODE_HW;
9421 	if (flags & XDP_FLAGS_DRV_MODE)
9422 		return XDP_MODE_DRV;
9423 	if (flags & XDP_FLAGS_SKB_MODE)
9424 		return XDP_MODE_SKB;
9425 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9426 }
9427 
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9428 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9429 {
9430 	switch (mode) {
9431 	case XDP_MODE_SKB:
9432 		return generic_xdp_install;
9433 	case XDP_MODE_DRV:
9434 	case XDP_MODE_HW:
9435 		return dev->netdev_ops->ndo_bpf;
9436 	default:
9437 		return NULL;
9438 	}
9439 }
9440 
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9441 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9442 					 enum bpf_xdp_mode mode)
9443 {
9444 	return dev->xdp_state[mode].link;
9445 }
9446 
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9447 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9448 				     enum bpf_xdp_mode mode)
9449 {
9450 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9451 
9452 	if (link)
9453 		return link->link.prog;
9454 	return dev->xdp_state[mode].prog;
9455 }
9456 
dev_xdp_prog_count(struct net_device * dev)9457 u8 dev_xdp_prog_count(struct net_device *dev)
9458 {
9459 	u8 count = 0;
9460 	int i;
9461 
9462 	for (i = 0; i < __MAX_XDP_MODE; i++)
9463 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9464 			count++;
9465 	return count;
9466 }
9467 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9468 
dev_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)9469 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9470 {
9471 	if (!dev->netdev_ops->ndo_bpf)
9472 		return -EOPNOTSUPP;
9473 
9474 	if (dev_get_min_mp_channel_count(dev)) {
9475 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9476 		return -EBUSY;
9477 	}
9478 
9479 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9480 }
9481 EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9482 
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9483 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9484 {
9485 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9486 
9487 	return prog ? prog->aux->id : 0;
9488 }
9489 
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9490 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9491 			     struct bpf_xdp_link *link)
9492 {
9493 	dev->xdp_state[mode].link = link;
9494 	dev->xdp_state[mode].prog = NULL;
9495 }
9496 
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9497 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9498 			     struct bpf_prog *prog)
9499 {
9500 	dev->xdp_state[mode].link = NULL;
9501 	dev->xdp_state[mode].prog = prog;
9502 }
9503 
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9504 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9505 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9506 			   u32 flags, struct bpf_prog *prog)
9507 {
9508 	struct netdev_bpf xdp;
9509 	int err;
9510 
9511 	if (dev_get_min_mp_channel_count(dev)) {
9512 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9513 		return -EBUSY;
9514 	}
9515 
9516 	memset(&xdp, 0, sizeof(xdp));
9517 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9518 	xdp.extack = extack;
9519 	xdp.flags = flags;
9520 	xdp.prog = prog;
9521 
9522 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9523 	 * "moved" into driver), so they don't increment it on their own, but
9524 	 * they do decrement refcnt when program is detached or replaced.
9525 	 * Given net_device also owns link/prog, we need to bump refcnt here
9526 	 * to prevent drivers from underflowing it.
9527 	 */
9528 	if (prog)
9529 		bpf_prog_inc(prog);
9530 	err = bpf_op(dev, &xdp);
9531 	if (err) {
9532 		if (prog)
9533 			bpf_prog_put(prog);
9534 		return err;
9535 	}
9536 
9537 	if (mode != XDP_MODE_HW)
9538 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9539 
9540 	return 0;
9541 }
9542 
dev_xdp_uninstall(struct net_device * dev)9543 static void dev_xdp_uninstall(struct net_device *dev)
9544 {
9545 	struct bpf_xdp_link *link;
9546 	struct bpf_prog *prog;
9547 	enum bpf_xdp_mode mode;
9548 	bpf_op_t bpf_op;
9549 
9550 	ASSERT_RTNL();
9551 
9552 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9553 		prog = dev_xdp_prog(dev, mode);
9554 		if (!prog)
9555 			continue;
9556 
9557 		bpf_op = dev_xdp_bpf_op(dev, mode);
9558 		if (!bpf_op)
9559 			continue;
9560 
9561 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9562 
9563 		/* auto-detach link from net device */
9564 		link = dev_xdp_link(dev, mode);
9565 		if (link)
9566 			link->dev = NULL;
9567 		else
9568 			bpf_prog_put(prog);
9569 
9570 		dev_xdp_set_link(dev, mode, NULL);
9571 	}
9572 }
9573 
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9574 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9575 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9576 			  struct bpf_prog *old_prog, u32 flags)
9577 {
9578 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9579 	struct bpf_prog *cur_prog;
9580 	struct net_device *upper;
9581 	struct list_head *iter;
9582 	enum bpf_xdp_mode mode;
9583 	bpf_op_t bpf_op;
9584 	int err;
9585 
9586 	ASSERT_RTNL();
9587 
9588 	/* either link or prog attachment, never both */
9589 	if (link && (new_prog || old_prog))
9590 		return -EINVAL;
9591 	/* link supports only XDP mode flags */
9592 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9593 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9594 		return -EINVAL;
9595 	}
9596 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9597 	if (num_modes > 1) {
9598 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9599 		return -EINVAL;
9600 	}
9601 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9602 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9603 		NL_SET_ERR_MSG(extack,
9604 			       "More than one program loaded, unset mode is ambiguous");
9605 		return -EINVAL;
9606 	}
9607 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9608 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9609 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9610 		return -EINVAL;
9611 	}
9612 
9613 	mode = dev_xdp_mode(dev, flags);
9614 	/* can't replace attached link */
9615 	if (dev_xdp_link(dev, mode)) {
9616 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9617 		return -EBUSY;
9618 	}
9619 
9620 	/* don't allow if an upper device already has a program */
9621 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9622 		if (dev_xdp_prog_count(upper) > 0) {
9623 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9624 			return -EEXIST;
9625 		}
9626 	}
9627 
9628 	cur_prog = dev_xdp_prog(dev, mode);
9629 	/* can't replace attached prog with link */
9630 	if (link && cur_prog) {
9631 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9632 		return -EBUSY;
9633 	}
9634 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9635 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9636 		return -EEXIST;
9637 	}
9638 
9639 	/* put effective new program into new_prog */
9640 	if (link)
9641 		new_prog = link->link.prog;
9642 
9643 	if (new_prog) {
9644 		bool offload = mode == XDP_MODE_HW;
9645 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9646 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9647 
9648 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9649 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9650 			return -EBUSY;
9651 		}
9652 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9653 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9654 			return -EEXIST;
9655 		}
9656 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9657 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9658 			return -EINVAL;
9659 		}
9660 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9661 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9662 			return -EINVAL;
9663 		}
9664 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
9665 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
9666 			return -EINVAL;
9667 		}
9668 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9669 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9670 			return -EINVAL;
9671 		}
9672 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9673 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9674 			return -EINVAL;
9675 		}
9676 	}
9677 
9678 	/* don't call drivers if the effective program didn't change */
9679 	if (new_prog != cur_prog) {
9680 		bpf_op = dev_xdp_bpf_op(dev, mode);
9681 		if (!bpf_op) {
9682 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9683 			return -EOPNOTSUPP;
9684 		}
9685 
9686 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9687 		if (err)
9688 			return err;
9689 	}
9690 
9691 	if (link)
9692 		dev_xdp_set_link(dev, mode, link);
9693 	else
9694 		dev_xdp_set_prog(dev, mode, new_prog);
9695 	if (cur_prog)
9696 		bpf_prog_put(cur_prog);
9697 
9698 	return 0;
9699 }
9700 
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9701 static int dev_xdp_attach_link(struct net_device *dev,
9702 			       struct netlink_ext_ack *extack,
9703 			       struct bpf_xdp_link *link)
9704 {
9705 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9706 }
9707 
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9708 static int dev_xdp_detach_link(struct net_device *dev,
9709 			       struct netlink_ext_ack *extack,
9710 			       struct bpf_xdp_link *link)
9711 {
9712 	enum bpf_xdp_mode mode;
9713 	bpf_op_t bpf_op;
9714 
9715 	ASSERT_RTNL();
9716 
9717 	mode = dev_xdp_mode(dev, link->flags);
9718 	if (dev_xdp_link(dev, mode) != link)
9719 		return -EINVAL;
9720 
9721 	bpf_op = dev_xdp_bpf_op(dev, mode);
9722 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9723 	dev_xdp_set_link(dev, mode, NULL);
9724 	return 0;
9725 }
9726 
bpf_xdp_link_release(struct bpf_link * link)9727 static void bpf_xdp_link_release(struct bpf_link *link)
9728 {
9729 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9730 
9731 	rtnl_lock();
9732 
9733 	/* if racing with net_device's tear down, xdp_link->dev might be
9734 	 * already NULL, in which case link was already auto-detached
9735 	 */
9736 	if (xdp_link->dev) {
9737 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9738 		xdp_link->dev = NULL;
9739 	}
9740 
9741 	rtnl_unlock();
9742 }
9743 
bpf_xdp_link_detach(struct bpf_link * link)9744 static int bpf_xdp_link_detach(struct bpf_link *link)
9745 {
9746 	bpf_xdp_link_release(link);
9747 	return 0;
9748 }
9749 
bpf_xdp_link_dealloc(struct bpf_link * link)9750 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9751 {
9752 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9753 
9754 	kfree(xdp_link);
9755 }
9756 
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9757 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9758 				     struct seq_file *seq)
9759 {
9760 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9761 	u32 ifindex = 0;
9762 
9763 	rtnl_lock();
9764 	if (xdp_link->dev)
9765 		ifindex = xdp_link->dev->ifindex;
9766 	rtnl_unlock();
9767 
9768 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9769 }
9770 
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9771 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9772 				       struct bpf_link_info *info)
9773 {
9774 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9775 	u32 ifindex = 0;
9776 
9777 	rtnl_lock();
9778 	if (xdp_link->dev)
9779 		ifindex = xdp_link->dev->ifindex;
9780 	rtnl_unlock();
9781 
9782 	info->xdp.ifindex = ifindex;
9783 	return 0;
9784 }
9785 
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9786 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9787 			       struct bpf_prog *old_prog)
9788 {
9789 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9790 	enum bpf_xdp_mode mode;
9791 	bpf_op_t bpf_op;
9792 	int err = 0;
9793 
9794 	rtnl_lock();
9795 
9796 	/* link might have been auto-released already, so fail */
9797 	if (!xdp_link->dev) {
9798 		err = -ENOLINK;
9799 		goto out_unlock;
9800 	}
9801 
9802 	if (old_prog && link->prog != old_prog) {
9803 		err = -EPERM;
9804 		goto out_unlock;
9805 	}
9806 	old_prog = link->prog;
9807 	if (old_prog->type != new_prog->type ||
9808 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9809 		err = -EINVAL;
9810 		goto out_unlock;
9811 	}
9812 
9813 	if (old_prog == new_prog) {
9814 		/* no-op, don't disturb drivers */
9815 		bpf_prog_put(new_prog);
9816 		goto out_unlock;
9817 	}
9818 
9819 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9820 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9821 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9822 			      xdp_link->flags, new_prog);
9823 	if (err)
9824 		goto out_unlock;
9825 
9826 	old_prog = xchg(&link->prog, new_prog);
9827 	bpf_prog_put(old_prog);
9828 
9829 out_unlock:
9830 	rtnl_unlock();
9831 	return err;
9832 }
9833 
9834 static const struct bpf_link_ops bpf_xdp_link_lops = {
9835 	.release = bpf_xdp_link_release,
9836 	.dealloc = bpf_xdp_link_dealloc,
9837 	.detach = bpf_xdp_link_detach,
9838 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9839 	.fill_link_info = bpf_xdp_link_fill_link_info,
9840 	.update_prog = bpf_xdp_link_update,
9841 };
9842 
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9843 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9844 {
9845 	struct net *net = current->nsproxy->net_ns;
9846 	struct bpf_link_primer link_primer;
9847 	struct netlink_ext_ack extack = {};
9848 	struct bpf_xdp_link *link;
9849 	struct net_device *dev;
9850 	int err, fd;
9851 
9852 	rtnl_lock();
9853 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9854 	if (!dev) {
9855 		rtnl_unlock();
9856 		return -EINVAL;
9857 	}
9858 
9859 	link = kzalloc(sizeof(*link), GFP_USER);
9860 	if (!link) {
9861 		err = -ENOMEM;
9862 		goto unlock;
9863 	}
9864 
9865 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9866 	link->dev = dev;
9867 	link->flags = attr->link_create.flags;
9868 
9869 	err = bpf_link_prime(&link->link, &link_primer);
9870 	if (err) {
9871 		kfree(link);
9872 		goto unlock;
9873 	}
9874 
9875 	err = dev_xdp_attach_link(dev, &extack, link);
9876 	rtnl_unlock();
9877 
9878 	if (err) {
9879 		link->dev = NULL;
9880 		bpf_link_cleanup(&link_primer);
9881 		trace_bpf_xdp_link_attach_failed(extack._msg);
9882 		goto out_put_dev;
9883 	}
9884 
9885 	fd = bpf_link_settle(&link_primer);
9886 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9887 	dev_put(dev);
9888 	return fd;
9889 
9890 unlock:
9891 	rtnl_unlock();
9892 
9893 out_put_dev:
9894 	dev_put(dev);
9895 	return err;
9896 }
9897 
9898 /**
9899  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9900  *	@dev: device
9901  *	@extack: netlink extended ack
9902  *	@fd: new program fd or negative value to clear
9903  *	@expected_fd: old program fd that userspace expects to replace or clear
9904  *	@flags: xdp-related flags
9905  *
9906  *	Set or clear a bpf program for a device
9907  */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9908 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9909 		      int fd, int expected_fd, u32 flags)
9910 {
9911 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9912 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9913 	int err;
9914 
9915 	ASSERT_RTNL();
9916 
9917 	if (fd >= 0) {
9918 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9919 						 mode != XDP_MODE_SKB);
9920 		if (IS_ERR(new_prog))
9921 			return PTR_ERR(new_prog);
9922 	}
9923 
9924 	if (expected_fd >= 0) {
9925 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9926 						 mode != XDP_MODE_SKB);
9927 		if (IS_ERR(old_prog)) {
9928 			err = PTR_ERR(old_prog);
9929 			old_prog = NULL;
9930 			goto err_out;
9931 		}
9932 	}
9933 
9934 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9935 
9936 err_out:
9937 	if (err && new_prog)
9938 		bpf_prog_put(new_prog);
9939 	if (old_prog)
9940 		bpf_prog_put(old_prog);
9941 	return err;
9942 }
9943 
dev_get_min_mp_channel_count(const struct net_device * dev)9944 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
9945 {
9946 	int i;
9947 
9948 	ASSERT_RTNL();
9949 
9950 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
9951 		if (dev->_rx[i].mp_params.mp_priv)
9952 			/* The channel count is the idx plus 1. */
9953 			return i + 1;
9954 
9955 	return 0;
9956 }
9957 
9958 /**
9959  * dev_index_reserve() - allocate an ifindex in a namespace
9960  * @net: the applicable net namespace
9961  * @ifindex: requested ifindex, pass %0 to get one allocated
9962  *
9963  * Allocate a ifindex for a new device. Caller must either use the ifindex
9964  * to store the device (via list_netdevice()) or call dev_index_release()
9965  * to give the index up.
9966  *
9967  * Return: a suitable unique value for a new device interface number or -errno.
9968  */
dev_index_reserve(struct net * net,u32 ifindex)9969 static int dev_index_reserve(struct net *net, u32 ifindex)
9970 {
9971 	int err;
9972 
9973 	if (ifindex > INT_MAX) {
9974 		DEBUG_NET_WARN_ON_ONCE(1);
9975 		return -EINVAL;
9976 	}
9977 
9978 	if (!ifindex)
9979 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9980 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9981 	else
9982 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9983 	if (err < 0)
9984 		return err;
9985 
9986 	return ifindex;
9987 }
9988 
dev_index_release(struct net * net,int ifindex)9989 static void dev_index_release(struct net *net, int ifindex)
9990 {
9991 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9992 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9993 }
9994 
9995 /* Delayed registration/unregisteration */
9996 LIST_HEAD(net_todo_list);
9997 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9998 atomic_t dev_unreg_count = ATOMIC_INIT(0);
9999 
net_set_todo(struct net_device * dev)10000 static void net_set_todo(struct net_device *dev)
10001 {
10002 	list_add_tail(&dev->todo_list, &net_todo_list);
10003 }
10004 
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)10005 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10006 	struct net_device *upper, netdev_features_t features)
10007 {
10008 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10009 	netdev_features_t feature;
10010 	int feature_bit;
10011 
10012 	for_each_netdev_feature(upper_disables, feature_bit) {
10013 		feature = __NETIF_F_BIT(feature_bit);
10014 		if (!(upper->wanted_features & feature)
10015 		    && (features & feature)) {
10016 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10017 				   &feature, upper->name);
10018 			features &= ~feature;
10019 		}
10020 	}
10021 
10022 	return features;
10023 }
10024 
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)10025 static void netdev_sync_lower_features(struct net_device *upper,
10026 	struct net_device *lower, netdev_features_t features)
10027 {
10028 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10029 	netdev_features_t feature;
10030 	int feature_bit;
10031 
10032 	for_each_netdev_feature(upper_disables, feature_bit) {
10033 		feature = __NETIF_F_BIT(feature_bit);
10034 		if (!(features & feature) && (lower->features & feature)) {
10035 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10036 				   &feature, lower->name);
10037 			lower->wanted_features &= ~feature;
10038 			__netdev_update_features(lower);
10039 
10040 			if (unlikely(lower->features & feature))
10041 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10042 					    &feature, lower->name);
10043 			else
10044 				netdev_features_change(lower);
10045 		}
10046 	}
10047 }
10048 
netdev_has_ip_or_hw_csum(netdev_features_t features)10049 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10050 {
10051 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10052 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10053 	bool hw_csum = features & NETIF_F_HW_CSUM;
10054 
10055 	return ip_csum || hw_csum;
10056 }
10057 
netdev_fix_features(struct net_device * dev,netdev_features_t features)10058 static netdev_features_t netdev_fix_features(struct net_device *dev,
10059 	netdev_features_t features)
10060 {
10061 	/* Fix illegal checksum combinations */
10062 	if ((features & NETIF_F_HW_CSUM) &&
10063 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10064 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10065 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10066 	}
10067 
10068 	/* TSO requires that SG is present as well. */
10069 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10070 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10071 		features &= ~NETIF_F_ALL_TSO;
10072 	}
10073 
10074 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10075 					!(features & NETIF_F_IP_CSUM)) {
10076 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10077 		features &= ~NETIF_F_TSO;
10078 		features &= ~NETIF_F_TSO_ECN;
10079 	}
10080 
10081 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10082 					 !(features & NETIF_F_IPV6_CSUM)) {
10083 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10084 		features &= ~NETIF_F_TSO6;
10085 	}
10086 
10087 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10088 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10089 		features &= ~NETIF_F_TSO_MANGLEID;
10090 
10091 	/* TSO ECN requires that TSO is present as well. */
10092 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10093 		features &= ~NETIF_F_TSO_ECN;
10094 
10095 	/* Software GSO depends on SG. */
10096 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10097 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10098 		features &= ~NETIF_F_GSO;
10099 	}
10100 
10101 	/* GSO partial features require GSO partial be set */
10102 	if ((features & dev->gso_partial_features) &&
10103 	    !(features & NETIF_F_GSO_PARTIAL)) {
10104 		netdev_dbg(dev,
10105 			   "Dropping partially supported GSO features since no GSO partial.\n");
10106 		features &= ~dev->gso_partial_features;
10107 	}
10108 
10109 	if (!(features & NETIF_F_RXCSUM)) {
10110 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10111 		 * successfully merged by hardware must also have the
10112 		 * checksum verified by hardware.  If the user does not
10113 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10114 		 */
10115 		if (features & NETIF_F_GRO_HW) {
10116 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10117 			features &= ~NETIF_F_GRO_HW;
10118 		}
10119 	}
10120 
10121 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10122 	if (features & NETIF_F_RXFCS) {
10123 		if (features & NETIF_F_LRO) {
10124 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10125 			features &= ~NETIF_F_LRO;
10126 		}
10127 
10128 		if (features & NETIF_F_GRO_HW) {
10129 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10130 			features &= ~NETIF_F_GRO_HW;
10131 		}
10132 	}
10133 
10134 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10135 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10136 		features &= ~NETIF_F_LRO;
10137 	}
10138 
10139 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10140 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10141 		features &= ~NETIF_F_HW_TLS_TX;
10142 	}
10143 
10144 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10145 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10146 		features &= ~NETIF_F_HW_TLS_RX;
10147 	}
10148 
10149 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10150 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10151 		features &= ~NETIF_F_GSO_UDP_L4;
10152 	}
10153 
10154 	return features;
10155 }
10156 
__netdev_update_features(struct net_device * dev)10157 int __netdev_update_features(struct net_device *dev)
10158 {
10159 	struct net_device *upper, *lower;
10160 	netdev_features_t features;
10161 	struct list_head *iter;
10162 	int err = -1;
10163 
10164 	ASSERT_RTNL();
10165 
10166 	features = netdev_get_wanted_features(dev);
10167 
10168 	if (dev->netdev_ops->ndo_fix_features)
10169 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10170 
10171 	/* driver might be less strict about feature dependencies */
10172 	features = netdev_fix_features(dev, features);
10173 
10174 	/* some features can't be enabled if they're off on an upper device */
10175 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10176 		features = netdev_sync_upper_features(dev, upper, features);
10177 
10178 	if (dev->features == features)
10179 		goto sync_lower;
10180 
10181 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10182 		&dev->features, &features);
10183 
10184 	if (dev->netdev_ops->ndo_set_features)
10185 		err = dev->netdev_ops->ndo_set_features(dev, features);
10186 	else
10187 		err = 0;
10188 
10189 	if (unlikely(err < 0)) {
10190 		netdev_err(dev,
10191 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10192 			err, &features, &dev->features);
10193 		/* return non-0 since some features might have changed and
10194 		 * it's better to fire a spurious notification than miss it
10195 		 */
10196 		return -1;
10197 	}
10198 
10199 sync_lower:
10200 	/* some features must be disabled on lower devices when disabled
10201 	 * on an upper device (think: bonding master or bridge)
10202 	 */
10203 	netdev_for_each_lower_dev(dev, lower, iter)
10204 		netdev_sync_lower_features(dev, lower, features);
10205 
10206 	if (!err) {
10207 		netdev_features_t diff = features ^ dev->features;
10208 
10209 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10210 			/* udp_tunnel_{get,drop}_rx_info both need
10211 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10212 			 * device, or they won't do anything.
10213 			 * Thus we need to update dev->features
10214 			 * *before* calling udp_tunnel_get_rx_info,
10215 			 * but *after* calling udp_tunnel_drop_rx_info.
10216 			 */
10217 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10218 				dev->features = features;
10219 				udp_tunnel_get_rx_info(dev);
10220 			} else {
10221 				udp_tunnel_drop_rx_info(dev);
10222 			}
10223 		}
10224 
10225 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10226 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10227 				dev->features = features;
10228 				err |= vlan_get_rx_ctag_filter_info(dev);
10229 			} else {
10230 				vlan_drop_rx_ctag_filter_info(dev);
10231 			}
10232 		}
10233 
10234 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10235 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10236 				dev->features = features;
10237 				err |= vlan_get_rx_stag_filter_info(dev);
10238 			} else {
10239 				vlan_drop_rx_stag_filter_info(dev);
10240 			}
10241 		}
10242 
10243 		dev->features = features;
10244 	}
10245 
10246 	return err < 0 ? 0 : 1;
10247 }
10248 
10249 /**
10250  *	netdev_update_features - recalculate device features
10251  *	@dev: the device to check
10252  *
10253  *	Recalculate dev->features set and send notifications if it
10254  *	has changed. Should be called after driver or hardware dependent
10255  *	conditions might have changed that influence the features.
10256  */
netdev_update_features(struct net_device * dev)10257 void netdev_update_features(struct net_device *dev)
10258 {
10259 	if (__netdev_update_features(dev))
10260 		netdev_features_change(dev);
10261 }
10262 EXPORT_SYMBOL(netdev_update_features);
10263 
10264 /**
10265  *	netdev_change_features - recalculate device features
10266  *	@dev: the device to check
10267  *
10268  *	Recalculate dev->features set and send notifications even
10269  *	if they have not changed. Should be called instead of
10270  *	netdev_update_features() if also dev->vlan_features might
10271  *	have changed to allow the changes to be propagated to stacked
10272  *	VLAN devices.
10273  */
netdev_change_features(struct net_device * dev)10274 void netdev_change_features(struct net_device *dev)
10275 {
10276 	__netdev_update_features(dev);
10277 	netdev_features_change(dev);
10278 }
10279 EXPORT_SYMBOL(netdev_change_features);
10280 
10281 /**
10282  *	netif_stacked_transfer_operstate -	transfer operstate
10283  *	@rootdev: the root or lower level device to transfer state from
10284  *	@dev: the device to transfer operstate to
10285  *
10286  *	Transfer operational state from root to device. This is normally
10287  *	called when a stacking relationship exists between the root
10288  *	device and the device(a leaf device).
10289  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)10290 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10291 					struct net_device *dev)
10292 {
10293 	if (rootdev->operstate == IF_OPER_DORMANT)
10294 		netif_dormant_on(dev);
10295 	else
10296 		netif_dormant_off(dev);
10297 
10298 	if (rootdev->operstate == IF_OPER_TESTING)
10299 		netif_testing_on(dev);
10300 	else
10301 		netif_testing_off(dev);
10302 
10303 	if (netif_carrier_ok(rootdev))
10304 		netif_carrier_on(dev);
10305 	else
10306 		netif_carrier_off(dev);
10307 }
10308 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10309 
netif_alloc_rx_queues(struct net_device * dev)10310 static int netif_alloc_rx_queues(struct net_device *dev)
10311 {
10312 	unsigned int i, count = dev->num_rx_queues;
10313 	struct netdev_rx_queue *rx;
10314 	size_t sz = count * sizeof(*rx);
10315 	int err = 0;
10316 
10317 	BUG_ON(count < 1);
10318 
10319 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10320 	if (!rx)
10321 		return -ENOMEM;
10322 
10323 	dev->_rx = rx;
10324 
10325 	for (i = 0; i < count; i++) {
10326 		rx[i].dev = dev;
10327 
10328 		/* XDP RX-queue setup */
10329 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10330 		if (err < 0)
10331 			goto err_rxq_info;
10332 	}
10333 	return 0;
10334 
10335 err_rxq_info:
10336 	/* Rollback successful reg's and free other resources */
10337 	while (i--)
10338 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10339 	kvfree(dev->_rx);
10340 	dev->_rx = NULL;
10341 	return err;
10342 }
10343 
netif_free_rx_queues(struct net_device * dev)10344 static void netif_free_rx_queues(struct net_device *dev)
10345 {
10346 	unsigned int i, count = dev->num_rx_queues;
10347 
10348 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10349 	if (!dev->_rx)
10350 		return;
10351 
10352 	for (i = 0; i < count; i++)
10353 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10354 
10355 	kvfree(dev->_rx);
10356 }
10357 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10358 static void netdev_init_one_queue(struct net_device *dev,
10359 				  struct netdev_queue *queue, void *_unused)
10360 {
10361 	/* Initialize queue lock */
10362 	spin_lock_init(&queue->_xmit_lock);
10363 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10364 	queue->xmit_lock_owner = -1;
10365 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10366 	queue->dev = dev;
10367 #ifdef CONFIG_BQL
10368 	dql_init(&queue->dql, HZ);
10369 #endif
10370 }
10371 
netif_free_tx_queues(struct net_device * dev)10372 static void netif_free_tx_queues(struct net_device *dev)
10373 {
10374 	kvfree(dev->_tx);
10375 }
10376 
netif_alloc_netdev_queues(struct net_device * dev)10377 static int netif_alloc_netdev_queues(struct net_device *dev)
10378 {
10379 	unsigned int count = dev->num_tx_queues;
10380 	struct netdev_queue *tx;
10381 	size_t sz = count * sizeof(*tx);
10382 
10383 	if (count < 1 || count > 0xffff)
10384 		return -EINVAL;
10385 
10386 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10387 	if (!tx)
10388 		return -ENOMEM;
10389 
10390 	dev->_tx = tx;
10391 
10392 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10393 	spin_lock_init(&dev->tx_global_lock);
10394 
10395 	return 0;
10396 }
10397 
netif_tx_stop_all_queues(struct net_device * dev)10398 void netif_tx_stop_all_queues(struct net_device *dev)
10399 {
10400 	unsigned int i;
10401 
10402 	for (i = 0; i < dev->num_tx_queues; i++) {
10403 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10404 
10405 		netif_tx_stop_queue(txq);
10406 	}
10407 }
10408 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10409 
netdev_do_alloc_pcpu_stats(struct net_device * dev)10410 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10411 {
10412 	void __percpu *v;
10413 
10414 	/* Drivers implementing ndo_get_peer_dev must support tstat
10415 	 * accounting, so that skb_do_redirect() can bump the dev's
10416 	 * RX stats upon network namespace switch.
10417 	 */
10418 	if (dev->netdev_ops->ndo_get_peer_dev &&
10419 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10420 		return -EOPNOTSUPP;
10421 
10422 	switch (dev->pcpu_stat_type) {
10423 	case NETDEV_PCPU_STAT_NONE:
10424 		return 0;
10425 	case NETDEV_PCPU_STAT_LSTATS:
10426 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10427 		break;
10428 	case NETDEV_PCPU_STAT_TSTATS:
10429 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10430 		break;
10431 	case NETDEV_PCPU_STAT_DSTATS:
10432 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10433 		break;
10434 	default:
10435 		return -EINVAL;
10436 	}
10437 
10438 	return v ? 0 : -ENOMEM;
10439 }
10440 
netdev_do_free_pcpu_stats(struct net_device * dev)10441 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10442 {
10443 	switch (dev->pcpu_stat_type) {
10444 	case NETDEV_PCPU_STAT_NONE:
10445 		return;
10446 	case NETDEV_PCPU_STAT_LSTATS:
10447 		free_percpu(dev->lstats);
10448 		break;
10449 	case NETDEV_PCPU_STAT_TSTATS:
10450 		free_percpu(dev->tstats);
10451 		break;
10452 	case NETDEV_PCPU_STAT_DSTATS:
10453 		free_percpu(dev->dstats);
10454 		break;
10455 	}
10456 }
10457 
netdev_free_phy_link_topology(struct net_device * dev)10458 static void netdev_free_phy_link_topology(struct net_device *dev)
10459 {
10460 	struct phy_link_topology *topo = dev->link_topo;
10461 
10462 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10463 		xa_destroy(&topo->phys);
10464 		kfree(topo);
10465 		dev->link_topo = NULL;
10466 	}
10467 }
10468 
10469 /**
10470  * register_netdevice() - register a network device
10471  * @dev: device to register
10472  *
10473  * Take a prepared network device structure and make it externally accessible.
10474  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10475  * Callers must hold the rtnl lock - you may want register_netdev()
10476  * instead of this.
10477  */
register_netdevice(struct net_device * dev)10478 int register_netdevice(struct net_device *dev)
10479 {
10480 	int ret;
10481 	struct net *net = dev_net(dev);
10482 
10483 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10484 		     NETDEV_FEATURE_COUNT);
10485 	BUG_ON(dev_boot_phase);
10486 	ASSERT_RTNL();
10487 
10488 	might_sleep();
10489 
10490 	/* When net_device's are persistent, this will be fatal. */
10491 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10492 	BUG_ON(!net);
10493 
10494 	ret = ethtool_check_ops(dev->ethtool_ops);
10495 	if (ret)
10496 		return ret;
10497 
10498 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10499 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10500 	mutex_init(&dev->ethtool->rss_lock);
10501 
10502 	spin_lock_init(&dev->addr_list_lock);
10503 	netdev_set_addr_lockdep_class(dev);
10504 
10505 	ret = dev_get_valid_name(net, dev, dev->name);
10506 	if (ret < 0)
10507 		goto out;
10508 
10509 	ret = -ENOMEM;
10510 	dev->name_node = netdev_name_node_head_alloc(dev);
10511 	if (!dev->name_node)
10512 		goto out;
10513 
10514 	/* Init, if this function is available */
10515 	if (dev->netdev_ops->ndo_init) {
10516 		ret = dev->netdev_ops->ndo_init(dev);
10517 		if (ret) {
10518 			if (ret > 0)
10519 				ret = -EIO;
10520 			goto err_free_name;
10521 		}
10522 	}
10523 
10524 	if (((dev->hw_features | dev->features) &
10525 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10526 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10527 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10528 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10529 		ret = -EINVAL;
10530 		goto err_uninit;
10531 	}
10532 
10533 	ret = netdev_do_alloc_pcpu_stats(dev);
10534 	if (ret)
10535 		goto err_uninit;
10536 
10537 	ret = dev_index_reserve(net, dev->ifindex);
10538 	if (ret < 0)
10539 		goto err_free_pcpu;
10540 	dev->ifindex = ret;
10541 
10542 	/* Transfer changeable features to wanted_features and enable
10543 	 * software offloads (GSO and GRO).
10544 	 */
10545 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10546 	dev->features |= NETIF_F_SOFT_FEATURES;
10547 
10548 	if (dev->udp_tunnel_nic_info) {
10549 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10550 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10551 	}
10552 
10553 	dev->wanted_features = dev->features & dev->hw_features;
10554 
10555 	if (!(dev->flags & IFF_LOOPBACK))
10556 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10557 
10558 	/* If IPv4 TCP segmentation offload is supported we should also
10559 	 * allow the device to enable segmenting the frame with the option
10560 	 * of ignoring a static IP ID value.  This doesn't enable the
10561 	 * feature itself but allows the user to enable it later.
10562 	 */
10563 	if (dev->hw_features & NETIF_F_TSO)
10564 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10565 	if (dev->vlan_features & NETIF_F_TSO)
10566 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10567 	if (dev->mpls_features & NETIF_F_TSO)
10568 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10569 	if (dev->hw_enc_features & NETIF_F_TSO)
10570 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10571 
10572 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10573 	 */
10574 	dev->vlan_features |= NETIF_F_HIGHDMA;
10575 
10576 	/* Make NETIF_F_SG inheritable to tunnel devices.
10577 	 */
10578 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10579 
10580 	/* Make NETIF_F_SG inheritable to MPLS.
10581 	 */
10582 	dev->mpls_features |= NETIF_F_SG;
10583 
10584 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10585 	ret = notifier_to_errno(ret);
10586 	if (ret)
10587 		goto err_ifindex_release;
10588 
10589 	ret = netdev_register_kobject(dev);
10590 
10591 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10592 
10593 	if (ret)
10594 		goto err_uninit_notify;
10595 
10596 	__netdev_update_features(dev);
10597 
10598 	/*
10599 	 *	Default initial state at registry is that the
10600 	 *	device is present.
10601 	 */
10602 
10603 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10604 
10605 	linkwatch_init_dev(dev);
10606 
10607 	dev_init_scheduler(dev);
10608 
10609 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10610 	list_netdevice(dev);
10611 
10612 	add_device_randomness(dev->dev_addr, dev->addr_len);
10613 
10614 	/* If the device has permanent device address, driver should
10615 	 * set dev_addr and also addr_assign_type should be set to
10616 	 * NET_ADDR_PERM (default value).
10617 	 */
10618 	if (dev->addr_assign_type == NET_ADDR_PERM)
10619 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10620 
10621 	/* Notify protocols, that a new device appeared. */
10622 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10623 	ret = notifier_to_errno(ret);
10624 	if (ret) {
10625 		/* Expect explicit free_netdev() on failure */
10626 		dev->needs_free_netdev = false;
10627 		unregister_netdevice_queue(dev, NULL);
10628 		goto out;
10629 	}
10630 	/*
10631 	 *	Prevent userspace races by waiting until the network
10632 	 *	device is fully setup before sending notifications.
10633 	 */
10634 	if (!dev->rtnl_link_ops ||
10635 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10636 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10637 
10638 out:
10639 	return ret;
10640 
10641 err_uninit_notify:
10642 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10643 err_ifindex_release:
10644 	dev_index_release(net, dev->ifindex);
10645 err_free_pcpu:
10646 	netdev_do_free_pcpu_stats(dev);
10647 err_uninit:
10648 	if (dev->netdev_ops->ndo_uninit)
10649 		dev->netdev_ops->ndo_uninit(dev);
10650 	if (dev->priv_destructor)
10651 		dev->priv_destructor(dev);
10652 err_free_name:
10653 	netdev_name_node_free(dev->name_node);
10654 	goto out;
10655 }
10656 EXPORT_SYMBOL(register_netdevice);
10657 
10658 /* Initialize the core of a dummy net device.
10659  * This is useful if you are calling this function after alloc_netdev(),
10660  * since it does not memset the net_device fields.
10661  */
init_dummy_netdev_core(struct net_device * dev)10662 static void init_dummy_netdev_core(struct net_device *dev)
10663 {
10664 	/* make sure we BUG if trying to hit standard
10665 	 * register/unregister code path
10666 	 */
10667 	dev->reg_state = NETREG_DUMMY;
10668 
10669 	/* NAPI wants this */
10670 	INIT_LIST_HEAD(&dev->napi_list);
10671 
10672 	/* a dummy interface is started by default */
10673 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10674 	set_bit(__LINK_STATE_START, &dev->state);
10675 
10676 	/* napi_busy_loop stats accounting wants this */
10677 	dev_net_set(dev, &init_net);
10678 
10679 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10680 	 * because users of this 'device' dont need to change
10681 	 * its refcount.
10682 	 */
10683 }
10684 
10685 /**
10686  *	init_dummy_netdev	- init a dummy network device for NAPI
10687  *	@dev: device to init
10688  *
10689  *	This takes a network device structure and initializes the minimum
10690  *	amount of fields so it can be used to schedule NAPI polls without
10691  *	registering a full blown interface. This is to be used by drivers
10692  *	that need to tie several hardware interfaces to a single NAPI
10693  *	poll scheduler due to HW limitations.
10694  */
init_dummy_netdev(struct net_device * dev)10695 void init_dummy_netdev(struct net_device *dev)
10696 {
10697 	/* Clear everything. Note we don't initialize spinlocks
10698 	 * as they aren't supposed to be taken by any of the
10699 	 * NAPI code and this dummy netdev is supposed to be
10700 	 * only ever used for NAPI polls
10701 	 */
10702 	memset(dev, 0, sizeof(struct net_device));
10703 	init_dummy_netdev_core(dev);
10704 }
10705 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10706 
10707 /**
10708  *	register_netdev	- register a network device
10709  *	@dev: device to register
10710  *
10711  *	Take a completed network device structure and add it to the kernel
10712  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10713  *	chain. 0 is returned on success. A negative errno code is returned
10714  *	on a failure to set up the device, or if the name is a duplicate.
10715  *
10716  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10717  *	and expands the device name if you passed a format string to
10718  *	alloc_netdev.
10719  */
register_netdev(struct net_device * dev)10720 int register_netdev(struct net_device *dev)
10721 {
10722 	int err;
10723 
10724 	if (rtnl_lock_killable())
10725 		return -EINTR;
10726 	err = register_netdevice(dev);
10727 	rtnl_unlock();
10728 	return err;
10729 }
10730 EXPORT_SYMBOL(register_netdev);
10731 
netdev_refcnt_read(const struct net_device * dev)10732 int netdev_refcnt_read(const struct net_device *dev)
10733 {
10734 #ifdef CONFIG_PCPU_DEV_REFCNT
10735 	int i, refcnt = 0;
10736 
10737 	for_each_possible_cpu(i)
10738 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10739 	return refcnt;
10740 #else
10741 	return refcount_read(&dev->dev_refcnt);
10742 #endif
10743 }
10744 EXPORT_SYMBOL(netdev_refcnt_read);
10745 
10746 int netdev_unregister_timeout_secs __read_mostly = 10;
10747 
10748 #define WAIT_REFS_MIN_MSECS 1
10749 #define WAIT_REFS_MAX_MSECS 250
10750 /**
10751  * netdev_wait_allrefs_any - wait until all references are gone.
10752  * @list: list of net_devices to wait on
10753  *
10754  * This is called when unregistering network devices.
10755  *
10756  * Any protocol or device that holds a reference should register
10757  * for netdevice notification, and cleanup and put back the
10758  * reference if they receive an UNREGISTER event.
10759  * We can get stuck here if buggy protocols don't correctly
10760  * call dev_put.
10761  */
netdev_wait_allrefs_any(struct list_head * list)10762 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10763 {
10764 	unsigned long rebroadcast_time, warning_time;
10765 	struct net_device *dev;
10766 	int wait = 0;
10767 
10768 	rebroadcast_time = warning_time = jiffies;
10769 
10770 	list_for_each_entry(dev, list, todo_list)
10771 		if (netdev_refcnt_read(dev) == 1)
10772 			return dev;
10773 
10774 	while (true) {
10775 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10776 			rtnl_lock();
10777 
10778 			/* Rebroadcast unregister notification */
10779 			list_for_each_entry(dev, list, todo_list)
10780 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10781 
10782 			__rtnl_unlock();
10783 			rcu_barrier();
10784 			rtnl_lock();
10785 
10786 			list_for_each_entry(dev, list, todo_list)
10787 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10788 					     &dev->state)) {
10789 					/* We must not have linkwatch events
10790 					 * pending on unregister. If this
10791 					 * happens, we simply run the queue
10792 					 * unscheduled, resulting in a noop
10793 					 * for this device.
10794 					 */
10795 					linkwatch_run_queue();
10796 					break;
10797 				}
10798 
10799 			__rtnl_unlock();
10800 
10801 			rebroadcast_time = jiffies;
10802 		}
10803 
10804 		rcu_barrier();
10805 
10806 		if (!wait) {
10807 			wait = WAIT_REFS_MIN_MSECS;
10808 		} else {
10809 			msleep(wait);
10810 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10811 		}
10812 
10813 		list_for_each_entry(dev, list, todo_list)
10814 			if (netdev_refcnt_read(dev) == 1)
10815 				return dev;
10816 
10817 		if (time_after(jiffies, warning_time +
10818 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10819 			list_for_each_entry(dev, list, todo_list) {
10820 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10821 					 dev->name, netdev_refcnt_read(dev));
10822 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10823 			}
10824 
10825 			warning_time = jiffies;
10826 		}
10827 	}
10828 }
10829 
10830 /* The sequence is:
10831  *
10832  *	rtnl_lock();
10833  *	...
10834  *	register_netdevice(x1);
10835  *	register_netdevice(x2);
10836  *	...
10837  *	unregister_netdevice(y1);
10838  *	unregister_netdevice(y2);
10839  *      ...
10840  *	rtnl_unlock();
10841  *	free_netdev(y1);
10842  *	free_netdev(y2);
10843  *
10844  * We are invoked by rtnl_unlock().
10845  * This allows us to deal with problems:
10846  * 1) We can delete sysfs objects which invoke hotplug
10847  *    without deadlocking with linkwatch via keventd.
10848  * 2) Since we run with the RTNL semaphore not held, we can sleep
10849  *    safely in order to wait for the netdev refcnt to drop to zero.
10850  *
10851  * We must not return until all unregister events added during
10852  * the interval the lock was held have been completed.
10853  */
netdev_run_todo(void)10854 void netdev_run_todo(void)
10855 {
10856 	struct net_device *dev, *tmp;
10857 	struct list_head list;
10858 	int cnt;
10859 #ifdef CONFIG_LOCKDEP
10860 	struct list_head unlink_list;
10861 
10862 	list_replace_init(&net_unlink_list, &unlink_list);
10863 
10864 	while (!list_empty(&unlink_list)) {
10865 		struct net_device *dev = list_first_entry(&unlink_list,
10866 							  struct net_device,
10867 							  unlink_list);
10868 		list_del_init(&dev->unlink_list);
10869 		dev->nested_level = dev->lower_level - 1;
10870 	}
10871 #endif
10872 
10873 	/* Snapshot list, allow later requests */
10874 	list_replace_init(&net_todo_list, &list);
10875 
10876 	__rtnl_unlock();
10877 
10878 	/* Wait for rcu callbacks to finish before next phase */
10879 	if (!list_empty(&list))
10880 		rcu_barrier();
10881 
10882 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10883 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10884 			netdev_WARN(dev, "run_todo but not unregistering\n");
10885 			list_del(&dev->todo_list);
10886 			continue;
10887 		}
10888 
10889 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10890 		linkwatch_sync_dev(dev);
10891 	}
10892 
10893 	cnt = 0;
10894 	while (!list_empty(&list)) {
10895 		dev = netdev_wait_allrefs_any(&list);
10896 		list_del(&dev->todo_list);
10897 
10898 		/* paranoia */
10899 		BUG_ON(netdev_refcnt_read(dev) != 1);
10900 		BUG_ON(!list_empty(&dev->ptype_all));
10901 		BUG_ON(!list_empty(&dev->ptype_specific));
10902 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10903 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10904 
10905 		netdev_do_free_pcpu_stats(dev);
10906 		if (dev->priv_destructor)
10907 			dev->priv_destructor(dev);
10908 		if (dev->needs_free_netdev)
10909 			free_netdev(dev);
10910 
10911 		cnt++;
10912 
10913 		/* Free network device */
10914 		kobject_put(&dev->dev.kobj);
10915 	}
10916 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10917 		wake_up(&netdev_unregistering_wq);
10918 }
10919 
10920 /* Collate per-cpu network dstats statistics
10921  *
10922  * Read per-cpu network statistics from dev->dstats and populate the related
10923  * fields in @s.
10924  */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)10925 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
10926 			     const struct pcpu_dstats __percpu *dstats)
10927 {
10928 	int cpu;
10929 
10930 	for_each_possible_cpu(cpu) {
10931 		u64 rx_packets, rx_bytes, rx_drops;
10932 		u64 tx_packets, tx_bytes, tx_drops;
10933 		const struct pcpu_dstats *stats;
10934 		unsigned int start;
10935 
10936 		stats = per_cpu_ptr(dstats, cpu);
10937 		do {
10938 			start = u64_stats_fetch_begin(&stats->syncp);
10939 			rx_packets = u64_stats_read(&stats->rx_packets);
10940 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10941 			rx_drops   = u64_stats_read(&stats->rx_drops);
10942 			tx_packets = u64_stats_read(&stats->tx_packets);
10943 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10944 			tx_drops   = u64_stats_read(&stats->tx_drops);
10945 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10946 
10947 		s->rx_packets += rx_packets;
10948 		s->rx_bytes   += rx_bytes;
10949 		s->rx_dropped += rx_drops;
10950 		s->tx_packets += tx_packets;
10951 		s->tx_bytes   += tx_bytes;
10952 		s->tx_dropped += tx_drops;
10953 	}
10954 }
10955 
10956 /* ndo_get_stats64 implementation for dtstats-based accounting.
10957  *
10958  * Populate @s from dev->stats and dev->dstats. This is used internally by the
10959  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
10960  */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)10961 static void dev_get_dstats64(const struct net_device *dev,
10962 			     struct rtnl_link_stats64 *s)
10963 {
10964 	netdev_stats_to_stats64(s, &dev->stats);
10965 	dev_fetch_dstats(s, dev->dstats);
10966 }
10967 
10968 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10969  * all the same fields in the same order as net_device_stats, with only
10970  * the type differing, but rtnl_link_stats64 may have additional fields
10971  * at the end for newer counters.
10972  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10973 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10974 			     const struct net_device_stats *netdev_stats)
10975 {
10976 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10977 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10978 	u64 *dst = (u64 *)stats64;
10979 
10980 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10981 	for (i = 0; i < n; i++)
10982 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10983 	/* zero out counters that only exist in rtnl_link_stats64 */
10984 	memset((char *)stats64 + n * sizeof(u64), 0,
10985 	       sizeof(*stats64) - n * sizeof(u64));
10986 }
10987 EXPORT_SYMBOL(netdev_stats_to_stats64);
10988 
netdev_core_stats_alloc(struct net_device * dev)10989 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10990 		struct net_device *dev)
10991 {
10992 	struct net_device_core_stats __percpu *p;
10993 
10994 	p = alloc_percpu_gfp(struct net_device_core_stats,
10995 			     GFP_ATOMIC | __GFP_NOWARN);
10996 
10997 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10998 		free_percpu(p);
10999 
11000 	/* This READ_ONCE() pairs with the cmpxchg() above */
11001 	return READ_ONCE(dev->core_stats);
11002 }
11003 
netdev_core_stats_inc(struct net_device * dev,u32 offset)11004 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11005 {
11006 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11007 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11008 	unsigned long __percpu *field;
11009 
11010 	if (unlikely(!p)) {
11011 		p = netdev_core_stats_alloc(dev);
11012 		if (!p)
11013 			return;
11014 	}
11015 
11016 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11017 	this_cpu_inc(*field);
11018 }
11019 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11020 
11021 /**
11022  *	dev_get_stats	- get network device statistics
11023  *	@dev: device to get statistics from
11024  *	@storage: place to store stats
11025  *
11026  *	Get network statistics from device. Return @storage.
11027  *	The device driver may provide its own method by setting
11028  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11029  *	otherwise the internal statistics structure is used.
11030  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)11031 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11032 					struct rtnl_link_stats64 *storage)
11033 {
11034 	const struct net_device_ops *ops = dev->netdev_ops;
11035 	const struct net_device_core_stats __percpu *p;
11036 
11037 	if (ops->ndo_get_stats64) {
11038 		memset(storage, 0, sizeof(*storage));
11039 		ops->ndo_get_stats64(dev, storage);
11040 	} else if (ops->ndo_get_stats) {
11041 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11042 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11043 		dev_get_tstats64(dev, storage);
11044 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11045 		dev_get_dstats64(dev, storage);
11046 	} else {
11047 		netdev_stats_to_stats64(storage, &dev->stats);
11048 	}
11049 
11050 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11051 	p = READ_ONCE(dev->core_stats);
11052 	if (p) {
11053 		const struct net_device_core_stats *core_stats;
11054 		int i;
11055 
11056 		for_each_possible_cpu(i) {
11057 			core_stats = per_cpu_ptr(p, i);
11058 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11059 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11060 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11061 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11062 		}
11063 	}
11064 	return storage;
11065 }
11066 EXPORT_SYMBOL(dev_get_stats);
11067 
11068 /**
11069  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11070  *	@s: place to store stats
11071  *	@netstats: per-cpu network stats to read from
11072  *
11073  *	Read per-cpu network statistics and populate the related fields in @s.
11074  */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)11075 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11076 			   const struct pcpu_sw_netstats __percpu *netstats)
11077 {
11078 	int cpu;
11079 
11080 	for_each_possible_cpu(cpu) {
11081 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11082 		const struct pcpu_sw_netstats *stats;
11083 		unsigned int start;
11084 
11085 		stats = per_cpu_ptr(netstats, cpu);
11086 		do {
11087 			start = u64_stats_fetch_begin(&stats->syncp);
11088 			rx_packets = u64_stats_read(&stats->rx_packets);
11089 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11090 			tx_packets = u64_stats_read(&stats->tx_packets);
11091 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11092 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11093 
11094 		s->rx_packets += rx_packets;
11095 		s->rx_bytes   += rx_bytes;
11096 		s->tx_packets += tx_packets;
11097 		s->tx_bytes   += tx_bytes;
11098 	}
11099 }
11100 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11101 
11102 /**
11103  *	dev_get_tstats64 - ndo_get_stats64 implementation
11104  *	@dev: device to get statistics from
11105  *	@s: place to store stats
11106  *
11107  *	Populate @s from dev->stats and dev->tstats. Can be used as
11108  *	ndo_get_stats64() callback.
11109  */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11110 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11111 {
11112 	netdev_stats_to_stats64(s, &dev->stats);
11113 	dev_fetch_sw_netstats(s, dev->tstats);
11114 }
11115 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11116 
dev_ingress_queue_create(struct net_device * dev)11117 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11118 {
11119 	struct netdev_queue *queue = dev_ingress_queue(dev);
11120 
11121 #ifdef CONFIG_NET_CLS_ACT
11122 	if (queue)
11123 		return queue;
11124 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11125 	if (!queue)
11126 		return NULL;
11127 	netdev_init_one_queue(dev, queue, NULL);
11128 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11129 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11130 	rcu_assign_pointer(dev->ingress_queue, queue);
11131 #endif
11132 	return queue;
11133 }
11134 
11135 static const struct ethtool_ops default_ethtool_ops;
11136 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11137 void netdev_set_default_ethtool_ops(struct net_device *dev,
11138 				    const struct ethtool_ops *ops)
11139 {
11140 	if (dev->ethtool_ops == &default_ethtool_ops)
11141 		dev->ethtool_ops = ops;
11142 }
11143 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11144 
11145 /**
11146  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11147  * @dev: netdev to enable the IRQ coalescing on
11148  *
11149  * Sets a conservative default for SW IRQ coalescing. Users can use
11150  * sysfs attributes to override the default values.
11151  */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11152 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11153 {
11154 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11155 
11156 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11157 		dev->gro_flush_timeout = 20000;
11158 		dev->napi_defer_hard_irqs = 1;
11159 	}
11160 }
11161 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11162 
11163 /**
11164  * alloc_netdev_mqs - allocate network device
11165  * @sizeof_priv: size of private data to allocate space for
11166  * @name: device name format string
11167  * @name_assign_type: origin of device name
11168  * @setup: callback to initialize device
11169  * @txqs: the number of TX subqueues to allocate
11170  * @rxqs: the number of RX subqueues to allocate
11171  *
11172  * Allocates a struct net_device with private data area for driver use
11173  * and performs basic initialization.  Also allocates subqueue structs
11174  * for each queue on the device.
11175  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11176 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11177 		unsigned char name_assign_type,
11178 		void (*setup)(struct net_device *),
11179 		unsigned int txqs, unsigned int rxqs)
11180 {
11181 	struct net_device *dev;
11182 
11183 	BUG_ON(strlen(name) >= sizeof(dev->name));
11184 
11185 	if (txqs < 1) {
11186 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11187 		return NULL;
11188 	}
11189 
11190 	if (rxqs < 1) {
11191 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11192 		return NULL;
11193 	}
11194 
11195 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11196 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11197 	if (!dev)
11198 		return NULL;
11199 
11200 	dev->priv_len = sizeof_priv;
11201 
11202 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11203 #ifdef CONFIG_PCPU_DEV_REFCNT
11204 	dev->pcpu_refcnt = alloc_percpu(int);
11205 	if (!dev->pcpu_refcnt)
11206 		goto free_dev;
11207 	__dev_hold(dev);
11208 #else
11209 	refcount_set(&dev->dev_refcnt, 1);
11210 #endif
11211 
11212 	if (dev_addr_init(dev))
11213 		goto free_pcpu;
11214 
11215 	dev_mc_init(dev);
11216 	dev_uc_init(dev);
11217 
11218 	dev_net_set(dev, &init_net);
11219 
11220 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11221 	dev->xdp_zc_max_segs = 1;
11222 	dev->gso_max_segs = GSO_MAX_SEGS;
11223 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11224 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11225 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11226 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11227 	dev->tso_max_segs = TSO_MAX_SEGS;
11228 	dev->upper_level = 1;
11229 	dev->lower_level = 1;
11230 #ifdef CONFIG_LOCKDEP
11231 	dev->nested_level = 0;
11232 	INIT_LIST_HEAD(&dev->unlink_list);
11233 #endif
11234 
11235 	INIT_LIST_HEAD(&dev->napi_list);
11236 	INIT_LIST_HEAD(&dev->unreg_list);
11237 	INIT_LIST_HEAD(&dev->close_list);
11238 	INIT_LIST_HEAD(&dev->link_watch_list);
11239 	INIT_LIST_HEAD(&dev->adj_list.upper);
11240 	INIT_LIST_HEAD(&dev->adj_list.lower);
11241 	INIT_LIST_HEAD(&dev->ptype_all);
11242 	INIT_LIST_HEAD(&dev->ptype_specific);
11243 	INIT_LIST_HEAD(&dev->net_notifier_list);
11244 #ifdef CONFIG_NET_SCHED
11245 	hash_init(dev->qdisc_hash);
11246 #endif
11247 
11248 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11249 	setup(dev);
11250 
11251 	if (!dev->tx_queue_len) {
11252 		dev->priv_flags |= IFF_NO_QUEUE;
11253 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11254 	}
11255 
11256 	dev->num_tx_queues = txqs;
11257 	dev->real_num_tx_queues = txqs;
11258 	if (netif_alloc_netdev_queues(dev))
11259 		goto free_all;
11260 
11261 	dev->num_rx_queues = rxqs;
11262 	dev->real_num_rx_queues = rxqs;
11263 	if (netif_alloc_rx_queues(dev))
11264 		goto free_all;
11265 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11266 	if (!dev->ethtool)
11267 		goto free_all;
11268 
11269 	strscpy(dev->name, name);
11270 	dev->name_assign_type = name_assign_type;
11271 	dev->group = INIT_NETDEV_GROUP;
11272 	if (!dev->ethtool_ops)
11273 		dev->ethtool_ops = &default_ethtool_ops;
11274 
11275 	nf_hook_netdev_init(dev);
11276 
11277 	return dev;
11278 
11279 free_all:
11280 	free_netdev(dev);
11281 	return NULL;
11282 
11283 free_pcpu:
11284 #ifdef CONFIG_PCPU_DEV_REFCNT
11285 	free_percpu(dev->pcpu_refcnt);
11286 free_dev:
11287 #endif
11288 	kvfree(dev);
11289 	return NULL;
11290 }
11291 EXPORT_SYMBOL(alloc_netdev_mqs);
11292 
11293 /**
11294  * free_netdev - free network device
11295  * @dev: device
11296  *
11297  * This function does the last stage of destroying an allocated device
11298  * interface. The reference to the device object is released. If this
11299  * is the last reference then it will be freed.Must be called in process
11300  * context.
11301  */
free_netdev(struct net_device * dev)11302 void free_netdev(struct net_device *dev)
11303 {
11304 	struct napi_struct *p, *n;
11305 
11306 	might_sleep();
11307 
11308 	/* When called immediately after register_netdevice() failed the unwind
11309 	 * handling may still be dismantling the device. Handle that case by
11310 	 * deferring the free.
11311 	 */
11312 	if (dev->reg_state == NETREG_UNREGISTERING) {
11313 		ASSERT_RTNL();
11314 		dev->needs_free_netdev = true;
11315 		return;
11316 	}
11317 
11318 	kfree(dev->ethtool);
11319 	netif_free_tx_queues(dev);
11320 	netif_free_rx_queues(dev);
11321 
11322 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11323 
11324 	/* Flush device addresses */
11325 	dev_addr_flush(dev);
11326 
11327 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11328 		netif_napi_del(p);
11329 
11330 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11331 #ifdef CONFIG_PCPU_DEV_REFCNT
11332 	free_percpu(dev->pcpu_refcnt);
11333 	dev->pcpu_refcnt = NULL;
11334 #endif
11335 	free_percpu(dev->core_stats);
11336 	dev->core_stats = NULL;
11337 	free_percpu(dev->xdp_bulkq);
11338 	dev->xdp_bulkq = NULL;
11339 
11340 	netdev_free_phy_link_topology(dev);
11341 
11342 	/*  Compatibility with error handling in drivers */
11343 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11344 	    dev->reg_state == NETREG_DUMMY) {
11345 		kvfree(dev);
11346 		return;
11347 	}
11348 
11349 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11350 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11351 
11352 	/* will free via device release */
11353 	put_device(&dev->dev);
11354 }
11355 EXPORT_SYMBOL(free_netdev);
11356 
11357 /**
11358  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11359  * @sizeof_priv: size of private data to allocate space for
11360  *
11361  * Return: the allocated net_device on success, NULL otherwise
11362  */
alloc_netdev_dummy(int sizeof_priv)11363 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11364 {
11365 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11366 			    init_dummy_netdev_core);
11367 }
11368 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11369 
11370 /**
11371  *	synchronize_net -  Synchronize with packet receive processing
11372  *
11373  *	Wait for packets currently being received to be done.
11374  *	Does not block later packets from starting.
11375  */
synchronize_net(void)11376 void synchronize_net(void)
11377 {
11378 	might_sleep();
11379 	if (rtnl_is_locked())
11380 		synchronize_rcu_expedited();
11381 	else
11382 		synchronize_rcu();
11383 }
11384 EXPORT_SYMBOL(synchronize_net);
11385 
netdev_rss_contexts_free(struct net_device * dev)11386 static void netdev_rss_contexts_free(struct net_device *dev)
11387 {
11388 	struct ethtool_rxfh_context *ctx;
11389 	unsigned long context;
11390 
11391 	mutex_lock(&dev->ethtool->rss_lock);
11392 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11393 		struct ethtool_rxfh_param rxfh;
11394 
11395 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11396 		rxfh.key = ethtool_rxfh_context_key(ctx);
11397 		rxfh.hfunc = ctx->hfunc;
11398 		rxfh.input_xfrm = ctx->input_xfrm;
11399 		rxfh.rss_context = context;
11400 		rxfh.rss_delete = true;
11401 
11402 		xa_erase(&dev->ethtool->rss_ctx, context);
11403 		if (dev->ethtool_ops->create_rxfh_context)
11404 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11405 							      context, NULL);
11406 		else
11407 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11408 		kfree(ctx);
11409 	}
11410 	xa_destroy(&dev->ethtool->rss_ctx);
11411 	mutex_unlock(&dev->ethtool->rss_lock);
11412 }
11413 
11414 /**
11415  *	unregister_netdevice_queue - remove device from the kernel
11416  *	@dev: device
11417  *	@head: list
11418  *
11419  *	This function shuts down a device interface and removes it
11420  *	from the kernel tables.
11421  *	If head not NULL, device is queued to be unregistered later.
11422  *
11423  *	Callers must hold the rtnl semaphore.  You may want
11424  *	unregister_netdev() instead of this.
11425  */
11426 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)11427 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11428 {
11429 	ASSERT_RTNL();
11430 
11431 	if (head) {
11432 		list_move_tail(&dev->unreg_list, head);
11433 	} else {
11434 		LIST_HEAD(single);
11435 
11436 		list_add(&dev->unreg_list, &single);
11437 		unregister_netdevice_many(&single);
11438 	}
11439 }
11440 EXPORT_SYMBOL(unregister_netdevice_queue);
11441 
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)11442 void unregister_netdevice_many_notify(struct list_head *head,
11443 				      u32 portid, const struct nlmsghdr *nlh)
11444 {
11445 	struct net_device *dev, *tmp;
11446 	LIST_HEAD(close_head);
11447 	int cnt = 0;
11448 
11449 	BUG_ON(dev_boot_phase);
11450 	ASSERT_RTNL();
11451 
11452 	if (list_empty(head))
11453 		return;
11454 
11455 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11456 		/* Some devices call without registering
11457 		 * for initialization unwind. Remove those
11458 		 * devices and proceed with the remaining.
11459 		 */
11460 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11461 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11462 				 dev->name, dev);
11463 
11464 			WARN_ON(1);
11465 			list_del(&dev->unreg_list);
11466 			continue;
11467 		}
11468 		dev->dismantle = true;
11469 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11470 	}
11471 
11472 	/* If device is running, close it first. */
11473 	list_for_each_entry(dev, head, unreg_list)
11474 		list_add_tail(&dev->close_list, &close_head);
11475 	dev_close_many(&close_head, true);
11476 
11477 	list_for_each_entry(dev, head, unreg_list) {
11478 		/* And unlink it from device chain. */
11479 		unlist_netdevice(dev);
11480 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11481 	}
11482 	flush_all_backlogs();
11483 
11484 	synchronize_net();
11485 
11486 	list_for_each_entry(dev, head, unreg_list) {
11487 		struct sk_buff *skb = NULL;
11488 
11489 		/* Shutdown queueing discipline. */
11490 		dev_shutdown(dev);
11491 		dev_tcx_uninstall(dev);
11492 		dev_xdp_uninstall(dev);
11493 		bpf_dev_bound_netdev_unregister(dev);
11494 		dev_dmabuf_uninstall(dev);
11495 
11496 		netdev_offload_xstats_disable_all(dev);
11497 
11498 		/* Notify protocols, that we are about to destroy
11499 		 * this device. They should clean all the things.
11500 		 */
11501 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11502 
11503 		if (!dev->rtnl_link_ops ||
11504 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11505 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11506 						     GFP_KERNEL, NULL, 0,
11507 						     portid, nlh);
11508 
11509 		/*
11510 		 *	Flush the unicast and multicast chains
11511 		 */
11512 		dev_uc_flush(dev);
11513 		dev_mc_flush(dev);
11514 
11515 		netdev_name_node_alt_flush(dev);
11516 		netdev_name_node_free(dev->name_node);
11517 
11518 		netdev_rss_contexts_free(dev);
11519 
11520 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11521 
11522 		if (dev->netdev_ops->ndo_uninit)
11523 			dev->netdev_ops->ndo_uninit(dev);
11524 
11525 		mutex_destroy(&dev->ethtool->rss_lock);
11526 
11527 		if (skb)
11528 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11529 
11530 		/* Notifier chain MUST detach us all upper devices. */
11531 		WARN_ON(netdev_has_any_upper_dev(dev));
11532 		WARN_ON(netdev_has_any_lower_dev(dev));
11533 
11534 		/* Remove entries from kobject tree */
11535 		netdev_unregister_kobject(dev);
11536 #ifdef CONFIG_XPS
11537 		/* Remove XPS queueing entries */
11538 		netif_reset_xps_queues_gt(dev, 0);
11539 #endif
11540 	}
11541 
11542 	synchronize_net();
11543 
11544 	list_for_each_entry(dev, head, unreg_list) {
11545 		netdev_put(dev, &dev->dev_registered_tracker);
11546 		net_set_todo(dev);
11547 		cnt++;
11548 	}
11549 	atomic_add(cnt, &dev_unreg_count);
11550 
11551 	list_del(head);
11552 }
11553 
11554 /**
11555  *	unregister_netdevice_many - unregister many devices
11556  *	@head: list of devices
11557  *
11558  *  Note: As most callers use a stack allocated list_head,
11559  *  we force a list_del() to make sure stack won't be corrupted later.
11560  */
unregister_netdevice_many(struct list_head * head)11561 void unregister_netdevice_many(struct list_head *head)
11562 {
11563 	unregister_netdevice_many_notify(head, 0, NULL);
11564 }
11565 EXPORT_SYMBOL(unregister_netdevice_many);
11566 
11567 /**
11568  *	unregister_netdev - remove device from the kernel
11569  *	@dev: device
11570  *
11571  *	This function shuts down a device interface and removes it
11572  *	from the kernel tables.
11573  *
11574  *	This is just a wrapper for unregister_netdevice that takes
11575  *	the rtnl semaphore.  In general you want to use this and not
11576  *	unregister_netdevice.
11577  */
unregister_netdev(struct net_device * dev)11578 void unregister_netdev(struct net_device *dev)
11579 {
11580 	rtnl_lock();
11581 	unregister_netdevice(dev);
11582 	rtnl_unlock();
11583 }
11584 EXPORT_SYMBOL(unregister_netdev);
11585 
11586 /**
11587  *	__dev_change_net_namespace - move device to different nethost namespace
11588  *	@dev: device
11589  *	@net: network namespace
11590  *	@pat: If not NULL name pattern to try if the current device name
11591  *	      is already taken in the destination network namespace.
11592  *	@new_ifindex: If not zero, specifies device index in the target
11593  *	              namespace.
11594  *
11595  *	This function shuts down a device interface and moves it
11596  *	to a new network namespace. On success 0 is returned, on
11597  *	a failure a netagive errno code is returned.
11598  *
11599  *	Callers must hold the rtnl semaphore.
11600  */
11601 
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex)11602 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11603 			       const char *pat, int new_ifindex)
11604 {
11605 	struct netdev_name_node *name_node;
11606 	struct net *net_old = dev_net(dev);
11607 	char new_name[IFNAMSIZ] = {};
11608 	int err, new_nsid;
11609 
11610 	ASSERT_RTNL();
11611 
11612 	/* Don't allow namespace local devices to be moved. */
11613 	err = -EINVAL;
11614 	if (dev->netns_local)
11615 		goto out;
11616 
11617 	/* Ensure the device has been registered */
11618 	if (dev->reg_state != NETREG_REGISTERED)
11619 		goto out;
11620 
11621 	/* Get out if there is nothing todo */
11622 	err = 0;
11623 	if (net_eq(net_old, net))
11624 		goto out;
11625 
11626 	/* Pick the destination device name, and ensure
11627 	 * we can use it in the destination network namespace.
11628 	 */
11629 	err = -EEXIST;
11630 	if (netdev_name_in_use(net, dev->name)) {
11631 		/* We get here if we can't use the current device name */
11632 		if (!pat)
11633 			goto out;
11634 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11635 		if (err < 0)
11636 			goto out;
11637 	}
11638 	/* Check that none of the altnames conflicts. */
11639 	err = -EEXIST;
11640 	netdev_for_each_altname(dev, name_node)
11641 		if (netdev_name_in_use(net, name_node->name))
11642 			goto out;
11643 
11644 	/* Check that new_ifindex isn't used yet. */
11645 	if (new_ifindex) {
11646 		err = dev_index_reserve(net, new_ifindex);
11647 		if (err < 0)
11648 			goto out;
11649 	} else {
11650 		/* If there is an ifindex conflict assign a new one */
11651 		err = dev_index_reserve(net, dev->ifindex);
11652 		if (err == -EBUSY)
11653 			err = dev_index_reserve(net, 0);
11654 		if (err < 0)
11655 			goto out;
11656 		new_ifindex = err;
11657 	}
11658 
11659 	/*
11660 	 * And now a mini version of register_netdevice unregister_netdevice.
11661 	 */
11662 
11663 	/* If device is running close it first. */
11664 	dev_close(dev);
11665 
11666 	/* And unlink it from device chain */
11667 	unlist_netdevice(dev);
11668 
11669 	synchronize_net();
11670 
11671 	/* Shutdown queueing discipline. */
11672 	dev_shutdown(dev);
11673 
11674 	/* Notify protocols, that we are about to destroy
11675 	 * this device. They should clean all the things.
11676 	 *
11677 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11678 	 * This is wanted because this way 8021q and macvlan know
11679 	 * the device is just moving and can keep their slaves up.
11680 	 */
11681 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11682 	rcu_barrier();
11683 
11684 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11685 
11686 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11687 			    new_ifindex);
11688 
11689 	/*
11690 	 *	Flush the unicast and multicast chains
11691 	 */
11692 	dev_uc_flush(dev);
11693 	dev_mc_flush(dev);
11694 
11695 	/* Send a netdev-removed uevent to the old namespace */
11696 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11697 	netdev_adjacent_del_links(dev);
11698 
11699 	/* Move per-net netdevice notifiers that are following the netdevice */
11700 	move_netdevice_notifiers_dev_net(dev, net);
11701 
11702 	/* Actually switch the network namespace */
11703 	dev_net_set(dev, net);
11704 	dev->ifindex = new_ifindex;
11705 
11706 	if (new_name[0]) {
11707 		/* Rename the netdev to prepared name */
11708 		write_seqlock_bh(&netdev_rename_lock);
11709 		strscpy(dev->name, new_name, IFNAMSIZ);
11710 		write_sequnlock_bh(&netdev_rename_lock);
11711 	}
11712 
11713 	/* Fixup kobjects */
11714 	dev_set_uevent_suppress(&dev->dev, 1);
11715 	err = device_rename(&dev->dev, dev->name);
11716 	dev_set_uevent_suppress(&dev->dev, 0);
11717 	WARN_ON(err);
11718 
11719 	/* Send a netdev-add uevent to the new namespace */
11720 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11721 	netdev_adjacent_add_links(dev);
11722 
11723 	/* Adapt owner in case owning user namespace of target network
11724 	 * namespace is different from the original one.
11725 	 */
11726 	err = netdev_change_owner(dev, net_old, net);
11727 	WARN_ON(err);
11728 
11729 	/* Add the device back in the hashes */
11730 	list_netdevice(dev);
11731 
11732 	/* Notify protocols, that a new device appeared. */
11733 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11734 
11735 	/*
11736 	 *	Prevent userspace races by waiting until the network
11737 	 *	device is fully setup before sending notifications.
11738 	 */
11739 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11740 
11741 	synchronize_net();
11742 	err = 0;
11743 out:
11744 	return err;
11745 }
11746 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11747 
dev_cpu_dead(unsigned int oldcpu)11748 static int dev_cpu_dead(unsigned int oldcpu)
11749 {
11750 	struct sk_buff **list_skb;
11751 	struct sk_buff *skb;
11752 	unsigned int cpu;
11753 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11754 
11755 	local_irq_disable();
11756 	cpu = smp_processor_id();
11757 	sd = &per_cpu(softnet_data, cpu);
11758 	oldsd = &per_cpu(softnet_data, oldcpu);
11759 
11760 	/* Find end of our completion_queue. */
11761 	list_skb = &sd->completion_queue;
11762 	while (*list_skb)
11763 		list_skb = &(*list_skb)->next;
11764 	/* Append completion queue from offline CPU. */
11765 	*list_skb = oldsd->completion_queue;
11766 	oldsd->completion_queue = NULL;
11767 
11768 	/* Append output queue from offline CPU. */
11769 	if (oldsd->output_queue) {
11770 		*sd->output_queue_tailp = oldsd->output_queue;
11771 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11772 		oldsd->output_queue = NULL;
11773 		oldsd->output_queue_tailp = &oldsd->output_queue;
11774 	}
11775 	/* Append NAPI poll list from offline CPU, with one exception :
11776 	 * process_backlog() must be called by cpu owning percpu backlog.
11777 	 * We properly handle process_queue & input_pkt_queue later.
11778 	 */
11779 	while (!list_empty(&oldsd->poll_list)) {
11780 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11781 							    struct napi_struct,
11782 							    poll_list);
11783 
11784 		list_del_init(&napi->poll_list);
11785 		if (napi->poll == process_backlog)
11786 			napi->state &= NAPIF_STATE_THREADED;
11787 		else
11788 			____napi_schedule(sd, napi);
11789 	}
11790 
11791 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11792 	local_irq_enable();
11793 
11794 	if (!use_backlog_threads()) {
11795 #ifdef CONFIG_RPS
11796 		remsd = oldsd->rps_ipi_list;
11797 		oldsd->rps_ipi_list = NULL;
11798 #endif
11799 		/* send out pending IPI's on offline CPU */
11800 		net_rps_send_ipi(remsd);
11801 	}
11802 
11803 	/* Process offline CPU's input_pkt_queue */
11804 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11805 		netif_rx(skb);
11806 		rps_input_queue_head_incr(oldsd);
11807 	}
11808 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11809 		netif_rx(skb);
11810 		rps_input_queue_head_incr(oldsd);
11811 	}
11812 
11813 	return 0;
11814 }
11815 
11816 /**
11817  *	netdev_increment_features - increment feature set by one
11818  *	@all: current feature set
11819  *	@one: new feature set
11820  *	@mask: mask feature set
11821  *
11822  *	Computes a new feature set after adding a device with feature set
11823  *	@one to the master device with current feature set @all.  Will not
11824  *	enable anything that is off in @mask. Returns the new feature set.
11825  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)11826 netdev_features_t netdev_increment_features(netdev_features_t all,
11827 	netdev_features_t one, netdev_features_t mask)
11828 {
11829 	if (mask & NETIF_F_HW_CSUM)
11830 		mask |= NETIF_F_CSUM_MASK;
11831 	mask |= NETIF_F_VLAN_CHALLENGED;
11832 
11833 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11834 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11835 
11836 	/* If one device supports hw checksumming, set for all. */
11837 	if (all & NETIF_F_HW_CSUM)
11838 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11839 
11840 	return all;
11841 }
11842 EXPORT_SYMBOL(netdev_increment_features);
11843 
netdev_create_hash(void)11844 static struct hlist_head * __net_init netdev_create_hash(void)
11845 {
11846 	int i;
11847 	struct hlist_head *hash;
11848 
11849 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11850 	if (hash != NULL)
11851 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11852 			INIT_HLIST_HEAD(&hash[i]);
11853 
11854 	return hash;
11855 }
11856 
11857 /* Initialize per network namespace state */
netdev_init(struct net * net)11858 static int __net_init netdev_init(struct net *net)
11859 {
11860 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11861 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11862 
11863 	INIT_LIST_HEAD(&net->dev_base_head);
11864 
11865 	net->dev_name_head = netdev_create_hash();
11866 	if (net->dev_name_head == NULL)
11867 		goto err_name;
11868 
11869 	net->dev_index_head = netdev_create_hash();
11870 	if (net->dev_index_head == NULL)
11871 		goto err_idx;
11872 
11873 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11874 
11875 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11876 
11877 	return 0;
11878 
11879 err_idx:
11880 	kfree(net->dev_name_head);
11881 err_name:
11882 	return -ENOMEM;
11883 }
11884 
11885 /**
11886  *	netdev_drivername - network driver for the device
11887  *	@dev: network device
11888  *
11889  *	Determine network driver for device.
11890  */
netdev_drivername(const struct net_device * dev)11891 const char *netdev_drivername(const struct net_device *dev)
11892 {
11893 	const struct device_driver *driver;
11894 	const struct device *parent;
11895 	const char *empty = "";
11896 
11897 	parent = dev->dev.parent;
11898 	if (!parent)
11899 		return empty;
11900 
11901 	driver = parent->driver;
11902 	if (driver && driver->name)
11903 		return driver->name;
11904 	return empty;
11905 }
11906 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11907 static void __netdev_printk(const char *level, const struct net_device *dev,
11908 			    struct va_format *vaf)
11909 {
11910 	if (dev && dev->dev.parent) {
11911 		dev_printk_emit(level[1] - '0',
11912 				dev->dev.parent,
11913 				"%s %s %s%s: %pV",
11914 				dev_driver_string(dev->dev.parent),
11915 				dev_name(dev->dev.parent),
11916 				netdev_name(dev), netdev_reg_state(dev),
11917 				vaf);
11918 	} else if (dev) {
11919 		printk("%s%s%s: %pV",
11920 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11921 	} else {
11922 		printk("%s(NULL net_device): %pV", level, vaf);
11923 	}
11924 }
11925 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11926 void netdev_printk(const char *level, const struct net_device *dev,
11927 		   const char *format, ...)
11928 {
11929 	struct va_format vaf;
11930 	va_list args;
11931 
11932 	va_start(args, format);
11933 
11934 	vaf.fmt = format;
11935 	vaf.va = &args;
11936 
11937 	__netdev_printk(level, dev, &vaf);
11938 
11939 	va_end(args);
11940 }
11941 EXPORT_SYMBOL(netdev_printk);
11942 
11943 #define define_netdev_printk_level(func, level)			\
11944 void func(const struct net_device *dev, const char *fmt, ...)	\
11945 {								\
11946 	struct va_format vaf;					\
11947 	va_list args;						\
11948 								\
11949 	va_start(args, fmt);					\
11950 								\
11951 	vaf.fmt = fmt;						\
11952 	vaf.va = &args;						\
11953 								\
11954 	__netdev_printk(level, dev, &vaf);			\
11955 								\
11956 	va_end(args);						\
11957 }								\
11958 EXPORT_SYMBOL(func);
11959 
11960 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11961 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11962 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11963 define_netdev_printk_level(netdev_err, KERN_ERR);
11964 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11965 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11966 define_netdev_printk_level(netdev_info, KERN_INFO);
11967 
netdev_exit(struct net * net)11968 static void __net_exit netdev_exit(struct net *net)
11969 {
11970 	kfree(net->dev_name_head);
11971 	kfree(net->dev_index_head);
11972 	xa_destroy(&net->dev_by_index);
11973 	if (net != &init_net)
11974 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11975 }
11976 
11977 static struct pernet_operations __net_initdata netdev_net_ops = {
11978 	.init = netdev_init,
11979 	.exit = netdev_exit,
11980 };
11981 
default_device_exit_net(struct net * net)11982 static void __net_exit default_device_exit_net(struct net *net)
11983 {
11984 	struct netdev_name_node *name_node, *tmp;
11985 	struct net_device *dev, *aux;
11986 	/*
11987 	 * Push all migratable network devices back to the
11988 	 * initial network namespace
11989 	 */
11990 	ASSERT_RTNL();
11991 	for_each_netdev_safe(net, dev, aux) {
11992 		int err;
11993 		char fb_name[IFNAMSIZ];
11994 
11995 		/* Ignore unmoveable devices (i.e. loopback) */
11996 		if (dev->netns_local)
11997 			continue;
11998 
11999 		/* Leave virtual devices for the generic cleanup */
12000 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12001 			continue;
12002 
12003 		/* Push remaining network devices to init_net */
12004 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12005 		if (netdev_name_in_use(&init_net, fb_name))
12006 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12007 
12008 		netdev_for_each_altname_safe(dev, name_node, tmp)
12009 			if (netdev_name_in_use(&init_net, name_node->name))
12010 				__netdev_name_node_alt_destroy(name_node);
12011 
12012 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12013 		if (err) {
12014 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12015 				 __func__, dev->name, err);
12016 			BUG();
12017 		}
12018 	}
12019 }
12020 
default_device_exit_batch(struct list_head * net_list)12021 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12022 {
12023 	/* At exit all network devices most be removed from a network
12024 	 * namespace.  Do this in the reverse order of registration.
12025 	 * Do this across as many network namespaces as possible to
12026 	 * improve batching efficiency.
12027 	 */
12028 	struct net_device *dev;
12029 	struct net *net;
12030 	LIST_HEAD(dev_kill_list);
12031 
12032 	rtnl_lock();
12033 	list_for_each_entry(net, net_list, exit_list) {
12034 		default_device_exit_net(net);
12035 		cond_resched();
12036 	}
12037 
12038 	list_for_each_entry(net, net_list, exit_list) {
12039 		for_each_netdev_reverse(net, dev) {
12040 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12041 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12042 			else
12043 				unregister_netdevice_queue(dev, &dev_kill_list);
12044 		}
12045 	}
12046 	unregister_netdevice_many(&dev_kill_list);
12047 	rtnl_unlock();
12048 }
12049 
12050 static struct pernet_operations __net_initdata default_device_ops = {
12051 	.exit_batch = default_device_exit_batch,
12052 };
12053 
net_dev_struct_check(void)12054 static void __init net_dev_struct_check(void)
12055 {
12056 	/* TX read-mostly hotpath */
12057 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12058 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12059 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12060 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12061 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12062 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12063 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12064 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12065 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12066 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12067 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12068 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12069 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12070 #ifdef CONFIG_XPS
12071 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12072 #endif
12073 #ifdef CONFIG_NETFILTER_EGRESS
12074 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12075 #endif
12076 #ifdef CONFIG_NET_XGRESS
12077 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12078 #endif
12079 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12080 
12081 	/* TXRX read-mostly hotpath */
12082 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12083 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12084 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12085 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12086 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12087 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12088 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12089 
12090 	/* RX read-mostly hotpath */
12091 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12092 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12093 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12094 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12095 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
12096 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
12097 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12098 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12099 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12100 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12101 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12102 #ifdef CONFIG_NETPOLL
12103 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12104 #endif
12105 #ifdef CONFIG_NET_XGRESS
12106 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12107 #endif
12108 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
12109 }
12110 
12111 /*
12112  *	Initialize the DEV module. At boot time this walks the device list and
12113  *	unhooks any devices that fail to initialise (normally hardware not
12114  *	present) and leaves us with a valid list of present and active devices.
12115  *
12116  */
12117 
12118 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12119 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12120 
net_page_pool_create(int cpuid)12121 static int net_page_pool_create(int cpuid)
12122 {
12123 #if IS_ENABLED(CONFIG_PAGE_POOL)
12124 	struct page_pool_params page_pool_params = {
12125 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12126 		.flags = PP_FLAG_SYSTEM_POOL,
12127 		.nid = cpu_to_mem(cpuid),
12128 	};
12129 	struct page_pool *pp_ptr;
12130 
12131 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12132 	if (IS_ERR(pp_ptr))
12133 		return -ENOMEM;
12134 
12135 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12136 #endif
12137 	return 0;
12138 }
12139 
backlog_napi_should_run(unsigned int cpu)12140 static int backlog_napi_should_run(unsigned int cpu)
12141 {
12142 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12143 	struct napi_struct *napi = &sd->backlog;
12144 
12145 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12146 }
12147 
run_backlog_napi(unsigned int cpu)12148 static void run_backlog_napi(unsigned int cpu)
12149 {
12150 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12151 
12152 	napi_threaded_poll_loop(&sd->backlog);
12153 }
12154 
backlog_napi_setup(unsigned int cpu)12155 static void backlog_napi_setup(unsigned int cpu)
12156 {
12157 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12158 	struct napi_struct *napi = &sd->backlog;
12159 
12160 	napi->thread = this_cpu_read(backlog_napi);
12161 	set_bit(NAPI_STATE_THREADED, &napi->state);
12162 }
12163 
12164 static struct smp_hotplug_thread backlog_threads = {
12165 	.store			= &backlog_napi,
12166 	.thread_should_run	= backlog_napi_should_run,
12167 	.thread_fn		= run_backlog_napi,
12168 	.thread_comm		= "backlog_napi/%u",
12169 	.setup			= backlog_napi_setup,
12170 };
12171 
12172 /*
12173  *       This is called single threaded during boot, so no need
12174  *       to take the rtnl semaphore.
12175  */
net_dev_init(void)12176 static int __init net_dev_init(void)
12177 {
12178 	int i, rc = -ENOMEM;
12179 
12180 	BUG_ON(!dev_boot_phase);
12181 
12182 	net_dev_struct_check();
12183 
12184 	if (dev_proc_init())
12185 		goto out;
12186 
12187 	if (netdev_kobject_init())
12188 		goto out;
12189 
12190 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12191 		INIT_LIST_HEAD(&ptype_base[i]);
12192 
12193 	if (register_pernet_subsys(&netdev_net_ops))
12194 		goto out;
12195 
12196 	/*
12197 	 *	Initialise the packet receive queues.
12198 	 */
12199 
12200 	for_each_possible_cpu(i) {
12201 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
12202 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12203 
12204 		INIT_WORK(flush, flush_backlog);
12205 
12206 		skb_queue_head_init(&sd->input_pkt_queue);
12207 		skb_queue_head_init(&sd->process_queue);
12208 #ifdef CONFIG_XFRM_OFFLOAD
12209 		skb_queue_head_init(&sd->xfrm_backlog);
12210 #endif
12211 		INIT_LIST_HEAD(&sd->poll_list);
12212 		sd->output_queue_tailp = &sd->output_queue;
12213 #ifdef CONFIG_RPS
12214 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12215 		sd->cpu = i;
12216 #endif
12217 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12218 		spin_lock_init(&sd->defer_lock);
12219 
12220 		init_gro_hash(&sd->backlog);
12221 		sd->backlog.poll = process_backlog;
12222 		sd->backlog.weight = weight_p;
12223 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12224 
12225 		if (net_page_pool_create(i))
12226 			goto out;
12227 	}
12228 	if (use_backlog_threads())
12229 		smpboot_register_percpu_thread(&backlog_threads);
12230 
12231 	dev_boot_phase = 0;
12232 
12233 	/* The loopback device is special if any other network devices
12234 	 * is present in a network namespace the loopback device must
12235 	 * be present. Since we now dynamically allocate and free the
12236 	 * loopback device ensure this invariant is maintained by
12237 	 * keeping the loopback device as the first device on the
12238 	 * list of network devices.  Ensuring the loopback devices
12239 	 * is the first device that appears and the last network device
12240 	 * that disappears.
12241 	 */
12242 	if (register_pernet_device(&loopback_net_ops))
12243 		goto out;
12244 
12245 	if (register_pernet_device(&default_device_ops))
12246 		goto out;
12247 
12248 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12249 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12250 
12251 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12252 				       NULL, dev_cpu_dead);
12253 	WARN_ON(rc < 0);
12254 	rc = 0;
12255 
12256 	/* avoid static key IPIs to isolated CPUs */
12257 	if (housekeeping_enabled(HK_TYPE_MISC))
12258 		net_enable_timestamp();
12259 out:
12260 	if (rc < 0) {
12261 		for_each_possible_cpu(i) {
12262 			struct page_pool *pp_ptr;
12263 
12264 			pp_ptr = per_cpu(system_page_pool, i);
12265 			if (!pp_ptr)
12266 				continue;
12267 
12268 			page_pool_destroy(pp_ptr);
12269 			per_cpu(system_page_pool, i) = NULL;
12270 		}
12271 	}
12272 
12273 	return rc;
12274 }
12275 
12276 subsys_initcall(net_dev_init);
12277