• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * NILFS segment constructor.
4  *
5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6  *
7  * Written by Ryusuke Konishi.
8  *
9  */
10 
11 #include <linux/pagemap.h>
12 #include <linux/buffer_head.h>
13 #include <linux/writeback.h>
14 #include <linux/bitops.h>
15 #include <linux/bio.h>
16 #include <linux/completion.h>
17 #include <linux/blkdev.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <linux/kthread.h>
21 #include <linux/crc32.h>
22 #include <linux/pagevec.h>
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 
26 #include "nilfs.h"
27 #include "btnode.h"
28 #include "page.h"
29 #include "segment.h"
30 #include "sufile.h"
31 #include "cpfile.h"
32 #include "ifile.h"
33 #include "segbuf.h"
34 
35 
36 /*
37  * Segment constructor
38  */
39 #define SC_N_INODEVEC	16   /* Size of locally allocated inode vector */
40 
41 #define SC_MAX_SEGDELTA 64   /*
42 			      * Upper limit of the number of segments
43 			      * appended in collection retry loop
44 			      */
45 
46 /* Construction mode */
47 enum {
48 	SC_LSEG_SR = 1,	/* Make a logical segment having a super root */
49 	SC_LSEG_DSYNC,	/*
50 			 * Flush data blocks of a given file and make
51 			 * a logical segment without a super root.
52 			 */
53 	SC_FLUSH_FILE,	/*
54 			 * Flush data files, leads to segment writes without
55 			 * creating a checkpoint.
56 			 */
57 	SC_FLUSH_DAT,	/*
58 			 * Flush DAT file.  This also creates segments
59 			 * without a checkpoint.
60 			 */
61 };
62 
63 /* Stage numbers of dirty block collection */
64 enum {
65 	NILFS_ST_INIT = 0,
66 	NILFS_ST_GC,		/* Collecting dirty blocks for GC */
67 	NILFS_ST_FILE,
68 	NILFS_ST_IFILE,
69 	NILFS_ST_CPFILE,
70 	NILFS_ST_SUFILE,
71 	NILFS_ST_DAT,
72 	NILFS_ST_SR,		/* Super root */
73 	NILFS_ST_DSYNC,		/* Data sync blocks */
74 	NILFS_ST_DONE,
75 };
76 
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/nilfs2.h>
79 
80 /*
81  * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are
82  * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of
83  * the variable must use them because transition of stage count must involve
84  * trace events (trace_nilfs2_collection_stage_transition).
85  *
86  * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't
87  * produce tracepoint events. It is provided just for making the intention
88  * clear.
89  */
nilfs_sc_cstage_inc(struct nilfs_sc_info * sci)90 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci)
91 {
92 	sci->sc_stage.scnt++;
93 	trace_nilfs2_collection_stage_transition(sci);
94 }
95 
nilfs_sc_cstage_set(struct nilfs_sc_info * sci,int next_scnt)96 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt)
97 {
98 	sci->sc_stage.scnt = next_scnt;
99 	trace_nilfs2_collection_stage_transition(sci);
100 }
101 
nilfs_sc_cstage_get(struct nilfs_sc_info * sci)102 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci)
103 {
104 	return sci->sc_stage.scnt;
105 }
106 
107 /* State flags of collection */
108 #define NILFS_CF_NODE		0x0001	/* Collecting node blocks */
109 #define NILFS_CF_IFILE_STARTED	0x0002	/* IFILE stage has started */
110 #define NILFS_CF_SUFREED	0x0004	/* segment usages has been freed */
111 #define NILFS_CF_HISTORY_MASK	(NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
112 
113 /* Operations depending on the construction mode and file type */
114 struct nilfs_sc_operations {
115 	int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
116 			    struct inode *);
117 	int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
118 			    struct inode *);
119 	int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
120 			    struct inode *);
121 	void (*write_data_binfo)(struct nilfs_sc_info *,
122 				 struct nilfs_segsum_pointer *,
123 				 union nilfs_binfo *);
124 	void (*write_node_binfo)(struct nilfs_sc_info *,
125 				 struct nilfs_segsum_pointer *,
126 				 union nilfs_binfo *);
127 };
128 
129 /*
130  * Other definitions
131  */
132 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
133 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
134 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
135 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
136 
137 #define nilfs_cnt32_ge(a, b)   \
138 	(typecheck(__u32, a) && typecheck(__u32, b) && \
139 	 ((__s32)((a) - (b)) >= 0))
140 
nilfs_prepare_segment_lock(struct super_block * sb,struct nilfs_transaction_info * ti)141 static int nilfs_prepare_segment_lock(struct super_block *sb,
142 				      struct nilfs_transaction_info *ti)
143 {
144 	struct nilfs_transaction_info *cur_ti = current->journal_info;
145 	void *save = NULL;
146 
147 	if (cur_ti) {
148 		if (cur_ti->ti_magic == NILFS_TI_MAGIC)
149 			return ++cur_ti->ti_count;
150 
151 		/*
152 		 * If journal_info field is occupied by other FS,
153 		 * it is saved and will be restored on
154 		 * nilfs_transaction_commit().
155 		 */
156 		nilfs_warn(sb, "journal info from a different FS");
157 		save = current->journal_info;
158 	}
159 	if (!ti) {
160 		ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
161 		if (!ti)
162 			return -ENOMEM;
163 		ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
164 	} else {
165 		ti->ti_flags = 0;
166 	}
167 	ti->ti_count = 0;
168 	ti->ti_save = save;
169 	ti->ti_magic = NILFS_TI_MAGIC;
170 	current->journal_info = ti;
171 	return 0;
172 }
173 
174 /**
175  * nilfs_transaction_begin - start indivisible file operations.
176  * @sb: super block
177  * @ti: nilfs_transaction_info
178  * @vacancy_check: flags for vacancy rate checks
179  *
180  * nilfs_transaction_begin() acquires a reader/writer semaphore, called
181  * the segment semaphore, to make a segment construction and write tasks
182  * exclusive.  The function is used with nilfs_transaction_commit() in pairs.
183  * The region enclosed by these two functions can be nested.  To avoid a
184  * deadlock, the semaphore is only acquired or released in the outermost call.
185  *
186  * This function allocates a nilfs_transaction_info struct to keep context
187  * information on it.  It is initialized and hooked onto the current task in
188  * the outermost call.  If a pre-allocated struct is given to @ti, it is used
189  * instead; otherwise a new struct is assigned from a slab.
190  *
191  * When @vacancy_check flag is set, this function will check the amount of
192  * free space, and will wait for the GC to reclaim disk space if low capacity.
193  *
194  * Return Value: On success, 0 is returned. On error, one of the following
195  * negative error code is returned.
196  *
197  * %-ENOMEM - Insufficient memory available.
198  *
199  * %-ENOSPC - No space left on device
200  */
nilfs_transaction_begin(struct super_block * sb,struct nilfs_transaction_info * ti,int vacancy_check)201 int nilfs_transaction_begin(struct super_block *sb,
202 			    struct nilfs_transaction_info *ti,
203 			    int vacancy_check)
204 {
205 	struct the_nilfs *nilfs;
206 	int ret = nilfs_prepare_segment_lock(sb, ti);
207 	struct nilfs_transaction_info *trace_ti;
208 
209 	if (unlikely(ret < 0))
210 		return ret;
211 	if (ret > 0) {
212 		trace_ti = current->journal_info;
213 
214 		trace_nilfs2_transaction_transition(sb, trace_ti,
215 				    trace_ti->ti_count, trace_ti->ti_flags,
216 				    TRACE_NILFS2_TRANSACTION_BEGIN);
217 		return 0;
218 	}
219 
220 	sb_start_intwrite(sb);
221 
222 	nilfs = sb->s_fs_info;
223 	down_read(&nilfs->ns_segctor_sem);
224 	if (vacancy_check && nilfs_near_disk_full(nilfs)) {
225 		up_read(&nilfs->ns_segctor_sem);
226 		ret = -ENOSPC;
227 		goto failed;
228 	}
229 
230 	trace_ti = current->journal_info;
231 	trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count,
232 					    trace_ti->ti_flags,
233 					    TRACE_NILFS2_TRANSACTION_BEGIN);
234 	return 0;
235 
236  failed:
237 	ti = current->journal_info;
238 	current->journal_info = ti->ti_save;
239 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
240 		kmem_cache_free(nilfs_transaction_cachep, ti);
241 	sb_end_intwrite(sb);
242 	return ret;
243 }
244 
245 /**
246  * nilfs_transaction_commit - commit indivisible file operations.
247  * @sb: super block
248  *
249  * nilfs_transaction_commit() releases the read semaphore which is
250  * acquired by nilfs_transaction_begin(). This is only performed
251  * in outermost call of this function.  If a commit flag is set,
252  * nilfs_transaction_commit() sets a timer to start the segment
253  * constructor.  If a sync flag is set, it starts construction
254  * directly.
255  */
nilfs_transaction_commit(struct super_block * sb)256 int nilfs_transaction_commit(struct super_block *sb)
257 {
258 	struct nilfs_transaction_info *ti = current->journal_info;
259 	struct the_nilfs *nilfs = sb->s_fs_info;
260 	int err = 0;
261 
262 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
263 	ti->ti_flags |= NILFS_TI_COMMIT;
264 	if (ti->ti_count > 0) {
265 		ti->ti_count--;
266 		trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
267 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
268 		return 0;
269 	}
270 	if (nilfs->ns_writer) {
271 		struct nilfs_sc_info *sci = nilfs->ns_writer;
272 
273 		if (ti->ti_flags & NILFS_TI_COMMIT)
274 			nilfs_segctor_start_timer(sci);
275 		if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
276 			nilfs_segctor_do_flush(sci, 0);
277 	}
278 	up_read(&nilfs->ns_segctor_sem);
279 	trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
280 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
281 
282 	current->journal_info = ti->ti_save;
283 
284 	if (ti->ti_flags & NILFS_TI_SYNC)
285 		err = nilfs_construct_segment(sb);
286 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
287 		kmem_cache_free(nilfs_transaction_cachep, ti);
288 	sb_end_intwrite(sb);
289 	return err;
290 }
291 
nilfs_transaction_abort(struct super_block * sb)292 void nilfs_transaction_abort(struct super_block *sb)
293 {
294 	struct nilfs_transaction_info *ti = current->journal_info;
295 	struct the_nilfs *nilfs = sb->s_fs_info;
296 
297 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
298 	if (ti->ti_count > 0) {
299 		ti->ti_count--;
300 		trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
301 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
302 		return;
303 	}
304 	up_read(&nilfs->ns_segctor_sem);
305 
306 	trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
307 		    ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
308 
309 	current->journal_info = ti->ti_save;
310 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
311 		kmem_cache_free(nilfs_transaction_cachep, ti);
312 	sb_end_intwrite(sb);
313 }
314 
nilfs_relax_pressure_in_lock(struct super_block * sb)315 void nilfs_relax_pressure_in_lock(struct super_block *sb)
316 {
317 	struct the_nilfs *nilfs = sb->s_fs_info;
318 	struct nilfs_sc_info *sci = nilfs->ns_writer;
319 
320 	if (sb_rdonly(sb) || unlikely(!sci) || !sci->sc_flush_request)
321 		return;
322 
323 	set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
324 	up_read(&nilfs->ns_segctor_sem);
325 
326 	down_write(&nilfs->ns_segctor_sem);
327 	if (sci->sc_flush_request &&
328 	    test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
329 		struct nilfs_transaction_info *ti = current->journal_info;
330 
331 		ti->ti_flags |= NILFS_TI_WRITER;
332 		nilfs_segctor_do_immediate_flush(sci);
333 		ti->ti_flags &= ~NILFS_TI_WRITER;
334 	}
335 	downgrade_write(&nilfs->ns_segctor_sem);
336 }
337 
nilfs_transaction_lock(struct super_block * sb,struct nilfs_transaction_info * ti,int gcflag)338 static void nilfs_transaction_lock(struct super_block *sb,
339 				   struct nilfs_transaction_info *ti,
340 				   int gcflag)
341 {
342 	struct nilfs_transaction_info *cur_ti = current->journal_info;
343 	struct the_nilfs *nilfs = sb->s_fs_info;
344 	struct nilfs_sc_info *sci = nilfs->ns_writer;
345 
346 	WARN_ON(cur_ti);
347 	ti->ti_flags = NILFS_TI_WRITER;
348 	ti->ti_count = 0;
349 	ti->ti_save = cur_ti;
350 	ti->ti_magic = NILFS_TI_MAGIC;
351 	current->journal_info = ti;
352 
353 	for (;;) {
354 		trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
355 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK);
356 
357 		down_write(&nilfs->ns_segctor_sem);
358 		if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
359 			break;
360 
361 		nilfs_segctor_do_immediate_flush(sci);
362 
363 		up_write(&nilfs->ns_segctor_sem);
364 		cond_resched();
365 	}
366 	if (gcflag)
367 		ti->ti_flags |= NILFS_TI_GC;
368 
369 	trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
370 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK);
371 }
372 
nilfs_transaction_unlock(struct super_block * sb)373 static void nilfs_transaction_unlock(struct super_block *sb)
374 {
375 	struct nilfs_transaction_info *ti = current->journal_info;
376 	struct the_nilfs *nilfs = sb->s_fs_info;
377 
378 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
379 	BUG_ON(ti->ti_count > 0);
380 
381 	up_write(&nilfs->ns_segctor_sem);
382 	current->journal_info = ti->ti_save;
383 
384 	trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
385 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK);
386 }
387 
nilfs_segctor_map_segsum_entry(struct nilfs_sc_info * sci,struct nilfs_segsum_pointer * ssp,unsigned int bytes)388 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
389 					    struct nilfs_segsum_pointer *ssp,
390 					    unsigned int bytes)
391 {
392 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
393 	unsigned int blocksize = sci->sc_super->s_blocksize;
394 	void *p;
395 
396 	if (unlikely(ssp->offset + bytes > blocksize)) {
397 		ssp->offset = 0;
398 		BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
399 					       &segbuf->sb_segsum_buffers));
400 		ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
401 	}
402 	p = ssp->bh->b_data + ssp->offset;
403 	ssp->offset += bytes;
404 	return p;
405 }
406 
407 /**
408  * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
409  * @sci: nilfs_sc_info
410  */
nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info * sci)411 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
412 {
413 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
414 	struct buffer_head *sumbh;
415 	unsigned int sumbytes;
416 	unsigned int flags = 0;
417 	int err;
418 
419 	if (nilfs_doing_gc())
420 		flags = NILFS_SS_GC;
421 	err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
422 	if (unlikely(err))
423 		return err;
424 
425 	sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
426 	sumbytes = segbuf->sb_sum.sumbytes;
427 	sci->sc_finfo_ptr.bh = sumbh;  sci->sc_finfo_ptr.offset = sumbytes;
428 	sci->sc_binfo_ptr.bh = sumbh;  sci->sc_binfo_ptr.offset = sumbytes;
429 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
430 	return 0;
431 }
432 
433 /**
434  * nilfs_segctor_zeropad_segsum - zero pad the rest of the segment summary area
435  * @sci: segment constructor object
436  *
437  * nilfs_segctor_zeropad_segsum() zero-fills unallocated space at the end of
438  * the current segment summary block.
439  */
nilfs_segctor_zeropad_segsum(struct nilfs_sc_info * sci)440 static void nilfs_segctor_zeropad_segsum(struct nilfs_sc_info *sci)
441 {
442 	struct nilfs_segsum_pointer *ssp;
443 
444 	ssp = sci->sc_blk_cnt > 0 ? &sci->sc_binfo_ptr : &sci->sc_finfo_ptr;
445 	if (ssp->offset < ssp->bh->b_size)
446 		memset(ssp->bh->b_data + ssp->offset, 0,
447 		       ssp->bh->b_size - ssp->offset);
448 }
449 
nilfs_segctor_feed_segment(struct nilfs_sc_info * sci)450 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
451 {
452 	sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
453 	if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
454 		return -E2BIG; /*
455 				* The current segment is filled up
456 				* (internal code)
457 				*/
458 	nilfs_segctor_zeropad_segsum(sci);
459 	sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
460 	return nilfs_segctor_reset_segment_buffer(sci);
461 }
462 
nilfs_segctor_add_super_root(struct nilfs_sc_info * sci)463 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
464 {
465 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
466 	int err;
467 
468 	if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
469 		err = nilfs_segctor_feed_segment(sci);
470 		if (err)
471 			return err;
472 		segbuf = sci->sc_curseg;
473 	}
474 	err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
475 	if (likely(!err))
476 		segbuf->sb_sum.flags |= NILFS_SS_SR;
477 	return err;
478 }
479 
480 /*
481  * Functions for making segment summary and payloads
482  */
nilfs_segctor_segsum_block_required(struct nilfs_sc_info * sci,const struct nilfs_segsum_pointer * ssp,unsigned int binfo_size)483 static int nilfs_segctor_segsum_block_required(
484 	struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
485 	unsigned int binfo_size)
486 {
487 	unsigned int blocksize = sci->sc_super->s_blocksize;
488 	/* Size of finfo and binfo is enough small against blocksize */
489 
490 	return ssp->offset + binfo_size +
491 		(!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
492 		blocksize;
493 }
494 
nilfs_segctor_begin_finfo(struct nilfs_sc_info * sci,struct inode * inode)495 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
496 				      struct inode *inode)
497 {
498 	sci->sc_curseg->sb_sum.nfinfo++;
499 	sci->sc_binfo_ptr = sci->sc_finfo_ptr;
500 	nilfs_segctor_map_segsum_entry(
501 		sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
502 
503 	if (NILFS_I(inode)->i_root &&
504 	    !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
505 		set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
506 	/* skip finfo */
507 }
508 
nilfs_segctor_end_finfo(struct nilfs_sc_info * sci,struct inode * inode)509 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
510 				    struct inode *inode)
511 {
512 	struct nilfs_finfo *finfo;
513 	struct nilfs_inode_info *ii;
514 	struct nilfs_segment_buffer *segbuf;
515 	__u64 cno;
516 
517 	if (sci->sc_blk_cnt == 0)
518 		return;
519 
520 	ii = NILFS_I(inode);
521 
522 	if (ii->i_type & NILFS_I_TYPE_GC)
523 		cno = ii->i_cno;
524 	else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
525 		cno = 0;
526 	else
527 		cno = sci->sc_cno;
528 
529 	finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
530 						 sizeof(*finfo));
531 	finfo->fi_ino = cpu_to_le64(inode->i_ino);
532 	finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
533 	finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
534 	finfo->fi_cno = cpu_to_le64(cno);
535 
536 	segbuf = sci->sc_curseg;
537 	segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
538 		sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
539 	sci->sc_finfo_ptr = sci->sc_binfo_ptr;
540 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
541 }
542 
nilfs_segctor_add_file_block(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode,unsigned int binfo_size)543 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
544 					struct buffer_head *bh,
545 					struct inode *inode,
546 					unsigned int binfo_size)
547 {
548 	struct nilfs_segment_buffer *segbuf;
549 	int required, err = 0;
550 
551  retry:
552 	segbuf = sci->sc_curseg;
553 	required = nilfs_segctor_segsum_block_required(
554 		sci, &sci->sc_binfo_ptr, binfo_size);
555 	if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
556 		nilfs_segctor_end_finfo(sci, inode);
557 		err = nilfs_segctor_feed_segment(sci);
558 		if (err)
559 			return err;
560 		goto retry;
561 	}
562 	if (unlikely(required)) {
563 		nilfs_segctor_zeropad_segsum(sci);
564 		err = nilfs_segbuf_extend_segsum(segbuf);
565 		if (unlikely(err))
566 			goto failed;
567 	}
568 	if (sci->sc_blk_cnt == 0)
569 		nilfs_segctor_begin_finfo(sci, inode);
570 
571 	nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
572 	/* Substitution to vblocknr is delayed until update_blocknr() */
573 	nilfs_segbuf_add_file_buffer(segbuf, bh);
574 	sci->sc_blk_cnt++;
575  failed:
576 	return err;
577 }
578 
579 /*
580  * Callback functions that enumerate, mark, and collect dirty blocks
581  */
nilfs_collect_file_data(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode)582 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
583 				   struct buffer_head *bh, struct inode *inode)
584 {
585 	int err;
586 
587 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
588 	if (err < 0)
589 		return err;
590 
591 	err = nilfs_segctor_add_file_block(sci, bh, inode,
592 					   sizeof(struct nilfs_binfo_v));
593 	if (!err)
594 		sci->sc_datablk_cnt++;
595 	return err;
596 }
597 
nilfs_collect_file_node(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode)598 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
599 				   struct buffer_head *bh,
600 				   struct inode *inode)
601 {
602 	return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
603 }
604 
nilfs_collect_file_bmap(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode)605 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
606 				   struct buffer_head *bh,
607 				   struct inode *inode)
608 {
609 	WARN_ON(!buffer_dirty(bh));
610 	return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
611 }
612 
nilfs_write_file_data_binfo(struct nilfs_sc_info * sci,struct nilfs_segsum_pointer * ssp,union nilfs_binfo * binfo)613 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
614 					struct nilfs_segsum_pointer *ssp,
615 					union nilfs_binfo *binfo)
616 {
617 	struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
618 		sci, ssp, sizeof(*binfo_v));
619 	*binfo_v = binfo->bi_v;
620 }
621 
nilfs_write_file_node_binfo(struct nilfs_sc_info * sci,struct nilfs_segsum_pointer * ssp,union nilfs_binfo * binfo)622 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
623 					struct nilfs_segsum_pointer *ssp,
624 					union nilfs_binfo *binfo)
625 {
626 	__le64 *vblocknr = nilfs_segctor_map_segsum_entry(
627 		sci, ssp, sizeof(*vblocknr));
628 	*vblocknr = binfo->bi_v.bi_vblocknr;
629 }
630 
631 static const struct nilfs_sc_operations nilfs_sc_file_ops = {
632 	.collect_data = nilfs_collect_file_data,
633 	.collect_node = nilfs_collect_file_node,
634 	.collect_bmap = nilfs_collect_file_bmap,
635 	.write_data_binfo = nilfs_write_file_data_binfo,
636 	.write_node_binfo = nilfs_write_file_node_binfo,
637 };
638 
nilfs_collect_dat_data(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode)639 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
640 				  struct buffer_head *bh, struct inode *inode)
641 {
642 	int err;
643 
644 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
645 	if (err < 0)
646 		return err;
647 
648 	err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
649 	if (!err)
650 		sci->sc_datablk_cnt++;
651 	return err;
652 }
653 
nilfs_collect_dat_bmap(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode)654 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
655 				  struct buffer_head *bh, struct inode *inode)
656 {
657 	WARN_ON(!buffer_dirty(bh));
658 	return nilfs_segctor_add_file_block(sci, bh, inode,
659 					    sizeof(struct nilfs_binfo_dat));
660 }
661 
nilfs_write_dat_data_binfo(struct nilfs_sc_info * sci,struct nilfs_segsum_pointer * ssp,union nilfs_binfo * binfo)662 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
663 				       struct nilfs_segsum_pointer *ssp,
664 				       union nilfs_binfo *binfo)
665 {
666 	__le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
667 							  sizeof(*blkoff));
668 	*blkoff = binfo->bi_dat.bi_blkoff;
669 }
670 
nilfs_write_dat_node_binfo(struct nilfs_sc_info * sci,struct nilfs_segsum_pointer * ssp,union nilfs_binfo * binfo)671 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
672 				       struct nilfs_segsum_pointer *ssp,
673 				       union nilfs_binfo *binfo)
674 {
675 	struct nilfs_binfo_dat *binfo_dat =
676 		nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
677 	*binfo_dat = binfo->bi_dat;
678 }
679 
680 static const struct nilfs_sc_operations nilfs_sc_dat_ops = {
681 	.collect_data = nilfs_collect_dat_data,
682 	.collect_node = nilfs_collect_file_node,
683 	.collect_bmap = nilfs_collect_dat_bmap,
684 	.write_data_binfo = nilfs_write_dat_data_binfo,
685 	.write_node_binfo = nilfs_write_dat_node_binfo,
686 };
687 
688 static const struct nilfs_sc_operations nilfs_sc_dsync_ops = {
689 	.collect_data = nilfs_collect_file_data,
690 	.collect_node = NULL,
691 	.collect_bmap = NULL,
692 	.write_data_binfo = nilfs_write_file_data_binfo,
693 	.write_node_binfo = NULL,
694 };
695 
nilfs_lookup_dirty_data_buffers(struct inode * inode,struct list_head * listp,size_t nlimit,loff_t start,loff_t end)696 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
697 					      struct list_head *listp,
698 					      size_t nlimit,
699 					      loff_t start, loff_t end)
700 {
701 	struct address_space *mapping = inode->i_mapping;
702 	struct folio_batch fbatch;
703 	pgoff_t index = 0, last = ULONG_MAX;
704 	size_t ndirties = 0;
705 	int i;
706 
707 	if (unlikely(start != 0 || end != LLONG_MAX)) {
708 		/*
709 		 * A valid range is given for sync-ing data pages. The
710 		 * range is rounded to per-page; extra dirty buffers
711 		 * may be included if blocksize < pagesize.
712 		 */
713 		index = start >> PAGE_SHIFT;
714 		last = end >> PAGE_SHIFT;
715 	}
716 	folio_batch_init(&fbatch);
717  repeat:
718 	if (unlikely(index > last) ||
719 	      !filemap_get_folios_tag(mapping, &index, last,
720 		      PAGECACHE_TAG_DIRTY, &fbatch))
721 		return ndirties;
722 
723 	for (i = 0; i < folio_batch_count(&fbatch); i++) {
724 		struct buffer_head *bh, *head;
725 		struct folio *folio = fbatch.folios[i];
726 
727 		folio_lock(folio);
728 		if (unlikely(folio->mapping != mapping)) {
729 			/* Exclude folios removed from the address space */
730 			folio_unlock(folio);
731 			continue;
732 		}
733 		head = folio_buffers(folio);
734 		if (!head)
735 			head = create_empty_buffers(folio,
736 					i_blocksize(inode), 0);
737 
738 		bh = head;
739 		do {
740 			if (!buffer_dirty(bh) || buffer_async_write(bh))
741 				continue;
742 			get_bh(bh);
743 			list_add_tail(&bh->b_assoc_buffers, listp);
744 			ndirties++;
745 			if (unlikely(ndirties >= nlimit)) {
746 				folio_unlock(folio);
747 				folio_batch_release(&fbatch);
748 				cond_resched();
749 				return ndirties;
750 			}
751 		} while (bh = bh->b_this_page, bh != head);
752 
753 		folio_unlock(folio);
754 	}
755 	folio_batch_release(&fbatch);
756 	cond_resched();
757 	goto repeat;
758 }
759 
nilfs_lookup_dirty_node_buffers(struct inode * inode,struct list_head * listp)760 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
761 					    struct list_head *listp)
762 {
763 	struct nilfs_inode_info *ii = NILFS_I(inode);
764 	struct inode *btnc_inode = ii->i_assoc_inode;
765 	struct folio_batch fbatch;
766 	struct buffer_head *bh, *head;
767 	unsigned int i;
768 	pgoff_t index = 0;
769 
770 	if (!btnc_inode)
771 		return;
772 	folio_batch_init(&fbatch);
773 
774 	while (filemap_get_folios_tag(btnc_inode->i_mapping, &index,
775 				(pgoff_t)-1, PAGECACHE_TAG_DIRTY, &fbatch)) {
776 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
777 			bh = head = folio_buffers(fbatch.folios[i]);
778 			do {
779 				if (buffer_dirty(bh) &&
780 						!buffer_async_write(bh)) {
781 					get_bh(bh);
782 					list_add_tail(&bh->b_assoc_buffers,
783 						      listp);
784 				}
785 				bh = bh->b_this_page;
786 			} while (bh != head);
787 		}
788 		folio_batch_release(&fbatch);
789 		cond_resched();
790 	}
791 }
792 
nilfs_dispose_list(struct the_nilfs * nilfs,struct list_head * head,int force)793 static void nilfs_dispose_list(struct the_nilfs *nilfs,
794 			       struct list_head *head, int force)
795 {
796 	struct nilfs_inode_info *ii, *n;
797 	struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
798 	unsigned int nv = 0;
799 
800 	while (!list_empty(head)) {
801 		spin_lock(&nilfs->ns_inode_lock);
802 		list_for_each_entry_safe(ii, n, head, i_dirty) {
803 			list_del_init(&ii->i_dirty);
804 			if (force) {
805 				if (unlikely(ii->i_bh)) {
806 					brelse(ii->i_bh);
807 					ii->i_bh = NULL;
808 				}
809 			} else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
810 				set_bit(NILFS_I_QUEUED, &ii->i_state);
811 				list_add_tail(&ii->i_dirty,
812 					      &nilfs->ns_dirty_files);
813 				continue;
814 			}
815 			ivec[nv++] = ii;
816 			if (nv == SC_N_INODEVEC)
817 				break;
818 		}
819 		spin_unlock(&nilfs->ns_inode_lock);
820 
821 		for (pii = ivec; nv > 0; pii++, nv--)
822 			iput(&(*pii)->vfs_inode);
823 	}
824 }
825 
nilfs_iput_work_func(struct work_struct * work)826 static void nilfs_iput_work_func(struct work_struct *work)
827 {
828 	struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info,
829 						 sc_iput_work);
830 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
831 
832 	nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0);
833 }
834 
nilfs_test_metadata_dirty(struct the_nilfs * nilfs,struct nilfs_root * root)835 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
836 				     struct nilfs_root *root)
837 {
838 	int ret = 0;
839 
840 	if (nilfs_mdt_fetch_dirty(root->ifile))
841 		ret++;
842 	if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
843 		ret++;
844 	if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
845 		ret++;
846 	if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
847 		ret++;
848 	return ret;
849 }
850 
nilfs_segctor_clean(struct nilfs_sc_info * sci)851 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
852 {
853 	return list_empty(&sci->sc_dirty_files) &&
854 		!test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
855 		sci->sc_nfreesegs == 0 &&
856 		(!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
857 }
858 
nilfs_segctor_confirm(struct nilfs_sc_info * sci)859 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
860 {
861 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
862 	int ret = 0;
863 
864 	if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
865 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
866 
867 	spin_lock(&nilfs->ns_inode_lock);
868 	if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
869 		ret++;
870 
871 	spin_unlock(&nilfs->ns_inode_lock);
872 	return ret;
873 }
874 
nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info * sci)875 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
876 {
877 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
878 
879 	nilfs_mdt_clear_dirty(sci->sc_root->ifile);
880 	nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
881 	nilfs_mdt_clear_dirty(nilfs->ns_sufile);
882 	nilfs_mdt_clear_dirty(nilfs->ns_dat);
883 }
884 
nilfs_fill_in_file_bmap(struct inode * ifile,struct nilfs_inode_info * ii)885 static void nilfs_fill_in_file_bmap(struct inode *ifile,
886 				    struct nilfs_inode_info *ii)
887 
888 {
889 	struct buffer_head *ibh;
890 	struct nilfs_inode *raw_inode;
891 
892 	if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
893 		ibh = ii->i_bh;
894 		BUG_ON(!ibh);
895 		raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
896 						  ibh);
897 		nilfs_bmap_write(ii->i_bmap, raw_inode);
898 		nilfs_ifile_unmap_inode(raw_inode);
899 	}
900 }
901 
nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info * sci)902 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
903 {
904 	struct nilfs_inode_info *ii;
905 
906 	list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
907 		nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
908 		set_bit(NILFS_I_COLLECTED, &ii->i_state);
909 	}
910 }
911 
912 /**
913  * nilfs_write_root_mdt_inode - export root metadata inode information to
914  *                              the on-disk inode
915  * @inode:     inode object of the root metadata file
916  * @raw_inode: on-disk inode
917  *
918  * nilfs_write_root_mdt_inode() writes inode information and bmap data of
919  * @inode to the inode area of the metadata file allocated on the super root
920  * block created to finalize the log.  Since super root blocks are configured
921  * each time, this function zero-fills the unused area of @raw_inode.
922  */
nilfs_write_root_mdt_inode(struct inode * inode,struct nilfs_inode * raw_inode)923 static void nilfs_write_root_mdt_inode(struct inode *inode,
924 				       struct nilfs_inode *raw_inode)
925 {
926 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
927 
928 	nilfs_write_inode_common(inode, raw_inode);
929 
930 	/* zero-fill unused portion of raw_inode */
931 	raw_inode->i_xattr = 0;
932 	raw_inode->i_pad = 0;
933 	memset((void *)raw_inode + sizeof(*raw_inode), 0,
934 	       nilfs->ns_inode_size - sizeof(*raw_inode));
935 
936 	nilfs_bmap_write(NILFS_I(inode)->i_bmap, raw_inode);
937 }
938 
nilfs_segctor_fill_in_super_root(struct nilfs_sc_info * sci,struct the_nilfs * nilfs)939 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
940 					     struct the_nilfs *nilfs)
941 {
942 	struct buffer_head *bh_sr;
943 	struct nilfs_super_root *raw_sr;
944 	unsigned int isz, srsz;
945 
946 	bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
947 
948 	lock_buffer(bh_sr);
949 	raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
950 	isz = nilfs->ns_inode_size;
951 	srsz = NILFS_SR_BYTES(isz);
952 
953 	raw_sr->sr_sum = 0;  /* Ensure initialization within this update */
954 	raw_sr->sr_bytes = cpu_to_le16(srsz);
955 	raw_sr->sr_nongc_ctime
956 		= cpu_to_le64(nilfs_doing_gc() ?
957 			      nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
958 	raw_sr->sr_flags = 0;
959 
960 	nilfs_write_root_mdt_inode(nilfs->ns_dat, (void *)raw_sr +
961 				   NILFS_SR_DAT_OFFSET(isz));
962 	nilfs_write_root_mdt_inode(nilfs->ns_cpfile, (void *)raw_sr +
963 				   NILFS_SR_CPFILE_OFFSET(isz));
964 	nilfs_write_root_mdt_inode(nilfs->ns_sufile, (void *)raw_sr +
965 				   NILFS_SR_SUFILE_OFFSET(isz));
966 
967 	memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
968 	set_buffer_uptodate(bh_sr);
969 	unlock_buffer(bh_sr);
970 }
971 
nilfs_redirty_inodes(struct list_head * head)972 static void nilfs_redirty_inodes(struct list_head *head)
973 {
974 	struct nilfs_inode_info *ii;
975 
976 	list_for_each_entry(ii, head, i_dirty) {
977 		if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
978 			clear_bit(NILFS_I_COLLECTED, &ii->i_state);
979 	}
980 }
981 
nilfs_drop_collected_inodes(struct list_head * head)982 static void nilfs_drop_collected_inodes(struct list_head *head)
983 {
984 	struct nilfs_inode_info *ii;
985 
986 	list_for_each_entry(ii, head, i_dirty) {
987 		if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
988 			continue;
989 
990 		clear_bit(NILFS_I_INODE_SYNC, &ii->i_state);
991 		set_bit(NILFS_I_UPDATED, &ii->i_state);
992 	}
993 }
994 
nilfs_segctor_apply_buffers(struct nilfs_sc_info * sci,struct inode * inode,struct list_head * listp,int (* collect)(struct nilfs_sc_info *,struct buffer_head *,struct inode *))995 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
996 				       struct inode *inode,
997 				       struct list_head *listp,
998 				       int (*collect)(struct nilfs_sc_info *,
999 						      struct buffer_head *,
1000 						      struct inode *))
1001 {
1002 	struct buffer_head *bh, *n;
1003 	int err = 0;
1004 
1005 	if (collect) {
1006 		list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
1007 			list_del_init(&bh->b_assoc_buffers);
1008 			err = collect(sci, bh, inode);
1009 			brelse(bh);
1010 			if (unlikely(err))
1011 				goto dispose_buffers;
1012 		}
1013 		return 0;
1014 	}
1015 
1016  dispose_buffers:
1017 	while (!list_empty(listp)) {
1018 		bh = list_first_entry(listp, struct buffer_head,
1019 				      b_assoc_buffers);
1020 		list_del_init(&bh->b_assoc_buffers);
1021 		brelse(bh);
1022 	}
1023 	return err;
1024 }
1025 
nilfs_segctor_buffer_rest(struct nilfs_sc_info * sci)1026 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
1027 {
1028 	/* Remaining number of blocks within segment buffer */
1029 	return sci->sc_segbuf_nblocks -
1030 		(sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
1031 }
1032 
nilfs_segctor_scan_file(struct nilfs_sc_info * sci,struct inode * inode,const struct nilfs_sc_operations * sc_ops)1033 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
1034 				   struct inode *inode,
1035 				   const struct nilfs_sc_operations *sc_ops)
1036 {
1037 	LIST_HEAD(data_buffers);
1038 	LIST_HEAD(node_buffers);
1039 	int err;
1040 
1041 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1042 		size_t n, rest = nilfs_segctor_buffer_rest(sci);
1043 
1044 		n = nilfs_lookup_dirty_data_buffers(
1045 			inode, &data_buffers, rest + 1, 0, LLONG_MAX);
1046 		if (n > rest) {
1047 			err = nilfs_segctor_apply_buffers(
1048 				sci, inode, &data_buffers,
1049 				sc_ops->collect_data);
1050 			BUG_ON(!err); /* always receive -E2BIG or true error */
1051 			goto break_or_fail;
1052 		}
1053 	}
1054 	nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
1055 
1056 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1057 		err = nilfs_segctor_apply_buffers(
1058 			sci, inode, &data_buffers, sc_ops->collect_data);
1059 		if (unlikely(err)) {
1060 			/* dispose node list */
1061 			nilfs_segctor_apply_buffers(
1062 				sci, inode, &node_buffers, NULL);
1063 			goto break_or_fail;
1064 		}
1065 		sci->sc_stage.flags |= NILFS_CF_NODE;
1066 	}
1067 	/* Collect node */
1068 	err = nilfs_segctor_apply_buffers(
1069 		sci, inode, &node_buffers, sc_ops->collect_node);
1070 	if (unlikely(err))
1071 		goto break_or_fail;
1072 
1073 	nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1074 	err = nilfs_segctor_apply_buffers(
1075 		sci, inode, &node_buffers, sc_ops->collect_bmap);
1076 	if (unlikely(err))
1077 		goto break_or_fail;
1078 
1079 	nilfs_segctor_end_finfo(sci, inode);
1080 	sci->sc_stage.flags &= ~NILFS_CF_NODE;
1081 
1082  break_or_fail:
1083 	return err;
1084 }
1085 
nilfs_segctor_scan_file_dsync(struct nilfs_sc_info * sci,struct inode * inode)1086 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1087 					 struct inode *inode)
1088 {
1089 	LIST_HEAD(data_buffers);
1090 	size_t n, rest = nilfs_segctor_buffer_rest(sci);
1091 	int err;
1092 
1093 	n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1094 					    sci->sc_dsync_start,
1095 					    sci->sc_dsync_end);
1096 
1097 	err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1098 					  nilfs_collect_file_data);
1099 	if (!err) {
1100 		nilfs_segctor_end_finfo(sci, inode);
1101 		BUG_ON(n > rest);
1102 		/* always receive -E2BIG or true error if n > rest */
1103 	}
1104 	return err;
1105 }
1106 
1107 /**
1108  * nilfs_free_segments - free the segments given by an array of segment numbers
1109  * @nilfs:   nilfs object
1110  * @segnumv: array of segment numbers to be freed
1111  * @nsegs:   number of segments to be freed in @segnumv
1112  *
1113  * nilfs_free_segments() wraps nilfs_sufile_freev() and
1114  * nilfs_sufile_cancel_freev(), and edits the segment usage metadata file
1115  * (sufile) to free all segments given by @segnumv and @nsegs at once.  If
1116  * it fails midway, it cancels the changes so that none of the segments are
1117  * freed.  If @nsegs is 0, this function does nothing.
1118  *
1119  * The freeing of segments is not finalized until the writing of a log with
1120  * a super root block containing this sufile change is complete, and it can
1121  * be canceled with nilfs_sufile_cancel_freev() until then.
1122  *
1123  * Return: 0 on success, or the following negative error code on failure.
1124  * * %-EINVAL	- Invalid segment number.
1125  * * %-EIO	- I/O error (including metadata corruption).
1126  * * %-ENOMEM	- Insufficient memory available.
1127  */
nilfs_free_segments(struct the_nilfs * nilfs,__u64 * segnumv,size_t nsegs)1128 static int nilfs_free_segments(struct the_nilfs *nilfs, __u64 *segnumv,
1129 			       size_t nsegs)
1130 {
1131 	size_t ndone;
1132 	int ret;
1133 
1134 	if (!nsegs)
1135 		return 0;
1136 
1137 	ret = nilfs_sufile_freev(nilfs->ns_sufile, segnumv, nsegs, &ndone);
1138 	if (unlikely(ret)) {
1139 		nilfs_sufile_cancel_freev(nilfs->ns_sufile, segnumv, ndone,
1140 					  NULL);
1141 		/*
1142 		 * If a segment usage of the segments to be freed is in a
1143 		 * hole block, nilfs_sufile_freev() will return -ENOENT.
1144 		 * In this case, -EINVAL should be returned to the caller
1145 		 * since there is something wrong with the given segment
1146 		 * number array.  This error can only occur during GC, so
1147 		 * there is no need to worry about it propagating to other
1148 		 * callers (such as fsync).
1149 		 */
1150 		if (ret == -ENOENT) {
1151 			nilfs_err(nilfs->ns_sb,
1152 				  "The segment usage entry %llu to be freed is invalid (in a hole)",
1153 				  (unsigned long long)segnumv[ndone]);
1154 			ret = -EINVAL;
1155 		}
1156 	}
1157 	return ret;
1158 }
1159 
nilfs_segctor_collect_blocks(struct nilfs_sc_info * sci,int mode)1160 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1161 {
1162 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1163 	struct list_head *head;
1164 	struct nilfs_inode_info *ii;
1165 	int err = 0;
1166 
1167 	switch (nilfs_sc_cstage_get(sci)) {
1168 	case NILFS_ST_INIT:
1169 		/* Pre-processes */
1170 		sci->sc_stage.flags = 0;
1171 
1172 		if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1173 			sci->sc_nblk_inc = 0;
1174 			sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1175 			if (mode == SC_LSEG_DSYNC) {
1176 				nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC);
1177 				goto dsync_mode;
1178 			}
1179 		}
1180 
1181 		sci->sc_stage.dirty_file_ptr = NULL;
1182 		sci->sc_stage.gc_inode_ptr = NULL;
1183 		if (mode == SC_FLUSH_DAT) {
1184 			nilfs_sc_cstage_set(sci, NILFS_ST_DAT);
1185 			goto dat_stage;
1186 		}
1187 		nilfs_sc_cstage_inc(sci);
1188 		fallthrough;
1189 	case NILFS_ST_GC:
1190 		if (nilfs_doing_gc()) {
1191 			head = &sci->sc_gc_inodes;
1192 			ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1193 						head, i_dirty);
1194 			list_for_each_entry_continue(ii, head, i_dirty) {
1195 				err = nilfs_segctor_scan_file(
1196 					sci, &ii->vfs_inode,
1197 					&nilfs_sc_file_ops);
1198 				if (unlikely(err)) {
1199 					sci->sc_stage.gc_inode_ptr = list_entry(
1200 						ii->i_dirty.prev,
1201 						struct nilfs_inode_info,
1202 						i_dirty);
1203 					goto break_or_fail;
1204 				}
1205 				set_bit(NILFS_I_COLLECTED, &ii->i_state);
1206 			}
1207 			sci->sc_stage.gc_inode_ptr = NULL;
1208 		}
1209 		nilfs_sc_cstage_inc(sci);
1210 		fallthrough;
1211 	case NILFS_ST_FILE:
1212 		head = &sci->sc_dirty_files;
1213 		ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1214 					i_dirty);
1215 		list_for_each_entry_continue(ii, head, i_dirty) {
1216 			clear_bit(NILFS_I_DIRTY, &ii->i_state);
1217 
1218 			err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1219 						      &nilfs_sc_file_ops);
1220 			if (unlikely(err)) {
1221 				sci->sc_stage.dirty_file_ptr =
1222 					list_entry(ii->i_dirty.prev,
1223 						   struct nilfs_inode_info,
1224 						   i_dirty);
1225 				goto break_or_fail;
1226 			}
1227 			/* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1228 			/* XXX: required ? */
1229 		}
1230 		sci->sc_stage.dirty_file_ptr = NULL;
1231 		if (mode == SC_FLUSH_FILE) {
1232 			nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1233 			return 0;
1234 		}
1235 		nilfs_sc_cstage_inc(sci);
1236 		sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1237 		fallthrough;
1238 	case NILFS_ST_IFILE:
1239 		err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
1240 					      &nilfs_sc_file_ops);
1241 		if (unlikely(err))
1242 			break;
1243 		nilfs_sc_cstage_inc(sci);
1244 		/* Creating a checkpoint */
1245 		err = nilfs_cpfile_create_checkpoint(nilfs->ns_cpfile,
1246 						     nilfs->ns_cno);
1247 		if (unlikely(err))
1248 			break;
1249 		fallthrough;
1250 	case NILFS_ST_CPFILE:
1251 		err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1252 					      &nilfs_sc_file_ops);
1253 		if (unlikely(err))
1254 			break;
1255 		nilfs_sc_cstage_inc(sci);
1256 		fallthrough;
1257 	case NILFS_ST_SUFILE:
1258 		err = nilfs_free_segments(nilfs, sci->sc_freesegs,
1259 					  sci->sc_nfreesegs);
1260 		if (unlikely(err))
1261 			break;
1262 		sci->sc_stage.flags |= NILFS_CF_SUFREED;
1263 
1264 		err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1265 					      &nilfs_sc_file_ops);
1266 		if (unlikely(err))
1267 			break;
1268 		nilfs_sc_cstage_inc(sci);
1269 		fallthrough;
1270 	case NILFS_ST_DAT:
1271  dat_stage:
1272 		err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
1273 					      &nilfs_sc_dat_ops);
1274 		if (unlikely(err))
1275 			break;
1276 		if (mode == SC_FLUSH_DAT) {
1277 			nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1278 			return 0;
1279 		}
1280 		nilfs_sc_cstage_inc(sci);
1281 		fallthrough;
1282 	case NILFS_ST_SR:
1283 		if (mode == SC_LSEG_SR) {
1284 			/* Appending a super root */
1285 			err = nilfs_segctor_add_super_root(sci);
1286 			if (unlikely(err))
1287 				break;
1288 		}
1289 		/* End of a logical segment */
1290 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1291 		nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1292 		return 0;
1293 	case NILFS_ST_DSYNC:
1294  dsync_mode:
1295 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1296 		ii = sci->sc_dsync_inode;
1297 		if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1298 			break;
1299 
1300 		err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1301 		if (unlikely(err))
1302 			break;
1303 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1304 		nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1305 		return 0;
1306 	case NILFS_ST_DONE:
1307 		return 0;
1308 	default:
1309 		BUG();
1310 	}
1311 
1312  break_or_fail:
1313 	return err;
1314 }
1315 
1316 /**
1317  * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1318  * @sci: nilfs_sc_info
1319  * @nilfs: nilfs object
1320  */
nilfs_segctor_begin_construction(struct nilfs_sc_info * sci,struct the_nilfs * nilfs)1321 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1322 					    struct the_nilfs *nilfs)
1323 {
1324 	struct nilfs_segment_buffer *segbuf, *prev;
1325 	__u64 nextnum;
1326 	int err, alloc = 0;
1327 
1328 	segbuf = nilfs_segbuf_new(sci->sc_super);
1329 	if (unlikely(!segbuf))
1330 		return -ENOMEM;
1331 
1332 	if (list_empty(&sci->sc_write_logs)) {
1333 		nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
1334 				 nilfs->ns_pseg_offset, nilfs);
1335 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1336 			nilfs_shift_to_next_segment(nilfs);
1337 			nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1338 		}
1339 
1340 		segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1341 		nextnum = nilfs->ns_nextnum;
1342 
1343 		if (nilfs->ns_segnum == nilfs->ns_nextnum)
1344 			/* Start from the head of a new full segment */
1345 			alloc++;
1346 	} else {
1347 		/* Continue logs */
1348 		prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1349 		nilfs_segbuf_map_cont(segbuf, prev);
1350 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
1351 		nextnum = prev->sb_nextnum;
1352 
1353 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1354 			nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1355 			segbuf->sb_sum.seg_seq++;
1356 			alloc++;
1357 		}
1358 	}
1359 
1360 	err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
1361 	if (err)
1362 		goto failed;
1363 
1364 	if (alloc) {
1365 		err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1366 		if (err)
1367 			goto failed;
1368 	}
1369 	nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1370 
1371 	BUG_ON(!list_empty(&sci->sc_segbufs));
1372 	list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
1373 	sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1374 	return 0;
1375 
1376  failed:
1377 	nilfs_segbuf_free(segbuf);
1378 	return err;
1379 }
1380 
nilfs_segctor_extend_segments(struct nilfs_sc_info * sci,struct the_nilfs * nilfs,int nadd)1381 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1382 					 struct the_nilfs *nilfs, int nadd)
1383 {
1384 	struct nilfs_segment_buffer *segbuf, *prev;
1385 	struct inode *sufile = nilfs->ns_sufile;
1386 	__u64 nextnextnum;
1387 	LIST_HEAD(list);
1388 	int err, ret, i;
1389 
1390 	prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1391 	/*
1392 	 * Since the segment specified with nextnum might be allocated during
1393 	 * the previous construction, the buffer including its segusage may
1394 	 * not be dirty.  The following call ensures that the buffer is dirty
1395 	 * and will pin the buffer on memory until the sufile is written.
1396 	 */
1397 	err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
1398 	if (unlikely(err))
1399 		return err;
1400 
1401 	for (i = 0; i < nadd; i++) {
1402 		/* extend segment info */
1403 		err = -ENOMEM;
1404 		segbuf = nilfs_segbuf_new(sci->sc_super);
1405 		if (unlikely(!segbuf))
1406 			goto failed;
1407 
1408 		/* map this buffer to region of segment on-disk */
1409 		nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1410 		sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1411 
1412 		/* allocate the next next full segment */
1413 		err = nilfs_sufile_alloc(sufile, &nextnextnum);
1414 		if (unlikely(err))
1415 			goto failed_segbuf;
1416 
1417 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1418 		nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1419 
1420 		list_add_tail(&segbuf->sb_list, &list);
1421 		prev = segbuf;
1422 	}
1423 	list_splice_tail(&list, &sci->sc_segbufs);
1424 	return 0;
1425 
1426  failed_segbuf:
1427 	nilfs_segbuf_free(segbuf);
1428  failed:
1429 	list_for_each_entry(segbuf, &list, sb_list) {
1430 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1431 		WARN_ON(ret); /* never fails */
1432 	}
1433 	nilfs_destroy_logs(&list);
1434 	return err;
1435 }
1436 
nilfs_free_incomplete_logs(struct list_head * logs,struct the_nilfs * nilfs)1437 static void nilfs_free_incomplete_logs(struct list_head *logs,
1438 				       struct the_nilfs *nilfs)
1439 {
1440 	struct nilfs_segment_buffer *segbuf, *prev;
1441 	struct inode *sufile = nilfs->ns_sufile;
1442 	int ret;
1443 
1444 	segbuf = NILFS_FIRST_SEGBUF(logs);
1445 	if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1446 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1447 		WARN_ON(ret); /* never fails */
1448 	}
1449 	if (atomic_read(&segbuf->sb_err)) {
1450 		/* Case 1: The first segment failed */
1451 		if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1452 			/*
1453 			 * Case 1a:  Partial segment appended into an existing
1454 			 * segment
1455 			 */
1456 			nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1457 						segbuf->sb_fseg_end);
1458 		else /* Case 1b:  New full segment */
1459 			set_nilfs_discontinued(nilfs);
1460 	}
1461 
1462 	prev = segbuf;
1463 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1464 		if (prev->sb_nextnum != segbuf->sb_nextnum) {
1465 			ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1466 			WARN_ON(ret); /* never fails */
1467 		}
1468 		if (atomic_read(&segbuf->sb_err) &&
1469 		    segbuf->sb_segnum != nilfs->ns_nextnum)
1470 			/* Case 2: extended segment (!= next) failed */
1471 			nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
1472 		prev = segbuf;
1473 	}
1474 }
1475 
nilfs_segctor_update_segusage(struct nilfs_sc_info * sci,struct inode * sufile)1476 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1477 					  struct inode *sufile)
1478 {
1479 	struct nilfs_segment_buffer *segbuf;
1480 	unsigned long live_blocks;
1481 	int ret;
1482 
1483 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1484 		live_blocks = segbuf->sb_sum.nblocks +
1485 			(segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1486 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1487 						     live_blocks,
1488 						     sci->sc_seg_ctime);
1489 		WARN_ON(ret); /* always succeed because the segusage is dirty */
1490 	}
1491 }
1492 
nilfs_cancel_segusage(struct list_head * logs,struct inode * sufile)1493 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
1494 {
1495 	struct nilfs_segment_buffer *segbuf;
1496 	int ret;
1497 
1498 	segbuf = NILFS_FIRST_SEGBUF(logs);
1499 	ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1500 					     segbuf->sb_pseg_start -
1501 					     segbuf->sb_fseg_start, 0);
1502 	WARN_ON(ret); /* always succeed because the segusage is dirty */
1503 
1504 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1505 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1506 						     0, 0);
1507 		WARN_ON(ret); /* always succeed */
1508 	}
1509 }
1510 
nilfs_segctor_truncate_segments(struct nilfs_sc_info * sci,struct nilfs_segment_buffer * last,struct inode * sufile)1511 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1512 					    struct nilfs_segment_buffer *last,
1513 					    struct inode *sufile)
1514 {
1515 	struct nilfs_segment_buffer *segbuf = last;
1516 	int ret;
1517 
1518 	list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1519 		sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1520 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1521 		WARN_ON(ret);
1522 	}
1523 	nilfs_truncate_logs(&sci->sc_segbufs, last);
1524 }
1525 
1526 
nilfs_segctor_collect(struct nilfs_sc_info * sci,struct the_nilfs * nilfs,int mode)1527 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1528 				 struct the_nilfs *nilfs, int mode)
1529 {
1530 	struct nilfs_cstage prev_stage = sci->sc_stage;
1531 	int err, nadd = 1;
1532 
1533 	/* Collection retry loop */
1534 	for (;;) {
1535 		sci->sc_nblk_this_inc = 0;
1536 		sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1537 
1538 		err = nilfs_segctor_reset_segment_buffer(sci);
1539 		if (unlikely(err))
1540 			goto failed;
1541 
1542 		err = nilfs_segctor_collect_blocks(sci, mode);
1543 		sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1544 		if (!err)
1545 			break;
1546 
1547 		if (unlikely(err != -E2BIG))
1548 			goto failed;
1549 
1550 		/* The current segment is filled up */
1551 		if (mode != SC_LSEG_SR ||
1552 		    nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE)
1553 			break;
1554 
1555 		nilfs_clear_logs(&sci->sc_segbufs);
1556 
1557 		if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1558 			err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1559 							sci->sc_freesegs,
1560 							sci->sc_nfreesegs,
1561 							NULL);
1562 			WARN_ON(err); /* do not happen */
1563 			sci->sc_stage.flags &= ~NILFS_CF_SUFREED;
1564 		}
1565 
1566 		err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1567 		if (unlikely(err))
1568 			return err;
1569 
1570 		nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1571 		sci->sc_stage = prev_stage;
1572 	}
1573 	nilfs_segctor_zeropad_segsum(sci);
1574 	nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1575 	return 0;
1576 
1577  failed:
1578 	return err;
1579 }
1580 
nilfs_list_replace_buffer(struct buffer_head * old_bh,struct buffer_head * new_bh)1581 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1582 				      struct buffer_head *new_bh)
1583 {
1584 	BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1585 
1586 	list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1587 	/* The caller must release old_bh */
1588 }
1589 
1590 static int
nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info * sci,struct nilfs_segment_buffer * segbuf,int mode)1591 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1592 				     struct nilfs_segment_buffer *segbuf,
1593 				     int mode)
1594 {
1595 	struct inode *inode = NULL;
1596 	sector_t blocknr;
1597 	unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1598 	unsigned long nblocks = 0, ndatablk = 0;
1599 	const struct nilfs_sc_operations *sc_op = NULL;
1600 	struct nilfs_segsum_pointer ssp;
1601 	struct nilfs_finfo *finfo = NULL;
1602 	union nilfs_binfo binfo;
1603 	struct buffer_head *bh, *bh_org;
1604 	ino_t ino = 0;
1605 	int err = 0;
1606 
1607 	if (!nfinfo)
1608 		goto out;
1609 
1610 	blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1611 	ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1612 	ssp.offset = sizeof(struct nilfs_segment_summary);
1613 
1614 	list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1615 		if (bh == segbuf->sb_super_root)
1616 			break;
1617 		if (!finfo) {
1618 			finfo =	nilfs_segctor_map_segsum_entry(
1619 				sci, &ssp, sizeof(*finfo));
1620 			ino = le64_to_cpu(finfo->fi_ino);
1621 			nblocks = le32_to_cpu(finfo->fi_nblocks);
1622 			ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1623 
1624 			inode = bh->b_folio->mapping->host;
1625 
1626 			if (mode == SC_LSEG_DSYNC)
1627 				sc_op = &nilfs_sc_dsync_ops;
1628 			else if (ino == NILFS_DAT_INO)
1629 				sc_op = &nilfs_sc_dat_ops;
1630 			else /* file blocks */
1631 				sc_op = &nilfs_sc_file_ops;
1632 		}
1633 		bh_org = bh;
1634 		get_bh(bh_org);
1635 		err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1636 					&binfo);
1637 		if (bh != bh_org)
1638 			nilfs_list_replace_buffer(bh_org, bh);
1639 		brelse(bh_org);
1640 		if (unlikely(err))
1641 			goto failed_bmap;
1642 
1643 		if (ndatablk > 0)
1644 			sc_op->write_data_binfo(sci, &ssp, &binfo);
1645 		else
1646 			sc_op->write_node_binfo(sci, &ssp, &binfo);
1647 
1648 		blocknr++;
1649 		if (--nblocks == 0) {
1650 			finfo = NULL;
1651 			if (--nfinfo == 0)
1652 				break;
1653 		} else if (ndatablk > 0)
1654 			ndatablk--;
1655 	}
1656  out:
1657 	return 0;
1658 
1659  failed_bmap:
1660 	return err;
1661 }
1662 
nilfs_segctor_assign(struct nilfs_sc_info * sci,int mode)1663 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1664 {
1665 	struct nilfs_segment_buffer *segbuf;
1666 	int err;
1667 
1668 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1669 		err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1670 		if (unlikely(err))
1671 			return err;
1672 		nilfs_segbuf_fill_in_segsum(segbuf);
1673 	}
1674 	return 0;
1675 }
1676 
nilfs_begin_folio_io(struct folio * folio)1677 static void nilfs_begin_folio_io(struct folio *folio)
1678 {
1679 	if (!folio || folio_test_writeback(folio))
1680 		/*
1681 		 * For split b-tree node pages, this function may be called
1682 		 * twice.  We ignore the 2nd or later calls by this check.
1683 		 */
1684 		return;
1685 
1686 	folio_lock(folio);
1687 	folio_clear_dirty_for_io(folio);
1688 	folio_start_writeback(folio);
1689 	folio_unlock(folio);
1690 }
1691 
1692 /**
1693  * nilfs_prepare_write_logs - prepare to write logs
1694  * @logs: logs to prepare for writing
1695  * @seed: checksum seed value
1696  *
1697  * nilfs_prepare_write_logs() adds checksums and prepares the block
1698  * buffers/folios for writing logs.  In order to stabilize folios of
1699  * memory-mapped file blocks by putting them in writeback state before
1700  * calculating the checksums, first prepare to write payload blocks other
1701  * than segment summary and super root blocks in which the checksums will
1702  * be embedded.
1703  */
nilfs_prepare_write_logs(struct list_head * logs,u32 seed)1704 static void nilfs_prepare_write_logs(struct list_head *logs, u32 seed)
1705 {
1706 	struct nilfs_segment_buffer *segbuf;
1707 	struct folio *bd_folio = NULL, *fs_folio = NULL;
1708 	struct buffer_head *bh;
1709 
1710 	/* Prepare to write payload blocks */
1711 	list_for_each_entry(segbuf, logs, sb_list) {
1712 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1713 				    b_assoc_buffers) {
1714 			if (bh == segbuf->sb_super_root)
1715 				break;
1716 			set_buffer_async_write(bh);
1717 			if (bh->b_folio != fs_folio) {
1718 				nilfs_begin_folio_io(fs_folio);
1719 				fs_folio = bh->b_folio;
1720 			}
1721 		}
1722 	}
1723 	nilfs_begin_folio_io(fs_folio);
1724 
1725 	nilfs_add_checksums_on_logs(logs, seed);
1726 
1727 	/* Prepare to write segment summary blocks */
1728 	list_for_each_entry(segbuf, logs, sb_list) {
1729 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1730 				    b_assoc_buffers) {
1731 			mark_buffer_dirty(bh);
1732 			if (bh->b_folio == bd_folio)
1733 				continue;
1734 			if (bd_folio) {
1735 				folio_lock(bd_folio);
1736 				folio_wait_writeback(bd_folio);
1737 				folio_clear_dirty_for_io(bd_folio);
1738 				folio_start_writeback(bd_folio);
1739 				folio_unlock(bd_folio);
1740 			}
1741 			bd_folio = bh->b_folio;
1742 		}
1743 	}
1744 
1745 	/* Prepare to write super root block */
1746 	bh = NILFS_LAST_SEGBUF(logs)->sb_super_root;
1747 	if (bh) {
1748 		mark_buffer_dirty(bh);
1749 		if (bh->b_folio != bd_folio) {
1750 			folio_lock(bd_folio);
1751 			folio_wait_writeback(bd_folio);
1752 			folio_clear_dirty_for_io(bd_folio);
1753 			folio_start_writeback(bd_folio);
1754 			folio_unlock(bd_folio);
1755 			bd_folio = bh->b_folio;
1756 		}
1757 	}
1758 
1759 	if (bd_folio) {
1760 		folio_lock(bd_folio);
1761 		folio_wait_writeback(bd_folio);
1762 		folio_clear_dirty_for_io(bd_folio);
1763 		folio_start_writeback(bd_folio);
1764 		folio_unlock(bd_folio);
1765 	}
1766 }
1767 
nilfs_segctor_write(struct nilfs_sc_info * sci,struct the_nilfs * nilfs)1768 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1769 			       struct the_nilfs *nilfs)
1770 {
1771 	int ret;
1772 
1773 	ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
1774 	list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
1775 	return ret;
1776 }
1777 
nilfs_end_folio_io(struct folio * folio,int err)1778 static void nilfs_end_folio_io(struct folio *folio, int err)
1779 {
1780 	if (!folio)
1781 		return;
1782 
1783 	if (buffer_nilfs_node(folio_buffers(folio)) &&
1784 			!folio_test_writeback(folio)) {
1785 		/*
1786 		 * For b-tree node pages, this function may be called twice
1787 		 * or more because they might be split in a segment.
1788 		 */
1789 		if (folio_test_dirty(folio)) {
1790 			/*
1791 			 * For pages holding split b-tree node buffers, dirty
1792 			 * flag on the buffers may be cleared discretely.
1793 			 * In that case, the page is once redirtied for
1794 			 * remaining buffers, and it must be cancelled if
1795 			 * all the buffers get cleaned later.
1796 			 */
1797 			folio_lock(folio);
1798 			if (nilfs_folio_buffers_clean(folio))
1799 				__nilfs_clear_folio_dirty(folio);
1800 			folio_unlock(folio);
1801 		}
1802 		return;
1803 	}
1804 
1805 	if (err || !nilfs_folio_buffers_clean(folio))
1806 		filemap_dirty_folio(folio->mapping, folio);
1807 
1808 	folio_end_writeback(folio);
1809 }
1810 
nilfs_abort_logs(struct list_head * logs,int err)1811 static void nilfs_abort_logs(struct list_head *logs, int err)
1812 {
1813 	struct nilfs_segment_buffer *segbuf;
1814 	struct folio *bd_folio = NULL, *fs_folio = NULL;
1815 	struct buffer_head *bh;
1816 
1817 	if (list_empty(logs))
1818 		return;
1819 
1820 	list_for_each_entry(segbuf, logs, sb_list) {
1821 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1822 				    b_assoc_buffers) {
1823 			clear_buffer_uptodate(bh);
1824 			if (bh->b_folio != bd_folio) {
1825 				if (bd_folio)
1826 					folio_end_writeback(bd_folio);
1827 				bd_folio = bh->b_folio;
1828 			}
1829 		}
1830 
1831 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1832 				    b_assoc_buffers) {
1833 			if (bh == segbuf->sb_super_root) {
1834 				clear_buffer_uptodate(bh);
1835 				if (bh->b_folio != bd_folio) {
1836 					folio_end_writeback(bd_folio);
1837 					bd_folio = bh->b_folio;
1838 				}
1839 				break;
1840 			}
1841 			clear_buffer_async_write(bh);
1842 			if (bh->b_folio != fs_folio) {
1843 				nilfs_end_folio_io(fs_folio, err);
1844 				fs_folio = bh->b_folio;
1845 			}
1846 		}
1847 	}
1848 	if (bd_folio)
1849 		folio_end_writeback(bd_folio);
1850 
1851 	nilfs_end_folio_io(fs_folio, err);
1852 }
1853 
nilfs_segctor_abort_construction(struct nilfs_sc_info * sci,struct the_nilfs * nilfs,int err)1854 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
1855 					     struct the_nilfs *nilfs, int err)
1856 {
1857 	LIST_HEAD(logs);
1858 	int ret;
1859 
1860 	list_splice_tail_init(&sci->sc_write_logs, &logs);
1861 	ret = nilfs_wait_on_logs(&logs);
1862 	nilfs_abort_logs(&logs, ret ? : err);
1863 
1864 	list_splice_tail_init(&sci->sc_segbufs, &logs);
1865 	if (list_empty(&logs))
1866 		return; /* if the first segment buffer preparation failed */
1867 
1868 	nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
1869 	nilfs_free_incomplete_logs(&logs, nilfs);
1870 
1871 	if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1872 		ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1873 						sci->sc_freesegs,
1874 						sci->sc_nfreesegs,
1875 						NULL);
1876 		WARN_ON(ret); /* do not happen */
1877 	}
1878 
1879 	nilfs_destroy_logs(&logs);
1880 }
1881 
nilfs_set_next_segment(struct the_nilfs * nilfs,struct nilfs_segment_buffer * segbuf)1882 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1883 				   struct nilfs_segment_buffer *segbuf)
1884 {
1885 	nilfs->ns_segnum = segbuf->sb_segnum;
1886 	nilfs->ns_nextnum = segbuf->sb_nextnum;
1887 	nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1888 		+ segbuf->sb_sum.nblocks;
1889 	nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1890 	nilfs->ns_ctime = segbuf->sb_sum.ctime;
1891 }
1892 
nilfs_segctor_complete_write(struct nilfs_sc_info * sci)1893 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1894 {
1895 	struct nilfs_segment_buffer *segbuf;
1896 	struct folio *bd_folio = NULL, *fs_folio = NULL;
1897 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1898 	int update_sr = false;
1899 
1900 	list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
1901 		struct buffer_head *bh;
1902 
1903 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1904 				    b_assoc_buffers) {
1905 			set_buffer_uptodate(bh);
1906 			clear_buffer_dirty(bh);
1907 			if (bh->b_folio != bd_folio) {
1908 				if (bd_folio)
1909 					folio_end_writeback(bd_folio);
1910 				bd_folio = bh->b_folio;
1911 			}
1912 		}
1913 		/*
1914 		 * We assume that the buffers which belong to the same folio
1915 		 * continue over the buffer list.
1916 		 * Under this assumption, the last BHs of folios is
1917 		 * identifiable by the discontinuity of bh->b_folio
1918 		 * (folio != fs_folio).
1919 		 *
1920 		 * For B-tree node blocks, however, this assumption is not
1921 		 * guaranteed.  The cleanup code of B-tree node folios needs
1922 		 * special care.
1923 		 */
1924 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1925 				    b_assoc_buffers) {
1926 			const unsigned long set_bits = BIT(BH_Uptodate);
1927 			const unsigned long clear_bits =
1928 				(BIT(BH_Dirty) | BIT(BH_Async_Write) |
1929 				 BIT(BH_Delay) | BIT(BH_NILFS_Volatile) |
1930 				 BIT(BH_NILFS_Redirected));
1931 
1932 			if (bh == segbuf->sb_super_root) {
1933 				set_buffer_uptodate(bh);
1934 				clear_buffer_dirty(bh);
1935 				if (bh->b_folio != bd_folio) {
1936 					folio_end_writeback(bd_folio);
1937 					bd_folio = bh->b_folio;
1938 				}
1939 				update_sr = true;
1940 				break;
1941 			}
1942 			set_mask_bits(&bh->b_state, clear_bits, set_bits);
1943 			if (bh->b_folio != fs_folio) {
1944 				nilfs_end_folio_io(fs_folio, 0);
1945 				fs_folio = bh->b_folio;
1946 			}
1947 		}
1948 
1949 		if (!nilfs_segbuf_simplex(segbuf)) {
1950 			if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
1951 				set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1952 				sci->sc_lseg_stime = jiffies;
1953 			}
1954 			if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
1955 				clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1956 		}
1957 	}
1958 	/*
1959 	 * Since folios may continue over multiple segment buffers,
1960 	 * end of the last folio must be checked outside of the loop.
1961 	 */
1962 	if (bd_folio)
1963 		folio_end_writeback(bd_folio);
1964 
1965 	nilfs_end_folio_io(fs_folio, 0);
1966 
1967 	nilfs_drop_collected_inodes(&sci->sc_dirty_files);
1968 
1969 	if (nilfs_doing_gc())
1970 		nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
1971 	else
1972 		nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
1973 
1974 	sci->sc_nblk_inc += sci->sc_nblk_this_inc;
1975 
1976 	segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1977 	nilfs_set_next_segment(nilfs, segbuf);
1978 
1979 	if (update_sr) {
1980 		nilfs->ns_flushed_device = 0;
1981 		nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
1982 				       segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
1983 
1984 		clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
1985 		clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
1986 		set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1987 		nilfs_segctor_clear_metadata_dirty(sci);
1988 	} else
1989 		clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1990 }
1991 
nilfs_segctor_wait(struct nilfs_sc_info * sci)1992 static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
1993 {
1994 	int ret;
1995 
1996 	ret = nilfs_wait_on_logs(&sci->sc_write_logs);
1997 	if (!ret) {
1998 		nilfs_segctor_complete_write(sci);
1999 		nilfs_destroy_logs(&sci->sc_write_logs);
2000 	}
2001 	return ret;
2002 }
2003 
nilfs_segctor_collect_dirty_files(struct nilfs_sc_info * sci,struct the_nilfs * nilfs)2004 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
2005 					     struct the_nilfs *nilfs)
2006 {
2007 	struct nilfs_inode_info *ii, *n;
2008 	struct inode *ifile = sci->sc_root->ifile;
2009 
2010 	spin_lock(&nilfs->ns_inode_lock);
2011  retry:
2012 	list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
2013 		if (!ii->i_bh) {
2014 			struct buffer_head *ibh;
2015 			int err;
2016 
2017 			spin_unlock(&nilfs->ns_inode_lock);
2018 			err = nilfs_ifile_get_inode_block(
2019 				ifile, ii->vfs_inode.i_ino, &ibh);
2020 			if (unlikely(err)) {
2021 				nilfs_warn(sci->sc_super,
2022 					   "log writer: error %d getting inode block (ino=%lu)",
2023 					   err, ii->vfs_inode.i_ino);
2024 				return err;
2025 			}
2026 			spin_lock(&nilfs->ns_inode_lock);
2027 			if (likely(!ii->i_bh))
2028 				ii->i_bh = ibh;
2029 			else
2030 				brelse(ibh);
2031 			goto retry;
2032 		}
2033 
2034 		// Always redirty the buffer to avoid race condition
2035 		mark_buffer_dirty(ii->i_bh);
2036 		nilfs_mdt_mark_dirty(ifile);
2037 
2038 		clear_bit(NILFS_I_QUEUED, &ii->i_state);
2039 		set_bit(NILFS_I_BUSY, &ii->i_state);
2040 		list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
2041 	}
2042 	spin_unlock(&nilfs->ns_inode_lock);
2043 
2044 	return 0;
2045 }
2046 
nilfs_segctor_drop_written_files(struct nilfs_sc_info * sci,struct the_nilfs * nilfs)2047 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
2048 					     struct the_nilfs *nilfs)
2049 {
2050 	struct nilfs_inode_info *ii, *n;
2051 	int during_mount = !(sci->sc_super->s_flags & SB_ACTIVE);
2052 	int defer_iput = false;
2053 
2054 	spin_lock(&nilfs->ns_inode_lock);
2055 	list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
2056 		if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
2057 		    test_bit(NILFS_I_DIRTY, &ii->i_state))
2058 			continue;
2059 
2060 		clear_bit(NILFS_I_BUSY, &ii->i_state);
2061 		brelse(ii->i_bh);
2062 		ii->i_bh = NULL;
2063 		list_del_init(&ii->i_dirty);
2064 		if (!ii->vfs_inode.i_nlink || during_mount) {
2065 			/*
2066 			 * Defer calling iput() to avoid deadlocks if
2067 			 * i_nlink == 0 or mount is not yet finished.
2068 			 */
2069 			list_add_tail(&ii->i_dirty, &sci->sc_iput_queue);
2070 			defer_iput = true;
2071 		} else {
2072 			spin_unlock(&nilfs->ns_inode_lock);
2073 			iput(&ii->vfs_inode);
2074 			spin_lock(&nilfs->ns_inode_lock);
2075 		}
2076 	}
2077 	spin_unlock(&nilfs->ns_inode_lock);
2078 
2079 	if (defer_iput)
2080 		schedule_work(&sci->sc_iput_work);
2081 }
2082 
2083 /*
2084  * Main procedure of segment constructor
2085  */
nilfs_segctor_do_construct(struct nilfs_sc_info * sci,int mode)2086 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
2087 {
2088 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2089 	int err;
2090 
2091 	if (sb_rdonly(sci->sc_super))
2092 		return -EROFS;
2093 
2094 	nilfs_sc_cstage_set(sci, NILFS_ST_INIT);
2095 	sci->sc_cno = nilfs->ns_cno;
2096 
2097 	err = nilfs_segctor_collect_dirty_files(sci, nilfs);
2098 	if (unlikely(err))
2099 		goto out;
2100 
2101 	if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
2102 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2103 
2104 	if (nilfs_segctor_clean(sci))
2105 		goto out;
2106 
2107 	do {
2108 		sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
2109 
2110 		err = nilfs_segctor_begin_construction(sci, nilfs);
2111 		if (unlikely(err))
2112 			goto failed;
2113 
2114 		/* Update time stamp */
2115 		sci->sc_seg_ctime = ktime_get_real_seconds();
2116 
2117 		err = nilfs_segctor_collect(sci, nilfs, mode);
2118 		if (unlikely(err))
2119 			goto failed;
2120 
2121 		/* Avoid empty segment */
2122 		if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE &&
2123 		    nilfs_segbuf_empty(sci->sc_curseg)) {
2124 			nilfs_segctor_abort_construction(sci, nilfs, 1);
2125 			goto out;
2126 		}
2127 
2128 		err = nilfs_segctor_assign(sci, mode);
2129 		if (unlikely(err))
2130 			goto failed;
2131 
2132 		if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2133 			nilfs_segctor_fill_in_file_bmap(sci);
2134 
2135 		if (mode == SC_LSEG_SR &&
2136 		    nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) {
2137 			err = nilfs_cpfile_finalize_checkpoint(
2138 				nilfs->ns_cpfile, nilfs->ns_cno, sci->sc_root,
2139 				sci->sc_nblk_inc + sci->sc_nblk_this_inc,
2140 				sci->sc_seg_ctime,
2141 				!test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags));
2142 			if (unlikely(err))
2143 				goto failed_to_write;
2144 
2145 			nilfs_segctor_fill_in_super_root(sci, nilfs);
2146 		}
2147 		nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
2148 
2149 		/* Write partial segments */
2150 		nilfs_prepare_write_logs(&sci->sc_segbufs, nilfs->ns_crc_seed);
2151 
2152 		err = nilfs_segctor_write(sci, nilfs);
2153 		if (unlikely(err))
2154 			goto failed_to_write;
2155 
2156 		if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE ||
2157 		    nilfs->ns_blocksize_bits != PAGE_SHIFT) {
2158 			/*
2159 			 * At this point, we avoid double buffering
2160 			 * for blocksize < pagesize because page dirty
2161 			 * flag is turned off during write and dirty
2162 			 * buffers are not properly collected for
2163 			 * pages crossing over segments.
2164 			 */
2165 			err = nilfs_segctor_wait(sci);
2166 			if (err)
2167 				goto failed_to_write;
2168 		}
2169 	} while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE);
2170 
2171  out:
2172 	nilfs_segctor_drop_written_files(sci, nilfs);
2173 	return err;
2174 
2175  failed_to_write:
2176  failed:
2177 	if (mode == SC_LSEG_SR && nilfs_sc_cstage_get(sci) >= NILFS_ST_IFILE)
2178 		nilfs_redirty_inodes(&sci->sc_dirty_files);
2179 	if (nilfs_doing_gc())
2180 		nilfs_redirty_inodes(&sci->sc_gc_inodes);
2181 	nilfs_segctor_abort_construction(sci, nilfs, err);
2182 	goto out;
2183 }
2184 
2185 /**
2186  * nilfs_segctor_start_timer - set timer of background write
2187  * @sci: nilfs_sc_info
2188  *
2189  * If the timer has already been set, it ignores the new request.
2190  * This function MUST be called within a section locking the segment
2191  * semaphore.
2192  */
nilfs_segctor_start_timer(struct nilfs_sc_info * sci)2193 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2194 {
2195 	spin_lock(&sci->sc_state_lock);
2196 	if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2197 		if (sci->sc_task) {
2198 			sci->sc_timer.expires = jiffies + sci->sc_interval;
2199 			add_timer(&sci->sc_timer);
2200 		}
2201 		sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2202 	}
2203 	spin_unlock(&sci->sc_state_lock);
2204 }
2205 
nilfs_segctor_do_flush(struct nilfs_sc_info * sci,int bn)2206 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2207 {
2208 	spin_lock(&sci->sc_state_lock);
2209 	if (!(sci->sc_flush_request & BIT(bn))) {
2210 		unsigned long prev_req = sci->sc_flush_request;
2211 
2212 		sci->sc_flush_request |= BIT(bn);
2213 		if (!prev_req)
2214 			wake_up(&sci->sc_wait_daemon);
2215 	}
2216 	spin_unlock(&sci->sc_state_lock);
2217 }
2218 
2219 /**
2220  * nilfs_flush_segment - trigger a segment construction for resource control
2221  * @sb: super block
2222  * @ino: inode number of the file to be flushed out.
2223  */
nilfs_flush_segment(struct super_block * sb,ino_t ino)2224 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2225 {
2226 	struct the_nilfs *nilfs = sb->s_fs_info;
2227 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2228 
2229 	if (!sci || nilfs_doing_construction())
2230 		return;
2231 	nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2232 					/* assign bit 0 to data files */
2233 }
2234 
2235 struct nilfs_segctor_wait_request {
2236 	wait_queue_entry_t	wq;
2237 	__u32		seq;
2238 	int		err;
2239 	atomic_t	done;
2240 };
2241 
nilfs_segctor_sync(struct nilfs_sc_info * sci)2242 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2243 {
2244 	struct nilfs_segctor_wait_request wait_req;
2245 	int err = 0;
2246 
2247 	init_wait(&wait_req.wq);
2248 	wait_req.err = 0;
2249 	atomic_set(&wait_req.done, 0);
2250 	init_waitqueue_entry(&wait_req.wq, current);
2251 
2252 	/*
2253 	 * To prevent a race issue where completion notifications from the
2254 	 * log writer thread are missed, increment the request sequence count
2255 	 * "sc_seq_request" and insert a wait queue entry using the current
2256 	 * sequence number into the "sc_wait_request" queue at the same time
2257 	 * within the lock section of "sc_state_lock".
2258 	 */
2259 	spin_lock(&sci->sc_state_lock);
2260 	wait_req.seq = ++sci->sc_seq_request;
2261 	add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2262 	spin_unlock(&sci->sc_state_lock);
2263 
2264 	wake_up(&sci->sc_wait_daemon);
2265 
2266 	for (;;) {
2267 		set_current_state(TASK_INTERRUPTIBLE);
2268 
2269 		/*
2270 		 * Synchronize only while the log writer thread is alive.
2271 		 * Leave flushing out after the log writer thread exits to
2272 		 * the cleanup work in nilfs_segctor_destroy().
2273 		 */
2274 		if (!sci->sc_task)
2275 			break;
2276 
2277 		if (atomic_read(&wait_req.done)) {
2278 			err = wait_req.err;
2279 			break;
2280 		}
2281 		if (!signal_pending(current)) {
2282 			schedule();
2283 			continue;
2284 		}
2285 		err = -ERESTARTSYS;
2286 		break;
2287 	}
2288 	finish_wait(&sci->sc_wait_request, &wait_req.wq);
2289 	return err;
2290 }
2291 
nilfs_segctor_wakeup(struct nilfs_sc_info * sci,int err,bool force)2292 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err, bool force)
2293 {
2294 	struct nilfs_segctor_wait_request *wrq, *n;
2295 	unsigned long flags;
2296 
2297 	spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2298 	list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.head, wq.entry) {
2299 		if (!atomic_read(&wrq->done) &&
2300 		    (force || nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq))) {
2301 			wrq->err = err;
2302 			atomic_set(&wrq->done, 1);
2303 		}
2304 		if (atomic_read(&wrq->done)) {
2305 			wrq->wq.func(&wrq->wq,
2306 				     TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2307 				     0, NULL);
2308 		}
2309 	}
2310 	spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2311 }
2312 
2313 /**
2314  * nilfs_construct_segment - construct a logical segment
2315  * @sb: super block
2316  *
2317  * Return Value: On success, 0 is returned. On errors, one of the following
2318  * negative error code is returned.
2319  *
2320  * %-EROFS - Read only filesystem.
2321  *
2322  * %-EIO - I/O error
2323  *
2324  * %-ENOSPC - No space left on device (only in a panic state).
2325  *
2326  * %-ERESTARTSYS - Interrupted.
2327  *
2328  * %-ENOMEM - Insufficient memory available.
2329  */
nilfs_construct_segment(struct super_block * sb)2330 int nilfs_construct_segment(struct super_block *sb)
2331 {
2332 	struct the_nilfs *nilfs = sb->s_fs_info;
2333 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2334 	struct nilfs_transaction_info *ti;
2335 
2336 	if (sb_rdonly(sb) || unlikely(!sci))
2337 		return -EROFS;
2338 
2339 	/* A call inside transactions causes a deadlock. */
2340 	BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2341 
2342 	return nilfs_segctor_sync(sci);
2343 }
2344 
2345 /**
2346  * nilfs_construct_dsync_segment - construct a data-only logical segment
2347  * @sb: super block
2348  * @inode: inode whose data blocks should be written out
2349  * @start: start byte offset
2350  * @end: end byte offset (inclusive)
2351  *
2352  * Return Value: On success, 0 is returned. On errors, one of the following
2353  * negative error code is returned.
2354  *
2355  * %-EROFS - Read only filesystem.
2356  *
2357  * %-EIO - I/O error
2358  *
2359  * %-ENOSPC - No space left on device (only in a panic state).
2360  *
2361  * %-ERESTARTSYS - Interrupted.
2362  *
2363  * %-ENOMEM - Insufficient memory available.
2364  */
nilfs_construct_dsync_segment(struct super_block * sb,struct inode * inode,loff_t start,loff_t end)2365 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2366 				  loff_t start, loff_t end)
2367 {
2368 	struct the_nilfs *nilfs = sb->s_fs_info;
2369 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2370 	struct nilfs_inode_info *ii;
2371 	struct nilfs_transaction_info ti;
2372 	int err = 0;
2373 
2374 	if (sb_rdonly(sb) || unlikely(!sci))
2375 		return -EROFS;
2376 
2377 	nilfs_transaction_lock(sb, &ti, 0);
2378 
2379 	ii = NILFS_I(inode);
2380 	if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) ||
2381 	    nilfs_test_opt(nilfs, STRICT_ORDER) ||
2382 	    test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2383 	    nilfs_discontinued(nilfs)) {
2384 		nilfs_transaction_unlock(sb);
2385 		err = nilfs_segctor_sync(sci);
2386 		return err;
2387 	}
2388 
2389 	spin_lock(&nilfs->ns_inode_lock);
2390 	if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2391 	    !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2392 		spin_unlock(&nilfs->ns_inode_lock);
2393 		nilfs_transaction_unlock(sb);
2394 		return 0;
2395 	}
2396 	spin_unlock(&nilfs->ns_inode_lock);
2397 	sci->sc_dsync_inode = ii;
2398 	sci->sc_dsync_start = start;
2399 	sci->sc_dsync_end = end;
2400 
2401 	err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2402 	if (!err)
2403 		nilfs->ns_flushed_device = 0;
2404 
2405 	nilfs_transaction_unlock(sb);
2406 	return err;
2407 }
2408 
2409 #define FLUSH_FILE_BIT	(0x1) /* data file only */
2410 #define FLUSH_DAT_BIT	BIT(NILFS_DAT_INO) /* DAT only */
2411 
2412 /**
2413  * nilfs_segctor_accept - record accepted sequence count of log-write requests
2414  * @sci: segment constructor object
2415  */
nilfs_segctor_accept(struct nilfs_sc_info * sci)2416 static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
2417 {
2418 	bool thread_is_alive;
2419 
2420 	spin_lock(&sci->sc_state_lock);
2421 	sci->sc_seq_accepted = sci->sc_seq_request;
2422 	thread_is_alive = (bool)sci->sc_task;
2423 	spin_unlock(&sci->sc_state_lock);
2424 
2425 	/*
2426 	 * This function does not race with the log writer thread's
2427 	 * termination.  Therefore, deleting sc_timer, which should not be
2428 	 * done after the log writer thread exits, can be done safely outside
2429 	 * the area protected by sc_state_lock.
2430 	 */
2431 	if (thread_is_alive)
2432 		del_timer_sync(&sci->sc_timer);
2433 }
2434 
2435 /**
2436  * nilfs_segctor_notify - notify the result of request to caller threads
2437  * @sci: segment constructor object
2438  * @mode: mode of log forming
2439  * @err: error code to be notified
2440  */
nilfs_segctor_notify(struct nilfs_sc_info * sci,int mode,int err)2441 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
2442 {
2443 	/* Clear requests (even when the construction failed) */
2444 	spin_lock(&sci->sc_state_lock);
2445 
2446 	if (mode == SC_LSEG_SR) {
2447 		sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2448 		sci->sc_seq_done = sci->sc_seq_accepted;
2449 		nilfs_segctor_wakeup(sci, err, false);
2450 		sci->sc_flush_request = 0;
2451 	} else {
2452 		if (mode == SC_FLUSH_FILE)
2453 			sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2454 		else if (mode == SC_FLUSH_DAT)
2455 			sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2456 
2457 		/* re-enable timer if checkpoint creation was not done */
2458 		if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && sci->sc_task &&
2459 		    time_before(jiffies, sci->sc_timer.expires))
2460 			add_timer(&sci->sc_timer);
2461 	}
2462 	spin_unlock(&sci->sc_state_lock);
2463 }
2464 
2465 /**
2466  * nilfs_segctor_construct - form logs and write them to disk
2467  * @sci: segment constructor object
2468  * @mode: mode of log forming
2469  */
nilfs_segctor_construct(struct nilfs_sc_info * sci,int mode)2470 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
2471 {
2472 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2473 	struct nilfs_super_block **sbp;
2474 	int err = 0;
2475 
2476 	nilfs_segctor_accept(sci);
2477 
2478 	if (nilfs_discontinued(nilfs))
2479 		mode = SC_LSEG_SR;
2480 	if (!nilfs_segctor_confirm(sci))
2481 		err = nilfs_segctor_do_construct(sci, mode);
2482 
2483 	if (likely(!err)) {
2484 		if (mode != SC_FLUSH_DAT)
2485 			atomic_set(&nilfs->ns_ndirtyblks, 0);
2486 		if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2487 		    nilfs_discontinued(nilfs)) {
2488 			down_write(&nilfs->ns_sem);
2489 			err = -EIO;
2490 			sbp = nilfs_prepare_super(sci->sc_super,
2491 						  nilfs_sb_will_flip(nilfs));
2492 			if (likely(sbp)) {
2493 				nilfs_set_log_cursor(sbp[0], nilfs);
2494 				err = nilfs_commit_super(sci->sc_super,
2495 							 NILFS_SB_COMMIT);
2496 			}
2497 			up_write(&nilfs->ns_sem);
2498 		}
2499 	}
2500 
2501 	nilfs_segctor_notify(sci, mode, err);
2502 	return err;
2503 }
2504 
nilfs_construction_timeout(struct timer_list * t)2505 static void nilfs_construction_timeout(struct timer_list *t)
2506 {
2507 	struct nilfs_sc_info *sci = from_timer(sci, t, sc_timer);
2508 
2509 	wake_up_process(sci->sc_task);
2510 }
2511 
2512 static void
nilfs_remove_written_gcinodes(struct the_nilfs * nilfs,struct list_head * head)2513 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2514 {
2515 	struct nilfs_inode_info *ii, *n;
2516 
2517 	list_for_each_entry_safe(ii, n, head, i_dirty) {
2518 		if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2519 			continue;
2520 		list_del_init(&ii->i_dirty);
2521 		truncate_inode_pages(&ii->vfs_inode.i_data, 0);
2522 		nilfs_btnode_cache_clear(ii->i_assoc_inode->i_mapping);
2523 		iput(&ii->vfs_inode);
2524 	}
2525 }
2526 
nilfs_clean_segments(struct super_block * sb,struct nilfs_argv * argv,void ** kbufs)2527 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2528 			 void **kbufs)
2529 {
2530 	struct the_nilfs *nilfs = sb->s_fs_info;
2531 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2532 	struct nilfs_transaction_info ti;
2533 	int err;
2534 
2535 	if (unlikely(!sci))
2536 		return -EROFS;
2537 
2538 	nilfs_transaction_lock(sb, &ti, 1);
2539 
2540 	err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
2541 	if (unlikely(err))
2542 		goto out_unlock;
2543 
2544 	err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2545 	if (unlikely(err)) {
2546 		nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
2547 		goto out_unlock;
2548 	}
2549 
2550 	sci->sc_freesegs = kbufs[4];
2551 	sci->sc_nfreesegs = argv[4].v_nmembs;
2552 	list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
2553 
2554 	for (;;) {
2555 		err = nilfs_segctor_construct(sci, SC_LSEG_SR);
2556 		nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2557 
2558 		if (likely(!err))
2559 			break;
2560 
2561 		nilfs_warn(sb, "error %d cleaning segments", err);
2562 		set_current_state(TASK_INTERRUPTIBLE);
2563 		schedule_timeout(sci->sc_interval);
2564 	}
2565 	if (nilfs_test_opt(nilfs, DISCARD)) {
2566 		int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
2567 						 sci->sc_nfreesegs);
2568 		if (ret) {
2569 			nilfs_warn(sb,
2570 				   "error %d on discard request, turning discards off for the device",
2571 				   ret);
2572 			nilfs_clear_opt(nilfs, DISCARD);
2573 		}
2574 	}
2575 
2576  out_unlock:
2577 	sci->sc_freesegs = NULL;
2578 	sci->sc_nfreesegs = 0;
2579 	nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
2580 	nilfs_transaction_unlock(sb);
2581 	return err;
2582 }
2583 
nilfs_segctor_thread_construct(struct nilfs_sc_info * sci,int mode)2584 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2585 {
2586 	struct nilfs_transaction_info ti;
2587 
2588 	nilfs_transaction_lock(sci->sc_super, &ti, 0);
2589 	nilfs_segctor_construct(sci, mode);
2590 
2591 	/*
2592 	 * Unclosed segment should be retried.  We do this using sc_timer.
2593 	 * Timeout of sc_timer will invoke complete construction which leads
2594 	 * to close the current logical segment.
2595 	 */
2596 	if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2597 		nilfs_segctor_start_timer(sci);
2598 
2599 	nilfs_transaction_unlock(sci->sc_super);
2600 }
2601 
nilfs_segctor_do_immediate_flush(struct nilfs_sc_info * sci)2602 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2603 {
2604 	int mode = 0;
2605 
2606 	spin_lock(&sci->sc_state_lock);
2607 	mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2608 		SC_FLUSH_DAT : SC_FLUSH_FILE;
2609 	spin_unlock(&sci->sc_state_lock);
2610 
2611 	if (mode) {
2612 		nilfs_segctor_do_construct(sci, mode);
2613 
2614 		spin_lock(&sci->sc_state_lock);
2615 		sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2616 			~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2617 		spin_unlock(&sci->sc_state_lock);
2618 	}
2619 	clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2620 }
2621 
nilfs_segctor_flush_mode(struct nilfs_sc_info * sci)2622 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2623 {
2624 	if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2625 	    time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2626 		if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2627 			return SC_FLUSH_FILE;
2628 		else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2629 			return SC_FLUSH_DAT;
2630 	}
2631 	return SC_LSEG_SR;
2632 }
2633 
2634 /**
2635  * nilfs_log_write_required - determine whether log writing is required
2636  * @sci:   nilfs_sc_info struct
2637  * @modep: location for storing log writing mode
2638  *
2639  * Return: true if log writing is required, false otherwise.  If log writing
2640  * is required, the mode is stored in the location pointed to by @modep.
2641  */
nilfs_log_write_required(struct nilfs_sc_info * sci,int * modep)2642 static bool nilfs_log_write_required(struct nilfs_sc_info *sci, int *modep)
2643 {
2644 	bool timedout, ret = true;
2645 
2646 	spin_lock(&sci->sc_state_lock);
2647 	timedout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2648 		   time_after_eq(jiffies, sci->sc_timer.expires));
2649 	if (timedout || sci->sc_seq_request != sci->sc_seq_done)
2650 		*modep = SC_LSEG_SR;
2651 	else if (sci->sc_flush_request)
2652 		*modep = nilfs_segctor_flush_mode(sci);
2653 	else
2654 		ret = false;
2655 
2656 	spin_unlock(&sci->sc_state_lock);
2657 	return ret;
2658 }
2659 
2660 /**
2661  * nilfs_segctor_thread - main loop of the log writer thread
2662  * @arg: pointer to a struct nilfs_sc_info.
2663  *
2664  * nilfs_segctor_thread() is the main loop function of the log writer kernel
2665  * thread, which determines whether log writing is necessary, and if so,
2666  * performs the log write in the background, or waits if not.  It is also
2667  * used to decide the background writeback of the superblock.
2668  *
2669  * Return: Always 0.
2670  */
nilfs_segctor_thread(void * arg)2671 static int nilfs_segctor_thread(void *arg)
2672 {
2673 	struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2674 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2675 
2676 	nilfs_info(sci->sc_super,
2677 		   "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds",
2678 		   sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2679 
2680 	set_freezable();
2681 
2682 	while (!kthread_should_stop()) {
2683 		DEFINE_WAIT(wait);
2684 		bool should_write;
2685 		int mode;
2686 
2687 		if (freezing(current)) {
2688 			try_to_freeze();
2689 			continue;
2690 		}
2691 
2692 		prepare_to_wait(&sci->sc_wait_daemon, &wait,
2693 				TASK_INTERRUPTIBLE);
2694 		should_write = nilfs_log_write_required(sci, &mode);
2695 		if (!should_write)
2696 			schedule();
2697 		finish_wait(&sci->sc_wait_daemon, &wait);
2698 
2699 		if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
2700 			set_nilfs_discontinued(nilfs);
2701 
2702 		if (should_write)
2703 			nilfs_segctor_thread_construct(sci, mode);
2704 	}
2705 
2706 	/* end sync. */
2707 	spin_lock(&sci->sc_state_lock);
2708 	sci->sc_task = NULL;
2709 	timer_shutdown_sync(&sci->sc_timer);
2710 	spin_unlock(&sci->sc_state_lock);
2711 	return 0;
2712 }
2713 
2714 /*
2715  * Setup & clean-up functions
2716  */
nilfs_segctor_new(struct super_block * sb,struct nilfs_root * root)2717 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
2718 					       struct nilfs_root *root)
2719 {
2720 	struct the_nilfs *nilfs = sb->s_fs_info;
2721 	struct nilfs_sc_info *sci;
2722 
2723 	sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2724 	if (!sci)
2725 		return NULL;
2726 
2727 	sci->sc_super = sb;
2728 
2729 	nilfs_get_root(root);
2730 	sci->sc_root = root;
2731 
2732 	init_waitqueue_head(&sci->sc_wait_request);
2733 	init_waitqueue_head(&sci->sc_wait_daemon);
2734 	spin_lock_init(&sci->sc_state_lock);
2735 	INIT_LIST_HEAD(&sci->sc_dirty_files);
2736 	INIT_LIST_HEAD(&sci->sc_segbufs);
2737 	INIT_LIST_HEAD(&sci->sc_write_logs);
2738 	INIT_LIST_HEAD(&sci->sc_gc_inodes);
2739 	INIT_LIST_HEAD(&sci->sc_iput_queue);
2740 	INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func);
2741 
2742 	sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2743 	sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2744 	sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2745 
2746 	if (nilfs->ns_interval)
2747 		sci->sc_interval = HZ * nilfs->ns_interval;
2748 	if (nilfs->ns_watermark)
2749 		sci->sc_watermark = nilfs->ns_watermark;
2750 	return sci;
2751 }
2752 
nilfs_segctor_write_out(struct nilfs_sc_info * sci)2753 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2754 {
2755 	int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2756 
2757 	/*
2758 	 * The segctord thread was stopped and its timer was removed.
2759 	 * But some tasks remain.
2760 	 */
2761 	do {
2762 		struct nilfs_transaction_info ti;
2763 
2764 		nilfs_transaction_lock(sci->sc_super, &ti, 0);
2765 		ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
2766 		nilfs_transaction_unlock(sci->sc_super);
2767 
2768 		flush_work(&sci->sc_iput_work);
2769 
2770 	} while (ret && ret != -EROFS && retrycount-- > 0);
2771 }
2772 
2773 /**
2774  * nilfs_segctor_destroy - destroy the segment constructor.
2775  * @sci: nilfs_sc_info
2776  *
2777  * nilfs_segctor_destroy() kills the segctord thread and frees
2778  * the nilfs_sc_info struct.
2779  * Caller must hold the segment semaphore.
2780  */
nilfs_segctor_destroy(struct nilfs_sc_info * sci)2781 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2782 {
2783 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2784 	int flag;
2785 
2786 	up_write(&nilfs->ns_segctor_sem);
2787 
2788 	if (sci->sc_task) {
2789 		wake_up(&sci->sc_wait_daemon);
2790 		kthread_stop(sci->sc_task);
2791 	}
2792 
2793 	spin_lock(&sci->sc_state_lock);
2794 	flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2795 		|| sci->sc_seq_request != sci->sc_seq_done);
2796 	spin_unlock(&sci->sc_state_lock);
2797 
2798 	/*
2799 	 * Forcibly wake up tasks waiting in nilfs_segctor_sync(), which can
2800 	 * be called from delayed iput() via nilfs_evict_inode() and can race
2801 	 * with the above log writer thread termination.
2802 	 */
2803 	nilfs_segctor_wakeup(sci, 0, true);
2804 
2805 	if (flush_work(&sci->sc_iput_work))
2806 		flag = true;
2807 
2808 	if (flag || !nilfs_segctor_confirm(sci))
2809 		nilfs_segctor_write_out(sci);
2810 
2811 	if (!list_empty(&sci->sc_dirty_files)) {
2812 		nilfs_warn(sci->sc_super,
2813 			   "disposed unprocessed dirty file(s) when stopping log writer");
2814 		nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
2815 	}
2816 
2817 	if (!list_empty(&sci->sc_iput_queue)) {
2818 		nilfs_warn(sci->sc_super,
2819 			   "disposed unprocessed inode(s) in iput queue when stopping log writer");
2820 		nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1);
2821 	}
2822 
2823 	WARN_ON(!list_empty(&sci->sc_segbufs));
2824 	WARN_ON(!list_empty(&sci->sc_write_logs));
2825 
2826 	nilfs_put_root(sci->sc_root);
2827 
2828 	down_write(&nilfs->ns_segctor_sem);
2829 
2830 	kfree(sci);
2831 }
2832 
2833 /**
2834  * nilfs_attach_log_writer - attach log writer
2835  * @sb: super block instance
2836  * @root: root object of the current filesystem tree
2837  *
2838  * This allocates a log writer object, initializes it, and starts the
2839  * log writer.
2840  *
2841  * Return: 0 on success, or the following negative error code on failure.
2842  * * %-EINTR	- Log writer thread creation failed due to interruption.
2843  * * %-ENOMEM	- Insufficient memory available.
2844  */
nilfs_attach_log_writer(struct super_block * sb,struct nilfs_root * root)2845 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
2846 {
2847 	struct the_nilfs *nilfs = sb->s_fs_info;
2848 	struct nilfs_sc_info *sci;
2849 	struct task_struct *t;
2850 	int err;
2851 
2852 	if (nilfs->ns_writer) {
2853 		/*
2854 		 * This happens if the filesystem is made read-only by
2855 		 * __nilfs_error or nilfs_remount and then remounted
2856 		 * read/write.  In these cases, reuse the existing
2857 		 * writer.
2858 		 */
2859 		return 0;
2860 	}
2861 
2862 	sci = nilfs_segctor_new(sb, root);
2863 	if (unlikely(!sci))
2864 		return -ENOMEM;
2865 
2866 	nilfs->ns_writer = sci;
2867 	t = kthread_create(nilfs_segctor_thread, sci, "segctord");
2868 	if (IS_ERR(t)) {
2869 		err = PTR_ERR(t);
2870 		nilfs_err(sb, "error %d creating segctord thread", err);
2871 		nilfs_detach_log_writer(sb);
2872 		return err;
2873 	}
2874 	sci->sc_task = t;
2875 	timer_setup(&sci->sc_timer, nilfs_construction_timeout, 0);
2876 
2877 	wake_up_process(sci->sc_task);
2878 	return 0;
2879 }
2880 
2881 /**
2882  * nilfs_detach_log_writer - destroy log writer
2883  * @sb: super block instance
2884  *
2885  * This kills log writer daemon, frees the log writer object, and
2886  * destroys list of dirty files.
2887  */
nilfs_detach_log_writer(struct super_block * sb)2888 void nilfs_detach_log_writer(struct super_block *sb)
2889 {
2890 	struct the_nilfs *nilfs = sb->s_fs_info;
2891 	LIST_HEAD(garbage_list);
2892 
2893 	down_write(&nilfs->ns_segctor_sem);
2894 	if (nilfs->ns_writer) {
2895 		nilfs_segctor_destroy(nilfs->ns_writer);
2896 		nilfs->ns_writer = NULL;
2897 	}
2898 	set_nilfs_purging(nilfs);
2899 
2900 	/* Force to free the list of dirty files */
2901 	spin_lock(&nilfs->ns_inode_lock);
2902 	if (!list_empty(&nilfs->ns_dirty_files)) {
2903 		list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
2904 		nilfs_warn(sb,
2905 			   "disposed unprocessed dirty file(s) when detaching log writer");
2906 	}
2907 	spin_unlock(&nilfs->ns_inode_lock);
2908 	up_write(&nilfs->ns_segctor_sem);
2909 
2910 	nilfs_dispose_list(nilfs, &garbage_list, 1);
2911 	clear_nilfs_purging(nilfs);
2912 }
2913