• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine (KVM) Hypervisor
4  *
5  * Copyright (C) 2006 Qumranet, Inc.
6  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7  *
8  * Authors:
9  *   Avi Kivity   <avi@qumranet.com>
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  */
12 
13 #include <kvm/iodev.h>
14 
15 #include <linux/kvm_host.h>
16 #include <linux/kvm.h>
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/percpu.h>
20 #include <linux/mm.h>
21 #include <linux/miscdevice.h>
22 #include <linux/vmalloc.h>
23 #include <linux/reboot.h>
24 #include <linux/debugfs.h>
25 #include <linux/highmem.h>
26 #include <linux/file.h>
27 #include <linux/syscore_ops.h>
28 #include <linux/cpu.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/stat.h>
32 #include <linux/cpumask.h>
33 #include <linux/smp.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/profile.h>
36 #include <linux/kvm_para.h>
37 #include <linux/pagemap.h>
38 #include <linux/mman.h>
39 #include <linux/swap.h>
40 #include <linux/bitops.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/srcu.h>
44 #include <linux/hugetlb.h>
45 #include <linux/slab.h>
46 #include <linux/sort.h>
47 #include <linux/bsearch.h>
48 #include <linux/io.h>
49 #include <linux/lockdep.h>
50 #include <linux/kthread.h>
51 #include <linux/suspend.h>
52 
53 #include <asm/processor.h>
54 #include <asm/ioctl.h>
55 #include <linux/uaccess.h>
56 
57 #include "coalesced_mmio.h"
58 #include "async_pf.h"
59 #include "kvm_mm.h"
60 #include "vfio.h"
61 
62 #include <trace/events/ipi.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66 
67 #include <linux/kvm_dirty_ring.h>
68 
69 
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72 
73 MODULE_AUTHOR("Qumranet");
74 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor");
75 MODULE_LICENSE("GPL");
76 
77 /* Architectures should define their poll value according to the halt latency */
78 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
79 module_param(halt_poll_ns, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns);
81 
82 /* Default doubles per-vcpu halt_poll_ns. */
83 unsigned int halt_poll_ns_grow = 2;
84 module_param(halt_poll_ns_grow, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
86 
87 /* The start value to grow halt_poll_ns from */
88 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
89 module_param(halt_poll_ns_grow_start, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
91 
92 /* Default halves per-vcpu halt_poll_ns. */
93 unsigned int halt_poll_ns_shrink = 2;
94 module_param(halt_poll_ns_shrink, uint, 0644);
95 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
96 
97 /*
98  * Ordering of locks:
99  *
100  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
101  */
102 
103 DEFINE_MUTEX(kvm_lock);
104 LIST_HEAD(vm_list);
105 
106 static struct kmem_cache *kvm_vcpu_cache;
107 
108 static __read_mostly struct preempt_ops kvm_preempt_ops;
109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
110 
111 static struct dentry *kvm_debugfs_dir;
112 
113 static const struct file_operations stat_fops_per_vm;
114 
115 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
116 			   unsigned long arg);
117 #ifdef CONFIG_KVM_COMPAT
118 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
119 				  unsigned long arg);
120 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
121 #else
122 /*
123  * For architectures that don't implement a compat infrastructure,
124  * adopt a double line of defense:
125  * - Prevent a compat task from opening /dev/kvm
126  * - If the open has been done by a 64bit task, and the KVM fd
127  *   passed to a compat task, let the ioctls fail.
128  */
kvm_no_compat_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)129 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
130 				unsigned long arg) { return -EINVAL; }
131 
kvm_no_compat_open(struct inode * inode,struct file * file)132 static int kvm_no_compat_open(struct inode *inode, struct file *file)
133 {
134 	return is_compat_task() ? -ENODEV : 0;
135 }
136 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
137 			.open		= kvm_no_compat_open
138 #endif
139 static int kvm_enable_virtualization(void);
140 static void kvm_disable_virtualization(void);
141 
142 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
143 
144 #define KVM_EVENT_CREATE_VM 0
145 #define KVM_EVENT_DESTROY_VM 1
146 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
147 static unsigned long long kvm_createvm_count;
148 static unsigned long long kvm_active_vms;
149 
150 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
151 
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)152 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
153 {
154 }
155 
kvm_is_zone_device_page(struct page * page)156 bool kvm_is_zone_device_page(struct page *page)
157 {
158 	/*
159 	 * The metadata used by is_zone_device_page() to determine whether or
160 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
161 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
162 	 * page_count() is zero to help detect bad usage of this helper.
163 	 */
164 	if (WARN_ON_ONCE(!page_count(page)))
165 		return false;
166 
167 	return is_zone_device_page(page);
168 }
169 
170 /*
171  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
172  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
173  * is likely incomplete, it has been compiled purely through people wanting to
174  * back guest with a certain type of memory and encountering issues.
175  */
kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)176 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
177 {
178 	struct page *page;
179 
180 	if (!pfn_valid(pfn))
181 		return NULL;
182 
183 	page = pfn_to_page(pfn);
184 	if (!PageReserved(page))
185 		return page;
186 
187 	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
188 	if (is_zero_pfn(pfn))
189 		return page;
190 
191 	/*
192 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
193 	 * perspective they are "normal" pages, albeit with slightly different
194 	 * usage rules.
195 	 */
196 	if (kvm_is_zone_device_page(page))
197 		return page;
198 
199 	return NULL;
200 }
201 
202 /*
203  * Switches to specified vcpu, until a matching vcpu_put()
204  */
vcpu_load(struct kvm_vcpu * vcpu)205 void vcpu_load(struct kvm_vcpu *vcpu)
206 {
207 	int cpu = get_cpu();
208 
209 	__this_cpu_write(kvm_running_vcpu, vcpu);
210 	preempt_notifier_register(&vcpu->preempt_notifier);
211 	kvm_arch_vcpu_load(vcpu, cpu);
212 	put_cpu();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_load);
215 
vcpu_put(struct kvm_vcpu * vcpu)216 void vcpu_put(struct kvm_vcpu *vcpu)
217 {
218 	preempt_disable();
219 	kvm_arch_vcpu_put(vcpu);
220 	preempt_notifier_unregister(&vcpu->preempt_notifier);
221 	__this_cpu_write(kvm_running_vcpu, NULL);
222 	preempt_enable();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_put);
225 
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
kvm_request_needs_ipi(struct kvm_vcpu * vcpu,unsigned req)227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 {
229 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230 
231 	/*
232 	 * We need to wait for the VCPU to reenable interrupts and get out of
233 	 * READING_SHADOW_PAGE_TABLES mode.
234 	 */
235 	if (req & KVM_REQUEST_WAIT)
236 		return mode != OUTSIDE_GUEST_MODE;
237 
238 	/*
239 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
240 	 */
241 	return mode == IN_GUEST_MODE;
242 }
243 
ack_kick(void * _completed)244 static void ack_kick(void *_completed)
245 {
246 }
247 
kvm_kick_many_cpus(struct cpumask * cpus,bool wait)248 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
249 {
250 	if (cpumask_empty(cpus))
251 		return false;
252 
253 	smp_call_function_many(cpus, ack_kick, NULL, wait);
254 	return true;
255 }
256 
kvm_make_vcpu_request(struct kvm_vcpu * vcpu,unsigned int req,struct cpumask * tmp,int current_cpu)257 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
258 				  struct cpumask *tmp, int current_cpu)
259 {
260 	int cpu;
261 
262 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
263 		__kvm_make_request(req, vcpu);
264 
265 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
266 		return;
267 
268 	/*
269 	 * Note, the vCPU could get migrated to a different pCPU at any point
270 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
271 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
272 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
273 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
274 	 * after this point is also OK, as the requirement is only that KVM wait
275 	 * for vCPUs that were reading SPTEs _before_ any changes were
276 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
277 	 */
278 	if (kvm_request_needs_ipi(vcpu, req)) {
279 		cpu = READ_ONCE(vcpu->cpu);
280 		if (cpu != -1 && cpu != current_cpu)
281 			__cpumask_set_cpu(cpu, tmp);
282 	}
283 }
284 
kvm_make_vcpus_request_mask(struct kvm * kvm,unsigned int req,unsigned long * vcpu_bitmap)285 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
286 				 unsigned long *vcpu_bitmap)
287 {
288 	struct kvm_vcpu *vcpu;
289 	struct cpumask *cpus;
290 	int i, me;
291 	bool called;
292 
293 	me = get_cpu();
294 
295 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
296 	cpumask_clear(cpus);
297 
298 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
299 		vcpu = kvm_get_vcpu(kvm, i);
300 		if (!vcpu)
301 			continue;
302 		kvm_make_vcpu_request(vcpu, req, cpus, me);
303 	}
304 
305 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
306 	put_cpu();
307 
308 	return called;
309 }
310 
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)311 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
312 {
313 	struct kvm_vcpu *vcpu;
314 	struct cpumask *cpus;
315 	unsigned long i;
316 	bool called;
317 	int me;
318 
319 	me = get_cpu();
320 
321 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
322 	cpumask_clear(cpus);
323 
324 	kvm_for_each_vcpu(i, vcpu, kvm)
325 		kvm_make_vcpu_request(vcpu, req, cpus, me);
326 
327 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
328 	put_cpu();
329 
330 	return called;
331 }
332 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
333 
kvm_flush_remote_tlbs(struct kvm * kvm)334 void kvm_flush_remote_tlbs(struct kvm *kvm)
335 {
336 	++kvm->stat.generic.remote_tlb_flush_requests;
337 
338 	/*
339 	 * We want to publish modifications to the page tables before reading
340 	 * mode. Pairs with a memory barrier in arch-specific code.
341 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
342 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
343 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
344 	 *
345 	 * There is already an smp_mb__after_atomic() before
346 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
347 	 * barrier here.
348 	 */
349 	if (!kvm_arch_flush_remote_tlbs(kvm)
350 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
351 		++kvm->stat.generic.remote_tlb_flush;
352 }
353 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
354 
kvm_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)355 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
356 {
357 	if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
358 		return;
359 
360 	/*
361 	 * Fall back to a flushing entire TLBs if the architecture range-based
362 	 * TLB invalidation is unsupported or can't be performed for whatever
363 	 * reason.
364 	 */
365 	kvm_flush_remote_tlbs(kvm);
366 }
367 
kvm_flush_remote_tlbs_memslot(struct kvm * kvm,const struct kvm_memory_slot * memslot)368 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
369 				   const struct kvm_memory_slot *memslot)
370 {
371 	/*
372 	 * All current use cases for flushing the TLBs for a specific memslot
373 	 * are related to dirty logging, and many do the TLB flush out of
374 	 * mmu_lock. The interaction between the various operations on memslot
375 	 * must be serialized by slots_locks to ensure the TLB flush from one
376 	 * operation is observed by any other operation on the same memslot.
377 	 */
378 	lockdep_assert_held(&kvm->slots_lock);
379 	kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
380 }
381 
kvm_flush_shadow_all(struct kvm * kvm)382 static void kvm_flush_shadow_all(struct kvm *kvm)
383 {
384 	kvm_arch_flush_shadow_all(kvm);
385 	kvm_arch_guest_memory_reclaimed(kvm);
386 }
387 
388 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache * mc,gfp_t gfp_flags)389 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
390 					       gfp_t gfp_flags)
391 {
392 	void *page;
393 
394 	gfp_flags |= mc->gfp_zero;
395 
396 	if (mc->kmem_cache)
397 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
398 
399 	page = (void *)__get_free_page(gfp_flags);
400 	if (page && mc->init_value)
401 		memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
402 	return page;
403 }
404 
__kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int capacity,int min)405 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
406 {
407 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
408 	void *obj;
409 
410 	if (mc->nobjs >= min)
411 		return 0;
412 
413 	if (unlikely(!mc->objects)) {
414 		if (WARN_ON_ONCE(!capacity))
415 			return -EIO;
416 
417 		/*
418 		 * Custom init values can be used only for page allocations,
419 		 * and obviously conflict with __GFP_ZERO.
420 		 */
421 		if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
422 			return -EIO;
423 
424 		mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
425 		if (!mc->objects)
426 			return -ENOMEM;
427 
428 		mc->capacity = capacity;
429 	}
430 
431 	/* It is illegal to request a different capacity across topups. */
432 	if (WARN_ON_ONCE(mc->capacity != capacity))
433 		return -EIO;
434 
435 	while (mc->nobjs < mc->capacity) {
436 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
437 		if (!obj)
438 			return mc->nobjs >= min ? 0 : -ENOMEM;
439 		mc->objects[mc->nobjs++] = obj;
440 	}
441 	return 0;
442 }
443 
kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int min)444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
445 {
446 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
447 }
448 
kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache * mc)449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
450 {
451 	return mc->nobjs;
452 }
453 
kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
455 {
456 	while (mc->nobjs) {
457 		if (mc->kmem_cache)
458 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
459 		else
460 			free_page((unsigned long)mc->objects[--mc->nobjs]);
461 	}
462 
463 	kvfree(mc->objects);
464 
465 	mc->objects = NULL;
466 	mc->capacity = 0;
467 }
468 
kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
470 {
471 	void *p;
472 
473 	if (WARN_ON(!mc->nobjs))
474 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
475 	else
476 		p = mc->objects[--mc->nobjs];
477 	BUG_ON(!p);
478 	return p;
479 }
480 #endif
481 
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
483 {
484 	mutex_init(&vcpu->mutex);
485 	vcpu->cpu = -1;
486 	vcpu->kvm = kvm;
487 	vcpu->vcpu_id = id;
488 	vcpu->pid = NULL;
489 #ifndef __KVM_HAVE_ARCH_WQP
490 	rcuwait_init(&vcpu->wait);
491 #endif
492 	kvm_async_pf_vcpu_init(vcpu);
493 
494 	kvm_vcpu_set_in_spin_loop(vcpu, false);
495 	kvm_vcpu_set_dy_eligible(vcpu, false);
496 	vcpu->preempted = false;
497 	vcpu->ready = false;
498 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499 	vcpu->last_used_slot = NULL;
500 
501 	/* Fill the stats id string for the vcpu */
502 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503 		 task_pid_nr(current), id);
504 }
505 
kvm_vcpu_destroy(struct kvm_vcpu * vcpu)506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
507 {
508 	kvm_arch_vcpu_destroy(vcpu);
509 	kvm_dirty_ring_free(&vcpu->dirty_ring);
510 
511 	/*
512 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513 	 * the vcpu->pid pointer, and at destruction time all file descriptors
514 	 * are already gone.
515 	 */
516 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
517 
518 	free_page((unsigned long)vcpu->run);
519 	kmem_cache_free(kvm_vcpu_cache, vcpu);
520 }
521 
kvm_destroy_vcpus(struct kvm * kvm)522 void kvm_destroy_vcpus(struct kvm *kvm)
523 {
524 	unsigned long i;
525 	struct kvm_vcpu *vcpu;
526 
527 	kvm_for_each_vcpu(i, vcpu, kvm) {
528 		kvm_vcpu_destroy(vcpu);
529 		xa_erase(&kvm->vcpu_array, i);
530 	}
531 
532 	atomic_set(&kvm->online_vcpus, 0);
533 }
534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
535 
536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
mmu_notifier_to_kvm(struct mmu_notifier * mn)537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
538 {
539 	return container_of(mn, struct kvm, mmu_notifier);
540 }
541 
542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
543 
544 typedef void (*on_lock_fn_t)(struct kvm *kvm);
545 
546 struct kvm_mmu_notifier_range {
547 	/*
548 	 * 64-bit addresses, as KVM notifiers can operate on host virtual
549 	 * addresses (unsigned long) and guest physical addresses (64-bit).
550 	 */
551 	u64 start;
552 	u64 end;
553 	union kvm_mmu_notifier_arg arg;
554 	gfn_handler_t handler;
555 	on_lock_fn_t on_lock;
556 	bool flush_on_ret;
557 	bool may_block;
558 };
559 
560 /*
561  * The inner-most helper returns a tuple containing the return value from the
562  * arch- and action-specific handler, plus a flag indicating whether or not at
563  * least one memslot was found, i.e. if the handler found guest memory.
564  *
565  * Note, most notifiers are averse to booleans, so even though KVM tracks the
566  * return from arch code as a bool, outer helpers will cast it to an int. :-(
567  */
568 typedef struct kvm_mmu_notifier_return {
569 	bool ret;
570 	bool found_memslot;
571 } kvm_mn_ret_t;
572 
573 /*
574  * Use a dedicated stub instead of NULL to indicate that there is no callback
575  * function/handler.  The compiler technically can't guarantee that a real
576  * function will have a non-zero address, and so it will generate code to
577  * check for !NULL, whereas comparing against a stub will be elided at compile
578  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
579  */
kvm_null_fn(void)580 static void kvm_null_fn(void)
581 {
582 
583 }
584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
585 
586 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
587 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
588 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
589 	     node;							     \
590 	     node = interval_tree_iter_next(node, start, last))	     \
591 
__kvm_handle_hva_range(struct kvm * kvm,const struct kvm_mmu_notifier_range * range)592 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
593 							   const struct kvm_mmu_notifier_range *range)
594 {
595 	struct kvm_mmu_notifier_return r = {
596 		.ret = false,
597 		.found_memslot = false,
598 	};
599 	struct kvm_gfn_range gfn_range;
600 	struct kvm_memory_slot *slot;
601 	struct kvm_memslots *slots;
602 	int i, idx;
603 
604 	if (WARN_ON_ONCE(range->end <= range->start))
605 		return r;
606 
607 	/* A null handler is allowed if and only if on_lock() is provided. */
608 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
609 			 IS_KVM_NULL_FN(range->handler)))
610 		return r;
611 
612 	idx = srcu_read_lock(&kvm->srcu);
613 
614 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
615 		struct interval_tree_node *node;
616 
617 		slots = __kvm_memslots(kvm, i);
618 		kvm_for_each_memslot_in_hva_range(node, slots,
619 						  range->start, range->end - 1) {
620 			unsigned long hva_start, hva_end;
621 
622 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
623 			hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
624 			hva_end = min_t(unsigned long, range->end,
625 					slot->userspace_addr + (slot->npages << PAGE_SHIFT));
626 
627 			/*
628 			 * To optimize for the likely case where the address
629 			 * range is covered by zero or one memslots, don't
630 			 * bother making these conditional (to avoid writes on
631 			 * the second or later invocation of the handler).
632 			 */
633 			gfn_range.arg = range->arg;
634 			gfn_range.may_block = range->may_block;
635 			/*
636 			 * HVA-based notifications aren't relevant to private
637 			 * mappings as they don't have a userspace mapping.
638 			 */
639 			gfn_range.attr_filter = KVM_FILTER_SHARED;
640 
641 			/*
642 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
643 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
644 			 */
645 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
646 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
647 			gfn_range.slot = slot;
648 
649 			if (!r.found_memslot) {
650 				r.found_memslot = true;
651 				KVM_MMU_LOCK(kvm);
652 				if (!IS_KVM_NULL_FN(range->on_lock))
653 					range->on_lock(kvm);
654 
655 				if (IS_KVM_NULL_FN(range->handler))
656 					goto mmu_unlock;
657 			}
658 			r.ret |= range->handler(kvm, &gfn_range);
659 		}
660 	}
661 
662 	if (range->flush_on_ret && r.ret)
663 		kvm_flush_remote_tlbs(kvm);
664 
665 mmu_unlock:
666 	if (r.found_memslot)
667 		KVM_MMU_UNLOCK(kvm);
668 
669 	srcu_read_unlock(&kvm->srcu, idx);
670 
671 	return r;
672 }
673 
kvm_handle_hva_range(struct mmu_notifier * mn,unsigned long start,unsigned long end,gfn_handler_t handler)674 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
675 						unsigned long start,
676 						unsigned long end,
677 						gfn_handler_t handler)
678 {
679 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
680 	const struct kvm_mmu_notifier_range range = {
681 		.start		= start,
682 		.end		= end,
683 		.handler	= handler,
684 		.on_lock	= (void *)kvm_null_fn,
685 		.flush_on_ret	= true,
686 		.may_block	= false,
687 	};
688 
689 	return __kvm_handle_hva_range(kvm, &range).ret;
690 }
691 
kvm_handle_hva_range_no_flush(struct mmu_notifier * mn,unsigned long start,unsigned long end,gfn_handler_t handler)692 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
693 							 unsigned long start,
694 							 unsigned long end,
695 							 gfn_handler_t handler)
696 {
697 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
698 	const struct kvm_mmu_notifier_range range = {
699 		.start		= start,
700 		.end		= end,
701 		.handler	= handler,
702 		.on_lock	= (void *)kvm_null_fn,
703 		.flush_on_ret	= false,
704 		.may_block	= false,
705 	};
706 
707 	return __kvm_handle_hva_range(kvm, &range).ret;
708 }
709 
kvm_mmu_invalidate_begin(struct kvm * kvm)710 void kvm_mmu_invalidate_begin(struct kvm *kvm)
711 {
712 	lockdep_assert_held_write(&kvm->mmu_lock);
713 	/*
714 	 * The count increase must become visible at unlock time as no
715 	 * spte can be established without taking the mmu_lock and
716 	 * count is also read inside the mmu_lock critical section.
717 	 */
718 	kvm->mmu_invalidate_in_progress++;
719 
720 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
721 		kvm->mmu_invalidate_range_start = INVALID_GPA;
722 		kvm->mmu_invalidate_range_end = INVALID_GPA;
723 	}
724 }
725 
kvm_mmu_invalidate_range_add(struct kvm * kvm,gfn_t start,gfn_t end)726 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
727 {
728 	lockdep_assert_held_write(&kvm->mmu_lock);
729 
730 	WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
731 
732 	if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
733 		kvm->mmu_invalidate_range_start = start;
734 		kvm->mmu_invalidate_range_end = end;
735 	} else {
736 		/*
737 		 * Fully tracking multiple concurrent ranges has diminishing
738 		 * returns. Keep things simple and just find the minimal range
739 		 * which includes the current and new ranges. As there won't be
740 		 * enough information to subtract a range after its invalidate
741 		 * completes, any ranges invalidated concurrently will
742 		 * accumulate and persist until all outstanding invalidates
743 		 * complete.
744 		 */
745 		kvm->mmu_invalidate_range_start =
746 			min(kvm->mmu_invalidate_range_start, start);
747 		kvm->mmu_invalidate_range_end =
748 			max(kvm->mmu_invalidate_range_end, end);
749 	}
750 }
751 
kvm_mmu_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)752 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
753 {
754 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
755 	return kvm_unmap_gfn_range(kvm, range);
756 }
757 
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,const struct mmu_notifier_range * range)758 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
759 					const struct mmu_notifier_range *range)
760 {
761 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
762 	const struct kvm_mmu_notifier_range hva_range = {
763 		.start		= range->start,
764 		.end		= range->end,
765 		.handler	= kvm_mmu_unmap_gfn_range,
766 		.on_lock	= kvm_mmu_invalidate_begin,
767 		.flush_on_ret	= true,
768 		.may_block	= mmu_notifier_range_blockable(range),
769 	};
770 
771 	trace_kvm_unmap_hva_range(range->start, range->end);
772 
773 	/*
774 	 * Prevent memslot modification between range_start() and range_end()
775 	 * so that conditionally locking provides the same result in both
776 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
777 	 * adjustments will be imbalanced.
778 	 *
779 	 * Pairs with the decrement in range_end().
780 	 */
781 	spin_lock(&kvm->mn_invalidate_lock);
782 	kvm->mn_active_invalidate_count++;
783 	spin_unlock(&kvm->mn_invalidate_lock);
784 
785 	/*
786 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
787 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
788 	 * each cache's lock.  There are relatively few caches in existence at
789 	 * any given time, and the caches themselves can check for hva overlap,
790 	 * i.e. don't need to rely on memslot overlap checks for performance.
791 	 * Because this runs without holding mmu_lock, the pfn caches must use
792 	 * mn_active_invalidate_count (see above) instead of
793 	 * mmu_invalidate_in_progress.
794 	 */
795 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
796 
797 	/*
798 	 * If one or more memslots were found and thus zapped, notify arch code
799 	 * that guest memory has been reclaimed.  This needs to be done *after*
800 	 * dropping mmu_lock, as x86's reclaim path is slooooow.
801 	 */
802 	if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
803 		kvm_arch_guest_memory_reclaimed(kvm);
804 
805 	return 0;
806 }
807 
kvm_mmu_invalidate_end(struct kvm * kvm)808 void kvm_mmu_invalidate_end(struct kvm *kvm)
809 {
810 	lockdep_assert_held_write(&kvm->mmu_lock);
811 
812 	/*
813 	 * This sequence increase will notify the kvm page fault that
814 	 * the page that is going to be mapped in the spte could have
815 	 * been freed.
816 	 */
817 	kvm->mmu_invalidate_seq++;
818 	smp_wmb();
819 	/*
820 	 * The above sequence increase must be visible before the
821 	 * below count decrease, which is ensured by the smp_wmb above
822 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
823 	 */
824 	kvm->mmu_invalidate_in_progress--;
825 	KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
826 
827 	/*
828 	 * Assert that at least one range was added between start() and end().
829 	 * Not adding a range isn't fatal, but it is a KVM bug.
830 	 */
831 	WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
832 }
833 
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,const struct mmu_notifier_range * range)834 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
835 					const struct mmu_notifier_range *range)
836 {
837 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
838 	const struct kvm_mmu_notifier_range hva_range = {
839 		.start		= range->start,
840 		.end		= range->end,
841 		.handler	= (void *)kvm_null_fn,
842 		.on_lock	= kvm_mmu_invalidate_end,
843 		.flush_on_ret	= false,
844 		.may_block	= mmu_notifier_range_blockable(range),
845 	};
846 	bool wake;
847 
848 	__kvm_handle_hva_range(kvm, &hva_range);
849 
850 	/* Pairs with the increment in range_start(). */
851 	spin_lock(&kvm->mn_invalidate_lock);
852 	if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
853 		--kvm->mn_active_invalidate_count;
854 	wake = !kvm->mn_active_invalidate_count;
855 	spin_unlock(&kvm->mn_invalidate_lock);
856 
857 	/*
858 	 * There can only be one waiter, since the wait happens under
859 	 * slots_lock.
860 	 */
861 	if (wake)
862 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
863 }
864 
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)865 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
866 					      struct mm_struct *mm,
867 					      unsigned long start,
868 					      unsigned long end)
869 {
870 	trace_kvm_age_hva(start, end);
871 
872 	return kvm_handle_hva_range(mn, start, end, kvm_age_gfn);
873 }
874 
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)875 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
876 					struct mm_struct *mm,
877 					unsigned long start,
878 					unsigned long end)
879 {
880 	trace_kvm_age_hva(start, end);
881 
882 	/*
883 	 * Even though we do not flush TLB, this will still adversely
884 	 * affect performance on pre-Haswell Intel EPT, where there is
885 	 * no EPT Access Bit to clear so that we have to tear down EPT
886 	 * tables instead. If we find this unacceptable, we can always
887 	 * add a parameter to kvm_age_hva so that it effectively doesn't
888 	 * do anything on clear_young.
889 	 *
890 	 * Also note that currently we never issue secondary TLB flushes
891 	 * from clear_young, leaving this job up to the regular system
892 	 * cadence. If we find this inaccurate, we might come up with a
893 	 * more sophisticated heuristic later.
894 	 */
895 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
896 }
897 
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)898 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
899 				       struct mm_struct *mm,
900 				       unsigned long address)
901 {
902 	trace_kvm_test_age_hva(address);
903 
904 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
905 					     kvm_test_age_gfn);
906 }
907 
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)908 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
909 				     struct mm_struct *mm)
910 {
911 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
912 	int idx;
913 
914 	idx = srcu_read_lock(&kvm->srcu);
915 	kvm_flush_shadow_all(kvm);
916 	srcu_read_unlock(&kvm->srcu, idx);
917 }
918 
919 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
920 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
921 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
922 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
923 	.clear_young		= kvm_mmu_notifier_clear_young,
924 	.test_young		= kvm_mmu_notifier_test_young,
925 	.release		= kvm_mmu_notifier_release,
926 };
927 
kvm_init_mmu_notifier(struct kvm * kvm)928 static int kvm_init_mmu_notifier(struct kvm *kvm)
929 {
930 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
931 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
932 }
933 
934 #else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
935 
kvm_init_mmu_notifier(struct kvm * kvm)936 static int kvm_init_mmu_notifier(struct kvm *kvm)
937 {
938 	return 0;
939 }
940 
941 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
942 
943 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_pm_notifier_call(struct notifier_block * bl,unsigned long state,void * unused)944 static int kvm_pm_notifier_call(struct notifier_block *bl,
945 				unsigned long state,
946 				void *unused)
947 {
948 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
949 
950 	return kvm_arch_pm_notifier(kvm, state);
951 }
952 
kvm_init_pm_notifier(struct kvm * kvm)953 static void kvm_init_pm_notifier(struct kvm *kvm)
954 {
955 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
956 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
957 	kvm->pm_notifier.priority = INT_MAX;
958 	register_pm_notifier(&kvm->pm_notifier);
959 }
960 
kvm_destroy_pm_notifier(struct kvm * kvm)961 static void kvm_destroy_pm_notifier(struct kvm *kvm)
962 {
963 	unregister_pm_notifier(&kvm->pm_notifier);
964 }
965 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
kvm_init_pm_notifier(struct kvm * kvm)966 static void kvm_init_pm_notifier(struct kvm *kvm)
967 {
968 }
969 
kvm_destroy_pm_notifier(struct kvm * kvm)970 static void kvm_destroy_pm_notifier(struct kvm *kvm)
971 {
972 }
973 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
974 
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)975 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
976 {
977 	if (!memslot->dirty_bitmap)
978 		return;
979 
980 	vfree(memslot->dirty_bitmap);
981 	memslot->dirty_bitmap = NULL;
982 }
983 
984 /* This does not remove the slot from struct kvm_memslots data structures */
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)985 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
986 {
987 	if (slot->flags & KVM_MEM_GUEST_MEMFD)
988 		kvm_gmem_unbind(slot);
989 
990 	kvm_destroy_dirty_bitmap(slot);
991 
992 	kvm_arch_free_memslot(kvm, slot);
993 
994 	kfree(slot);
995 }
996 
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)997 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
998 {
999 	struct hlist_node *idnode;
1000 	struct kvm_memory_slot *memslot;
1001 	int bkt;
1002 
1003 	/*
1004 	 * The same memslot objects live in both active and inactive sets,
1005 	 * arbitrarily free using index '1' so the second invocation of this
1006 	 * function isn't operating over a structure with dangling pointers
1007 	 * (even though this function isn't actually touching them).
1008 	 */
1009 	if (!slots->node_idx)
1010 		return;
1011 
1012 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1013 		kvm_free_memslot(kvm, memslot);
1014 }
1015 
kvm_stats_debugfs_mode(const struct _kvm_stats_desc * pdesc)1016 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1017 {
1018 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1019 	case KVM_STATS_TYPE_INSTANT:
1020 		return 0444;
1021 	case KVM_STATS_TYPE_CUMULATIVE:
1022 	case KVM_STATS_TYPE_PEAK:
1023 	default:
1024 		return 0644;
1025 	}
1026 }
1027 
1028 
kvm_destroy_vm_debugfs(struct kvm * kvm)1029 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1030 {
1031 	int i;
1032 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1033 				      kvm_vcpu_stats_header.num_desc;
1034 
1035 	if (IS_ERR(kvm->debugfs_dentry))
1036 		return;
1037 
1038 	debugfs_remove_recursive(kvm->debugfs_dentry);
1039 
1040 	if (kvm->debugfs_stat_data) {
1041 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1042 			kfree(kvm->debugfs_stat_data[i]);
1043 		kfree(kvm->debugfs_stat_data);
1044 	}
1045 }
1046 
kvm_create_vm_debugfs(struct kvm * kvm,const char * fdname)1047 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1048 {
1049 	static DEFINE_MUTEX(kvm_debugfs_lock);
1050 	struct dentry *dent;
1051 	char dir_name[ITOA_MAX_LEN * 2];
1052 	struct kvm_stat_data *stat_data;
1053 	const struct _kvm_stats_desc *pdesc;
1054 	int i, ret = -ENOMEM;
1055 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1056 				      kvm_vcpu_stats_header.num_desc;
1057 
1058 	if (!debugfs_initialized())
1059 		return 0;
1060 
1061 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1062 	mutex_lock(&kvm_debugfs_lock);
1063 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1064 	if (dent) {
1065 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1066 		dput(dent);
1067 		mutex_unlock(&kvm_debugfs_lock);
1068 		return 0;
1069 	}
1070 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1071 	mutex_unlock(&kvm_debugfs_lock);
1072 	if (IS_ERR(dent))
1073 		return 0;
1074 
1075 	kvm->debugfs_dentry = dent;
1076 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1077 					 sizeof(*kvm->debugfs_stat_data),
1078 					 GFP_KERNEL_ACCOUNT);
1079 	if (!kvm->debugfs_stat_data)
1080 		goto out_err;
1081 
1082 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1083 		pdesc = &kvm_vm_stats_desc[i];
1084 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1085 		if (!stat_data)
1086 			goto out_err;
1087 
1088 		stat_data->kvm = kvm;
1089 		stat_data->desc = pdesc;
1090 		stat_data->kind = KVM_STAT_VM;
1091 		kvm->debugfs_stat_data[i] = stat_data;
1092 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1093 				    kvm->debugfs_dentry, stat_data,
1094 				    &stat_fops_per_vm);
1095 	}
1096 
1097 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1098 		pdesc = &kvm_vcpu_stats_desc[i];
1099 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1100 		if (!stat_data)
1101 			goto out_err;
1102 
1103 		stat_data->kvm = kvm;
1104 		stat_data->desc = pdesc;
1105 		stat_data->kind = KVM_STAT_VCPU;
1106 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1107 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1108 				    kvm->debugfs_dentry, stat_data,
1109 				    &stat_fops_per_vm);
1110 	}
1111 
1112 	kvm_arch_create_vm_debugfs(kvm);
1113 	return 0;
1114 out_err:
1115 	kvm_destroy_vm_debugfs(kvm);
1116 	return ret;
1117 }
1118 
1119 /*
1120  * Called after the VM is otherwise initialized, but just before adding it to
1121  * the vm_list.
1122  */
kvm_arch_post_init_vm(struct kvm * kvm)1123 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1124 {
1125 	return 0;
1126 }
1127 
1128 /*
1129  * Called just after removing the VM from the vm_list, but before doing any
1130  * other destruction.
1131  */
kvm_arch_pre_destroy_vm(struct kvm * kvm)1132 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1133 {
1134 }
1135 
1136 /*
1137  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1138  * be setup already, so we can create arch-specific debugfs entries under it.
1139  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1140  * a per-arch destroy interface is not needed.
1141  */
kvm_arch_create_vm_debugfs(struct kvm * kvm)1142 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1143 {
1144 }
1145 
kvm_create_vm(unsigned long type,const char * fdname)1146 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1147 {
1148 	struct kvm *kvm = kvm_arch_alloc_vm();
1149 	struct kvm_memslots *slots;
1150 	int r, i, j;
1151 
1152 	if (!kvm)
1153 		return ERR_PTR(-ENOMEM);
1154 
1155 	KVM_MMU_LOCK_INIT(kvm);
1156 	mmgrab(current->mm);
1157 	kvm->mm = current->mm;
1158 	kvm_eventfd_init(kvm);
1159 	mutex_init(&kvm->lock);
1160 	mutex_init(&kvm->irq_lock);
1161 	mutex_init(&kvm->slots_lock);
1162 	mutex_init(&kvm->slots_arch_lock);
1163 	spin_lock_init(&kvm->mn_invalidate_lock);
1164 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1165 	xa_init(&kvm->vcpu_array);
1166 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1167 	xa_init(&kvm->mem_attr_array);
1168 #endif
1169 
1170 	INIT_LIST_HEAD(&kvm->gpc_list);
1171 	spin_lock_init(&kvm->gpc_lock);
1172 
1173 	INIT_LIST_HEAD(&kvm->devices);
1174 	kvm->max_vcpus = KVM_MAX_VCPUS;
1175 
1176 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1177 
1178 	/*
1179 	 * Force subsequent debugfs file creations to fail if the VM directory
1180 	 * is not created (by kvm_create_vm_debugfs()).
1181 	 */
1182 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1183 
1184 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1185 		 task_pid_nr(current));
1186 
1187 	r = -ENOMEM;
1188 	if (init_srcu_struct(&kvm->srcu))
1189 		goto out_err_no_srcu;
1190 	if (init_srcu_struct(&kvm->irq_srcu))
1191 		goto out_err_no_irq_srcu;
1192 
1193 	r = kvm_init_irq_routing(kvm);
1194 	if (r)
1195 		goto out_err_no_irq_routing;
1196 
1197 	refcount_set(&kvm->users_count, 1);
1198 
1199 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1200 		for (j = 0; j < 2; j++) {
1201 			slots = &kvm->__memslots[i][j];
1202 
1203 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1204 			slots->hva_tree = RB_ROOT_CACHED;
1205 			slots->gfn_tree = RB_ROOT;
1206 			hash_init(slots->id_hash);
1207 			slots->node_idx = j;
1208 
1209 			/* Generations must be different for each address space. */
1210 			slots->generation = i;
1211 		}
1212 
1213 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1214 	}
1215 
1216 	r = -ENOMEM;
1217 	for (i = 0; i < KVM_NR_BUSES; i++) {
1218 		rcu_assign_pointer(kvm->buses[i],
1219 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1220 		if (!kvm->buses[i])
1221 			goto out_err_no_arch_destroy_vm;
1222 	}
1223 
1224 	r = kvm_arch_init_vm(kvm, type);
1225 	if (r)
1226 		goto out_err_no_arch_destroy_vm;
1227 
1228 	r = kvm_enable_virtualization();
1229 	if (r)
1230 		goto out_err_no_disable;
1231 
1232 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1233 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1234 #endif
1235 
1236 	r = kvm_init_mmu_notifier(kvm);
1237 	if (r)
1238 		goto out_err_no_mmu_notifier;
1239 
1240 	r = kvm_coalesced_mmio_init(kvm);
1241 	if (r < 0)
1242 		goto out_no_coalesced_mmio;
1243 
1244 	r = kvm_create_vm_debugfs(kvm, fdname);
1245 	if (r)
1246 		goto out_err_no_debugfs;
1247 
1248 	r = kvm_arch_post_init_vm(kvm);
1249 	if (r)
1250 		goto out_err;
1251 
1252 	mutex_lock(&kvm_lock);
1253 	list_add(&kvm->vm_list, &vm_list);
1254 	mutex_unlock(&kvm_lock);
1255 
1256 	preempt_notifier_inc();
1257 	kvm_init_pm_notifier(kvm);
1258 
1259 	return kvm;
1260 
1261 out_err:
1262 	kvm_destroy_vm_debugfs(kvm);
1263 out_err_no_debugfs:
1264 	kvm_coalesced_mmio_free(kvm);
1265 out_no_coalesced_mmio:
1266 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1267 	if (kvm->mmu_notifier.ops)
1268 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1269 #endif
1270 out_err_no_mmu_notifier:
1271 	kvm_disable_virtualization();
1272 out_err_no_disable:
1273 	kvm_arch_destroy_vm(kvm);
1274 out_err_no_arch_destroy_vm:
1275 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1276 	for (i = 0; i < KVM_NR_BUSES; i++)
1277 		kfree(kvm_get_bus(kvm, i));
1278 	kvm_free_irq_routing(kvm);
1279 out_err_no_irq_routing:
1280 	cleanup_srcu_struct(&kvm->irq_srcu);
1281 out_err_no_irq_srcu:
1282 	cleanup_srcu_struct(&kvm->srcu);
1283 out_err_no_srcu:
1284 	kvm_arch_free_vm(kvm);
1285 	mmdrop(current->mm);
1286 	return ERR_PTR(r);
1287 }
1288 
kvm_destroy_devices(struct kvm * kvm)1289 static void kvm_destroy_devices(struct kvm *kvm)
1290 {
1291 	struct kvm_device *dev, *tmp;
1292 
1293 	/*
1294 	 * We do not need to take the kvm->lock here, because nobody else
1295 	 * has a reference to the struct kvm at this point and therefore
1296 	 * cannot access the devices list anyhow.
1297 	 *
1298 	 * The device list is generally managed as an rculist, but list_del()
1299 	 * is used intentionally here. If a bug in KVM introduced a reader that
1300 	 * was not backed by a reference on the kvm struct, the hope is that
1301 	 * it'd consume the poisoned forward pointer instead of suffering a
1302 	 * use-after-free, even though this cannot be guaranteed.
1303 	 */
1304 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1305 		list_del(&dev->vm_node);
1306 		dev->ops->destroy(dev);
1307 	}
1308 }
1309 
kvm_destroy_vm(struct kvm * kvm)1310 static void kvm_destroy_vm(struct kvm *kvm)
1311 {
1312 	int i;
1313 	struct mm_struct *mm = kvm->mm;
1314 
1315 	kvm_destroy_pm_notifier(kvm);
1316 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1317 	kvm_destroy_vm_debugfs(kvm);
1318 	kvm_arch_sync_events(kvm);
1319 	mutex_lock(&kvm_lock);
1320 	list_del(&kvm->vm_list);
1321 	mutex_unlock(&kvm_lock);
1322 	kvm_arch_pre_destroy_vm(kvm);
1323 
1324 	kvm_free_irq_routing(kvm);
1325 	for (i = 0; i < KVM_NR_BUSES; i++) {
1326 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1327 
1328 		if (bus)
1329 			kvm_io_bus_destroy(bus);
1330 		kvm->buses[i] = NULL;
1331 	}
1332 	kvm_coalesced_mmio_free(kvm);
1333 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1334 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1335 	/*
1336 	 * At this point, pending calls to invalidate_range_start()
1337 	 * have completed but no more MMU notifiers will run, so
1338 	 * mn_active_invalidate_count may remain unbalanced.
1339 	 * No threads can be waiting in kvm_swap_active_memslots() as the
1340 	 * last reference on KVM has been dropped, but freeing
1341 	 * memslots would deadlock without this manual intervention.
1342 	 *
1343 	 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1344 	 * notifier between a start() and end(), then there shouldn't be any
1345 	 * in-progress invalidations.
1346 	 */
1347 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1348 	if (kvm->mn_active_invalidate_count)
1349 		kvm->mn_active_invalidate_count = 0;
1350 	else
1351 		WARN_ON(kvm->mmu_invalidate_in_progress);
1352 #else
1353 	kvm_flush_shadow_all(kvm);
1354 #endif
1355 	kvm_arch_destroy_vm(kvm);
1356 	kvm_destroy_devices(kvm);
1357 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1358 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1359 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1360 	}
1361 	cleanup_srcu_struct(&kvm->irq_srcu);
1362 	srcu_barrier(&kvm->srcu);
1363 	cleanup_srcu_struct(&kvm->srcu);
1364 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1365 	xa_destroy(&kvm->mem_attr_array);
1366 #endif
1367 	kvm_arch_free_vm(kvm);
1368 	preempt_notifier_dec();
1369 	kvm_disable_virtualization();
1370 	mmdrop(mm);
1371 }
1372 
kvm_get_kvm(struct kvm * kvm)1373 void kvm_get_kvm(struct kvm *kvm)
1374 {
1375 	refcount_inc(&kvm->users_count);
1376 }
1377 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1378 
1379 /*
1380  * Make sure the vm is not during destruction, which is a safe version of
1381  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1382  */
kvm_get_kvm_safe(struct kvm * kvm)1383 bool kvm_get_kvm_safe(struct kvm *kvm)
1384 {
1385 	return refcount_inc_not_zero(&kvm->users_count);
1386 }
1387 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1388 
kvm_put_kvm(struct kvm * kvm)1389 void kvm_put_kvm(struct kvm *kvm)
1390 {
1391 	if (refcount_dec_and_test(&kvm->users_count))
1392 		kvm_destroy_vm(kvm);
1393 }
1394 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1395 
1396 /*
1397  * Used to put a reference that was taken on behalf of an object associated
1398  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1399  * of the new file descriptor fails and the reference cannot be transferred to
1400  * its final owner.  In such cases, the caller is still actively using @kvm and
1401  * will fail miserably if the refcount unexpectedly hits zero.
1402  */
kvm_put_kvm_no_destroy(struct kvm * kvm)1403 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1404 {
1405 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1406 }
1407 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1408 
kvm_vm_release(struct inode * inode,struct file * filp)1409 static int kvm_vm_release(struct inode *inode, struct file *filp)
1410 {
1411 	struct kvm *kvm = filp->private_data;
1412 
1413 	kvm_irqfd_release(kvm);
1414 
1415 	kvm_put_kvm(kvm);
1416 	return 0;
1417 }
1418 
1419 /*
1420  * Allocation size is twice as large as the actual dirty bitmap size.
1421  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1422  */
kvm_alloc_dirty_bitmap(struct kvm_memory_slot * memslot)1423 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1424 {
1425 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1426 
1427 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1428 	if (!memslot->dirty_bitmap)
1429 		return -ENOMEM;
1430 
1431 	return 0;
1432 }
1433 
kvm_get_inactive_memslots(struct kvm * kvm,int as_id)1434 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1435 {
1436 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1437 	int node_idx_inactive = active->node_idx ^ 1;
1438 
1439 	return &kvm->__memslots[as_id][node_idx_inactive];
1440 }
1441 
1442 /*
1443  * Helper to get the address space ID when one of memslot pointers may be NULL.
1444  * This also serves as a sanity that at least one of the pointers is non-NULL,
1445  * and that their address space IDs don't diverge.
1446  */
kvm_memslots_get_as_id(struct kvm_memory_slot * a,struct kvm_memory_slot * b)1447 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1448 				  struct kvm_memory_slot *b)
1449 {
1450 	if (WARN_ON_ONCE(!a && !b))
1451 		return 0;
1452 
1453 	if (!a)
1454 		return b->as_id;
1455 	if (!b)
1456 		return a->as_id;
1457 
1458 	WARN_ON_ONCE(a->as_id != b->as_id);
1459 	return a->as_id;
1460 }
1461 
kvm_insert_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * slot)1462 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1463 				struct kvm_memory_slot *slot)
1464 {
1465 	struct rb_root *gfn_tree = &slots->gfn_tree;
1466 	struct rb_node **node, *parent;
1467 	int idx = slots->node_idx;
1468 
1469 	parent = NULL;
1470 	for (node = &gfn_tree->rb_node; *node; ) {
1471 		struct kvm_memory_slot *tmp;
1472 
1473 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1474 		parent = *node;
1475 		if (slot->base_gfn < tmp->base_gfn)
1476 			node = &(*node)->rb_left;
1477 		else if (slot->base_gfn > tmp->base_gfn)
1478 			node = &(*node)->rb_right;
1479 		else
1480 			BUG();
1481 	}
1482 
1483 	rb_link_node(&slot->gfn_node[idx], parent, node);
1484 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1485 }
1486 
kvm_erase_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * slot)1487 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1488 			       struct kvm_memory_slot *slot)
1489 {
1490 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1491 }
1492 
kvm_replace_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1493 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1494 				 struct kvm_memory_slot *old,
1495 				 struct kvm_memory_slot *new)
1496 {
1497 	int idx = slots->node_idx;
1498 
1499 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1500 
1501 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1502 			&slots->gfn_tree);
1503 }
1504 
1505 /*
1506  * Replace @old with @new in the inactive memslots.
1507  *
1508  * With NULL @old this simply adds @new.
1509  * With NULL @new this simply removes @old.
1510  *
1511  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1512  * appropriately.
1513  */
kvm_replace_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1514 static void kvm_replace_memslot(struct kvm *kvm,
1515 				struct kvm_memory_slot *old,
1516 				struct kvm_memory_slot *new)
1517 {
1518 	int as_id = kvm_memslots_get_as_id(old, new);
1519 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1520 	int idx = slots->node_idx;
1521 
1522 	if (old) {
1523 		hash_del(&old->id_node[idx]);
1524 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1525 
1526 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1527 			atomic_long_set(&slots->last_used_slot, (long)new);
1528 
1529 		if (!new) {
1530 			kvm_erase_gfn_node(slots, old);
1531 			return;
1532 		}
1533 	}
1534 
1535 	/*
1536 	 * Initialize @new's hva range.  Do this even when replacing an @old
1537 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1538 	 */
1539 	new->hva_node[idx].start = new->userspace_addr;
1540 	new->hva_node[idx].last = new->userspace_addr +
1541 				  (new->npages << PAGE_SHIFT) - 1;
1542 
1543 	/*
1544 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1545 	 * hva_node needs to be swapped with remove+insert even though hva can't
1546 	 * change when replacing an existing slot.
1547 	 */
1548 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1549 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1550 
1551 	/*
1552 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1553 	 * switch the node in the gfn tree instead of removing the old and
1554 	 * inserting the new as two separate operations. Replacement is a
1555 	 * single O(1) operation versus two O(log(n)) operations for
1556 	 * remove+insert.
1557 	 */
1558 	if (old && old->base_gfn == new->base_gfn) {
1559 		kvm_replace_gfn_node(slots, old, new);
1560 	} else {
1561 		if (old)
1562 			kvm_erase_gfn_node(slots, old);
1563 		kvm_insert_gfn_node(slots, new);
1564 	}
1565 }
1566 
1567 /*
1568  * Flags that do not access any of the extra space of struct
1569  * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1570  * only allows these.
1571  */
1572 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1573 	(KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1574 
check_memory_region_flags(struct kvm * kvm,const struct kvm_userspace_memory_region2 * mem)1575 static int check_memory_region_flags(struct kvm *kvm,
1576 				     const struct kvm_userspace_memory_region2 *mem)
1577 {
1578 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1579 
1580 	if (kvm_arch_has_private_mem(kvm))
1581 		valid_flags |= KVM_MEM_GUEST_MEMFD;
1582 
1583 	/* Dirty logging private memory is not currently supported. */
1584 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
1585 		valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1586 
1587 	/*
1588 	 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1589 	 * read-only memslots have emulated MMIO, not page fault, semantics,
1590 	 * and KVM doesn't allow emulated MMIO for private memory.
1591 	 */
1592 	if (kvm_arch_has_readonly_mem(kvm) &&
1593 	    !(mem->flags & KVM_MEM_GUEST_MEMFD))
1594 		valid_flags |= KVM_MEM_READONLY;
1595 
1596 	if (mem->flags & ~valid_flags)
1597 		return -EINVAL;
1598 
1599 	return 0;
1600 }
1601 
kvm_swap_active_memslots(struct kvm * kvm,int as_id)1602 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1603 {
1604 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1605 
1606 	/* Grab the generation from the activate memslots. */
1607 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1608 
1609 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1610 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1611 
1612 	/*
1613 	 * Do not store the new memslots while there are invalidations in
1614 	 * progress, otherwise the locking in invalidate_range_start and
1615 	 * invalidate_range_end will be unbalanced.
1616 	 */
1617 	spin_lock(&kvm->mn_invalidate_lock);
1618 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1619 	while (kvm->mn_active_invalidate_count) {
1620 		set_current_state(TASK_UNINTERRUPTIBLE);
1621 		spin_unlock(&kvm->mn_invalidate_lock);
1622 		schedule();
1623 		spin_lock(&kvm->mn_invalidate_lock);
1624 	}
1625 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1626 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1627 	spin_unlock(&kvm->mn_invalidate_lock);
1628 
1629 	/*
1630 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1631 	 * SRCU below in order to avoid deadlock with another thread
1632 	 * acquiring the slots_arch_lock in an srcu critical section.
1633 	 */
1634 	mutex_unlock(&kvm->slots_arch_lock);
1635 
1636 	synchronize_srcu_expedited(&kvm->srcu);
1637 
1638 	/*
1639 	 * Increment the new memslot generation a second time, dropping the
1640 	 * update in-progress flag and incrementing the generation based on
1641 	 * the number of address spaces.  This provides a unique and easily
1642 	 * identifiable generation number while the memslots are in flux.
1643 	 */
1644 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1645 
1646 	/*
1647 	 * Generations must be unique even across address spaces.  We do not need
1648 	 * a global counter for that, instead the generation space is evenly split
1649 	 * across address spaces.  For example, with two address spaces, address
1650 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1651 	 * use generations 1, 3, 5, ...
1652 	 */
1653 	gen += kvm_arch_nr_memslot_as_ids(kvm);
1654 
1655 	kvm_arch_memslots_updated(kvm, gen);
1656 
1657 	slots->generation = gen;
1658 }
1659 
kvm_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1660 static int kvm_prepare_memory_region(struct kvm *kvm,
1661 				     const struct kvm_memory_slot *old,
1662 				     struct kvm_memory_slot *new,
1663 				     enum kvm_mr_change change)
1664 {
1665 	int r;
1666 
1667 	/*
1668 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1669 	 * will be freed on "commit".  If logging is enabled in both old and
1670 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1671 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1672 	 * new bitmap.
1673 	 */
1674 	if (change != KVM_MR_DELETE) {
1675 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1676 			new->dirty_bitmap = NULL;
1677 		else if (old && old->dirty_bitmap)
1678 			new->dirty_bitmap = old->dirty_bitmap;
1679 		else if (kvm_use_dirty_bitmap(kvm)) {
1680 			r = kvm_alloc_dirty_bitmap(new);
1681 			if (r)
1682 				return r;
1683 
1684 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1685 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1686 		}
1687 	}
1688 
1689 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1690 
1691 	/* Free the bitmap on failure if it was allocated above. */
1692 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1693 		kvm_destroy_dirty_bitmap(new);
1694 
1695 	return r;
1696 }
1697 
kvm_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1698 static void kvm_commit_memory_region(struct kvm *kvm,
1699 				     struct kvm_memory_slot *old,
1700 				     const struct kvm_memory_slot *new,
1701 				     enum kvm_mr_change change)
1702 {
1703 	int old_flags = old ? old->flags : 0;
1704 	int new_flags = new ? new->flags : 0;
1705 	/*
1706 	 * Update the total number of memslot pages before calling the arch
1707 	 * hook so that architectures can consume the result directly.
1708 	 */
1709 	if (change == KVM_MR_DELETE)
1710 		kvm->nr_memslot_pages -= old->npages;
1711 	else if (change == KVM_MR_CREATE)
1712 		kvm->nr_memslot_pages += new->npages;
1713 
1714 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1715 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1716 		atomic_set(&kvm->nr_memslots_dirty_logging,
1717 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1718 	}
1719 
1720 	kvm_arch_commit_memory_region(kvm, old, new, change);
1721 
1722 	switch (change) {
1723 	case KVM_MR_CREATE:
1724 		/* Nothing more to do. */
1725 		break;
1726 	case KVM_MR_DELETE:
1727 		/* Free the old memslot and all its metadata. */
1728 		kvm_free_memslot(kvm, old);
1729 		break;
1730 	case KVM_MR_MOVE:
1731 	case KVM_MR_FLAGS_ONLY:
1732 		/*
1733 		 * Free the dirty bitmap as needed; the below check encompasses
1734 		 * both the flags and whether a ring buffer is being used)
1735 		 */
1736 		if (old->dirty_bitmap && !new->dirty_bitmap)
1737 			kvm_destroy_dirty_bitmap(old);
1738 
1739 		/*
1740 		 * The final quirk.  Free the detached, old slot, but only its
1741 		 * memory, not any metadata.  Metadata, including arch specific
1742 		 * data, may be reused by @new.
1743 		 */
1744 		kfree(old);
1745 		break;
1746 	default:
1747 		BUG();
1748 	}
1749 }
1750 
1751 /*
1752  * Activate @new, which must be installed in the inactive slots by the caller,
1753  * by swapping the active slots and then propagating @new to @old once @old is
1754  * unreachable and can be safely modified.
1755  *
1756  * With NULL @old this simply adds @new to @active (while swapping the sets).
1757  * With NULL @new this simply removes @old from @active and frees it
1758  * (while also swapping the sets).
1759  */
kvm_activate_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1760 static void kvm_activate_memslot(struct kvm *kvm,
1761 				 struct kvm_memory_slot *old,
1762 				 struct kvm_memory_slot *new)
1763 {
1764 	int as_id = kvm_memslots_get_as_id(old, new);
1765 
1766 	kvm_swap_active_memslots(kvm, as_id);
1767 
1768 	/* Propagate the new memslot to the now inactive memslots. */
1769 	kvm_replace_memslot(kvm, old, new);
1770 }
1771 
kvm_copy_memslot(struct kvm_memory_slot * dest,const struct kvm_memory_slot * src)1772 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1773 			     const struct kvm_memory_slot *src)
1774 {
1775 	dest->base_gfn = src->base_gfn;
1776 	dest->npages = src->npages;
1777 	dest->dirty_bitmap = src->dirty_bitmap;
1778 	dest->arch = src->arch;
1779 	dest->userspace_addr = src->userspace_addr;
1780 	dest->flags = src->flags;
1781 	dest->id = src->id;
1782 	dest->as_id = src->as_id;
1783 }
1784 
kvm_invalidate_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * invalid_slot)1785 static void kvm_invalidate_memslot(struct kvm *kvm,
1786 				   struct kvm_memory_slot *old,
1787 				   struct kvm_memory_slot *invalid_slot)
1788 {
1789 	/*
1790 	 * Mark the current slot INVALID.  As with all memslot modifications,
1791 	 * this must be done on an unreachable slot to avoid modifying the
1792 	 * current slot in the active tree.
1793 	 */
1794 	kvm_copy_memslot(invalid_slot, old);
1795 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1796 	kvm_replace_memslot(kvm, old, invalid_slot);
1797 
1798 	/*
1799 	 * Activate the slot that is now marked INVALID, but don't propagate
1800 	 * the slot to the now inactive slots. The slot is either going to be
1801 	 * deleted or recreated as a new slot.
1802 	 */
1803 	kvm_swap_active_memslots(kvm, old->as_id);
1804 
1805 	/*
1806 	 * From this point no new shadow pages pointing to a deleted, or moved,
1807 	 * memslot will be created.  Validation of sp->gfn happens in:
1808 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1809 	 *	- kvm_is_visible_gfn (mmu_check_root)
1810 	 */
1811 	kvm_arch_flush_shadow_memslot(kvm, old);
1812 	kvm_arch_guest_memory_reclaimed(kvm);
1813 
1814 	/* Was released by kvm_swap_active_memslots(), reacquire. */
1815 	mutex_lock(&kvm->slots_arch_lock);
1816 
1817 	/*
1818 	 * Copy the arch-specific field of the newly-installed slot back to the
1819 	 * old slot as the arch data could have changed between releasing
1820 	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1821 	 * above.  Writers are required to retrieve memslots *after* acquiring
1822 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1823 	 */
1824 	old->arch = invalid_slot->arch;
1825 }
1826 
kvm_create_memslot(struct kvm * kvm,struct kvm_memory_slot * new)1827 static void kvm_create_memslot(struct kvm *kvm,
1828 			       struct kvm_memory_slot *new)
1829 {
1830 	/* Add the new memslot to the inactive set and activate. */
1831 	kvm_replace_memslot(kvm, NULL, new);
1832 	kvm_activate_memslot(kvm, NULL, new);
1833 }
1834 
kvm_delete_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * invalid_slot)1835 static void kvm_delete_memslot(struct kvm *kvm,
1836 			       struct kvm_memory_slot *old,
1837 			       struct kvm_memory_slot *invalid_slot)
1838 {
1839 	/*
1840 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1841 	 * the "new" slot, and for the invalid version in the active slots.
1842 	 */
1843 	kvm_replace_memslot(kvm, old, NULL);
1844 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1845 }
1846 
kvm_move_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,struct kvm_memory_slot * invalid_slot)1847 static void kvm_move_memslot(struct kvm *kvm,
1848 			     struct kvm_memory_slot *old,
1849 			     struct kvm_memory_slot *new,
1850 			     struct kvm_memory_slot *invalid_slot)
1851 {
1852 	/*
1853 	 * Replace the old memslot in the inactive slots, and then swap slots
1854 	 * and replace the current INVALID with the new as well.
1855 	 */
1856 	kvm_replace_memslot(kvm, old, new);
1857 	kvm_activate_memslot(kvm, invalid_slot, new);
1858 }
1859 
kvm_update_flags_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1860 static void kvm_update_flags_memslot(struct kvm *kvm,
1861 				     struct kvm_memory_slot *old,
1862 				     struct kvm_memory_slot *new)
1863 {
1864 	/*
1865 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1866 	 * an intermediate step. Instead, the old memslot is simply replaced
1867 	 * with a new, updated copy in both memslot sets.
1868 	 */
1869 	kvm_replace_memslot(kvm, old, new);
1870 	kvm_activate_memslot(kvm, old, new);
1871 }
1872 
kvm_set_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1873 static int kvm_set_memslot(struct kvm *kvm,
1874 			   struct kvm_memory_slot *old,
1875 			   struct kvm_memory_slot *new,
1876 			   enum kvm_mr_change change)
1877 {
1878 	struct kvm_memory_slot *invalid_slot;
1879 	int r;
1880 
1881 	/*
1882 	 * Released in kvm_swap_active_memslots().
1883 	 *
1884 	 * Must be held from before the current memslots are copied until after
1885 	 * the new memslots are installed with rcu_assign_pointer, then
1886 	 * released before the synchronize srcu in kvm_swap_active_memslots().
1887 	 *
1888 	 * When modifying memslots outside of the slots_lock, must be held
1889 	 * before reading the pointer to the current memslots until after all
1890 	 * changes to those memslots are complete.
1891 	 *
1892 	 * These rules ensure that installing new memslots does not lose
1893 	 * changes made to the previous memslots.
1894 	 */
1895 	mutex_lock(&kvm->slots_arch_lock);
1896 
1897 	/*
1898 	 * Invalidate the old slot if it's being deleted or moved.  This is
1899 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1900 	 * continue running by ensuring there are no mappings or shadow pages
1901 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1902 	 * (and without a lock), a window would exist between effecting the
1903 	 * delete/move and committing the changes in arch code where KVM or a
1904 	 * guest could access a non-existent memslot.
1905 	 *
1906 	 * Modifications are done on a temporary, unreachable slot.  The old
1907 	 * slot needs to be preserved in case a later step fails and the
1908 	 * invalidation needs to be reverted.
1909 	 */
1910 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1911 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1912 		if (!invalid_slot) {
1913 			mutex_unlock(&kvm->slots_arch_lock);
1914 			return -ENOMEM;
1915 		}
1916 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1917 	}
1918 
1919 	r = kvm_prepare_memory_region(kvm, old, new, change);
1920 	if (r) {
1921 		/*
1922 		 * For DELETE/MOVE, revert the above INVALID change.  No
1923 		 * modifications required since the original slot was preserved
1924 		 * in the inactive slots.  Changing the active memslots also
1925 		 * release slots_arch_lock.
1926 		 */
1927 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1928 			kvm_activate_memslot(kvm, invalid_slot, old);
1929 			kfree(invalid_slot);
1930 		} else {
1931 			mutex_unlock(&kvm->slots_arch_lock);
1932 		}
1933 		return r;
1934 	}
1935 
1936 	/*
1937 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1938 	 * version of the old slot.  MOVE is particularly special as it reuses
1939 	 * the old slot and returns a copy of the old slot (in working_slot).
1940 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1941 	 * old slot is detached but otherwise preserved.
1942 	 */
1943 	if (change == KVM_MR_CREATE)
1944 		kvm_create_memslot(kvm, new);
1945 	else if (change == KVM_MR_DELETE)
1946 		kvm_delete_memslot(kvm, old, invalid_slot);
1947 	else if (change == KVM_MR_MOVE)
1948 		kvm_move_memslot(kvm, old, new, invalid_slot);
1949 	else if (change == KVM_MR_FLAGS_ONLY)
1950 		kvm_update_flags_memslot(kvm, old, new);
1951 	else
1952 		BUG();
1953 
1954 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1955 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1956 		kfree(invalid_slot);
1957 
1958 	/*
1959 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1960 	 * will directly hit the final, active memslot.  Architectures are
1961 	 * responsible for knowing that new->arch may be stale.
1962 	 */
1963 	kvm_commit_memory_region(kvm, old, new, change);
1964 
1965 	return 0;
1966 }
1967 
kvm_check_memslot_overlap(struct kvm_memslots * slots,int id,gfn_t start,gfn_t end)1968 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1969 				      gfn_t start, gfn_t end)
1970 {
1971 	struct kvm_memslot_iter iter;
1972 
1973 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1974 		if (iter.slot->id != id)
1975 			return true;
1976 	}
1977 
1978 	return false;
1979 }
1980 
1981 /*
1982  * Allocate some memory and give it an address in the guest physical address
1983  * space.
1984  *
1985  * Discontiguous memory is allowed, mostly for framebuffers.
1986  *
1987  * Must be called holding kvm->slots_lock for write.
1988  */
__kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region2 * mem)1989 int __kvm_set_memory_region(struct kvm *kvm,
1990 			    const struct kvm_userspace_memory_region2 *mem)
1991 {
1992 	struct kvm_memory_slot *old, *new;
1993 	struct kvm_memslots *slots;
1994 	enum kvm_mr_change change;
1995 	unsigned long npages;
1996 	gfn_t base_gfn;
1997 	int as_id, id;
1998 	int r;
1999 
2000 	r = check_memory_region_flags(kvm, mem);
2001 	if (r)
2002 		return r;
2003 
2004 	as_id = mem->slot >> 16;
2005 	id = (u16)mem->slot;
2006 
2007 	/* General sanity checks */
2008 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2009 	    (mem->memory_size != (unsigned long)mem->memory_size))
2010 		return -EINVAL;
2011 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2012 		return -EINVAL;
2013 	/* We can read the guest memory with __xxx_user() later on. */
2014 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2015 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2016 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2017 			mem->memory_size))
2018 		return -EINVAL;
2019 	if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2020 	    (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2021 	     mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2022 		return -EINVAL;
2023 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2024 		return -EINVAL;
2025 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2026 		return -EINVAL;
2027 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2028 		return -EINVAL;
2029 
2030 	slots = __kvm_memslots(kvm, as_id);
2031 
2032 	/*
2033 	 * Note, the old memslot (and the pointer itself!) may be invalidated
2034 	 * and/or destroyed by kvm_set_memslot().
2035 	 */
2036 	old = id_to_memslot(slots, id);
2037 
2038 	if (!mem->memory_size) {
2039 		if (!old || !old->npages)
2040 			return -EINVAL;
2041 
2042 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2043 			return -EIO;
2044 
2045 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2046 	}
2047 
2048 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2049 	npages = (mem->memory_size >> PAGE_SHIFT);
2050 
2051 	if (!old || !old->npages) {
2052 		change = KVM_MR_CREATE;
2053 
2054 		/*
2055 		 * To simplify KVM internals, the total number of pages across
2056 		 * all memslots must fit in an unsigned long.
2057 		 */
2058 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2059 			return -EINVAL;
2060 	} else { /* Modify an existing slot. */
2061 		/* Private memslots are immutable, they can only be deleted. */
2062 		if (mem->flags & KVM_MEM_GUEST_MEMFD)
2063 			return -EINVAL;
2064 		if ((mem->userspace_addr != old->userspace_addr) ||
2065 		    (npages != old->npages) ||
2066 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2067 			return -EINVAL;
2068 
2069 		if (base_gfn != old->base_gfn)
2070 			change = KVM_MR_MOVE;
2071 		else if (mem->flags != old->flags)
2072 			change = KVM_MR_FLAGS_ONLY;
2073 		else /* Nothing to change. */
2074 			return 0;
2075 	}
2076 
2077 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2078 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2079 		return -EEXIST;
2080 
2081 	/* Allocate a slot that will persist in the memslot. */
2082 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2083 	if (!new)
2084 		return -ENOMEM;
2085 
2086 	new->as_id = as_id;
2087 	new->id = id;
2088 	new->base_gfn = base_gfn;
2089 	new->npages = npages;
2090 	new->flags = mem->flags;
2091 	new->userspace_addr = mem->userspace_addr;
2092 	if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2093 		r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2094 		if (r)
2095 			goto out;
2096 	}
2097 
2098 	r = kvm_set_memslot(kvm, old, new, change);
2099 	if (r)
2100 		goto out_unbind;
2101 
2102 	return 0;
2103 
2104 out_unbind:
2105 	if (mem->flags & KVM_MEM_GUEST_MEMFD)
2106 		kvm_gmem_unbind(new);
2107 out:
2108 	kfree(new);
2109 	return r;
2110 }
2111 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2112 
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region2 * mem)2113 int kvm_set_memory_region(struct kvm *kvm,
2114 			  const struct kvm_userspace_memory_region2 *mem)
2115 {
2116 	int r;
2117 
2118 	mutex_lock(&kvm->slots_lock);
2119 	r = __kvm_set_memory_region(kvm, mem);
2120 	mutex_unlock(&kvm->slots_lock);
2121 	return r;
2122 }
2123 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2124 
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region2 * mem)2125 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2126 					  struct kvm_userspace_memory_region2 *mem)
2127 {
2128 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2129 		return -EINVAL;
2130 
2131 	return kvm_set_memory_region(kvm, mem);
2132 }
2133 
2134 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2135 /**
2136  * kvm_get_dirty_log - get a snapshot of dirty pages
2137  * @kvm:	pointer to kvm instance
2138  * @log:	slot id and address to which we copy the log
2139  * @is_dirty:	set to '1' if any dirty pages were found
2140  * @memslot:	set to the associated memslot, always valid on success
2141  */
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty,struct kvm_memory_slot ** memslot)2142 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2143 		      int *is_dirty, struct kvm_memory_slot **memslot)
2144 {
2145 	struct kvm_memslots *slots;
2146 	int i, as_id, id;
2147 	unsigned long n;
2148 	unsigned long any = 0;
2149 
2150 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2151 	if (!kvm_use_dirty_bitmap(kvm))
2152 		return -ENXIO;
2153 
2154 	*memslot = NULL;
2155 	*is_dirty = 0;
2156 
2157 	as_id = log->slot >> 16;
2158 	id = (u16)log->slot;
2159 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2160 		return -EINVAL;
2161 
2162 	slots = __kvm_memslots(kvm, as_id);
2163 	*memslot = id_to_memslot(slots, id);
2164 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2165 		return -ENOENT;
2166 
2167 	kvm_arch_sync_dirty_log(kvm, *memslot);
2168 
2169 	n = kvm_dirty_bitmap_bytes(*memslot);
2170 
2171 	for (i = 0; !any && i < n/sizeof(long); ++i)
2172 		any = (*memslot)->dirty_bitmap[i];
2173 
2174 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2175 		return -EFAULT;
2176 
2177 	if (any)
2178 		*is_dirty = 1;
2179 	return 0;
2180 }
2181 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2182 
2183 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2184 /**
2185  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2186  *	and reenable dirty page tracking for the corresponding pages.
2187  * @kvm:	pointer to kvm instance
2188  * @log:	slot id and address to which we copy the log
2189  *
2190  * We need to keep it in mind that VCPU threads can write to the bitmap
2191  * concurrently. So, to avoid losing track of dirty pages we keep the
2192  * following order:
2193  *
2194  *    1. Take a snapshot of the bit and clear it if needed.
2195  *    2. Write protect the corresponding page.
2196  *    3. Copy the snapshot to the userspace.
2197  *    4. Upon return caller flushes TLB's if needed.
2198  *
2199  * Between 2 and 4, the guest may write to the page using the remaining TLB
2200  * entry.  This is not a problem because the page is reported dirty using
2201  * the snapshot taken before and step 4 ensures that writes done after
2202  * exiting to userspace will be logged for the next call.
2203  *
2204  */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log)2205 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2206 {
2207 	struct kvm_memslots *slots;
2208 	struct kvm_memory_slot *memslot;
2209 	int i, as_id, id;
2210 	unsigned long n;
2211 	unsigned long *dirty_bitmap;
2212 	unsigned long *dirty_bitmap_buffer;
2213 	bool flush;
2214 
2215 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2216 	if (!kvm_use_dirty_bitmap(kvm))
2217 		return -ENXIO;
2218 
2219 	as_id = log->slot >> 16;
2220 	id = (u16)log->slot;
2221 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2222 		return -EINVAL;
2223 
2224 	slots = __kvm_memslots(kvm, as_id);
2225 	memslot = id_to_memslot(slots, id);
2226 	if (!memslot || !memslot->dirty_bitmap)
2227 		return -ENOENT;
2228 
2229 	dirty_bitmap = memslot->dirty_bitmap;
2230 
2231 	kvm_arch_sync_dirty_log(kvm, memslot);
2232 
2233 	n = kvm_dirty_bitmap_bytes(memslot);
2234 	flush = false;
2235 	if (kvm->manual_dirty_log_protect) {
2236 		/*
2237 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2238 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2239 		 * is some code duplication between this function and
2240 		 * kvm_get_dirty_log, but hopefully all architecture
2241 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2242 		 * can be eliminated.
2243 		 */
2244 		dirty_bitmap_buffer = dirty_bitmap;
2245 	} else {
2246 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2247 		memset(dirty_bitmap_buffer, 0, n);
2248 
2249 		KVM_MMU_LOCK(kvm);
2250 		for (i = 0; i < n / sizeof(long); i++) {
2251 			unsigned long mask;
2252 			gfn_t offset;
2253 
2254 			if (!dirty_bitmap[i])
2255 				continue;
2256 
2257 			flush = true;
2258 			mask = xchg(&dirty_bitmap[i], 0);
2259 			dirty_bitmap_buffer[i] = mask;
2260 
2261 			offset = i * BITS_PER_LONG;
2262 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2263 								offset, mask);
2264 		}
2265 		KVM_MMU_UNLOCK(kvm);
2266 	}
2267 
2268 	if (flush)
2269 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2270 
2271 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2272 		return -EFAULT;
2273 	return 0;
2274 }
2275 
2276 
2277 /**
2278  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2279  * @kvm: kvm instance
2280  * @log: slot id and address to which we copy the log
2281  *
2282  * Steps 1-4 below provide general overview of dirty page logging. See
2283  * kvm_get_dirty_log_protect() function description for additional details.
2284  *
2285  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2286  * always flush the TLB (step 4) even if previous step failed  and the dirty
2287  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2288  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2289  * writes will be marked dirty for next log read.
2290  *
2291  *   1. Take a snapshot of the bit and clear it if needed.
2292  *   2. Write protect the corresponding page.
2293  *   3. Copy the snapshot to the userspace.
2294  *   4. Flush TLB's if needed.
2295  */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)2296 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2297 				      struct kvm_dirty_log *log)
2298 {
2299 	int r;
2300 
2301 	mutex_lock(&kvm->slots_lock);
2302 
2303 	r = kvm_get_dirty_log_protect(kvm, log);
2304 
2305 	mutex_unlock(&kvm->slots_lock);
2306 	return r;
2307 }
2308 
2309 /**
2310  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2311  *	and reenable dirty page tracking for the corresponding pages.
2312  * @kvm:	pointer to kvm instance
2313  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2314  */
kvm_clear_dirty_log_protect(struct kvm * kvm,struct kvm_clear_dirty_log * log)2315 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2316 				       struct kvm_clear_dirty_log *log)
2317 {
2318 	struct kvm_memslots *slots;
2319 	struct kvm_memory_slot *memslot;
2320 	int as_id, id;
2321 	gfn_t offset;
2322 	unsigned long i, n;
2323 	unsigned long *dirty_bitmap;
2324 	unsigned long *dirty_bitmap_buffer;
2325 	bool flush;
2326 
2327 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2328 	if (!kvm_use_dirty_bitmap(kvm))
2329 		return -ENXIO;
2330 
2331 	as_id = log->slot >> 16;
2332 	id = (u16)log->slot;
2333 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2334 		return -EINVAL;
2335 
2336 	if (log->first_page & 63)
2337 		return -EINVAL;
2338 
2339 	slots = __kvm_memslots(kvm, as_id);
2340 	memslot = id_to_memslot(slots, id);
2341 	if (!memslot || !memslot->dirty_bitmap)
2342 		return -ENOENT;
2343 
2344 	dirty_bitmap = memslot->dirty_bitmap;
2345 
2346 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2347 
2348 	if (log->first_page > memslot->npages ||
2349 	    log->num_pages > memslot->npages - log->first_page ||
2350 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2351 	    return -EINVAL;
2352 
2353 	kvm_arch_sync_dirty_log(kvm, memslot);
2354 
2355 	flush = false;
2356 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2357 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2358 		return -EFAULT;
2359 
2360 	KVM_MMU_LOCK(kvm);
2361 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2362 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2363 	     i++, offset += BITS_PER_LONG) {
2364 		unsigned long mask = *dirty_bitmap_buffer++;
2365 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2366 		if (!mask)
2367 			continue;
2368 
2369 		mask &= atomic_long_fetch_andnot(mask, p);
2370 
2371 		/*
2372 		 * mask contains the bits that really have been cleared.  This
2373 		 * never includes any bits beyond the length of the memslot (if
2374 		 * the length is not aligned to 64 pages), therefore it is not
2375 		 * a problem if userspace sets them in log->dirty_bitmap.
2376 		*/
2377 		if (mask) {
2378 			flush = true;
2379 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2380 								offset, mask);
2381 		}
2382 	}
2383 	KVM_MMU_UNLOCK(kvm);
2384 
2385 	if (flush)
2386 		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2387 
2388 	return 0;
2389 }
2390 
kvm_vm_ioctl_clear_dirty_log(struct kvm * kvm,struct kvm_clear_dirty_log * log)2391 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2392 					struct kvm_clear_dirty_log *log)
2393 {
2394 	int r;
2395 
2396 	mutex_lock(&kvm->slots_lock);
2397 
2398 	r = kvm_clear_dirty_log_protect(kvm, log);
2399 
2400 	mutex_unlock(&kvm->slots_lock);
2401 	return r;
2402 }
2403 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2404 
2405 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_supported_mem_attributes(struct kvm * kvm)2406 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2407 {
2408 	if (!kvm || kvm_arch_has_private_mem(kvm))
2409 		return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2410 
2411 	return 0;
2412 }
2413 
2414 /*
2415  * Returns true if _all_ gfns in the range [@start, @end) have attributes
2416  * such that the bits in @mask match @attrs.
2417  */
kvm_range_has_memory_attributes(struct kvm * kvm,gfn_t start,gfn_t end,unsigned long mask,unsigned long attrs)2418 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2419 				     unsigned long mask, unsigned long attrs)
2420 {
2421 	XA_STATE(xas, &kvm->mem_attr_array, start);
2422 	unsigned long index;
2423 	void *entry;
2424 
2425 	mask &= kvm_supported_mem_attributes(kvm);
2426 	if (attrs & ~mask)
2427 		return false;
2428 
2429 	if (end == start + 1)
2430 		return (kvm_get_memory_attributes(kvm, start) & mask) == attrs;
2431 
2432 	guard(rcu)();
2433 	if (!attrs)
2434 		return !xas_find(&xas, end - 1);
2435 
2436 	for (index = start; index < end; index++) {
2437 		do {
2438 			entry = xas_next(&xas);
2439 		} while (xas_retry(&xas, entry));
2440 
2441 		if (xas.xa_index != index ||
2442 		    (xa_to_value(entry) & mask) != attrs)
2443 			return false;
2444 	}
2445 
2446 	return true;
2447 }
2448 
kvm_handle_gfn_range(struct kvm * kvm,struct kvm_mmu_notifier_range * range)2449 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2450 						 struct kvm_mmu_notifier_range *range)
2451 {
2452 	struct kvm_gfn_range gfn_range;
2453 	struct kvm_memory_slot *slot;
2454 	struct kvm_memslots *slots;
2455 	struct kvm_memslot_iter iter;
2456 	bool found_memslot = false;
2457 	bool ret = false;
2458 	int i;
2459 
2460 	gfn_range.arg = range->arg;
2461 	gfn_range.may_block = range->may_block;
2462 
2463 	/*
2464 	 * If/when KVM supports more attributes beyond private .vs shared, this
2465 	 * _could_ set KVM_FILTER_{SHARED,PRIVATE} appropriately if the entire target
2466 	 * range already has the desired private vs. shared state (it's unclear
2467 	 * if that is a net win).  For now, KVM reaches this point if and only
2468 	 * if the private flag is being toggled, i.e. all mappings are in play.
2469 	 */
2470 
2471 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2472 		slots = __kvm_memslots(kvm, i);
2473 
2474 		kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2475 			slot = iter.slot;
2476 			gfn_range.slot = slot;
2477 
2478 			gfn_range.start = max(range->start, slot->base_gfn);
2479 			gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2480 			if (gfn_range.start >= gfn_range.end)
2481 				continue;
2482 
2483 			if (!found_memslot) {
2484 				found_memslot = true;
2485 				KVM_MMU_LOCK(kvm);
2486 				if (!IS_KVM_NULL_FN(range->on_lock))
2487 					range->on_lock(kvm);
2488 			}
2489 
2490 			ret |= range->handler(kvm, &gfn_range);
2491 		}
2492 	}
2493 
2494 	if (range->flush_on_ret && ret)
2495 		kvm_flush_remote_tlbs(kvm);
2496 
2497 	if (found_memslot)
2498 		KVM_MMU_UNLOCK(kvm);
2499 }
2500 
kvm_pre_set_memory_attributes(struct kvm * kvm,struct kvm_gfn_range * range)2501 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2502 					  struct kvm_gfn_range *range)
2503 {
2504 	/*
2505 	 * Unconditionally add the range to the invalidation set, regardless of
2506 	 * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2507 	 * if KVM supports RWX attributes in the future and the attributes are
2508 	 * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2509 	 * adding the range allows KVM to require that MMU invalidations add at
2510 	 * least one range between begin() and end(), e.g. allows KVM to detect
2511 	 * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2512 	 * but it's not obvious that allowing new mappings while the attributes
2513 	 * are in flux is desirable or worth the complexity.
2514 	 */
2515 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2516 
2517 	return kvm_arch_pre_set_memory_attributes(kvm, range);
2518 }
2519 
2520 /* Set @attributes for the gfn range [@start, @end). */
kvm_vm_set_mem_attributes(struct kvm * kvm,gfn_t start,gfn_t end,unsigned long attributes)2521 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2522 				     unsigned long attributes)
2523 {
2524 	struct kvm_mmu_notifier_range pre_set_range = {
2525 		.start = start,
2526 		.end = end,
2527 		.arg.attributes = attributes,
2528 		.handler = kvm_pre_set_memory_attributes,
2529 		.on_lock = kvm_mmu_invalidate_begin,
2530 		.flush_on_ret = true,
2531 		.may_block = true,
2532 	};
2533 	struct kvm_mmu_notifier_range post_set_range = {
2534 		.start = start,
2535 		.end = end,
2536 		.arg.attributes = attributes,
2537 		.handler = kvm_arch_post_set_memory_attributes,
2538 		.on_lock = kvm_mmu_invalidate_end,
2539 		.may_block = true,
2540 	};
2541 	unsigned long i;
2542 	void *entry;
2543 	int r = 0;
2544 
2545 	entry = attributes ? xa_mk_value(attributes) : NULL;
2546 
2547 	mutex_lock(&kvm->slots_lock);
2548 
2549 	/* Nothing to do if the entire range as the desired attributes. */
2550 	if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes))
2551 		goto out_unlock;
2552 
2553 	/*
2554 	 * Reserve memory ahead of time to avoid having to deal with failures
2555 	 * partway through setting the new attributes.
2556 	 */
2557 	for (i = start; i < end; i++) {
2558 		r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2559 		if (r)
2560 			goto out_unlock;
2561 
2562 		cond_resched();
2563 	}
2564 
2565 	kvm_handle_gfn_range(kvm, &pre_set_range);
2566 
2567 	for (i = start; i < end; i++) {
2568 		r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2569 				    GFP_KERNEL_ACCOUNT));
2570 		KVM_BUG_ON(r, kvm);
2571 		cond_resched();
2572 	}
2573 
2574 	kvm_handle_gfn_range(kvm, &post_set_range);
2575 
2576 out_unlock:
2577 	mutex_unlock(&kvm->slots_lock);
2578 
2579 	return r;
2580 }
kvm_vm_ioctl_set_mem_attributes(struct kvm * kvm,struct kvm_memory_attributes * attrs)2581 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2582 					   struct kvm_memory_attributes *attrs)
2583 {
2584 	gfn_t start, end;
2585 
2586 	/* flags is currently not used. */
2587 	if (attrs->flags)
2588 		return -EINVAL;
2589 	if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2590 		return -EINVAL;
2591 	if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2592 		return -EINVAL;
2593 	if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2594 		return -EINVAL;
2595 
2596 	start = attrs->address >> PAGE_SHIFT;
2597 	end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2598 
2599 	/*
2600 	 * xarray tracks data using "unsigned long", and as a result so does
2601 	 * KVM.  For simplicity, supports generic attributes only on 64-bit
2602 	 * architectures.
2603 	 */
2604 	BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2605 
2606 	return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2607 }
2608 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2609 
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)2610 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2611 {
2612 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2613 }
2614 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2615 
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)2616 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2617 {
2618 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2619 	u64 gen = slots->generation;
2620 	struct kvm_memory_slot *slot;
2621 
2622 	/*
2623 	 * This also protects against using a memslot from a different address space,
2624 	 * since different address spaces have different generation numbers.
2625 	 */
2626 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2627 		vcpu->last_used_slot = NULL;
2628 		vcpu->last_used_slot_gen = gen;
2629 	}
2630 
2631 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2632 	if (slot)
2633 		return slot;
2634 
2635 	/*
2636 	 * Fall back to searching all memslots. We purposely use
2637 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2638 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2639 	 */
2640 	slot = search_memslots(slots, gfn, false);
2641 	if (slot) {
2642 		vcpu->last_used_slot = slot;
2643 		return slot;
2644 	}
2645 
2646 	return NULL;
2647 }
2648 
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)2649 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2650 {
2651 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2652 
2653 	return kvm_is_visible_memslot(memslot);
2654 }
2655 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2656 
kvm_vcpu_is_visible_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)2657 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2658 {
2659 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2660 
2661 	return kvm_is_visible_memslot(memslot);
2662 }
2663 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2664 
kvm_host_page_size(struct kvm_vcpu * vcpu,gfn_t gfn)2665 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2666 {
2667 	struct vm_area_struct *vma;
2668 	unsigned long addr, size;
2669 
2670 	size = PAGE_SIZE;
2671 
2672 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2673 	if (kvm_is_error_hva(addr))
2674 		return PAGE_SIZE;
2675 
2676 	mmap_read_lock(current->mm);
2677 	vma = find_vma(current->mm, addr);
2678 	if (!vma)
2679 		goto out;
2680 
2681 	size = vma_kernel_pagesize(vma);
2682 
2683 out:
2684 	mmap_read_unlock(current->mm);
2685 
2686 	return size;
2687 }
2688 
memslot_is_readonly(const struct kvm_memory_slot * slot)2689 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2690 {
2691 	return slot->flags & KVM_MEM_READONLY;
2692 }
2693 
2694 /*
2695  * Return the memslot of a @gfn and the R/W attribute if slot is valid, or NULL
2696  * if slot is not valid.
2697  *
2698  * @slot: the kvm_memory_slot which contains @gfn
2699  * @gfn: the gfn to be translated
2700  * @writable: used to return the read/write attribute of the @slot if the hva
2701  * is valid and @writable is not NULL
2702  */
gfn_to_memslot_prot(struct kvm * kvm,gfn_t gfn,bool * writable)2703 struct kvm_memory_slot *gfn_to_memslot_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2704 {
2705 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2706 
2707 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2708 		return NULL;
2709 
2710 	if (writable)
2711 		*writable = !memslot_is_readonly(slot);
2712 
2713 	return slot;
2714 }
2715 
__gfn_to_hva_many(const struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)2716 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2717 				       gfn_t *nr_pages, bool write)
2718 {
2719 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2720 		return KVM_HVA_ERR_BAD;
2721 
2722 	if (memslot_is_readonly(slot) && write)
2723 		return KVM_HVA_ERR_RO_BAD;
2724 
2725 	if (nr_pages)
2726 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2727 
2728 	return __gfn_to_hva_memslot(slot, gfn);
2729 }
2730 
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)2731 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2732 				     gfn_t *nr_pages)
2733 {
2734 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2735 }
2736 
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)2737 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2738 					gfn_t gfn)
2739 {
2740 	return gfn_to_hva_many(slot, gfn, NULL);
2741 }
2742 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2743 
gfn_to_hva(struct kvm * kvm,gfn_t gfn)2744 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2745 {
2746 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2747 }
2748 EXPORT_SYMBOL_GPL(gfn_to_hva);
2749 
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)2750 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2751 {
2752 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2753 }
2754 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2755 
2756 /*
2757  * Return the hva of a @gfn and the R/W attribute if possible.
2758  *
2759  * @slot: the kvm_memory_slot which contains @gfn
2760  * @gfn: the gfn to be translated
2761  * @writable: used to return the read/write attribute of the @slot if the hva
2762  * is valid and @writable is not NULL
2763  */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)2764 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2765 				      gfn_t gfn, bool *writable)
2766 {
2767 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2768 
2769 	if (!kvm_is_error_hva(hva) && writable)
2770 		*writable = !memslot_is_readonly(slot);
2771 
2772 	return hva;
2773 }
2774 
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)2775 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2776 {
2777 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2778 
2779 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2780 }
2781 
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)2782 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2783 {
2784 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2785 
2786 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2787 }
2788 
check_user_page_hwpoison(unsigned long addr)2789 static inline int check_user_page_hwpoison(unsigned long addr)
2790 {
2791 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2792 
2793 	rc = get_user_pages(addr, 1, flags, NULL);
2794 	return rc == -EHWPOISON;
2795 }
2796 
2797 /*
2798  * The fast path to get the writable pfn which will be stored in @pfn,
2799  * true indicates success, otherwise false is returned.  It's also the
2800  * only part that runs if we can in atomic context.
2801  */
hva_to_pfn_fast(unsigned long addr,bool write_fault,bool * writable,kvm_pfn_t * pfn)2802 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2803 			    bool *writable, kvm_pfn_t *pfn)
2804 {
2805 	struct page *page[1];
2806 
2807 	/*
2808 	 * Fast pin a writable pfn only if it is a write fault request
2809 	 * or the caller allows to map a writable pfn for a read fault
2810 	 * request.
2811 	 */
2812 	if (!(write_fault || writable))
2813 		return false;
2814 
2815 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2816 		*pfn = page_to_pfn(page[0]);
2817 
2818 		if (writable)
2819 			*writable = true;
2820 		return true;
2821 	}
2822 
2823 	return false;
2824 }
2825 
2826 /*
2827  * The slow path to get the pfn of the specified host virtual address,
2828  * 1 indicates success, -errno is returned if error is detected.
2829  */
hva_to_pfn_slow(unsigned long addr,bool * async,bool write_fault,bool interruptible,bool * writable,kvm_pfn_t * pfn)2830 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2831 			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
2832 {
2833 	/*
2834 	 * When a VCPU accesses a page that is not mapped into the secondary
2835 	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2836 	 * make progress. We always want to honor NUMA hinting faults in that
2837 	 * case, because GUP usage corresponds to memory accesses from the VCPU.
2838 	 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2839 	 * mapped into the secondary MMU and gets accessed by a VCPU.
2840 	 *
2841 	 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2842 	 * implicitly honor NUMA hinting faults and don't need this flag.
2843 	 */
2844 	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2845 	struct page *page;
2846 	int npages;
2847 
2848 	might_sleep();
2849 
2850 	if (writable)
2851 		*writable = write_fault;
2852 
2853 	if (write_fault)
2854 		flags |= FOLL_WRITE;
2855 	if (async)
2856 		flags |= FOLL_NOWAIT;
2857 	if (interruptible)
2858 		flags |= FOLL_INTERRUPTIBLE;
2859 
2860 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2861 	if (npages != 1)
2862 		return npages;
2863 
2864 	/* map read fault as writable if possible */
2865 	if (unlikely(!write_fault) && writable) {
2866 		struct page *wpage;
2867 
2868 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2869 			*writable = true;
2870 			put_page(page);
2871 			page = wpage;
2872 		}
2873 	}
2874 	*pfn = page_to_pfn(page);
2875 	return npages;
2876 }
2877 
vma_is_valid(struct vm_area_struct * vma,bool write_fault)2878 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2879 {
2880 	if (unlikely(!(vma->vm_flags & VM_READ)))
2881 		return false;
2882 
2883 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2884 		return false;
2885 
2886 	return true;
2887 }
2888 
kvm_try_get_pfn(kvm_pfn_t pfn)2889 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2890 {
2891 	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2892 
2893 	if (!page)
2894 		return 1;
2895 
2896 	return get_page_unless_zero(page);
2897 }
2898 
hva_to_pfn_remapped(struct vm_area_struct * vma,unsigned long addr,bool write_fault,bool * writable,kvm_pfn_t * p_pfn)2899 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2900 			       unsigned long addr, bool write_fault,
2901 			       bool *writable, kvm_pfn_t *p_pfn)
2902 {
2903 	struct follow_pfnmap_args args = { .vma = vma, .address = addr };
2904 	kvm_pfn_t pfn;
2905 	int r;
2906 
2907 	r = follow_pfnmap_start(&args);
2908 	if (r) {
2909 		/*
2910 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2911 		 * not call the fault handler, so do it here.
2912 		 */
2913 		bool unlocked = false;
2914 		r = fixup_user_fault(current->mm, addr,
2915 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2916 				     &unlocked);
2917 		if (unlocked)
2918 			return -EAGAIN;
2919 		if (r)
2920 			return r;
2921 
2922 		r = follow_pfnmap_start(&args);
2923 		if (r)
2924 			return r;
2925 	}
2926 
2927 	if (write_fault && !args.writable) {
2928 		pfn = KVM_PFN_ERR_RO_FAULT;
2929 		goto out;
2930 	}
2931 
2932 	if (writable)
2933 		*writable = args.writable;
2934 	pfn = args.pfn;
2935 
2936 	/*
2937 	 * Get a reference here because callers of *hva_to_pfn* and
2938 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2939 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2940 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2941 	 * simply do nothing for reserved pfns.
2942 	 *
2943 	 * Whoever called remap_pfn_range is also going to call e.g.
2944 	 * unmap_mapping_range before the underlying pages are freed,
2945 	 * causing a call to our MMU notifier.
2946 	 *
2947 	 * Certain IO or PFNMAP mappings can be backed with valid
2948 	 * struct pages, but be allocated without refcounting e.g.,
2949 	 * tail pages of non-compound higher order allocations, which
2950 	 * would then underflow the refcount when the caller does the
2951 	 * required put_page. Don't allow those pages here.
2952 	 */
2953 	if (!kvm_try_get_pfn(pfn))
2954 		r = -EFAULT;
2955 out:
2956 	follow_pfnmap_end(&args);
2957 	*p_pfn = pfn;
2958 
2959 	return r;
2960 }
2961 
2962 /*
2963  * Pin guest page in memory and return its pfn.
2964  * @addr: host virtual address which maps memory to the guest
2965  * @atomic: whether this function is forbidden from sleeping
2966  * @interruptible: whether the process can be interrupted by non-fatal signals
2967  * @async: whether this function need to wait IO complete if the
2968  *         host page is not in the memory
2969  * @write_fault: whether we should get a writable host page
2970  * @writable: whether it allows to map a writable host page for !@write_fault
2971  *
2972  * The function will map a writable host page for these two cases:
2973  * 1): @write_fault = true
2974  * 2): @write_fault = false && @writable, @writable will tell the caller
2975  *     whether the mapping is writable.
2976  */
hva_to_pfn(unsigned long addr,bool atomic,bool interruptible,bool * async,bool write_fault,bool * writable)2977 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2978 		     bool *async, bool write_fault, bool *writable)
2979 {
2980 	struct vm_area_struct *vma;
2981 	kvm_pfn_t pfn;
2982 	int npages, r;
2983 
2984 	/* we can do it either atomically or asynchronously, not both */
2985 	BUG_ON(atomic && async);
2986 
2987 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2988 		return pfn;
2989 
2990 	if (atomic)
2991 		return KVM_PFN_ERR_FAULT;
2992 
2993 	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2994 				 writable, &pfn);
2995 	if (npages == 1)
2996 		return pfn;
2997 	if (npages == -EINTR)
2998 		return KVM_PFN_ERR_SIGPENDING;
2999 
3000 	mmap_read_lock(current->mm);
3001 	if (npages == -EHWPOISON ||
3002 	      (!async && check_user_page_hwpoison(addr))) {
3003 		pfn = KVM_PFN_ERR_HWPOISON;
3004 		goto exit;
3005 	}
3006 
3007 retry:
3008 	vma = vma_lookup(current->mm, addr);
3009 
3010 	if (vma == NULL)
3011 		pfn = KVM_PFN_ERR_FAULT;
3012 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3013 		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
3014 		if (r == -EAGAIN)
3015 			goto retry;
3016 		if (r < 0)
3017 			pfn = KVM_PFN_ERR_FAULT;
3018 	} else {
3019 		if (async && vma_is_valid(vma, write_fault))
3020 			*async = true;
3021 		pfn = KVM_PFN_ERR_FAULT;
3022 	}
3023 exit:
3024 	mmap_read_unlock(current->mm);
3025 	return pfn;
3026 }
3027 
__gfn_to_pfn_memslot(const struct kvm_memory_slot * slot,gfn_t gfn,bool atomic,bool interruptible,bool * async,bool write_fault,bool * writable,hva_t * hva)3028 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
3029 			       bool atomic, bool interruptible, bool *async,
3030 			       bool write_fault, bool *writable, hva_t *hva)
3031 {
3032 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
3033 
3034 	if (hva)
3035 		*hva = addr;
3036 
3037 	if (kvm_is_error_hva(addr)) {
3038 		if (writable)
3039 			*writable = false;
3040 
3041 		return addr == KVM_HVA_ERR_RO_BAD ? KVM_PFN_ERR_RO_FAULT :
3042 						    KVM_PFN_NOSLOT;
3043 	}
3044 
3045 	/* Do not map writable pfn in the readonly memslot. */
3046 	if (writable && memslot_is_readonly(slot)) {
3047 		*writable = false;
3048 		writable = NULL;
3049 	}
3050 
3051 	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3052 			  writable);
3053 }
3054 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
3055 
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)3056 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3057 		      bool *writable)
3058 {
3059 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3060 				    NULL, write_fault, writable, NULL);
3061 }
3062 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3063 
gfn_to_pfn_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)3064 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3065 {
3066 	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3067 				    NULL, NULL);
3068 }
3069 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
3070 
gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot * slot,gfn_t gfn)3071 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3072 {
3073 	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3074 				    NULL, NULL);
3075 }
3076 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
3077 
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)3078 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3079 {
3080 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3081 }
3082 EXPORT_SYMBOL_GPL(gfn_to_pfn);
3083 
gfn_to_page_many_atomic(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)3084 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3085 			    struct page **pages, int nr_pages)
3086 {
3087 	unsigned long addr;
3088 	gfn_t entry = 0;
3089 
3090 	addr = gfn_to_hva_many(slot, gfn, &entry);
3091 	if (kvm_is_error_hva(addr))
3092 		return -1;
3093 
3094 	if (entry < nr_pages)
3095 		return 0;
3096 
3097 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3098 }
3099 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3100 
3101 /*
3102  * Do not use this helper unless you are absolutely certain the gfn _must_ be
3103  * backed by 'struct page'.  A valid example is if the backing memslot is
3104  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
3105  * been elevated by gfn_to_pfn().
3106  */
gfn_to_page(struct kvm * kvm,gfn_t gfn)3107 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3108 {
3109 	struct page *page;
3110 	kvm_pfn_t pfn;
3111 
3112 	pfn = gfn_to_pfn(kvm, gfn);
3113 
3114 	if (is_error_noslot_pfn(pfn))
3115 		return KVM_ERR_PTR_BAD_PAGE;
3116 
3117 	page = kvm_pfn_to_refcounted_page(pfn);
3118 	if (!page)
3119 		return KVM_ERR_PTR_BAD_PAGE;
3120 
3121 	return page;
3122 }
3123 EXPORT_SYMBOL_GPL(gfn_to_page);
3124 
kvm_release_pfn(kvm_pfn_t pfn,bool dirty)3125 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3126 {
3127 	if (dirty)
3128 		kvm_release_pfn_dirty(pfn);
3129 	else
3130 		kvm_release_pfn_clean(pfn);
3131 }
3132 
kvm_vcpu_map(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map)3133 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3134 {
3135 	kvm_pfn_t pfn;
3136 	void *hva = NULL;
3137 	struct page *page = KVM_UNMAPPED_PAGE;
3138 
3139 	if (!map)
3140 		return -EINVAL;
3141 
3142 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
3143 	if (is_error_noslot_pfn(pfn))
3144 		return -EINVAL;
3145 
3146 	if (pfn_valid(pfn)) {
3147 		page = pfn_to_page(pfn);
3148 		hva = kmap(page);
3149 #ifdef CONFIG_HAS_IOMEM
3150 	} else {
3151 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3152 #endif
3153 	}
3154 
3155 	if (!hva)
3156 		return -EFAULT;
3157 
3158 	map->page = page;
3159 	map->hva = hva;
3160 	map->pfn = pfn;
3161 	map->gfn = gfn;
3162 
3163 	return 0;
3164 }
3165 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3166 
kvm_vcpu_unmap(struct kvm_vcpu * vcpu,struct kvm_host_map * map,bool dirty)3167 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3168 {
3169 	if (!map)
3170 		return;
3171 
3172 	if (!map->hva)
3173 		return;
3174 
3175 	if (map->page != KVM_UNMAPPED_PAGE)
3176 		kunmap(map->page);
3177 #ifdef CONFIG_HAS_IOMEM
3178 	else
3179 		memunmap(map->hva);
3180 #endif
3181 
3182 	if (dirty)
3183 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3184 
3185 	kvm_release_pfn(map->pfn, dirty);
3186 
3187 	map->hva = NULL;
3188 	map->page = NULL;
3189 }
3190 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3191 
kvm_is_ad_tracked_page(struct page * page)3192 static bool kvm_is_ad_tracked_page(struct page *page)
3193 {
3194 	/*
3195 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
3196 	 * touched (e.g. set dirty) except by its owner".
3197 	 */
3198 	return !PageReserved(page);
3199 }
3200 
kvm_set_page_dirty(struct page * page)3201 static void kvm_set_page_dirty(struct page *page)
3202 {
3203 	if (kvm_is_ad_tracked_page(page))
3204 		SetPageDirty(page);
3205 }
3206 
kvm_set_page_accessed(struct page * page)3207 static void kvm_set_page_accessed(struct page *page)
3208 {
3209 	if (kvm_is_ad_tracked_page(page))
3210 		mark_page_accessed(page);
3211 }
3212 
kvm_release_page_clean(struct page * page)3213 void kvm_release_page_clean(struct page *page)
3214 {
3215 	WARN_ON(is_error_page(page));
3216 
3217 	kvm_set_page_accessed(page);
3218 	put_page(page);
3219 }
3220 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3221 
kvm_release_pfn_clean(kvm_pfn_t pfn)3222 void kvm_release_pfn_clean(kvm_pfn_t pfn)
3223 {
3224 	struct page *page;
3225 
3226 	if (is_error_noslot_pfn(pfn))
3227 		return;
3228 
3229 	page = kvm_pfn_to_refcounted_page(pfn);
3230 	if (!page)
3231 		return;
3232 
3233 	kvm_release_page_clean(page);
3234 }
3235 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3236 
kvm_release_page_dirty(struct page * page)3237 void kvm_release_page_dirty(struct page *page)
3238 {
3239 	WARN_ON(is_error_page(page));
3240 
3241 	kvm_set_page_dirty(page);
3242 	kvm_release_page_clean(page);
3243 }
3244 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3245 
kvm_release_pfn_dirty(kvm_pfn_t pfn)3246 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3247 {
3248 	struct page *page;
3249 
3250 	if (is_error_noslot_pfn(pfn))
3251 		return;
3252 
3253 	page = kvm_pfn_to_refcounted_page(pfn);
3254 	if (!page)
3255 		return;
3256 
3257 	kvm_release_page_dirty(page);
3258 }
3259 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3260 
3261 /*
3262  * Note, checking for an error/noslot pfn is the caller's responsibility when
3263  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
3264  * "set" helpers are not to be used when the pfn might point at garbage.
3265  */
kvm_set_pfn_dirty(kvm_pfn_t pfn)3266 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3267 {
3268 	if (WARN_ON(is_error_noslot_pfn(pfn)))
3269 		return;
3270 
3271 	if (pfn_valid(pfn))
3272 		kvm_set_page_dirty(pfn_to_page(pfn));
3273 }
3274 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3275 
kvm_set_pfn_accessed(kvm_pfn_t pfn)3276 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3277 {
3278 	if (WARN_ON(is_error_noslot_pfn(pfn)))
3279 		return;
3280 
3281 	if (pfn_valid(pfn))
3282 		kvm_set_page_accessed(pfn_to_page(pfn));
3283 }
3284 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3285 
next_segment(unsigned long len,int offset)3286 static int next_segment(unsigned long len, int offset)
3287 {
3288 	if (len > PAGE_SIZE - offset)
3289 		return PAGE_SIZE - offset;
3290 	else
3291 		return len;
3292 }
3293 
3294 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)3295 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3296 				 void *data, int offset, int len)
3297 {
3298 	int r;
3299 	unsigned long addr;
3300 
3301 	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3302 		return -EFAULT;
3303 
3304 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3305 	if (kvm_is_error_hva(addr))
3306 		return -EFAULT;
3307 	r = __copy_from_user(data, (void __user *)addr + offset, len);
3308 	if (r)
3309 		return -EFAULT;
3310 	return 0;
3311 }
3312 
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)3313 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3314 			int len)
3315 {
3316 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3317 
3318 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3319 }
3320 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3321 
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)3322 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3323 			     int offset, int len)
3324 {
3325 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3326 
3327 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3328 }
3329 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3330 
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)3331 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3332 {
3333 	gfn_t gfn = gpa >> PAGE_SHIFT;
3334 	int seg;
3335 	int offset = offset_in_page(gpa);
3336 	int ret;
3337 
3338 	while ((seg = next_segment(len, offset)) != 0) {
3339 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3340 		if (ret < 0)
3341 			return ret;
3342 		offset = 0;
3343 		len -= seg;
3344 		data += seg;
3345 		++gfn;
3346 	}
3347 	return 0;
3348 }
3349 EXPORT_SYMBOL_GPL(kvm_read_guest);
3350 
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)3351 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3352 {
3353 	gfn_t gfn = gpa >> PAGE_SHIFT;
3354 	int seg;
3355 	int offset = offset_in_page(gpa);
3356 	int ret;
3357 
3358 	while ((seg = next_segment(len, offset)) != 0) {
3359 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3360 		if (ret < 0)
3361 			return ret;
3362 		offset = 0;
3363 		len -= seg;
3364 		data += seg;
3365 		++gfn;
3366 	}
3367 	return 0;
3368 }
3369 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3370 
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)3371 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3372 			           void *data, int offset, unsigned long len)
3373 {
3374 	int r;
3375 	unsigned long addr;
3376 
3377 	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3378 		return -EFAULT;
3379 
3380 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3381 	if (kvm_is_error_hva(addr))
3382 		return -EFAULT;
3383 	pagefault_disable();
3384 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3385 	pagefault_enable();
3386 	if (r)
3387 		return -EFAULT;
3388 	return 0;
3389 }
3390 
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)3391 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3392 			       void *data, unsigned long len)
3393 {
3394 	gfn_t gfn = gpa >> PAGE_SHIFT;
3395 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3396 	int offset = offset_in_page(gpa);
3397 
3398 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3399 }
3400 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3401 
3402 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
__kvm_write_guest_page(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)3403 static int __kvm_write_guest_page(struct kvm *kvm,
3404 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3405 			          const void *data, int offset, int len)
3406 {
3407 	int r;
3408 	unsigned long addr;
3409 
3410 	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3411 		return -EFAULT;
3412 
3413 	addr = gfn_to_hva_memslot(memslot, gfn);
3414 	if (kvm_is_error_hva(addr))
3415 		return -EFAULT;
3416 	r = __copy_to_user((void __user *)addr + offset, data, len);
3417 	if (r)
3418 		return -EFAULT;
3419 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3420 	return 0;
3421 }
3422 
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)3423 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3424 			 const void *data, int offset, int len)
3425 {
3426 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3427 
3428 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3429 }
3430 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3431 
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)3432 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3433 			      const void *data, int offset, int len)
3434 {
3435 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3436 
3437 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3438 }
3439 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3440 
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)3441 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3442 		    unsigned long len)
3443 {
3444 	gfn_t gfn = gpa >> PAGE_SHIFT;
3445 	int seg;
3446 	int offset = offset_in_page(gpa);
3447 	int ret;
3448 
3449 	while ((seg = next_segment(len, offset)) != 0) {
3450 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3451 		if (ret < 0)
3452 			return ret;
3453 		offset = 0;
3454 		len -= seg;
3455 		data += seg;
3456 		++gfn;
3457 	}
3458 	return 0;
3459 }
3460 EXPORT_SYMBOL_GPL(kvm_write_guest);
3461 
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)3462 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3463 		         unsigned long len)
3464 {
3465 	gfn_t gfn = gpa >> PAGE_SHIFT;
3466 	int seg;
3467 	int offset = offset_in_page(gpa);
3468 	int ret;
3469 
3470 	while ((seg = next_segment(len, offset)) != 0) {
3471 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3472 		if (ret < 0)
3473 			return ret;
3474 		offset = 0;
3475 		len -= seg;
3476 		data += seg;
3477 		++gfn;
3478 	}
3479 	return 0;
3480 }
3481 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3482 
__kvm_gfn_to_hva_cache_init(struct kvm_memslots * slots,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3483 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3484 				       struct gfn_to_hva_cache *ghc,
3485 				       gpa_t gpa, unsigned long len)
3486 {
3487 	int offset = offset_in_page(gpa);
3488 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3489 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3490 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3491 	gfn_t nr_pages_avail;
3492 
3493 	/* Update ghc->generation before performing any error checks. */
3494 	ghc->generation = slots->generation;
3495 
3496 	if (start_gfn > end_gfn) {
3497 		ghc->hva = KVM_HVA_ERR_BAD;
3498 		return -EINVAL;
3499 	}
3500 
3501 	/*
3502 	 * If the requested region crosses two memslots, we still
3503 	 * verify that the entire region is valid here.
3504 	 */
3505 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3506 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3507 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3508 					   &nr_pages_avail);
3509 		if (kvm_is_error_hva(ghc->hva))
3510 			return -EFAULT;
3511 	}
3512 
3513 	/* Use the slow path for cross page reads and writes. */
3514 	if (nr_pages_needed == 1)
3515 		ghc->hva += offset;
3516 	else
3517 		ghc->memslot = NULL;
3518 
3519 	ghc->gpa = gpa;
3520 	ghc->len = len;
3521 	return 0;
3522 }
3523 
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3524 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3525 			      gpa_t gpa, unsigned long len)
3526 {
3527 	struct kvm_memslots *slots = kvm_memslots(kvm);
3528 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3529 }
3530 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3531 
kvm_write_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3532 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3533 				  void *data, unsigned int offset,
3534 				  unsigned long len)
3535 {
3536 	struct kvm_memslots *slots = kvm_memslots(kvm);
3537 	int r;
3538 	gpa_t gpa = ghc->gpa + offset;
3539 
3540 	if (WARN_ON_ONCE(len + offset > ghc->len))
3541 		return -EINVAL;
3542 
3543 	if (slots->generation != ghc->generation) {
3544 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3545 			return -EFAULT;
3546 	}
3547 
3548 	if (kvm_is_error_hva(ghc->hva))
3549 		return -EFAULT;
3550 
3551 	if (unlikely(!ghc->memslot))
3552 		return kvm_write_guest(kvm, gpa, data, len);
3553 
3554 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3555 	if (r)
3556 		return -EFAULT;
3557 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3558 
3559 	return 0;
3560 }
3561 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3562 
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3563 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3564 			   void *data, unsigned long len)
3565 {
3566 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3567 }
3568 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3569 
kvm_read_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3570 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3571 				 void *data, unsigned int offset,
3572 				 unsigned long len)
3573 {
3574 	struct kvm_memslots *slots = kvm_memslots(kvm);
3575 	int r;
3576 	gpa_t gpa = ghc->gpa + offset;
3577 
3578 	if (WARN_ON_ONCE(len + offset > ghc->len))
3579 		return -EINVAL;
3580 
3581 	if (slots->generation != ghc->generation) {
3582 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3583 			return -EFAULT;
3584 	}
3585 
3586 	if (kvm_is_error_hva(ghc->hva))
3587 		return -EFAULT;
3588 
3589 	if (unlikely(!ghc->memslot))
3590 		return kvm_read_guest(kvm, gpa, data, len);
3591 
3592 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3593 	if (r)
3594 		return -EFAULT;
3595 
3596 	return 0;
3597 }
3598 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3599 
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3600 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3601 			  void *data, unsigned long len)
3602 {
3603 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3604 }
3605 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3606 
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)3607 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3608 {
3609 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3610 	gfn_t gfn = gpa >> PAGE_SHIFT;
3611 	int seg;
3612 	int offset = offset_in_page(gpa);
3613 	int ret;
3614 
3615 	while ((seg = next_segment(len, offset)) != 0) {
3616 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg);
3617 		if (ret < 0)
3618 			return ret;
3619 		offset = 0;
3620 		len -= seg;
3621 		++gfn;
3622 	}
3623 	return 0;
3624 }
3625 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3626 
mark_page_dirty_in_slot(struct kvm * kvm,const struct kvm_memory_slot * memslot,gfn_t gfn)3627 void mark_page_dirty_in_slot(struct kvm *kvm,
3628 			     const struct kvm_memory_slot *memslot,
3629 		 	     gfn_t gfn)
3630 {
3631 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3632 
3633 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3634 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3635 		return;
3636 
3637 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3638 #endif
3639 
3640 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3641 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3642 		u32 slot = (memslot->as_id << 16) | memslot->id;
3643 
3644 		if (kvm->dirty_ring_size && vcpu)
3645 			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3646 		else if (memslot->dirty_bitmap)
3647 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3648 	}
3649 }
3650 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3651 
mark_page_dirty(struct kvm * kvm,gfn_t gfn)3652 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3653 {
3654 	struct kvm_memory_slot *memslot;
3655 
3656 	memslot = gfn_to_memslot(kvm, gfn);
3657 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3658 }
3659 EXPORT_SYMBOL_GPL(mark_page_dirty);
3660 
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)3661 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3662 {
3663 	struct kvm_memory_slot *memslot;
3664 
3665 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3666 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3667 }
3668 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3669 
kvm_sigset_activate(struct kvm_vcpu * vcpu)3670 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3671 {
3672 	if (!vcpu->sigset_active)
3673 		return;
3674 
3675 	/*
3676 	 * This does a lockless modification of ->real_blocked, which is fine
3677 	 * because, only current can change ->real_blocked and all readers of
3678 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3679 	 * of ->blocked.
3680 	 */
3681 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3682 }
3683 
kvm_sigset_deactivate(struct kvm_vcpu * vcpu)3684 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3685 {
3686 	if (!vcpu->sigset_active)
3687 		return;
3688 
3689 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3690 	sigemptyset(&current->real_blocked);
3691 }
3692 
grow_halt_poll_ns(struct kvm_vcpu * vcpu)3693 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3694 {
3695 	unsigned int old, val, grow, grow_start;
3696 
3697 	old = val = vcpu->halt_poll_ns;
3698 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3699 	grow = READ_ONCE(halt_poll_ns_grow);
3700 	if (!grow)
3701 		goto out;
3702 
3703 	val *= grow;
3704 	if (val < grow_start)
3705 		val = grow_start;
3706 
3707 	vcpu->halt_poll_ns = val;
3708 out:
3709 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3710 }
3711 
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)3712 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3713 {
3714 	unsigned int old, val, shrink, grow_start;
3715 
3716 	old = val = vcpu->halt_poll_ns;
3717 	shrink = READ_ONCE(halt_poll_ns_shrink);
3718 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3719 	if (shrink == 0)
3720 		val = 0;
3721 	else
3722 		val /= shrink;
3723 
3724 	if (val < grow_start)
3725 		val = 0;
3726 
3727 	vcpu->halt_poll_ns = val;
3728 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3729 }
3730 
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)3731 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3732 {
3733 	int ret = -EINTR;
3734 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3735 
3736 	if (kvm_arch_vcpu_runnable(vcpu))
3737 		goto out;
3738 	if (kvm_cpu_has_pending_timer(vcpu))
3739 		goto out;
3740 	if (signal_pending(current))
3741 		goto out;
3742 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3743 		goto out;
3744 
3745 	ret = 0;
3746 out:
3747 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3748 	return ret;
3749 }
3750 
3751 /*
3752  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3753  * pending.  This is mostly used when halting a vCPU, but may also be used
3754  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3755  */
kvm_vcpu_block(struct kvm_vcpu * vcpu)3756 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3757 {
3758 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3759 	bool waited = false;
3760 
3761 	vcpu->stat.generic.blocking = 1;
3762 
3763 	preempt_disable();
3764 	kvm_arch_vcpu_blocking(vcpu);
3765 	prepare_to_rcuwait(wait);
3766 	preempt_enable();
3767 
3768 	for (;;) {
3769 		set_current_state(TASK_INTERRUPTIBLE);
3770 
3771 		if (kvm_vcpu_check_block(vcpu) < 0)
3772 			break;
3773 
3774 		waited = true;
3775 		schedule();
3776 	}
3777 
3778 	preempt_disable();
3779 	finish_rcuwait(wait);
3780 	kvm_arch_vcpu_unblocking(vcpu);
3781 	preempt_enable();
3782 
3783 	vcpu->stat.generic.blocking = 0;
3784 
3785 	return waited;
3786 }
3787 
update_halt_poll_stats(struct kvm_vcpu * vcpu,ktime_t start,ktime_t end,bool success)3788 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3789 					  ktime_t end, bool success)
3790 {
3791 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3792 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3793 
3794 	++vcpu->stat.generic.halt_attempted_poll;
3795 
3796 	if (success) {
3797 		++vcpu->stat.generic.halt_successful_poll;
3798 
3799 		if (!vcpu_valid_wakeup(vcpu))
3800 			++vcpu->stat.generic.halt_poll_invalid;
3801 
3802 		stats->halt_poll_success_ns += poll_ns;
3803 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3804 	} else {
3805 		stats->halt_poll_fail_ns += poll_ns;
3806 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3807 	}
3808 }
3809 
kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu * vcpu)3810 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3811 {
3812 	struct kvm *kvm = vcpu->kvm;
3813 
3814 	if (kvm->override_halt_poll_ns) {
3815 		/*
3816 		 * Ensure kvm->max_halt_poll_ns is not read before
3817 		 * kvm->override_halt_poll_ns.
3818 		 *
3819 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3820 		 */
3821 		smp_rmb();
3822 		return READ_ONCE(kvm->max_halt_poll_ns);
3823 	}
3824 
3825 	return READ_ONCE(halt_poll_ns);
3826 }
3827 
3828 /*
3829  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3830  * polling is enabled, busy wait for a short time before blocking to avoid the
3831  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3832  * is halted.
3833  */
kvm_vcpu_halt(struct kvm_vcpu * vcpu)3834 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3835 {
3836 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3837 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3838 	ktime_t start, cur, poll_end;
3839 	bool waited = false;
3840 	bool do_halt_poll;
3841 	u64 halt_ns;
3842 
3843 	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3844 		vcpu->halt_poll_ns = max_halt_poll_ns;
3845 
3846 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3847 
3848 	start = cur = poll_end = ktime_get();
3849 	if (do_halt_poll) {
3850 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3851 
3852 		do {
3853 			if (kvm_vcpu_check_block(vcpu) < 0)
3854 				goto out;
3855 			cpu_relax();
3856 			poll_end = cur = ktime_get();
3857 		} while (kvm_vcpu_can_poll(cur, stop));
3858 	}
3859 
3860 	waited = kvm_vcpu_block(vcpu);
3861 
3862 	cur = ktime_get();
3863 	if (waited) {
3864 		vcpu->stat.generic.halt_wait_ns +=
3865 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3866 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3867 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3868 	}
3869 out:
3870 	/* The total time the vCPU was "halted", including polling time. */
3871 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3872 
3873 	/*
3874 	 * Note, halt-polling is considered successful so long as the vCPU was
3875 	 * never actually scheduled out, i.e. even if the wake event arrived
3876 	 * after of the halt-polling loop itself, but before the full wait.
3877 	 */
3878 	if (do_halt_poll)
3879 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3880 
3881 	if (halt_poll_allowed) {
3882 		/* Recompute the max halt poll time in case it changed. */
3883 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3884 
3885 		if (!vcpu_valid_wakeup(vcpu)) {
3886 			shrink_halt_poll_ns(vcpu);
3887 		} else if (max_halt_poll_ns) {
3888 			if (halt_ns <= vcpu->halt_poll_ns)
3889 				;
3890 			/* we had a long block, shrink polling */
3891 			else if (vcpu->halt_poll_ns &&
3892 				 halt_ns > max_halt_poll_ns)
3893 				shrink_halt_poll_ns(vcpu);
3894 			/* we had a short halt and our poll time is too small */
3895 			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3896 				 halt_ns < max_halt_poll_ns)
3897 				grow_halt_poll_ns(vcpu);
3898 		} else {
3899 			vcpu->halt_poll_ns = 0;
3900 		}
3901 	}
3902 
3903 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3904 }
3905 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3906 
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)3907 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3908 {
3909 	if (__kvm_vcpu_wake_up(vcpu)) {
3910 		WRITE_ONCE(vcpu->ready, true);
3911 		++vcpu->stat.generic.halt_wakeup;
3912 		return true;
3913 	}
3914 
3915 	return false;
3916 }
3917 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3918 
3919 #ifndef CONFIG_S390
3920 /*
3921  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3922  */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)3923 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3924 {
3925 	int me, cpu;
3926 
3927 	if (kvm_vcpu_wake_up(vcpu))
3928 		return;
3929 
3930 	me = get_cpu();
3931 	/*
3932 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3933 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3934 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3935 	 * within the vCPU thread itself.
3936 	 */
3937 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3938 		if (vcpu->mode == IN_GUEST_MODE)
3939 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3940 		goto out;
3941 	}
3942 
3943 	/*
3944 	 * Note, the vCPU could get migrated to a different pCPU at any point
3945 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3946 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3947 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3948 	 * vCPU also requires it to leave IN_GUEST_MODE.
3949 	 */
3950 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3951 		cpu = READ_ONCE(vcpu->cpu);
3952 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3953 			smp_send_reschedule(cpu);
3954 	}
3955 out:
3956 	put_cpu();
3957 }
3958 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3959 #endif /* !CONFIG_S390 */
3960 
kvm_vcpu_yield_to(struct kvm_vcpu * target)3961 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3962 {
3963 	struct pid *pid;
3964 	struct task_struct *task = NULL;
3965 	int ret = 0;
3966 
3967 	rcu_read_lock();
3968 	pid = rcu_dereference(target->pid);
3969 	if (pid)
3970 		task = get_pid_task(pid, PIDTYPE_PID);
3971 	rcu_read_unlock();
3972 	if (!task)
3973 		return ret;
3974 	ret = yield_to(task, 1);
3975 	put_task_struct(task);
3976 
3977 	return ret;
3978 }
3979 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3980 
3981 /*
3982  * Helper that checks whether a VCPU is eligible for directed yield.
3983  * Most eligible candidate to yield is decided by following heuristics:
3984  *
3985  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3986  *  (preempted lock holder), indicated by @in_spin_loop.
3987  *  Set at the beginning and cleared at the end of interception/PLE handler.
3988  *
3989  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3990  *  chance last time (mostly it has become eligible now since we have probably
3991  *  yielded to lockholder in last iteration. This is done by toggling
3992  *  @dy_eligible each time a VCPU checked for eligibility.)
3993  *
3994  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3995  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3996  *  burning. Giving priority for a potential lock-holder increases lock
3997  *  progress.
3998  *
3999  *  Since algorithm is based on heuristics, accessing another VCPU data without
4000  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
4001  *  and continue with next VCPU and so on.
4002  */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)4003 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
4004 {
4005 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
4006 	bool eligible;
4007 
4008 	eligible = !vcpu->spin_loop.in_spin_loop ||
4009 		    vcpu->spin_loop.dy_eligible;
4010 
4011 	if (vcpu->spin_loop.in_spin_loop)
4012 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
4013 
4014 	return eligible;
4015 #else
4016 	return true;
4017 #endif
4018 }
4019 
4020 /*
4021  * Unlike kvm_arch_vcpu_runnable, this function is called outside
4022  * a vcpu_load/vcpu_put pair.  However, for most architectures
4023  * kvm_arch_vcpu_runnable does not require vcpu_load.
4024  */
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)4025 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
4026 {
4027 	return kvm_arch_vcpu_runnable(vcpu);
4028 }
4029 
vcpu_dy_runnable(struct kvm_vcpu * vcpu)4030 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
4031 {
4032 	if (kvm_arch_dy_runnable(vcpu))
4033 		return true;
4034 
4035 #ifdef CONFIG_KVM_ASYNC_PF
4036 	if (!list_empty_careful(&vcpu->async_pf.done))
4037 		return true;
4038 #endif
4039 
4040 	return false;
4041 }
4042 
4043 /*
4044  * By default, simply query the target vCPU's current mode when checking if a
4045  * vCPU was preempted in kernel mode.  All architectures except x86 (or more
4046  * specifical, except VMX) allow querying whether or not a vCPU is in kernel
4047  * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
4048  * directly for cross-vCPU checks is functionally correct and accurate.
4049  */
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)4050 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
4051 {
4052 	return kvm_arch_vcpu_in_kernel(vcpu);
4053 }
4054 
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)4055 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4056 {
4057 	return false;
4058 }
4059 
kvm_vcpu_on_spin(struct kvm_vcpu * me,bool yield_to_kernel_mode)4060 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4061 {
4062 	struct kvm *kvm = me->kvm;
4063 	struct kvm_vcpu *vcpu;
4064 	int last_boosted_vcpu;
4065 	unsigned long i;
4066 	int yielded = 0;
4067 	int try = 3;
4068 	int pass;
4069 
4070 	last_boosted_vcpu = READ_ONCE(kvm->last_boosted_vcpu);
4071 	kvm_vcpu_set_in_spin_loop(me, true);
4072 	/*
4073 	 * We boost the priority of a VCPU that is runnable but not
4074 	 * currently running, because it got preempted by something
4075 	 * else and called schedule in __vcpu_run.  Hopefully that
4076 	 * VCPU is holding the lock that we need and will release it.
4077 	 * We approximate round-robin by starting at the last boosted VCPU.
4078 	 */
4079 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
4080 		kvm_for_each_vcpu(i, vcpu, kvm) {
4081 			if (!pass && i <= last_boosted_vcpu) {
4082 				i = last_boosted_vcpu;
4083 				continue;
4084 			} else if (pass && i > last_boosted_vcpu)
4085 				break;
4086 			if (!READ_ONCE(vcpu->ready))
4087 				continue;
4088 			if (vcpu == me)
4089 				continue;
4090 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4091 				continue;
4092 
4093 			/*
4094 			 * Treat the target vCPU as being in-kernel if it has a
4095 			 * pending interrupt, as the vCPU trying to yield may
4096 			 * be spinning waiting on IPI delivery, i.e. the target
4097 			 * vCPU is in-kernel for the purposes of directed yield.
4098 			 */
4099 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4100 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4101 			    !kvm_arch_vcpu_preempted_in_kernel(vcpu))
4102 				continue;
4103 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4104 				continue;
4105 
4106 			yielded = kvm_vcpu_yield_to(vcpu);
4107 			if (yielded > 0) {
4108 				WRITE_ONCE(kvm->last_boosted_vcpu, i);
4109 				break;
4110 			} else if (yielded < 0) {
4111 				try--;
4112 				if (!try)
4113 					break;
4114 			}
4115 		}
4116 	}
4117 	kvm_vcpu_set_in_spin_loop(me, false);
4118 
4119 	/* Ensure vcpu is not eligible during next spinloop */
4120 	kvm_vcpu_set_dy_eligible(me, false);
4121 }
4122 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4123 
kvm_page_in_dirty_ring(struct kvm * kvm,unsigned long pgoff)4124 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4125 {
4126 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4127 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4128 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4129 	     kvm->dirty_ring_size / PAGE_SIZE);
4130 #else
4131 	return false;
4132 #endif
4133 }
4134 
kvm_vcpu_fault(struct vm_fault * vmf)4135 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4136 {
4137 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4138 	struct page *page;
4139 
4140 	if (vmf->pgoff == 0)
4141 		page = virt_to_page(vcpu->run);
4142 #ifdef CONFIG_X86
4143 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4144 		page = virt_to_page(vcpu->arch.pio_data);
4145 #endif
4146 #ifdef CONFIG_KVM_MMIO
4147 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4148 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4149 #endif
4150 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4151 		page = kvm_dirty_ring_get_page(
4152 		    &vcpu->dirty_ring,
4153 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4154 	else
4155 		return kvm_arch_vcpu_fault(vcpu, vmf);
4156 	get_page(page);
4157 	vmf->page = page;
4158 	return 0;
4159 }
4160 
4161 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4162 	.fault = kvm_vcpu_fault,
4163 };
4164 
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)4165 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4166 {
4167 	struct kvm_vcpu *vcpu = file->private_data;
4168 	unsigned long pages = vma_pages(vma);
4169 
4170 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4171 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4172 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4173 		return -EINVAL;
4174 
4175 	vma->vm_ops = &kvm_vcpu_vm_ops;
4176 	return 0;
4177 }
4178 
kvm_vcpu_release(struct inode * inode,struct file * filp)4179 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4180 {
4181 	struct kvm_vcpu *vcpu = filp->private_data;
4182 
4183 	kvm_put_kvm(vcpu->kvm);
4184 	return 0;
4185 }
4186 
4187 static struct file_operations kvm_vcpu_fops = {
4188 	.release        = kvm_vcpu_release,
4189 	.unlocked_ioctl = kvm_vcpu_ioctl,
4190 	.mmap           = kvm_vcpu_mmap,
4191 	.llseek		= noop_llseek,
4192 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
4193 };
4194 
4195 /*
4196  * Allocates an inode for the vcpu.
4197  */
create_vcpu_fd(struct kvm_vcpu * vcpu)4198 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4199 {
4200 	char name[8 + 1 + ITOA_MAX_LEN + 1];
4201 
4202 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4203 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4204 }
4205 
4206 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
vcpu_get_pid(void * data,u64 * val)4207 static int vcpu_get_pid(void *data, u64 *val)
4208 {
4209 	struct kvm_vcpu *vcpu = data;
4210 
4211 	rcu_read_lock();
4212 	*val = pid_nr(rcu_dereference(vcpu->pid));
4213 	rcu_read_unlock();
4214 	return 0;
4215 }
4216 
4217 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4218 
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)4219 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4220 {
4221 	struct dentry *debugfs_dentry;
4222 	char dir_name[ITOA_MAX_LEN * 2];
4223 
4224 	if (!debugfs_initialized())
4225 		return;
4226 
4227 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4228 	debugfs_dentry = debugfs_create_dir(dir_name,
4229 					    vcpu->kvm->debugfs_dentry);
4230 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4231 			    &vcpu_get_pid_fops);
4232 
4233 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4234 }
4235 #endif
4236 
4237 /*
4238  * Creates some virtual cpus.  Good luck creating more than one.
4239  */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,unsigned long id)4240 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id)
4241 {
4242 	int r;
4243 	struct kvm_vcpu *vcpu;
4244 	struct page *page;
4245 
4246 	/*
4247 	 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject
4248 	 * too-large values instead of silently truncating.
4249 	 *
4250 	 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first
4251 	 * changing the storage type (at the very least, IDs should be tracked
4252 	 * as unsigned ints).
4253 	 */
4254 	BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX);
4255 	if (id >= KVM_MAX_VCPU_IDS)
4256 		return -EINVAL;
4257 
4258 	mutex_lock(&kvm->lock);
4259 	if (kvm->created_vcpus >= kvm->max_vcpus) {
4260 		mutex_unlock(&kvm->lock);
4261 		return -EINVAL;
4262 	}
4263 
4264 	r = kvm_arch_vcpu_precreate(kvm, id);
4265 	if (r) {
4266 		mutex_unlock(&kvm->lock);
4267 		return r;
4268 	}
4269 
4270 	kvm->created_vcpus++;
4271 	mutex_unlock(&kvm->lock);
4272 
4273 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4274 	if (!vcpu) {
4275 		r = -ENOMEM;
4276 		goto vcpu_decrement;
4277 	}
4278 
4279 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4280 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4281 	if (!page) {
4282 		r = -ENOMEM;
4283 		goto vcpu_free;
4284 	}
4285 	vcpu->run = page_address(page);
4286 
4287 	kvm_vcpu_init(vcpu, kvm, id);
4288 
4289 	r = kvm_arch_vcpu_create(vcpu);
4290 	if (r)
4291 		goto vcpu_free_run_page;
4292 
4293 	if (kvm->dirty_ring_size) {
4294 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4295 					 id, kvm->dirty_ring_size);
4296 		if (r)
4297 			goto arch_vcpu_destroy;
4298 	}
4299 
4300 	mutex_lock(&kvm->lock);
4301 
4302 #ifdef CONFIG_LOCKDEP
4303 	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4304 	mutex_lock(&vcpu->mutex);
4305 	mutex_unlock(&vcpu->mutex);
4306 #endif
4307 
4308 	if (kvm_get_vcpu_by_id(kvm, id)) {
4309 		r = -EEXIST;
4310 		goto unlock_vcpu_destroy;
4311 	}
4312 
4313 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4314 	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4315 	if (r)
4316 		goto unlock_vcpu_destroy;
4317 
4318 	/* Now it's all set up, let userspace reach it */
4319 	kvm_get_kvm(kvm);
4320 	r = create_vcpu_fd(vcpu);
4321 	if (r < 0)
4322 		goto kvm_put_xa_release;
4323 
4324 	if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4325 		r = -EINVAL;
4326 		goto kvm_put_xa_release;
4327 	}
4328 
4329 	/*
4330 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4331 	 * pointer before kvm->online_vcpu's incremented value.
4332 	 */
4333 	smp_wmb();
4334 	atomic_inc(&kvm->online_vcpus);
4335 
4336 	mutex_unlock(&kvm->lock);
4337 	kvm_arch_vcpu_postcreate(vcpu);
4338 	kvm_create_vcpu_debugfs(vcpu);
4339 	return r;
4340 
4341 kvm_put_xa_release:
4342 	kvm_put_kvm_no_destroy(kvm);
4343 	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4344 unlock_vcpu_destroy:
4345 	mutex_unlock(&kvm->lock);
4346 	kvm_dirty_ring_free(&vcpu->dirty_ring);
4347 arch_vcpu_destroy:
4348 	kvm_arch_vcpu_destroy(vcpu);
4349 vcpu_free_run_page:
4350 	free_page((unsigned long)vcpu->run);
4351 vcpu_free:
4352 	kmem_cache_free(kvm_vcpu_cache, vcpu);
4353 vcpu_decrement:
4354 	mutex_lock(&kvm->lock);
4355 	kvm->created_vcpus--;
4356 	mutex_unlock(&kvm->lock);
4357 	return r;
4358 }
4359 
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)4360 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4361 {
4362 	if (sigset) {
4363 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4364 		vcpu->sigset_active = 1;
4365 		vcpu->sigset = *sigset;
4366 	} else
4367 		vcpu->sigset_active = 0;
4368 	return 0;
4369 }
4370 
kvm_vcpu_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)4371 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4372 			      size_t size, loff_t *offset)
4373 {
4374 	struct kvm_vcpu *vcpu = file->private_data;
4375 
4376 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4377 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4378 			sizeof(vcpu->stat), user_buffer, size, offset);
4379 }
4380 
kvm_vcpu_stats_release(struct inode * inode,struct file * file)4381 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4382 {
4383 	struct kvm_vcpu *vcpu = file->private_data;
4384 
4385 	kvm_put_kvm(vcpu->kvm);
4386 	return 0;
4387 }
4388 
4389 static const struct file_operations kvm_vcpu_stats_fops = {
4390 	.owner = THIS_MODULE,
4391 	.read = kvm_vcpu_stats_read,
4392 	.release = kvm_vcpu_stats_release,
4393 	.llseek = noop_llseek,
4394 };
4395 
kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu * vcpu)4396 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4397 {
4398 	int fd;
4399 	struct file *file;
4400 	char name[15 + ITOA_MAX_LEN + 1];
4401 
4402 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4403 
4404 	fd = get_unused_fd_flags(O_CLOEXEC);
4405 	if (fd < 0)
4406 		return fd;
4407 
4408 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4409 	if (IS_ERR(file)) {
4410 		put_unused_fd(fd);
4411 		return PTR_ERR(file);
4412 	}
4413 
4414 	kvm_get_kvm(vcpu->kvm);
4415 
4416 	file->f_mode |= FMODE_PREAD;
4417 	fd_install(fd, file);
4418 
4419 	return fd;
4420 }
4421 
4422 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
kvm_vcpu_pre_fault_memory(struct kvm_vcpu * vcpu,struct kvm_pre_fault_memory * range)4423 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4424 				     struct kvm_pre_fault_memory *range)
4425 {
4426 	int idx;
4427 	long r;
4428 	u64 full_size;
4429 
4430 	if (range->flags)
4431 		return -EINVAL;
4432 
4433 	if (!PAGE_ALIGNED(range->gpa) ||
4434 	    !PAGE_ALIGNED(range->size) ||
4435 	    range->gpa + range->size <= range->gpa)
4436 		return -EINVAL;
4437 
4438 	vcpu_load(vcpu);
4439 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4440 
4441 	full_size = range->size;
4442 	do {
4443 		if (signal_pending(current)) {
4444 			r = -EINTR;
4445 			break;
4446 		}
4447 
4448 		r = kvm_arch_vcpu_pre_fault_memory(vcpu, range);
4449 		if (WARN_ON_ONCE(r == 0 || r == -EIO))
4450 			break;
4451 
4452 		if (r < 0)
4453 			break;
4454 
4455 		range->size -= r;
4456 		range->gpa += r;
4457 		cond_resched();
4458 	} while (range->size);
4459 
4460 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4461 	vcpu_put(vcpu);
4462 
4463 	/* Return success if at least one page was mapped successfully.  */
4464 	return full_size == range->size ? r : 0;
4465 }
4466 #endif
4467 
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4468 static long kvm_vcpu_ioctl(struct file *filp,
4469 			   unsigned int ioctl, unsigned long arg)
4470 {
4471 	struct kvm_vcpu *vcpu = filp->private_data;
4472 	void __user *argp = (void __user *)arg;
4473 	int r;
4474 	struct kvm_fpu *fpu = NULL;
4475 	struct kvm_sregs *kvm_sregs = NULL;
4476 
4477 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4478 		return -EIO;
4479 
4480 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4481 		return -EINVAL;
4482 
4483 	/*
4484 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4485 	 * execution; mutex_lock() would break them.
4486 	 */
4487 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4488 	if (r != -ENOIOCTLCMD)
4489 		return r;
4490 
4491 	if (mutex_lock_killable(&vcpu->mutex))
4492 		return -EINTR;
4493 	switch (ioctl) {
4494 	case KVM_RUN: {
4495 		struct pid *oldpid;
4496 		r = -EINVAL;
4497 		if (arg)
4498 			goto out;
4499 		oldpid = rcu_access_pointer(vcpu->pid);
4500 		if (unlikely(oldpid != task_pid(current))) {
4501 			/* The thread running this VCPU changed. */
4502 			struct pid *newpid;
4503 
4504 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4505 			if (r)
4506 				break;
4507 
4508 			newpid = get_task_pid(current, PIDTYPE_PID);
4509 			rcu_assign_pointer(vcpu->pid, newpid);
4510 			if (oldpid)
4511 				synchronize_rcu();
4512 			put_pid(oldpid);
4513 		}
4514 		vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe);
4515 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4516 		vcpu->wants_to_run = false;
4517 
4518 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4519 		break;
4520 	}
4521 	case KVM_GET_REGS: {
4522 		struct kvm_regs *kvm_regs;
4523 
4524 		r = -ENOMEM;
4525 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
4526 		if (!kvm_regs)
4527 			goto out;
4528 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4529 		if (r)
4530 			goto out_free1;
4531 		r = -EFAULT;
4532 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4533 			goto out_free1;
4534 		r = 0;
4535 out_free1:
4536 		kfree(kvm_regs);
4537 		break;
4538 	}
4539 	case KVM_SET_REGS: {
4540 		struct kvm_regs *kvm_regs;
4541 
4542 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4543 		if (IS_ERR(kvm_regs)) {
4544 			r = PTR_ERR(kvm_regs);
4545 			goto out;
4546 		}
4547 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4548 		kfree(kvm_regs);
4549 		break;
4550 	}
4551 	case KVM_GET_SREGS: {
4552 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
4553 		r = -ENOMEM;
4554 		if (!kvm_sregs)
4555 			goto out;
4556 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4557 		if (r)
4558 			goto out;
4559 		r = -EFAULT;
4560 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4561 			goto out;
4562 		r = 0;
4563 		break;
4564 	}
4565 	case KVM_SET_SREGS: {
4566 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4567 		if (IS_ERR(kvm_sregs)) {
4568 			r = PTR_ERR(kvm_sregs);
4569 			kvm_sregs = NULL;
4570 			goto out;
4571 		}
4572 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4573 		break;
4574 	}
4575 	case KVM_GET_MP_STATE: {
4576 		struct kvm_mp_state mp_state;
4577 
4578 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4579 		if (r)
4580 			goto out;
4581 		r = -EFAULT;
4582 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4583 			goto out;
4584 		r = 0;
4585 		break;
4586 	}
4587 	case KVM_SET_MP_STATE: {
4588 		struct kvm_mp_state mp_state;
4589 
4590 		r = -EFAULT;
4591 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4592 			goto out;
4593 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4594 		break;
4595 	}
4596 	case KVM_TRANSLATE: {
4597 		struct kvm_translation tr;
4598 
4599 		r = -EFAULT;
4600 		if (copy_from_user(&tr, argp, sizeof(tr)))
4601 			goto out;
4602 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4603 		if (r)
4604 			goto out;
4605 		r = -EFAULT;
4606 		if (copy_to_user(argp, &tr, sizeof(tr)))
4607 			goto out;
4608 		r = 0;
4609 		break;
4610 	}
4611 	case KVM_SET_GUEST_DEBUG: {
4612 		struct kvm_guest_debug dbg;
4613 
4614 		r = -EFAULT;
4615 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4616 			goto out;
4617 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4618 		break;
4619 	}
4620 	case KVM_SET_SIGNAL_MASK: {
4621 		struct kvm_signal_mask __user *sigmask_arg = argp;
4622 		struct kvm_signal_mask kvm_sigmask;
4623 		sigset_t sigset, *p;
4624 
4625 		p = NULL;
4626 		if (argp) {
4627 			r = -EFAULT;
4628 			if (copy_from_user(&kvm_sigmask, argp,
4629 					   sizeof(kvm_sigmask)))
4630 				goto out;
4631 			r = -EINVAL;
4632 			if (kvm_sigmask.len != sizeof(sigset))
4633 				goto out;
4634 			r = -EFAULT;
4635 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4636 					   sizeof(sigset)))
4637 				goto out;
4638 			p = &sigset;
4639 		}
4640 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4641 		break;
4642 	}
4643 	case KVM_GET_FPU: {
4644 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
4645 		r = -ENOMEM;
4646 		if (!fpu)
4647 			goto out;
4648 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4649 		if (r)
4650 			goto out;
4651 		r = -EFAULT;
4652 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4653 			goto out;
4654 		r = 0;
4655 		break;
4656 	}
4657 	case KVM_SET_FPU: {
4658 		fpu = memdup_user(argp, sizeof(*fpu));
4659 		if (IS_ERR(fpu)) {
4660 			r = PTR_ERR(fpu);
4661 			fpu = NULL;
4662 			goto out;
4663 		}
4664 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4665 		break;
4666 	}
4667 	case KVM_GET_STATS_FD: {
4668 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4669 		break;
4670 	}
4671 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4672 	case KVM_PRE_FAULT_MEMORY: {
4673 		struct kvm_pre_fault_memory range;
4674 
4675 		r = -EFAULT;
4676 		if (copy_from_user(&range, argp, sizeof(range)))
4677 			break;
4678 		r = kvm_vcpu_pre_fault_memory(vcpu, &range);
4679 		/* Pass back leftover range. */
4680 		if (copy_to_user(argp, &range, sizeof(range)))
4681 			r = -EFAULT;
4682 		break;
4683 	}
4684 #endif
4685 	default:
4686 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4687 	}
4688 out:
4689 	mutex_unlock(&vcpu->mutex);
4690 	kfree(fpu);
4691 	kfree(kvm_sregs);
4692 	return r;
4693 }
4694 
4695 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4696 static long kvm_vcpu_compat_ioctl(struct file *filp,
4697 				  unsigned int ioctl, unsigned long arg)
4698 {
4699 	struct kvm_vcpu *vcpu = filp->private_data;
4700 	void __user *argp = compat_ptr(arg);
4701 	int r;
4702 
4703 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4704 		return -EIO;
4705 
4706 	switch (ioctl) {
4707 	case KVM_SET_SIGNAL_MASK: {
4708 		struct kvm_signal_mask __user *sigmask_arg = argp;
4709 		struct kvm_signal_mask kvm_sigmask;
4710 		sigset_t sigset;
4711 
4712 		if (argp) {
4713 			r = -EFAULT;
4714 			if (copy_from_user(&kvm_sigmask, argp,
4715 					   sizeof(kvm_sigmask)))
4716 				goto out;
4717 			r = -EINVAL;
4718 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4719 				goto out;
4720 			r = -EFAULT;
4721 			if (get_compat_sigset(&sigset,
4722 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4723 				goto out;
4724 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4725 		} else
4726 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4727 		break;
4728 	}
4729 	default:
4730 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4731 	}
4732 
4733 out:
4734 	return r;
4735 }
4736 #endif
4737 
kvm_device_mmap(struct file * filp,struct vm_area_struct * vma)4738 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4739 {
4740 	struct kvm_device *dev = filp->private_data;
4741 
4742 	if (dev->ops->mmap)
4743 		return dev->ops->mmap(dev, vma);
4744 
4745 	return -ENODEV;
4746 }
4747 
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)4748 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4749 				 int (*accessor)(struct kvm_device *dev,
4750 						 struct kvm_device_attr *attr),
4751 				 unsigned long arg)
4752 {
4753 	struct kvm_device_attr attr;
4754 
4755 	if (!accessor)
4756 		return -EPERM;
4757 
4758 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4759 		return -EFAULT;
4760 
4761 	return accessor(dev, &attr);
4762 }
4763 
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4764 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4765 			     unsigned long arg)
4766 {
4767 	struct kvm_device *dev = filp->private_data;
4768 
4769 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4770 		return -EIO;
4771 
4772 	switch (ioctl) {
4773 	case KVM_SET_DEVICE_ATTR:
4774 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4775 	case KVM_GET_DEVICE_ATTR:
4776 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4777 	case KVM_HAS_DEVICE_ATTR:
4778 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4779 	default:
4780 		if (dev->ops->ioctl)
4781 			return dev->ops->ioctl(dev, ioctl, arg);
4782 
4783 		return -ENOTTY;
4784 	}
4785 }
4786 
kvm_device_release(struct inode * inode,struct file * filp)4787 static int kvm_device_release(struct inode *inode, struct file *filp)
4788 {
4789 	struct kvm_device *dev = filp->private_data;
4790 	struct kvm *kvm = dev->kvm;
4791 
4792 	if (dev->ops->release) {
4793 		mutex_lock(&kvm->lock);
4794 		list_del_rcu(&dev->vm_node);
4795 		synchronize_rcu();
4796 		dev->ops->release(dev);
4797 		mutex_unlock(&kvm->lock);
4798 	}
4799 
4800 	kvm_put_kvm(kvm);
4801 	return 0;
4802 }
4803 
4804 static struct file_operations kvm_device_fops = {
4805 	.unlocked_ioctl = kvm_device_ioctl,
4806 	.release = kvm_device_release,
4807 	KVM_COMPAT(kvm_device_ioctl),
4808 	.mmap = kvm_device_mmap,
4809 };
4810 
kvm_device_from_filp(struct file * filp)4811 struct kvm_device *kvm_device_from_filp(struct file *filp)
4812 {
4813 	if (filp->f_op != &kvm_device_fops)
4814 		return NULL;
4815 
4816 	return filp->private_data;
4817 }
4818 
4819 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4820 #ifdef CONFIG_KVM_MPIC
4821 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4822 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4823 #endif
4824 };
4825 
kvm_register_device_ops(const struct kvm_device_ops * ops,u32 type)4826 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4827 {
4828 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4829 		return -ENOSPC;
4830 
4831 	if (kvm_device_ops_table[type] != NULL)
4832 		return -EEXIST;
4833 
4834 	kvm_device_ops_table[type] = ops;
4835 	return 0;
4836 }
4837 
kvm_unregister_device_ops(u32 type)4838 void kvm_unregister_device_ops(u32 type)
4839 {
4840 	if (kvm_device_ops_table[type] != NULL)
4841 		kvm_device_ops_table[type] = NULL;
4842 }
4843 
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)4844 static int kvm_ioctl_create_device(struct kvm *kvm,
4845 				   struct kvm_create_device *cd)
4846 {
4847 	const struct kvm_device_ops *ops;
4848 	struct kvm_device *dev;
4849 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4850 	int type;
4851 	int ret;
4852 
4853 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4854 		return -ENODEV;
4855 
4856 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4857 	ops = kvm_device_ops_table[type];
4858 	if (ops == NULL)
4859 		return -ENODEV;
4860 
4861 	if (test)
4862 		return 0;
4863 
4864 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4865 	if (!dev)
4866 		return -ENOMEM;
4867 
4868 	dev->ops = ops;
4869 	dev->kvm = kvm;
4870 
4871 	mutex_lock(&kvm->lock);
4872 	ret = ops->create(dev, type);
4873 	if (ret < 0) {
4874 		mutex_unlock(&kvm->lock);
4875 		kfree(dev);
4876 		return ret;
4877 	}
4878 	list_add_rcu(&dev->vm_node, &kvm->devices);
4879 	mutex_unlock(&kvm->lock);
4880 
4881 	if (ops->init)
4882 		ops->init(dev);
4883 
4884 	kvm_get_kvm(kvm);
4885 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4886 	if (ret < 0) {
4887 		kvm_put_kvm_no_destroy(kvm);
4888 		mutex_lock(&kvm->lock);
4889 		list_del_rcu(&dev->vm_node);
4890 		synchronize_rcu();
4891 		if (ops->release)
4892 			ops->release(dev);
4893 		mutex_unlock(&kvm->lock);
4894 		if (ops->destroy)
4895 			ops->destroy(dev);
4896 		return ret;
4897 	}
4898 
4899 	cd->fd = ret;
4900 	return 0;
4901 }
4902 
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)4903 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4904 {
4905 	switch (arg) {
4906 	case KVM_CAP_USER_MEMORY:
4907 	case KVM_CAP_USER_MEMORY2:
4908 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4909 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4910 	case KVM_CAP_INTERNAL_ERROR_DATA:
4911 #ifdef CONFIG_HAVE_KVM_MSI
4912 	case KVM_CAP_SIGNAL_MSI:
4913 #endif
4914 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4915 	case KVM_CAP_IRQFD:
4916 #endif
4917 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4918 	case KVM_CAP_CHECK_EXTENSION_VM:
4919 	case KVM_CAP_ENABLE_CAP_VM:
4920 	case KVM_CAP_HALT_POLL:
4921 		return 1;
4922 #ifdef CONFIG_KVM_MMIO
4923 	case KVM_CAP_COALESCED_MMIO:
4924 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4925 	case KVM_CAP_COALESCED_PIO:
4926 		return 1;
4927 #endif
4928 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4929 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4930 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4931 #endif
4932 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4933 	case KVM_CAP_IRQ_ROUTING:
4934 		return KVM_MAX_IRQ_ROUTES;
4935 #endif
4936 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4937 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4938 		if (kvm)
4939 			return kvm_arch_nr_memslot_as_ids(kvm);
4940 		return KVM_MAX_NR_ADDRESS_SPACES;
4941 #endif
4942 	case KVM_CAP_NR_MEMSLOTS:
4943 		return KVM_USER_MEM_SLOTS;
4944 	case KVM_CAP_DIRTY_LOG_RING:
4945 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4946 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4947 #else
4948 		return 0;
4949 #endif
4950 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4951 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4952 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4953 #else
4954 		return 0;
4955 #endif
4956 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4957 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4958 #endif
4959 	case KVM_CAP_BINARY_STATS_FD:
4960 	case KVM_CAP_SYSTEM_EVENT_DATA:
4961 	case KVM_CAP_DEVICE_CTRL:
4962 		return 1;
4963 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4964 	case KVM_CAP_MEMORY_ATTRIBUTES:
4965 		return kvm_supported_mem_attributes(kvm);
4966 #endif
4967 #ifdef CONFIG_KVM_PRIVATE_MEM
4968 	case KVM_CAP_GUEST_MEMFD:
4969 		return !kvm || kvm_arch_has_private_mem(kvm);
4970 #endif
4971 	default:
4972 		break;
4973 	}
4974 	return kvm_vm_ioctl_check_extension(kvm, arg);
4975 }
4976 
kvm_vm_ioctl_enable_dirty_log_ring(struct kvm * kvm,u32 size)4977 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4978 {
4979 	int r;
4980 
4981 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4982 		return -EINVAL;
4983 
4984 	/* the size should be power of 2 */
4985 	if (!size || (size & (size - 1)))
4986 		return -EINVAL;
4987 
4988 	/* Should be bigger to keep the reserved entries, or a page */
4989 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4990 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4991 		return -EINVAL;
4992 
4993 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4994 	    sizeof(struct kvm_dirty_gfn))
4995 		return -E2BIG;
4996 
4997 	/* We only allow it to set once */
4998 	if (kvm->dirty_ring_size)
4999 		return -EINVAL;
5000 
5001 	mutex_lock(&kvm->lock);
5002 
5003 	if (kvm->created_vcpus) {
5004 		/* We don't allow to change this value after vcpu created */
5005 		r = -EINVAL;
5006 	} else {
5007 		kvm->dirty_ring_size = size;
5008 		r = 0;
5009 	}
5010 
5011 	mutex_unlock(&kvm->lock);
5012 	return r;
5013 }
5014 
kvm_vm_ioctl_reset_dirty_pages(struct kvm * kvm)5015 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
5016 {
5017 	unsigned long i;
5018 	struct kvm_vcpu *vcpu;
5019 	int cleared = 0;
5020 
5021 	if (!kvm->dirty_ring_size)
5022 		return -EINVAL;
5023 
5024 	mutex_lock(&kvm->slots_lock);
5025 
5026 	kvm_for_each_vcpu(i, vcpu, kvm)
5027 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
5028 
5029 	mutex_unlock(&kvm->slots_lock);
5030 
5031 	if (cleared)
5032 		kvm_flush_remote_tlbs(kvm);
5033 
5034 	return cleared;
5035 }
5036 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)5037 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5038 						  struct kvm_enable_cap *cap)
5039 {
5040 	return -EINVAL;
5041 }
5042 
kvm_are_all_memslots_empty(struct kvm * kvm)5043 bool kvm_are_all_memslots_empty(struct kvm *kvm)
5044 {
5045 	int i;
5046 
5047 	lockdep_assert_held(&kvm->slots_lock);
5048 
5049 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
5050 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
5051 			return false;
5052 	}
5053 
5054 	return true;
5055 }
5056 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
5057 
kvm_vm_ioctl_enable_cap_generic(struct kvm * kvm,struct kvm_enable_cap * cap)5058 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
5059 					   struct kvm_enable_cap *cap)
5060 {
5061 	switch (cap->cap) {
5062 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5063 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
5064 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
5065 
5066 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
5067 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
5068 
5069 		if (cap->flags || (cap->args[0] & ~allowed_options))
5070 			return -EINVAL;
5071 		kvm->manual_dirty_log_protect = cap->args[0];
5072 		return 0;
5073 	}
5074 #endif
5075 	case KVM_CAP_HALT_POLL: {
5076 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
5077 			return -EINVAL;
5078 
5079 		kvm->max_halt_poll_ns = cap->args[0];
5080 
5081 		/*
5082 		 * Ensure kvm->override_halt_poll_ns does not become visible
5083 		 * before kvm->max_halt_poll_ns.
5084 		 *
5085 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5086 		 */
5087 		smp_wmb();
5088 		kvm->override_halt_poll_ns = true;
5089 
5090 		return 0;
5091 	}
5092 	case KVM_CAP_DIRTY_LOG_RING:
5093 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5094 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5095 			return -EINVAL;
5096 
5097 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5098 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5099 		int r = -EINVAL;
5100 
5101 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5102 		    !kvm->dirty_ring_size || cap->flags)
5103 			return r;
5104 
5105 		mutex_lock(&kvm->slots_lock);
5106 
5107 		/*
5108 		 * For simplicity, allow enabling ring+bitmap if and only if
5109 		 * there are no memslots, e.g. to ensure all memslots allocate
5110 		 * a bitmap after the capability is enabled.
5111 		 */
5112 		if (kvm_are_all_memslots_empty(kvm)) {
5113 			kvm->dirty_ring_with_bitmap = true;
5114 			r = 0;
5115 		}
5116 
5117 		mutex_unlock(&kvm->slots_lock);
5118 
5119 		return r;
5120 	}
5121 	default:
5122 		return kvm_vm_ioctl_enable_cap(kvm, cap);
5123 	}
5124 }
5125 
kvm_vm_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)5126 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5127 			      size_t size, loff_t *offset)
5128 {
5129 	struct kvm *kvm = file->private_data;
5130 
5131 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5132 				&kvm_vm_stats_desc[0], &kvm->stat,
5133 				sizeof(kvm->stat), user_buffer, size, offset);
5134 }
5135 
kvm_vm_stats_release(struct inode * inode,struct file * file)5136 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5137 {
5138 	struct kvm *kvm = file->private_data;
5139 
5140 	kvm_put_kvm(kvm);
5141 	return 0;
5142 }
5143 
5144 static const struct file_operations kvm_vm_stats_fops = {
5145 	.owner = THIS_MODULE,
5146 	.read = kvm_vm_stats_read,
5147 	.release = kvm_vm_stats_release,
5148 	.llseek = noop_llseek,
5149 };
5150 
kvm_vm_ioctl_get_stats_fd(struct kvm * kvm)5151 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5152 {
5153 	int fd;
5154 	struct file *file;
5155 
5156 	fd = get_unused_fd_flags(O_CLOEXEC);
5157 	if (fd < 0)
5158 		return fd;
5159 
5160 	file = anon_inode_getfile("kvm-vm-stats",
5161 			&kvm_vm_stats_fops, kvm, O_RDONLY);
5162 	if (IS_ERR(file)) {
5163 		put_unused_fd(fd);
5164 		return PTR_ERR(file);
5165 	}
5166 
5167 	kvm_get_kvm(kvm);
5168 
5169 	file->f_mode |= FMODE_PREAD;
5170 	fd_install(fd, file);
5171 
5172 	return fd;
5173 }
5174 
5175 #define SANITY_CHECK_MEM_REGION_FIELD(field)					\
5176 do {										\
5177 	BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=		\
5178 		     offsetof(struct kvm_userspace_memory_region2, field));	\
5179 	BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=		\
5180 		     sizeof_field(struct kvm_userspace_memory_region2, field));	\
5181 } while (0)
5182 
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5183 static long kvm_vm_ioctl(struct file *filp,
5184 			   unsigned int ioctl, unsigned long arg)
5185 {
5186 	struct kvm *kvm = filp->private_data;
5187 	void __user *argp = (void __user *)arg;
5188 	int r;
5189 
5190 	if (kvm->mm != current->mm || kvm->vm_dead)
5191 		return -EIO;
5192 	switch (ioctl) {
5193 	case KVM_CREATE_VCPU:
5194 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5195 		break;
5196 	case KVM_ENABLE_CAP: {
5197 		struct kvm_enable_cap cap;
5198 
5199 		r = -EFAULT;
5200 		if (copy_from_user(&cap, argp, sizeof(cap)))
5201 			goto out;
5202 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5203 		break;
5204 	}
5205 	case KVM_SET_USER_MEMORY_REGION2:
5206 	case KVM_SET_USER_MEMORY_REGION: {
5207 		struct kvm_userspace_memory_region2 mem;
5208 		unsigned long size;
5209 
5210 		if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5211 			/*
5212 			 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5213 			 * accessed, but avoid leaking kernel memory in case of a bug.
5214 			 */
5215 			memset(&mem, 0, sizeof(mem));
5216 			size = sizeof(struct kvm_userspace_memory_region);
5217 		} else {
5218 			size = sizeof(struct kvm_userspace_memory_region2);
5219 		}
5220 
5221 		/* Ensure the common parts of the two structs are identical. */
5222 		SANITY_CHECK_MEM_REGION_FIELD(slot);
5223 		SANITY_CHECK_MEM_REGION_FIELD(flags);
5224 		SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5225 		SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5226 		SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5227 
5228 		r = -EFAULT;
5229 		if (copy_from_user(&mem, argp, size))
5230 			goto out;
5231 
5232 		r = -EINVAL;
5233 		if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5234 		    (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5235 			goto out;
5236 
5237 		r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5238 		break;
5239 	}
5240 	case KVM_GET_DIRTY_LOG: {
5241 		struct kvm_dirty_log log;
5242 
5243 		r = -EFAULT;
5244 		if (copy_from_user(&log, argp, sizeof(log)))
5245 			goto out;
5246 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5247 		break;
5248 	}
5249 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5250 	case KVM_CLEAR_DIRTY_LOG: {
5251 		struct kvm_clear_dirty_log log;
5252 
5253 		r = -EFAULT;
5254 		if (copy_from_user(&log, argp, sizeof(log)))
5255 			goto out;
5256 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5257 		break;
5258 	}
5259 #endif
5260 #ifdef CONFIG_KVM_MMIO
5261 	case KVM_REGISTER_COALESCED_MMIO: {
5262 		struct kvm_coalesced_mmio_zone zone;
5263 
5264 		r = -EFAULT;
5265 		if (copy_from_user(&zone, argp, sizeof(zone)))
5266 			goto out;
5267 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5268 		break;
5269 	}
5270 	case KVM_UNREGISTER_COALESCED_MMIO: {
5271 		struct kvm_coalesced_mmio_zone zone;
5272 
5273 		r = -EFAULT;
5274 		if (copy_from_user(&zone, argp, sizeof(zone)))
5275 			goto out;
5276 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5277 		break;
5278 	}
5279 #endif
5280 	case KVM_IRQFD: {
5281 		struct kvm_irqfd data;
5282 
5283 		r = -EFAULT;
5284 		if (copy_from_user(&data, argp, sizeof(data)))
5285 			goto out;
5286 		r = kvm_irqfd(kvm, &data);
5287 		break;
5288 	}
5289 	case KVM_IOEVENTFD: {
5290 		struct kvm_ioeventfd data;
5291 
5292 		r = -EFAULT;
5293 		if (copy_from_user(&data, argp, sizeof(data)))
5294 			goto out;
5295 		r = kvm_ioeventfd(kvm, &data);
5296 		break;
5297 	}
5298 #ifdef CONFIG_HAVE_KVM_MSI
5299 	case KVM_SIGNAL_MSI: {
5300 		struct kvm_msi msi;
5301 
5302 		r = -EFAULT;
5303 		if (copy_from_user(&msi, argp, sizeof(msi)))
5304 			goto out;
5305 		r = kvm_send_userspace_msi(kvm, &msi);
5306 		break;
5307 	}
5308 #endif
5309 #ifdef __KVM_HAVE_IRQ_LINE
5310 	case KVM_IRQ_LINE_STATUS:
5311 	case KVM_IRQ_LINE: {
5312 		struct kvm_irq_level irq_event;
5313 
5314 		r = -EFAULT;
5315 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5316 			goto out;
5317 
5318 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5319 					ioctl == KVM_IRQ_LINE_STATUS);
5320 		if (r)
5321 			goto out;
5322 
5323 		r = -EFAULT;
5324 		if (ioctl == KVM_IRQ_LINE_STATUS) {
5325 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5326 				goto out;
5327 		}
5328 
5329 		r = 0;
5330 		break;
5331 	}
5332 #endif
5333 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5334 	case KVM_SET_GSI_ROUTING: {
5335 		struct kvm_irq_routing routing;
5336 		struct kvm_irq_routing __user *urouting;
5337 		struct kvm_irq_routing_entry *entries = NULL;
5338 
5339 		r = -EFAULT;
5340 		if (copy_from_user(&routing, argp, sizeof(routing)))
5341 			goto out;
5342 		r = -EINVAL;
5343 		if (!kvm_arch_can_set_irq_routing(kvm))
5344 			goto out;
5345 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
5346 			goto out;
5347 		if (routing.flags)
5348 			goto out;
5349 		if (routing.nr) {
5350 			urouting = argp;
5351 			entries = vmemdup_array_user(urouting->entries,
5352 						     routing.nr, sizeof(*entries));
5353 			if (IS_ERR(entries)) {
5354 				r = PTR_ERR(entries);
5355 				goto out;
5356 			}
5357 		}
5358 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
5359 					routing.flags);
5360 		kvfree(entries);
5361 		break;
5362 	}
5363 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5364 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5365 	case KVM_SET_MEMORY_ATTRIBUTES: {
5366 		struct kvm_memory_attributes attrs;
5367 
5368 		r = -EFAULT;
5369 		if (copy_from_user(&attrs, argp, sizeof(attrs)))
5370 			goto out;
5371 
5372 		r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5373 		break;
5374 	}
5375 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5376 	case KVM_CREATE_DEVICE: {
5377 		struct kvm_create_device cd;
5378 
5379 		r = -EFAULT;
5380 		if (copy_from_user(&cd, argp, sizeof(cd)))
5381 			goto out;
5382 
5383 		r = kvm_ioctl_create_device(kvm, &cd);
5384 		if (r)
5385 			goto out;
5386 
5387 		r = -EFAULT;
5388 		if (copy_to_user(argp, &cd, sizeof(cd)))
5389 			goto out;
5390 
5391 		r = 0;
5392 		break;
5393 	}
5394 	case KVM_CHECK_EXTENSION:
5395 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5396 		break;
5397 	case KVM_RESET_DIRTY_RINGS:
5398 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5399 		break;
5400 	case KVM_GET_STATS_FD:
5401 		r = kvm_vm_ioctl_get_stats_fd(kvm);
5402 		break;
5403 #ifdef CONFIG_KVM_PRIVATE_MEM
5404 	case KVM_CREATE_GUEST_MEMFD: {
5405 		struct kvm_create_guest_memfd guest_memfd;
5406 
5407 		r = -EFAULT;
5408 		if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5409 			goto out;
5410 
5411 		r = kvm_gmem_create(kvm, &guest_memfd);
5412 		break;
5413 	}
5414 #endif
5415 	default:
5416 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5417 	}
5418 out:
5419 	return r;
5420 }
5421 
5422 #ifdef CONFIG_KVM_COMPAT
5423 struct compat_kvm_dirty_log {
5424 	__u32 slot;
5425 	__u32 padding1;
5426 	union {
5427 		compat_uptr_t dirty_bitmap; /* one bit per page */
5428 		__u64 padding2;
5429 	};
5430 };
5431 
5432 struct compat_kvm_clear_dirty_log {
5433 	__u32 slot;
5434 	__u32 num_pages;
5435 	__u64 first_page;
5436 	union {
5437 		compat_uptr_t dirty_bitmap; /* one bit per page */
5438 		__u64 padding2;
5439 	};
5440 };
5441 
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5442 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5443 				     unsigned long arg)
5444 {
5445 	return -ENOTTY;
5446 }
5447 
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5448 static long kvm_vm_compat_ioctl(struct file *filp,
5449 			   unsigned int ioctl, unsigned long arg)
5450 {
5451 	struct kvm *kvm = filp->private_data;
5452 	int r;
5453 
5454 	if (kvm->mm != current->mm || kvm->vm_dead)
5455 		return -EIO;
5456 
5457 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5458 	if (r != -ENOTTY)
5459 		return r;
5460 
5461 	switch (ioctl) {
5462 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5463 	case KVM_CLEAR_DIRTY_LOG: {
5464 		struct compat_kvm_clear_dirty_log compat_log;
5465 		struct kvm_clear_dirty_log log;
5466 
5467 		if (copy_from_user(&compat_log, (void __user *)arg,
5468 				   sizeof(compat_log)))
5469 			return -EFAULT;
5470 		log.slot	 = compat_log.slot;
5471 		log.num_pages	 = compat_log.num_pages;
5472 		log.first_page	 = compat_log.first_page;
5473 		log.padding2	 = compat_log.padding2;
5474 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5475 
5476 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5477 		break;
5478 	}
5479 #endif
5480 	case KVM_GET_DIRTY_LOG: {
5481 		struct compat_kvm_dirty_log compat_log;
5482 		struct kvm_dirty_log log;
5483 
5484 		if (copy_from_user(&compat_log, (void __user *)arg,
5485 				   sizeof(compat_log)))
5486 			return -EFAULT;
5487 		log.slot	 = compat_log.slot;
5488 		log.padding1	 = compat_log.padding1;
5489 		log.padding2	 = compat_log.padding2;
5490 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5491 
5492 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5493 		break;
5494 	}
5495 	default:
5496 		r = kvm_vm_ioctl(filp, ioctl, arg);
5497 	}
5498 	return r;
5499 }
5500 #endif
5501 
5502 static struct file_operations kvm_vm_fops = {
5503 	.release        = kvm_vm_release,
5504 	.unlocked_ioctl = kvm_vm_ioctl,
5505 	.llseek		= noop_llseek,
5506 	KVM_COMPAT(kvm_vm_compat_ioctl),
5507 };
5508 
file_is_kvm(struct file * file)5509 bool file_is_kvm(struct file *file)
5510 {
5511 	return file && file->f_op == &kvm_vm_fops;
5512 }
5513 EXPORT_SYMBOL_GPL(file_is_kvm);
5514 
kvm_dev_ioctl_create_vm(unsigned long type)5515 static int kvm_dev_ioctl_create_vm(unsigned long type)
5516 {
5517 	char fdname[ITOA_MAX_LEN + 1];
5518 	int r, fd;
5519 	struct kvm *kvm;
5520 	struct file *file;
5521 
5522 	fd = get_unused_fd_flags(O_CLOEXEC);
5523 	if (fd < 0)
5524 		return fd;
5525 
5526 	snprintf(fdname, sizeof(fdname), "%d", fd);
5527 
5528 	kvm = kvm_create_vm(type, fdname);
5529 	if (IS_ERR(kvm)) {
5530 		r = PTR_ERR(kvm);
5531 		goto put_fd;
5532 	}
5533 
5534 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5535 	if (IS_ERR(file)) {
5536 		r = PTR_ERR(file);
5537 		goto put_kvm;
5538 	}
5539 
5540 	/*
5541 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5542 	 * already set, with ->release() being kvm_vm_release().  In error
5543 	 * cases it will be called by the final fput(file) and will take
5544 	 * care of doing kvm_put_kvm(kvm).
5545 	 */
5546 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5547 
5548 	fd_install(fd, file);
5549 	return fd;
5550 
5551 put_kvm:
5552 	kvm_put_kvm(kvm);
5553 put_fd:
5554 	put_unused_fd(fd);
5555 	return r;
5556 }
5557 
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5558 static long kvm_dev_ioctl(struct file *filp,
5559 			  unsigned int ioctl, unsigned long arg)
5560 {
5561 	int r = -EINVAL;
5562 
5563 	switch (ioctl) {
5564 	case KVM_GET_API_VERSION:
5565 		if (arg)
5566 			goto out;
5567 		r = KVM_API_VERSION;
5568 		break;
5569 	case KVM_CREATE_VM:
5570 		r = kvm_dev_ioctl_create_vm(arg);
5571 		break;
5572 	case KVM_CHECK_EXTENSION:
5573 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5574 		break;
5575 	case KVM_GET_VCPU_MMAP_SIZE:
5576 		if (arg)
5577 			goto out;
5578 		r = PAGE_SIZE;     /* struct kvm_run */
5579 #ifdef CONFIG_X86
5580 		r += PAGE_SIZE;    /* pio data page */
5581 #endif
5582 #ifdef CONFIG_KVM_MMIO
5583 		r += PAGE_SIZE;    /* coalesced mmio ring page */
5584 #endif
5585 		break;
5586 	default:
5587 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5588 	}
5589 out:
5590 	return r;
5591 }
5592 
5593 static struct file_operations kvm_chardev_ops = {
5594 	.unlocked_ioctl = kvm_dev_ioctl,
5595 	.llseek		= noop_llseek,
5596 	KVM_COMPAT(kvm_dev_ioctl),
5597 };
5598 
5599 static struct miscdevice kvm_dev = {
5600 	KVM_MINOR,
5601 	"kvm",
5602 	&kvm_chardev_ops,
5603 };
5604 
5605 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5606 static bool enable_virt_at_load = true;
5607 module_param(enable_virt_at_load, bool, 0444);
5608 
5609 __visible bool kvm_rebooting;
5610 EXPORT_SYMBOL_GPL(kvm_rebooting);
5611 
5612 static DEFINE_PER_CPU(bool, virtualization_enabled);
5613 static DEFINE_MUTEX(kvm_usage_lock);
5614 static int kvm_usage_count;
5615 
kvm_arch_enable_virtualization(void)5616 __weak void kvm_arch_enable_virtualization(void)
5617 {
5618 
5619 }
5620 
kvm_arch_disable_virtualization(void)5621 __weak void kvm_arch_disable_virtualization(void)
5622 {
5623 
5624 }
5625 
kvm_enable_virtualization_cpu(void)5626 static int kvm_enable_virtualization_cpu(void)
5627 {
5628 	if (__this_cpu_read(virtualization_enabled))
5629 		return 0;
5630 
5631 	if (kvm_arch_enable_virtualization_cpu()) {
5632 		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5633 			raw_smp_processor_id());
5634 		return -EIO;
5635 	}
5636 
5637 	__this_cpu_write(virtualization_enabled, true);
5638 	return 0;
5639 }
5640 
kvm_online_cpu(unsigned int cpu)5641 static int kvm_online_cpu(unsigned int cpu)
5642 {
5643 	/*
5644 	 * Abort the CPU online process if hardware virtualization cannot
5645 	 * be enabled. Otherwise running VMs would encounter unrecoverable
5646 	 * errors when scheduled to this CPU.
5647 	 */
5648 	return kvm_enable_virtualization_cpu();
5649 }
5650 
kvm_disable_virtualization_cpu(void * ign)5651 static void kvm_disable_virtualization_cpu(void *ign)
5652 {
5653 	if (!__this_cpu_read(virtualization_enabled))
5654 		return;
5655 
5656 	kvm_arch_disable_virtualization_cpu();
5657 
5658 	__this_cpu_write(virtualization_enabled, false);
5659 }
5660 
kvm_offline_cpu(unsigned int cpu)5661 static int kvm_offline_cpu(unsigned int cpu)
5662 {
5663 	kvm_disable_virtualization_cpu(NULL);
5664 	return 0;
5665 }
5666 
kvm_shutdown(void)5667 static void kvm_shutdown(void)
5668 {
5669 	/*
5670 	 * Disable hardware virtualization and set kvm_rebooting to indicate
5671 	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5672 	 * that relevant errors and exceptions aren't entirely unexpected.
5673 	 * Some flavors of hardware virtualization need to be disabled before
5674 	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5675 	 * on x86, virtualization can block INIT interrupts, which are used by
5676 	 * firmware to pull APs back under firmware control.  Note, this path
5677 	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5678 	 * 100% comprehensive.
5679 	 */
5680 	pr_info("kvm: exiting hardware virtualization\n");
5681 	kvm_rebooting = true;
5682 	on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1);
5683 }
5684 
kvm_suspend(void)5685 static int kvm_suspend(void)
5686 {
5687 	/*
5688 	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5689 	 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage
5690 	 * count is stable.  Assert that kvm_usage_lock is not held to ensure
5691 	 * the system isn't suspended while KVM is enabling hardware.  Hardware
5692 	 * enabling can be preempted, but the task cannot be frozen until it has
5693 	 * dropped all locks (userspace tasks are frozen via a fake signal).
5694 	 */
5695 	lockdep_assert_not_held(&kvm_usage_lock);
5696 	lockdep_assert_irqs_disabled();
5697 
5698 	kvm_disable_virtualization_cpu(NULL);
5699 	return 0;
5700 }
5701 
kvm_resume(void)5702 static void kvm_resume(void)
5703 {
5704 	lockdep_assert_not_held(&kvm_usage_lock);
5705 	lockdep_assert_irqs_disabled();
5706 
5707 	WARN_ON_ONCE(kvm_enable_virtualization_cpu());
5708 }
5709 
5710 static struct syscore_ops kvm_syscore_ops = {
5711 	.suspend = kvm_suspend,
5712 	.resume = kvm_resume,
5713 	.shutdown = kvm_shutdown,
5714 };
5715 
kvm_enable_virtualization(void)5716 static int kvm_enable_virtualization(void)
5717 {
5718 	int r;
5719 
5720 	guard(mutex)(&kvm_usage_lock);
5721 
5722 	if (kvm_usage_count++)
5723 		return 0;
5724 
5725 	kvm_arch_enable_virtualization();
5726 
5727 	r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5728 			      kvm_online_cpu, kvm_offline_cpu);
5729 	if (r)
5730 		goto err_cpuhp;
5731 
5732 	register_syscore_ops(&kvm_syscore_ops);
5733 
5734 	/*
5735 	 * Undo virtualization enabling and bail if the system is going down.
5736 	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5737 	 * possible for an in-flight operation to enable virtualization after
5738 	 * syscore_shutdown() is called, i.e. without kvm_shutdown() being
5739 	 * invoked.  Note, this relies on system_state being set _before_
5740 	 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked
5741 	 * or this CPU observes the impending shutdown.  Which is why KVM uses
5742 	 * a syscore ops hook instead of registering a dedicated reboot
5743 	 * notifier (the latter runs before system_state is updated).
5744 	 */
5745 	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5746 	    system_state == SYSTEM_RESTART) {
5747 		r = -EBUSY;
5748 		goto err_rebooting;
5749 	}
5750 
5751 	return 0;
5752 
5753 err_rebooting:
5754 	unregister_syscore_ops(&kvm_syscore_ops);
5755 	cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5756 err_cpuhp:
5757 	kvm_arch_disable_virtualization();
5758 	--kvm_usage_count;
5759 	return r;
5760 }
5761 
kvm_disable_virtualization(void)5762 static void kvm_disable_virtualization(void)
5763 {
5764 	guard(mutex)(&kvm_usage_lock);
5765 
5766 	if (--kvm_usage_count)
5767 		return;
5768 
5769 	unregister_syscore_ops(&kvm_syscore_ops);
5770 	cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5771 	kvm_arch_disable_virtualization();
5772 }
5773 
kvm_init_virtualization(void)5774 static int kvm_init_virtualization(void)
5775 {
5776 	if (enable_virt_at_load)
5777 		return kvm_enable_virtualization();
5778 
5779 	return 0;
5780 }
5781 
kvm_uninit_virtualization(void)5782 static void kvm_uninit_virtualization(void)
5783 {
5784 	if (enable_virt_at_load)
5785 		kvm_disable_virtualization();
5786 }
5787 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
kvm_enable_virtualization(void)5788 static int kvm_enable_virtualization(void)
5789 {
5790 	return 0;
5791 }
5792 
kvm_init_virtualization(void)5793 static int kvm_init_virtualization(void)
5794 {
5795 	return 0;
5796 }
5797 
kvm_disable_virtualization(void)5798 static void kvm_disable_virtualization(void)
5799 {
5800 
5801 }
5802 
kvm_uninit_virtualization(void)5803 static void kvm_uninit_virtualization(void)
5804 {
5805 
5806 }
5807 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5808 
kvm_iodevice_destructor(struct kvm_io_device * dev)5809 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5810 {
5811 	if (dev->ops->destructor)
5812 		dev->ops->destructor(dev);
5813 }
5814 
kvm_io_bus_destroy(struct kvm_io_bus * bus)5815 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5816 {
5817 	int i;
5818 
5819 	for (i = 0; i < bus->dev_count; i++) {
5820 		struct kvm_io_device *pos = bus->range[i].dev;
5821 
5822 		kvm_iodevice_destructor(pos);
5823 	}
5824 	kfree(bus);
5825 }
5826 
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)5827 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5828 				 const struct kvm_io_range *r2)
5829 {
5830 	gpa_t addr1 = r1->addr;
5831 	gpa_t addr2 = r2->addr;
5832 
5833 	if (addr1 < addr2)
5834 		return -1;
5835 
5836 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5837 	 * accept any overlapping write.  Any order is acceptable for
5838 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5839 	 * we process all of them.
5840 	 */
5841 	if (r2->len) {
5842 		addr1 += r1->len;
5843 		addr2 += r2->len;
5844 	}
5845 
5846 	if (addr1 > addr2)
5847 		return 1;
5848 
5849 	return 0;
5850 }
5851 
kvm_io_bus_sort_cmp(const void * p1,const void * p2)5852 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5853 {
5854 	return kvm_io_bus_cmp(p1, p2);
5855 }
5856 
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)5857 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5858 			     gpa_t addr, int len)
5859 {
5860 	struct kvm_io_range *range, key;
5861 	int off;
5862 
5863 	key = (struct kvm_io_range) {
5864 		.addr = addr,
5865 		.len = len,
5866 	};
5867 
5868 	range = bsearch(&key, bus->range, bus->dev_count,
5869 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5870 	if (range == NULL)
5871 		return -ENOENT;
5872 
5873 	off = range - bus->range;
5874 
5875 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5876 		off--;
5877 
5878 	return off;
5879 }
5880 
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)5881 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5882 			      struct kvm_io_range *range, const void *val)
5883 {
5884 	int idx;
5885 
5886 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5887 	if (idx < 0)
5888 		return -EOPNOTSUPP;
5889 
5890 	while (idx < bus->dev_count &&
5891 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5892 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5893 					range->len, val))
5894 			return idx;
5895 		idx++;
5896 	}
5897 
5898 	return -EOPNOTSUPP;
5899 }
5900 
5901 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)5902 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5903 		     int len, const void *val)
5904 {
5905 	struct kvm_io_bus *bus;
5906 	struct kvm_io_range range;
5907 	int r;
5908 
5909 	range = (struct kvm_io_range) {
5910 		.addr = addr,
5911 		.len = len,
5912 	};
5913 
5914 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5915 	if (!bus)
5916 		return -ENOMEM;
5917 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5918 	return r < 0 ? r : 0;
5919 }
5920 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5921 
5922 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)5923 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5924 			    gpa_t addr, int len, const void *val, long cookie)
5925 {
5926 	struct kvm_io_bus *bus;
5927 	struct kvm_io_range range;
5928 
5929 	range = (struct kvm_io_range) {
5930 		.addr = addr,
5931 		.len = len,
5932 	};
5933 
5934 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5935 	if (!bus)
5936 		return -ENOMEM;
5937 
5938 	/* First try the device referenced by cookie. */
5939 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5940 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5941 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5942 					val))
5943 			return cookie;
5944 
5945 	/*
5946 	 * cookie contained garbage; fall back to search and return the
5947 	 * correct cookie value.
5948 	 */
5949 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5950 }
5951 
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)5952 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5953 			     struct kvm_io_range *range, void *val)
5954 {
5955 	int idx;
5956 
5957 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5958 	if (idx < 0)
5959 		return -EOPNOTSUPP;
5960 
5961 	while (idx < bus->dev_count &&
5962 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5963 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5964 				       range->len, val))
5965 			return idx;
5966 		idx++;
5967 	}
5968 
5969 	return -EOPNOTSUPP;
5970 }
5971 
5972 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)5973 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5974 		    int len, void *val)
5975 {
5976 	struct kvm_io_bus *bus;
5977 	struct kvm_io_range range;
5978 	int r;
5979 
5980 	range = (struct kvm_io_range) {
5981 		.addr = addr,
5982 		.len = len,
5983 	};
5984 
5985 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5986 	if (!bus)
5987 		return -ENOMEM;
5988 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5989 	return r < 0 ? r : 0;
5990 }
5991 
__free_bus(struct rcu_head * rcu)5992 static void __free_bus(struct rcu_head *rcu)
5993 {
5994 	struct kvm_io_bus *bus = container_of(rcu, struct kvm_io_bus, rcu);
5995 
5996 	kfree(bus);
5997 }
5998 
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)5999 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
6000 			    int len, struct kvm_io_device *dev)
6001 {
6002 	int i;
6003 	struct kvm_io_bus *new_bus, *bus;
6004 	struct kvm_io_range range;
6005 
6006 	lockdep_assert_held(&kvm->slots_lock);
6007 
6008 	bus = kvm_get_bus(kvm, bus_idx);
6009 	if (!bus)
6010 		return -ENOMEM;
6011 
6012 	/* exclude ioeventfd which is limited by maximum fd */
6013 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
6014 		return -ENOSPC;
6015 
6016 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
6017 			  GFP_KERNEL_ACCOUNT);
6018 	if (!new_bus)
6019 		return -ENOMEM;
6020 
6021 	range = (struct kvm_io_range) {
6022 		.addr = addr,
6023 		.len = len,
6024 		.dev = dev,
6025 	};
6026 
6027 	for (i = 0; i < bus->dev_count; i++)
6028 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
6029 			break;
6030 
6031 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
6032 	new_bus->dev_count++;
6033 	new_bus->range[i] = range;
6034 	memcpy(new_bus->range + i + 1, bus->range + i,
6035 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
6036 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
6037 	call_srcu(&kvm->srcu, &bus->rcu, __free_bus);
6038 
6039 	return 0;
6040 }
6041 
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)6042 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6043 			      struct kvm_io_device *dev)
6044 {
6045 	int i;
6046 	struct kvm_io_bus *new_bus, *bus;
6047 
6048 	lockdep_assert_held(&kvm->slots_lock);
6049 
6050 	bus = kvm_get_bus(kvm, bus_idx);
6051 	if (!bus)
6052 		return 0;
6053 
6054 	for (i = 0; i < bus->dev_count; i++) {
6055 		if (bus->range[i].dev == dev) {
6056 			break;
6057 		}
6058 	}
6059 
6060 	if (i == bus->dev_count)
6061 		return 0;
6062 
6063 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
6064 			  GFP_KERNEL_ACCOUNT);
6065 	if (new_bus) {
6066 		memcpy(new_bus, bus, struct_size(bus, range, i));
6067 		new_bus->dev_count--;
6068 		memcpy(new_bus->range + i, bus->range + i + 1,
6069 				flex_array_size(new_bus, range, new_bus->dev_count - i));
6070 	}
6071 
6072 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
6073 	synchronize_srcu_expedited(&kvm->srcu);
6074 
6075 	/*
6076 	 * If NULL bus is installed, destroy the old bus, including all the
6077 	 * attached devices. Otherwise, destroy the caller's device only.
6078 	 */
6079 	if (!new_bus) {
6080 		pr_err("kvm: failed to shrink bus, removing it completely\n");
6081 		kvm_io_bus_destroy(bus);
6082 		return -ENOMEM;
6083 	}
6084 
6085 	kvm_iodevice_destructor(dev);
6086 	kfree(bus);
6087 	return 0;
6088 }
6089 
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)6090 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6091 					 gpa_t addr)
6092 {
6093 	struct kvm_io_bus *bus;
6094 	int dev_idx, srcu_idx;
6095 	struct kvm_io_device *iodev = NULL;
6096 
6097 	srcu_idx = srcu_read_lock(&kvm->srcu);
6098 
6099 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
6100 	if (!bus)
6101 		goto out_unlock;
6102 
6103 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6104 	if (dev_idx < 0)
6105 		goto out_unlock;
6106 
6107 	iodev = bus->range[dev_idx].dev;
6108 
6109 out_unlock:
6110 	srcu_read_unlock(&kvm->srcu, srcu_idx);
6111 
6112 	return iodev;
6113 }
6114 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6115 
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)6116 static int kvm_debugfs_open(struct inode *inode, struct file *file,
6117 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
6118 			   const char *fmt)
6119 {
6120 	int ret;
6121 	struct kvm_stat_data *stat_data = inode->i_private;
6122 
6123 	/*
6124 	 * The debugfs files are a reference to the kvm struct which
6125         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
6126         * avoids the race between open and the removal of the debugfs directory.
6127 	 */
6128 	if (!kvm_get_kvm_safe(stat_data->kvm))
6129 		return -ENOENT;
6130 
6131 	ret = simple_attr_open(inode, file, get,
6132 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
6133 			       ? set : NULL, fmt);
6134 	if (ret)
6135 		kvm_put_kvm(stat_data->kvm);
6136 
6137 	return ret;
6138 }
6139 
kvm_debugfs_release(struct inode * inode,struct file * file)6140 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6141 {
6142 	struct kvm_stat_data *stat_data = inode->i_private;
6143 
6144 	simple_attr_release(inode, file);
6145 	kvm_put_kvm(stat_data->kvm);
6146 
6147 	return 0;
6148 }
6149 
kvm_get_stat_per_vm(struct kvm * kvm,size_t offset,u64 * val)6150 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6151 {
6152 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
6153 
6154 	return 0;
6155 }
6156 
kvm_clear_stat_per_vm(struct kvm * kvm,size_t offset)6157 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6158 {
6159 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
6160 
6161 	return 0;
6162 }
6163 
kvm_get_stat_per_vcpu(struct kvm * kvm,size_t offset,u64 * val)6164 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6165 {
6166 	unsigned long i;
6167 	struct kvm_vcpu *vcpu;
6168 
6169 	*val = 0;
6170 
6171 	kvm_for_each_vcpu(i, vcpu, kvm)
6172 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
6173 
6174 	return 0;
6175 }
6176 
kvm_clear_stat_per_vcpu(struct kvm * kvm,size_t offset)6177 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6178 {
6179 	unsigned long i;
6180 	struct kvm_vcpu *vcpu;
6181 
6182 	kvm_for_each_vcpu(i, vcpu, kvm)
6183 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6184 
6185 	return 0;
6186 }
6187 
kvm_stat_data_get(void * data,u64 * val)6188 static int kvm_stat_data_get(void *data, u64 *val)
6189 {
6190 	int r = -EFAULT;
6191 	struct kvm_stat_data *stat_data = data;
6192 
6193 	switch (stat_data->kind) {
6194 	case KVM_STAT_VM:
6195 		r = kvm_get_stat_per_vm(stat_data->kvm,
6196 					stat_data->desc->desc.offset, val);
6197 		break;
6198 	case KVM_STAT_VCPU:
6199 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
6200 					  stat_data->desc->desc.offset, val);
6201 		break;
6202 	}
6203 
6204 	return r;
6205 }
6206 
kvm_stat_data_clear(void * data,u64 val)6207 static int kvm_stat_data_clear(void *data, u64 val)
6208 {
6209 	int r = -EFAULT;
6210 	struct kvm_stat_data *stat_data = data;
6211 
6212 	if (val)
6213 		return -EINVAL;
6214 
6215 	switch (stat_data->kind) {
6216 	case KVM_STAT_VM:
6217 		r = kvm_clear_stat_per_vm(stat_data->kvm,
6218 					  stat_data->desc->desc.offset);
6219 		break;
6220 	case KVM_STAT_VCPU:
6221 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6222 					    stat_data->desc->desc.offset);
6223 		break;
6224 	}
6225 
6226 	return r;
6227 }
6228 
kvm_stat_data_open(struct inode * inode,struct file * file)6229 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6230 {
6231 	__simple_attr_check_format("%llu\n", 0ull);
6232 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6233 				kvm_stat_data_clear, "%llu\n");
6234 }
6235 
6236 static const struct file_operations stat_fops_per_vm = {
6237 	.owner = THIS_MODULE,
6238 	.open = kvm_stat_data_open,
6239 	.release = kvm_debugfs_release,
6240 	.read = simple_attr_read,
6241 	.write = simple_attr_write,
6242 };
6243 
vm_stat_get(void * _offset,u64 * val)6244 static int vm_stat_get(void *_offset, u64 *val)
6245 {
6246 	unsigned offset = (long)_offset;
6247 	struct kvm *kvm;
6248 	u64 tmp_val;
6249 
6250 	*val = 0;
6251 	mutex_lock(&kvm_lock);
6252 	list_for_each_entry(kvm, &vm_list, vm_list) {
6253 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6254 		*val += tmp_val;
6255 	}
6256 	mutex_unlock(&kvm_lock);
6257 	return 0;
6258 }
6259 
vm_stat_clear(void * _offset,u64 val)6260 static int vm_stat_clear(void *_offset, u64 val)
6261 {
6262 	unsigned offset = (long)_offset;
6263 	struct kvm *kvm;
6264 
6265 	if (val)
6266 		return -EINVAL;
6267 
6268 	mutex_lock(&kvm_lock);
6269 	list_for_each_entry(kvm, &vm_list, vm_list) {
6270 		kvm_clear_stat_per_vm(kvm, offset);
6271 	}
6272 	mutex_unlock(&kvm_lock);
6273 
6274 	return 0;
6275 }
6276 
6277 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6278 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6279 
vcpu_stat_get(void * _offset,u64 * val)6280 static int vcpu_stat_get(void *_offset, u64 *val)
6281 {
6282 	unsigned offset = (long)_offset;
6283 	struct kvm *kvm;
6284 	u64 tmp_val;
6285 
6286 	*val = 0;
6287 	mutex_lock(&kvm_lock);
6288 	list_for_each_entry(kvm, &vm_list, vm_list) {
6289 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6290 		*val += tmp_val;
6291 	}
6292 	mutex_unlock(&kvm_lock);
6293 	return 0;
6294 }
6295 
vcpu_stat_clear(void * _offset,u64 val)6296 static int vcpu_stat_clear(void *_offset, u64 val)
6297 {
6298 	unsigned offset = (long)_offset;
6299 	struct kvm *kvm;
6300 
6301 	if (val)
6302 		return -EINVAL;
6303 
6304 	mutex_lock(&kvm_lock);
6305 	list_for_each_entry(kvm, &vm_list, vm_list) {
6306 		kvm_clear_stat_per_vcpu(kvm, offset);
6307 	}
6308 	mutex_unlock(&kvm_lock);
6309 
6310 	return 0;
6311 }
6312 
6313 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6314 			"%llu\n");
6315 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6316 
kvm_uevent_notify_change(unsigned int type,struct kvm * kvm)6317 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6318 {
6319 	struct kobj_uevent_env *env;
6320 	unsigned long long created, active;
6321 
6322 	if (!kvm_dev.this_device || !kvm)
6323 		return;
6324 
6325 	mutex_lock(&kvm_lock);
6326 	if (type == KVM_EVENT_CREATE_VM) {
6327 		kvm_createvm_count++;
6328 		kvm_active_vms++;
6329 	} else if (type == KVM_EVENT_DESTROY_VM) {
6330 		kvm_active_vms--;
6331 	}
6332 	created = kvm_createvm_count;
6333 	active = kvm_active_vms;
6334 	mutex_unlock(&kvm_lock);
6335 
6336 	env = kzalloc(sizeof(*env), GFP_KERNEL);
6337 	if (!env)
6338 		return;
6339 
6340 	add_uevent_var(env, "CREATED=%llu", created);
6341 	add_uevent_var(env, "COUNT=%llu", active);
6342 
6343 	if (type == KVM_EVENT_CREATE_VM) {
6344 		add_uevent_var(env, "EVENT=create");
6345 		kvm->userspace_pid = task_pid_nr(current);
6346 	} else if (type == KVM_EVENT_DESTROY_VM) {
6347 		add_uevent_var(env, "EVENT=destroy");
6348 	}
6349 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6350 
6351 	if (!IS_ERR(kvm->debugfs_dentry)) {
6352 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
6353 
6354 		if (p) {
6355 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6356 			if (!IS_ERR(tmp))
6357 				add_uevent_var(env, "STATS_PATH=%s", tmp);
6358 			kfree(p);
6359 		}
6360 	}
6361 	/* no need for checks, since we are adding at most only 5 keys */
6362 	env->envp[env->envp_idx++] = NULL;
6363 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6364 	kfree(env);
6365 }
6366 
kvm_init_debug(void)6367 static void kvm_init_debug(void)
6368 {
6369 	const struct file_operations *fops;
6370 	const struct _kvm_stats_desc *pdesc;
6371 	int i;
6372 
6373 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6374 
6375 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6376 		pdesc = &kvm_vm_stats_desc[i];
6377 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6378 			fops = &vm_stat_fops;
6379 		else
6380 			fops = &vm_stat_readonly_fops;
6381 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6382 				kvm_debugfs_dir,
6383 				(void *)(long)pdesc->desc.offset, fops);
6384 	}
6385 
6386 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6387 		pdesc = &kvm_vcpu_stats_desc[i];
6388 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6389 			fops = &vcpu_stat_fops;
6390 		else
6391 			fops = &vcpu_stat_readonly_fops;
6392 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6393 				kvm_debugfs_dir,
6394 				(void *)(long)pdesc->desc.offset, fops);
6395 	}
6396 }
6397 
6398 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)6399 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6400 {
6401 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
6402 }
6403 
kvm_sched_in(struct preempt_notifier * pn,int cpu)6404 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6405 {
6406 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6407 
6408 	WRITE_ONCE(vcpu->preempted, false);
6409 	WRITE_ONCE(vcpu->ready, false);
6410 
6411 	__this_cpu_write(kvm_running_vcpu, vcpu);
6412 	kvm_arch_vcpu_load(vcpu, cpu);
6413 
6414 	WRITE_ONCE(vcpu->scheduled_out, false);
6415 }
6416 
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)6417 static void kvm_sched_out(struct preempt_notifier *pn,
6418 			  struct task_struct *next)
6419 {
6420 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6421 
6422 	WRITE_ONCE(vcpu->scheduled_out, true);
6423 
6424 	if (task_is_runnable(current) && vcpu->wants_to_run) {
6425 		WRITE_ONCE(vcpu->preempted, true);
6426 		WRITE_ONCE(vcpu->ready, true);
6427 	}
6428 	kvm_arch_vcpu_put(vcpu);
6429 	__this_cpu_write(kvm_running_vcpu, NULL);
6430 }
6431 
6432 /**
6433  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6434  *
6435  * We can disable preemption locally around accessing the per-CPU variable,
6436  * and use the resolved vcpu pointer after enabling preemption again,
6437  * because even if the current thread is migrated to another CPU, reading
6438  * the per-CPU value later will give us the same value as we update the
6439  * per-CPU variable in the preempt notifier handlers.
6440  */
kvm_get_running_vcpu(void)6441 struct kvm_vcpu *kvm_get_running_vcpu(void)
6442 {
6443 	struct kvm_vcpu *vcpu;
6444 
6445 	preempt_disable();
6446 	vcpu = __this_cpu_read(kvm_running_vcpu);
6447 	preempt_enable();
6448 
6449 	return vcpu;
6450 }
6451 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6452 
6453 /**
6454  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6455  */
kvm_get_running_vcpus(void)6456 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6457 {
6458         return &kvm_running_vcpu;
6459 }
6460 
6461 #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_guest_state(void)6462 static unsigned int kvm_guest_state(void)
6463 {
6464 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6465 	unsigned int state;
6466 
6467 	if (!kvm_arch_pmi_in_guest(vcpu))
6468 		return 0;
6469 
6470 	state = PERF_GUEST_ACTIVE;
6471 	if (!kvm_arch_vcpu_in_kernel(vcpu))
6472 		state |= PERF_GUEST_USER;
6473 
6474 	return state;
6475 }
6476 
kvm_guest_get_ip(void)6477 static unsigned long kvm_guest_get_ip(void)
6478 {
6479 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6480 
6481 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6482 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6483 		return 0;
6484 
6485 	return kvm_arch_vcpu_get_ip(vcpu);
6486 }
6487 
6488 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6489 	.state			= kvm_guest_state,
6490 	.get_ip			= kvm_guest_get_ip,
6491 	.handle_intel_pt_intr	= NULL,
6492 };
6493 
kvm_register_perf_callbacks(unsigned int (* pt_intr_handler)(void))6494 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6495 {
6496 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6497 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6498 }
kvm_unregister_perf_callbacks(void)6499 void kvm_unregister_perf_callbacks(void)
6500 {
6501 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6502 }
6503 #endif
6504 
kvm_init(unsigned vcpu_size,unsigned vcpu_align,struct module * module)6505 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6506 {
6507 	int r;
6508 	int cpu;
6509 
6510 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6511 	if (!vcpu_align)
6512 		vcpu_align = __alignof__(struct kvm_vcpu);
6513 	kvm_vcpu_cache =
6514 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6515 					   SLAB_ACCOUNT,
6516 					   offsetof(struct kvm_vcpu, arch),
6517 					   offsetofend(struct kvm_vcpu, stats_id)
6518 					   - offsetof(struct kvm_vcpu, arch),
6519 					   NULL);
6520 	if (!kvm_vcpu_cache)
6521 		return -ENOMEM;
6522 
6523 	for_each_possible_cpu(cpu) {
6524 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6525 					    GFP_KERNEL, cpu_to_node(cpu))) {
6526 			r = -ENOMEM;
6527 			goto err_cpu_kick_mask;
6528 		}
6529 	}
6530 
6531 	r = kvm_irqfd_init();
6532 	if (r)
6533 		goto err_irqfd;
6534 
6535 	r = kvm_async_pf_init();
6536 	if (r)
6537 		goto err_async_pf;
6538 
6539 	kvm_chardev_ops.owner = module;
6540 	kvm_vm_fops.owner = module;
6541 	kvm_vcpu_fops.owner = module;
6542 	kvm_device_fops.owner = module;
6543 
6544 	kvm_preempt_ops.sched_in = kvm_sched_in;
6545 	kvm_preempt_ops.sched_out = kvm_sched_out;
6546 
6547 	kvm_init_debug();
6548 
6549 	r = kvm_vfio_ops_init();
6550 	if (WARN_ON_ONCE(r))
6551 		goto err_vfio;
6552 
6553 	kvm_gmem_init(module);
6554 
6555 	r = kvm_init_virtualization();
6556 	if (r)
6557 		goto err_virt;
6558 
6559 	/*
6560 	 * Registration _must_ be the very last thing done, as this exposes
6561 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6562 	 */
6563 	r = misc_register(&kvm_dev);
6564 	if (r) {
6565 		pr_err("kvm: misc device register failed\n");
6566 		goto err_register;
6567 	}
6568 
6569 	return 0;
6570 
6571 err_register:
6572 	kvm_uninit_virtualization();
6573 err_virt:
6574 	kvm_vfio_ops_exit();
6575 err_vfio:
6576 	kvm_async_pf_deinit();
6577 err_async_pf:
6578 	kvm_irqfd_exit();
6579 err_irqfd:
6580 err_cpu_kick_mask:
6581 	for_each_possible_cpu(cpu)
6582 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6583 	kmem_cache_destroy(kvm_vcpu_cache);
6584 	return r;
6585 }
6586 EXPORT_SYMBOL_GPL(kvm_init);
6587 
kvm_exit(void)6588 void kvm_exit(void)
6589 {
6590 	int cpu;
6591 
6592 	/*
6593 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6594 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6595 	 * to KVM while the module is being stopped.
6596 	 */
6597 	misc_deregister(&kvm_dev);
6598 
6599 	kvm_uninit_virtualization();
6600 
6601 	debugfs_remove_recursive(kvm_debugfs_dir);
6602 	for_each_possible_cpu(cpu)
6603 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6604 	kmem_cache_destroy(kvm_vcpu_cache);
6605 	kvm_vfio_ops_exit();
6606 	kvm_async_pf_deinit();
6607 	kvm_irqfd_exit();
6608 }
6609 EXPORT_SYMBOL_GPL(kvm_exit);
6610